WorldWideScience

Sample records for repeat lrr proteins

  1. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants

    OpenAIRE

    Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng

    2017-01-01

    Background Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution...

  2. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket

    NARCIS (Netherlands)

    Sueldo, D.J.; Shimels, M.Z.; Spiridon, L.N.; Caldararu, O.; Petrescu, A.J.; Joosten, M.H.A.J.; Tameling, W.I.L.

    2015-01-01

    •Plant nucleotide-binding, leucine-rich repeat (NB-LRR) proteins confer immunity to pathogens possessing the corresponding avirulence proteins. Activation of NB-LRR proteins is often associated with induction of the hypersensitive response (HR), a form of programmed cell death. •NRC1 (NB-LRR

  3. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    Science.gov (United States)

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  4. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes.

    Science.gov (United States)

    Sun, Jiangmei; Li, Leiting; Wang, Peng; Zhang, Shaoling; Wu, Juyou

    2017-10-10

    Leucine-rich repeat receptor-like protein kinase (LRR-RLK) is the largest gene family of receptor-like protein kinases (RLKs) and actively participates in regulating the growth, development, signal transduction, immunity, and stress responses of plants. However, the patterns of LRR-RLK gene family evolution in the five main Rosaceae species for which genome sequences are available have not yet been reported. In this study, we performed a comprehensive analysis of LRR-RLK genes for five Rosaceae species: Fragaria vesca (strawberry), Malus domestica (apple), Pyrus bretschneideri (Chinese white pear), Prunus mume (mei), and Prunus persica (peach), which contained 201, 244, 427, 267, and 258 LRR-RLK genes, respectively. All LRR-RLK genes were further grouped into 23 subfamilies based on the hidden Markov models approach. RLK-Pelle_LRR-XII-1, RLK-Pelle_LRR-XI-1, and RLK-Pelle_LRR-III were the three largest subfamilies. Synteny analysis indicated that there were 236 tandem duplicated genes in the five Rosaceae species, among which subfamilies XII-1 (82 genes) and XI-1 (80 genes) comprised 68.6%. Our results indicate that tandem duplication made a large contribution to the expansion of the subfamilies. The gene expression, tissue-specific expression, and subcellular localization data revealed that LRR-RLK genes were differentially expressed in various organs and tissues, and the largest subfamily XI-1 was highly expressed in all five Rosaceae species, suggesting that LRR-RLKs play important roles in each stage of plant growth and development. Taken together, our results provide an overview of the LRR-RLK family in Rosaceae genomes and the basis for further functional studies.

  5. Origin and evolution of GALA-LRR, a new member of the CC-LRR subfamily: from plants to bacteria?

    Directory of Open Access Journals (Sweden)

    Andrey V Kajava

    Full Text Available The phytopathogenic bacterium Ralstonia solanacearum encodes type III effectors, called GALA proteins, which contain F-box and LRR domains. The GALA LRRs do not perfectly fit any of the previously described LRR subfamilies. By applying protein sequence analysis and structural prediction, we clarify this ambiguous case of LRR classification and assign GALA-LRRs to CC-LRR subfamily. We demonstrate that side-by-side packing of LRRs in the 3D structures may control the limits of repeat variability within the LRR subfamilies during evolution. The LRR packing can be used as a criterion, complementing the repeat sequences, to classify newly identified LRR domains. Our phylogenetic analysis of F-box domains proposes the lateral gene transfer of bacterial GALA proteins from host plants. We also present an evolutionary scenario which can explain the transformation of the original plant LRRs into slightly different bacterial LRRs. The examination of the selective evolutionary pressure acting on GALA proteins suggests that the convex side of their horse-shoe shaped LRR domains is more prone to positive selection than the concave side, and we therefore hypothesize that the convex surface might be the site of protein binding relevant to the adaptor function of the F-box GALA proteins. This conclusion provides a strong background for further functional studies aimed at determining the role of these type III effectors in the virulence of R. solanacearum.

  6. Dissection and Manipulation of LRR Domains in Plant Disease Resistance Gene Products.

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Andrew [Univ. of Wisconsin, Madison, WI (United States)

    2012-11-28

    Leucine-rich repeat (LRR) protein domains offer a readily diversifiable platform - literally, an extended protein surface - for specific binding of very diverse ligands. The project addressed the following overlapping research questions: How do leucine-rich repeat proteins recognize their cognate ligands? What are the intra- and inter-molecular transitions that occur that cause transmembrane LRR proteins to switch between off and on states? How do plants use LRR receptor proteins to activate disease resistance? Can we synthetically evolve new LRR proteins that have acquired new ligand specificities?

  7. Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica.

    Science.gov (United States)

    Zhao, Yan; Weng, Qiaoyun; Song, Jinhui; Ma, Hailian; Yuan, Jincheng; Dong, Zhiping; Liu, Yinghui

    2016-06-01

    In plants, resistance (R) genes are involved in pathogen recognition and subsequent activation of innate immune responses. The nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes family forms the largest R-gene family among plant genomes and play an important role in plant disease resistance. In this paper, comprehensive analysis of NBS-encoding genes is performed in the whole Setaria italica genome. A total of 96 NBS-LRR genes are identified, and comprehensive overview of the NBS-LRR genes is undertaken, including phylogenetic analysis, chromosome locations, conserved motifs of proteins, and gene expression. Based on the domain, these genes are divided into two groups and distributed in all Setaria italica chromosomes. Most NBS-LRR genes are located at the distal tip of the long arms of the chromosomes. Setaria italica NBS-LRR proteins share at least one nucleotide-biding domain and one leucine-rich repeat domain. Our results also show the duplication of NBS-LRR genes in Setaria italica is related to their gene structure.

  8. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events.

    Science.gov (United States)

    Urbach, Jonathan M; Ausubel, Frederick M

    2017-01-31

    There are intriguing parallels between plants and animals, with respect to the structures of their innate immune receptors, that suggest universal principles of innate immunity. The cytosolic nucleotide binding site-leucine rich repeat (NBS-LRR) resistance proteins of plants (R-proteins) and the so-called NOD-like receptors of animals (NLRs) share a domain architecture that includes a STAND (signal transduction ATPases with numerous domains) family NTPase followed by a series of LRRs, suggesting inheritance from a common ancestor with that architecture. Focusing on the STAND NTPases of plant R-proteins, animal NLRs, and their homologs that represent the NB-ARC (nucleotide-binding adaptor shared by APAF-1, certain R gene products and CED-4) and NACHT (named for NAIP, CIIA, HET-E, and TEP1) subfamilies of the STAND NTPases, we analyzed the phylogenetic distribution of the NBS-LRR domain architecture, used maximum-likelihood methods to infer a phylogeny of the NTPase domains of R-proteins, and reconstructed the domain structure of the protein containing the common ancestor of the STAND NTPase domain of R-proteins and NLRs. Our analyses reject monophyly of plant R-proteins and NLRs and suggest that the protein containing the last common ancestor of the STAND NTPases of plant R-proteins and animal NLRs (and, by extension, all NB-ARC and NACHT domains) possessed a domain structure that included a STAND NTPase paired with a series of tetratricopeptide repeats. These analyses reject the hypothesis that the domain architecture of R-proteins and NLRs was inherited from a common ancestor and instead suggest the domain architecture evolved at least twice. It remains unclear whether the NBS-LRR architectures were innovations of plants and animals themselves or were acquired by one or both lineages through horizontal gene transfer.

  9. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.

    Science.gov (United States)

    Hindle, K Lauren; Bella, Jordi; Lovell, Simon C

    2009-11-01

    Leucine-rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein-protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large-scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine-rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/.

  10. Structural Determinants at the Interface of the ARC2 and LRR Domains Control the Activation of the NB-LRR Plant Immune Receptors Rx1 and Gpa2

    NARCIS (Netherlands)

    Slootweg, E.J.; Spiridon, L.N.; Roosien, J.; Butterbach, P.B.E.; Pomp, H.; Westerhof, L.B.; Wilbers, R.H.P.; Bakker, E.H.; Bakker, J.; Petrescu, A.J.; Smant, G.; Goverse, A.

    2013-01-01

    Many plant and animal immune receptors have a modular NB-LRR architecture in which a nucleotide-binding switch domain (NB-ARC) is tethered to a leucine-rich repeat sensor domain (LRR). The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly

  11. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus.

    Science.gov (United States)

    Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K

    2014-01-01

    Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.

  12. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

    Directory of Open Access Journals (Sweden)

    Guan-Feng Wang

    2015-02-01

    Full Text Available Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR. Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC, a nucleotide binding (NB-ARC and a leucine rich repeat (LRR domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.

  13. Molecular and functional analyses of a maize autoactive NB-LRR protein identify precise structural requirements for activity.

    Science.gov (United States)

    Wang, Guan-Feng; Ji, Jiabing; El-Kasmi, Farid; Dangl, Jeffery L; Johal, Guri; Balint-Kurti, Peter J

    2015-02-01

    Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NLR) proteins which remain auto-inhibited until recognition of specific pathogen-derived molecules causes their activation, triggering a rapid, localized cell death called a hypersensitive response (HR). Three domains are recognized in one of the major classes of NLR proteins: a coiled-coil (CC), a nucleotide binding (NB-ARC) and a leucine rich repeat (LRR) domains. The maize NLR gene Rp1-D21 derives from an intergenic recombination event between two NLR genes, Rp1-D and Rp1-dp2 and confers an autoactive HR. We report systematic structural and functional analyses of Rp1 proteins in maize and N. benthamiana to characterize the molecular mechanism of NLR activation/auto-inhibition. We derive a model comprising the following three main features: Rp1 proteins appear to self-associate to become competent for activity. The CC domain is signaling-competent and is sufficient to induce HR. This can be suppressed by the NB-ARC domain through direct interaction. In autoactive proteins, the interaction of the LRR domain with the NB-ARC domain causes de-repression and thus disrupts the inhibition of HR. Further, we identify specific amino acids and combinations thereof that are important for the auto-inhibition/activity of Rp1 proteins. We also provide evidence for the function of MHD2, a previously uncharacterized, though widely conserved NLR motif. This work reports several novel insights into the precise structural requirement for NLR function and informs efforts towards utilizing these proteins for engineering disease resistance.

  14. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity.

    Science.gov (United States)

    Caddell, Daniel F; Park, Chang-Jin; Thomas, Nicholas C; Canlas, Patrick E; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.

  15. Structure-Function Analysis of Cf-9, a Receptor-Like Protein with Extracytoplasmic Leucine-Rich Repeats

    NARCIS (Netherlands)

    Hoorn, van der R.A.L.; Wulff, B.B.H.; Rivas, S.; Durrant, M.C.; Ploeg, van der A.; Wit, de P.J.G.M.; Jones, J.D.G.

    2005-01-01

    The tomato (Lycopersicon pimpinellifolium) resistance protein Cf-9 belongs to a large class of plant proteins with extracytoplasmic Leu-rich repeats (eLRRs). eLRR proteins play key roles in plant defense and development, mainly as receptor-like proteins or receptor-like kinases, conferring

  16. An LRR receptor kinase regulates growth, development and pathogenesis in Phytophthora capsici.

    Science.gov (United States)

    Safdar, Asma; Li, Qi; Shen, Danyu; Chen, Linlin; He, Feng; Wang, Rongbo; Zhang, Meixiang; Mafurah, Joseph Juma; Khan, Sajid Aleem; Dou, Daolong

    2017-05-01

    Leucine-rich repeats (LRRs) domain containing kinase proteins (LRR-RK) perform various functions in eukaryotic organisms. However, their functions in Oomycetes are still largely unknown. Here, we identified an LRR-RK (PcLRR-RK1) gene and characterized its functions in Phytophthora capsici, a model oomycete specie and a major plant destroyer of solanaceous and cucurbitaceous vegetable crops. We showed that PcLRR-RK1-silenced P. capsici transformants exhibited reduced growth and produced highly branched fluffy hyphae. The shape and size of sporangia were also altered along with the reduced production of number of sporangia and zoospores. Moreover, silencing of the gene affected the cyst germination and penetration of germ tube into the host tissues, and led to the reduced virulence of P. capsici. Thus, we suggest that PcLRR-RK1 was essentially required for zoospores development, and successful infection of the P. capsici. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects.

    Science.gov (United States)

    Magalhães, Diogo M; Scholte, Larissa L S; Silva, Nicholas V; Oliveira, Guilherme C; Zipfel, Cyril; Takita, Marco A; De Souza, Alessandra A

    2016-08-12

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. This work provided the first comprehensive

  18. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.

    Science.gov (United States)

    Postma, Wiebe J; Slootweg, Erik J; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O G; van Gelderen, Kasper; Lozano-Torres, Jose L; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-10-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.

  19. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.

    Science.gov (United States)

    Vancraenenbroeck, Renée; Lobbestael, Evy; Weeks, Stephen D; Strelkov, Sergei V; Baekelandt, Veerle; Taymans, Jean-Marc; De Maeyer, Marc

    2012-03-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRR(LRRK2)) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRR(LRRK2) in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRR(LRRK2) thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% β-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRR(LRRK2) multimerization was detected via cross-linking studies. Finally, the LRR(LRRK2) clinical mutations did not influence LRR(LRRK2) secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRR(LRRK2) inter- and intramolecular interactions. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli

    International Nuclear Information System (INIS)

    Hong, Tae-Joon; Hahn, Ji-Sook

    2016-01-01

    NOD1 is an intracellular sensor of innate immunity which is related to a number of inflammatory diseases. NOD1 is known to be difficult to express and purify for structural and biochemical studies. Based on the fact that Hsp90 and its cochaperone SGT1 are necessary for the stabilization and activation of NOD1 in mammals, SGT1 was chosen as a fusion partner of the leucine-rich repeat (LRR) domain of NOD1 for its soluble expression in Escherichia coli. Fusion of human SGT1 (hSGT1) to NOD1 LRR significantly enhanced the solubility, and the fusion protein was stabilized by coexpression of mouse Hsp90α. The expression level of hSGT1-NOD1 LRR was further enhanced by supplementation of rare codon tRNAs and exchange of antibiotic marker genes. - Highlights: • The NOD1 LRR domain was solubilized by SGT1 fusion in E. coli. • The coexpression of HSP90 stabilized the SGT1-NOD1 LRR fusion protein. • Several optimizations could enhance the expression level of the fusion protein.

  1. TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders

    Directory of Open Access Journals (Sweden)

    Tarr D Ellen K

    2009-09-01

    Full Text Available Abstract Background Plant resistance (R gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS and C-terminal leucine-rich repeat (LRR domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. Findings Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp., a gymnosperm (C. revoluta and a eudicot (C. canephora. We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. Conclusion We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales. Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids.

  2. The Effector SPRYSEC-19 of Globodera rostochiensis Suppresses CC-NB-LRR-Mediated Disease Resistance in Plants1[C][W][OA

    Science.gov (United States)

    Postma, Wiebe J.; Slootweg, Erik J.; Rehman, Sajid; Finkers-Tomczak, Anna; Tytgat, Tom O.G.; van Gelderen, Kasper; Lozano-Torres, Jose L.; Roosien, Jan; Pomp, Rikus; van Schaik, Casper; Bakker, Jaap; Goverse, Aska; Smant, Geert

    2012-01-01

    The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants. PMID:22904163

  3. LRRML: a conformational database and an XML description of leucine-rich repeats (LRRs).

    Science.gov (United States)

    Wei, Tiandi; Gong, Jing; Jamitzky, Ferdinand; Heckl, Wolfgang M; Stark, Robert W; Rössle, Shaila C

    2008-11-05

    Leucine-rich repeats (LRRs) are present in more than 6000 proteins. They are found in organisms ranging from viruses to eukaryotes and play an important role in protein-ligand interactions. To date, more than one hundred crystal structures of LRR containing proteins have been determined. This knowledge has increased our ability to use the crystal structures as templates to model LRR proteins with unknown structures. Since the individual three-dimensional LRR structures are not directly available from the established databases and since there are only a few detailed annotations for them, a conformational LRR database useful for homology modeling of LRR proteins is desirable. We developed LRRML, a conformational database and an extensible markup language (XML) description of LRRs. The release 0.2 contains 1261 individual LRR structures, which were identified from 112 PDB structures and annotated manually. An XML structure was defined to exchange and store the LRRs. LRRML provides a source for homology modeling and structural analysis of LRR proteins. In order to demonstrate the capabilities of the database we modeled the mouse Toll-like receptor 3 (TLR3) by multiple templates homology modeling and compared the result with the crystal structure. LRRML is an information source for investigators involved in both theoretical and applied research on LRR proteins. It is available at http://zeus.krist.geo.uni-muenchen.de/~lrrml.

  4. LRRML: a conformational database and an XML description of leucine-rich repeats (LRRs

    Directory of Open Access Journals (Sweden)

    Stark Robert W

    2008-11-01

    Full Text Available Abstract Background Leucine-rich repeats (LRRs are present in more than 6000 proteins. They are found in organisms ranging from viruses to eukaryotes and play an important role in protein-ligand interactions. To date, more than one hundred crystal structures of LRR containing proteins have been determined. This knowledge has increased our ability to use the crystal structures as templates to model LRR proteins with unknown structures. Since the individual three-dimensional LRR structures are not directly available from the established databases and since there are only a few detailed annotations for them, a conformational LRR database useful for homology modeling of LRR proteins is desirable. Description We developed LRRML, a conformational database and an extensible markup language (XML description of LRRs. The release 0.2 contains 1261 individual LRR structures, which were identified from 112 PDB structures and annotated manually. An XML structure was defined to exchange and store the LRRs. LRRML provides a source for homology modeling and structural analysis of LRR proteins. In order to demonstrate the capabilities of the database we modeled the mouse Toll-like receptor 3 (TLR3 by multiple templates homology modeling and compared the result with the crystal structure. Conclusion LRRML is an information source for investigators involved in both theoretical and applied research on LRR proteins. It is available at http://zeus.krist.geo.uni-muenchen.de/~lrrml.

  5. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains

    NARCIS (Netherlands)

    Slootweg, E.J.; Roosien, J.; Spiridon, L.N.; Petrescu, A.J.; Tameling, W.I.L.; Joosten, M.H.A.J.; Pomp, H.; Schaik, van C.C.; Dees, R.H.L.; Borst, J.W.; Smant, G.; Schots, A.; Bakker, J.; Goverse, A.

    2010-01-01

    The Rx1 protein, as many resistance proteins of the nucleotide binding–leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the

  6. Identification and Phylogenetic Analysis of a CC-NBS-LRR Encoding Gene Assigned on Chromosome 7B of Wheat

    Directory of Open Access Journals (Sweden)

    Xiangqi Zhang

    2013-07-01

    Full Text Available Hexaploid wheat displays limited genetic variation. As a direct A and B genome donor of hexaploid wheat, tetraploid wheat represents an important gene pool for cultivated bread wheat. Many disease resistant genes express conserved domains of the nucleotide-binding site and leucine-rich repeats (NBS-LRR. In this study, we isolated a CC-NBS-LRR gene locating on chromosome 7B from durum wheat variety Italy 363, and designated it TdRGA-7Ba. Its open reading frame was 4014 bp, encoding a 1337 amino acid protein with a complete NBS domain and 18 LRR repeats, sharing 44.7% identity with the PM3B protein. TdRGA-7Ba expression was continuously seen at low levels and was highest in leaves. TdRGA-7Ba has another allele TdRGA-7Bb with a 4 bp deletion at position +1892 in other cultivars of tetraploid wheat. In Ae. speltoides, as a B genome progenitor, both TdRGA-7Ba and TdRGA-7Bb were detected. In all six species of hexaploid wheats (AABBDD, only TdRGA-7Bb existed. Phylogenic analysis showed that all TdRGA-7Bb type genes were grouped in one sub-branch. We speculate that TdRGA-7Bb was derived from a TdRGA-7Ba mutation, and it happened in Ae. speltoides. Both types of TdRGA-7B participated in tetraploid wheat formation. However, only the TdRGA-7Bb was retained in hexaploid wheat.

  7. Leptospira borgpetersenii hybrid leucine-rich repeat protein: Cloning and expression, immunogenic identification and molecular docking evaluation.

    Science.gov (United States)

    Sritrakul, Tepyuda; Nitipan, Supachai; Wajjwalku, Worawidh; La-Ard, Anchalee; Suphatpahirapol, Chattip; Petkarnjanapong, Wimol; Ongphiphadhanakul, Boonsong; Prapong, Siriwan

    2017-11-01

    Leptospirosis is an important zoonotic disease, and the major outbreak of this disease in Thailand in 1999 was due largely to the Leptospira borgpetersenii serovar Sejroe. Identification of the leucine-rich repeat (LRR) LBJ_2271 protein containing immunogenic epitopes and the discovery of the LBJ_2271 ortholog in Leptospira serovar Sejroe, KU_Sej_R21_2271, led to further studies of the antigenic immune properties of KU_Sej_LRR_2271. The recombinant hybrid (rh) protein was created and expressed from a hybrid PCR fragment of KU_Sej_R21_2271 fused with DNA encoding the LBJ_2271 signal sequence for targeting protein as a membrane-anchoring protein. The fusion DNA was cloned into pET160/GW/D-TOPO® to form the pET160_hKU_R21_2271 plasmid. The plasmid was used to express the rhKU_Sej_LRR_2271 protein in Escherichia coli BL21 Star™ (DE3). The expressed protein was immunologically detected by Western blotting and immunoreactivity detection with hyperimmune sera, T cell epitope prediction by HLA allele and epitope peptide binding affinity, and potential T cell reactivity analysis. The immunogenic epitopes of the protein were evaluated and verified by HLA allele and epitope peptide complex structure molecular docking. Among fourteen best allele epitopes of this protein, binding affinity values of 12 allele epitopes remained unchanged compared to LBJ_2271. Two epitopes for alleles HLA-A0202 and -A0301 had higher IC 50 values, while T cell reactivity values of these peptides were better than values from LBJ_2271 epitopes. Eight of twelve epitope peptides had positive T-cell reactivity scores. Although the molecular docking of two epitopes, 3FPLLKEFLV11/47FPLLKEFLV55 and 50KLSTVPEGV58, into an HLA-A0202 model revealed a good fit in the docked structures, 50KLSTVPEGV58 and 94KLSTVPEEV102 are still considered as the proteins' best epitopes for allele HLA-A0202. The results of this study showed that rhKU_Sej_LRR_2271 protein contained natural immunological properties that should

  8. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth.

    Science.gov (United States)

    Draeger, Christian; Ndinyanka Fabrice, Tohnyui; Gineau, Emilie; Mouille, Grégory; Kuhn, Benjamin M; Moller, Isabel; Abdou, Marie-Therese; Frey, Beat; Pauly, Markus; Bacic, Antony; Ringli, Christoph

    2015-06-24

    Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.

  9. Genome-Wide Association Study Identifies NBS-LRR-Encoding Genes Related with Anthracnose and Common Bacterial Blight in the Common Bean.

    Science.gov (United States)

    Wu, Jing; Zhu, Jifeng; Wang, Lanfen; Wang, Shumin

    2017-01-01

    Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the largest and most important disease resistance genes in plants. The genome sequence of the common bean ( Phaseolus vulgaris L.) provides valuable data for determining the genomic organization of NBS-LRR genes. However, data on the NBS-LRR genes in the common bean are limited. In total, 178 NBS-LRR-type genes and 145 partial genes (with or without a NBS) located on 11 common bean chromosomes were identified from genome sequences database. Furthermore, 30 NBS-LRR genes were classified into Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) types, and 148 NBS-LRR genes were classified into coiled-coil (CC)-NBS-LRR (CNL) types. Moreover, the phylogenetic tree supported the division of these PvNBS genes into two obvious groups, TNL types and CNL types. We also built expression profiles of NBS genes in response to anthracnose and common bacterial blight using qRT-PCR. Finally, we detected nine disease resistance loci for anthracnose (ANT) and seven for common bacterial blight (CBB) using the developed NBS-SSR markers. Among these loci, NSSR24, NSSR73, and NSSR265 may be located at new regions for ANT resistance, while NSSR65 and NSSR260 may be located at new regions for CBB resistance. Furthermore, we validated NSSR24, NSSR65, NSSR73, NSSR260, and NSSR265 using a new natural population. Our results provide useful information regarding the function of the NBS-LRR proteins and will accelerate the functional genomics and evolutionary studies of NBS-LRR genes in food legumes. NBS-SSR markers represent a wide-reaching resource for molecular breeding in the common bean and other food legumes. Collectively, our results should be of broad interest to bean scientists and breeders.

  10. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  11. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis.

    Science.gov (United States)

    Zhu, Xiuliang; Lu, Chungui; Du, Lipu; Ye, Xingguo; Liu, Xin; Coules, Anne; Zhang, Zengyan

    2017-06-01

    The necrotrophic fungus Rhizoctonia cerealis is the major pathogen causing sharp eyespot disease in wheat (Triticum aestivum). Nucleotide-binding leucine-rich repeat (NB-LRR) proteins often mediate plant disease resistance to biotrophic pathogens. Little is known about the role of NB-LRR genes involved in wheat response to R. cerealis. In this study, a wheat NB-LRR gene, named TaRCR1, was identified in response to R. cerealis infection using Artificial Neural Network analysis based on comparative transcriptomics and its defence role was characterized. The transcriptional level of TaRCR1 was enhanced after R. cerealis inoculation and associated with the resistance level of wheat. TaRCR1 was located on wheat chromosome 3BS and encoded an NB-LRR protein that was consisting of a coiled-coil domain, an NB-ARC domain and 13 imperfect leucine-rich repeats. TaRCR1 was localized in both the cytoplasm and the nucleus. Silencing of TaRCR1 impaired wheat resistance to R. cerealis, whereas TaRCR1 overexpression significantly increased the resistance in transgenic wheat. TaRCR1 regulated certain reactive oxygen species (ROS)-scavenging and production, and defence-related genes, and peroxidase activity. Furthermore, H 2 O 2 pretreatment for 12-h elevated expression levels of TaRCR1 and the above defence-related genes, whereas treatment with a peroxidase inhibitor for 12 h reduced the resistance of TaRCR1-overexpressing transgenic plants and expression levels of these defence-related genes. Taken together, TaRCR1 positively contributes to defence response to R. cerealis through maintaining ROS homoeostasis and regulating the expression of defence-related genes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Structural determinants at the interface of the ARC2 and leucine-rich repeat domains control the activation of the plant immune receptors Rx1 and Gpa2.

    Science.gov (United States)

    Slootweg, Erik J; Spiridon, Laurentiu N; Roosien, Jan; Butterbach, Patrick; Pomp, Rikus; Westerhof, Lotte; Wilbers, Ruud; Bakker, Erin; Bakker, Jaap; Petrescu, Andrei-José; Smant, Geert; Goverse, Aska

    2013-07-01

    Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.

  13. Dual regulatory roles of the extended N terminus for activation of the tomato MI-1.2 resistance protein

    NARCIS (Netherlands)

    Lukasik-Shreepaathy, E.; Slootweg, E.; Richter, H.; Goverse, A.; Cornelissen, B.J.C.; Takken, F.L.W.

    2012-01-01

    Plant resistance (R) proteins mediate race-specific immunity and initiate host defenses that are often accompanied by a localized cell-death response. Most R proteins belong to the nucleotide binding-leucine-rich repeat (NB-LRR) protein family, as they carry a central NB-ARC domain fused to an LRR

  14. Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana).

    Science.gov (United States)

    Panwar, Preety; Jha, Anand Kumar; Pandey, P K; Gupta, Arun K; Kumar, Anil

    2011-06-01

    Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05(504,) NBS-09(711), NBS-07(688), NBS-03(509) and EST-SSR-04(241)) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.

  15. Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis.

    Directory of Open Access Journals (Sweden)

    Hui Song

    Full Text Available Studies have demonstrated that nucleotide-binding site-leucine-rich repeat (NBS-LRR genes respond to pathogen attack in plants. Characterization of NBS-LRR genes in peanut is not well documented. The newly released whole genome sequences of Arachis duranensis and Arachis ipaënsis have allowed a global analysis of this important gene family in peanut to be conducted. In this study, we identified 393 (AdNBS and 437 (AiNBS NBS-LRR genes from A. duranensis and A. ipaënsis, respectively, using bioinformatics approaches. Full-length sequences of 278 AdNBS and 303 AiNBS were identified. Fifty-one orthologous, four AdNBS paralogous, and six AiNBS paralogous gene pairs were predicted. All paralogous gene pairs were located in the same chromosomes, indicating that tandem duplication was the most likely mechanism forming these paralogs. The paralogs mainly underwent purifying selection, but most LRR 8 domains underwent positive selection. More gene clusters were found in A. ipaënsis than in A. duranensis, possibly owing to tandem duplication events occurring more frequently in A. ipaënsis. The expression profile of NBS-LRR genes was different between A. duranensis and A. hypogaea after Aspergillus flavus infection. The up-regulated expression of NBS-LRR in A. duranensis was continuous, while these genes responded to the pathogen temporally in A. hypogaea.

  16. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein

    International Nuclear Information System (INIS)

    Mariano, Andrea C.; Andrade, Maxuel O.; Santos, Anesia A.; Carolino, Sonia M.B.; Oliveira, Marli L.; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H.; Fontes, Elizabeth P.B.

    2004-01-01

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed

  17. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family

    NARCIS (Netherlands)

    Baudino, S.; Hansen, S.; Brettschneider, R.; Hecht, V.F.G.; Dresselhaus, T.; Lörz, H.; Dumas, C.; Rogowsky, P.M.

    2001-01-01

    Genes encoding two novel members of the leucine-rich repeat receptor-like kinase (LRR-RLK) superfamily have been isolated from maize (Zea mays L.). These genes have been named ZmSERK1 and ZmSERK2 since features such as a putative leucine zipper (ZIP) and five leucine rich repeats in the

  18. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa.

    Science.gov (United States)

    Slootweg, Erik; Koropacka, Kamila; Roosien, Jan; Dees, Robert; Overmars, Hein; Lankhorst, Rene Klein; van Schaik, Casper; Pomp, Rikus; Bouwman, Liesbeth; Helder, Johannes; Schots, Arjen; Bakker, Jaap; Smant, Geert; Goverse, Aska

    2017-09-01

    Plants have evolved a limited repertoire of NB-LRR disease resistance ( R ) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1 , which confer resistance in potato ( Solanum tuberosum ) to the cyst nematode Globodera pallida and Potato virus X , respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2 CN /Rx1 L ) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1 CN /Gpa2 L ) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.

    Science.gov (United States)

    Liu, Wen; Ghouri, Fozia; Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93-11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93-11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re

  20. Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea).

    Science.gov (United States)

    Sharma, Ranu; Rawat, Vimal; Suresh, C G

    2017-12-01

    The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this resistance gene family during their independent evolution into two families. Comparative genomics analysis elucidated its evolutionary relationship with other fabaceae species. Around 50% NBS-LRRs reside in macro-syntenic blocks underlining positional conservation along with sequence conservation of NBS-LRR genes in chickpea. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. Four cis -regulatory elements namely WBOX, DRE, CBF, and GCC boxes, that commonly occur in resistance genes, were present in the promoter regions of these genes. Further, the findings will provide a strong background to use candidate disease resistance NBS-encoding genes and identify their specific roles in chickpea.

  1. Cytosolic 5'-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf.

    Directory of Open Access Journals (Sweden)

    Federico Cividini

    Full Text Available IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.

  2. Gene Isolation Using Degenerate Primers Targeting Protein Motif: A Laboratory Exercise

    Science.gov (United States)

    Yeo, Brandon Pei Hui; Foong, Lian Chee; Tam, Sheh May; Lee, Vivian; Hwang, Siaw San

    2018-01-01

    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the…

  3. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  4. Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker development, and physical mapping

    Directory of Open Access Journals (Sweden)

    Souza Manoel T

    2008-01-01

    Full Text Available Abstract Background Many commercial banana varieties lack sources of resistance to pests and diseases, as a consequence of sterility and narrow genetic background. Fertile wild relatives, by contrast, possess greater variability and represent potential sources of disease resistance genes (R-genes. The largest known family of plant R-genes encode proteins with nucleotide-binding site (NBS and C-terminal leucine-rich repeat (LRR domains. Conserved motifs in such genes in diverse plant species offer a means for isolation of candidate genes in banana which may be involved in plant defence. Results A computational strategy was developed for unbiased conserved motif discovery in NBS and LRR domains in R-genes and homologues in monocotyledonous plant species. Degenerate PCR primers targeting conserved motifs were tested on the wild cultivar Musa acuminata subsp. burmannicoides, var. Calcutta 4, which is resistant to a number of fungal pathogens and nematodes. One hundred and seventy four resistance gene analogs (RGAs were amplified and assembled into 52 contiguous sequences. Motifs present were typical of the non-TIR NBS-LRR RGA subfamily. A phylogenetic analysis of deduced amino-acid sequences for 33 RGAs with contiguous open reading frames (ORFs, together with RGAs from Arabidopsis thaliana and Oryza sativa, grouped most Musa RGAs within monocotyledon-specific clades. RFLP-RGA markers were developed, with 12 displaying distinct polymorphisms in parentals and F1 progeny of a diploid M. acuminata mapping population. Eighty eight BAC clones were identified in M. acuminata Calcutta 4, M. acuminata Grande Naine, and M. balbisiana Pisang Klutuk Wulung BAC libraries when hybridized to two RGA probes. Multiple copy RGAs were common within BAC clones, potentially representing variation reservoirs for evolution of new R-gene specificities. Conclusion This is the first large scale analysis of NBS-LRR RGAs in M. acuminata Calcutta 4. Contig sequences were

  5. Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors.

    Science.gov (United States)

    Sood, Archit; Jaiswal, Varun; Chanumolu, Sree Krishna; Malhotra, Nikhil; Pal, Tarun; Chauhan, Rajinder Singh

    2014-11-01

    Jatropha (Jatropha curcas L.) and Castor bean (Ricinus communis) are oilseed crops of family Euphorbiaceae with the potential of producing high quality biodiesel and having industrial value. Both the bioenergy plants are becoming susceptible to various biotic stresses directly affecting the oil quality and content. No report exists as of today on analysis of Nucleotide Binding Site-Leucine Rich Repeat (NBS-LRR) gene repertoire and defense response transcription factors in both the plant species. In silico analysis of whole genomes and transcriptomes identified 47 new NBS-LRR genes in both the species and 122 and 318 defense response related transcription factors in Jatropha and Castor bean, respectively. The identified NBS-LRR genes and defense response transcription factors were mapped onto the respective genomes. Common and unique NBS-LRR genes and defense related transcription factors were identified in both the plant species. All NBS-LRR genes in both the species were characterized into Toll/interleukin-1 receptor NBS-LRRs (TNLs) and coiled-coil NBS-LRRs (CNLs), position on contigs, gene clusters and motifs and domains distribution. Transcript abundance or expression values were measured for all NBS-LRR genes and defense response transcription factors, suggesting their functional role. The current study provides a repertoire of NBS-LRR genes and transcription factors which can be used in not only dissecting the molecular basis of disease resistance phenotype but also in developing disease resistant genotypes in Jatropha and Castor bean through transgenic or molecular breeding approaches.

  6. Dissecting the critical factors for thermodynamic stability of modular proteins using molecular modeling approach.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available Repeat proteins have recently attracted much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural and biophysical features. In particular, repeat proteins show high stability against temperature and chaotic agents. Despite many studies, structural features for the stability of repeat proteins remain poorly understood. Here we present an interesting result from in silico analyses pursuing the factors which affect the stability of repeat proteins. Previously developed repebody structure based on variable lymphocytes receptors (VLRs which consists of leucine-rich repeat (LRR modules was used as initial structure for the present study. We constructed extra six repebody structures with varying numbers of repeat modules and those structures were used for molecular dynamics simulations. For the structures, the intramolecular interactions including backbone H-bonds, van der Waals energy, and hydrophobicity were investigated and then the radius of gyration, solvent-accessible surface area, ratio of secondary structure, and hydration free energy were also calculated to find out the relationship between the number of LRR modules and stability of the protein. Our results show that the intramolecular interactions lead to more compact structure and smaller surface area of the repebodies, which are critical for the stability of repeat proteins. The other features were also well compatible with the experimental results. Based on our observations, the repebody-5 was proposed as the best structure from the all repebodies in structure optimization process. The present study successfully demonstrated that our computer-based molecular modeling approach can significantly contribute to the experiment-based protein engineering challenge.

  7. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns

    Directory of Open Access Journals (Sweden)

    Wan Hongjian

    2012-09-01

    Full Text Available Abstract Background Pepper (Capsicum annuum L. is one of the most important vegetable crops worldwide. However, its yield and fruit quality can be severely threatened by several pathogens. The plant nucleotide-binding site (NBS-leucine-rich repeat (LRR gene family is the largest class of known disease resistance genes (R genes effective against such pathogens. Therefore, the isolation and identification of such R gene homologues from pepper will provide a critical foundation for improving disease resistance breeding programs. Results A total of 78 R gene analogues (CaRGAs were identified in pepper by degenerate PCR amplification and database mining. Phylogenetic tree analysis of the deduced amino acid sequences for 51 of these CaRGAs with typically conserved motifs ( P-loop, kinase-2 and GLPL along with some known R genes from Arabidopsis and tomato grouped these CaRGAs into the non-Toll interleukin-1 receptor (TIR-NBS-LRR (CaRGAs I to IV and TIR-NBS-LRR (CaRGAs V to VII subfamilies. The presence of consensus motifs (i.e. P-loop, kinase-2 and hydrophobic domain is typical of the non-TIR- and TIR-NBS-LRR gene subfamilies. This finding further supports the view that both subfamilies are widely distributed in dicot species. Functional divergence analysis provided strong statistical evidence of altered selective constraints during protein evolution between the two subfamilies. Thirteen critical amino acid sites involved in this divergence were also identified using DIVERGE version 2 software. Analyses of non-synonymous and synonymous substitutions per site showed that purifying selection can play a critical role in the evolutionary processes of non-TIR- and TIR-NBS-LRR RGAs in pepper. In addition, four specificity-determining positions were predicted to be responsible for functional specificity. qRT-PCR analysis showed that both salicylic and abscisic acids induce the expression of CaRGA genes, suggesting that they may primarily be involved in

  8. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity.

    Science.gov (United States)

    Schroeder, Anna; de Wit, Joris

    2018-04-09

    The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits.

  10. Co-Expression analysis of miRNAs and target NBS-LRR genes in Cucumis sativus

    Science.gov (United States)

    Plants react against their biological enemies by activating the innate immune system. Their defense system comprises of various R-protein, which usually contain NBS-LRR domain. MicroRNAs (miRNAs) are important molecules of 2nd layer of plant defense and play pivotal role behind the scene. To support...

  11. Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity

    Directory of Open Access Journals (Sweden)

    Norio Matsushima

    2015-08-01

    Full Text Available The NOD-like receptors (NLRs and Toll-like receptors (TLRs are pattern recognition receptors that are involved in the innate, pathogen pattern recognition system. The TLR and NLR receptors contain leucine-rich repeats (LRRs that are responsible for ligand interactions. In LRRs short β-strands stack parallel and then the LRRs form a super helical arrangement of repeating structural units (called a coil of solenoids. The structures of the LRR domains of NLRC4, NLRP1, and NLRX1 in NLRs and of TLR1-5, TLR6, TLR8, TLR9 in TLRs have been determined. Here we report nine geometrical parameters that characterize the LRR domains; these include four helical parameters from HELFIT analysis. These nine parameters characterize well the LRR structures in NLRs and TLRs; the LRRs of NLR adopts a right-handed helix. In contrast, the TLR LRRs adopt either a left-handed helix or are nearly flat; RP105 and CD14 also adopt a left-handed helix. This geometrical analysis subdivides TLRs into four groups consisting of TLR3/TLR8/TLR9, TLR1/TLR2/TRR6, TLR4, and TLR5; these correspond to the phylogenetic tree based on amino acid sequences. In the TLRs an ascending lateral surface that consists of loops connecting the β-strand at the C-terminal side is involved in protein, protein/ligand interactions, but not the descending lateral surface on the opposite side.

  12. Topological characteristics of helical repeat proteins

    NARCIS (Netherlands)

    Groves, M R; Barford, D

    The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem

  13. The Pentapeptide Repeat Proteins

    OpenAIRE

    Vetting, Matthew W.; Hegde, Subray S.; Fajardo, J. Eduardo; Fiser, Andras; Roderick, Steven L.; Takiff, Howard E.; Blanchard, John S.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S,T,A,V][D,N][L,F]-[S,T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Myc...

  14. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Meenu S Padmanabhan

    2013-03-01

    Full Text Available Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.

  15. Rice hypersensitive induced reaction protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death.

    Science.gov (United States)

    Zhou, Liang; Cheung, Ming-Yan; Li, Man-Wah; Fu, Yaping; Sun, Zongxiu; Sun, Sai-Ming; Lam, Hon-Ming

    2010-12-30

    In plants, HIR (Hypersensitive Induced Reaction) proteins, members of the PID (Proliferation, Ion and Death) superfamily, have been shown to play a part in the development of spontaneous hypersensitive response lesions in leaves, in reaction to pathogen attacks. The levels of HIR proteins were shown to correlate with localized host cell deaths and defense responses in maize and barley. However, not much was known about the HIR proteins in rice. Since rice is an important cereal crop consumed by more than 50% of the populations in Asia and Africa, it is crucial to understand the mechanisms of disease responses in this plant. We previously identified the rice HIR1 (OsHIR1) as an interacting partner of the OsLRR1 (rice Leucine-Rich Repeat protein 1). Here we show that OsHIR1 triggers hypersensitive cell death and its localization to the plasma membrane is enhanced by OsLRR1. Through electron microscopy studies using wild type rice plants, OsHIR1 was found to mainly localize to the plasma membrane, with a minor portion localized to the tonoplast. Moreover, the plasma membrane localization of OsHIR1 was enhanced in transgenic rice plants overexpressing its interacting protein partner, OsLRR1. Co-localization of OsHIR1 and OsLRR1 to the plasma membrane was confirmed by double-labeling electron microscopy. Pathogen inoculation studies using transgenic Arabidopsis thaliana expressing either OsHIR1 or OsLRR1 showed that both transgenic lines exhibited increased resistance toward the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. However, OsHIR1 transgenic plants produced more extensive spontaneous hypersensitive response lesions and contained lower titers of the invading pathogen, when compared to OsLRR1 transgenic plants. The OsHIR1 protein is mainly localized to the plasma membrane, and its subcellular localization in that compartment is enhanced by OsLRR1. The expression of OsHIR1 may sensitize the plant so that it is more prone to HR and hence can react more

  16. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    Science.gov (United States)

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Leucine-Rich repeat receptor kinases are sporadically distributed in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Diévart Anne

    2011-12-01

    Full Text Available Abstract Background Plant leucine-rich repeat receptor-like kinases (LRR-RLKs are receptor kinases that contain LRRs in their extracellular domain. In the last 15 years, many research groups have demonstrated major roles played by LRR-RLKs in plants during almost all developmental processes throughout the life of the plant and in defense/resistance against a large range of pathogens. Recently, a breakthrough has been made in this field that challenges the dogma of the specificity of plant LRR-RLKs. Results We analyzed ~1000 complete genomes and show that LRR-RK genes have now been identified in 8 non-plant genomes. We performed an exhaustive phylogenetic analysis of all of these receptors, revealing that all of the LRR-containing receptor subfamilies form lineage-specific clades. Our results suggest that the association of LRRs with RKs appeared independently at least four times in eukaryotic evolutionary history. Moreover, the molecular evolutionary history of the LRR-RKs found in oomycetes is reminiscent of the pattern observed in plants: expansion with amplification/deletion and evolution of the domain organization leading to the functional diversification of members of the gene family. Finally, the expression data suggest that oomycete LRR-RKs may play a role in several stages of the oomycete life cycle. Conclusions In view of the key roles that LRR-RLKs play throughout the entire lifetime of plants and plant-environment interactions, the emergence and expansion of this type of receptor in several phyla along the evolution of eukaryotes, and particularly in oomycete genomes, questions their intrinsic functions in mimicry and/or in the coevolution of receptors between hosts and pathogens.

  18. Intramolecular interaction influences binding of the Flax L5 and L6 resistance proteins to their AvrL567 ligands.

    Directory of Open Access Journals (Sweden)

    Michael Ravensdale

    Full Text Available L locus resistance (R proteins are nucleotide binding (NB-ARC leucine-rich repeat (LRR proteins from flax (Linum usitatissimum that provide race-specific resistance to the causal agent of flax rust disease, Melampsora lini. L5 and L6 are two alleles of the L locus that directly recognize variants of the fungal effector AvrL567. In this study, we have investigated the molecular details of this recognition by site-directed mutagenesis of AvrL567 and construction of chimeric L proteins. Single, double and triple mutations of polymorphic residues in a variety of AvrL567 variants showed additive effects on recognition strength, suggesting that multiple contact points are involved in recognition. Domain-swap experiments between L5 and L6 show that specificity differences are determined by their corresponding LRR regions. Most positively selected amino acid sites occur in the N- and C-terminal LRR units, and polymorphisms in the first seven and last four LRR units contribute to recognition specificity of L5 and L6 respectively. This further confirms that multiple, additive contact points occur between AvrL567 variants and either L5 or L6. However, we also observed that recognition of AvrL567 is affected by co-operative polymorphisms between both adjacent and distant domains of the R protein, including the TIR, ARC and LRR domains, implying that these residues are involved in intramolecular interactions to optimize detection of the pathogen and defense signal activation. We suggest a model where Avr ligand interaction directly competes with intramolecular interactions to cause activation of the R protein.

  19. In-silico mining, type and frequency analysis of genic microsatellites of finger millet (Eleusine coracana (L.) Gaertn.): a comparative genomic analysis of NBS-LRR regions of finger millet with rice.

    Science.gov (United States)

    Kalyana Babu, B; Pandey, Dinesh; Agrawal, P K; Sood, Salej; Kumar, Anil

    2014-05-01

    In recent years, the increased availability of the DNA sequences has given the possibility to develop and explore the expressed sequence tags (ESTs) derived SSR markers. In the present study, a total of 1956 ESTs of finger millet were used to find the microsatellite type, distribution, frequency and developed a total of 545 primer pairs from the ESTs of finger millet. Thirty-two EST sequences had more than two microsatellites and 1357 sequences did not have any SSR repeats. The most frequent type of repeats was trimeric motif, however the second place was occupied by dimeric motif followed by tetra-, hexa- and penta repeat motifs. The most common dimer repeat motif was GA and in case of trimeric SSRs, it was CGG. The EST sequences of NBS-LRR region of finger millet and rice showed higher synteny and were found on nearly same positions on the rice chromosome map. A total of eight, out of 15 EST based SSR primers were polymorphic among the selected resistant and susceptible finger millet genotypes. The primer FMBLEST5 could able to differentiate them into resistant and susceptible genotypes. The alleles specific to the resistant and susceptible genotypes were sequenced using the ABI 3130XL genetic analyzer and found similarity to NBS-LRR regions of rice and finger millet and contained the characteristic kinase-2 and kinase 3a motifs of plant R-genes belonged to NBS-LRR region. The In-silico and comparative analysis showed that the genes responsible for blast resistance can be identified, mapped and further introgressed through molecular breeding approaches for enhancing the blast resistance in finger millet.

  20. Identification of four families of yCCR4- and Mg2+-dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding

    Directory of Open Access Journals (Sweden)

    Corbo Laura

    2001-11-01

    Full Text Available Abstract Background The yeast yCCR4 factor belongs to the CCR4-NOT transcriptional regulatory complex, in which it interacts, through its leucine-rich repeat (LRR motif with yPOP2. Recently, yCCR4 was shown to be a component of the major cytoplasmic mRNA deadenylase complex, and to contain a fold related to the Mg2+-dependent endonuclease core. Results Here, we report the identification of nineteen yCCR4-related proteins in eukaryotes (including yeast, plants and animals, which all contain the yCCR4 endonuclease-like fold, with highly conserved CCR4-specific residues. Phylogenetic and genomic analyses show that they form four distinct families, one of which contains the yCCR4 orthologs. The orthologs in animals possess a leucine-rich repeat domain. We show, using two-hybrid and far-Western assays, that the human member binds to the human yPOP2 homologs, i.e. hCAF1 and hPOP2, in a LRR-dependent manner. Conclusions We have identified the mammalian orthologs of yCCR4 and have shown that the human member binds to the human yPOP2 homologs, thus strongly suggesting conservation of the CCR4-NOT complex from yeast to human. All members of the four identified yCCR4-related protein families show stricking conservation of the endonuclease-like catalytic motifs of the yCCR4 C-terminal domain and therefore constitute a new family of potential deadenylases in mammals.

  1. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses

    DEFF Research Database (Denmark)

    Sandve, Simen R; Rudi, Heidi; Asp, Torben

    2008-01-01

    to the repeat motifs of the IRI-domain in cold tolerant grasses. Finally we show that the LRR-domain of carrot and grass IRI proteins both share homology to an Arabidopsis thaliana LRR-trans membrane protein kinase (LRR-TPK). Conclusion The diverse IRI-like genes identified in this study tell a tale...... of a complex evolutionary history including birth of an ice binding domain, a burst of gene duplication events after cold tolerant grasses radiated from rice, protein domain structure differentiation between paralogs, and sub- and/or neofunctionalisation of IRI-like proteins. From our sequence analysis we...

  2. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector

    Science.gov (United States)

    Caplan, Jeffrey L.; Mamillapalli, Padmavathi; Burch-Smith, Tessa M.; Czymmek, Kirk; Dinesh-Kumar, S.P.

    2008-01-01

    Summary Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50-kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a pre-recognition complex containing the p50 effector and NRIP1. PMID:18267075

  3. Activation of the LRR Receptor-Like Kinase PSY1R Requires Transphosphorylation of Residues in the Activation Loop

    Directory of Open Access Journals (Sweden)

    Christian B. Oehlenschlæger

    2017-11-01

    Full Text Available PSY1R is a leucine-rich repeat (LRR receptor-like kinase (RLK previously shown to act as receptor for the plant peptide hormone PSY1 (peptide containing sulfated tyrosine 1 and to regulate cell expansion. PSY1R phosphorylates and thereby regulates the activity of plasma membrane-localized H+-ATPases. While this mechanism has been studied in detail, little is known about how PSY1R itself is activated. Here we studied the activation mechanism of PSY1R. We show that full-length PSY1R interacts with members of the SERK co-receptor family in planta. We identified seven in vitro autophosphorylation sites on serine and threonine residues within the kinase domain of PSY1R using mass spectrometry. We furthermore show that PSY1R autophosphorylation occurs in trans and that the initial transphosphorylation takes place within the activation loop at residues Ser951, Thr959, and Thr963. While Thr959 and Thr963 are conserved among other related plant LRR RLKs, Ser951 is unique to PSY1R. Based on homology modeling we propose that phosphorylation of Ser951 stabilize the inactive conformation of PSY1R.

  4. StaRProtein, A Web Server for Prediction of the Stability of Repeat Proteins

    Science.gov (United States)

    Xu, Yongtao; Zhou, Xu; Huang, Meilan

    2015-01-01

    Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins. PMID:25807112

  5. A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach.

    Science.gov (United States)

    López-Girona, Elena; Zhang, Yu; Eduardo, Iban; Mora, José Ramón Hernández; Alexiou, Konstantinos G; Arús, Pere; Aranzana, María José

    2017-07-27

    In peach, the flat phenotype is caused by a partially dominant allele in heterozygosis (Ss), fruits from homozygous trees (SS) abort a few weeks after fruit setting. Previous research has identified a SSR marker (UDP98-412) highly associated with the trait, found suitable for marker assisted selection (MAS). Here we report a ∼10 Kb deletion affecting the gene PRUPE.6G281100, 400 Kb upstream of UDP98-412, co-segregating with the trait. This gene is a leucine-rich repeat receptor-like kinase (LRR-RLK) orthologous to the Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) group. PCR markers suitable for MAS confirmed its strong association with the trait in a collection of 246 cultivars. They were used to evaluate the DNA from a round fruit derived from a somatic mutation of the flat variety 'UFO-4', revealing that the mutation affected the flat associated allele (S). Protein BLAST alignment identified significant hits with genes involved in different biological processes. Best protein hit occurred with AtRLP12, which may functionally complement CLAVATA2, a key regulator that controls the stem cell population size. RT-PCR analysis revealed the absence of transcription of the partially deleted allele. The data support PRUPE.6G281100 as a candidate gene for flat shape in peach.

  6. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization.

    Science.gov (United States)

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K; Miyazaki, Hiroshi; Lewis, Janina P

    2014-06-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells.

  7. Leucine-rich repeat kinase-1 regulates osteoclast function by modulating RAC1/Cdc42 Small GTPase phosphorylation and activation.

    Science.gov (United States)

    Zeng, Canjun; Goodluck, Helen; Qin, Xuezhong; Liu, Bo; Mohan, Subburaman; Xing, Weirong

    2016-10-01

    Leucine-rich repeat kinase-1 (Lrrk1) consists of ankyrin repeats (ANK), leucine-rich repeats (LRR), a GTPase-like domain of Roc (ROC), a COR domain, a serine/threonine kinase domain (KD), and WD40 repeats (WD40). Previous studies have revealed that knockout (KO) of Lrrk1 in mice causes severe osteopetrosis, and a human mutation of Lrrk1 leads to osteosclerotic metaphysial dysplasia. The molecular mechanism by which Lrrk1 regulates osteoclast function is unknown. In this study, we generated a series of Lrrk1 mutants and evaluated their ability to rescue defective bone resorption in Lrrk1-deficient osteoclasts by use of pit formation assays. Overexpression of Lrrk1 or LRR-truncated Lrrk1, but not ANK-truncated Lrrk1, WD40-truncated Lrrk1, Lrrk1-KD, or K651A mutant Lrrk1, rescued bone resorption function of Lrrk1 KO osteoclasts. We next examined whether RAC1/Cdc42 small GTPases are direct substrates of Lrrk1 in osteoclasts. Western blot and pull-down assays revealed that Lrrk1 deficiency in osteoclasts resulted in reduced phosphorylation and activation of RAC1/Cdc42. In vitro kinase assays confirmed that recombinant Lrrk1 phosphorylated RAC1-GST protein, and immunoprecipitation showed that the interaction of Lrrk1 with RAC1 occurred within 10 min after RANKL treatment. Overexpression of constitutively active Q61L RAC1 partially rescued the resorptive function of Lrrk1-deficient osteoclasts. Furthermore, lack of Lrrk1 in osteoclasts led to reduced autophosphorylation of p21 protein-activated kinase-1 at Ser 144 , catalyzed by RAC1/Cdc42 binding and activation. Our data indicate that Lrrk1 regulates osteoclast function by directly modulating phosphorylation and activation of small GTPase RAC1/Cdc42 and that its function depends on ANK, ROC, WD40, and kinase domains. Copyright © 2016 the American Physiological Society.

  8. Polymorphisms in leucine-rich repeat genes are associated with autism spectrum disorder susceptibility in populations of European ancestry

    NARCIS (Netherlands)

    Sousa, Ines; Clark, Taane G.; Holt, Richard; Pagnamenta, Alistair T.; Mulder, Erik J.; Minderaa, Ruud B.; Bailey, Anthony J.; Battaglia, Agatino; Klauck, Sabine M.; Poustka, Fritz; Monaco, Anthony P.

    2010-01-01

    Background: Autism spectrum disorders (ASDs) are a group of highly heritable neurodevelopmental disorders which are characteristically comprised of impairments in social interaction, communication and restricted interests/behaviours. Several cell adhesion transmembrane leucine-rich repeat (LRR)

  9. In silico analysis of the polygalacturonase inhibiting protein 1 from apple, Malus domestica.

    Science.gov (United States)

    Matsaunyane, Lerato Bt; Oelofse, Dean; Dubery, Ian A

    2015-03-11

    The Malus domestica polygalacturonase inhibiting protein 1 (MdPGIP1) gene, encoding the M. domestica polygalacturonase inhibiting protein 1 (MdPGIP1), was isolated from the Granny Smith apple cultivar (GenBank accession no. DQ185063). The gene was used to transform tobacco and potato for enhanced resistance against fungal diseases. Analysis of the MdPGIP1 nucleotide sequence revealed that the gene comprises 993 nucleotides that encode a 330 amino acid polypeptide. In silico characterization of the MdPGIP1 polypeptide revealed domains typical of PGIP proteins, which include a 24 amino acid putative signal peptide, a potential cleavage site [Alanine-Leucine-Serine (ALS)] for the signal peptide, a 238 amino acid leucine-rich repeat (LRR) domain, a 46 amino acid N-terminal domain and a 22 amino acid C-terminal domain. The hydropathic evaluation of MdPGIP1 indicated a repetitive hydrophobic motif in the LRR domain and a hydrophilic surface area consistent with a globular protein. The typical consensus glycosylation sequence of Asn-X-Ser/Thr was identified in MdPGIP1, indicating potential N-linked glycosylation of MdPGIP1. The molecular mass of non-glycosylated MdPGIP1 was calculated as 36.615 kDa and the theoretical isoelectric point as 6.98. Furthermore, the secondary and tertiary structure of MdPGIP1 was modelled, and revealed that MdPGIP1 is a curved and elongated molecule that contains sheet B1, sheet B2 and 310-helices on its LRR domain. The overall properties of the MdPGIP1 protein is similar to that of the prototypical Phaseolus vulgaris PGIP 2 (PvPGIP2), and the detected differences supported its use in biotechnological applications as an inhibitor of targeted fungal polygalacturonases (PGs).

  10. Polymorphisms in leucine-rich repeat genes are associated with autism spectrum disorder susceptibility in populations of European ancestry

    Directory of Open Access Journals (Sweden)

    Sousa Inês

    2010-03-01

    Full Text Available Abstract Background Autism spectrum disorders (ASDs are a group of highly heritable neurodevelopmental disorders which are characteristically comprised of impairments in social interaction, communication and restricted interests/behaviours. Several cell adhesion transmembrane leucine-rich repeat (LRR proteins are highly expressed in the nervous system and are thought to be key regulators of its development. Here we present an association study analysing the roles of four promising candidate genes - LRRTM1 (2p, LRRTM3 (10q, LRRN1 (3p and LRRN3 (7q - in order to identify common genetic risk factors underlying ASDs. Methods In order to gain a better understanding of how the genetic variation within these four gene regions may influence susceptibility to ASDs, a family-based association study was undertaken in 661 families of European ancestry selected from four different ASD cohorts. In addition, a case-control study was undertaken across the four LRR genes, using logistic regression in probands with ASD of each population against 295 ECACC controls. Results Significant results were found for LRRN3 and LRRTM3 (P LRRTM3. Conclusions Overall, our findings implicate the neuronal leucine-rich genes LRRN3 and LRRTM3 in ASD susceptibility.

  11. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    Science.gov (United States)

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Natural variation in rosette size under salt stress conditions corresponds to developmental differences between Arabidopsis accessions and allelic variation in the LRR-KISS gene

    KAUST Repository

    Julkowska, Magdalena

    2016-02-11

    Natural variation among Arabidopsis accessions is an important genetic resource to identify mechanisms underlying plant development and stress tolerance. To evaluate the natural variation in salinity stress tolerance, two large-scale experiments were performed on two populations consisting of 160 Arabidopsis accessions each. Multiple traits, including projected rosette area, and fresh and dry weight were collected as an estimate for salinity tolerance. Our results reveal a correlation between rosette size under salt stress conditions and developmental differences between the accessions grown in control conditions, suggesting that in general larger plants were more salt tolerant. This correlation was less pronounced when plants were grown under severe salt stress conditions. Subsequent genome wide association study (GWAS) revealed associations with novel candidate genes for salinity tolerance such as LRR-KISS (At4g08850), flowering locus KH-domain containing protein and a DUF1639-containing protein. Accessions with high LRR-KISS expression developed larger rosettes under salt stress conditions. Further characterization of allelic variation in candidate genes identified in this study will provide more insight into mechanisms of salt stress tolerance due to enhanced shoot growth.

  13. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes

    DEFF Research Database (Denmark)

    Peng, Xu; Brügger, Kim; Shen, Biao

    2003-01-01

    terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also...... recognizes both main families of repeat sequences in S. solfataricus. The recombinant protein, expressed in Escherichia coli, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match...... with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the Sulfolobus genus and in the closely related Acidianus genus. We infer that the genus-specific protein induces an opening of the structure...

  14. Repeat Sequence Proteins as Matrices for Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Drummy, L.; Koerner, H; Phillips, D; McAuliffe, J; Kumar, M; Farmer, B; Vaia, R; Naik, R

    2009-01-01

    Recombinant protein-inorganic nanocomposites comprised of exfoliated Na+ montmorillonite (MMT) in a recombinant protein matrix based on silk-like and elastin-like amino acid motifs (silk elastin-like protein (SELP)) were formed via a solution blending process. Charged residues along the protein backbone are shown to dominate long-range interactions, whereas the SELP repeat sequence leads to local protein/MMT compatibility. Up to a 50% increase in room temperature modulus and a comparable decrease in high temperature coefficient of thermal expansion occur for cast films containing 2-10 wt.% MMT.

  15. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    Energy Technology Data Exchange (ETDEWEB)

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  16. Repeat-containing protein effectors of plant-associated organisms

    Directory of Open Access Journals (Sweden)

    Carl H. Mesarich

    2015-10-01

    Full Text Available Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  17. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.

    Science.gov (United States)

    Albornos, Lucía; Martín, Ignacio; Iglesias, Rebeca; Jiménez, Teresa; Labrador, Emilia; Dopico, Berta

    2012-11-07

    Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40

  18. A TALE-inspired computational screen for proteins that contain approximate tandem repeats.

    Science.gov (United States)

    Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.

  19. A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER

    Directory of Open Access Journals (Sweden)

    Haga Christopher L

    2007-09-01

    Full Text Available Abstract Background In mouse the cytokine interleukin-7 (IL-7 is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER. The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR, a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules.

  20. Characterization of a Beta vulgaris PGIP defense gene promoter in transgenic plants

    Science.gov (United States)

    Polygalacturonase-inhibiting protein (BvPGIP) genes were cloned from a sugar beet breeding line F1016 with increased tolerance to the sugar beet root maggot. Polygalacturonase-inhibiting proteins are cell wall leucine-rich repeat (LRR) proteins with crucial roles in development, pathogen defense an...

  1. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death.

    Directory of Open Access Journals (Sweden)

    Melanie Ann Sacco

    2009-08-01

    Full Text Available Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR, through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2, a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive.

  2. Investigation of roles for LRR-RLKs PNL1 and PNL2 in asymmetric cell division in Arabidopsis thaliana

    OpenAIRE

    Rodriguez, Maiti Celina

    2008-01-01

    Asymmetric cell division is a vital component of plant development. It enables cell differentiation and cell diversity. A key component of asymmetric cell division is cell signaling. Signals are believed to control polarization and orientation of asymmetric divisions during stomatal development. The findings of this report suggest that PNL1 and PNL2, two LRR-RLKs found in Arabidopsis and closely related to maize PAN1 LRR-RLK, are possibly involved in the signaling events occurring during the ...

  3. Constructs for the expression of repeating triple-helical protein domains

    International Nuclear Information System (INIS)

    Peng, Yong Y; Werkmeister, Jerome A; Vaughan, Paul R; Ramshaw, John A M

    2009-01-01

    The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.

  4. Constructs for the expression of repeating triple-helical protein domains

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yong Y; Werkmeister, Jerome A; Vaughan, Paul R; Ramshaw, John A M, E-mail: jerome.werkmeister@csiro.a [CSIRO Molecular and Health Technologies, Bag 10, Clayton South, VIC 3169 (Australia)

    2009-02-15

    The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.

  5. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N′ and Regulates Light-Dependent Cell Death1[OPEN

    Science.gov (United States)

    Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei

    2016-01-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. PMID:26951433

  6. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N' and Regulates Light-Dependent Cell Death.

    Science.gov (United States)

    Hamel, Louis-Philippe; Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei; Moffett, Peter

    2016-05-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N', which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N' results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N' is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response.

    Science.gov (United States)

    Powell, Jennifer R; Kim, Dennis H; Ausubel, Frederick M

    2009-02-24

    Innate immunity is an ancient defense system used by both vertebrates and invertebrates. Previously characterized innate immune responses in plants and animals are triggered by detection of pathogens using specific receptors, which typically use a leucine-rich repeat (LRR) domain to bind molecular patterns associated with infection. The nematode Caenorhabditis elegans uses defense pathways conserved with vertebrates; however, the mechanism by which C. elegans detects pathogens is unknown. We screened all LRR-containing transmembrane receptors in C. elegans and identified the G protein-coupled receptor FSHR-1 as an important component of the C. elegans immune response to Gram-negative and Gram-positive bacterial pathogens. FSHR-1 acts in the C. elegans intestine, the primary site of exposure to ingested pathogens. FSHR-1 signals in parallel to the known p38 MAPK pathway but converges to regulate the transcriptional induction of an overlapping but nonidentical set of antimicrobial effectors. FSHR-1 may act generally to boost the nematode immune response, or it may function as a pathogen receptor.

  9. Direct bacterial killing in vitro by recombinant Nod2 is compromised by Crohn's disease-associated mutations.

    Directory of Open Access Journals (Sweden)

    Laurent-Herve Perez

    2010-06-01

    Full Text Available A homeostatic relationship with the intestinal microflora is increasingly appreciated as essential for human health and wellbeing. Mutations in the leucine-rich repeat (LRR domain of Nod2, a bacterial recognition protein, are associated with development of the inflammatory bowel disorder, Crohn's disease. We investigated the molecular mechanisms underlying disruption of intestinal symbiosis in patients carrying Nod2 mutations.In this study, using purified recombinant LRR domains, we demonstrate that Nod2 is a direct antimicrobial agent and this activity is generally deficient in proteins carrying Crohn's-associated mutations. Wild-type, but not Crohn's-associated, Nod2 LRR domains directly interacted with bacteria in vitro, altered their metabolism and disrupted the integrity of the plasma membrane. Antibiotic activity was also expressed by the LRR domains of Nod1 and other pattern recognition receptors suggesting that the LRR domain is a conserved anti-microbial motif supporting innate cellular immunity.The lack of anti-bacterial activity demonstrated with Crohn's-associated Nod2 mutations in vitro, supports the hypothesis that a deficiency in direct bacterial killing contributes to the association of Nod2 polymorphisms with the disease.

  10. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci.

    Science.gov (United States)

    Yang, Luming; Li, Dawei; Li, Yuhong; Gu, Xingfang; Huang, Sanwen; Garcia-Mas, Jordi; Weng, Yiqun

    2013-03-25

    Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of

  11. Morphological features of different polyploids for adaptation and molecular characterization of CC-NBS-LRR and LEA gene families in Agave L.

    Science.gov (United States)

    Tamayo-Ordóñez, M C; Rodriguez-Zapata, L C; Narváez-Zapata, J A; Tamayo-Ordóñez, Y J; Ayil-Gutiérrez, B A; Barredo-Pool, F; Sánchez-Teyer, L F

    2016-05-20

    Polyploidy has been widely described in many Agave L. species, but its influence on environmental response to stress is still unknown. With the objective of knowing the morphological adaptations and regulation responses of genes related to biotic (LEA) and abiotic (NBS-LRR) stress in species of Agave with different levels of ploidy, and how these factors contribute to major response of Agave against environmental stresses, we analyzed 16 morphological trials on five accessions of three species (Agave tequilana Weber, Agave angustifolia Haw. and Agave fourcroydes Lem.) with different ploidy levels (2n=2x=60 2n=3x=90, 2n=5x=150, 2n=6x=180) and evaluated the expression of NBS-LRR and LEA genes regulated by biotic and abiotic stress. It was possible to associate some morphological traits (spines, nuclei, and stomata) to ploidy level. The genetic characterization of stress-related genes NBS-LRR induced by pathogenic infection and LEA by heat or saline stresses indicated that amino acid sequence analysis in these genes showed more substitutions in higher ploidy level accessions of A. fourcroydes Lem. 'Sac Ki' (2n=5x=150) and A. angustifolia Haw. 'Chelem Ki' (2n=6x=180), and a higher LEA and NBS-LRR representativeness when compared to their diploid and triploid counterparts. In all studied Agave accessions expression of LEA and NBS-LRR genes was induced by saline or heat stresses or by infection with Erwinia carotovora, respectively. The transcriptional activation was also higher in A. angustifolia Haw. 'Chelem Ki' (2n=6x=180) and A. fourcroydes 'Sac Ki' (2n=5x=150) than in their diploid and triploid counterparts, which suggests higher adaptation to stress. Finally, the diploid accession A. tequilana Weber 'Azul' showed a differentiated genetic profile relative to other Agave accessions. The differences include similar or higher genetic representativeness and transcript accumulation of LEA and NBS-LRR genes than in polyploid (2n=5x=150 and 2n=6x=180) Agave accessions

  12. Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Shenglong Tan

    2012-01-01

    Full Text Available Nucleotide-binding site (NBS disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Many R-genes have been identified in various plant species. However, little is known about the NBS-encoding genes in Brachypodium distachyon. In this study, using computational analysis of the B. distachyon genome, we identified 126 regular NBS-encoding genes and characterized them on the bases of structural diversity, conserved protein motifs, chromosomal locations, gene duplications, promoter region, and phylogenetic relationships. EST hits and full-length cDNA sequences (from Brachypodium database of 126 R-like candidates supported their existence. Based on the occurrence of conserved protein motifs such as coiled-coil (CC, NBS, leucine-rich repeat (LRR, these regular NBS-LRR genes were classified into four subgroups: CC-NBS-LRR, NBS-LRR, CC-NBS, and X-NBS. Further expression analysis of the regular NBS-encoding genes in Brachypodium database revealed that these genes are expressed in a wide range of libraries, including those constructed from various developmental stages, tissue types, and drought challenged or nonchallenged tissue.

  13. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  14. Human NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase.

    Science.gov (United States)

    Liu, Xiao; Pichulik, Tica; Wolz, Olaf-Oliver; Dang, Truong-Minh; Stutz, Andrea; Dillen, Carly; Delmiro Garcia, Magno; Kraus, Helene; Dickhöfer, Sabine; Daiber, Ellen; Münzenmayer, Lisa; Wahl, Silke; Rieber, Nikolaus; Kümmerle-Deschner, Jasmin; Yazdi, Amir; Franz-Wachtel, Mirita; Macek, Boris; Radsak, Markus; Vogel, Sebastian; Schulte, Berit; Walz, Juliane Sarah; Hartl, Dominik; Latz, Eicke; Stilgenbauer, Stephan; Grimbacher, Bodo; Miller, Lloyd; Brunner, Cornelia; Wolz, Christiane; Weber, Alexander N R

    2017-10-01

    The Nod-like receptor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK) are protagonists in innate and adaptive immunity, respectively. NLRP3 senses exogenous and endogenous insults, leading to inflammasome activation, which occurs spontaneously in patients with Muckle-Wells syndrome; BTK mutations cause the genetic immunodeficiency X-linked agammaglobulinemia (XLA). However, to date, few proteins that regulate NLRP3 inflammasome activity in human primary immune cells have been identified, and clinically promising pharmacologic targeting strategies remain elusive. We sought to identify novel regulators of the NLRP3 inflammasome in human cells with a view to exploring interference with inflammasome activity at the level of such regulators. After proteome-wide phosphoproteomics, the identified novel regulator BTK was studied in human and murine cells by using pharmacologic and genetic BTK ablation. Here we show that BTK is a critical regulator of NLRP3 inflammasome activation: pharmacologic (using the US Food and Drug Administration-approved inhibitor ibrutinib) and genetic (in patients with XLA and Btk knockout mice) BTK ablation in primary immune cells led to reduced IL-1β processing and secretion in response to nigericin and the Staphylococcus aureus toxin leukocidin AB (LukAB). BTK affected apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and caspase-1 cleavage and interacted with NLRP3 and ASC. S aureus infection control in vivo and IL-1β release from cells of patients with Muckle-Wells syndrome were impaired by ibrutinib. Notably, IL-1β processing and release from immune cells isolated from patients with cancer receiving ibrutinib therapy were reduced. Our data suggest that XLA might result in part from genetic inflammasome deficiency and that NLRP3 inflammasome-linked inflammation could potentially be targeted pharmacologically through BTK. Copyright © 2017 American Academy of Allergy

  15. Alanine repeats influence protein localization in splicing speckles and paraspeckles.

    Science.gov (United States)

    Chang, Shuo-Hsiu; Chang, Wei-Lun; Lu, Chia-Chen; Tarn, Woan-Yuh

    2014-12-16

    Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated-fully or partially-from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    DEFF Research Database (Denmark)

    Kenchappa, Chandra; Heiðarsson, Pétur Orri; Kragelund, Birthe

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds...... specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal...... in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys(7) and Cys(28) enhancing high thermal stability of Cbp2(Hb) through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2...

  17. Inferring repeat-protein energetics from evolutionary information.

    Directory of Open Access Journals (Sweden)

    Rocío Espada

    2017-06-01

    Full Text Available Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.

  18. Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.; Sineo, L.; Pontieri, E. [Catholic Univ. of Rome (Italy)]|[Univ. of Milan (Italy)]|[Univ. Florence (Italy)] [and others

    1994-09-01

    Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PK gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.

  19. Molecular cloning and functional analysis of peafowl (Pavo cristatus) Toll-like receptor 7.

    Science.gov (United States)

    Song, H; Zhang, M; Gao, W; Wu, L; Li, G

    2018-01-01

    In order to clone the peafowl (Pavo cristatus) Toll-like receptor 7 (TLR7) gene and study its biological function, the peafowl TLR7 coding sequences (CDS) were amplified by PCR of cDNA from the whole spleen of peafowl. The full-length sequence of the peafowl TLR7 gene CDS is 3,141 bp and encodes a 1,046-amino acid protein with a classic TLR composition of 16 leucine-rich repeats (LRR). Insertions of amino acids were found at position 15 of LRR2, LRR5, LRR7, LRR9, LRR11, LRR12, LRR14, and LRR15; and position 10 of LRR11. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that the peafowl TLR7 gene was highly expressed in lymphoid tissues of the spleen, bursa, bone marrow, lung, and peripheral blood mononuclear cells (PBMC). HEK293T cells were transfected with a peafowl TLR7 plasmid, and functional analysis showed that peafowl TLR7 could respond to R848, leading to activation of NF-κB. Following R848 stimulation or Newcastle disease virus infection of peafowl PBMC, the levels of IL-1β, IFN-γ, CCLi2, and TGF-β4 mRNA, assessed by quantitative real-time PCR, increased significantly. Triggering peafowl TLR7 results in upregulation of inflammatory cytokines and chemokines, suggesting that peafowl TLR7 plays an important role in the innate immune response. © 2017 Poultry Science Association Inc.

  20. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago

    NARCIS (Netherlands)

    Mita, De S.; Santoni, S.; Ronfort, J.; Bataillon, T.

    2007-01-01

    The NODULATION RECEPTOR KINASE (NORK) gene encodes a Leucine-Rich Repeat (LRR)-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in

  1. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.

    Science.gov (United States)

    Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan

    2017-09-01

    Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.

  2. Comparison of serum leptin, glucose, total cholesterol and total protein levels in fertile and repeat breeder cows

    Directory of Open Access Journals (Sweden)

    Saime Guzel

    2014-12-01

    Full Text Available In the present study we measured serum glucose, leptin, total cholesterol and total protein concentrations in repeat breeder cows and compared them with fertile cows. For this aim, 20 repeat breeder cows and 20 fertile cows were used as material. Repeat breeder cows were found to have lower levels of leptin and glucose as compared with fertile ones. No significant differences in total cholesterol and total protein levels were observed between the two groups. No significant correlation of leptin with glucose, total cholesterol and total protein was observed in fertile and repeat breeder cows. Low concentrations of glucose and leptin can have some effects on reproductive problems as repeat breeder and help to understand potential mechanisms impairing fertility in repeat breeder cows.

  3. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family.

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.

  4. Superfamily of ankyrin repeat proteins in tomato.

    Science.gov (United States)

    Yuan, Xiaowei; Zhang, Shizhong; Qing, Xiaohe; Sun, Meihong; Liu, Shiyang; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-07-10

    The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Functional Analysis of the Tomato Immune Receptor Ve1 through Domain Swaps with Its Non-Functional Homolog Ve2

    Science.gov (United States)

    Rovenich, Hanna; Song, Yin; Liebrand, Thomas W. H.; Masini, Laura; van den Berg, Grardy C. M.; Joosten, Matthieu H. A. J.; Thomma, Bart P. H. J.

    2014-01-01

    Resistance in tomato against race 1 strains of the fungal vascular wilt pathogens Verticillium dahliae and V. albo-atrum is mediated by the Ve locus. This locus comprises two closely linked inversely oriented genes, Ve1 and Ve2, which encode cell surface receptors of the extracellular leucine-rich repeat receptor-like protein (eLRR-RLP) type. While Ve1 mediates Verticillium resistance through monitoring the presence of the recently identified V. dahliae Ave1 effector, no functionality for Ve2 has been demonstrated in tomato. Ve1 and Ve2 contain 37 eLRRs and share 84% amino acid identity, facilitating investigation of Ve protein functionality through domain swapping. In this study it is shown that Ve chimeras in which the first thirty eLRRs of Ve1 were replaced by those of Ve2 remain able to induce HR and activate Verticillium resistance, and that deletion of these thirty eLRRs from Ve1 resulted in loss of functionality. Also the region between eLRR30 and eLRR35 is required for Ve1-mediated resistance, and cannot be replaced by the region between eLRR30 and eLRR35 of Ve2. We furthermore show that the cytoplasmic tail of Ve1 is required for functionality, as truncation of this tail results in loss of functionality. Moreover, the C-terminus of Ve2 fails to activate immune signaling as chimeras containing the C-terminus of Ve2 do not provide Verticillium resistance. Furthermore, Ve1 was found to interact through its C-terminus with the eLRR-containing receptor-like kinase (eLRR-RLK) interactor SOBIR1 that was recently identified as an interactor of eLRR-RLP (immune) receptors. Intriguingly, also Ve2 was found to interact with SOBIR1. PMID:24505431

  6. A Family of Salmonella Virulence Factors Functions as a Distinct Class of Autoregulated E3 Ubiquitin Ligases

    Energy Technology Data Exchange (ETDEWEB)

    Quezada, C.; Hicks, S; Galan, J; Stebbins, C

    2009-01-01

    Processes as diverse as receptor binding and signaling, cytoskeletal dynamics, and programmed cell death are manipulated by mimics of host proteins encoded by pathogenic bacteria. We show here that the Salmonella virulence factor SspH2 belongs to a growing class of bacterial effector proteins that harness and subvert the eukaryotic ubiquitination pathway. This virulence protein possesses ubiquitination activity that depends on a conserved cysteine residue. A crystal structure of SspH2 reveals a canonical leucine-rich repeat (LRR) domain that interacts with a unique E{sub 3} ligase [which we have termed NEL for Novel E{sub 3} Ligase] C-terminal fold unrelated to previously observed HECT or RING-finger E{sub 3} ligases. Moreover, the LRR domain sequesters the catalytic cysteine residue contained in the NEL domain, and we suggest a mechanism for activation of the ligase requiring a substantial conformational change to release the catalytic domain for function. We also show that the N-terminal domain targets SspH2 to the apical plasma membrane of polarized epithelial cells and propose a model whereby binding of the LRR to proteins at the target site releases the ligase domain for site-specific function.

  7. Deletion of Repeats in the Alpha C Protein Enhances the Pathogenicity of Group B Streptococci in Immune Mice

    OpenAIRE

    Gravekamp, C.; Rosner, Bernard; Madoff, L. C.

    1998-01-01

    The alpha C protein is a protective surface-associated antigen of group B streptococci (GBS). The prototype alpha C protein of GBS (strain A909) contains nine identical tandem repeats, each comprising 82 amino acids, flanked by N- and C-terminal domains. Clinical isolates of GBS show variable numbers of repeats with a normal distribution and a median of 9 to 10 repeats. Here, we show that escape mutants of GBS expressing one-repeat alpha C protein were 100-fold more pathogenic than GBS expres...

  8. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Heterologous Expression of the Cotton NBS-LRR Gene GbaNA1 Enhances Verticillium Wilt Resistance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nan-Yang Li

    2018-02-01

    Full Text Available Verticillium wilt caused by Verticillium dahliae results in severe losses in cotton, and is economically the most destructive disease of this crop. Improving genetic resistance is the cleanest and least expensive option to manage Verticillium wilt. Previously, we identified the island cotton NBS-LRR-encoding gene GbaNA1 that confers resistance to the highly virulent V. dahliae isolate Vd991. In this study, we expressed cotton GbaNA1 in the heterologous system of Arabidopsis thaliana and investigated the defense response mediated by GbaNA1 following inoculations with V. dahliae. Heterologous expression of GbaNA1 conferred Verticillium wilt resistance in A. thaliana. Moreover, overexpression of GbaNA1 enabled recovery of the resistance phenotype of A. thaliana mutants that had lost the function of GbaNA1 ortholog gene. Investigations of the defense response in A. thaliana showed that the reactive oxygen species (ROS production and the expression of genes associated with the ethylene signaling pathway were enhanced significantly following overexpression of GbaNA1. Intriguingly, overexpression of the GbaNA1 ortholog from Gossypium hirsutum (GhNA1 in A. thaliana did not induce the defense response of ROS production due to the premature termination of GhNA1, which lacks the encoded NB-ARC and LRR motifs. GbaNA1 therefore confers Verticillium wilt resistance in A. thaliana by the activation of ROS production and ethylene signaling. These results demonstrate the functional conservation of the NBS-LRR-encoding GbaNA1 in a heterologous system, and the mechanism of this resistance, both of which may prove valuable in incorporating GbaNA1-mediated resistance into other plant species.

  10. A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family1[w

    Science.gov (United States)

    Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.

    2004-01-01

    The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406

  11. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities.

    Science.gov (United States)

    Wroblewski, Tadeusz; Piskurewicz, Urszula; Tomczak, Anna; Ochoa, Oswaldo; Michelmore, Richard W

    2007-09-01

    The RGC2 gene cluster in lettuce (Lactuca sativa) is one of the largest known families of genes encoding nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins. One of its members, RGC2B, encodes Dm3 which determines resistance to downy mildew caused by the oomycete Bremia lactucae carrying the cognate avirulence gene, Avr3. We developed an efficient strategy for analysis of this large family of low expressed genes using post-transcriptional gene silencing (PTGS). We transformed lettuce cv. Diana (carrying Dm3) using chimeric gene constructs designed to simultaneously silence RGC2B and the GUS reporter gene via the production of interfering hairpin RNA (ihpRNA). Transient assays of GUS expression in leaves accurately predicted silencing of both genes and were subsequently used to assay silencing in transgenic T(1) plants and their offspring. Levels of mRNA were reduced not only for RGC2B but also for all seven diverse RGC2 family members tested. We then used the same strategy to show that the resistance specificity encoded by the genetically defined Dm18 locus in lettuce cv. Mariska is the result of two resistance specificities, only one of which was silenced by ihpRNA derived from RGC2B. Analysis of progeny from crosses between transgenic, silenced tester stocks and lettuce accessions carrying other resistance genes previously mapped to the RGC2 locus indicated that two additional resistance specificities to B. lactucae, Dm14 and Dm16, as well as resistance to lettuce root aphid (Pemphigus bursarius L.), Ra, are encoded by RGC2 family members.

  12. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction.

    Science.gov (United States)

    Swiderski, Michal R; Birker, Doris; Jones, Jonathan D G

    2009-02-01

    In plants, the TIR (toll interleukin 1 receptor) domain is found almost exclusively in nucleotide-binding (NB) leucine-rich repeat resistance proteins and their truncated homologs, and has been proposed to play a signaling role during resistance responses mediated by TIR containing R proteins. Transient expression in Nicotiana benthamiana leaves of "TIR + 80", the RPS4 truncation without the NB-ARC domain, leads to EDS1-, SGT1-, and HSP90-dependent cell death. Transgenic Arabidopsis plants expressing the RPS4 TIR+80 from either dexamethasone or estradiol-inducible promoters display inducer-dependent cell death. Cell death is also elicited by transient expression of similarly truncated constructs from two other R proteins, RPP1A and At4g19530, but is not elicited by similar constructs representing RPP2A and RPP2B proteins. Site-directed mutagenesis of the RPS4 TIR domain identified many loss-of-function mutations but also revealed several gain-of function substitutions. Lack of cell death induction by the E160A substitution suggests that amino acids outside of the TIR domain contribute to cell death signaling in addition to the TIR domain itself. This is consistent with previous observations that the TIR domain itself is insufficient to induce cell death upon transient expression.

  13. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae.

    Directory of Open Access Journals (Sweden)

    Preeti Arya

    Full Text Available Nucleotide binding site leucine-rich repeats (NBS-LRR disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR and coiled coil (CC (1 ∶ 1 was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple.

  14. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae.

    Science.gov (United States)

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1 ∶ 1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple.

  15. The SALM/Lrfn family of leucine-rich repeat-containing cell adhesion molecules.

    Science.gov (United States)

    Nam, Jungyong; Mah, Won; Kim, Eunjoon

    2011-07-01

    Synaptic adhesion molecules play important roles in various stages of neuronal development, including neurite outgrowth and synapse formation. The SALM (synaptic adhesion-like molecule) family of adhesion molecules, also known as Lrfn, belongs to the superfamily of leucine-rich repeat (LRR)-containing adhesion molecules. Proteins of the SALM family, which includes five known members (SALMs 1-5), have been implicated in the regulation of neurite outgrowth and branching, and synapse formation and maturation. Despite sharing a similar domain structure, individual SALM family proteins appear to have distinct functions. SALMs 1-3 contain a C-terminal PDZ-binding motif, which interacts with PSD-95, an abundant postsynaptic scaffolding protein, whereas SALM4 and SALM5 lack PDZ binding. SALM1 directly interacts with NMDA receptors but not with AMPA receptors, whereas SALM2 associates with both NMDA and AMPA receptors. SALMs 1-3 form homo- and heteromeric complexes with each other in a cis manner, whereas SALM4 and SALM5 do not, but instead participate in homophilic, trans-cellular adhesion. SALM3 and SALM5, but not other SALMs, possess synaptogenic activity, inducing presynaptic differentiation in contacting axons. All SALMs promote neurite outgrowth, while SALM4 uniquely increases the number of primary processes extending from the cell body. In addition to these functional diversities, the fifth member of the SALM family, SALM5/Lrfn5, has recently been implicated in severe progressive autism and familial schizophrenia, pointing to the clinical importance of SALMs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Identification of TTAGGG-binding proteins in Neurospora crassa, a fungus with vertebrate-like telomere repeats.

    Science.gov (United States)

    Casas-Vila, Núria; Scheibe, Marion; Freiwald, Anja; Kappei, Dennis; Butter, Falk

    2015-11-17

    To date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and also several other fungi. Using label-free quantitative proteomics, we here investigate the telosome of Neurospora crassa, a fungus with canonical telomeric repeats. We show that at least six of the candidates detected in our screen are direct TTAGGG-repeat binding proteins. While three of the direct interactors (NCU03416 [ncTbf1], NCU01991 [ncTbf2] and NCU02182 [ncTay1]) feature the known myb/homeobox DNA interaction domain also found in the vertebrate telomeric factors, we additionally show that a zinc-finger protein (NCU07846) and two proteins without any annotated DNA-binding domain (NCU02644 and NCU05718) are also direct double-strand TTAGGG binders. We further find two single-strand binders (NCU02404 [ncGbp2] and NCU07735 [ncTcg1]). By quantitative label-free interactomics we identify TTAGGG-binding proteins in Neurospora crassa, suggesting candidates for telomeric factors that are supported by phylogenomic comparison with yeast species. Intriguingly, homologs in yeast species with degenerated telomeric repeats are also TTAGGG-binding proteins, e.g. in S. cerevisiae Tbf1 recognizes the TTAGGG motif found in its subtelomeres. However, there is also a subset of proteins that is not conserved. While a rudimentary core TTAGGG-recognition machinery may be conserved across yeast species, our data suggests Neurospora as an emerging model organism with unique features.

  17. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    International Nuclear Information System (INIS)

    Dougherty, Gerard W.; Chopp, Treasa; Qi Shengmei; Cutler, Mary Lou

    2005-01-01

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion

  18. miR482 and Its Isoforms in Plants

    Directory of Open Access Journals (Sweden)

    Abdil Hakan EREN

    2016-09-01

    Full Text Available In plants, miR482 family members are generally 22-nucleotide long, distinguishing from other microRNA (miRNA families by their extraordinary and diverse sequence structures. Studies showed that miRNA482 is related to NBLRR (Nucleotide binding-site leucine-rich repeat genes conferring resistance to disease in plants. There are different coded NB-LRR genes which are considered as the part immune response assisting the recognition of pathogens in plant genomes. NB-LRR proteins are mostly related to effector – triggering immune system against pathogens. The main immune receptors in plants are PRR (Pattern recoginition receptor and R (Resistance proteins. R proteins code for immune system proteins by NB-LRR activity. miR482, miR1448, slmiR2118 and ath-miR472 are disease resistance related miRNAs. In several studies, miR482 was found to be a homolog of miR1448 and phylogenetic analyses showed that miR1448 is formed by tandem duplication of miR482. While suppression of miR482 results in plant susceptibility to pathogens, miR482 was considered to play role in nodulation and mycorrhizal processes of soya roots. Increasing evidences exhibit that miR482 is critical in disease resistance against pathogen attacks.

  19. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes.

    Directory of Open Access Journals (Sweden)

    Meral Tunc-Ozdemir

    Full Text Available Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1 modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction.Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22. These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy.The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants.A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP. Finally, the G protein complex

  20. The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures.

    Directory of Open Access Journals (Sweden)

    Diego U Ferreiro

    2008-05-01

    Full Text Available Repeat-proteins are made up of near repetitions of 20- to 40-amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi-one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete "domain" (the stability and cooperativity of the repeating array can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (DeltaG(water and the cooperativity of denaturation (m-value, which do not ordinarily apply for globular proteins. We show how the parameters for the "coarse-grained" description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are "poised" at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions.

  1. The leucine-rich repeat structure.

    Science.gov (United States)

    Bella, J; Hindle, K L; McEwan, P A; Lovell, S C

    2008-08-01

    The leucine-rich repeat is a widespread structural motif of 20-30 amino acids with a characteristic repetitive sequence pattern rich in leucines. Leucine-rich repeat domains are built from tandems of two or more repeats and form curved solenoid structures that are particularly suitable for protein-protein interactions. Thousands of protein sequences containing leucine-rich repeats have been identified by automatic annotation methods. Three-dimensional structures of leucine-rich repeat domains determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. As the essential structural principles become well established, the leucine-rich repeat architecture is emerging as an attractive framework for structural prediction and protein engineering. This review presents an update of the current understanding of leucine-rich repeat structure at the primary, secondary, tertiary and quaternary levels and discusses specific examples from recently determined three-dimensional structures.

  2. Pentapeptide-repeat proteins that act as topoisomerase poison resistance factors have a common dimer interface

    International Nuclear Information System (INIS)

    Vetting, Matthew W.; Hegde, Subray S.; Zhang, Yong; Blanchard, John S.

    2011-01-01

    The pentapeptide repeat protein AlbG, provides self-resistance to the nonribosomally encoded hybrid polyketide-peptide termed albicidin. Analysis of the AlbG three-dimensional structure and the sequences of other pentapeptide repeat proteins that confer resistance to topiosomerase poisons suggests they have a similar dimer interface which may be critical to their interaction with topoisomerases. The protein AlbG is a self-resistance factor against albicidin, a nonribosomally encoded hybrid polyketide-peptide with antibiotic and phytotoxic properties produced by Xanthomonas albilineans. Primary-sequence analysis indicates that AlbG is a member of the pentapeptide-repeat family of proteins (PRP). The structure of AlbG from X. albilineans was determined at 2.0 Å resolution by SAD phasing using data collected from a single trimethyllead acetate derivative on a home source. AlbG folds into a right-handed quadrilateral β-helix composed of approximately eight semi-regular coils. The regularity of the β-helix is blemished by a large loop/deviation in the β-helix between coils 4 and 5. The C-terminus of the β-helix is capped by a dimerization module, yielding a dimer with a 110 Å semi-collinear β-helical axis. This method of dimer formation appears to be common to all PRP proteins that confer resistance to topoisomerase poisons and contrasts with most PRP proteins, which are typically monomeric

  3. TRDistiller: a rapid filter for enrichment of sequence datasets with proteins containing tandem repeats.

    Science.gov (United States)

    Richard, François D; Kajava, Andrey V

    2014-06-01

    The dramatic growth of sequencing data evokes an urgent need to improve bioinformatics tools for large-scale proteome analysis. Over the last two decades, the foremost efforts of computer scientists were devoted to proteins with aperiodic sequences having globular 3D structures. However, a large portion of proteins contain periodic sequences representing arrays of repeats that are directly adjacent to each other (so called tandem repeats or TRs). These proteins frequently fold into elongated fibrous structures carrying different fundamental functions. Algorithms specific to the analysis of these regions are urgently required since the conventional approaches developed for globular domains have had limited success when applied to the TR regions. The protein TRs are frequently not perfect, containing a number of mutations, and some of them cannot be easily identified. To detect such "hidden" repeats several algorithms have been developed. However, the most sensitive among them are time-consuming and, therefore, inappropriate for large scale proteome analysis. To speed up the TR detection we developed a rapid filter that is based on the comparison of composition and order of short strings in the adjacent sequence motifs. Tests show that our filter discards up to 22.5% of proteins which are known to be without TRs while keeping almost all (99.2%) TR-containing sequences. Thus, we are able to decrease the size of the initial sequence dataset enriching it with TR-containing proteins which allows a faster subsequent TR detection by other methods. The program is available upon request. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  5. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  6. Expressional and Biochemical Characterization of Rice Disease Resistance Gene Xa3/Xa26 Family

    Institute of Scientific and Technical Information of China (English)

    Songjie Xu; Yinglong Cao; Xianghua Li; Shiping Wang

    2007-01-01

    The rice (Oryza sativa L.) Xa3/Xa26 gene, conferring race-specific resistance to bacterial blight disease and encoding a leucine-rich repeat (LRR) receptor kinase-like protein, belongs to a multigene family consisting of tandem clustered homologous genes, colocalizing with several uncharacterized genes for resistance to bacterial blight or fungal blast. To provide more information on the expressional and biochemical characteristics of the Xa3/Xa26 family, we analyzed the family members. Four Xa3/Xa26 family members in the indica rice variety Teqing, which carries a bacterial blight resistance gene with a chromosomal location tightly linked to Xa3/Xa26, and five Xa3/Xa26 family members in the japonica rice variety Nipponbare, which carries at least one uncharacterized blast resistance gene, were constitutively expressed in leaf tissue. The result suggests that some of the family members may be candidates of these uncharacterized resistance genes. At least five putative N-glycosylation sites in the LRR domain of XA3/XA26 protein are not glycosylated. The XA3/XA26 and its family members MRKa and MRKc all possess the consensus sequences of paired cysteines, which putatively function in dimerization of the receptor proteins for signal transduction, immediately before the first LRR and immediately after the last LRR. However, no homo-dimer between the XA3/XA26 molecules or hetero-dimer between XA3/XA26 and MRKa or MRKc were formed, indicating that XA3/XA26 protein might function either as a monomer or a hetero-dimer formed with other protein outside of the XA3/XA26 family. These results provide valuable information for further extensive investigation into this multiple protein family.

  7. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    Science.gov (United States)

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  8. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    LENUS (Irish Health Repository)

    Whan, Vicki

    2010-11-23

    Abstract Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified

  9. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kee Hoon Sohn

    2014-10-01

    Full Text Available Plant nucleotide-binding leucine-rich repeat (NB-LRR disease resistance (R proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs. How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4 and RRS1 (resistance to Ralstonia solanacearum 1, function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1 mutant encodes an RRS1 allele (RRS1SLH1 with a single amino acid (leucine insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed

  10. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells

    International Nuclear Information System (INIS)

    Wei, Xing; Song, Lan; Jiang, Lei; Wang, Guiliang; Luo, Xinjing; Zhang, Bin; Xiao, Xianzhong

    2010-01-01

    WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a novel member of the WD40 repeat proteins superfamily that contains five WD40 repeats. Little is known about its biological role, and the purpose of this study was to determine the role of MIP2 in regulating cellular proliferation. Transfection and constitutive expression of MIP2 in the rat cardiomyoblast cell line H9c2 results in enhanced growth of those cells as measured by cell number and is proportional to the amount of MIP2 expressed. Overexpression of MIP2 results in a shorter cell cycle, as measured by flow cytometry. Collectively, these data suggest that MIP2 may participate in the progression of cell proliferation in H9c2 cells.

  11. Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic

    Directory of Open Access Journals (Sweden)

    Youn-Bok Lee

    2013-12-01

    Full Text Available The GGGGCC (G4C2 intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.

  12. History, rare, and multiple events of mechanical unfolding of repeat proteins

    Science.gov (United States)

    Sumbul, Fidan; Marchesi, Arin; Rico, Felix

    2018-03-01

    Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.

  13. Interleukin-4- and NACHT, LRR and PYD domains-containing protein 3-independent mechanisms of alum enhanced T helper type 2 responses on basophils.

    Science.gov (United States)

    Huang, Feng-Juan; Ma, Yi-Lei; Tang, Ruo-Yu; Gong, Wen-Ci; Li, Jun; Chen, Chun-Xia; Yin, Lan; Chen, Xiao-Ping

    2016-10-01

    Aluminium hydroxide (alum), the most widely used adjuvant in human and animal vaccines, has long been known to promote T helper type 2 (Th2) responses and Th2-associated humoral responses, but the mechanisms have remained poorly understood. In this study, we explored whether alum is able to directly modulate antigen-presenting cells to enhance their potency for Th2 polarization. We found that alum treatment of dendritic cells failed to show any Th2-promoting activities. In contrast, alum was able to enhance the capacity of basophils to induce Th2 cells. When basophils from interleukin-4 (IL-4) knockout mice were examined, the intrinsic Th2-promoting activities by basophils were largely abrogated, but the alum-enhanced Th2-promoting activities on basophils were still detectable. More importantly, Th2-promoting adjuvant activities by alum found in IL-4 knockout mice were also largely reduced when basophils were depleted by antibody administration. Therefore, basophils can mediate Th2-promoting activities by alum both in vitro and in vivo through IL-4-independent mechanisms. Further studies revealed that secreted soluble molecules from alum-treated basophils were able to confer the Th2-promoting activities, and neutralization of thymic stromal lymphopoietin or IL-25 attenuated the IL-4-independent development of Th2 cells elicited by alum-treated basophils. Finally, alum was able to activate NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in murine basophils in the same way as alum in professional antigen-presenting cells, but NLRP3 was not required for Th2-promoting activities on basophils by alum in vitro. These results demonstrated that alum can enhance the capacities of basophils to polarize Th2 cells via IL-4- and NLRP3-independent pathways. © 2016 John Wiley & Sons Ltd.

  14. Identification of Pentatricopeptide Repeat Proteins in the Model Organism Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Sam Manna

    2013-01-01

    Full Text Available Pentatricopeptide repeat (PPR proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protist Dictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.

  15. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation.

    Science.gov (United States)

    Kanekura, Kohsuke; Yagi, Takuya; Cammack, Alexander J; Mahadevan, Jana; Kuroda, Masahiko; Harms, Matthew B; Miller, Timothy M; Urano, Fumihiko

    2016-05-01

    The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing.

    Science.gov (United States)

    Saveliev, Alexander; Everett, Christopher; Sharpe, Tammy; Webster, Zoë; Festenstein, Richard

    2003-04-24

    Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.

  17. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  18. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    Science.gov (United States)

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity. © 2014 Marine Biological Laboratory.

  19. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1.

    Directory of Open Access Journals (Sweden)

    Richard J Giannone

    2010-08-01

    Full Text Available Telomere integrity (including telomere length and capping is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography--tandem mass spectrometry (MudPIT LC-MS/MS. After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.

  20. Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids

    Directory of Open Access Journals (Sweden)

    Sperry Ann O

    2008-01-01

    Full Text Available Abstract Background Spermatogenesis is comprised of a series of highly regulated developmental changes that transform the precursor germ cell into a highly specialized spermatozoon. The last phase of spermatogenesis, termed spermiogenesis, involves dramatic morphological change including formation of the acrosome, elongation and condensation of the nucleus, formation of the flagella, and disposal of unnecessary cytoplasm. A prominent cytoskeletal component of the developing spermatid is the manchette, a unique microtubular structure that surrounds the nucleus of the developing spermatid and is thought to assist in both the reshaping of the nucleus and redistribution of spermatid cytoplasm. Although the molecular motor KIFC1 has been shown to associate with the manchette, its precise role in function of the manchette and the identity of its testis specific protein partners are unknown. The purpose of this study was to identify proteins in the testis that interact with KIFC1 using a yeast 2 hybrid screen of a testis cDNA library. Results Thirty percent of the interacting clones identified in our screen contain an identical cDNA encoding a 40 kD protein. This interacting protein has 4 leucine-rich repeats in its amino terminal half and is expressed primarily in the testis; therefore we have named this protein testis leucine-rich repeat protein or TLRR. TLRR was also found to associate tightly with the KIFC1 targeting domain using affinity chromatography. In addition to the leucine-rich repeats, TLRR contains a consensus-binding site for protein phosphatase-1 (PP1. Immunocytochemistry using a TLRR specific antibody demonstrates that this protein is found near the manchette of developing spermatids. Conclusion We have identified a previously uncharacterized leucine-rich repeat protein that is expressed abundantly in the testis and associates with the manchette of developing spermatids, possibly through its interaction with the KIFC1 molecular motor

  1. Highly Stable Trypsin-Aggregate Coatings on Polymer Nanofibers for Repeated Protein Digestion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Chan; Lopez-Ferrer, Daniel; Lee, Sang-mok; Ahn, Hye-kyung; Nair, Sujith; Kim, Seong H.; Kim, Beom S.; Petritis, Konstantinos; Camp, David G.; Grate, Jay W.; Smith, Richard D.; Koo, Yoon-mo; Gu, Man Bock; Kim, Jungbae

    2009-04-01

    A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This new process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was also resistant to autolysis, enabling repeated digestions of bovine serum albumin over 40 days and successful peptide identification by LC-MS/MS. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e. chymotrypsin), which makes it suitable for use in “real-world” proteomic applications. Overall, the biocatalytic nanofibers with enzyme aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.

  2. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum.

    Science.gov (United States)

    Zhu, Yunye; Huang, Shengxiong; Miao, Min; Tang, Xiaofeng; Yue, Junyang; Wang, Wenjie; Liu, Yongsheng

    2015-06-01

    One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.

  3. Alternative Conformations of the Tau Repeat Domain in Complex with an Engineered Binding Protein*

    Science.gov (United States)

    Grüning, Clara S. R.; Mirecka, Ewa A.; Klein, Antonia N.; Mandelkow, Eckhard; Willbold, Dieter; Marino, Stephen F.; Stoldt, Matthias; Hoyer, Wolfgang

    2014-01-01

    The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337–342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau. PMID:24966331

  4. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells

    NARCIS (Netherlands)

    Barker, N.; Clevers, H.

    2010-01-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult

  5. Gender, obesity and repeated elevation of C-reactive protein: data from the CARDIA cohort.

    Directory of Open Access Journals (Sweden)

    Shinya Ishii

    Full Text Available C-reactive Protein (CRP measurements above 10 mg/L have been conventionally treated as acute inflammation and excluded from epidemiologic studies of chronic inflammation. However, recent evidence suggest that such CRP elevations can be seen even with chronic inflammation. The authors assessed 3,300 participants in The Coronary Artery Risk Development in Young Adults study, who had two or more CRP measurements between 1992/3 and 2005/6 to a investigate characteristics associated with repeated CRP elevation above 10 mg/L; b identify subgroups at high risk of repeated elevation; and c investigate the effect of different CRP thresholds on the probability of an elevation being one-time rather than repeated. 225 participants (6.8% had one-time and 103 (3.1% had repeated CRP elevation above 10 mg/L. Repeated elevation was associated with obesity, female gender, low income, and sex hormone use. The probability of an elevation above 10 mg/L being one-time rather than repeated was lowest (51% in women with body mass index above 31 kg/m(2, compared to 82% in others. These findings suggest that CRP elevations above 10 mg/L in obese women are likely to be from chronic rather than acute inflammation, and that CRP thresholds above 10 mg/L may be warranted to distinguish acute from chronic inflammation in obese women.

  6. The repeatability of interleukin-6, tumor necrosis factor-alpha, and C-reactive protein in COPD patients over one year

    DEFF Research Database (Denmark)

    Kolsum, Umme; Roy, Kay; Starkey, Cerys

    2009-01-01

    BACKGROUND: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD) are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and C-reactive protein......(i)) and the Bland-Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits. RESULTS: There was moderate repeatability with a very high degree of statistical significance (p...... (CRP) over one year and examined the relationships between these systemic markers in COPD. METHODS: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-alpha were measured. Repeatability was expressed by intraclass correlation coefficient (R...

  7. The repeatability of interleukin-6, tumor necrosis factor-alpha, and C-reactive protein in COPD patients over one year

    DEFF Research Database (Denmark)

    Kolsum, Umme; Roy, Kay; Starkey, Cerys

    2009-01-01

    BACKGROUND: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD) are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and C-reactive protein......(i)) and the Bland-Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits. RESULTS: There was moderate repeatability with a very high degree of statistical significance (p...... (CRP) over one year and examined the relationships between these systemic markers in COPD. METHODS: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-alpha were measured. Repeatability was expressed by intraclass correlation coefficient (R...

  8. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism...

  9. The repeatability of interleukin-6, tumor necrosis factor-α, and C-reactive protein in COPD patients over one year

    Directory of Open Access Journals (Sweden)

    Umme Kolsum

    2009-04-01

    Full Text Available Umme Kolsum, Kay Roy, Cerys Starkey, Zoë Borrill, Nick Truman, Jørgen Vestbo, Dave SinghNorth West Lung Research Centre, University of Manchester, South Manchester University Hospitals Trust, Wythenshawe, Manchester, UKBackground: Many of the systemic manifestations of chronic obstructive pulmonary disease (COPD are mediated through increased systemic levels of inflammatory proteins. We assessed the long term repeatability of Interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and C-reactive protein (CRP over one year and examined the relationships between these systemic markers in COPD.Methods: Fifty-eight stable COPD patients completed a baseline and one-year visit. Serum IL-6, plasma CRP, and plasma TNF-α were measured. Repeatability was expressed by intraclass correlation coefficient (Ri and the Bland–Altman method. Pearson correlations were used to determine the relationships between the systemic markers at both visits.Results: There was moderate repeatability with a very high degree of statistical significance (p ≤ 0.001 between the two visits for all the systemic biomarkers (IL-6, CRP, and TNF-α. CRP was significantly associated with IL-6 at both visits (r = 0.55, p = 0.0001, r = 0.51, p = 0.0002, respectively. There were no other significant associations between the systemic markers at either of the visits.Conclusions: Systemic inflammatory biomarkers IL-6, CRP, and TNF-α were moderately repeatable over a twelve month period in COPD patients. We have also shown that a robust and repeatable association between IL-6 and CRP exists.Keywords: interleukin-6, tumor necrosis factor-α, C-reactive protein, repeatability, COPD   

  10. Characterization of tetratricopeptide repeat-containing proteins critical for cilia formation and function.

    Directory of Open Access Journals (Sweden)

    Yanan Xu

    Full Text Available Cilia formation and function require a special set of trafficking machinery termed intraflagellar transport (IFT, consisting mainly of protein complexes IFT-A, IFT-B, BBSome, and microtubule-dependent molecular motors. Tetratricopeptide repeat-containing (TTC proteins are widely involved in protein complex formation. Nine of them are known to serve as components of the IFT or BBSome complexes. How many TTC proteins are cilia-related and how they function, however, remain unclear. Here we show that twenty TTC genes were upregulated by at least 2-fold during the differentiation of cultured mouse tracheal epithelial cells (MTECs into multiciliated cells. Our systematic screen in zebrafish identified four novel TTC genes, ttc4, -9c, -36, and -39c, that are critical for cilia formation and motility. Accordingly, their zebrafish morphants displayed typical ciliopathy-related phenotypes, including curved body, abnormal otolith, hydrocephalus, and defective left-right patterning. The morphants of ttc4 and ttc25, a known cilia-related gene, additionally showed pronephric cyst formation. Immunoprecipitation indicated associations of TTC4, -9c, -25, -36, and -39c with components or entire complexes of IFT-A, IFT-B, or BBSome, implying their participations in IFT or IFT-related activities. Our results provide a global view for the relationship between TTC proteins and cilia.

  11. Creation and structure determination of an artificial protein with three complete sequence repeats

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Motoyasu, E-mail: adachi.motoyasu@jaea.go.jp; Shimizu, Rumi; Kuroki, Ryota [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Blaber, Michael [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Florida State University, Tallahassee, FL 32306-4300 (United States)

    2013-11-01

    An artificial protein with three complete sequence repeats was created and the structure was determined by X-ray crystallography. The structure showed threefold symmetry even though there is an amino- and carboxy-terminal. The artificial protein with threefold symmetry may be useful as a scaffold to capture small materials with C3 symmetry. Symfoil-4P is a de novo protein exhibiting the threefold symmetrical β-trefoil fold designed based on the human acidic fibroblast growth factor. First three asparagine–glycine sequences of Symfoil-4P are replaced with glutamine–glycine (Symfoil-QG) or serine–glycine (Symfoil-SG) sequences protecting from deamidation, and His-Symfoil-II was prepared by introducing a protease digestion site into Symfoil-QG so that Symfoil-II has three complete repeats after removal of the N-terminal histidine tag. The Symfoil-QG and SG and His-Symfoil-II proteins were expressed in Eschericha coli as soluble protein, and purified by nickel affinity chromatography. Symfoil-II was further purified by anion-exchange chromatography after removing the HisTag by proteolysis. Both Symfoil-QG and Symfoil-II were crystallized in 0.1 M Tris-HCl buffer (pH 7.0) containing 1.8 M ammonium sulfate as precipitant at 293 K; several crystal forms were observed for Symfoil-QG and II. The maximum diffraction of Symfoil-QG and II crystals were 1.5 and 1.1 Å resolution, respectively. The Symfoil-II without histidine tag diffracted better than Symfoil-QG with N-terminal histidine tag. Although the crystal packing of Symfoil-II is slightly different from Symfoil-QG and other crystals of Symfoil derivatives having the N-terminal histidine tag, the refined crystal structure of Symfoil-II showed pseudo-threefold symmetry as expected from other Symfoils. Since the removal of the unstructured N-terminal histidine tag did not affect the threefold structure of Symfoil, the improvement of diffraction quality of Symfoil-II may be caused by molecular characteristics of

  12. Cardiac ankyrin repeat protein (CARP) expression in human and murine atherosclerotic lesions - Activin induces carp in smooth muscle cells

    NARCIS (Netherlands)

    de Waard, Vivian; van Achterberg, Tanja A. E.; Beauchamp, Nicholas J.; Pannekoek, Hans; de Vries, Carlie J. M.

    2003-01-01

    Objective-Cardiac ankyrin repeat protein (CARP) is a transcription factor-related protein that has been studied most extensively in the heart. In the present study, we investigated the expression and the potential function of CARP in human and murine atherosclerosis. Methods and Results-CARP

  13. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3ζ protein

    International Nuclear Information System (INIS)

    Sadik, Golam; Tanaka, Toshihisa; Kato, Kiyoko; Yanagi, Kentaro; Kudo, Takashi; Takeda, Masatoshi

    2009-01-01

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3ζ. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3ζ is ∼3-folds higher than that between unphosphorylated 4R-tau and 14-3-3ζ. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3ζ to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3ζ. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3ζ exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3ζ suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  14. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingyan Liu

    2015-10-01

    Full Text Available Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR-type resistance (R protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5, which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1 to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1, RPS4 (Resistance to P. syringae 4 and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1. Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses.

  15. Prokaryotic Expression of Rice Ospgip1 Gene and Bioinformatic Analysis of Encoded Product

    Directory of Open Access Journals (Sweden)

    Xi-jun CHEN

    2011-12-01

    Full Text Available Using the reference sequences of pgip genes in GenBank, a fragment of 930 bp covering the open reading frame (ORF of rice Ospgip1 (Oryza sativa polygalacturonase-inhibiting protein 1 was amplified. The prokaryotic expression product of the gene inhibited the growth of Rhizoctonia solani, the causal agent of rice sheath blight, and reduced its polygalacturonase activity. Bioinformatic analysis showed that OsPGIP1 is a hydrophobic protein with a molecular weight of 32.8 kDa and an isoelectric point (pI of 7.26. The protein is mainly located in the cell wall of rice, and its signal peptide cleavage site is located between the 17th and 18th amino acids. There are four cysteines in both the N- and C-termini of the deduced protein, which can form three disulfide bonds (between the 56th and 63rd, the 278th and 298th, and the 300th and 308th amino acids. The protein has a typical leucine-rich repeat (LRR domain, and its secondary structure comprises α-helices, β-sheets and irregular coils. Compared with polygalacturonase-inhibiting proteins (PGIPs from other plants, the 7th LRR is absent in OsPGIP1. The nine LRRs could form a cleft that might associate with proteins from pathogenic fungi, such as polygalacturonase.

  16. A LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats.

    Science.gov (United States)

    Di Giovanni, Michela; Cenci, Alberto; Janni, Michela; D'Ovidio, Renato

    2008-04-01

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. Wheat pgip genes have been isolated from the B (Tapgip1) and D (Tapgip2) genomes, and now we report the identification of pgip genes from the A genomes of wild and cultivated wheats. By Southern blots and sequence analysis of BAC clones we demonstrated that wheat contains a single copy pgip gene per genome and the one from the A genome, pgip3, is inactivated by the insertion of a long terminal repeat copia retrotranspon within the fourth LRR. We demonstrated also that this retrotransposon insertion is present in Triticum urartu and all the polyploidy wheats assayed, but is absent in T. monococcum (Tmpgip3), suggesting that this insertion took place after the divergence between T. monococcum and T. urartu, but before the formation of the polyploid wheats. We identified also two independent insertion events of new Class II transposable elements, Vacuna, belonging to the Mutator superfamily, that interrupted the Tdipgip1 gene of T. turgidum ssp. dicoccoides. The occurrence of these transposons within the coding region of Tdipgip1 facilitated the mapping of the Pgip locus in the pericentric region of the short arm of chromosome group 7. We speculate that the inactivation of pgip genes are tolerated because of redundancy of PGIP activities in the wheat genome.

  17. RRW: repeated random walks on genome-scale protein networks for local cluster discovery

    Directory of Open Access Journals (Sweden)

    Can Tolga

    2009-09-01

    Full Text Available Abstract Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL, and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters.

  18. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Directory of Open Access Journals (Sweden)

    Janine Kamke

    Full Text Available The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  19. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  20. High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein.

    Science.gov (United States)

    Zhang, Yi; Berghaus, Melanie; Klein, Sean; Jenkins, Kelly; Zhang, Siwen; McCallum, Scott A; Morgan, Joel E; Winter, Roland; Barrick, Doug; Royer, Catherine A

    2018-04-27

    Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine-rich repeat protein, pp32, by monitoring the pressure- and urea-induced unfolding of an N-terminal capping motif (N-cap) deletion mutant, pp32-∆N-cap, and a C-terminal capping motif destabilization mutant pp32-Y131F/D146L, using residue-specific NMR and small-angle X-ray scattering. Destabilization of the C-terminal capping motif resulted in higher cooperativity for the unfolding transition compared to wild-type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-cap led to strong deviation from two-state unfolding. In both urea- and pressure-induced unfolding, residues in repeats 1-3 of pp32-ΔN-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-ΔN-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-ΔN-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-ΔN-cap variant arise from their distinct mechanisms of action. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers.

    Science.gov (United States)

    Linhoff, Michael W; Laurén, Juha; Cassidy, Robert M; Dobie, Frederick A; Takahashi, Hideto; Nygaard, Haakon B; Airaksinen, Matti S; Strittmatter, Stephen M; Craig, Ann Marie

    2009-03-12

    Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.

  2. Plasmodium cysteine repeat modular proteins 1-4: complex proteins with roles throughout the malaria parasite life cycle.

    Science.gov (United States)

    Thompson, Joanne; Fernandez-Reyes, Delmiro; Sharling, Lisa; Moore, Sally G; Eling, Wijnand M; Kyes, Sue A; Newbold, Christopher I; Kafatos, Fotis C; Janse, Chris J; Waters, Andrew P

    2007-06-01

    The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.

  3. IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM.

    Science.gov (United States)

    Chung, Lawton K; Philip, Naomi H; Schmidt, Valentina A; Koller, Antonius; Strowig, Till; Flavell, Richard A; Brodsky, Igor E; Bliska, James B

    2014-07-01

    YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM(-) YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopM(YPIII). To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM(32777)) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopM(KIM)) or inactivated (YopM(KIM) D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM(32777), YopM(KIM), and YopM(KIM) D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopM(KIM) deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM(32777), YopM(KIM), and YopM(KIM) deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopM(KIM) but not YopM(32777). Additionally, YopM(KIM) bound IQGAP1 and the use of Iqgap1(-/-) macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM(-) Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopM(KIM) target IQGAP1, a novel regulator of caspase-1, in macrophages. Importance: Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert

  4. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage

    International Nuclear Information System (INIS)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J.; Rudich, Yinon

    2016-01-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. - Highlights: • Repeated exposure to urban PM cause systemic inflammation and oxidative damage to lung tissue lipids and proteins. • Repeated exposure to these PM extracts decreased transcription of Nrf2 protective genes. • Single as opposed to repeated exposure, induced confined lung response accompanied by activated defense mechanisms. • Metals, potentially from break and tire wear, drive the pulmonary response with exposure to urban PM. - Repeated exposures to urban PM water extracts

  5. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat expanded C9orf72 amyotrophic lateral sclerosis

    Science.gov (United States)

    Saberi, Shahram; Stauffer, Jennifer E.; Jiang, Jie; Garcia, Sandra Diaz; Taylor, Amy E; Schulte, Derek; Ohkubo, Takuya; Schloffman, Cheyenne L.; Maldonado, Marcus; Baughn, Michael; Rodriguez, Maria J; Pizzo, Don; Cleveland, Don; Ravits, John

    2018-01-01

    Hexanucleotide repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (C9 ALS). The main hypothesized pathogenic mechanisms are C9orf72 haploinsufficiency and/or toxicity from one or more of bi-directionally transcribed repeat RNAs and their dipeptide repeat proteins (DPRs) poly-GP, poly-GA, poly-GR, poly-PR and poly-PA. Recently, nuclear import and/or export defects especially caused by arginine-containing poly-GR or poly-PR have been proposed as significant contributors to pathogenesis based on disease models. We quantitatively studied and compared DPRs, nuclear pore proteins and C9orf72 protein in clinically-related and clinically-unrelated regions of the central nervous system, and compared them to phosphorylated TDP-43 (pTDP-43), the hallmark protein of ALS. Of the five DPRs, only poly-GR was significantly abundant in clinically-related areas compared to unrelated areas (p<0.001), and formed dendritic-like aggregates in the motor cortex that co-localized with pTDP-43 (p<0.0001). While most poly-GR dendritic inclusions were pTDP-43-positive, only 4% of pTDP-43 dendritic inclusions were poly-GR-positive. Staining for arginine-containing poly-GR and poly-PR in nuclei of neurons produced signals that were not specific to C9 ALS. We could not detect significant differences of nuclear markers RanGap, Lamin B1, and Importin β1 in C9 ALS, although we observed subtle nuclear changes in ALS, both C9 and non-C9, compared to control. The C9orf72 protein itself was diffusely expressed in cytoplasm of large neurons and glia, and nearly 50% reduced, in both clinically-related frontal cortex and unrelated occipital cortex, but not in cerebellum. In summary, sense-encoded poly-GR DPR was unique, and localized to neurites and pTDP43 in motor regions of C9 ALS CNS. This is consistent with new emerging ideas about TDP-43 functions in dendrites. PMID:29196813

  6. Imperfect DNA mirror repeats in the gag gene of HIV-1 (HXB2 identify key functional domains and coincide with protein structural elements in each of the mature proteins

    Directory of Open Access Journals (Sweden)

    Lang Dorothy M

    2007-10-01

    Full Text Available Abstract Background A DNA mirror repeat is a sequence segment delimited on the basis of its containing a center of symmetry on a single strand, e.g. 5'-GCATGGTACG-3'. It is most frequently described in association with a functionally significant site in a genomic sequence, and its occurrence is regarded as noteworthy, if not unusual. However, imperfect mirror repeats (IMRs having ≥ 50% symmetry are common in the protein coding DNA of monomeric proteins and their distribution has been found to coincide with protein structural elements – helices, β sheets and turns. In this study, the distribution of IMRs is evaluated in a polyprotein – to determine whether IMRs may be related to the position or order of protein cleavage or other hierarchal aspects of protein function. The gag gene of HIV-1 [GenBank:K03455] was selected for the study because its protein motifs and structural components are well documented. Results There is a highly specific relationship between IMRs and structural and functional aspects of the Gag polyprotein. The five longest IMRs in the polyprotein translate a key functional segment in each of the five cleavage products. Throughout the protein, IMRs coincide with functionally significant segments of the protein. A detailed annotation of the protein, which combines structural, functional and IMR data illustrates these associations. There is a significant statistical correlation between the ends of IMRs and the ends of PSEs in each of the mature proteins. Weakly symmetric IMRs (≥ 33% are related to cleavage positions and processes. Conclusion The frequency and distribution of IMRs in HIV-1 Gag indicates that DNA symmetry is a fundamental property of protein coding DNA and that different levels of symmetry are associated with different functional aspects of the gene and its protein. The interaction between IMRs and protein structure and function is precise and interwoven over the entire length of the polyprotein. The

  7. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress.

    Science.gov (United States)

    Sonobe, Yoshifumi; Ghadge, Ghanashyam; Masaki, Katsuhisa; Sendoel, Ataman; Fuchs, Elaine; Roos, Raymond P

    2018-08-01

    Expansion of a hexanucleotide repeat (HRE), GGGGCC, in the C9ORF72 gene is recognized as the most common cause of familial amyotrophic lateral sclerosis (FALS), frontotemporal dementia (FTD) and ALS-FTD, as well as 5-10% of sporadic ALS. Despite the location of the HRE in the non-coding region (with respect to the main C9ORF72 gene product), dipeptide repeat proteins (DPRs) that are thought to be toxic are translated from the HRE in all three reading frames from both the sense and antisense transcript. Here, we identified a CUG that has a good Kozak consensus sequence as the translation initiation codon. Mutation of this CTG significantly suppressed polyglycine-alanine (GA) translation. GA was translated when the G 4 C 2 construct was placed as the second cistron in a bicistronic construct. CRISPR/Cas9-induced knockout of a non-canonical translation initiation factor, eIF2A, impaired GA translation. Transfection of G 4 C 2 constructs induced an integrated stress response (ISR), while triggering the ISR led to a continuation of translation of GA with a decline in conventional cap-dependent translation. These in vitro observations were confirmed in chick embryo neural cells. The findings suggest that DPRs translated from an HRE in C9ORF72 aggregate and lead to an ISR that then leads to continuing DPR production and aggregation, thereby creating a continuing pathogenic cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system.

    Science.gov (United States)

    Yosef, Ido; Goren, Moran G; Kiro, Ruth; Edgar, Rotem; Qimron, Udi

    2011-12-13

    Prokaryotic DNA arrays arranged as clustered regularly interspaced short palindromic repeats (CRISPR), along with their associated proteins, provide prokaryotes with adaptive immunity by RNA-mediated targeting of alien DNA or RNA matching the sequences between the repeats. Here, we present a thorough screening system for the identification of bacterial proteins participating in immunity conferred by the Escherichia coli CRISPR system. We describe the identification of one such protein, high-temperature protein G (HtpG), a homolog of the eukaryotic chaperone heat-shock protein 90. We demonstrate that in the absence of htpG, the E. coli CRISPR system loses its suicidal activity against λ prophage and its ability to provide immunity from lysogenization. Transcomplementation of htpG restores CRISPR activity. We further show that inactivity of the CRISPR system attributable to htpG deficiency can be suppressed by expression of Cas3, a protein that is essential for its activity. Accordingly, we also find that the steady-state level of overexpressed Cas3 is significantly enhanced following HtpG expression. We conclude that HtpG is a newly identified positive modulator of the CRISPR system that is essential for maintaining functional levels of Cas3.

  9. Functional and Structural Characterization of a Receptor-Like Kinase Involved in Germination and Cell Expansion in Arabidopsis

    Science.gov (United States)

    Wu, Zhen; Liang, Shan; Song, Wen; Lin, Guangzhong; Wang, Weiguang; Zhang, Heqiao; Han, Zhifu; Chai, Jijie

    2017-01-01

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) are widespread in different plant species and play important roles in growth and development. Germination inhibition is vital for the completion of seed maturation and cell expansion is a fundamental cellular process driving plant growth. Here, we report genetic and structural characterizations of a functionally uncharacterized LRR-RLK, named GRACE (Germination Repression and Cell Expansion receptor-like kinase). Overexpression of GRACE in Arabidopsis exhibited delayed germination, enlarged cotyledons, rosette leaves and stubbier petioles. Conversely, these phenotypes were reversed in the T-DNA insertion knock-down mutant grace-1 plants. A crystal structure of the extracellular domain of GRACE (GRACE-LRR) determined at the resolution of 3.0 Å revealed that GRACE-LRR assumed a right-handed super-helical structure with an island domain (ID). Structural comparison showed that structure of the ID in GRACE-LRR is strikingly different from those observed in other LRR-RLKs. This structural observation implies that GRACE might perceive a new ligand for signaling. Collectively, our data support roles of GRACE in repressing seed germination and promoting cell expansion of Arabidopsis, presumably by perception of unknown ligand(s). PMID:29213277

  10. ACCA phosphopeptide recognition by the BRCT repeats of BRCA1.

    Science.gov (United States)

    Ray, Hind; Moreau, Karen; Dizin, Eva; Callebaut, Isabelle; Venezia, Nicole Dalla

    2006-06-16

    The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.

  11. A novel tetratricopeptide repeat (TPR containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Adams Brian

    2001-11-01

    Full Text Available Abstract Background The malarial parasite, Plasmodium falciparum (Pf, is responsible for nearly 2 million deaths worldwide. However, the mechanisms of cellular signaling in the parasite remain largely unknown. Recent discovery of a few protein kinases and phosphatases point to a thriving reversible phosphorylation system in the parasite, although their function and regulation need to be determined. Results We provide biochemical and sequence evidence for a protein serine/threonine phosphatase type PP5 in Plasmodium falciparum, and named it PfPP5. The 594-amino acid polypeptide was encoded by a 1785 nucleotide long intronless gene in the parasite. The recombinant protein, expressed in bacteria, was indistinguishable from native PfPP5. Sequencing comparison indicated that the extra-long N-terminus of PfPP5 outside the catalytic core contained four tetratricopeptide repeats (TPRs, compared to three such repeats in other PP5 phosphatases. The PfPP5 N-terminus was required for stimulation of the phosphatase activity by polyunsaturated fatty acids. Co-immunoprecipitation demonstrated an interaction between native PfPP5 and Pf heat shock protein 90 (hsp90. PfPP5 was expressed in all the asexual erythrocytic stages of the parasite, and was moderately sensitive to okadaic acid. Conclusions This is the first example of a TPR-domain protein in the Apicomplexa family of parasites. Since TPR domains play important roles in protein-protein interaction, especially relevant to the regulation of PP5 phosphatases, PfPP5 is destined to have a definitive role in parasitic growth and signaling pathways. This is exemplified by the interaction between PfPP5 and the cognate chaperone hsp90.

  12. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men.

    Science.gov (United States)

    McGinley, Cian; Bishop, David J

    2016-12-01

    McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol 121: 1290-1305, 2016. First published October 14, 2016; doi:10.1152/japplphysiol.00630.2016-This study measured the adaptive response to exercise training for each of the acid-base transport protein families, including providing isoform-specific evidence for the monocarboxylate transporter (MCT)1/4 chaperone protein basigin and for the electrogenic sodium-bicarbonate cotransporter (NBCe)1. We investigated whether 4 wk of work-matched, high-intensity interval training (HIIT), performed either just above the lactate threshold (HIITΔ20; n = 8), or close to peak aerobic power (HIITΔ90; n = 8), influenced adaptations in acid-base transport protein abundance, nonbicarbonate muscle buffer capacity (βm in vitro ), and exercise capacity in active men. Training intensity did not discriminate between adaptations for most proteins measured, with abundance of MCT1, sodium/hydrogen exchanger (NHE) 1, NBCe1, carbonic anhydrase (CA) II, and CAXIV increasing after 4 wk, whereas there was little change in CAIII and CAIV abundance. βm in vitro also did not change. However, MCT4 protein content only increased for HIITΔ20 [effect size (ES): 1.06, 90% confidence limits × / ÷ 0.77], whereas basigin protein content only increased for HIITΔ90 (ES: 1.49, × / ÷ 1.42). Repeated-sprint ability (5 × 6-s sprints; 24 s passive rest) improved similarly for both groups. Power at the lactate threshold only improved for HIITΔ20 (ES: 0.49; 90% confidence limits ± 0.38), whereas peak O 2 uptake did not change for either group. Detraining was characterized by the loss of adaptations for all of the proteins measured and for repeated-sprint ability 6 wk after removing the stimulus of HIIT. In conclusion, 4 wk of HIIT induced improvements in each of the acid-base transport protein families, but, remarkably, a 40

  13. Tetratricopeptide repeat domain 9A is an interacting protein for tropomyosin Tm5NM-1

    International Nuclear Information System (INIS)

    Cao, Shenglan; Ho, Gay Hui; Lin, Valerie CL

    2008-01-01

    Tetratricopeptide repeat domain 9A (TTC9A) protein is a recently identified protein which contains three tetratricopeptide repeats (TPRs) on its C-terminus. In our previous studies, we have shown that TTC9A was a hormonally-regulated gene in breast cancer cells. In this study, we found that TTC9A was over-expressed in breast cancer tissues compared with the adjacent controls (P < 0.00001), suggesting it might be involved in the breast cancer development process. The aim of the current study was to further elucidate the function of TTC9A. Breast samples from 25 patients including the malignant breast tissues and the adjacent normal tissues were processed for Southern blot analysis. Yeast-two-hybrid assay, GST pull-down assay and co-immunoprecipitation were used to identify and verify the interaction between TTC9A and other proteins. Tropomyosin Tm5NM-1 was identified as one of the TTC9A partner proteins. The interaction between TTC9A and Tm5NM-1 was further confirmed by GST pull-down assay and co-immunoprecipitation in mammalian cells. TTC9A domains required for the interaction were also characterized in this study. The results suggested that the first TPR domain and the linker fragment between the first two TPR domains of TTC9A were important for the interaction with Tm5NM-1 and the second and the third TPR might play an inhibitory role. Since the primary function of tropomyosin is to stabilize actin filament, its interaction with TTC9A may play a role in cell shape and motility. In our previous results, we have found that progesterone-induced TTC9A expression was associated with increased cell motility and cell spreading. We speculate that TTC9A acts as a chaperone protein to facilitate the function of tropomyosins in stabilizing microfilament and it may play a role in cancer cell invasion and metastasis

  14. PRGPred: A platform for prediction of domains of resistance gene analogue (RGA in Arecaceae developed using machine learning algorithms

    Directory of Open Access Journals (Sweden)

    MATHODIYIL S. MANJULA

    2015-12-01

    Full Text Available Plant disease resistance genes (R-genes are responsible for initiation of defense mechanism against various phytopathogens. The majority of plant R-genes are members of very large multi-gene families, which encode structurally related proteins containing nucleotide binding site domains (NBS and C-terminal leucine rich repeats (LRR. Other classes possess' an extracellular LRR domain, a transmembrane domain and sometimes, an intracellular serine/threonine kinase domain. R-proteins work in pathogen perception and/or the activation of conserved defense signaling networks. In the present study, sequences representing resistance gene analogues (RGAs of coconut, arecanut, oil palm and date palm were collected from NCBI, sorted based on domains and assembled into a database. The sequences were analyzed in PRINTS database to find out the conserved domains and their motifs present in the RGAs. Based on these domains, we have also developed a tool to predict the domains of palm R-genes using various machine learning algorithms. The model files were selected based on the performance of the best classifier in training and testing. All these information is stored and made available in the online ‘PRGpred' database and prediction tool.

  15. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein.

    Science.gov (United States)

    Hellberg, M E; Moy, G W; Vacquier, V D

    2000-03-01

    Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.

  16. Map-based Cloning and Characterization of a Brown Planthopper Resistance Gene BPH26 from Oryza sativa L. ssp. indica Cultivar ADR52

    OpenAIRE

    Tamura, Yasumori; Hattori, Makoto; Yoshioka, Hirofumi; Yoshioka, Miki; Takahashi, Akira; Wu, Jianzhong; Sentoku, Naoki; Yasui, Hideshi

    2014-01-01

    The brown planthopper (BPH) is the most serious insect pest of rice in Asia. The indica rice cultivar ADR52 carries two BPH resistance genes, BPH26 (BROWN PLANTHOPPER RESISTANCE 26) and BPH25. Map-based cloning of BPH26 revealed that BPH26 encodes a coiled-coil-nucleotide-binding-site?leucine-rich repeat (CC?NBS?LRR) protein. BPH26 mediated sucking inhibition in the phloem sieve element. BPH26 was identical to BPH2 on the basis of DNA sequence analysis and feeding ability of the BPH2-virulent...

  17. Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis

    Science.gov (United States)

    2014-01-01

    Background Arsenic (As) is a toxic metalloid found ubiquitously in the environment and widely considered an acute poison and carcinogen. However, the molecular mechanisms of the plant response to As and ensuing tolerance have not been extensively characterized. Here, we report on transcriptional changes with As treatment in two Arabidopsis accessions, Col-0 and Ws-2. Results The root elongation rate was greater for Col-0 than Ws-2 with As exposure. Accumulation of As was lower in the more tolerant accession Col-0 than in Ws-2. We compared the effect of As exposure on genome-wide gene expression in the two accessions by comparative microarray assay. The genes related to heat response and oxidative stresses were common to both accessions, which indicates conserved As stress-associated responses for the two accessions. Most of the specific response genes encoded heat shock proteins, heat shock factors, ubiquitin and aquaporin transporters. Genes coding for ethylene-signalling components were enriched in As-tolerant Col-0 with As exposure. A tolerance-associated gene candidate encoding Leucine-Rich Repeat receptor-like kinase VIII (LRR-RLK VIII) was selected for functional characterization. Genetic loss-of-function analysis of the LRR-RLK VIII gene revealed altered As sensitivity and the metal accumulation in roots. Conclusions Thus, ethylene-related pathways, maintenance of protein structure and LRR-RLK VIII-mediated signalling may be important mechanisms for toxicity and tolerance to As in the species. Here, we provide a comprehensive survey of global transcriptional regulation for As and identify stress- and tolerance-associated genes responding to As. PMID:24734953

  18. The 1.7 Å resolution structure of At2g44920, a pentapeptide-repeat protein in the thylakoid lumen of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Ni, Shuisong; McGookey, Michael E.; Tinch, Stuart L.; Jones, Alisha N.; Jayaraman, Seetharaman; Tong, Liang; Kennedy, Michael A.

    2011-01-01

    The crystal structure of At2g44920, a pentapeptide repeat protein (PRP) from Arabidopsis thaliana, has been determined at 1.7 Å resolution. The structure represents the first PRP protein whose subcellular localization has been experimentally confirmed to be the thylakoid lumen of a plant species. At2g44920 belongs to a diverse family (Pfam PF00805) of pentapeptide-repeat proteins (PRPs) that are present in all known organisms except yeast. PRPs contain at least eight tandem-repeating sequences of five amino acids with an approximate consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Recent crystal structures show that PRPs adopt a highly regular four-sided right-handed β-helical structure consisting mainly of type II and type IV β-turns, sometimes referred to as a repeated five-residue (or Rfr) fold. Among sequenced genomes, PRP genes are most abundant in cyanobacteria, leading to speculation that PRPs play an important role in the unique lifestyle of photosynthetic cyanobacteria. Despite the recent structural characterization of several cyanobacterial PRPs, most of their functions remain unknown. Plants, whose chloroplasts are of cyanobacterial origin, have only four PRP genes in their genomes. At2g44920 is one of three PRPs located in the thylakoid lumen. Here, the crystal structure of a double methionine mutant of residues 81–224 of At2g44920, the naturally processed fragment of one of its full-length isoforms, is reported at 1.7 Å resolution. The structure of At2g44920 consists of the characteristic Rfr fold with five uninterrupted coils made up of 25 pentapeptide repeats and α-helical elements capping both termini. A disulfide bridge links the two α-helices with a conserved loop between the helical elements at its C-terminus. This structure represents the first structure of a PRP protein whose subcellular location has been experimentally confirmed to be the thylakoid lumen in a plant species

  19. Highly sensitive detection of individual HEAT and ARM repeats with HHpred and COACH.

    Science.gov (United States)

    Kippert, Fred; Gerloff, Dietlind L

    2009-09-24

    HEAT and ARM repeats occur in a large number of eukaryotic proteins. As these repeats are often highly diverged, the prediction of HEAT or ARM domains can be challenging. Except for the most clear-cut cases, identification at the individual repeat level is indispensable, in particular for determining domain boundaries. However, methods using single sequence queries do not have the sensitivity required to deal with more divergent repeats and, when applied to proteins with known structures, in some cases failed to detect a single repeat. Testing algorithms which use multiple sequence alignments as queries, we found two of them, HHpred and COACH, to detect HEAT and ARM repeats with greatly enhanced sensitivity. Calibration against experimentally determined structures suggests the use of three score classes with increasing confidence in the prediction, and prediction thresholds for each method. When we applied a new protocol using both HHpred and COACH to these structures, it detected 82% of HEAT repeats and 90% of ARM repeats, with the minimum for a given protein of 57% for HEAT repeats and 60% for ARM repeats. Application to bona fide HEAT and ARM proteins or domains indicated that similar numbers can be expected for the full complement of HEAT/ARM proteins. A systematic screen of the Protein Data Bank for false positive hits revealed their number to be low, in particular for ARM repeats. Double false positive hits for a given protein were rare for HEAT and not at all observed for ARM repeats. In combination with fold prediction and consistency checking (multiple sequence alignments, secondary structure prediction, and position analysis), repeat prediction with the new HHpred/COACH protocol dramatically improves prediction in the twilight zone of fold prediction methods, as well as the delineation of HEAT/ARM domain boundaries. A protocol is presented for the identification of individual HEAT or ARM repeats which is straightforward to implement. It provides high

  20. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    Science.gov (United States)

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. WD40-repeat proteins in plant cell wall formation: current evidence and research prospects

    Directory of Open Access Journals (Sweden)

    Gea eGuerriero

    2015-12-01

    Full Text Available The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR proteins often function as molecular hubs mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico aproaches, such as analyses of co-expression, interactome and conserved gene neighbourhood. Notably, some WDR genes are frequently genomic neighbours of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CESAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed.

  2. Armadillo Repeat Containing 8α Binds to HRS and Promotes HRS Interaction with Ubiquitinated Proteins

    Science.gov (United States)

    Tomaru, Koji; Ueda, Atsuhisa; Suzuki, Takeyuki; Kobayashi, Nobuaki; Yang, Jun; Yamamoto, Masaki; Takeno, Mitsuhiro; Kaneko, Takeshi; Ishigatsubo, Yoshiaki

    2010-01-01

    Recently, we reported that a complex with an essential role in the degradation of Fructose-1,6-bisphosphatase in yeast is well conserved in mammalian cells; we named this mammalian complex C-terminal to the Lissencephaly type-1-like homology (CTLH) complex. Although the function of the CTLH complex remains unclear, here we used yeast two-hybrid screening to isolate Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) as a protein binding to a key component of CTLH complex, Armadillo repeat containing 8 (ARMc8) α. The association was confirmed by a yeast two-hybrid assay and a co-immunoprecipitation assay. The proline-rich domain of HRS was essential for the association. As demonstrated through immunofluorescence microscopy, ARMc8α co-localized with HRS. ARMc8α promoted the interaction of HRS with various ubiquitinated proteins through the ubiquitin-interacting motif. These findings suggest that HRS mediates protein endosomal trafficking partly through its interaction with ARMc8α. PMID:20224683

  3. Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia

    Science.gov (United States)

    Michael, Dan; Martin, Kelsey C.; Seger, Rony; Ning, Ming-Ming; Baston, Rene; Kandel, Eric R.

    1998-01-01

    Long-term facilitation of the connections between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia requires five repeated pulses of serotonin (5-HT). The repeated pulses of 5-HT initiate a cascade of gene activation that leads ultimately to the growth of new synaptic connections. Several genes in this process have been identified, including the transcriptional regulators apCREB-1, apCREB-2, apC/EBP, and the cell adhesion molecule apCAM, which is thought to be involved in the formation of new synaptic connections. Here we report that the transcriptional regulators apCREB-2 and apC/EBP, as well as a peptide derived from the cytoplasmic domain of apCAM, are phosphorylated in vitro by Aplysia mitogen-activated protein kinase (apMAPK). We have cloned the cDNA encoding apMAPK and show that apMAPK activity is increased in sensory neurons treated with repeated pulses of 5-HT and by the cAMP pathway. These results suggest that apMAPK may participate with cAMP-dependent protein kinase during long-term facilitation in sensory cells by modifying some of the key elements involved in the consolidation of short- to long-lasting changes in synaptic strength. PMID:9465108

  4. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling

    KAUST Repository

    Turek, Ilona

    2016-03-05

    The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3′,5′-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities. © 2016 Springer Science+Business Media Dordrecht

  5. Generating markers based on biotic stress of protein system in and tandem repeats sequence for Aquilaria sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hanif Azhari N; Siti Norhayati Ismail

    2014-01-01

    Aquilaria sp. belongs to the Thymelaeaceae family and is well distributed in Asia region. The species has multipurpose use from root to shoot and is an economically important crop, which generates wide interest in understanding genetic diversity of the species. Knowledge on DNA-based markers has become a prerequisite for more effective application of molecular marker techniques in breeding and mapping programs. In this work, both targeted genes and tandem repeat sequences were used for DNA fingerprinting in Aquilaria sp. A total of 100 ISSR (inter simple sequence repeat) primers and 50 combination pairs of specific primers derived from conserved region of a specific protein known as system in were optimized. 38 ISSR primers were found affirmative for polymorphism evaluation study and were generated from both specific and degenerate ISSR primers. And one utmost combination of system in primers showed significant results in distinguishing the Aquilaria sp. In conclusion, polymorphism derived from ISSR profiling and targeted stress genes of protein system in proved as a powerful approach for identification and molecular classification of Aquilaria sp. which will be useful for diversification in identifying any mutant lines derived from nature. (author)

  6. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    Science.gov (United States)

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  7. Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography—Tandem Mass Spectrometry

    Science.gov (United States)

    Tabb, David L.; Vega-Montoto, Lorenzo; Rudnick, Paul A.; Variyath, Asokan Mulayath; Ham, Amy-Joan L.; Bunk, David M.; Kilpatrick, Lisa E.; Billheimer, Dean D.; Blackman, Ronald K.; Cardasis, Helene L.; Carr, Steven A.; Clauser, Karl R.; Jaffe, Jacob D.; Kowalski, Kevin A.; Neubert, Thomas A.; Regnier, Fred E.; Schilling, Birgit; Tegeler, Tony J.; Wang, Mu; Wang, Pei; Whiteaker, Jeffrey R.; Zimmerman, Lisa J.; Fisher, Susan J.; Gibson, Bradford W.; Kinsinger, Christopher R.; Mesri, Mehdi; Rodriguez, Henry; Stein, Steven E.; Tempst, Paul; Paulovich, Amanda G.; Liebler, Daniel C.; Spiegelman, Cliff

    2009-01-01

    The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35–60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind

  8. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Detection, characterization and evolution of internal repeats in Chitinases of known 3-D structure.

    Directory of Open Access Journals (Sweden)

    Manigandan Sivaji

    Full Text Available Chitinase proteins have evolved and diversified almost in all organisms ranging from prokaryotes to eukaryotes. During evolution, internal repeats may appear in amino acid sequences of proteins which alter the structural and functional features. Here we deciphered the internal repeats from Chitinase and characterized the structural similarities between them. Out of 24 diverse Chitinase sequences selected, six sequences (2CJL, 2DSK, 2XVP, 2Z37, 3EBV and 3HBE did not contain any internal repeats of amino acid sequences. Ten sequences contained repeats of length <50, and the remaining 8 sequences contained repeat length between 50 and 100 residues. Two Chitinase sequences, 1ITX and 3SIM, were found to be structurally similar when analyzed using secondary structure of Chitinase from secondary and 3-Dimensional structure database of Protein Data Bank. Internal repeats of 3N17 and 1O6I were also involved in the ligand-binding site of those Chitinase proteins, respectively. Our analyses enhance our understanding towards the identification of structural characteristics of internal repeats in Chitinase proteins.

  10. Overexpression of rice LRK1 restricts internode elongation by down-regulating OsKO2.

    Science.gov (United States)

    Yang, Mengfei; Qi, Weiwei; Sun, Fan; Zha, Xiaojun; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Yang, Jinshui; Luo, Xiaojin

    2013-01-01

    Rice (Oryza sativa) has the potential to undergo rapid internodal elongation which determines plant height. Gibberellin is involved in internode elongation. Leucine-rich repeat receptor-like kinases (LRR-RLKs) are the largest subfamily of transmembrane receptor-like kinases in plants. LRR-RLKs play important functions in mediating a variety of cellular processes and regulating responses to environmental signals. LRK1, a PSK receptor homolog, is a member of the LRR-RLK family. In the present study, differences in ectopic expression of LRK1 were consistent with extent of rice internode elongation. Analyses of gene expression demonstrated that LRK1 restricts gibberellin biosynthesis during the internode elongation process by down-regulation of the gibberellin biosynthetic gene coding for ent-kaurene oxidase.

  11. Identification and function of leucine-rich repeat flightless-I-interacting protein 2 (LRRFIP2 in Litopenaeus vannamei.

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Leucine-rich repeat flightless-I-interacting protein 2 (LRRFIP2 is a myeloid differentiation factor 88-interacting protein with a positive regulatory function in toll-like receptor signaling. In this study, seven LRRFIP2 protein variants (LvLRRFIP2A-G were identified in Litopenaeus vannamei. All the seven LvLRRFIP2 protein variants encode proteins with a DUF2051 domain. LvLRRFIP2s were upregulated in hemocytes after challenged with lipopolysaccharide, poly I:C, CpG-ODN2006, Vibrio parahaemolyticus, Staphylococcus aureus, and white spot syndrome virus (WSSV. Dual-luciferase reporter assays in Drosophila Schneider 2 cells revealed that LvLRRFIP2 activates the promoters of Drosophila and shrimp AMP genes. The knockdown of LvLRRFIP2 by RNA interference resulted in higher cumulative mortality of L. vannamei upon V. parahaemolyticus but not S. aureus and WSSV infections. The expression of L. vannamei AMP genes were reduced by dsLvLRRFIP2 interference. These results indicate that LvLRRFIP2 has an important function in antibacterials via the regulation of AMP gene expression.

  12. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution.

    Directory of Open Access Journals (Sweden)

    Ajeet Mandal

    Full Text Available The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro and/or PPG (Pro-Pro-Gly-encoding genes whose expression is expected to depend on eIF5A. We have made detailed analyses of proteome data of 5 selected species, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus and Homo sapiens. The PPP and PPG motifs are low in the prokaryotic proteomes. However, their frequencies markedly increase with the biological complexity of eukaryotic organisms, and are higher in newly derived proteins than in those orthologous proteins commonly shared in all species. Ontology classifications of S. cerevisiae and human genes encoding the highest level of polyprolines reveal their strong association with several specific biological processes, including actin/cytoskeletal associated functions, RNA splicing/turnover, DNA binding/transcription and cell signaling. Previously reported phenotypic defects in actin polarity and mRNA decay of eIF5A mutant strains are consistent with the proposed role for eIF5A in the translation of the polyproline-containing proteins. Of all the amino acid tandem repeats (≥3 amino acids, only the proline repeat frequency correlates with functional complexity of the five organisms examined. Taken together, these findings suggest the importance of proline repeat-rich proteins and a potential role for eIF5A and its hypusine modification pathway in the course of eukaryotic evolution.

  13. m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Pesarico, Ana Paula; Martini, Franciele; Nogueira, Cristina Wayne

    2018-04-05

    The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF 3 -PhSe) 2 ] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF 3 -PhSe) 2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF 3 -PhSe) 2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF 3 -PhSe) 2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF 3 -PhSe) 2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.

  14. A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Neubauer, Emilie-Fleur; Poole, Angela Z; Neubauer, Philipp; Detournay, Olivier; Tan, Kenneth; Davy, Simon K; Weis, Virginia M

    2017-05-08

    The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum . Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a 'super colonization'. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis.

  15. Positive selection in the leucine-rich repeat domain of Gro1 genes in ...

    Indian Academy of Sciences (India)

    history during which the main structure of the domain has been conserved such that ... from the column using 100 μL of distilled water. The LRR fragments from the ... ture of the domain and to obtain the best PDB template for mapping positive ...

  16. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins.

    Science.gov (United States)

    Zamiri, Bita; Reddy, Kaalak; Macgregor, Robert B; Pearson, Christopher E

    2014-02-21

    Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.

  17. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice

    Directory of Open Access Journals (Sweden)

    Shanshan Huang

    2015-10-01

    Full Text Available In polyglutamine (polyQ diseases, large polyQ repeats cause juvenile cases with different symptoms than those of adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knockin mouse models of spinal cerebellar ataxia-17 (SCA17, we found that a large polyQ (105 glutamines in the TATA-box-binding protein (TBP preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases.

  18. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice

    Science.gov (United States)

    Huang, Shanshan; Yang, Su; Guo, Jifeng; Yan, Sen; Gaertig, Marta A.; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    SUMMARY In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knock-in mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP’s interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases. PMID:26387956

  19. Poxviral Ankyrin Proteins

    Directory of Open Access Journals (Sweden)

    Michael H. Herbert

    2015-02-01

    Full Text Available Multiple repeats of the ankyrin motif (ANK are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range.

  20. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    Science.gov (United States)

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  1. The diversity and evolution of Wolbachia ankyrin repeat domain genes.

    Directory of Open Access Journals (Sweden)

    Stefanos Siozios

    Full Text Available Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.

  2. Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity

    Directory of Open Access Journals (Sweden)

    Jimi C. Miller

    2016-01-01

    Full Text Available Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialogue by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect non-self, damaged-self and altered-self-associated molecular patterns and translate these danger signals into largely inducible chemical defenses. The WD40 repeat (WDR-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. Gβ and TTG1 are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

  3. Identification of Tobacco Topping Responsive Proteins in Roots

    Directory of Open Access Journals (Sweden)

    Hongxiang eGuo

    2016-04-01

    Full Text Available Tobacco plant has many responses to topping, such as the increase in ability of nicotine synthesis and secondary growth of roots. Some topping responsive miRNAs and genes had been identified in our previous work, but it is not enough to elaborate mechanism of tobacco response to topping. Here, topping responsive proteins were screened from tobacco roots with two-dimensional electrophoresis. Of these proteins, calretulin (CRT and Auxin-responsive protein IAA9 were related to the secondary growth of roots, LRR disease resistance, heat shock protein 70 and farnesyl pyrophosphate synthase 1(FPPS)were involved in wounding stress response, and F-box protein played an important role in promoting the ability of nicotine synthesis after topping. In addition, there were five tobacco bHLH proteins (NtbHLH, NtMYC1a, NtMYC1b, NtMYC2a and NtMYC2b related to nicotine synthesis. It was suggested that NtMYC2 might be the main positive transcription factor and NtbHLH protein is a negative regulator in the JA-mediating activation of nicotine synthesis after topping. Tobacco topping activates some comprehensive biology processes involving IAA and JA signaling pathway, and the identification of these proteins will be helpful to understand the process of topping response.

  4. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-05-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.

  5. Expression, purification, crystallization and preliminary X-ray diffraction studies of the human keratin 4-binding domain of serine-rich repeat protein 1 from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Sundaresan, Ramya; Samen, Ulrike; Ponnuraj, Karthe

    2011-01-01

    Expression, purification and crystallization of Srr-1-K4BD, a human keratin 4-binding domain of serine-rich repeat protein 1 from S. agalactiae, was carried out. Native crystals of Srr-1-K4BD diffracted to 3.8 Å resolution using synchrotron radiation. Serine-rich repeat protein 1 (Srr-1) is a surface protein from Streptococcus agalactiae. A 17 kDa region of this protein has been identified to bind to human keratin 4 (K4) and is termed the Srr-1 K4-binding domain (Srr-1-K4BD). Recombinant Srr-1-K4BD was overexpressed in Escherichia coli BL21 (DE3) cells. Native and selenomethionine-substituted proteins were prepared using Luria–Bertani (LB) and M9 minimal media, respectively. A two-step purification protocol was carried out to obtain a final homogenous sample of Srr-1-K4BD. Crystals of native Srr-1-K4BD were obtained using PEG 3350 as a precipitant. The crystals diffracted to 3.8 Å resolution using synchrotron radiation and belonged to space group P2 1 , with unit-cell parameters a = 47.56, b = 59.48, c = 94.71 Å, β = 93.95°

  6. Ten tandem repeats of β-hCG 109-118 enhance immunogenicity and anti-tumor effects of β-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65

    International Nuclear Information System (INIS)

    Zhang Yankai; Yan Rong; He Yi; Liu Wentao; Cao Rongyue; Yan Ming; Li Taiming; Liu Jingjing; Wu Jie

    2006-01-01

    The β-subunit of human chorionic gonadotropin (β-hCG) is secreted by many kinds of tumors and it has been used as an ideal target antigen to develop vaccines against tumors. In view of the low immunogenicity of this self-peptide,we designed a method based on isocaudamer technique to repeat tandemly the 10-residue sequence X of β-hCG (109-118), then 10 tandemly repeated copies of the 10-residue sequence combined with β-hCG C-terminal 37 peptides were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-X10-βhCGCTP37 as an immunogen. In this study, we examined the effect of the tandem repeats of this 10-residue sequence in eliciting an immune by comparing the immunogenicity and anti-tumor effects of the two immunogens, HSP65-X10-βhCGCTP37 and HSP65-βhCGCTP37 (without the 10 tandem repeats). Immunization of mice with the fusion protein HSP65-X10-βhCGCTP37 elicited much higher levels of specific anti-β-hCG antibodies and more effectively inhibited the growth of Lewis lung carcinoma (LLC) in vivo than with HSP65-βhCGCTP37, which should suggest that HSP65-X10-βhCGCTP37 may be an effective protein vaccine for the treatment of β-hCG-dependent tumors and multiple tandem repeats of a certain epitope are an efficient method to overcome the low immunogenicity of self-peptide antigens

  7. Wheat Brassinosteroid-Insensitive1 (TaBRI1 Interacts with Members of TaSERK Gene Family and Cause Early Flowering and Seed Yield Enhancement in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Akanksha Singh

    Full Text Available Brassinosteroids (BRs hormones are important for plant growth, development and immune responses. They are sensed by the transmembrane receptor kinase Brassinosteroid-Insensitive 1 (BRI1 when they bind to its extracellular Leu-rich repeat (LRR domain. We cloned and characterized the TaBRI1 from T. aestivum and raised overexpression transgenics in Arabidopsis to decipher its functional role. TaBRI1 protein consists of a putative signal peptide followed by 25 leucine rich repeats (LRR, a transmembrane domain and a C-terminal kinase domain. The analysis determined the interaction of TaBRI1 with five members of the wheat Somatic Embryogenesis Receptor Kinase (TaSERKs gene family (TaSERK1, TaSERK2, TaSERK3, TaSERK4 and TaSERK5, at the plasma membrane. Furthermore, overexpression of TaBRI1 in Arabidopsis leads to the early flowering, increased silique size and seed yield. Root growth analysis of TaBRI1 overexpressing transgenic plants showed hypersensitivity to epi-brassinolide (epi-BL hormone in a dose-dependent manner. Interestingly, transgenic Arabidopsis plants show thermotolerance phenotype at the seedling stages as revealed by chlorophyll content, photosystem II activity and membrane stability. The transcriptome profiling on the basis of microarray analysis indicates up-regulation of several genes related to brassinosteroid signaling pathway, abiotic stress response, defense response and transcription factors. These studies predict the possible role of TaBRI1 gene in plant growth and development imparting tolerance to thermal stress.

  8. Protection against Syphilis Correlates with Specificity of Antibodies to the Variable Regions of Treponema pallidum Repeat Protein K

    OpenAIRE

    Morgan, Cecilia A.; Lukehart, Sheila A.; Van Voorhis, Wesley C.

    2003-01-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V ...

  9. Isolation and characterization of a candidate gene for resistance to ...

    African Journals Online (AJOL)

    ARC) domain, and a leucine-rich repeat (LRR) domain, all of which are typical characteristics of resistance genes. We proposed the resistance mechanism of CreV8 based on functional analysis and predictions from its conserved domains and ...

  10. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy

    Directory of Open Access Journals (Sweden)

    Zhang Hui

    2007-02-01

    Full Text Available Abstract Recent investigation of Cullin 4 (CUL4 has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1 to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN that removes this important modification. Recently, multiple WD40-repeat proteins (WDR were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF. Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.

  11. Low-Normal FMR1 CGG Repeat Length: Phenotypic Associations

    Directory of Open Access Journals (Sweden)

    Marsha eMailick

    2014-09-01

    Full Text Available This population-based study investigates genotype-phenotype correlations of low-normal CGG repeats in the fragile X mental retardation 1 (FMR1 gene. FMR1 plays an important role in brain development and function, and encodes FMRP (fragile X mental retardation protein, an RNA-binding protein that regulates protein synthesis impacting activity-dependent synaptic development and plasticity. Most past research has focused on CGG premutation expansions (41 to 200 CGG repeats and on fragile X syndrome (200+ CGG repeats, with considerably less attention on the other end of the spectrum of CGG repeats. Using existing data, older adults with 23 or fewer CGG repeats (2 SDs below the mean were compared with age-peers who have normal numbers of CGGs (24-40 with respect to cognition, mental health, cancer, and having children with disabilities. Men (n = 341 with an allele in the low-normal range and women (n = 46 with two low-normal alleles had significantly more difficulty with their memory and ability to solve day to day problems. Women with both FMR1 alleles in the low-normal category had significantly elevated odds of feeling that they need to drink more to get the same effect as in the past. These women also had two and one-half times the odds of having had breast cancer and four times the odds of uterine cancer. Men and women with low-normal CGGs had higher odds of having a child with a disability, either a developmental disability or a mental health condition. These findings are in line with the hypothesis that there is a need for tight neuronal homeostatic control mechanisms for optimal cognitive and behavioral functioning, and more generally that low numbers as well as high numbers of CGG repeats may be problematic for health.

  12. In Vivo-Expressed Proteins of Virulent Leptospira interrogans Serovar Autumnalis N2 Elicit Strong IgM Responses of Value in Conclusive Diagnosis.

    Science.gov (United States)

    Raja, Veerapandian; Shanmughapriya, Santhanam; Kanagavel, Murugesan; Artiushin, Sergey C; Velineni, Sridhar; Timoney, John F; Natarajaseenivasan, Kalimuthusamy

    2016-01-01

    Leptospirosis is a serious zoonosis that is underdiagnosed because of limited access to laboratory facilities in Southeast Asia, Central and South America, and Oceania. Timely diagnosis of locally distributed serovars of high virulence is crucial for successful care and outbreak management. Using pooled patient sera, an expression gene library of a virulent Leptospira interrogans serovar Autumnalis strain N2 isolated in South India was screened. The identified genes were characterized, and the purified recombinant proteins were used as antigens in IgM enzyme-linked immunosorbent assay (ELISA) either singly or in combination. Sera (n = 118) from cases of acute leptospirosis along with sera (n = 58) from healthy subjects were tested for reactivity with the identified proteins in an ELISA designed to detect specific IgM responses. We have identified nine immunoreactive proteins, ArgC, RecA, GlpF, FliD, TrmD, RplS, RnhB, Lp28.6, and Lrr44.9, which were found to be highly conserved among pathogenic leptospires. Apparently, the proteins ArgC, RecA, GlpF, FliD, TrmD, and Lrr44.9 are expressed during natural infection of the host and undetectable in in vitro cultures. Among all the recombinant proteins used as antigens in IgM ELISA, ArgC had the highest sensitivity and specificity, 89.8% and 95.5%, respectively, for the conclusive diagnosis of leptospirosis. The use of ArgC and RecA in combination for IgM ELISA increased the sensitivity and specificity to 95.7% and 94.9%, respectively. ArgC and RecA thus elicited specific IgM responses and were therefore effective in laboratory confirmation of Leptospira infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics.

    Directory of Open Access Journals (Sweden)

    Andreas Schweizer

    2008-07-01

    Full Text Available Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.

  14. Immediate-early gene response to repeated immobilization: Fos protein and arc mRNA levels appear to be less sensitive than c-fos mRNA to adaptation.

    Science.gov (United States)

    Ons, Sheila; Rotllant, David; Marín-Blasco, Ignacio J; Armario, Antonio

    2010-06-01

    Stress exposure resulted in brain induction of immediate-early genes (IEGs), considered as markers of neuronal activation. Upon repeated exposure to the same stressor, reduction of IEG response (adaptation) has been often observed, but there are important discrepancies in literature that may be in part related to the particular IEG and methodology used. We studied the differential pattern of adaptation of the IEGs c-fos and arc (activity-regulated cytoskeleton-associated protein) after repeated exposure to a severe stressor: immobilization on wooden boards (IMO). Rats repeatedly exposed to IMO showed reduced c-fos mRNA levels in response to acute IMO in most brain areas studied: the medial prefrontal cortex (mPFC), lateral septum (LS), medial amygdala (MeA), paraventricular nucleus of the hypothalamus (PVN) and locus coeruleus. In contrast, the number of neurons showing Fos-like immunoreactivity was only reduced in the MeA and the various subregions of the PVN. IMO-induced increases in arc gene expression were restricted to telencephalic regions and reduced by repeated IMO only in the mPFC. Double-labelling in the LS of IMO-exposed rats revealed that arc was expressed in only one-third of Fos+ neurons, suggesting two populations of Fos+ neurons. These data suggest that c-fos mRNA levels are more affected by repeated IMO than corresponding protein, and that arc gene expression does not reflect adaptation in most brain regions, which may be related to its constitutive expression. Therefore, the choice of a particular IEG and the method of measurement are important for proper interpretation of the impact of chronic repeated stress on brain activation.

  15. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract.

    Science.gov (United States)

    Sheen, Tamsin R; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M; Doran, Kelly S

    2011-12-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment.

  16. Functional analysis of tomato immune receptor Ve1 and recognition of Verticillium effector Ave1

    NARCIS (Netherlands)

    Zhang, Z.

    2013-01-01

    Similar to the animal innate immune system, plants employ extracellular leucine rich repeat (eLRR)-containing cell surface receptors to recognize conserved molecular structures that are derived from microbial pathogens. A number of these immune receptors, as well as the corresponding pathogen

  17. Organization of a resistance gene cluster linked to rhizomania resistance in sugar beet

    Science.gov (United States)

    Genetic resistance to rhizomania has been in use for over 40 years. Characterization of the molecular basis for susceptibility and resistance has proved challenging. Nucleotide-binding leucine-rich-repeat-containing (NB-LRR) genes have been implicated in numerous gene-for-gene resistance interaction...

  18. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region.

    Science.gov (United States)

    Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti

    2017-02-10

    The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSP rep ), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSP ΔHP ). Our results show that the CSP rep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSP ΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David; Michoud, Gregoire; Mosbach, Valentine; Dujon, Bernard; Richard, Guy-Franck

    2016-01-01

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  20. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David

    2016-03-16

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  1. Surface antigens and potential virulence factors from parasites detected by comparative genomics of perfect amino acid repeats

    Directory of Open Access Journals (Sweden)

    Adler Joël

    2007-12-01

    Full Text Available Abstract Background Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms. Results We have developed Reptile http://reptile.unibe.ch, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites. Conclusion Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at http://genomics.unibe.ch/dora.

  2. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein*

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D.; Dixon, Christopher H.; Spies, Gerhard B.; de San Eustaquio Campillo, Alba; Slootweg, Erik J.; Westerhof, Lotte B.; Gawehns, Fleur K. K.; Knight, Marc R.; Sharples, Gary J.; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2015-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. PMID:26306038

  3. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-01-24

    Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins.

  4. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana[C][W

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-01-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation. PMID:21551388

  5. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Science.gov (United States)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers

    NARCIS (Netherlands)

    Syed, H.; Sorensen, A.P.; Antonise, R.; van de Wiel, C.; van der Linden, C.G.; van 't Westende, W.; Hooftman, D.A.P.; den Nijs, J.C.M.; Flavell, A.J.

    2006-01-01

    Abstract Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187

  7. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation.

    Science.gov (United States)

    Faustin, Benjamin; Lartigue, Lydia; Bruey, Jean-Marie; Luciano, Frederic; Sergienko, Eduard; Bailly-Maitre, Beatrice; Volkmann, Niels; Hanein, Dorit; Rouiller, Isabelle; Reed, John C

    2007-03-09

    Interleukin (IL)-1beta maturation is accomplished by caspase-1-mediated proteolysis, an essential element of innate immunity. NLRs constitute a recently recognized family of caspase-1-activating proteins, which contain a nucleotide-binding oligomerization domain and leucine-rich repeat (LRR) domains and which assemble into multiprotein complexes to create caspase-1-activating platforms called "inflammasomes." Using purified recombinant proteins, we have reconstituted the NALP1 inflammasome and have characterized the requirements for inflammasome assembly and caspase-1 activation. Oligomerization of NALP1 and activation of caspase-1 occur via a two-step mechanism, requiring microbial product, muramyl-dipeptide, a component of peptidoglycan, followed by ribonucleoside triphosphates. Caspase-1 activation by NALP1 does not require but is enhanced by adaptor protein ASC. The findings provide the biochemical basis for understanding how inflammasome assembly and function are regulated, and shed light on NALP1 as a direct sensor of bacterial components in host defense against pathogens.

  8. Serine-Rich Repeat Proteins and Pili Promote Streptococcus agalactiae Colonization of the Vaginal Tract ▿

    Science.gov (United States)

    Sheen, Tamsin R.; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M.; Doran, Kelly S.

    2011-01-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment. PMID:21984789

  9. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein.

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D; Dixon, Christopher H; Spies, Gerhard B; de San Eustaquio Campillo, Alba; Slootweg, Erik J; Westerhof, Lotte B; Gawehns, Fleur K K; Knight, Marc R; Sharples, Gary J; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2015-10-09

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    Directory of Open Access Journals (Sweden)

    V Chandana Epa

    Full Text Available Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2. HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  11. Telomerase Repeated Amplification Protocol (TRAP).

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  12. MNF, an ankyrin repeat protein of myxoma virus, is part of a native cellular SCF complex during viral infection

    Directory of Open Access Journals (Sweden)

    Gelfi Jacqueline

    2010-03-01

    Full Text Available Abstract Myxoma virus (MYXV, a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus. Like all poxviruses, MYXV is known for encoding multiple proteins that regulate cellular signaling pathways. Among them, four proteins share the same ANK/PRANC structure: M148R, M149R, MNF (Myxoma Nuclear factor and M-T5, all of them described as virulence factors. This family of poxvirus proteins, recently identified, has drawn considerable attention for its potential role in modulating the host ubiquitin-proteasome system during viral infection. To date, many members of this novel protein family have been shown to interact with SCF components, in vitro. Here, we focus on MNF gene, which has been shown to express a nuclear protein presenting nine ANK repeats, one of which has been identified as a nuclear localization signal. In transfection, MNF has been shown to colocalise with the transcription factor NF-κB in the nucleus of TNFα-stimulated cells. Functionally, MNF is a critical virulence factor since its deletion generates an almost apathogenic virus. In this study, to pursue the investigation of proteins interacting with MNF and of its mechanism of action, we engineered a recombinant MYXV expressing a GFP-linked MNF under the control of MNF native promoter. Infection of rabbits with MYXV-GFPMNF recombinant virus provided the evidence that the GFP fusion does not disturb the main function of MNF. Hence, cells were infected with MYXV-GFPMNF and immunoprecipitation of the GFPMNF fusion protein was performed to identify MNF's partners. For the first time, endogenous components of SCF (Cullin-1 and Skp1 were co-precipitated with an ANK myxoma virus protein, expressed in an infectious context, and without over-expression of any protein.

  13. MNF, an ankyrin repeat protein of myxoma virus, is part of a native cellular SCF complex during viral infection

    Science.gov (United States)

    2010-01-01

    Myxoma virus (MYXV), a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus). Like all poxviruses, MYXV is known for encoding multiple proteins that regulate cellular signaling pathways. Among them, four proteins share the same ANK/PRANC structure: M148R, M149R, MNF (Myxoma Nuclear factor) and M-T5, all of them described as virulence factors. This family of poxvirus proteins, recently identified, has drawn considerable attention for its potential role in modulating the host ubiquitin-proteasome system during viral infection. To date, many members of this novel protein family have been shown to interact with SCF components, in vitro. Here, we focus on MNF gene, which has been shown to express a nuclear protein presenting nine ANK repeats, one of which has been identified as a nuclear localization signal. In transfection, MNF has been shown to colocalise with the transcription factor NF-κB in the nucleus of TNFα-stimulated cells. Functionally, MNF is a critical virulence factor since its deletion generates an almost apathogenic virus. In this study, to pursue the investigation of proteins interacting with MNF and of its mechanism of action, we engineered a recombinant MYXV expressing a GFP-linked MNF under the control of MNF native promoter. Infection of rabbits with MYXV-GFPMNF recombinant virus provided the evidence that the GFP fusion does not disturb the main function of MNF. Hence, cells were infected with MYXV-GFPMNF and immunoprecipitation of the GFPMNF fusion protein was performed to identify MNF's partners. For the first time, endogenous components of SCF (Cullin-1 and Skp1) were co-precipitated with an ANK myxoma virus protein, expressed in an infectious context, and without over-expression of any protein. PMID:20211013

  14. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins.

    Science.gov (United States)

    Ramsey, Andrew J; Russell, Lance C; Chinkers, Michael

    2009-10-12

    Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.

  15. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    Directory of Open Access Journals (Sweden)

    Ana ePalomino

    2014-03-01

    Full Text Available Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression (CB1 receptors and enzymes that produce (DAGLα/β and NAPE-PLD and degrade (MAGL and FAAH eCB were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system (glutamate synthesizing enzymes LGA and KGA, mGluR3/5 metabotropic receptors, and NR1/2A/2B/2C-NMDA and GluR1/2/3/4-AMPA ionotropic receptor subunits and the gene expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-AG production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that

  16. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago

    Directory of Open Access Journals (Sweden)

    Ronfort Joëlle

    2007-11-01

    Full Text Available Abstract Background The NODULATION RECEPTOR KINASE (NORK gene encodes a Leucine-Rich Repeat (LRR-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. Results We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. Conclusion Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race must be tested to explain the adaptive evolution of NORK.

  17. Identification of histone H4-like TAF in Schizosaccharomyces pombe as a protein that interacts with WD repeat-containing TAF

    OpenAIRE

    Mitsuzawa, Hiroshi; Ishihama, Akira

    2002-01-01

    The general transcription factor TFIID consists of the TATA-binding protein (TBP) and multiple TBP-associated factors (TAFs). We previously identified two distinct WD repeat-containing TAFs, spTAF72 and spTAF73, in the fission yeast Schizosaccharomyces pombe. Here we report the identification of another S.pombe TAF, spTAF50, which is the S.pombe homolog of histone H4-like TAFs such as human TAF80, Drosophila TAF60 and Saccharomyces cerevisiae TAF60. spTAF50 was identified in a two-hybrid scre...

  18. An LRR/malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat

    Directory of Open Access Journals (Sweden)

    Jeyaraman Rajaraman

    2016-12-01

    Full Text Available Pattern recognition receptors (PRRs belonging to the multigene family of receptor-like kinases (RLKs are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for required for nonhost resistance 8 encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates nonhost resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus Blumeria graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating nonhost resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  19. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    Science.gov (United States)

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  20. PCR Cloning of Partial "nbs" Sequences from Grape ("Vitis aestivalis" Michx)

    Science.gov (United States)

    Chang, Ming-Mei; DiGennaro, Peter; Macula, Anthony

    2009-01-01

    Plants defend themselves against pathogens via the expressions of disease resistance (R) genes. Many plant R gene products contain the characteristic nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. There are highly conserved motifs within the NBS domain which could be targeted for polymerase chain reaction (PCR) cloning of R…

  1. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence.

    Science.gov (United States)

    Antolín-Llovera, Meritxell; Petutsching, Elena Kristin; Ried, Martina Katharina; Lipka, Volker; Nürnberger, Thorsten; Robatzek, Silke; Parniske, Martin

    2014-12-01

    The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Oxidative stress adaptation with acute, chronic, and repeated stress.

    Science.gov (United States)

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    Science.gov (United States)

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  4. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Baptiste Legrand

    Full Text Available Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD. It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.

  5. Crystal structure of LGR4-Rspo1 complex: insights into the divergent mechanisms of ligand recognition by leucine-rich repeat G-protein-coupled receptors (LGRs).

    Science.gov (United States)

    Xu, Jin-Gen; Huang, Chunfeng; Yang, Zhengfeng; Jin, Mengmeng; Fu, Panhan; Zhang, Ni; Luo, Jian; Li, Dali; Liu, Mingyao; Zhou, Yan; Zhu, Yongqun

    2015-01-23

    Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The proliferation marker pKi-67 becomes masked to MIB-1 staining after expression of its tandem repeats.

    Science.gov (United States)

    Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Duchrow, Michael

    2002-11-01

    The Ki-67 antigen, pKi-67, is one of the most commonly used markers of proliferating cells. The protein can only be detected in dividing cells (G(1)-, S-, G(2)-, and M-phase) but not in quiescent cells (G(0)). The standard antibody to detect pKi-67 is MIB-1, which detects the so-called 'Ki-67 motif' FKELF in 9 of the protein's 16 tandem repeats. To investigate the function of these repeats we expressed three of them in an inducible gene expression system in HeLa cells. Surprisingly, addition of a nuclear localization sequence led to a complete absence of signal in the nuclei of MIB-1-stained cells. At the same time antibodies directed against different epitopes of pKi-67 did not fail to detect the protein. We conclude that the overexpression of the 'Ki-67 motif', which is present in the repeats, can lead to inability of MIB-1 to detect its antigen as demonstrated in adenocarcinoma tissue samples. Thereafter, in order to prevent the underestimation of Ki-67 proliferation indices in MIB-1-labeled preparations, additional antibodies (for example, MIB-21) should be used. Additionally, we could show in a mammalian two-hybrid assay that recombinant pKi-67 repeats are capable of self-associating with endogenous pKi-67. Speculating that the tandem repeats are intimately involved in its protein-protein interactions, this offers new insights in how access to these repeats is regulated by pKi-67 itself.

  7. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization.

    Science.gov (United States)

    Wang, Nai-Yu; Patras, Kathryn A; Seo, Ho Seong; Cavaco, Courtney K; Rösler, Berenice; Neely, Melody N; Sullam, Paul M; Doran, Kelly S

    2014-09-15

    Group B streptococcus (GBS) can cause severe disease in susceptible hosts, including newborns, pregnant women, and the elderly. GBS serine-rich repeat (Srr) surface glycoproteins are important adhesins/invasins in multiple host tissues, including the vagina. However, exact molecular mechanisms contributing to their importance in colonization are unknown. We have recently determined that Srr proteins contain a fibrinogen-binding region (BR) and hypothesize that Srr-mediated fibrinogen binding may contribute to GBS cervicovaginal colonization. In this study, we observed that fibrinogen enhanced wild-type GBS attachment to cervical and vaginal epithelium, and that this was dependent on Srr1. Moreover, purified Srr1-BR peptide bound directly to host cells, and peptide administration in vivo reduced GBS recovery from the vaginal tract. Furthermore, a GBS mutant strain lacking only the Srr1 "latching" domain exhibited decreased adherence in vitro and decreased persistence in a mouse model of GBS vaginal colonization, suggesting the importance of Srr-fibrinogen interactions in the female reproductive tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Were protein internal repeats formed by "bricolage"?

    Science.gov (United States)

    Lavorgna, G; Patthy, L; Boncinelli, E

    2001-03-01

    Is evolution an engineer, or is it a tinkerer--a "bricoleur"--building up complex molecules in organisms by increasing and adapting the materials at hand? An analysis of completely sequenced genomes suggests the latter, showing that increasing repetition of modules within the proteins encoded by these genomes is correlated with increasing complexity of the organism.

  9. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  10. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  11. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein.

    Science.gov (United States)

    Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong

    2012-10-19

    The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.

  12. Repeated measures of body mass index and C-reactive protein in relation to all-cause mortality and cardiovascular disease

    DEFF Research Database (Denmark)

    O'Doherty, Mark G; Jørgensen, Torben; Borglykke, Anders

    2014-01-01

    Obesity has been linked with elevated levels of C-reactive protein (CRP), and both have been associated with increased risk of mortality and cardiovascular disease (CVD). Previous studies have used a single 'baseline' measurement and such analyses cannot account for possible changes in these which...... may lead to a biased estimation of risk. Using four cohorts from CHANCES which had repeated measures in participants 50 years and older, multivariate time-dependent Cox proportional hazards was used to estimate hazard ratios (HR) and 95 % confidence intervals (CI) to examine the relationship between......, they may participate in distinct/independent pathways. Accounting for independent changes in risk factors over time may be crucial for unveiling their effects on mortality and disease morbidity....

  13. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects.

    Science.gov (United States)

    Wang, Lei; Einig, Elias; Almeida-Trapp, Marilia; Albert, Markus; Fliegmann, Judith; Mithöfer, Axel; Kalbacher, Hubert; Felix, Georg

    2018-03-01

    The discovery in tomato of systemin, the first plant peptide hormone 1,2 , was a fundamental change for the concept of plant hormones. Numerous other peptides have since been shown to play regulatory roles in many aspects of the plant life, including growth, development, fertilization and interactions with symbiotic organisms 3-6 . Systemin, an 18 amino acid peptide derived from a larger precursor protein 7 , was proposed to act as the spreading signal that triggers systemic defence responses observed in plants after wounding or attack by herbivores 1,7,8 . Further work culminated in the identification of a leucine-rich repeat receptor kinase (LRR-RK) as the systemin receptor 160 (SR160) 9,10 . SR160 is a tomato homologue of Brassinosteroid Insensitive 1 (BRI1), which mediates the regulation of growth and development in response to the steroid hormone brassinolide 11-13 . However, a role of SR160/BRI1 as systemin receptor could not be corroborated by others 14-16 . Here, we demonstrate that perception of systemin depends on a pair of distinct LRR-RKs termed SYR1 and SYR2. SYR1 acts as a genuine systemin receptor that binds systemin with high affinity and specificity. Further, we show that presence of SYR1, although not decisive for local and systemic wound responses, is important for defence against insect herbivory.

  14. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    Science.gov (United States)

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed β-helices typically consisting of mixtures of type II and type IV β-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II β-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the β-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy

  15. Structure of filamin A immunoglobulin-like repeat 10 from Homo sapiens

    International Nuclear Information System (INIS)

    Page, Richard C.; Clark, Jeffrey G.; Misra, Saurav

    2011-01-01

    The structure of immunoglobulin-like repeat 10 from human filamin A solved at 2.44 Å resolution suggests the potential effects of mutations correlated with otopalatodigital syndrome spectrum disorders. Filamin A (FlnA) plays a critical role in cytoskeletal organization, cell motility and cellular signaling. FlnA utilizes different binding sites on a series of 24 immunoglobulin-like domains (Ig repeats) to interact with diverse cytosolic proteins and with cytoplasmic portions of membrane proteins. Mutations in a specific domain, Ig10 (FlnA-Ig10), are correlated with two severe forms of the otopalatodigital syndrome spectrum disorders Melnick–Needles syndrome and frontometaphyseal dysplasia. The crystal structure of FlnA-Ig10 determined at 2.44 Å resolution provides insight into the perturbations caused by these mutations

  16. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    Directory of Open Access Journals (Sweden)

    Glass John I

    2010-07-01

    Full Text Available Abstract Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT. Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the

  17. Emerging role for leucine-rich repeat-containing G-protein-coupled receptors LGR5 and LGR4 in cancer stem cells

    International Nuclear Information System (INIS)

    Nakata, Susumu; Phillips, Emma; Goidts, Violaine

    2014-01-01

    The concept of cancer stem cells has gained considerable interest in the last few decades, partly because of their potential implication in therapy resistance. However, the lack of specific cellular surface markers for these cells has impeded their isolation, making the characterization of this cellular subpopulation technically challenging. Recent studies have indicated that leucine-rich repeat-containing G-protein-coupled receptor 4 and 5 (LGR4 and LGR5) expression in multiple organs may represent a global marker of adult stem cells. This review aims to give an overview of LGR4 and LGR5 as cancer stem cell markers and their function in development

  18. Expression, crystallization and preliminary crystallographic data analysis of filamin A repeats 14–16

    International Nuclear Information System (INIS)

    Aguda, Adeleke Halilu; Sakwe, Amos Malle; Rask, Lars; Robinson, Robert Charles

    2007-01-01

    The crystallization and crystallographic data analysis of filamin repeats 14–16 are reported. Human filamin A is a 280 kDa protein involved in actin-filament cross-linking. It is structurally divided into an actin-binding headpiece (ABD) and a rod domain containing 24 immunoglobulin-like (Ig) repeats. A fragment of human filamin A (Ig repeats 14–16) was cloned and expressed in Escherichia coli and the purified protein was crystallized in 1.6 M ammonium sulfate, 2% PEG 1000 and 100 mM HEPES pH 7.5. The crystals diffracted to 1.95 Å and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 50.63, b = 52.10, c = 98.46 Å, α = β = γ = 90°

  19. Study of simple sequence repeat (SSR) polymorphism for biotic ...

    African Journals Online (AJOL)

    home

    2013-10-02

    Oct 2, 2013 ... G. Siva Kumar1, K. Aruna Kumari1*, Ch. V. Durga Rani1, R. M. Sundaram2, S. Vanisree3, Md. ..... review by Jena and Mackill (2008) provided the list of .... repeat protein and is a member of a resistance gene cluster on rice.

  20. Td4IN2: A drought-responsive durum wheat (Triticum durum Desf.) gene coding for a resistance like protein with serine/threonine protein kinase, nucleotide binding site and leucine rich domains.

    Science.gov (United States)

    Rampino, Patrizia; De Pascali, Mariarosaria; De Caroli, Monica; Luvisi, Andrea; De Bellis, Luigi; Piro, Gabriella; Perrotta, Carla

    2017-11-01

    Wheat, the main food source for a third of world population, appears strongly under threat because of predicted increasing temperatures coupled to drought. Plant complex molecular response to drought stress relies on the gene network controlling cell reactions to abiotic stress. In the natural environment, plants are subjected to the combination of abiotic and biotic stresses. Also the response of plants to biotic stress, to cope with pathogens, involves the activation of a molecular network. Investigations on combination of abiotic and biotic stresses indicate the existence of cross-talk between the two networks and a kind of overlapping can be hypothesized. In this work we describe the isolation and characterization of a drought-related durum wheat (Triticum durum Desf.) gene, identified in a previous study, coding for a protein combining features of NBS-LRR type resistance protein with a S/TPK domain, involved in drought stress response. This is one of the few examples reported where all three domains are present in a single protein and, to our knowledge, it is the first report on a gene specifically induced by drought stress and drought-related conditions, with this particular structure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae.

    Science.gov (United States)

    Zucchini, Laure; Mercy, Chryslène; Garcia, Pierre Simon; Cluzel, Caroline; Gueguen-Chaignon, Virginie; Galisson, Frédéric; Freton, Céline; Guiral, Sébastien; Brochier-Armanet, Céline; Gouet, Patrice; Grangeasse, Christophe

    2018-02-01

    Eukaryotic-like serine/threonine kinases (eSTKs) with extracellular PASTA repeats are key membrane regulators of bacterial cell division. How PASTA repeats govern eSTK activation and function remains elusive. Using evolution- and structural-guided approaches combined with cell imaging, we disentangle the role of each PASTA repeat of the eSTK StkP from Streptococcus pneumoniae. While the three membrane-proximal PASTA repeats behave as interchangeable modules required for the activation of StkP independently of cell wall binding, they also control the septal cell wall thickness. In contrast, the fourth and membrane-distal PASTA repeat directs StkP localization at the division septum and encompasses a specific motif that is critical for final cell separation through interaction with the cell wall hydrolase LytB. We propose a model in which the extracellular four-PASTA domain of StkP plays a dual function in interconnecting the phosphorylation of StkP endogenous targets along with septal cell wall remodelling to allow cell division of the pneumococcus.

  2. Mouse Models of C9orf72 Hexanucleotide Repeat Expansion in Amyotrophic Lateral Sclerosis/ Frontotemporal Dementia

    Directory of Open Access Journals (Sweden)

    Ranjan Batra

    2017-07-01

    Full Text Available The presence of hexanucleotide repeat expansion (HRE in the first intron of the human C9orf72 gene is the most common genetic cause underlying both familial amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Studies aimed at elucidating the pathogenic mechanisms associated of C9orf72 FTD and ALS (C9FTD/ALS have focused on the hypothesis of RNA and protein toxic gain-of-function models, including formation of nuclear RNA foci containing GGGGCC (G4C2 HRE, inclusions containing dipeptide repeat proteins through a non-canonical repeat associated non-ATG (RAN translation mechanism, and on loss-of-function of the C9orf72 protein. Immense effort to elucidate these mechanisms has been put forth and toxic gain-of-function models have especially gained attention. Various mouse models that recapitulate distinct disease-related pathological, functional, and behavioral phenotypes have been generated and characterized. Although these models express the C9orf72 HRE mutation, there are numerous differences among them, including the transgenesis approach to introduce G4C2-repeat DNA, genomic coverage of C9orf72 features in the transgene, G4C2-repeat length after genomic stabilization, spatiotemporal expression profiles of RNA foci and RAN protein aggregates, neuropathological features, and neurodegeneration-related clinical symptoms. This review aims to (1 provide an overview of the key characteristics; (2 provide insights into potential pathological factors contributing to neurotoxicity and clinical phenotypes through systematic comparison of these models.

  3. Repeat-associated plasticity in the Helicobacter pylori RD gene family.

    Science.gov (United States)

    Shak, Joshua R; Dick, Jonathan J; Meinersmann, Richard J; Perez-Perez, Guillermo I; Blaser, Martin J

    2009-11-01

    The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3' region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5' region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.

  4. Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein-Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis.

    Science.gov (United States)

    Barreales, Eva G; Vicente, Cláudia M; de Pedro, Antonio; Santos-Aberturas, Javier; Aparicio, Jesús F

    2018-05-15

    The biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimR SARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM The expression of this gene is

  5. Molecular Characterization of Respiratory Syncytial Virus in Children with Repeated Infections with Subgroup B in the Philippines.

    Science.gov (United States)

    Okamoto, Michiko; Dapat, Clyde P; Sandagon, Ann Marie D; Batangan-Nacion, Leilanie P; Lirio, Irene C; Tamaki, Raita; Saito, Mayuko; Saito-Obata, Mariko; Lupisan, Socorro P; Oshitani, Hitoshi

    2018-05-02

    Human respiratory syncytial virus (RSV) is the leading cause of severe acute respiratory infection in infants and young children, which is characterized by repeated infections. However, the role of amino acid substitutions in repeated infections remains unclear. Hence, this study aimed to elucidate the genetic characteristics of RSV in children with repeated infections using molecular analyses of F and G genes. We conducted a cohort study for children younger than 5 years in the Philippines. We collected nasopharyngeal swabs from children with acute respiratory symptoms and compared F and G sequences between prior and subsequent RSV infections. We examined 1,802 children from May 2014 to January 2016 and collected 3,471 samples. Repeated infections were observed in 25 children, including 4 with homologous RSV-B reinfections. Viruses from the 4 pairs of homologous reinfections had amino acid substitutions in the G protein mostly at O-glycosylation sites, whereas changes in the F protein were identified at antigenic sites V (L173S) and θ (Q209K), considered essential epitopes for the prefusion conformation of the F protein. Amino acid substitutions in G and F proteins of RSV-B might have led to antigenic changes, potentially contributing to homologous reinfections observed in this study.

  6. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses

    Science.gov (United States)

    Shukla, Avi; Chatterjee, Anirvan

    2018-01-01

    Abstract Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption. PMID:29308275

  7. Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, L.G.; Brown, P.; McCombie, W.R.; Gibbs, C.J. Jr.; Gajdusek, D.C. (National Inst. of Health, Bethesda, MD (United States)); Goldgaber, D. (State Univ. of New York, Stony Brook (United States)); Swergold, G.D. (National Inst. of Health, Bethesda, MD (United States)); Wills, P.R. (Univ. of Auckland (New Zealand)); Cervenakova, L. (Inst. of Preventive and Clinical Medicine, Bratislava (Czechoslovakia)); Baron, H. (Searle Pharmaceuticals, Paris (France))

    1991-12-01

    The PRNP gene, encoding the amyloid precursor protein that is centrally involved in Creutzfeldt-Jakob disease (CJD), has an unstable region of five variant tandem octapeptide coding repeats between codons 51 and 91. The authors screened a total of 535 individuals for the presence of extra repeats in this region, including patients with sporadic and familial forms of spongiform encephalopathy, members of their families, other neurological and non-neurological patients, and normal controls. They identified three CJD families (in each of which the proband's disease was neuropathologically confirmed and experimentally transmitted to primates) that were heterozygous for alleles with 10, 12, or 13 repeats, some of which had wobble nucleotide substitutions. They also found one individual with 9 repeats and no nucleotide substitutions who had no evidence of neurological disease. These observations, together with data on published British patients with 11 and 14 repeats, strongly suggest that the occurrence of 10 or more octapeptide repeats in the encoded amyloid precursor protein predisposes to CJD.

  8. A novel seven-octapeptide repeat insertion in the prion protein gene (PRNP) in a Dutch pedigree with Gerstmann-Sträussler-Scheinker disease phenotype: comparison with similar cases from the literature

    NARCIS (Netherlands)

    Jansen, Casper; Voet, Willem; Head, Mark W.; Parchi, Piero; Yull, Helen; Verrips, Aad; Wesseling, Pieter; Meulstee, Jan; Baas, Frank; van Gool, Willem A.; Ironside, James W.; Rozemuller, Annemieke J. M.

    2011-01-01

    Human prion diseases can be sporadic, inherited or acquired by infection and show considerable phenotypic heterogeneity. We describe the clinical, histopathological and pathological prion protein (PrP(Sc)) characteristics of a Dutch family with a novel 7-octapeptide repeat insertion (7-OPRI) in

  9. Selfish DNA in protein-coding genes of Rickettsia.

    Science.gov (United States)

    Ogata, H; Audic, S; Barbe, V; Artiguenave, F; Fournier, P E; Raoult, D; Claverie, J M

    2000-10-13

    Rickettsia conorii, the aetiological agent of Mediterranean spotted fever, is an intracellular bacterium transmitted by ticks. Preliminary analyses of the nearly complete genome sequence of R. conorii have revealed 44 occurrences of a previously undescribed palindromic repeat (150 base pairs long) throughout the genome. Unexpectedly, this repeat was found inserted in-frame within 19 different R. conorii open reading frames likely to encode functional proteins. We found the same repeat in proteins of other Rickettsia species. The finding of a mobile element inserted in many unrelated genes suggests the potential role of selfish DNA in the creation of new protein sequences.

  10. Identification of the centromeric repeat in the threespine stickleback fish (Gasterosteus aculeatus).

    Science.gov (United States)

    Cech, Jennifer N; Peichel, Catherine L

    2015-12-01

    Centromere sequences exist as gaps in many genome assemblies due to their repetitive nature. Here we take an unbiased approach utilizing centromere protein A (CENP-A) chomatin immunoprecipitation followed by high-throughput sequencing to identify the centromeric repeat sequence in the threespine stickleback fish (Gasterosteus aculeatus). A 186-bp, AT-rich repeat was validated as centromeric using both fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on interphase nuclei and metaphase spreads. This repeat hybridizes strongly to the centromere on all chromosomes, with the exception of weak hybridization to the Y chromosome. Together, our work provides the first validated sequence information for the threespine stickleback centromere.

  11. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms.

    Science.gov (United States)

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called "repeat-swap modeling" to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also

  12. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina eFenollar Ferrer

    2015-09-01

    Full Text Available Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to either the outside or inside of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (asymmetry of these systems has been successfully used as a bioinformatic tool, called repeat-swap modeling to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that

  13. Microsatellite instability at a tetranucleotide repeat in type I endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Choi Ho

    2008-12-01

    Full Text Available Abstract Background Microsatellite instability (MSI at tri- or tetranucleotide repeat markers (elevated microsatellite alterations at selected tetranucleotide repeat, EMAST has been recently described. But, the underlying genetic mechanism of EMAST is unclear. This study was to investigate the prevalence of EMAST, in type I endometrial carcinoma, and to determine the correlation between the MSI status and mismatch repair genes (MMR or p53. Methods We examined the 3 mono-, 3 di-, and 6 tetranucleotide repeat markers by PCR in 39 cases of type I endometrial carcinoma and performed the immunohistochemistry of hMSH2, hMLH1, and p53 protein. Results More than two MSI at mono- and dinucleotide repeat markers was noted in 8 cases (MSI-H, 20.5%. MSI, at a tetranucleotide repeat, was detected in 15 cases (EMAST, 38.5%. In remaining 16 cases, any MSI was not observed. (MSS, 42.1%, MSI status was not associated with FIGO stage, grade or depth of invasion. The absence of expression of either one of both hMSH2 or hMLH1 was noted in seven (87.5% of eight MSI-H tumors, one (6.3% of 16 MSS tumors, and five (33.3% of 15 EMAST tumors. (p = 0.010 The expression of p53 protein was found in one (12.5% of eight MSI-H tumors, five (31.3% of 16 MSS tumors, and seven of 15 EMAST tumors. (p = 0.247 Conclusion Our results showed that about 38.5% of type I endometrial carcinomas exhibited EMAST, and that EMAST was rarely associated with alteration of hMSH2 or hMLH1.

  14. Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2+-dependent double-stranded DNA binding activity.

    Science.gov (United States)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2011-09-02

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 Å tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is ∼26 Å wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an α/β domain and an α-helical domain; significant hinge motion was observed between these two domains. Ca(2+) was located at strategic positions in the oligomerization interface. We further showed that removal of Ca(2+) ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca(2+) ions.

  15. Unraveling the Role of RNA Mediated Toxicity of C9orf72 Repeats in C9-FTD/ALS

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2017-12-01

    Full Text Available The most frequent genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD is intronic hexanucleotide (G4C2 repeat expansions (HRE in the C9orf72 gene. The non-exclusive pathogenic mechanisms by which C9orf72 repeat expansions contribute to these neurological disorders include loss of C9orf72 function and gain-of-function determined by toxic RNA molecules and dipeptides repeats protein toxicity. The expanded repeats are transcribed bidirectionally and forms RNA foci in the central nervous system, and sequester key RNA-binding proteins (RBPs leading to impairment in RNA processing events. Many studies report widespread transcriptome changes in ALS carrying a C9orf72 repeat expansion. Here we review the contribution of RNA foci interaction with RBPs as well as transcriptome changes involved in the pathogenesis of C9orf72- associated FTD/ALS. These informations are essential to elucidate the pathology and therapeutic intervention of ALS and/or FTD.

  16. Repeat-Associated Plasticity in the Helicobacter pylori RD Gene Family▿ †

    Science.gov (United States)

    Shak, Joshua R.; Dick, Jonathan J.; Meinersmann, Richard J.; Perez-Perez, Guillermo I.; Blaser, Martin J.

    2009-01-01

    The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3′ region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5′ region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host. PMID:19749042

  17. Upon Infection the Cellular WD Repeat-containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication.

    Science.gov (United States)

    Ma, Dzwokai; George, Cyril X; Nomburg, Jason; Pfaller, Christian K; Cattaneo, Roberto; Samuel, Charles E

    2017-12-13

    Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5 deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication. IMPORTANCE Measles virus is a human pathogen that remains a global concern with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that

  18. Fas-associated factor 1 is a scaffold protein that promotes β-transducin repeat-containing protein (β-TrCP)-mediated β-catenin ubiquitination and degradation.

    Science.gov (United States)

    Zhang, Long; Zhou, Fangfang; Li, Yihao; Drabsch, Yvette; Zhang, Juan; van Dam, Hans; ten Dijke, Peter

    2012-08-31

    FAS-associated factor 1 (FAF1) antagonizes Wnt signaling by stimulating β-catenin degradation. However, the molecular mechanism underlying this effect is unknown. Here, we demonstrate that the E3 ubiquitin ligase β-transducin repeat-containing protein (β-TrCP) is required for FAF1 to suppress Wnt signaling and that FAF1 specifically associates with the SCF (Skp1-Cul1-F-box protein)-β-TrCP complex. Depletion of β-TrCP reduced FAF1-mediated β-catenin polyubiquitination and impaired FAF1 in antagonizing Wnt/β-catenin signaling. FAF1 was shown to act as a scaffold for β-catenin and β-TrCP and thereby to potentiate β-TrCP-mediated β-catenin ubiquitination and degradation. Data mining revealed that FAF1 expression is statistically down-regulated in human breast carcinoma compared with normal breast tissue. Consistent with this, FAF1 expression is higher in epithelial-like MCF7 than mesenchymal-like MDA-MB-231 human breast cancer cells. Depletion of FAF1 in MCF7 cells resulted in increased β-catenin accumulation and signaling. Importantly, FAF1 knockdown promoted a decrease in epithelial E-cadherin and an increase in mesenchymal vimentin expression, indicative for an epithelial to mesenchymal transition. Moreover, ectopic FAF1 expression reduces breast cancer cell migration in vitro and invasion/metastasis in vivo. Thus, our studies strengthen a tumor-suppressive function for FAF1.

  19. Functional and genomic analyses of alpha-solenoid proteins.

    Science.gov (United States)

    Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A

    2013-01-01

    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.

  20. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2016-08-01

    Full Text Available A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1 is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat domain of the EMS1 (EXCESS MICROSPOROCYTES1 receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction.

  1. Mechanism of Repeat-Associated MicroRNAs in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Karen Kelley

    2012-01-01

    Full Text Available The majority of the human genome is comprised of non-coding DNA, which frequently contains redundant microsatellite-like trinucleotide repeats. Many of these trinucleotide repeats are involved in triplet repeat expansion diseases (TREDs such as fragile X syndrome (FXS. After transcription, the trinucleotide repeats can fold into RNA hairpins and are further processed by Dicer endoribonuclases to form microRNA (miRNA-like molecules that are capable of triggering targeted gene-silencing effects in the TREDs. However, the function of these repeat-associated miRNAs (ramRNAs is unclear. To solve this question, we identified the first native ramRNA in FXS and successfully developed a transgenic zebrafish model for studying its function. Our studies showed that ramRNA-induced DNA methylation of the FMR1 5′-UTR CGG trinucleotide repeat expansion is responsible for both pathological and neurocognitive characteristics linked to the transcriptional FMR1 gene inactivation and the deficiency of its protein product FMRP. FMRP deficiency often causes synapse deformity in the neurons essential for cognition and memory activities, while FMR1 inactivation augments metabotropic glutamate receptor (mGluR-activated long-term depression (LTD, leading to abnormal neuronal responses in FXS. Using this novel animal model, we may further dissect the etiological mechanisms of TREDs, with the hope of providing insights into new means for therapeutic intervention.

  2. MicroRNAs in CAG trinucleotide repeat expansion disorders: an integrated review of the literature.

    Science.gov (United States)

    Dumitrescu, Laura; Popescu, Bogdan O

    2015-01-01

    MicroRNAs are small RNAs involved in gene silencing. They play important roles in transcriptional regulation and are selectively and abundantly expressed in the central nervous system. A considerable amount of the human genome is comprised of tandem repeating nucleotide streams. Several diseases are caused by above-threshold expansion of certain trinucleotide repeats occurring in a protein-coding or non-coding region. Though monogenic, CAG trinucleotide repeat expansion disorders have a complex pathogenesis, various combinations of multiple coexisting pathways resulting in one common final consequence: selective neurodegeneration. Mutant protein and mutant transcript gain of toxic function are considered to be the core pathogenic mechanisms. The profile of microRNAs in CAG trinucleotide repeat disorders is scarcely described, however microRNA dysregulation has been identified in these diseases and microRNA-related intereference with gene expression is considered to be involved in their pathogenesis. Better understanding of microRNAs functions and means of manipulation promises to offer further insights into the pathogenic pathways of CAG repeat expansion disorders, to point out new potential targets for drug intervention and to provide some of the much needed etiopathogenic therapeutic agents. A number of disease-modifying microRNA silencing strategies are under development, but several implementation impediments still have to be resolved. CAG targeting seems feasible and efficient in animal models and is an appealing approach for clinical practice. Preliminary human trials are just beginning.

  3. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium.

    Directory of Open Access Journals (Sweden)

    Solenne Ithurbide

    2015-10-01

    Full Text Available The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA pathway, strongly reduces the frequency of RecA- (and RecO- independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation.

  4. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS genes.

    Directory of Open Access Journals (Sweden)

    Jia-Yu Xue

    Full Text Available Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL class and the other is the CC-NBS-LRR (CNL class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL, reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL. Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.

  5. A Secreted SPRY Domain-Containing Protein (SPRYSEC) from the Plant-Parasitic Nematode Globodera rostochiensis Interacts with a CC-NB-LRR Protein from a Susceptible Tomato

    NARCIS (Netherlands)

    Rehman, S.; Postma, W.J.; Tytgat, T.O.G.; Prins, J.C.P.; Qin Ling,; Overmars, H.A.; Vossen, J.; Spiridon, L.N.; Petrescu, A.J.; Goverse, A.; Bakker, J.; Smant, G.

    2009-01-01

    Esophageal gland secretions from nematodes are believed to include effectors that play important roles in plant parasitism. We have identified a novel gene family encoding secreted proteins specifically expressed in the dorsal esophageal gland of Globodera rostochiensis early in the parasitic cycle,

  6. Characterization of α-isopropylmalate synthases containing different copy numbers of tandem repeats in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Palittapongarnpim Prasit

    2009-06-01

    Full Text Available Abstract Background Alpha-isopropylmalate synthase (α-IPMS is the key enzyme that catalyzes the first committed step in the leucine biosynthetic pathway. The gene encoding α-IPMS in Mycobacterium tuberculosis, leuA, is polymorphic due to the insertion of 57-bp repeat units referred to as Variable Number of Tandem Repeats (VNTR. The role of the VNTR found within the M. tuberculosis genome is unclear. To investigate the role of the VNTR in leuA, we compared two α-IPMS proteins with different numbers of amino acid repeats, one with two copies and the other with 14 copies. We have cloned leuA with 14 copies of the repeat units into the pET15b expression vector with a His6-tag at the N-terminus, as was previously done for the leuA gene with two copies of the repeat units. Results The recombinant His6-α-IPMS proteins with two and 14 copies (α-IPMS-2CR and α-IPMS-14CR, respectively of the repeat units were purified by immobilized metal ion affinity chromatography and gel filtration. Both enzymes were found to be dimers by gel filtration. Both enzymes work well at pH values of 7–8.5 and temperatures of 37–42°C. However, α-IPMS-14CR tolerates pH values and temperatures outside of this range better than α-IPMS-2CR does. α-IPMS-14CR has higher affinity than α-IPMS-2CR for the two substrates, α-ketoisovalerate and acetyl CoA. Furthermore, α-IPMS-2CR was feedback inhibited by the end product l-leucine, whereas α-IPMS-14CR was not. Conclusion The differences in the kinetic properties and the l-leucine feedback inhibition between the two M. tuberculosis α-IPMS proteins containing low and high numbers of VNTR indicate that a large VNTR insertion affects protein structure and function. Demonstration of l-leucine binding to α-IPMS-14CR would confirm whether or not α-IPMS-14CR responds to end-product feedback inhibition.

  7. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-12-01

    Full Text Available Barley (Hordeum vulgare L. Mla alleles encode coiled-coil (CC, nucleotide binding, leucine-rich repeat (NB-LRR receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh. How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley.

  8. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences.

    Science.gov (United States)

    Niu, Qingli; Marchand, Jordan; Yang, Congshan; Bonsergent, Claire; Guan, Guiquan; Yin, Hong; Malandrin, Laurence

    2015-07-30

    Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Enhanced Expression of WD Repeat-Containing Protein 35 via CaMKK/AMPK Activation in Bupivacaine-Treated Neuro2a Cells

    Science.gov (United States)

    Huang, Lei; Kondo, Fumio; Gosho, Masahiko; Feng, Guo-Gang; Harato, Misako; Xia, Zhong-yuan; Ishikawa, Naohisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    We previously reported that bupivacaine induces reactive oxygen species (ROS) generation, p38 mitogen-activated protein kinase (MAPK) activation and nuclear factor-kappa B activation, resulting in an increase in expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. However, the identity of signaling upstream of p38 MAPK pathways to WDR35 expression remains unclear. It has been shown that AMP-activated protein kinase (AMPK) can activate p38 MAPK through diverse mechanisms. In addition, several kinases acting upstream of AMPK have been identified including Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Recent studies reported that AMPK may be involved in bupivacaine-induced cytotoxicity in Schwann cells and in human neuroblastoma SH-SY5Y cells. The present study was undertaken to test whether CaMKK and AMPK are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Our results showed that bupivacaine induced activation of AMPK and p38 MAPK in Neuro2a cells. The AMPK inhibitors, compound C and iodotubercidin, attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. Treatment with the CaMKK inhibitor STO-609 also attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. These results suggest that bupivacaine activates AMPK and p38 MAPK via CaMKK in Neuro2a cells, and that the CaMKK/AMPK/p38 MAPK pathway is involved in regulating WDR35 expression. PMID:24859235

  10. A novel role for the TIR domain in association with pathogen-derived elicitors.

    Directory of Open Access Journals (Sweden)

    Tessa M Burch-Smith

    2007-03-01

    Full Text Available Plant innate immunity is mediated by Resistance (R proteins, which bear a striking resemblance to animal molecules of similar function. Tobacco N is a TIR-NB-LRR R gene that confers resistance to Tobacco mosaic virus, specifically the p50 helicase domain. An intriguing question is how plant R proteins recognize the presence of pathogen-derived Avirulence (Avr elicitor proteins. We have used biochemical cell fraction and immunoprecipitation in addition to confocal fluorescence microscopy of living tissue to examine the association between N and p50. Surprisingly, both N and p50 are cytoplasmic and nuclear proteins, and N's nuclear localization is required for its function. We also demonstrate an in planta association between N and p50. Further, we show that N's TIR domain is critical for this association, and indeed, it alone can associate with p50. Our results differ from current models for plant innate immunity that propose detection is mediated solely through the LRR domains of these molecules. The data we present support an intricate process of pathogen elicitor recognition by R proteins involving multiple subcellular compartments and the formation of multiple protein complexes.

  11. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine.

    Science.gov (United States)

    Maurer, Sara; Giess, Mario; Koch, Oliver; Summerer, Daniel

    2016-12-16

    Transcription-activator-like effector (TALE) proteins consist of concatenated repeats that recognize consecutive canonical nucleobases of DNA via the major groove in a programmable fashion. Since this groove displays unique chemical information for the four human epigenetic cytosine nucleobases, TALE repeats with epigenetic selectivity can be engineered, with potential to establish receptors for the programmable decoding of all human nucleobases. TALE repeats recognize nucleobases via key amino acids in a structurally conserved loop whose backbone is positioned very close to the cytosine 5-carbon. This complicates the engineering of selectivities for large 5-substituents. To interrogate a more promising structural space, we engineered size-reduced repeat loops, performed saturation mutagenesis of key positions, and screened a total of 200 repeat-nucleobase interactions for new selectivities. This provided insight into the structural requirements of TALE repeats for affinity and selectivity, revealed repeats with improved or relaxed selectivity, and resulted in the first selective sensor of 5-carboxylcytosine.

  12. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K.

    Science.gov (United States)

    Morgan, Cecilia A; Lukehart, Sheila A; Van Voorhis, Wesley C

    2003-10-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V regions. Immunization with TprK confers significant protection against infection with the homologous strain. We hypothesize that the antigenic diversity of TprK is involved in immune evasion, which contributes to the lack of heterologous protection. Here, using the rabbit model, we show a correlation between limited heterologous protection and tprK diversity in the challenge inoculum. We demonstrate that antibody responses to the V regions of one TprK molecule show limited cross-reactivity with heterologous TprK V regions.

  13. Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits

    Directory of Open Access Journals (Sweden)

    Saul Herranz-Martin

    2017-07-01

    Full Text Available Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Two major pathologies stemming from the hexanucleotide RNA expansions (HREs have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43 pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches.

  14. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew.

    Science.gov (United States)

    Wang, Defu; Wang, Xiaobing; Mei, Yu; Dong, Hansong

    2016-03-01

    Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.

  15. Identification of genes containing expanded purine repeats in the human genome and their apparent protective role against cancer.

    Science.gov (United States)

    Singh, Himanshu Narayan; Rajeswari, Moganty R

    2016-01-01

    Purine repeat sequences present in a gene are unique as they have high propensity to form unusual DNA-triple helix structures. Friedreich's ataxia is the only human disease that is well known to be associated with DNA-triplexes formed by purine repeats. The purpose of this study was to recognize the expanded purine repeats (EPRs) in human genome and find their correlation with cancer pathogenesis. We developed "PuRepeatFinder.pl" algorithm to identify non-overlapping EPRs without pyrimidine interruptions in the human genome and customized for searching repeat lengths, n ≥ 200. A total of 1158 EPRs were identified in the genome which followed Wakeby distribution. Two hundred and ninety-six EPRs were found in geneic regions of 282 genes (EPR-genes). Gene clustering of EPR-genes was done based on their cellular function and a large number of EPR-genes were found to be enzymes/enzyme modulators. Meta-analysis of 282 EPR-genes identified only 63 EPR-genes in association with cancer, mostly in breast, lung, and blood cancers. Protein-protein interaction network analysis of all 282 EPR-genes identified proteins including those in cadherins and VEGF. The two observations, that EPRs can induce mutations under malignant conditions and that identification of some EPR-gene products in vital cell signaling-mediated pathways, together suggest the crucial role of EPRs in carcinogenesis. The new link between EPR-genes and their functionally interacting proteins throws a new dimension in the present understanding of cancer pathogenesis and can help in planning therapeutic strategies. Validation of present results using techniques like NGS is required to establish the role of the EPR genes in cancer pathology.

  16. Repeated radiation injuries by fission products

    International Nuclear Information System (INIS)

    Vasilenko, I.Ya.

    1986-01-01

    Attention is given to repeated radiation injuries during internal irradiation of theoretical and practical interest, particularly in case of the intake into organism of young products of nuclear fission (PNF). The results of experiments with dogs with repeated radioactive iodine injury the isotopes of which (131-135sub(I)) constitute a considerable part of PNF activity are discussed. The blood reaction and protein metabolism state have been studied. Observations for dogs have been continued for about 4 years. The doses for thyroid, gastrointestinal tract and liver subjected to the most intensive irradiation consituted in the first series of experiments after the first intake about 3;0.3;0.05 Gy, after the second - 5;0.5;0.08 Gy and in the second series of experiments - 3;0.3;0.05 Gy and 0.6;0.06;0.01 Gy, respectively. Hematologic factors,thyroid function, changes in exchange and immunologic reactivity have been studied. The dogs have been under observation for 5 years. It is shown in case of repeated intake of Isup(131) PNF into animals organism in quantity which does not cause during the acute period a clinically outlined sickness, substantial differences in the organism reaction as compared with the first intake of radionuclides have not been found. The presence of residual radiation injuries did not cause charging action during the acute period during PNF and repeated intake which in the author's opinion testifies to perfection of compensator mechanisms in case of intake of such quantities of radioactive products. At the remote periods blastomogenic action manifested which is estimated as a result of general biological action of radionuclides administered to the organism. The necessity in subsequent investigations for obtaining the data on organism reactivity, clinic and pathogenesis with the aim of prophylaxis and treatment of such injuries is indicated

  17. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats

    Directory of Open Access Journals (Sweden)

    Daniël O. Warmerdam

    2016-03-01

    Full Text Available rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5 as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability.

  18. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

    Directory of Open Access Journals (Sweden)

    Stefanie Hausammann

    Full Text Available Inhibitory antibodies directed against coagulation factor VIII (FVIII can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

  19. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce.

    Science.gov (United States)

    Yakovlev, Igor A; Fossdal, Carl G

    2017-01-01

    Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic

  20. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce

    Directory of Open Access Journals (Sweden)

    Igor A. Yakovlev

    2017-09-01

    Full Text Available Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs and other small non-coding RNAs (sRNAs play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C. We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be

  1. C9orf72 nucleotide repeat structures initiate molecular cascades of disease.

    Science.gov (United States)

    Haeusler, Aaron R; Donnelly, Christopher J; Periz, Goran; Simko, Eric A J; Shaw, Patrick G; Kim, Min-Sik; Maragakis, Nicholas J; Troncoso, Juan C; Pandey, Akhilesh; Sattler, Rita; Rothstein, Jeffrey D; Wang, Jiou

    2014-03-13

    A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.

  2. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  3. GenBank blastx search result: AK242295 [KOME

    Lifescience Database Archive (English)

    Full Text Available e cds; transposons Ophelia2, Angela3s, and XJ3, complete sequence; LRR protein WM1.3 (WM1.3) gene, complete cds; Stowaway... MITE, transposons XJ1, Jody, Angela, and XJ and Stowaway MITE, comp

  4. GenBank blastx search result: AK241352 [KOME

    Lifescience Database Archive (English)

    Full Text Available e cds; transposons Ophelia2, Angela3s, and XJ3, complete sequence; LRR protein WM1.3 (WM1.3) gene, complete cds; Stowaway... MITE, transposons XJ1, Jody, Angela, and XJ and Stowaway MITE, comp

  5. GenBank blastn search result: AK241152 [KOME

    Lifescience Database Archive (English)

    Full Text Available e cds; transposons Ophelia2, Angela3s, and XJ3, complete sequence; LRR protein WM1.3 (WM1.3) gene, complete cds; Stowaway... MITE, transposons XJ1, Jody, Angela, and XJ and Stowaway MITE, comp

  6. GenBank blastx search result: AK241749 [KOME

    Lifescience Database Archive (English)

    Full Text Available e cds; transposons Ophelia2, Angela3s, and XJ3, complete sequence; LRR protein WM1.3 (WM1.3) gene, complete cds; Stowaway... MITE, transposons XJ1, Jody, Angela, and XJ and Stowaway MITE, comp

  7. GenBank blastx search result: AK241418 [KOME

    Lifescience Database Archive (English)

    Full Text Available e cds; transposons Ophelia2, Angela3s, and XJ3, complete sequence; LRR protein WM1.3 (WM1.3) gene, complete cds; Stowaway... MITE, transposons XJ1, Jody, Angela, and XJ and Stowaway MITE, comp

  8. GenBank blastx search result: AK241200 [KOME

    Lifescience Database Archive (English)

    Full Text Available e cds; transposons Ophelia2, Angela3s, and XJ3, complete sequence; LRR protein WM1.3 (WM1.3) gene, complete cds; Stowaway... MITE, transposons XJ1, Jody, Angela, and XJ and Stowaway MITE, comp

  9. GenBank blastx search result: AK240882 [KOME

    Lifescience Database Archive (English)

    Full Text Available e cds; transposons Ophelia2, Angela3s, and XJ3, complete sequence; LRR protein WM1.3 (WM1.3) gene, complete cds; Stowaway... MITE, transposons XJ1, Jody, Angela, and XJ and Stowaway MITE, comp

  10. Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration.

    Science.gov (United States)

    Gomez-Deza, Jorge; Lee, Youn-Bok; Troakes, Claire; Nolan, Matthew; Al-Sarraj, Safa; Gallo, Jean-Marc; Shaw, Christopher E

    2015-06-25

    Cytoplasmic TDP-43 inclusions are the pathological hallmark of amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar dementia (FTLD). The G4C2 repeat mutation in C9ORF72 is the most common cause of ALS and FTLD in which, in addition to TDP-43 inclusions, five different di-peptide repeat (DPR) proteins have been identified. Di-peptide repeat proteins are translated in a non-canonical fashion from sense and antisense transcripts of the G4C2 repeat (GP, GA, GR, PA, PR). DPR inclusions are abundant in the cerebellum, as well as in the frontal and temporal lobes of ALS and FTLD patients and some are neurotoxic in a range of cellular and animal models, implying that DPR aggregation directly contributes to disease pathogenesis. Here we sought to quantify inclusions for each DPR and TDP-43 in ALS cases with and without the C9ORF72 mutation. We characterised the abundance of DPRs and their cellular location and compared this to cytoplasmic TDP-43 inclusions in order to explore the role of each inclusion in lower motor neuron degeneration. Spinal cord sections from ten cases positive for the C9ORF72 repeat expansion (ALS-C9+ve) and five cases that were not were probed by double immunofluorescence staining for individual DPRs and TDP-43. Inclusions immunoreactive for each of the DPRs were present in the spinal cord but they were rare or very rare in abundance (in descending order of frequency: GA, GP, GR, PA and PR). TDP-43 cytoplasmic inclusions were 45- to 750-fold more frequent than any DPR, and fewer than 4 % of DPR inclusions colocalized with TDP-43 inclusions. In motor neurons, a single cytoplasmic DPR inclusion was detected (0.1 %) in contrast to the 34 % of motor neurons that contained cytoplasmic TDP-43 inclusions. Furthermore, the number of TDP-43 inclusions in ALS cases with and without the C9ORF72 mutation was nearly identical. For all other neurodegenerative diseases, the neurotoxic protein aggregates are detected in the affected

  11. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats are generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.

  12. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong (Cornell); (NWU)

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  13. Small glutamine-rich tetratricopeptide repeat-containing protein alpha is present in human ovaries but may not be differentially expressed in relation to polycystic ovary syndrome.

    Science.gov (United States)

    Butler, Miriam S; Yang, Xing; Ricciardelli, Carmela; Liang, Xiaoyan; Norman, Robert J; Tilley, Wayne D; Hickey, Theresa E

    2013-06-01

    To evaluate the expression and function of small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), an androgen receptor (AR) molecular chaperone, in human ovarian tissues. Examine the effect of SGTA on AR subcellular localization in granulosa tumor cells (KGN) and SGTA expression in ovarian tissues. University-based research laboratory. Archived tissues from premenopausal women and granulosa cells from infertile women receiving assisted reproduction. None. AR subcellular localization and SGTA protein or mRNA levels. SGTA and AR proteins were expressed in the cytoplasm of KGN cells and exposure to androgen stimulated AR nuclear localization. SGTA protein knockdown increased AR nuclear localization at low (0-0.1 nmol/L) but not high (1-10 nmol/L) concentrations of androgen hormone. In ovarian tissues, SGTA was localized to the cytoplasm of granulosa cells at all stages of folliculogenesis and in thecal cells of antral follicles. SGTA protein levels were similar when comparing primordial and primary follicles within core biopsies (n = 40) from women with and without polycystic ovary syndrome (PCOS). Likewise, SGTA mRNA levels were not significantly different in granulosa cells from preovulatory follicles after hyperstimulation of women with and without PCOS. SGTA is present in human ovaries and has the potential to modulate AR signalling, but it may not be differentially expressed in PCOS. Copyright © 2013 American Society for Reproductive Medicine. All rights reserved.

  14. Exceptionally long 5' UTR short tandem repeats specifically linked to primates.

    Science.gov (United States)

    Namdar-Aligoodarzi, P; Mohammadparast, S; Zaker-Kandjani, B; Talebi Kakroodi, S; Jafari Vesiehsari, M; Ohadi, M

    2015-09-10

    We have previously reported genome-scale short tandem repeats (STRs) in the core promoter interval (i.e. -120 to +1 to the transcription start site) of protein-coding genes that have evolved identically in primates vs. non-primates. Those STRs may function as evolutionary switch codes for primate speciation. In the current study, we used the Ensembl database to analyze the 5' untranslated region (5' UTR) between +1 and +60 of the transcription start site of the entire human protein-coding genes annotated in the GeneCards database, in order to identify "exceptionally long" STRs (≥5-repeats), which may be of selective/adaptive advantage. The importance of this critical interval is its function as core promoter, and its effect on transcription and translation. In order to minimize ascertainment bias, we analyzed the evolutionary status of the human 5' UTR STRs of ≥5-repeats in several species encompassing six major orders and superorders across mammals, including primates, rodents, Scandentia, Laurasiatheria, Afrotheria, and Xenarthra. We introduce primate-specific STRs, and STRs which have expanded from mouse to primates. Identical co-occurrence of the identified STRs of rare average frequency between 0.006 and 0.0001 in primates supports a role for those motifs in processes that diverged primates from other mammals, such as neuronal differentiation (e.g. APOD and FGF4), and craniofacial development (e.g. FILIP1L). A number of the identified STRs of ≥5-repeats may be human-specific (e.g. ZMYM3 and DAZAP1). Future work is warranted to examine the importance of the listed genes in primate/human evolution, development, and disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp. PCC 6803, during Photosystem II assembly and repair

    Directory of Open Access Journals (Sweden)

    Anna eRast

    2016-05-01

    Full Text Available The assembly and repair of photosystem II (PSII is facilitated by a variety of assembly factors. Among those, the tetratricopeptide repeat (TPR protein Slr0151 from Synechocystis sp. PCC 6803 (hereafter Synechocystis has previously been assigned a repair function under high light conditions (Yang et al., 2014, J. Integr. Plant Biol. 56, 1136-50. Here, we show that inactivation of Slr0151 affects thylakoid membrane ultrastructure even under normal light conditions. Moreover, the level and localization of Slr0151 are affected in a variety of PSII-related mutants. In particular, the data suggest a close functional relationship between Slr0151 and Sll0933, which interacts with Ycf48 during PSII assembly and is homologous to PAM68 in Arabidopsis thaliana. Immunofluorescence analysis revealed a punctate distribution of Slr0151 within several different membrane types in Synechocystis cells.

  16. Repeating and non-repeating fast radio bursts from binary neutron star mergers

    Science.gov (United States)

    Yamasaki, Shotaro; Totani, Tomonori; Kiuchi, Kenta

    2018-04-01

    Most fast radio bursts (FRB) do not show evidence of repetition, and such non-repeating FRBs may be produced at the time of a merger of binary neutron stars (BNS), provided that the BNS merger rate is close to the high end of the currently possible range. However, the merger environment is polluted by dynamical ejecta, which may prohibit the radio signal from propagating. We examine this by using a general-relativistic simulation of a BNS merger, and show that the ejecta appears about 1 ms after the rotation speed of the merged star becomes the maximum. Therefore there is a time window in which an FRB signal can reach outside, and the short duration of non-repeating FRBs can be explained by screening after ejecta formation. A fraction of BNS mergers may leave a rapidly rotating and stable neutron star, and such objects may be the origin of repeating FRBs like FRB 121102. We show that a merger remnant would appear as a repeating FRB on a time scale of ˜1-10 yr, and expected properties are consistent with the observations of FRB 121102. We construct an FRB rate evolution model that includes these two populations of repeating and non-repeating FRBs from BNS mergers, and show that the detection rate of repeating FRBs relative to non-repeating ones rapidly increases with improving search sensitivity. This may explain why only the repeating FRB 121102 was discovered by the most sensitive FRB search with Arecibo. Several predictions are made, including the appearance of a repeating FRB 1-10 yr after a BNS merger that is localized by gravitational waves and subsequent electromagnetic radiation.

  17. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats.

    Science.gov (United States)

    Warmerdam, Daniël O; van den Berg, Jeroen; Medema, René H

    2016-03-22

    rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5) as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  19. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  20. t2prhd: a tool to study the patterns of repeat evolution

    Directory of Open Access Journals (Sweden)

    Pénzes Zsolt

    2008-01-01

    Full Text Available Abstract Background The models developed to characterize the evolution of multigene families (such as the birth-and-death and the concerted models have also been applied on the level of sequence repeats inside a gene/protein. Phylogenetic reconstruction is the method of choice to study the evolution of gene families and also sequence repeats in the light of these models. The characterization of the gene family evolution in view of the evolutionary models is done by the evaluation of the clustering of the sequences with the originating loci in mind. As the locus represents positional information, it is straightforward that in the case of the repeats the exact position in the sequence should be used, as the simple numbering according to repeat order can be misleading. Results We have developed a novel rapid visual approach to study repeat evolution, that takes into account the exact repeat position in a sequence. The "pairwise repeat homology diagram" visualizes sequence repeats detected by a profile HMM in a pair of sequences and highlights their homology relations inferred by a phylogenetic tree. The method is implemented in a Perl script (t2prhd available for downloading at http://t2prhd.sourceforge.net and is also accessible as an online tool at http://t2prhd.brc.hu. The power of the method is demonstrated on the EGF-like and fibronectin-III-like (Fn-III domain repeats of three selected mammalian Tenascin sequences. Conclusion Although pairwise repeat homology diagrams do not carry all the information provided by the phylogenetic tree, they allow a rapid and intuitive assessment of repeat evolution. We believe, that t2prhd is a helpful tool with which to study the pattern of repeat evolution. This method can be particularly useful in cases of large datasets (such as large gene families, as the command line interface makes it possible to automate the generation of pairwise repeat homology diagrams with the aid of scripts.

  1. Biological Subtype Predicts Risk of Locoregional Recurrence After Mastectomy and Impact of Postmastectomy Radiation in a Large National Database

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Yolanda D., E-mail: ydt2@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Uno, Hajime [Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Hughes, Melissa E. [Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Niland, Joyce C. [Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, California (United States); Wong, Yu-Ning [Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Theriault, Richard [Department of General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Blitzblau, Rachel C. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Moy, Beverly [Division of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Breslin, Tara [Division of Surgical Oncology, Department of Surgery, Northwestern Lake Forest Hospital, Lake Forest, Illinois (United States); Edge, Stephen B. [Baptist Cancer Center, Memphis, Tennessee (United States); Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Hassett, Michael J. [Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Punglia, Rinaa S. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2015-11-01

    Purpose: To evaluate locoregional recurrence (LRR) after mastectomy and impact of postmastectomy radiation (PMRT) by breast cancer subtype. Methods and Materials: Between 2000 and 2009, 5673 patients with stage I to III breast carcinoma underwent mastectomy and nodal evaluation; 30% received PMRT. Isolated LRR (iLRR) and LRR were compared across groups defined by biological subtype and receipt of trastuzumab: luminal A (estrogen [ER]/progesterone [PR]+, HER2−, low/intermediate grade), luminal B (ER/PR+, HER2−, high grade), HER2 with trastuzumab, HER2 without trastuzumab, and triple negative (TN; ER−, PR−, HER2−). LRR hazard ratios (HR) were estimated with multivariable Fine and Gray models. The effect of PMRT on LRR was evaluated with Fine and Gray models stratified by propensity for PMRT. Results: With a median follow-up time of 50.1 months, there were 19 iLRR and 109 LRR events. HER2 patients with trastuzumab had no iLRR and only a single LRR. Compared with luminal A patients, TN patients had significantly greater adjusted risk of iLRR (HR 14.10; 95% CI 2.97%-66.90%), with a similar trend among luminal B (HR 4.94; 95% CI 0.94%-25.82%) and HER2 patients without trastuzumab (HR 4.41; 95% CI 0.61%-32.11%). Although PMRT reduced LRR, the effect of PMRT varied by subgroup, with the greatest and smallest effects seen among luminal A (HR 0.17; 95% CI 0.05%-0.62%) and TN patients (HR 0.59; 95% CI 0.25%-1.35%), respectively. Conclusions: TN patients had the highest risk of LRR and the least benefit from PMRT; these patients may benefit from alternative treatment strategies. In contrast, in the era of HER2-directed therapy, the role of local therapy may need to be reassessed among HER2 patients.

  2. Biological Subtype Predicts Risk of Locoregional Recurrence After Mastectomy and Impact of Postmastectomy Radiation in a Large National Database

    International Nuclear Information System (INIS)

    Tseng, Yolanda D.; Uno, Hajime; Hughes, Melissa E.; Niland, Joyce C.; Wong, Yu-Ning; Theriault, Richard; Blitzblau, Rachel C.; Moy, Beverly; Breslin, Tara; Edge, Stephen B.; Hassett, Michael J.; Punglia, Rinaa S.

    2015-01-01

    Purpose: To evaluate locoregional recurrence (LRR) after mastectomy and impact of postmastectomy radiation (PMRT) by breast cancer subtype. Methods and Materials: Between 2000 and 2009, 5673 patients with stage I to III breast carcinoma underwent mastectomy and nodal evaluation; 30% received PMRT. Isolated LRR (iLRR) and LRR were compared across groups defined by biological subtype and receipt of trastuzumab: luminal A (estrogen [ER]/progesterone [PR]+, HER2−, low/intermediate grade), luminal B (ER/PR+, HER2−, high grade), HER2 with trastuzumab, HER2 without trastuzumab, and triple negative (TN; ER−, PR−, HER2−). LRR hazard ratios (HR) were estimated with multivariable Fine and Gray models. The effect of PMRT on LRR was evaluated with Fine and Gray models stratified by propensity for PMRT. Results: With a median follow-up time of 50.1 months, there were 19 iLRR and 109 LRR events. HER2 patients with trastuzumab had no iLRR and only a single LRR. Compared with luminal A patients, TN patients had significantly greater adjusted risk of iLRR (HR 14.10; 95% CI 2.97%-66.90%), with a similar trend among luminal B (HR 4.94; 95% CI 0.94%-25.82%) and HER2 patients without trastuzumab (HR 4.41; 95% CI 0.61%-32.11%). Although PMRT reduced LRR, the effect of PMRT varied by subgroup, with the greatest and smallest effects seen among luminal A (HR 0.17; 95% CI 0.05%-0.62%) and TN patients (HR 0.59; 95% CI 0.25%-1.35%), respectively. Conclusions: TN patients had the highest risk of LRR and the least benefit from PMRT; these patients may benefit from alternative treatment strategies. In contrast, in the era of HER2-directed therapy, the role of local therapy may need to be reassessed among HER2 patients.

  3. Feasibilty of zein proteins, simple sequence repeats and phenotypic ...

    African Journals Online (AJOL)

    Widespread adoption of quality protein maize (QPM), especially among tropical farming systems has been slow mainly due to the slow process of generating varieties with acceptable kernel quality and adaptability to different agroecological contexts. A molecular based foreground selection system for opaque 2 (o2), the ...

  4. Enhancing Low-Rank Subspace Clustering by Manifold Regularization.

    Science.gov (United States)

    Liu, Junmin; Chen, Yijun; Zhang, JiangShe; Xu, Zongben

    2014-07-25

    Recently, low-rank representation (LRR) method has achieved great success in subspace clustering (SC), which aims to cluster the data points that lie in a union of low-dimensional subspace. Given a set of data points, LRR seeks the lowest rank representation among the many possible linear combinations of the bases in a given dictionary or in terms of the data itself. However, LRR only considers the global Euclidean structure, while the local manifold structure, which is often important for many real applications, is ignored. In this paper, to exploit the local manifold structure of the data, a manifold regularization characterized by a Laplacian graph has been incorporated into LRR, leading to our proposed Laplacian regularized LRR (LapLRR). An efficient optimization procedure, which is based on alternating direction method of multipliers (ADMM), is developed for LapLRR. Experimental results on synthetic and real data sets are presented to demonstrate that the performance of LRR has been enhanced by using the manifold regularization.

  5. Enhanced expression of WD repeat-containing protein 35 (WDR35 stimulated by domoic acid in rat hippocampus: involvement of reactive oxygen species generation and p38 mitogen-activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Tsunekawa Koji

    2013-01-01

    Full Text Available Abstract Background Domoic acid (DA is an excitatory amino acid analogue of kainic acid (KA that acts via activation of glutamate receptors to elicit a rapid and potent excitotoxic response, resulting in neuronal cell death. Recently, DA was shown to elicit reactive oxygen species (ROS production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK in vitro. We have reported that WDR35, a WD-repeat protein, may mediate apoptosis in several animal models. In the present study, we administered DA to rats intraperitoneally, then used liquid chromatography/ion trap tandem mass spectrometry (LC-MS/MS to identify and quantify DA in the brains of the rats and performed histological examinations of the hippocampus. We further investigated the potential involvement of glutamate receptors, ROS, p38 MAPK, and WDR35 in DA-induced toxicity in vivo. Results Our results showed that intraperitoneally administered DA was present in the brain and induced neurodegenerative changes including apoptosis in the CA1 region of the hippocampus. DA also increased the expression of WDR35 mRNA and protein in a dose- and time-dependent manner in the hippocampus. In experiments using glutamate receptor antagonists, the AMPA/KA receptor antagonist NBQX significantly attenuated the DA-induced increase in WDR35 protein expression, but the NMDA receptor antagonist MK-801 did not. In addition, the radical scavenger edaravone significantly attenuated the DA-induced increase in WDR35 protein expression. Furthermore, NBQX and edaravone significantly attenuated the DA-induced increase in p38 MAPK phosphorylation. Conclusion In summary, our results indicated that DA activated AMPA/KA receptors and induced ROS production and p38 MAPK phosphorylation, resulting in an increase in the expression of WDR35 in vivo.

  6. Potential Role of the Last Half Repeat in TAL Effectors Revealed by a Molecular Simulation Study

    Directory of Open Access Journals (Sweden)

    Hua Wan

    2016-01-01

    Full Text Available TAL effectors (TALEs contain a modular DNA-binding domain that is composed of tandem repeats. In all naturally occurring TALEs, the end of tandem repeats is invariantly a truncated half repeat. To investigate the potential role of the last half repeat in TALEs, we performed comparative molecular dynamics simulations for the crystal structure of DNA-bound TALE AvrBs3 lacking the last half repeat and its modeled structure having the last half repeat. The structural stability analysis indicates that the modeled system is more stable than the nonmodeled system. Based on the principle component analysis, it is found that the AvrBs3 increases its structural compactness in the presence of the last half repeat. The comparison of DNA groove parameters of the two systems implies that the last half repeat also causes the change of DNA major groove binding efficiency. The following calculation of hydrogen bond reveals that, by stabilizing the phosphate binding with DNA at the C-terminus, the last half repeat helps to adopt a compact conformation at the protein-DNA interface. It further mediates more contacts between TAL repeats and DNA nucleotide bases. Finally, we suggest that the last half repeat is required for the high-efficient recognition of DNA by TALE.

  7. Protein (Cyanobacteria): 175822 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available agen triple helix repeat-containing protein 'Nostoc azollae' 0708 MRLIEDGEDGEDGEDGEDGEDGEDGEDGEDGEDGEDGEDGEDGGEIFLMPYALCPMPYALCPMPYALCPMPYALCPMPYALCPMPYAQNQDFSHPNRESSVKLFSSVAPKP ...

  8. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    Science.gov (United States)

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement. Copyright © 2016 by the Genetics Society of America.

  9. Repeat-mediated epigenetic dysregulation of the FMR1 gene in the fragile X-related disorders.

    Science.gov (United States)

    Usdin, Karen; Kumari, Daman

    2015-01-01

    The fragile X-related disorders are members of the Repeat Expansion Diseases, a group of genetic conditions resulting from an expansion in the size of a tandem repeat tract at a specific genetic locus. The repeat responsible for disease pathology in the fragile X-related disorders is CGG/CCG and the repeat tract is located in the 5' UTR of the FMR1 gene, whose protein product FMRP, is important for the proper translation of dendritic mRNAs in response to synaptic activation. There are two different pathological FMR1 allele classes that are distinguished only by the number of repeats. Premutation alleles have 55-200 repeats and confer risk of fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Full mutation alleles on the other hand have >200 repeats and result in fragile X syndrome, a disorder that affects learning and behavior. Different symptoms are seen in carriers of premutation and full mutation alleles because the repeat number has paradoxical effects on gene expression: Epigenetic changes increase transcription from premutation alleles and decrease transcription from full mutation alleles. This review will cover what is currently known about the mechanisms responsible for these changes in FMR1 expression and how they may relate to other Repeat Expansion Diseases that also show repeat-mediated changes in gene expression.

  10. Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    2013-03-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.

  11. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    International Nuclear Information System (INIS)

    Bagchi, Manjari

    2017-01-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  12. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Manjari, E-mail: manjari@imsc.res.in [The Institute of Mathematical Sciences (IMSc-HBNI), 4th Cross Road, CIT Campus, Taramani, Chennai 600113 (India)

    2017-04-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  13. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  14. A tensegrity model for hydrogen bond networks in proteins.

    Science.gov (United States)

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  15. Selection pressure on human STR loci and its relevance in repeat expansion disease

    KAUST Repository

    Shimada, Makoto K.

    2016-06-11

    Short Tandem Repeats (STRs) comprise repeats of one to several base pairs. Because of the high mutability due to strand slippage during DNA synthesis, rapid evolutionary change in the number of repeating units directly shapes the range of repeat-number variation according to selection pressure. However, the remaining questions include: Why are STRs causing repeat expansion diseases maintained in the human population; and why are these limited to neurodegenerative diseases? By evaluating the genome-wide selection pressure on STRs using the database we constructed, we identified two different patterns of relationship in repeat-number polymorphisms between DNA and amino-acid sequences, although both patterns are evolutionary consequences of avoiding the formation of harmful long STRs. First, a mixture of degenerate codons is represented in poly-proline (poly-P) repeats. Second, long poly-glutamine (poly-Q) repeats are favored at the protein level; however, at the DNA level, STRs encoding long poly-Qs are frequently divided by synonymous SNPs. Furthermore, significant enrichments of apoptosis and neurodevelopment were biological processes found specifically in genes encoding poly-Qs with repeat polymorphism. This suggests the existence of a specific molecular function for polymorphic and/or long poly-Q stretches. Given that the poly-Qs causing expansion diseases were longer than other poly-Qs, even in healthy subjects, our results indicate that the evolutionary benefits of long and/or polymorphic poly-Q stretches outweigh the risks of long CAG repeats predisposing to pathological hyper-expansions. Molecular pathways in neurodevelopment requiring long and polymorphic poly-Q stretches may provide a clue to understanding why poly-Q expansion diseases are limited to neurodegenerative diseases. © 2016, Springer-Verlag Berlin Heidelberg.

  16. Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients.

    Science.gov (United States)

    Yin, Shanye; Lopez-Gonzalez, Rodrigo; Kunz, Ryan C; Gangopadhyay, Jaya; Borufka, Carl; Gygi, Steven P; Gao, Fen-Biao; Reed, Robin

    2017-06-13

    Hexanucleotide repeat expansion in the C9ORF72 gene results in production of dipeptide repeat (DPR) proteins that may disrupt pre-mRNA splicing in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. At present, the mechanisms underlying this mis-splicing are not understood. Here, we show that addition of proline-arginine (PR) and glycine-arginine (GR) toxic DPR peptides to nuclear extracts blocks spliceosome assembly and splicing, but not other types of RNA processing. Proteomic and biochemical analyses identified the U2 small nuclear ribonucleoprotein particle (snRNP) as a major interactor of PR and GR peptides. In addition, U2 snRNP, but not other splicing factors, mislocalizes from the nucleus to the cytoplasm both in C9ORF72 patient induced pluripotent stem cell (iPSC)-derived motor neurons and in HeLa cells treated with the toxic peptides. Bioinformatic studies support a specific role for U2-snRNP-dependent mis-splicing in C9ORF72 patient brains. Together, our data indicate that DPR-mediated dysfunction of U2 snRNP could account for as much as ∼44% of the mis-spliced cassette exons in C9ORF72 patient brains. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Evidence that C9ORF72 Dipeptide Repeat Proteins Associate with U2 snRNP to Cause Mis-splicing in ALS/FTD Patients

    Directory of Open Access Journals (Sweden)

    Shanye Yin

    2017-06-01

    Full Text Available Hexanucleotide repeat expansion in the C9ORF72 gene results in production of dipeptide repeat (DPR proteins that may disrupt pre-mRNA splicing in amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD patients. At present, the mechanisms underlying this mis-splicing are not understood. Here, we show that addition of proline-arginine (PR and glycine-arginine (GR toxic DPR peptides to nuclear extracts blocks spliceosome assembly and splicing, but not other types of RNA processing. Proteomic and biochemical analyses identified the U2 small nuclear ribonucleoprotein particle (snRNP as a major interactor of PR and GR peptides. In addition, U2 snRNP, but not other splicing factors, mislocalizes from the nucleus to the cytoplasm both in C9ORF72 patient induced pluripotent stem cell (iPSC-derived motor neurons and in HeLa cells treated with the toxic peptides. Bioinformatic studies support a specific role for U2-snRNP-dependent mis-splicing in C9ORF72 patient brains. Together, our data indicate that DPR-mediated dysfunction of U2 snRNP could account for as much as ∼44% of the mis-spliced cassette exons in C9ORF72 patient brains.

  18. Deployment Repeatability

    Science.gov (United States)

    2016-04-01

    evaluating the deployment repeatability builds upon the testing or analysis of deployment kinematics (Chapter 6) and adds repetition. Introduction...material yield or failure during a test. For the purposes of this chapter, zero shift will refer to permanent changes in the structure, while reversible ...the content of other chapters in this book: Gravity Compensation (Chapter 4) and Deployment Kinematics and Dynamics (Chapter 6). Repeating the

  19. Protein (Cyanobacteria): 479132094 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 30 696747:230 ... WD-40 repeat protein Arthrospira platensis NIES-39 MVIASGGASLFNLATGEAVWEIDCPALGGAVSADGRLLALRSNKDIYLWDLSTGQLLRQLTGHTST...VNSVRFSRRGQTLASGSGDNTVRLWDVATGRELRQLTGHTSTVNSVRFSRRGQTLASGSGDNTVRLWDVATGRELRQLTGHTSTVYSVSFSRRGQTLASGSDDGVVRLWRVGF

  20. Identification and expression analysis of the interferon-induced protein with tetratricopeptide repeats 5 (IFIT5 gene in duck (Anas platyrhynchos domesticus.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available The interferon-induced proteins with tetratricopeptide repeats (IFITs protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5 full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR and rapid amplification of the cDNA ends (RACE. Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12. Finally, we used duck hepatitis virus type 1 (DHV-1 and polyriboinosinicpolyribocytidylic acid (poly (I:C as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR. DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5.

  1. Identification and Expression Analysis of the Interferon-Induced Protein with Tetratricopeptide Repeats 5 (IFIT5) Gene in Duck (Anas platyrhynchos domesticus)

    Science.gov (United States)

    Mu, Chunyu; Su, Yanhui; Liu, Ran; Huang, Zhengyang; Li, Yang; Yu, Qingming; Chang, Guobin; Xu, Qi; Chen, Guohong

    2015-01-01

    The interferon-induced proteins with tetratricopeptide repeats (IFITs) protein family mediates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the interferon (IFN) dependent innate immune system. Several members of this family, including IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species contain only one family member, IFIT5, and little is known about the role of this protein in birds. In this study, duck IFIT5 (duIFIT5) full-length mRNA was cloned by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of the cDNA ends (RACE). Based on the sequence obtained, we performed a series of bioinformatics analyses, and found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 contained eight conserved TPR motifs and two conserved multi-domains (TPR_11 and TPR_12). Finally, we used duck hepatitis virus type 1 (DHV-1) and polyriboinosinicpolyribocytidylic acid (poly (I:C)) as a pathogen or a pathogen-associated molecular pattern induction to infect three-day-old domestic ducklings. The liver and spleen were collected to detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR (qRT-PCR). DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C) infection and then returned to normal. Taken together, these results provide a greater understanding of avian IFIT5. PMID:25816333

  2. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    2017-05-01

    Full Text Available Defective mismatch repair (MMR in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6, which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1, which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3 recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.

  3. Reconfigurable multiport EPON repeater

    Science.gov (United States)

    Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio

    2009-11-01

    An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.

  4. WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family.

    Science.gov (United States)

    Chevanne, Damien; Saupe, Sven J; Clavé, Corinne; Paoletti, Mathieu

    2010-05-06

    Genes involved in non-self recognition and host defence are typically capable of rapid diversification and exploit specialized genetic mechanism to that end. Fungi display a non-self recognition phenomenon termed heterokaryon incompatibility that operates when cells of unlike genotype fuse and leads to the cell death of the fusion cell. In the fungus Podospora anserina, three genes controlling this allorecognition process het-d, het-e and het-r are paralogs belonging to the same hnwd gene family. HNWD proteins are STAND proteins (signal transduction NTPase with multiple domains) that display a WD-repeat domain controlling recognition specificity. Based on genomic sequence analysis of different P. anserina isolates, it was established that repeat regions of all members of the gene family are extremely polymorphic and undergoing concerted evolution arguing for frequent recombination within and between family members. Herein, we directly analyzed the genetic instability and diversification of this allorecognition gene family. We have constituted a collection of 143 spontaneous mutants of the het-R (HNWD2) and het-E (hnwd5) genes with altered recognition specificities. The vast majority of the mutants present rearrangements in the repeat arrays with deletions, duplications and other modifications as well as creation of novel repeat unit variants. We investigate the extreme genetic instability of these genes and provide a direct illustration of the diversification strategy of this eukaryotic allorecognition gene family.

  5. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment

    NARCIS (Netherlands)

    Kappei, D.; Butter, F.; Benda, C.; Scheibe, M.; Draskovic, Irena; Stevense, M.; Novo, C.L.; Basquin, C.; Araki, M.; Araki, K.; Krastev, D.B.; Kittler, R.; Jessberger, R.; Londono-Vallejo, J.A.; Mann, M.; Buchholz, F.

    2013-01-01

    Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the

  6. Changes in Liver Proteome Expression of Senegalese Sole (Solea senegalensis) in Response to Repeated Handling Stress

    DEFF Research Database (Denmark)

    Cordeiro, O. D.; Silva, Tomé Santos; Alves, R. N.

    2012-01-01

    The Senegalese sole, a high-value flatfish, is a good candidate for aquaculture production. Nevertheless, there are still issues regarding this species’ sensitivity to stress in captivity. We aimed to characterize the hepatic proteome expression for this species in response to repeated handling...... and identify potential molecular markers that indicate a physiological response to chronic stress. Two groups of fish were reared in duplicate for 28 days, one of them weekly exposed to handling stress (including hypoxia) for 3 min, and the other left undisturbed. Two-dimensional electrophoresis enabled...... the detection of 287 spots significantly affected by repeated handling stress (Wilcoxon–Mann–Whitney U test, p stress seems to have affected protein synthesis, folding and turnover (40S ribosomal protein S12...

  7. Isolation of candidate disease resistance genes from enrichment ...

    African Journals Online (AJOL)

    use

    2011-10-26

    Oct 26, 2011 ... 1State Key Laboratory of Hybrid Rice, Longping Branch of Graduate School, Central South University, Changsha. 410125 ... brassinosteroid LRR receptor kinase in japonica rice; the protein structure analysis suggested that it may be a ..... map alignment project: the golden path to unlocking the genetic.

  8. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.

    Science.gov (United States)

    Wohleb, Eric S; Hanke, Mark L; Corona, Angela W; Powell, Nicole D; Stiner, La'Tonia M; Bailey, Michael T; Nelson, Randy J; Godbout, Jonathan P; Sheridan, John F

    2011-04-27

    Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.

  9. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Eriksen, Kathrine Krageskov; Hauser, Frank; Schiøtt, Morten

    2000-01-01

    After screening the Berkeley Drosophila Genome Project database with sequences from a recently characterized Leu-rich repeats-containing G protein-coupled receptor (LGR) fromDrosophila (DLGR-1), we identified a second gene for a different LGR (DLGR-2) and cloned its cDNA. DLGR-2 is 1360 amino aci...... knock-out mutants, where the DLGR-2 gene is interrupted by a P element insertion, die around the time of hatching. This finding, together with the expression data, strongly suggests that DLGR-2 is exclusively involved in development....

  10. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3).

    Science.gov (United States)

    Mulepati, Sabin; Bailey, Scott

    2011-09-09

    RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.

  11. TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2014-01-01

    The Arabidopsis root epidermal cells decide their fates (root-hair cell and non-hair cell) according to their position. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase (LRR RLK) mediates the positional information to the epidermal cells enabling them to adopt the proper fate. Via feedback regulation, the SCM protein accumulates preferentially in cells adopting the root-hair cell fate. In this study, we determine that TRY, but not the related factor CPC, is responsible for this preferential SCM accumulation. We observed severe reduction of SCM::GUS expression in the try-82 mutant root, but not in the cpc-1 mutant. Furthermore, the overexpression of TRY by CaMV35S promoter caused an increase in the expression of SCM::GUS in the root epidermis. Intriguingly, the overexpression of CPC by CaMV35S promoter repressed the expression of SCM::GUS. Together, these results suggest that TRY plays a unique role in generating the appropriate spatial expression of SCM.

  12. [Bioinformatics Analysis of Clustered Regularly Interspaced Short Palindromic Repeats in the Genomes of Shigella].

    Science.gov (United States)

    Wang, Pengfei; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Wang, Linlin; Guo, Xiangjiao; Yang, Haiyan; Xi, Yuanlin

    2015-04-01

    This study was aimed to explore the features of clustered regularly interspaced short palindromic repeats (CRISPR) structures in Shigella by using bioinformatics. We used bioinformatics methods, including BLAST, alignment and RNA structure prediction, to analyze the CRISPR structures of Shigella genomes. The results showed that the CRISPRs existed in the four groups of Shigella, and the flanking sequences of upstream CRISPRs could be classified into the same group with those of the downstream. We also found some relatively conserved palindromic motifs in the leader sequences. Repeat sequences had the same group with corresponding flanking sequences, and could be classified into two different types by their RNA secondary structures, which contain "stem" and "ring". Some spacers were found to homologize with part sequences of plasmids or phages. The study indicated that there were correlations between repeat sequences and flanking sequences, and the repeats might act as a kind of recognition mechanism to mediate the interaction between foreign genetic elements and Cas proteins.

  13. Isolation of nucleotide binding site-leucine rich repeat and kinase resistance gene analogues from sugarcane (Saccharum spp.).

    Science.gov (United States)

    Glynn, Neil C; Comstock, Jack C; Sood, Sushma G; Dang, Phat M; Chaparro, Jose X

    2008-01-01

    Resistance gene analogues (RGAs) have been isolated from many crops and offer potential in breeding for disease resistance through marker-assisted selection, either as closely linked or as perfect markers. Many R-gene sequences contain kinase domains, and indeed kinase genes have been reported as being proximal to R-genes, making kinase analogues an additionally promising target. The first step towards utilizing RGAs as markers for disease resistance is isolation and characterization of the sequences. Sugarcane clone US01-1158 was identified as resistant to yellow leaf caused by the sugarcane yellow leaf virus (SCYLV) and moderately resistant to rust caused by Puccinia melanocephala Sydow & Sydow. Degenerate primers that had previously proved useful for isolating RGAs and kinase analogues in wheat and soybean were used to amplify DNA from sugarcane (Saccharum spp.) clone US-01-1158. Sequences generated from 1512 positive clones were assembled into 134 contigs of between two and 105 sequences. Comparison of the contig consensuses with the NCBI sequence database using BLASTx showed that 20 had sequence homology to nuclear binding site and leucine rich repeat (NBS-LRR) RGAs, and eight to kinase genes. Alignment of the deduced amino acid sequences with similar sequences from the NCBI database allowed the identification of several conserved domains. The alignment and resulting phenetic tree showed that many of the sequences had greater similarity to sequences from other species than to one another. The use of degenerate primers is a useful method for isolating novel sugarcane RGA and kinase gene analogues. Further studies are needed to evaluate the role of these genes in disease resistance.

  14. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.

    Science.gov (United States)

    Zhang, Ke; Donnelly, Christopher J; Haeusler, Aaron R; Grima, Jonathan C; Machamer, James B; Steinwald, Peter; Daley, Elizabeth L; Miller, Sean J; Cunningham, Kathleen M; Vidensky, Svetlana; Gupta, Saksham; Thomas, Michael A; Hong, Ingie; Chiu, Shu-Ling; Huganir, Richard L; Ostrow, Lyle W; Matunis, Michael J; Wang, Jiou; Sattler, Rita; Lloyd, Thomas E; Rothstein, Jeffrey D

    2015-09-03

    The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.

  15. Nonlinear analysis of sequence repeats of multi-domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yanzhao [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Li Mingfeng [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiao Yi [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)]. E-mail: lmf_bill@sina.com

    2007-11-15

    Many multi-domain proteins have repetitive three-dimensional structures but nearly-random amino acid sequences. In the present paper, by using a modified recurrence plot proposed by us previously, we show that these amino acid sequences have hidden repetitions in fact. These results indicate that the repetitive domain structures are encoded by the repetitive sequences. This also gives a method to detect the repetitive domain structures directly from amino acid sequences.

  16. Thermal stability of chicken brain {alpha}-spectrin repeat 17: a spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Annette K. [University of Bergen, Department of Chemistry (Norway); Kieffer, Bruno [Ecole Superieure de Biotechnologie de Strasbourg, IGBMC Biomolecular NMR Group, CNRS UMR 7104 (France); Trave, Gilles [Ecole Superieure de Biotechnologie de Strasbourg, Equipe Oncoproteines, IREBS, UMR 7242 (France); Froystein, Nils Age [University of Bergen, Department of Chemistry (Norway); Raae, Arnt J., E-mail: arnt.raae@mbi.uib.no [University of Bergen, Department of Molecular Biology (Norway)

    2012-06-15

    Spectrin is a rod-like multi-modular protein that is mainly composed of triple-helical repeats. These repeats show very similar 3D-structures but variable conformational and thermodynamical stabilities, which may be of great importance for the flexibility and dynamic behaviour of spectrin in the cell. For instance, repeat 17 (R17) of the chicken brain spectrin {alpha}-chain is four times less stable than neighbouring repeat 16 (R16) in terms of Increment G. The structure of spectrin repeats has mainly been investigated by X-ray crystallography, but the structures of a few repeats, e.g. R16, have also been determined by NMR spectroscopy. Here, we undertook a detailed characterization of the neighbouring R17 by NMR spectroscopy. We assigned most backbone resonances and observed NOE restraints, relaxation values and coupling constants that all indicated that the fold of R17 is highly similar to that of R16, in agreement with previous X-ray analysis of a tandem repeat of the two domains. However, {sup 15}N heteronuclear NMR spectra measured at different temperatures revealed particular features of the R17 domain that might contribute to its lower stability. Conformational exchange appeared to alter the linker connecting R17 to R16 as well as the BC-loop in close proximity. In addition, heat-induced splitting was observed for backbone resonances of a few spatially related residues including V99 of helix C, which in R16 is replaced by the larger hydrophobic tryptophan residue that is relatively conserved among other spectrin repeats. These data support the view that the substitution of tryptophan by valine at this position may contribute to the lower stability of R17.

  17. Surgical Margins and the Risk of Local-Regional Recurrence After Mastectomy Without Radiation Therapy

    International Nuclear Information System (INIS)

    Childs, Stephanie K.; Chen Yuhui; Duggan, Margaret M.; Golshan, Mehra; Pochebit, Stephen; Wong, Julia S.; Bellon, Jennifer R.

    2012-01-01

    Purpose: Although positive surgical margins are generally associated with a higher risk of local-regional recurrence (LRR) for most solid tumors, their significance after mastectomy remains unclear. We sought to clarify the influence of the mastectomy margin on the risk of LRR. Methods and Materials: The retrospective cohort consisted of 397 women who underwent mastectomy and no radiation for newly diagnosed invasive breast cancer from 1998-2005. Time to isolated LRR and time to distant metastasis (DM) were evaluated by use of cumulative-incidence analysis and competing-risks regression analysis. DM was considered a competing event for analysis of isolated LRR. Results: The median follow-up was 6.7 years (range, 0.5-12.8 years). The superficial margin was positive in 41 patients (10%) and close (≤2 mm) in 56 (14%). The deep margin was positive in 23 patients (6%) and close in 34 (9%). The 5-year LRR and DM rates for all patients were 2.4% (95% confidence interval, 0.9-4.0) and 3.5% (95% confidence interval, 1.6-5.3) respectively. Fourteen patients had an LRR. Margin status was significantly associated with time to isolated LRR (P=.04); patients with positive margins had a 5-year LRR of 6.2%, whereas patients with close margins and negative margins had 5-year LRRs of 1.5% and 1.9%, respectively. On univariate analysis, positive margins, positive nodes, lymphovascular invasion, grade 3 histology, and triple-negative subtype were associated with significantly higher rates of LRR. When these factors were included in a multivariate analysis, only positive margins and triple-negative subtype were associated with the risk of LRR. Conclusions: Patients with positive mastectomy margins had a significantly higher rate of LRR than those with a close or negative margin. However, the absolute risk of LRR in patients with a positive surgical margin in this series was low, and therefore the benefit of postmastectomy radiation in this population with otherwise favorable features

  18. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  19. A tensegrity model for hydrogen bond networks in proteins

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater

    2017-05-01

    Full Text Available Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance (“closure” is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins (“domains” as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating

  20. Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes.

    Science.gov (United States)

    Gibbons, John G; Rokas, Antonis

    2009-03-01

    Intragenic tandem repeats (ITRs) are consecutive repeats of three or more nucleotides found in coding regions. ITRs are the underlying cause of several human genetic diseases and have been associated with phenotypic variation, including pathogenesis, in several clades of the tree of life. We have examined the evolution and functional role of ITRs in 10 genomes spanning the fungal genus Aspergillus, a clade of relevance to medicine, agriculture, and industry. We identified several hundred ITRs in each of the species examined. ITR content varied extensively between species, with an average 79% of ITRs unique to a given species. For the fraction of conserved ITR regions, sequence comparisons within species and between close relatives revealed that they were highly variable. ITR-containing proteins were evolutionarily less conserved, compositionally distinct, and overrepresented for domains associated with cell-surface localization and function relative to the rest of the proteome. Furthermore, ITRs were preferentially found in proteins involved in transcription, cellular communication, and cell-type differentiation but were underrepresented in proteins involved in metabolism and energy. Importantly, although ITRs were evolutionarily labile, their functional associations appeared. To be remarkably conserved across eukaryotes. Fungal ITRs likely participate in a variety of developmental processes and cell-surface-associated functions, suggesting that their contribution to fungal lifestyle and evolution may be more general than previously assumed.

  1. Repeated measurements of NT-pro-B-type natriuretic peptide, troponin T or C-reactive protein do not predict future allograft rejection in heart transplant recipients.

    Science.gov (United States)

    Battes, Linda C; Caliskan, Kadir; Rizopoulos, Dimitris; Constantinescu, Alina A; Robertus, Jan L; Akkerhuis, Martijn; Manintveld, Olivier C; Boersma, Eric; Kardys, Isabella

    2015-03-01

    Studies on the prognostic value of serial biomarker assays for future occurrence of allograft rejection (AR) are scarce. We examined whether repeated measurements of NT-pro-B-type natriuretic peptide (NT-proBNP), troponin T (TropT) and C-reactive protein (CRP) predict AR. From 2005 to 2010, 77 consecutive heart transplantation (HTx) recipients were included. The NT-proBNP, TropT, and CRP were measured at 16 ± 4 (mean ± standard deviation) consecutive routine endomyocardial biopsy surveillance visits during the first year of follow-up. Allograft rejection was defined as International Society for Heart and Lung Transplantation (ISHLT) grade 2R or higher at endomyocardial biopsy. Joint modeling was used to assess the association between repeated biomarker measurements and occurrence of future AR. Joint modeling accounts for dependence among repeated observations in individual patients. The mean age of the patients at HTx was 49 ± 9.2 years, and 68% were men. During the first year of follow-up, 1,136 biopsies and concurrent blood samples were obtained, and 56 patients (73%) experienced at least one episode of AR. All biomarkers were elevated directly after HTx and achieved steady-state after ∼ 12 weeks, both in patients with or without AR. No associations were present between the repeated measurements of NT-proBNP, TropT, or CRP and AR both early (weeks 0-12) and late (weeks 13-52) in the course after HTx (hazard ratios for weeks 13-52: 0.96 (95% confidence interval, 0.55-1.68), 0.67 (0.27-1.69), and 1.44 (0.90-2.30), respectively, per ln[unit]). Combining the three biomarkers in one model also rendered null results. The temporal evolution of NT-proBNP, TropT, and CRP before AR did not predict occurrence of acute AR both in the early and late course of the first year after HTx.

  2. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commencing...... at the amino-terminal end of each molecule. Two other complement components, C1r and C1s, have two of these repeating units in the carboxy-terminal region of their noncatalytic A chains. Three noncomplement proteins, beta 2-glycoprotein I (beta 2I), the interleukin 2 receptor (IL 2 receptor), and the b chain...... of factor XIII, have 4, 2 and 10 of these repeating units, respectively. These proteins obviously belong to the above family, although there is no evidence that they interact with C3b and/or C4b. Human haptoglobin and rat leukocyte common antigen also contain two and three repeating units, respectively...

  3. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    Science.gov (United States)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-02-01

    The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.

  4. Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes

    International Nuclear Information System (INIS)

    Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem

    2014-01-01

    The Gd 5 Ge 2 Si 2 alloy and the off-stoichiometric Ni 50 Mn 35 In 15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd 5 Ge 2 Si 2 and Ni 50 Mn 35 In 15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis

  5. Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression.

    Science.gov (United States)

    Stanquini, Laura Alves; Biojone, Caroline; Guimarães, Francisco Silveira; Joca, Sâmia Regiane

    2017-11-20

    Nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects in animal models sensitive to acute drug treatment such as the forced swimming test. However, it is not yet clear if repeated treatment with these drugs is required to induce antidepressant-like effects in preclinical models. The aim of this study was to test the effect induced by acute or repeated (7 days) treatment with 7-nitroindazole (7-NI), a preferential inhibitor of neuronal NOS, in rats submitted to the learned helplessness (LH) model. In addition, we aimed at investigating if 7-NI treatment would increase brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus, similarly to the effect of prototype antidepressants. Animals were submitted to a pre-test (PT) session with inescapable footshocks or habituation (no shocks) to the experimental shuttle box. Six days later they were exposed to a test with escapable footshocks. Independent groups received acute (a single injection after PT or before test) or repeated (once a day for 7 days) treatment with vehicle or 7-NI (30 mg/kg). Repeated, but not acute, treatment with 7-NI attenuated LH development. The effect was similar to repeated imipramine treatment. Moreover, in an independent experimental group, only repeated treatment with 7-NI and imipramine increased BDNF protein levels in the hippocampus. The results suggest the nitrergic system could be a target for the treatment of depressive-like conditions. They also indicate that, similar to the positive control imipramine, the antidepressant-like effects of NOS inhibition could involve an increase in hippocampal BDNF levels.

  6. CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression

    DEFF Research Database (Denmark)

    Zaghloul, Eman M; Gissberg, Olof; Moreno, Pedro M D

    2017-01-01

    Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion....... Thus, reduction of both muHTT mRNA and protein levels would ideally be the most useful therapeutic option. We herein present a novel strategy for HD treatment using oligonucleotides (ONs) directly targeting the HTT trinucleotide repeat DNA. A partial, but significant and potentially long-term, HTT...

  7. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  8. Complement system proteins which interact with C3b or C4b A superfamily of structurally related proteins

    DEFF Research Database (Denmark)

    Reid, K B M; Bentley, D R; Campbell, R D

    1986-01-01

    Recent cDNA sequencing data has allowed the prediction of the entire amino acid sequences of complement components factor B and C2, the complement control proteins factor H and C4b-binding protein and a partial sequence for the Cab/C4b receptor CR1. These proteins all contain internal repeating u...

  9. Investigating the roles of MicroRNAs in biotic stress response induced by Rhizoctonia solani in rice

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, O. Nurfarahana; Kalaivani, N. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Sheath blight disease, caused by Rhizoctonia solani 1802/KB was screened on two rice varieties, Oryza sativaindica cultivar MR219 and Oryza sativa indica cultivar UKMRC9. The disease symptom was severe in MR219 compared to UKMRC9. Total RNA from R. solani 1802/KB, infected rice leaves of MR219 and infected rice leaves of UKMRC9 were extracted using TRIzol reagent, purified and sent for small RNA sequencing. Three miRNA libraries were generated and analyzed. The libraries generated 65 805, 78 512 and 81 325 known miRNAs respectively. The structure of miRNA of these samples was predicted. The up-regulated and down-regulated of miRNAs target gene prediction and its target functions were discovered and were mainly related to the growth and development of metabolism, protein transport, transcriptional regulation, stress response, and hormone signaling and electron transfer. Sheath blight-induced differential expression of known miRNAs tends to targetMYB transcription factor, F-box proteins, NBS-LRR, leucine-rich repeat receptor protein kinases and zinc finger proteins. Detecting new miRNAs and measuring the expression profiles of known miRNAs is an important tasks required for a better understanding of various biological conditions. Therefore, further analysis using Gene Ontology Slim will be conducted to deduce some biological information from the datasets obtained.

  10. Amino acid sequence analysis of the annexin super-gene family of proteins.

    Science.gov (United States)

    Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J

    1991-06-15

    The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of

  11. Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy

    NARCIS (Netherlands)

    Gonzalez-Barriga, A.; Mulders, S.A.M.; Giessen, J. van der; Hooijer, J.D.; Bijl, S.; Kessel, I.D.G. van; Beers, J. van; Deutekom, J.C. van; Fransen, J.A.M.; Wieringa, B.; Wansink, D.G.

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a

  12. Estimates of Genetic Parameters of Production Traits for Khuzestan Buffaloes of Iran using Repeated-Records Animal Model

    Directory of Open Access Journals (Sweden)

    Maryam Baharizadeh

    2012-10-01

    Full Text Available Buffalo milk yield records were obtained from monthly records of the Animal Breeding Organization of Iran from 1992 to 2009 in 33 herds raised in the Khuzestan province. Variance components, heritability and repeatability were estimated for milk yield, fat yield, fat percentage, protein yield and protein percentage. These estimates were carried out through single trait animal model using DFREML program. Herd-year-season was considered as fixed effect in the model. For milk production traits, age at calving was fitted as a covariate. The additive genetic and permanent environmental effects were also included in the model. The mean values (±SD for milk yield, fat yield, fat percentage, protein yield and protein percentage were 2285.08±762.47 kg, 144.35±54.86 kg, 6.25±0.90%, 97.30±26.73 kg and 4.19±0.27%, respectively. The heritability (±SE of milk yield, fat yield, fat percentage, protein yield and protein percentage were 0.093±0.08, 0.054±0.06, 0.043±0.05, 0.093±0.16 and zero, respectively. These estimates for repeatability were 0.272, 0.132, 0.043, 0.674 and 0.0002, respectively. Lower values of genetic parameter estimates require more data and reliable pedigree records.

  13. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    Science.gov (United States)

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  14. Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)–Mixed Lineage Leukemia (MLL) Protein–Protein Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Hacer; Li, Yangbing; Liu, Liu; Ji, Jiao; Lee, Shirley; Chen, Yong; Yang, Jiuling; Huang, Liyue; Bernard, Denzil; Xu, Jing; Townsend, Elizabeth C.; Cao, Fang; Ran, Xu; Li, Xiaoqin; Wen, Bo; Sun, Duxin; Stuckey, Jeanne A; Lei, Ming; Dou, Yali; Wang, Shaomeng (Michigan)

    2017-06-06

    We report herein the design, synthesis, and evaluation of macrocyclic peptidomimetics that bind to WD repeat domain 5 (WDR5) and block the WDR5–mixed lineage leukemia (MLL) protein–protein interaction. Compound 18 (MM-589) binds to WDR5 with an IC50 value of 0.90 nM (Ki value <1 nM) and inhibits the MLL H3K4 methyltransferase (HMT) activity with an IC50 value of 12.7 nM. Compound 18 potently and selectively inhibits cell growth in human leukemia cell lines harboring MLL translocations and is >40 times better than the previously reported compound MM-401. Cocrystal structures of 16 and 18 complexed with WDR5 provide structural basis for their high affinity binding to WDR5. Additionally, we have developed and optimized a new AlphaLISA-based MLL HMT functional assay to facilitate the functional evaluation of these designed compounds. Compound 18 represents the most potent inhibitor of the WDR5–MLL interaction reported to date, and further optimization of 18 may yield a new therapy for acute leukemia.

  15. Molecular cloning and in silico analysis of three somatic embryogenesis receptor kinase mRNA from date palm

    Directory of Open Access Journals (Sweden)

    Rekik Imen

    2013-01-01

    Full Text Available We report here the isolation and characterizations of three somatic embryogenesis receptor kinase (PhSERK genes from palm date by a rapid amplification of cDNA ends (RACE approach. PhSERKs belong to a small family of receptor kinase genes, share a conserved structure and extensive sequence homology with previously reported plant SERK genes. Sequence analysis of these genes revealed the sequence size of 11051 pb (PhSERK1, 7981 pb (PhSERK2 and 10510 pb (PhSERK3. The open reading frames of PhSERK1, PhSERK2 and PhSERK3 are 1914 pb, 1797 pb and 1719 pb respectively. PhSERKs belongs to the LRR-type cell surface RLKs, which possess a number of characteristic domains. These include an extracellular domain (EX containing a variable number of LRR units, signal pepetide (SP immediately followed by a single transmembrane domain (TM and an intracellular kinase domain. The phylogenetic tree shows that the protein PhSERK1, PhSERK2 and PhSERK3 clustered within monocots SERKs proteins groups. We also predicted the secondary and tertiary with ligand binding sites structure of the protein PhSERKs.

  16. Structure and Function of the Ankyrin Repeats in the Sw14/Sw16 Transcription Complex of Budding Yeast

    National Research Council Canada - National Science Library

    Breeden, Linda

    1998-01-01

    ANK repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins, including oncogenes and tumor suppressors We have previously...

  17. PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiying; Cui, Yazhou; Luan, Jing [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China); Zhang, Xiumei [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Li, Chengzhi; Zhou, Xiaoyan; Shi, Liang [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China); Wang, Huaxin [Shandong University of Traditional Chinese Medicine, Ji' an, Shandong (China); Han, Jinxiang, E-mail: jxhan9888@aliyun.com [School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji' nan, Shandong (China); Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji' nan, Shandong (China)

    2016-02-12

    Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a collagen-binding proteoglycan highly expressed in the developing bones. Recent studies indicated that PRELP could inhibit osteoclastogenesis as a NF-κB inhibitor. However, its role during osteoblast differentiation is still unclear. In this study, we confirmed that the expression of PRELP increased with the osteogenesis induction of preosteoblastic MC3T3-E1 cells. Down-regulation of PRELP expression by shRNA reduced ALP activity, mineralization and expression of osteogenic marker gene Runx2. Our microarray analysis data suggested that β-catenin may act as a hub gene in the PRELP-mediated gene network. We validated furtherly that PRELP knockdown could inhibit the level of connexin43, a key regulator of osteoblast differentiation by affecting β-catenin protein expression, and its nuclear translocation in MC3T3-E1 preosteoblasts. Therefore, this study established a new role of PRELP in modulating β-catenin/connexin43 pathway and osteoblast differentiation.

  18. Cloning, expression, purification, and characterisation of the HEAT-repeat domain of TOR from the thermophilic eukaryote Chaetomium thermophilum.

    Science.gov (United States)

    Robinson, Graham C; Vegunta, Yogesh; Gabus, Caroline; Gaubitz, Christl; Thore, Stéphane

    2017-05-01

    The Target of Rapamycin Complex is a central controller of cell growth and differentiation in eukaryotes. Its global architecture has been described by cryoelectron microscopy, and regions of its central TOR protein have been described by X-ray crystallography. However, the N-terminal region of this protein, which consists of a series of HEAT repeats, remains uncharacterised at high resolution, most likely due to the absence of a suitable purification procedure. Here, we present a robust method for the preparation of the HEAT-repeat domain, utilizing the thermophilic fungus Chaetomium thermophilum as a source organism. We describe construct design and stable expression in insect cells. An efficient two-step purification procedure is presented, and the purified product is characterised by SEC and MALDI-TOF MS. The methods described pave the way for a complete high-resolution characterisation of this elusive region of the TOR protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Multiple TPR motifs characterize the Fanconi anemia FANCG protein.

    Science.gov (United States)

    Blom, Eric; van de Vrugt, Henri J; de Vries, Yne; de Winter, Johan P; Arwert, Fré; Joenje, Hans

    2004-01-05

    The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.

  20. Aggregation propensity of critical regions of the protein Tau

    Science.gov (United States)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  1. RING finger and WD repeat domain 3 (RFWD3) associates with replication protein A (RPA) and facilitates RPA-mediated DNA damage response.

    Science.gov (United States)

    Liu, Shangfeng; Chu, Jessica; Yucer, Nur; Leng, Mei; Wang, Shih-Ya; Chen, Benjamin P C; Hittelman, Walter N; Wang, Yi

    2011-06-24

    DNA damage response is crucial for maintaining genomic integrity and preventing cancer by coordinating the activation of checkpoints and the repair of damaged DNA. Central to DNA damage response are the two checkpoint kinases ATM and ATR that phosphorylate a wide range of substrates. RING finger and WD repeat domain 3 (RFWD3) was initially identified as a substrate of ATM/ATR from a proteomic screen. Subsequent studies showed that RFWD3 is an E3 ubiquitin ligase that ubiquitinates p53 in vitro and positively regulates p53 levels in response to DNA damage. We report here that RFWD3 associates with replication protein A (RPA), a single-stranded DNA-binding protein that plays essential roles in DNA replication, recombination, and repair. Binding of RPA to single-stranded DNA (ssDNA), which is generated by DNA damage and repair, is essential for the recruitment of DNA repair factors to damaged sites and the activation of checkpoint signaling. We show that RFWD3 is physically associated with RPA and rapidly localizes to sites of DNA damage in a RPA-dependent manner. In vitro experiments suggest that the C terminus of RFWD3, which encompass the coiled-coil domain and the WD40 domain, is necessary for binding to RPA. Furthermore, DNA damage-induced phosphorylation of RPA and RFWD3 is dependent upon each other. Consequently, loss of RFWD3 results in the persistent foci of DNA damage marker γH2AX and the repair protein Rad51 in damaged cells. These findings suggest that RFWD3 is recruited to sites of DNA damage and facilitates RPA-mediated DNA damage signaling and repair.

  2. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L.).

    Science.gov (United States)

    Kumar, Santosh; Jordan, Mark C; Datla, Raju; Cloutier, Sylvie

    2013-01-01

    As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem) while the transcript levels declined during reproductive development (ovary, anthers) and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.

  3. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L..

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    Full Text Available As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem while the transcript levels declined during reproductive development (ovary, anthers and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.

  4. Inhibitory effects of ginseng total saponin on up-regulation of cAMP pathway induced by repeated administration of morphine.

    Science.gov (United States)

    Seo, Jeong-Ju; Lee, Jae-Woong; Lee, Wan-Kyu; Hong, Jin-Tae; Lee, Chong-Kil; Lee, Myung-Koo; Oh, Ki-Wan

    2008-02-01

    We have reported that ginseng total saponin (GTS) inhibited the development of physical and psychological dependence on morphine. However, the possible molecular mechanisms of GTS are unclear. Therefore, this study was undertaken to understand the possible molecular mechanism of GTS on the inhibitory effects of morphine-induced dependence. It has been reported that the up-regulated cAMP pathway in the LC of the mouse brain after repeated administration of morphine contributes to the feature of withdrawals. GTS inhibited up-regulation of cAMP pathway in the LC after repeated administration of morphine in this experiment. GTS inhibited cAMP levels and protein expression of protein kinase A (PKA). In addition, GTS inhibited the increase of cAMP response element binding protein (CREB) phosphorylation. Therefore, we conclude that the inhibitory effects of GTS on morphine-induced dependence might be mediated by the inhibition of cAMP pathway.

  5. 78 FR 65594 - Vehicular Repeaters

    Science.gov (United States)

    2013-11-01

    ... coordinators estimate the effect on coordination fees? Does the supposed benefit that mobile repeater stations... allow the licensing and operation of vehicular repeater systems and other mobile repeaters by public... email: [email protected] or phone: 202-418- 0530 or TTY: 202-418-0432. For detailed instructions for...

  6. Tevatron serial data repeater system

    International Nuclear Information System (INIS)

    Ducar, R.J.

    1981-01-01

    A ten megabit per second serial data repeater system has been developed for the 6.28km Tevatron accelerator. The repeaters are positioned at each of the thirty service buildings and accommodate control and abort system communications as well as distribution of the Tevatron time and energy clocks. The repeaters are transparent to the particular protocol of the transmissions. Serial data are encoded locally as unipolar two volt signals employing the self-clocking Manchester Bi-Phase code. The repeaters modulate the local signals to low-power bursts of 50 MHz rf carrier for the 260m transmission between service buildings. The repeaters also demodulate the transmission and restructure the data for local utilization. The employment of frequency discrimination techniques yields high immunity to the characteristic noise spectrum

  7. Immunogenicity of Recombinant Proteins Consisting of Plasmodium vivax Circumsporozoite Protein Allelic Variant-Derived Epitopes Fused with Salmonella enterica Serovar Typhimurium Flagellin

    Science.gov (United States)

    Leal, Monica Teixeira Andrade; Camacho, Ariane Guglielmi Ariza; Teixeira, Laís Helena; Bargieri, Daniel Youssef; Soares, Irene Silva; Tararam, Cibele Aparecida

    2013-01-01

    A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax. PMID:23863502

  8. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  9. Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies

    Directory of Open Access Journals (Sweden)

    José M. Bravo-San Pedro

    2012-01-01

    Full Text Available Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-onset Parkinson's disease with a clinical appearance indistinguishable from Parkinson's disease idiopathic. Autophagy is an intracellular catabolic mechanism whereby a cell recycles or degrades damage proteins and cytoplasmic organelles. This degradative process has been associated with cellular dysfunction in neurodegenerative processes including Parkinson's disease. We discuss the role of leucine-rich repeat kinase 2 in autophagy, and how the deregulations of this degradative mechanism in cells can be implicated in the Parkinson's disease etiology.

  10. Repeat Customer Success in Extension

    Science.gov (United States)

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  11. Film repeats in radiology department

    International Nuclear Information System (INIS)

    Suwan, A. Z.; Al-Shakharah, A. I

    1997-01-01

    During a one year period, 4910 radiographs of 55780 films were repeated. The objective of our study was to analyse and to classify the causes in order to minimize the repeats, cut the expenses and to provide optimal radiographs for accurate diagnosis. Analysis of the different factors revealed that, 43.6% of film repeats in our service were due to faults in exposure factors, centering comprises 15.9% of the repeats, while too much collimation was responsible for 7.6% of these repeats. All of which can be decreased by awareness and programmed training of technicians. Film blurring caused by patient motion was also responsible for 4.9% for radiographs reexamination, which can be minimized by detailed explanation to the patient and providing the necessary privacy. Fogging of X-Ray films by improper storage or inadequate handling or processing faults were responsible for 14.5% in repeats in our study. Methods and criteria for proper storage and handling of films were discussed. Recommendation for using modern day-light and laser processor has been high lighted. Artefacts are noticeably high in our cases, due to spinal dresses and frequent usage of precious metals for c osmotic purposes in this part of the world. The repeated films comprise 8.8% of all films We conclude that, the main factor responsible for repeats of up to 81.6% of cases was the technologists, thus emphasizing the importance of adequate training of the technologists. (authors). 15 refs., 9 figs., 1 table

  12. Crystal Structures of the Tetratricopeptide Repeat Domains of Kinesin Light Chains: Insight into Cargo Recognition Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haizhong; Lee, Han Youl; Tong, Yufeng; Hong, Bum-Soo; Kim, Kyung-Phil; Shen, Yang; Lim, Kyung Jik; Mackenzie, Farrell; Tempel, Wolfram; Park, Hee-Won (SGC-Toronto); (PPCS); (Toronto)

    2012-10-23

    Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form 'a carboxylate clamp' with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.

  13. Development and validation of a gene profile predicting benefit of postmastectomy radiotherapy in patients with high-risk breast cancer: a study of gene expression in the DBCG82bc cohort.

    Science.gov (United States)

    Tramm, Trine; Mohammed, Hayat; Myhre, Simen; Kyndi, Marianne; Alsner, Jan; Børresen-Dale, Anne-Lise; Sørlie, Therese; Frigessi, Arnoldo; Overgaard, Jens

    2014-10-15

    To identify genes predicting benefit of radiotherapy in patients with high-risk breast cancer treated with systemic therapy and randomized to receive or not receive postmastectomy radiotherapy (PMRT). The study was based on the Danish Breast Cancer Cooperative Group (DBCG82bc) cohort. Gene-expression analysis was performed in a training set of frozen tumor tissue from 191 patients. Genes were identified through the Lasso method with the endpoint being locoregional recurrence (LRR). A weighted gene-expression index (DBCG-RT profile) was calculated and transferred to quantitative real-time PCR (qRT-PCR) in corresponding formalin-fixed, paraffin-embedded (FFPE) samples, before validation in FFPE from 112 additional patients. Seven genes were identified, and the derived DBCG-RT profile divided the 191 patients into "high LRR risk" and "low LRR risk" groups. PMRT significantly reduced risk of LRR in "high LRR risk" patients, whereas "low LRR risk" patients showed no additional reduction in LRR rate. Technical transfer of the DBCG-RT profile to FFPE/qRT-PCR was successful, and the predictive impact was successfully validated in another 112 patients. A DBCG-RT gene profile was identified and validated, identifying patients with very low risk of LRR and no benefit from PMRT. The profile may provide a method to individualize treatment with PMRT. ©2014 American Association for Cancer Research.

  14. Repeat migration and disappointment.

    Science.gov (United States)

    Grant, E K; Vanderkamp, J

    1986-01-01

    This article investigates the determinants of repeat migration among the 44 regions of Canada, using information from a large micro-database which spans the period 1968 to 1971. The explanation of repeat migration probabilities is a difficult task, and this attempt is only partly successful. May of the explanatory variables are not significant, and the overall explanatory power of the equations is not high. In the area of personal characteristics, the variables related to age, sex, and marital status are generally significant and with expected signs. The distance variable has a strongly positive effect on onward move probabilities. Variables related to prior migration experience have an important impact that differs between return and onward probabilities. In particular, the occurrence of prior moves has a striking effect on the probability of onward migration. The variable representing disappointment, or relative success of the initial move, plays a significant role in explaining repeat migration probabilities. The disappointment variable represents the ratio of actural versus expected wage income in the year after the initial move, and its effect on both repeat migration probabilities is always negative and almost always highly significant. The repeat probabilities diminish after a year's stay in the destination region, but disappointment in the most recent year still has a bearing on the delayed repeat probabilities. While the quantitative impact of the disappointment variable is not large, it is difficult to draw comparisons since similar estimates are not available elsewhere.

  15. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  16. Quantum repeated games revisited

    International Nuclear Information System (INIS)

    Frąckiewicz, Piotr

    2012-01-01

    We present a scheme for playing quantum repeated 2 × 2 games based on Marinatto and Weber’s approach to quantum games. As a potential application, we study the twice repeated Prisoner’s Dilemma game. We show that results not available in the classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games proposed by Iqbal and Toor. We point out the drawbacks that make their results unacceptable. (paper)

  17. AcEST: DK951134 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 9|HLRR1_PLAF7 LRR domain-containing protein PF14_0175 OS... 32 3.0 sp|A4QKR2|MATK_CRUWA Maturase K OS=Crucihimalaya...+ Sbjct: 4077 STNN 4080 >sp|A4QKR2|MATK_CRUWA Maturase K OS=Crucihimalaya wallichii GN=matK PE=3 SV=2 Length

  18. RACK1, A Multifaceted Scaffolding Protein: Structure and Function

    LENUS (Irish Health Repository)

    Adams, David R

    2011-10-06

    Abstract The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.

  19. The cumulative analgesic effect of repeated electroacupuncture involves synaptic remodeling in the hippocampal CA3 region☆

    Science.gov (United States)

    Xu, Qiuling; Liu, Tao; Chen, Shuping; Gao, Yonghui; Wang, Junying; Qiao, Lina; Liu, Junling

    2012-01-01

    In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. PMID:25657670

  20. Selecting breast cancer patients with T1-T2 tumors and one to three positive axillary nodes at high postmastectomy locoregional recurrence risk for adjuvant radiotherapy

    International Nuclear Information System (INIS)

    Truong, Pauline T.; Olivotto, Ivo A.; Kader, Hosam A.; Panades, Miguel; Speers, Caroline H.; Berthelet, Eric

    2005-01-01

    Purpose: To define the individual factors and combinations of factors associated with increased risk of locoregional recurrence (LRR) that may justify postmastectomy radiotherapy (PMRT) in patients with T1-T2 breast cancer and one to three positive nodes. Methods and Materials: The study cohort comprised 821 women referred to the British Columbia Cancer Agency between 1989 and 1997 with pathologic T1-T2 breast cancer and one to three positive nodes treated with mastectomy without adjuvant RT. The 10-year Kaplan-Meier estimates of isolated LRR and LRR with or without simultaneous distant recurrence (LRR ± SDR) were analyzed according to age, histologic findings, tumor location, size, and grade, lymphovascular invasion status, estrogen receptor (ER) status, margin status, number of positive nodes, number of nodes removed, percentage of positive nodes, and systemic therapy use. Multivariate analyses were performed using Cox proportional hazards modeling. A risk classification model was developed using combinations of the statistically significant factors identified on multivariate analysis. Results: The median follow-up was 7.7 years. Systemic therapy was used in 94% of patients. Overall, the 10-year Kaplan-Meier isolated LRR and LRR ± SDR rate was 12.7% and 15.9%, respectively. Without PMRT, a 10-year LRR risk of >20% was identified in women with one to three positive nodes plus at least one of the following factors: age 25% of nodes positive (all p 25% of nodes positive, medial tumor location, and ER-negative status were statistically significant predictors of isolated LRR and LRR ± SDR. In the classification model, the first split was according to age ( 25% of nodes positive was associated with a risk of LRR ± SDR of 58.0% compared with 23.8% for those with ≤25% of nodes positive (p = 0.01). Of 698 women >45 years, the presence of >25% of nodes positive also conferred a greater LRR ± SDR risk (26.7%) compared with women with ≤25% of nodes positive (10

  1. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].

    Science.gov (United States)

    Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian

    2009-11-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.

  2. Telomeric repeat factor 1 protein levels correlates with telomere length in colorectal cancer Los niveles proteicos del factor de repetición telomérico 1 se correlacionan con la longitud del telómero en el cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    Cristina Valls-Bautista

    2012-11-01

    Full Text Available Background: colorectal cancer is the third cancer cause of death in Spain. It is important to investigate new tumoral markers for early diagnosis, disease monitoring and prevention strategies. Telomeres protect the chromosome from degradation by nucleases and end-to-end fusion. The progressive loss of the telomeric ends of chromosomes is an important mechanism in the timing of human cellular aging. Telomeric Repeat Factor 1 (TRF1 is a protein that binds at telomere ends. Purpose: to measure the concentrations of TRF1 and the relationships among telomere length, telomerase activity, and TRF1 levels in tumor and normal colorectal mucosa. Method: from normal and tumoral samples of 83 patients who underwent surgery for colorectal cancer we analyzed TRF1 protein concentration by Western Blot, telomerase activity, by the fluorescent-telomeric repeat amplification protocol assay and telomere length by Southern Blot. Results: high levels of TRF1 were observed in 68.7% of tumor samples, while the majority of normal samples (59% showed negative or weak TRF1 concentrations. Among the tumor samples, telomere length was significantly associated with TRF1 protein levels (p = 0.023. Conclusions: a relationship was found between telomere length and TRF1 abundance protein in tumor samples, which means that TRF1 is an important factor in the tumor progression and maybe a diagnostic factor.

  3. Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI+

    Directory of Open Access Journals (Sweden)

    Fátima eGasset-Rosa

    2015-04-01

    Full Text Available The yeast translation termination factor Sup35p, by aggregating as the [PSI+] prion, enables ribosomes to read-through stop codons, thus expanding the diversity of the Saccharomyces cerevisiae proteome. Yeast prions are functional amyloids that replicate by templating their conformation on native protein molecules, then assembling as large aggregates and fibers. Prions propagate epigenetically from mother to daughter cells by fragmentation of such assemblies. In the N-terminal prion-forming domain, Sup35p has glutamine/asparagine-rich oligopeptide repeats (OPRs, which enable propagation through chaperone-elicited shearing. We have engineered chimeras by replacing the polar OPRs in Sup35p by up to five repeats of a hydrophobic amyloidogenic sequence from the synthetic bacterial prionoid RepA-WH1. The resulting hybrid, [REP-PSI+], i was functional in a stop codon read-through assay in S. cerevisiae; ii generates weak phenotypic variants upon both its expression or transformation into [psi-] cells; iii these variants correlated with high molecular weight aggregates resistant to SDS during electrophoresis; and iv according to fluorescence microscopy, the fusion of the prion domains from the engineered chimeras to the reporter protein mCherry generated perivacuolar aggregate foci in yeast cells. All these are signatures of bona fide yeast prions. As assessed through biophysical approaches, the chimeras assembled as oligomers rather than as the fibers characteristic of [PSI+]. These results suggest that it is the balance between polar and hydrophobic residues in OPRs what determines prion conformational dynamics. In addition, our findings illustrate the feasibility of enabling new propagation traits in yeast prions by engineering OPRs with heterologous amyloidogenic sequence repeats.

  4. Receptor-like proteins involved in plant disease resistance

    NARCIS (Netherlands)

    Kruijt, M.; Kock, de M.J.D.; Wit, de P.J.G.M.

    2005-01-01

    Race-specific resistance in plants against microbial pathogens is governed by several distinct classes of resistance (R) genes. This review focuses on the class that consists of the plasma membrane-bound leucine-rich repeat proteins known as receptor-like proteins (RLPs). The first isolated

  5. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior.

    Science.gov (United States)

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed

    2015-06-01

    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.

  6. Repeatability of visual acuity measurement.

    Science.gov (United States)

    Raasch, T W; Bailey, I L; Bullimore, M A

    1998-05-01

    This study investigates features of visual acuity chart design and acuity testing scoring methods which affect the validity and repeatability of visual acuity measurements. Visual acuity was measured using the Sloan and British Standard letter series, and Landolt rings. Identifiability of the different letters as a function of size was estimated, and expressed in the form of frequency-of-seeing curves. These functions were then used to simulate acuity measurements with a variety of chart designs and scoring criteria. Systematic relationships exist between chart design parameters and acuity score, and acuity score repeatability. In particular, an important feature of a chart, that largely determines the repeatability of visual acuity measurement, is the amount of size change attributed to each letter. The methods used to score visual acuity performance also affect repeatability. It is possible to evaluate acuity score validity and repeatability using the statistical principles discussed here.

  7. Clostridium difficile Recombinant Toxin A Repeating Units as a Carrier Protein for Conjugate Vaccines: Studies of Pneumococcal Type 14, Escherichia coli K1, and Shigella flexneri Type 2a Polysaccharides in Mice

    Science.gov (United States)

    Pavliakova, Danka; Moncrief, J. Scott; Lyerly, David M.; Schiffman, Gerald; Bryla, Dolores A.; Robbins, John B.; Schneerson, Rachel

    2000-01-01

    Unlike the native protein, a nontoxic peptide (repeating unit of the native toxin designated rARU) from Clostridium difficile toxin A (CDTA) afforded an antigen that could be bound covalently to the surface polysaccharides of pneumococcus type 14, Shigella flexneri type 2a, and Escherichia coli K1. The yields of these polysaccharide-protein conjugates were significantly increased by prior treatment of rARU with succinic anhydride. Conjugates, prepared with rARU or succinylated (rARUsucc), were administered to mice by a clinically relevant dosage and immunization scheme. All conjugates elicited high levels of serum immunoglobulin G both to the polysaccharides and to CDTA. Conjugate-induced anti-CDTA had neutralizing activity in vitro and protected mice challenged with CDTA, similar to the rARU alone. Conjugates prepared with succinylated rARU, therefore, have potential for serving both as effective carrier proteins for polysaccharides and for preventing enteric disease caused by C. difficile. PMID:10722615

  8. The Rewarding and Locomotor-Sensitizing Effects of Repeated Cocaine Administration are Distinct and Separable in Mice

    Science.gov (United States)

    Riday, Thorfinn T.; Kosofsky, Barry E.; Malanga, C.J.

    2011-01-01

    Repeated psychostimulant exposure progressively increases their potency to stimulate motor activity in rodents. This behavioral or locomotor sensitization is considered a model for some aspects of drug addiction in humans, particularly drug craving during abstinence. However, the role of increased motor behavior in drug reward remains incompletely understood. Intracranial self-stimulation (ICSS) was measured concurrently with locomotor activity to determine if acute intermittent cocaine administration had distinguishable effects on motor behavior and perception of brain stimulation-reward (BSR) in the same mice. Sensitization is associated with changes in neuronal activity and glutamatergic neurotransmission in brain reward circuitry. Expression of AMPA receptor subunits (GluR1 and GluR2) and CRE binding protein (CREB) was measured in the ventral tegmental area (VTA), dorsolateral striatum (STR) and nucleus accumbens (NAc) before and after a sensitizing regimen of cocaine, with and without ICSS. Repeated cocaine administration sensitized mice to its locomotor stimulating effects but not its ability to potentiate BSR. ICSS increased GluR1 in the VTA but not NAc or STR, demonstrating selective changes in protein expression with electrical stimulation of discrete brain structures. Repeated cocaine reduced GluR1, GluR2 and CREB expression in the NAc, and reductions of GluR1 and GluR2 but not CREB were further enhanced by ICSS. These data suggest that the effects of repeated cocaine exposure on reward and motor processes are dissociable in mice, and that reduction of excitatory neurotransmission in the NAc may predict altered motor function independently from changes in reward perception. PMID:22197517

  9. Widespread protein aggregation as an inherent part of aging in C. elegans.

    Directory of Open Access Journals (Sweden)

    Della C David

    Full Text Available Aberrant protein aggregation is a hallmark of many age-related diseases, yet little is known about whether proteins aggregate with age in a non-disease setting. Using a systematic proteomics approach, we identified several hundred proteins that become more insoluble with age in the multicellular organism Caenorhabditis elegans. These proteins are predicted to be significantly enriched in beta-sheets, which promote disease protein aggregation. Strikingly, these insoluble proteins are highly over-represented in aggregates found in human neurodegeneration. We examined several of these proteins in vivo and confirmed their propensity to aggregate with age. Different proteins aggregated in different tissues and cellular compartments. Protein insolubility and aggregation were significantly delayed or even halted by reduced insulin/IGF-1-signaling, which also slows aging. We found a significant overlap between proteins that become insoluble and proteins that influence lifespan and/or polyglutamine-repeat aggregation. Moreover, overexpressing one aggregating protein enhanced polyglutamine-repeat pathology. Together our findings indicate that widespread protein insolubility and aggregation is an inherent part of aging and that it may influence both lifespan and neurodegenerative disease.

  10. Leucine-rich repeat-containing G protein-coupled receptor 4 facilitates vesicular stomatitis virus infection by binding vesicular stomatitis virus glycoprotein.

    Science.gov (United States)

    Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing

    2017-10-06

    Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153.

    Science.gov (United States)

    Milles, Sigrid; Lemke, Edward A

    2011-10-05

    Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (R(E)) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (R(E)/R(E,RC) = 0.99 ± 0.15 with R(E,RC) corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (R(E)/R(E,RC) = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. A guild of 45 CRISPR-associated (Cas protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Daniel H Haft

    2005-11-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPRs are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21-37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer "immunity" against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.

  13. Peptides corresponding to the predicted heptad repeat 2 domain of the feline coronavirus spike protein are potent inhibitors of viral infection.

    Directory of Open Access Journals (Sweden)

    I-Jung Liu

    Full Text Available BACKGROUND: Feline infectious peritonitis (FIP is a lethal immune-mediated disease caused by feline coronavirus (FCoV. Currently, no therapy with proven efficacy is available. In searching for agents that may prove clinically effective against FCoV infection, five analogous overlapping peptides were designed and synthesized based on the putative heptad repeat 2 (HR2 sequence of the spike protein of FCoV, and the antiviral efficacy was evaluated. METHODS: Plaque reduction assay and MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide cytotoxicity assay were performed in this study. Peptides were selected using a plaque reduction assay to inhibit Feline coronavirus infection. RESULTS: The results demonstrated that peptide (FP5 at concentrations below 20 μM inhibited viral replication by up to 97%. The peptide (FP5 exhibiting the most effective antiviral effect was further combined with a known anti-viral agent, human interferon-α (IFN-α, and a significant synergistic antiviral effect was observed. CONCLUSION: Our data suggest that the synthetic peptide FP5 could serve as a valuable addition to the current FIP prevention methods.

  14. Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip.

    Science.gov (United States)

    Nelson, Gregory M; Huffman, Holly; Smith, David F

    2003-01-01

    Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.

  15. Suppression of NF-κB signal pathway by NLRC3-like protein in stony coral Acropora aculeus under heat stress.

    Science.gov (United States)

    Zhou, Zhi; Wu, Yibo; Zhang, Chengkai; Li, Can; Chen, Guangmei; Yu, Xiaopeng; Shi, Xiaowei; Xu, Yanlai; Wang, Lingui; Huang, Bo

    2017-08-01

    Heat stress is the most common factor for coral bleaching, which has increased both in frequency and severity due to global warming. In the present study, the stony coral Acropora aculeus was subjected to acute heat stress and entire transcriptomes were sequenced via the next generation sequencing platform. Four paired-end libraries were constructed and sequenced in two groups, including a control and a heat stress group. A total of 120,319,751 paired-end reads with lengths of 2 × 100 bp were assembled and 55,021 coral-derived genes were obtained. After read mapping and abundance estimation, 9110 differentially expressed genes were obtained in the comparison between the control and heat stress group, including 4465 significantly upregulated and 4645 significantly downregulated genes. Twenty-three GO terms in the Biological Process category were overrepresented for significantly upregulated genes, and divided into six groups according to their relationship. These three groups were related to the NF-κB signal pathway, and the remaining three groups were relevant for pathogen response, immunocyte activation and protein ubiquitination. Forty-three common genes were found in four GO terms, which were directly related to the NF-κB signal pathway. These included 2 NACHT, LRR, PYD domains-containing protein, 5 nucleotide-binding oligomerization domain-containing protein, 29 NLRC3-like protein, 4 NLRC5-like protein, and 3 uncharacterized protein. For significantly downregulated genes, 27 overrepresented GO terms were found in the Biological Process category, which were relevant to protein ubiquitination and ATP metabolism. Our results indicate that heat stress suppressed the immune response level via the NLRC3-like protein, the fine-tuning of protein turnover activity, and ATP metabolism. This might disrupt the balance of coral-zooxanthellae symbiosis and result in the bleaching of the coral A. aculeus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches.

    Science.gov (United States)

    Ranchordas, Mayur Krachna; Dawson, Joel T; Russell, Mark

    2017-01-01

    Specific guidelines that aim to facilitate the recovery of soccer players from the demands of training and a congested fixture schedule are lacking; especially in relation to evidence-based nutritional recommendations. The importance of repeated high level performance and injury avoidance while addressing the challenges of fixture scheduling, travel to away venues, and training commitments requires a strategic and practically feasible method of implementing specific nutritional strategies. Here we present evidence-based guidelines regarding nutritional recovery strategies within the context of soccer. An emphasis is placed on providing practically applicable guidelines for facilitation of recovery when multiple matches are played within a short period of time (i.e. 48 h). Following match-play, the restoration of liver and muscle glycogen stores (via consumption of ~1.2 g⋅kg -1 ⋅h -1 of carbohydrate) and augmentation of protein synthesis (via ~40 g of protein) should be prioritised in the first 20 min of recovery. Daily intakes of 6-10 g⋅kg -1 body mass of carbohydrate are recommended when limited time separates repeated matches while daily protein intakes of >1.5 g⋅kg -1 body mass should be targeted; possibly in the form of multiple smaller feedings (e.g., 6 × 20-40 g). At least 150% of the body mass lost during exercise should be consumed within 1 h and electrolytes added such that fluid losses are ameliorated. Strategic use of protein, leucine, creatine, polyphenols and omega-3 supplements could also offer practical means of enhancing post-match recovery.

  17. A computational model of the LGI1 protein suggests a common binding site for ADAM proteins.

    Directory of Open Access Journals (Sweden)

    Emanuela Leonardi

    Full Text Available Mutations of human leucine-rich glioma inactivated (LGI1 gene encoding the epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE, a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed of repeated structural units, known to mediate protein-protein interactions.A three dimensional in silico model of the two epitempin domains was built to predict the structure-function relationship and propose a functional model integrating previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible arrangement between the two domains and identifies a possible ADAM protein binding site in the β-propeller domain and another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a dynamic way, by binding proteins at different times.The model was also used to predict effects of known disease-causing missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within the cell by quality control mechanisms or by altering interactions required for the secretion process.

  18. Structure and Identification of Solenin: A Novel Fibrous Protein from Bivalve Solen grandis Ligament

    Directory of Open Access Journals (Sweden)

    Jun Meng

    2014-01-01

    Full Text Available Fibrous proteins, which derived from natural sources, have been acting as templates for the production of new materials for decades, and most of them have been modified to improve mechanical performance. Insight into the structures of fibrous proteins is a key step for fabricating of bioinspired materials. Here, we revealed the microstructure of a novel fibrous protein: solenin from Solen grandis ligament and identified the protein by MALDI-TOF-TOF-MS and LC-MS-MS analyses. We found that the protein fiber has no hierarchical structure and is homologous to keratin type II cytoskeletal 1 and type I cytoskeletal 9-like, containing “SGGG,” “SYGSGGG,” “GS,” and “GSS” repeat sequences. Secondary structure analysis by FTIR shows that solenin is composed of 41.8% β-sheet, 16.2% β-turn, 26.5% α-helix, and 9.8% disordered structure. We believe that the β-sheet structure and those repeat sequences which form “glycine loops” may give solenin excellence elastic and flexible properties to withstand tensile stress caused by repeating opening and closing of the shell valves in vivo. This paper contributes a novel fibrous protein for the protein materials world.

  19. The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues.

    Science.gov (United States)

    Ji, Xiaoli; Wang, Min; Li, Lingling; Chen, Fang; Zhang, Yanyang; Li, Qian; Zhou, Junmei

    2017-10-01

    High-quality biosamples are valuable resources for biomedical research. However, some tissues are stored without being sectioned into small aliquots and have to undergo repeated freeze-thaw cycles throughout prolonged experimentation. Little is known regarding the effects of repeated freeze-thaw cycles on the quality of biomolecules in tissues. The aim of this study was to evaluate the impact of repeated freeze-thaw (at room temperature or on ice) cycles on biomolecules and gene expression in four different types of tissues. Each fresh tissue was sectioned into seven aliquots and snap-frozen before undergoing repeated freeze-thaw cycles at room temperature or on ice. Biomolecules were extracted and analyzed. Both relative and absolute quantification were used to detect the changes in gene expression. The results indicated that the impact of repeated freeze-thaw cycles on RNA integrity varied by tissue type. Gene expression, including the housekeeping gene, was affected in RNA-degraded samples according to absolute quantification rather than relative quantification. Furthermore, our results suggest that thawing on ice could protect RNA integrity compared with thawing at room temperature. No obvious degradation of protein or DNA was observed with repeated freeze-thaw cycles either at room temperature or on ice. This research provides ample evidence for the necessity of sectioning fresh tissues into small aliquots before snap-freezing, thus avoiding degradation of RNA and alteration of gene expression resulting from repeated freeze-thaw cycles. For frozen tissue samples that were already in storage and had to be used repeatedly during their lifecycle, thawing on ice or sectioned at ultralow temperature is recommended.

  20. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair.

    Science.gov (United States)

    Kato-Inui, Tomoko; Takahashi, Gou; Hsu, Szuyin; Miyaoka, Yuichiro

    2018-05-18

    Genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) predominantly induces non-homologous end joining (NHEJ), which generates random insertions or deletions, whereas homology-directed repair (HDR), which generates precise recombination products, is useful for wider applications. However, the factors that determine the ratio of HDR to NHEJ products after CRISPR/Cas9 editing remain unclear, and methods by which the proportion of HDR products can be increased have not yet been fully established. We systematically analyzed the HDR and NHEJ products after genome editing using various modified guide RNAs (gRNAs) and Cas9 variants with an enhanced conformational checkpoint to improve the fidelity at endogenous gene loci in HEK293T cells and HeLa cells. We found that these modified gRNAs and Cas9 variants were able to enhance HDR in both single-nucleotide substitutions and a multi-kb DNA fragment insertion. Our results suggest that the original CRISPR/Cas9 system from the bacterial immune system is not necessarily the best option for the induction of HDR in genome editing and indicate that the modulation of the kinetics of conformational checkpoints of Cas9 can optimize the HDR/NHEJ ratio.

  1. Fostering repeat donations in Ghana.

    Science.gov (United States)

    Owusu-Ofori, S; Asenso-Mensah, K; Boateng, P; Sarkodie, F; Allain, J-P

    2010-01-01

    Most African countries are challenged in recruiting and retaining voluntary blood donors by cost and other complexities and in establishing and implementing national blood policies. The availability of replacement donors who are a cheaper source of blood has not enhanced repeat voluntary donor initiatives. An overview of activities for recruiting and retaining voluntary blood donors was carried out. Donor records from mobile sessions were reviewed from 2002 to 2008. A total of 71,701 blood donations; 45,515 (63.5%) being voluntary donations with 11,680 (25%) repeat donations were collected during the study period. Donations from schools and colleges contributed a steady 60% of total voluntary whilst radio station blood drives increased contribution from 10 to 27%. Though Muslim population is less than 20%, blood collection was above the 30-donation cost-effectiveness threshold with a repeat donation trend reaching 60%. In contrast Christian worshippers provided donations. Repeat donation trends amongst school donors and radio blood drives were 20% and 70% respectively. Repeat donations rates have been variable amongst different blood donor groups in Kumasi, Ghana. The impact of community leaders in propagating altruism cannot be overemphasized. Programs aiming at motivating replacement donors to be repeat donors should be developed and assessed. Copyright 2009 The International Association for Biologicals. All rights reserved.

  2. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds.

    Science.gov (United States)

    Projecto-Garcia, Joana; Natarajan, Chandrasekhar; Moriyama, Hideaki; Weber, Roy E; Fago, Angela; Cheviron, Zachary A; Dudley, Robert; McGuire, Jimmy A; Witt, Christopher C; Storz, Jay F

    2013-12-17

    Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that fly at high altitude) face the physiological challenge of jointly optimizing blood-O2 affinity for O2 loading in the pulmonary circulation and O2 unloading in the systemic circulation. At high altitude, this challenge is especially acute for small endotherms like hummingbirds that have exceedingly high mass-specific metabolic rates. Here we report an experimental analysis of hemoglobin (Hb) function in South American hummingbirds that revealed a positive correlation between Hb-O2 affinity and native elevation. Protein engineering experiments and ancestral-state reconstructions revealed that this correlation is attributable to derived increases in Hb-O2 affinity in highland lineages, as well as derived reductions in Hb-O2 affinity in lowland lineages. Site-directed mutagenesis experiments demonstrated that repeated evolutionary transitions in biochemical phenotype are mainly attributable to repeated amino acid replacements at two epistatically interacting sites that alter the allosteric regulation of Hb-O2 affinity. These results demonstrate that repeated changes in biochemical phenotype involve parallelism at the molecular level, and that mutations with indirect, second-order effects on Hb allostery play key roles in biochemical adaptation.

  3. Modular protein switches derived from antibody mimetic proteins.

    Science.gov (United States)

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  5. [Clustered regularly interspaced short palindromic repeats: structure, function and application--a review].

    Science.gov (United States)

    Cui, Yujun; Li, Yanjun; Yan, Yanfeng; Yang, Ruifu

    2008-11-01

    CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats), the basis of spoligotyping technology, can provide prokaryotes with heritable adaptive immunity against phages' invasion. Studies on CRISPR loci and their associated elements, including various CAS (CRISPR-associated) proteins and leader sequences, are still in its infant period. We introduce the brief history', structure, function, bioinformatics research and application of this amazing immunity system in prokaryotic organism for inspiring more scientists to find their interest in this developing topic.

  6. The relative validity and repeatability of an FFQ for estimating intake of zinc and its absorption modifiers in young and older Saudi adults.

    Science.gov (United States)

    Alsufiani, Hadeil M; Yamani, Fatmah; Kumosani, Taha A; Ford, Dianne; Mathers, John C

    2015-04-01

    To assess the relative validity and repeatability of a sixty-four-item FFQ for estimating dietary intake of Zn and its absorption modifiers in Saudi adults. In addition, we used the FFQ to investigate the effect of age and gender on these intakes. To assess validity, all participants completed the FFQ (FFQ1) and a 3 d food record. After 1 month, the FFQ was administered for a second time (FFQ2) to assess repeatability. Jeddah, Saudi Arabia. One hundred males and females aged 20-30 years and 60-70 years participated. Mean intakes of Zn and protein from FFQ1 were significantly higher than those from the food record while there were no detectable differences between tools for measurement of phytic acid intake. Estimated intakes of Zn, protein and phytate by both approaches were strongly correlated (Prange of intakes while for Zn and phytic acid, the difference increased with increasing mean intake. Zn and protein intakes from FFQ1 and FFQ2 were highly correlated (r>0·68, Padults consumed less Zn and protein compared with young adults. Intakes of all dietary components were lower in females than in males. The FFQ developed and tested in the current study demonstrated reasonable relative validity and high repeatability and was capable of detecting differences in intakes between age and gender groups.

  7. UK 2009-2010 repeat station report

    Directory of Open Access Journals (Sweden)

    Thomas J.G. Shanahan

    2013-03-01

    Full Text Available The British Geological Survey is responsible for conducting the UK geomagnetic repeat station programme. Measurements made at the UK repeat station sites are used in conjunction with the three UK magnetic observatories: Hartland, Eskdalemuir and Lerwick, to produce a regional model of the local field each year. The UK network of repeat stations comprises 41 stations which are occupied at approximately 3-4 year intervals. Practices for conducting repeat station measurements continue to evolve as advances are made in survey instrumentation and as the usage of the data continues to change. Here, a summary of the 2009 and 2010 UK repeat station surveys is presented, highlighting the measurement process and techniques, density of network, reduction process and recent results.

  8. Autocorrelation and cross-correlation between hCGβ and PAPP-A in repeated sampling during first trimester of pregnancy

    DEFF Research Database (Denmark)

    Nørgaard, Pernille; Wright, Dave; Ball, Susan

    2013-01-01

    Theoretically, repeated sampling of free β-human chorionic gonadotropin (hCGβ) and pregnancy associated plasma protein-A (PAPP-A) in the first trimester of pregnancy might improve performance of risk assessment of trisomy 21 (T21). To assess the performance of a screening test involving repeated...... measures of biochemical markers, correlations between markers must be estimated. The aims of this study were to calculate the autocorrelation and cross-correlation between hCGβ and PAPP-A in the first trimester of pregnancy and to investigate the possible impact of gestational age at the first sample...

  9. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures

    Directory of Open Access Journals (Sweden)

    Hayes Michael L

    2012-05-01

    Full Text Available Abstract Background Pentatricopeptide repeat (PPR proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82 and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. Results All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3’ UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. Conclusion PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative

  10. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures.

    Science.gov (United States)

    Hayes, Michael L; Giang, Karolyn; Mulligan, R Michael

    2012-05-14

    Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target

  11. Reject/repeat analysis and the effect prior film viewing has on a department's reject/repeat rate

    International Nuclear Information System (INIS)

    Clark, P.A.; Hogg, P.

    2003-01-01

    Purpose: Achieving cost-effectiveness within the NHS is an old initiative but one that has again been highlighted by recent government policies (The New NHS-Modern and Dependable, Stationary Office, London, 1997). It has been reiterated that it is the responsibility of individual Trusts to devise means to provide such a service. Reject/repeat analyses have long been the primary tool used to assess the cost-effectiveness of radiography departments (Quality Assurance in Diagnostic Radiology, WHO, Geneva, 1982). This research paper examines an in-house initiative (viewing patients' previous films) commonly employed in other Health Trusts in order to reduce departmental repeat/reject rates. Method: Three hundred orthopaedic patients with hip, knee and ankle prostheses were included in a reject/repeat analysis. The aim was to investigate whether or not viewing patient's previous relevant radiographs would be advantageous to the practicing radiographer. This was done through an audit cycle consisting of two audit periods each lasting for 3 months. The primary audit period recorded the baseline repeat/reject rate, with the secondary audit period recording the repeat/reject rate under an experimental condition of viewing the relevant radiographs. Results: The baseline audit revealed repeat rates of 33% in orthopaedic patients with hip, knee and ankle prostheses. The availability of prior film viewing to the radiographer reduced this repeat rate to 10.6%. Conclusion: Prior film viewing dramatically reduced the department's repeat/reject rate by 22.4%. This provides scope for significant patient dose reductions as well as reducing departmental film expenses. This is an underestimated initiative and should be used appropriately in routine clinical practice

  12. Transfer buffer containing methanol can be reused multiple times in protein electrotransfer.

    Science.gov (United States)

    Pettegrew, Colin J; Jayini, Renuka; Islam, M Rafiq

    2009-04-01

    We investigated the feasibility of repeated use of transfer buffer containing methanol in electrotransfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to polyvinylidene difluoride (PVDF) membrane using a prestained protein marker of broad molecular sizes. Transfer of the antitumor protein p53 in HEK293T cell extracts, using fresh and used transfer buffer, followed by detection with anti-p53 antibody was also performed to test detectability in immunoblot. Results from these experiments indicate that the transfer buffer can be reused at least five times and maintain a similar extent of protein transfer to PVDF membrane. Repeated use of the transfer buffer containing methanol will significantly reduce the volume of hazardous waste generated and its disposal cost as well as its adverse effect on environment.

  13. Using the clustered circular layout as an informative method for visualizing protein-protein interaction networks.

    Science.gov (United States)

    Fung, David C Y; Wilkins, Marc R; Hart, David; Hong, Seok-Hee

    2010-07-01

    The force-directed layout is commonly used in computer-generated visualizations of protein-protein interaction networks. While it is good for providing a visual outline of the protein complexes and their interactions, it has two limitations when used as a visual analysis method. The first is poor reproducibility. Repeated running of the algorithm does not necessarily generate the same layout, therefore, demanding cognitive readaptation on the investigator's part. The second limitation is that it does not explicitly display complementary biological information, e.g. Gene Ontology, other than the protein names or gene symbols. Here, we present an alternative layout called the clustered circular layout. Using the human DNA replication protein-protein interaction network as a case study, we compared the two network layouts for their merits and limitations in supporting visual analysis.

  14. Association Between the 21-Gene Recurrence Score Assay and Risk of Locoregional Recurrence in Node-Negative, Estrogen Receptor–Positive Breast Cancer: Results From NSABP B-14 and NSABP B-20

    Science.gov (United States)

    Mamounas, Eleftherios P.; Tang, Gong; Fisher, Bernard; Paik, Soonmyung; Shak, Steven; Costantino, Joseph P.; Watson, Drew; Geyer, Charles E.; Wickerham, D. Lawrence; Wolmark, Norman

    2010-01-01

    Purpose The 21-gene OncotypeDX recurrence score (RS) assay quantifies the risk of distant recurrence in tamoxifen-treated patients with node-negative, estrogen receptor (ER)–positive breast cancer. We investigated the association between RS and risk for locoregional recurrence (LRR) in patients with node-negative, ER-positive breast cancer from two National Surgical Adjuvant Breast and Bowel Project (NSABP) trials (NSABP B-14 and B-20). Patients and Methods RS was available for 895 tamoxifen-treated patients (from both trials), 355 placebo-treated patients (from B-14), and 424 chemotherapy plus tamoxifen-treated patients (from B-20). The primary end point was time to first LRR. Distant metastases, second primary cancers, and deaths before LRR were censored. Results In tamoxifen-treated patients, LRR was significantly associated with RS risk groups (P 30). There were also significant associations between RS and LRR in placebo-treated patients from B-14 (P = .022) and in chemotherapy plus tamoxifen–treated patients from B-20 (P = .028). In multivariate analysis, RS was an independent significant predictor of LRR along with age and type of initial treatment. Conclusion Similar to the association between RS and risk for distant recurrence, a significant association exists between RS and risk for LRR. This information has biologic consequences and potential clinical implications relative to locoregional therapy decisions for patients with node-negative and ER-positive breast cancer. PMID:20065188

  15. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20.

    Science.gov (United States)

    Mamounas, Eleftherios P; Tang, Gong; Fisher, Bernard; Paik, Soonmyung; Shak, Steven; Costantino, Joseph P; Watson, Drew; Geyer, Charles E; Wickerham, D Lawrence; Wolmark, Norman

    2010-04-01

    The 21-gene OncotypeDX recurrence score (RS) assay quantifies the risk of distant recurrence in tamoxifen-treated patients with node-negative, estrogen receptor (ER)-positive breast cancer. We investigated the association between RS and risk for locoregional recurrence (LRR) in patients with node-negative, ER-positive breast cancer from two National Surgical Adjuvant Breast and Bowel Project (NSABP) trials (NSABP B-14 and B-20). RS was available for 895 tamoxifen-treated patients (from both trials), 355 placebo-treated patients (from B-14), and 424 chemotherapy plus tamoxifen-treated patients (from B-20). The primary end point was time to first LRR. Distant metastases, second primary cancers, and deaths before LRR were censored. In tamoxifen-treated patients, LRR was significantly associated with RS risk groups (P 30). There were also significant associations between RS and LRR in placebo-treated patients from B-14 (P = .022) and in chemotherapy plus tamoxifen-treated patients from B-20 (P = .028). In multivariate analysis, RS was an independent significant predictor of LRR along with age and type of initial treatment. Similar to the association between RS and risk for distant recurrence, a significant association exists between RS and risk for LRR. This information has biologic consequences and potential clinical implications relative to locoregional therapy decisions for patients with node-negative and ER-positive breast cancer.

  16. Can understanding the packing of side chains improve the design of protein-protein interactions?

    Science.gov (United States)

    Zhou, Alice; O'Hern, Corey; Regan, Lynne

    2011-03-01

    With the long-term goal to improve the design of protein-protein interactions, we have begun extensive computational studies to understand how side-chains of key residues of binding partners geometrically fit together at protein-peptide interfaces, e.g. the tetratrico-peptide repeat protein and its cognate peptide). We describe simple atomic-scale models of hydrophobic dipeptides, which include hard-core repulsion, bond length and angle constraints, and Van der Waals attraction. By completely enumerating all minimal energy structures in these systems, we are able to reproduce important features of the probability distributions of side chain dihedral angles of hydrophic residues in the protein data bank. These results are the crucial first step in developing computational models that can predict the side chain conformations of residues at protein-peptide interfaces. CSO acknowledges support from NSF grant no. CMMT-1006527.

  17. Members of a novel protein family containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by apicomplexan parasites.

    Science.gov (United States)

    Friedrich, Nikolas; Santos, Joana M; Liu, Yan; Palma, Angelina S; Leon, Ester; Saouros, Savvas; Kiso, Makoto; Blackman, Michael J; Matthews, Stephen; Feizi, Ten; Soldati-Favre, Dominique

    2010-01-15

    Numerous intracellular pathogens exploit cell surface glycoconjugates for host cell recognition and entry. Unlike bacteria and viruses, Toxoplasma gondii and other parasites of the phylum Apicomplexa actively invade host cells, and this process critically depends on adhesins (microneme proteins) released onto the parasite surface from intracellular organelles called micronemes (MIC). The microneme adhesive repeat (MAR) domain of T. gondii MIC1 (TgMIC1) recognizes sialic acid (Sia), a key determinant on the host cell surface for invasion by this pathogen. By complementation and invasion assays, we demonstrate that TgMIC1 is one important player in Sia-dependent invasion and that another novel Sia-binding lectin, designated TgMIC13, is also involved. Using BLAST searches, we identify a family of MAR-containing proteins in enteroparasitic coccidians, a subclass of apicomplexans, including T. gondii, suggesting that all these parasites exploit sialylated glycoconjugates on host cells as determinants for enteric invasion. Furthermore, this protein family might provide a basis for the broad host cell range observed for coccidians that form tissue cysts during chronic infection. Carbohydrate microarray analyses, corroborated by structural considerations, show that TgMIC13, TgMIC1, and its homologue Neospora caninum MIC1 (NcMIC1) share a preference for alpha2-3- over alpha2-6-linked sialyl-N-acetyllactosamine sequences. However, the three lectins also display differences in binding preferences. Intense binding of TgMIC13 to alpha2-9-linked disialyl sequence reported on embryonal cells and relatively strong binding to 4-O-acetylated-Sia found on gut epithelium and binding of NcMIC1 to 6'sulfo-sialyl Lewis(x) might have implications for tissue tropism.

  18. Roles for the coat protein telokin-like domain and the scaffolding protein amino-terminus

    Science.gov (United States)

    Suhanovsky, Margaret M.; Teschke, Carolyn M.

    2011-01-01

    Assembly of icosahedral capsids of proper size and symmetry is not understood. Residue F170 in bacteriophage P22 coat protein is critical for conformational switching during assembly. Substitutions at this site cause assembly of tubes of hexamerically arranged coat protein. Intragenic suppressors of the ts phenotype of F170A and F170K coat protein mutants were isolated. Suppressors were repeatedly found in the coat protein telokin-like domain at position 285, which caused coat protein to assemble into petite procapsids and capsids. Petite capsid assembly strongly correlated to the side chain volume of the substituted amino acid. We hypothesize that larger side chains at position 285 torque the telokin-like domain, changing flexibility of the subunit and intercapsomer contacts. Thus, a single amino acid substitution in coat protein is sufficient to change capsid size. In addition, the products of assembly of the variant coat proteins were affected by the size of the internal scaffolding protein. PMID:21784500

  19. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex.

    Science.gov (United States)

    Kula, Joanna; Blasiak, Anna; Czerw, Anna; Tylko, Grzegorz; Sowa, Joanna; Hess, Grzegorz

    2016-04-01

    It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, β2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from presynaptic

  20. Repeated short climatic change affects the epidermal differentiation program and leads to matrix remodeling in a human organotypic skin model.

    Science.gov (United States)

    Boutrand, Laetitia-Barbollat; Thépot, Amélie; Muther, Charlotte; Boher, Aurélie; Robic, Julie; Guéré, Christelle; Vié, Katell; Damour, Odile; Lamartine, Jérôme

    2017-01-01

    Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to "hot-wet" (40°C, 80% relative humidity [RH]) or "cold-dry" (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot-wet and cold-dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold-dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment.

  1. Repeating Marx

    DEFF Research Database (Denmark)

    Fuchs, Christian; Monticelli, Lara

    2018-01-01

    This introduction sets out the context of the special issue “Karl Marx @ 200: Debating Capitalism & Perspectives for the Future of Radical Theory”, which was published on the occasion of Marx’s bicentenary on 5 May 2018. First, we give a brief overview of contemporary capitalism’s development...... and its crises. Second, we argue that it is important to repeat Marx today. Third, we reflect on lessons learned from 200 years of struggles for alternatives to capitalism. Fourth, we give an overview of the contributions in this special issue. Taken together, the contributions in this special issue show...... that Marx’s theory and politics remain key inspirations for understanding exploitation and domination in 21st-century society and for struggles that aim to overcome these phenomena and establishing a just and fair society. We need to repeat Marx today....

  2. MNS16A tandem repeat minisatellite of human telomerase gene: functional studies in colorectal, lung and prostate cancer.

    Science.gov (United States)

    Hofer, Philipp; Zöchmeister, Cornelia; Behm, Christian; Brezina, Stefanie; Baierl, Andreas; Doriguzzi, Angelina; Vanas, Vanita; Holzmann, Klaus; Sutterlüty-Fall, Hedwig; Gsur, Andrea

    2017-04-25

    MNS16A, a functional polymorphic tandem repeat minisatellite, is located in the promoter region of an antisense transcript of the human telomerase reverse transcriptase gene. MNS16A promoter activity depends on the variable number of tandem repeats (VNTR) presenting varying numbers of transcription factor binding sites for GATA binding protein 1. Although MNS16A has been investigated in multiple cancer epidemiology studies with incongruent findings, functional data of only two VNTRs (VNTR-243 and VNTR-302) were available thus far, linking the shorter VNTR to higher promoter activity.For the first time, we investigated promoter activity of all six VNTRs of MNS16A in cell lines of colorectal, lung and prostate cancer using Luciferase reporter assay. In all investigated cell lines shorter VNTRs showed higher promoter activity. While this anticipated indirect linear relationship was affirmed for colorectal cancer SW480 (P = 0.006), a piecewise linear regression model provided significantly better model fit in lung cancer A-427 (P = 6.9 × 10-9) and prostate cancer LNCaP (P = 0.039). In silico search for transcription factor binding sites in MNS16A core repeat element suggested a higher degree of complexity involving X-box binding protein 1, general transcription factor II-I, and glucocorticoid receptor alpha in addition to GATA binding protein 1.Further functional studies in additional cancers are requested to extend our knowledge of MNS16A functionality uncovering potential cancer type-specific differences. Risk alleles may vary in different malignancies and their determination in vitro could be relevant for interpretation of genotype data.

  3. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia

    Science.gov (United States)

    Patel-King, Ramila S.; King, Stephen M.

    2016-01-01

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarian Schmidtea mediterranea and were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  4. Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)(n) Repeats by PNA or LNA Targeting

    DEFF Research Database (Denmark)

    Bergquist, Helen; Rocha, Cristina S. J.; Alvarez-Asencio, Ruben

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigen...

  5. Functional dissection of Streptococcus pyogenes M5 protein: the hypervariable region is essential for virulence.

    Directory of Open Access Journals (Sweden)

    Johan Waldemarsson

    Full Text Available The surface-localized M protein of Streptococcus pyogenes is a major virulence factor that inhibits phagocytosis, as determined ex vivo. Because little is known about the role of M protein in vivo we analyzed the contribution of different M protein regions to virulence, using the fibrinogen (Fg-binding M5 protein and a mouse model of acute invasive infection. This model was suitable, because M5 is required for mouse virulence and binds mouse and human Fg equally well, as shown here. Mixed infection experiments with wild type bacteria demonstrated that mutants lacking the N-terminal hypervariable region (HVR or the Fg-binding B-repeat region were strongly attenuated, while a mutant lacking the conserved C-repeats was only slightly attenuated. Because the HVR of M5 is not required for phagocytosis resistance, our data imply that this HVR plays a major but unknown role during acute infection. The B-repeat region is required for phagocytosis resistance and specifically binds Fg, suggesting that it promotes virulence by binding Fg. However, B-repeat mutants were attenuated even in Fg-deficient mice, implying that the B-repeats may have a second function, in addition to Fg-binding. These data demonstrate that two distinct M5 regions, including the HVR, are essential to virulence during the early stages of an infection. In particular, our data provide the first in vivo evidence that the HVR of an M protein plays a major role in virulence, focusing interest on the molecular role of this region.

  6. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort

    Directory of Open Access Journals (Sweden)

    Dickens Jennifer A

    2011-11-01

    Full Text Available Abstract Background There is a need for biomarkers to better characterise individuals with COPD and to aid with the development of therapeutic interventions. A panel of putative blood biomarkers was assessed in a subgroup of the Evaluation of COPD Longitudinally to Identify Surrogate Endpoints (ECLIPSE cohort. Methods Thirty-four blood biomarkers were assessed in 201 subjects with COPD, 37 ex-smoker controls with normal lung function and 37 healthy non-smokers selected from the ECLIPSE cohort. Biomarker repeatability was assessed using baseline and 3-month samples. Intergroup comparisons were made using analysis of variance, repeatability was assessed through Bland-Altman plots, and correlations between biomarkers and clinical characteristics were assessed using Spearman correlation coefficients. Results Fifteen biomarkers were significantly different in individuals with COPD when compared to former or non-smoker controls. Some biomarkers, including tumor necrosis factor-α and interferon-γ, were measurable in only a minority of subjects whilst others such as C-reactive protein showed wide variability over the 3-month replication period. Fibrinogen was the most repeatable biomarker and exhibited a weak correlation with 6-minute walk distance, exacerbation rate, BODE index and MRC dyspnoea score in COPD subjects. 33% (66/201 of the COPD subjects reported at least 1 exacerbation over the 3 month study with 18% (36/201 reporting the exacerbation within 30 days of the 3-month visit. CRP, fibrinogen interleukin-6 and surfactant protein-D were significantly elevated in those COPD subjects with exacerbations within 30 days of the 3-month visit compared with those individuals that did not exacerbate or whose exacerbations had resolved. Conclusions Only a few of the biomarkers assessed may be useful in diagnosis or management of COPD where the diagnosis is based on airflow obstruction (GOLD. Further analysis of more promising biomarkers may reveal

  7. Murine protein H is comprised of 20 repeating units, 61 amino acids in length

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Tack, B F

    1986-01-01

    A cDNA library constructed from size-selected (greater than 28 S) poly(A)+ RNA isolated from the livers of C57B10. WR mice was screened by using a 249-base-pair (bp) cDNA fragment encoding 83 amino acid residues of human protein H as a probe. Of 120,000 transformants screened, 30 hybridized......, 448 bp of 3'-untranslated sequence, and a polyadenylylated tail of undetermined length. Murine pre-protein H was deduced to consist of an 18-amino acid signal peptide and 1216 residues of H-protein sequence. Murine H was composed of 20 repetitive units, each about 61 amino acid residues in length...

  8. Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: transcript profile and therapeutic effects.

    Directory of Open Access Journals (Sweden)

    Zenaida P Lopez-Dee

    Full Text Available Thrombospondin-1 (TSP-1 is a matricellular protein with regulatory functions in inflammation and cancer. The type 1 repeats (TSR domains of TSP-1 have been shown to interact with a wide range of proteins that result in the anti-angiogenic and anti-tumor properties of TSP-1. To ascertain possible functions and evaluate potential therapeutic effects of TSRs in inflammatory bowel disease, we conducted clinical, histological and microarray analyses on a mouse model of induced colitis. We used dextran sulfate sodium (DSS to induce colitis in wild-type (WT mice for 7 days. Simultaneously, mice were injected with either saline or one form of TSP-1 derived recombinant proteins, containing either (1 the three type 1 repeats of the TSP-1 (3TSR, (2 the second type 1 repeat (TSR2, or (3 TSR2 with the RFK sequence (TSR2+RFK. Total RNA isolated from the mice colons were processed and hybridized to mouse arrays. Array data were validated by real-time qPCR and immunohistochemistry. Histological and disease indices reveal that the mice treated with the TSRs show different patterns of leukocytic infiltration and that 3TSR treatment was the most effective in decreasing inflammation in DSS-induced colitis. Transcriptional profiling revealed differentially expressed (DE genes, with the 3TSR-treated mice showing the least deviation from the WT-water controls. In conclusion, this study shows that 3TSR treatment is effective in attenuating the inflammatory response to DSS injury. In addition, the transcriptomics work unveils novel genetic data that suggest beneficial application of the TSR domains in inflammatory bowel disease.

  9. Impact of Alu repeats on the evolution of human p53 binding sites

    Directory of Open Access Journals (Sweden)

    Sirotin Michael V

    2011-01-01

    Full Text Available Abstract Background The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. Results We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. Conclusions The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu

  10. TEN-YEAR RECURRENCE RATES IN YOUNG WOMEN WITH BREAST CANCER BY LOCOREGIONAL TREATMENT APPROACH

    Science.gov (United States)

    Beadle, Beth M.; Woodward, Wendy A.; Tucker, Susan L.; Outlaw, Elesyia D.; Allen, Pamela K.; Oh, Julia L.; Strom, Eric A.; Perkins, George H.; Tereffe, Welela; Yu, Tse-Kuan; Meric-Bernstam, Funda; Litton, Jennifer K.; Buchholz, Thomas A.

    2011-01-01

    Purpose Young women with breast cancer have higher locoregional recurrence (LRR) rates than older patients. The goal of this study is to determine the impact of locoregional treatment strategy, breast-conserving therapy (BCT), mastectomy alone (M), or mastectomy with adjuvant radiation (MXRT), on LRR for patients 35 years or younger. Methods and Materials Data for 668 breast cancers in 652 young patients with breast cancer were retrospectively reviewed; 197 patients were treated with BCT, 237 with M, and 234 with MXRT. Results Median follow-up for all living patients was 114 months. In the entire cohort, 10-year actuarial LRR rates varied by locoregional treatment: 19.8% for BCT, 24.1% for M, and 15.1% for MXRT (p = 0.05). In patients with Stage II disease, 10-year actuarial LRR rates by locoregional treatment strategy were 17.7% for BCT, 22.8% for M, and 5.7% for MXRT (p = 0.02). On multivariate analysis, M (hazard ratio, 4.45) and Grade III disease (hazard ratio, 2.24) predicted for increased LRR. In patients with Stage I disease, there was no difference in LRR rates based on locoregional treatment (18.0% for BCT, 19.8% for M; p = 0.56), but chemotherapy use had a statistically significant LRR benefit (13.5% for chemotherapy, 27.9% for none; p = 0.04). Conclusions Young women have high rates of LRR after breast cancer treatment. For patients with Stage II disease, the best locoregional control rates were achieved with MXRT. For patients with Stage I disease, similar outcomes were achieved with BCT and mastectomy; however, chemotherapy provided a significant benefit to either approach. PMID:18707822

  11. Ten-Year Recurrence Rates in Young Women With Breast Cancer by Locoregional Treatment Approach

    International Nuclear Information System (INIS)

    Beadle, Beth M.; Woodward, Wendy A.; Tucker, Susan L.; Outlaw, Elesyia D.; Allen, Pamela K.; Oh, Julia L.; Strom, Eric A.; Perkins, George H.; Tereffe, Welela; Yu, T.-K.; Meric-Bernstam, Funda; Litton, Jennifer K.; Buchholz, Thomas A.

    2009-01-01

    Purpose: Young women with breast cancer have higher locoregional recurrence (LRR) rates than older patients. The goal of this study is to determine the impact of locoregional treatment strategy, breast-conserving therapy (BCT), mastectomy alone (M), or mastectomy with adjuvant radiation (MXRT), on LRR for patients 35 years or younger. Methods and Materials: Data for 668 breast cancers in 652 young patients with breast cancer were retrospectively reviewed; 197 patients were treated with BCT, 237 with M, and 234 with MXRT. Results: Median follow-up for all living patients was 114 months. In the entire cohort, 10-year actuarial LRR rates varied by locoregional treatment: 19.8% for BCT, 24.1% for M, and 15.1% for MXRT (p = 0.05). In patients with Stage II disease, 10-year actuarial LRR rates by locoregional treatment strategy were 17.7% for BCT, 22.8% for M, and 5.7% for MXRT (p = 0.02). On multivariate analysis, M (hazard ratio, 4.45) and Grade III disease (hazard ratio, 2.24) predicted for increased LRR. In patients with Stage I disease, there was no difference in LRR rates based on locoregional treatment (18.0% for BCT, 19.8% for M; p = 0.56), but chemotherapy use had a statistically significant LRR benefit (13.5% for chemotherapy, 27.9% for none; p = 0.04). Conclusions: Young women have high rates of LRR after breast cancer treatment. For patients with Stage II disease, the best locoregional control rates were achieved with MXRT. For patients with Stage I disease, similar outcomes were achieved with BCT and mastectomy; however, chemotherapy provided a significant benefit to either approach

  12. Biological and biochemical characterization of mice expressing prion protein devoid of the octapeptide repeat region after infection with prions.

    Science.gov (United States)

    Yamaguchi, Yoshitaka; Miyata, Hironori; Uchiyama, Keiji; Ootsuyama, Akira; Inubushi, Sachiko; Mori, Tsuyoshi; Muramatsu, Naomi; Katamine, Shigeru; Sakaguchi, Suehiro

    2012-01-01

    Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.

  13. APE1 incision activity at abasic sites in tandem repeat sequences.

    Science.gov (United States)

    Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M

    2014-05-29

    Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.

  14. Analysis of repeated measures data

    CERN Document Server

    Islam, M Ataharul

    2017-01-01

    This book presents a broad range of statistical techniques to address emerging needs in the field of repeated measures. It also provides a comprehensive overview of extensions of generalized linear models for the bivariate exponential family of distributions, which represent a new development in analysing repeated measures data. The demand for statistical models for correlated outcomes has grown rapidly recently, mainly due to presence of two types of underlying associations: associations between outcomes, and associations between explanatory variables and outcomes. The book systematically addresses key problems arising in the modelling of repeated measures data, bearing in mind those factors that play a major role in estimating the underlying relationships between covariates and outcome variables for correlated outcome data. In addition, it presents new approaches to addressing current challenges in the field of repeated measures and models based on conditional and joint probabilities. Markov models of first...

  15. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...... between the anti-GLURP489-1271 and anti-(EENV)6 antibody responses. The data provide indirect evidence for a protective role of antibodies reacting with recombinant GLURP489-1271 as well as with the synthetic peptide (EENV)6 from the Pf155/RESA....

  16. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.

    Science.gov (United States)

    Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J

    2011-04-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

  17. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup.

    Science.gov (United States)

    Beck, Emily A; Llopart, Ana

    2015-11-25

    Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.

  18. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci

    DEFF Research Database (Denmark)

    Alkhnbashi, Omer S.; Costa, Fabrizio; Shah, Shiraz Ali

    2014-01-01

    Motivation: The discovery of CRISPR-Cas systems almost 20 years ago rapidly changed our perception of the bacterial and archaeal immune systems. CRISPR loci consist of several repetitive DNA sequences called repeats, inter-spaced by stretches of variable length sequences called spacers. This CRISPR...... array is transcribed and processed into multiple mature RNA species (crRNAs). A single crRNA is integrated into an interference complex, together with CRISPR-associated (Cas) proteins, to bind and degrade invading nucleic acids. Although existing bioinformatics tools can recognize CRISPR loci...... by their characteristic repeat-spacer architecture, they generally output CRISPR arrays of ambiguous orientation and thus do not determine the strand from which crRNAs are processed. Knowledge of the correct orientation is crucial for many tasks, including the classification of CRISPR conservation, the detection...

  19. Risk factors for locoregional disease recurrence after breast-conserving therapy in patients with breast cancer treated with neoadjuvant chemotherapy: An international collaboration and individual patient meta-analysis.

    Science.gov (United States)

    Valachis, Antonios; Mamounas, Eleftherios P; Mittendorf, Elizabeth A; Hayashi, Naoki; Ishitobi, Makoto; Natoli, Clara; Fitzal, Florian; Rubio, Isabel T; Tiezzi, Daniel G; Shin, Hee-Chul; Anderson, Stewart J; Hunt, Kelly K; Matsuda, Naoko; Ohsumi, Shozo; Totomi, Athina; Nilsson, Cecilia

    2018-05-03

    Several studies have reported a high risk of local disease recurrence (LR) and locoregional disease recurrence (LRR) in patients with breast cancer after neoadjuvant chemotherapy (NCT) and breast-conserving therapy (BCT). The objective of the current study was to identify potential risk factors for LR and LRR after NCT and BCT. Individual patient data sets from 9 studies were pooled. The outcomes of interest were the occurrence of LR and/or LRR. A 1-stage meta-analytic approach was used. Cox proportional hazards regression models were applied to identify factors that were predictive of LR and LRR, respectively. A total of 9 studies (4125 patients) provided their data sets. The 10-year LR rate was 6.5%, whereas the 10-year LRR rate was 10.3%. Four factors were found to be associated with a higher risk of LR: 1) estrogen receptor-negative disease; 2) cN + disease; 3) a lack of pathologic complete response in axilla (pN0); and 4) pN2 to pN3 disease. The predictive score for LR determined 3 risk groups: a low-risk, intermediate-risk, and high-risk group with 10-year LR rates of 4.0%, 7.9%, and 20.4%, respectively. Two additional factors were found to be associated with an increased risk of LRR: cT3 to cT4 disease and a lack of pathologic complete response in the breast. The predictive score for LRR determined 3 risk groups; a low-risk, intermediate-risk, and high-risk group with 10-year LRR rates of 3.2%, 10.1%, and 24.1%, respectively. BCT after NCT appears to be an oncologically safe procedure for a large percentage of patients with breast cancer. Two easy-to-use clinical scores were developed that can help clinicians to identify patients at higher risk of LR and LRR after NCT and BCT and individualize the postoperative treatment plan and follow-up. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  20. Radiation Field Design and Patterns of Locoregional Recurrence Following Definitive Radiotherapy for Breast Cancer

    International Nuclear Information System (INIS)

    Chen, Susie A.; Schuster, David M.; Mister, Donna; Liu Tian; Godette, Karen; Torres, Mylin A.

    2013-01-01

    Purpose: Locoregional control is associated with breast cancer-specific and overall survival in select women with breast cancer. Although several patient, tumor, and treatment characteristics have been shown to contribute to locoregional recurrence (LRR), studies evaluating factors related to radiotherapy (XRT) technique have been limited. We investigated the relationship between LRR location and XRT fields and dose delivered to the primary breast cancer in women experiencing subsequent locoregional relapse. Methods and Materials: We identified 21 women who were previously treated definitively with surgery and XRT for breast cancer. All patients developed biopsy-result proven LRR and presented to Emory University Hospital between 2004 and 2010 for treatment. Computed tomography (CT) simulation scans with XRT dose files for the initial breast cancer were fused with 18 F-labeled fluorodeoxyglucose positron emission tomography (FDG PET)/CT images in DICOM (Digital Imaging and Communications in Medicine) format identifying the LRR. Each LRR was categorized as in-field, defined as ≥95% of the LRR volume receiving ≥95% of the prescribed whole-breast dose; marginal, defined as LRR at the field edge and/or not receiving ≥95% of the prescribed dose to ≥95% of the volume; or out-of-field, that is, LRR intentionally not treated with the original XRT plan. Results: Of the 24 identified LRRs (3 patients experienced two LRRs), 3 were in-field, 9 were marginal, and 12 were out-of-field. Two of the 3 in-field LRRs were marginal misses of the additional boost XRT dose. Out-of-field LRRs consisted of six supraclavicular and six internal mammary nodal recurrences. Conclusions: Most LRRs in our study occurred in areas not fully covered by the prescribed XRT dose or were purposely excluded from the original XRT fields. Our data suggest that XRT technique, field design, and dose play a critical role in preventing LRR in women with breast cancer.

  1. In vitro activation of transcription by the human T-cell leukemia virus type I Tax protein.

    Science.gov (United States)

    Matthews, M A; Markowitz, R B; Dynan, W S

    1992-05-01

    The human T-cell leukemia virus type I (HTLV-I) regulatory protein Tax activates transcription of the proviral long terminal repeats and a number of cellular promoters. We have developed an in vitro system to characterize the mechanism by which Tax interacts with the host cell transcription machinery. Tax was purified from cells infected with a baculovirus expression vector. Addition of these Tax preparations to nuclear extracts from uninfected human T lymphocytes activated transcription of the HTLV-I long terminal repeat approximately 10-fold. Transcription-stimulatory activity copurified with the immunoreactive 40-kDa Tax polypeptide on gel filtration chromatography, and, as expected, the effect of recombinant Tax was diminished in HTLV-I-infected T-lymphocyte extracts containing endogenous Tax. Tax-mediated transactivation in vivo has been previously shown to require 21-bp-repeat Tax-responsive elements (TxREs) in the promoter DNA. Stimulation of transcription in vitro was also strongly dependent on these sequences. To investigate the mechanism of Tax transactivation, cellular proteins that bind the 21-bp-repeat TxREs were prepared by DNA affinity chromatography. Recombinant Tax markedly increased the formation of a specific host protein-DNA complex detected in an electrophoretic mobility shift assay. These data suggest that Tax activates transcription through a direct interaction with cellular proteins that bind to the 21-bp-repeat TxREs.

  2. Evaluation of the deleterious health effects of consumption of repeatedly heated vegetable oil

    Directory of Open Access Journals (Sweden)

    Rekhadevi Perumalla Venkata

    Full Text Available Consumption of repeatedly heated cooking oil (RHCO has been a regular practice without knowing the harmful effects of use. The present study is based on the hypothesis that, heating of edible oils to their boiling points results in the formation of free radicals that cause oxidative stress and induce damage at the cellular and molecular levels. Peroxide value of heated oil, histopathological alterations, antioxidant enzyme levels and blood biochemistry were determined in Wistar rats treated with the RHCO. RHCO revealed higher peroxide value in comparison to oil that has been unheated or singly heated. Histopathological observation depicted significant damage in jejunum, colon and liver of animals that received oil heated repeatedly for 3 times. The altered antioxidant status reflects an adaptive response to oxidative stress. Alteration in the levels of these enzymes might be due to the formation of reactive oxygen species (ROS through auto oxidation or enzyme catalyzed oxidation of electrophilic components within RHCO. Analysis of blood samples revealed elevated levels of glucose, creatinine and cholesterol with declined levels of protein and albumin in repeatedly heated cooking oil group. Hematological parameters did not reveal any statistically significant difference between treated and control groups. Results of the present study confirm that the thermal oxidation of cooking oil generates free radicals and dietary consumption of such oil results in detrimental health effects. Keywords: Repeatedly heated cooking oil, Peroxide value, Oxidative stress, Hematological parameters

  3. Existence of life-time stable proteins in mature rats-Dating of proteins' age by repeated short-term exposure to labeled amino acids throughout age

    DEFF Research Database (Denmark)

    Bechshøft, Cecilie Leidesdorff; Schjerling, Peter; Bornø, Andreas

    2017-01-01

    In vivo turnover rates of proteins covering the processes of protein synthesis and breakdown rates have been measured in many tissues and protein pools using various techniques. Connective tissue and collagen protein turnover is of specific interest since existing results are rather diverging. Th...... living days, indicating very slow turnover. The data support the hypothesis that some proteins synthesized during the early development and growth still exist much later in life of animals and hence has a very slow turnover rate.......In vivo turnover rates of proteins covering the processes of protein synthesis and breakdown rates have been measured in many tissues and protein pools using various techniques. Connective tissue and collagen protein turnover is of specific interest since existing results are rather diverging....... The aim of this study is to investigate whether we can verify the presence of protein pools within the same tissue with very distinct turnover rates over the life-span of rats with special focus on connective tissue. Male and female Lewis rats (n = 35) were injected with five different isotopically...

  4. Plasma levels of leptin, omentin, collagenous repeat-containing sequence of 26-kDa protein (CORS-26 and adiponectin before and after oral glucose uptake in slim adults

    Directory of Open Access Journals (Sweden)

    Schäffler Andreas

    2007-02-01

    Full Text Available Abstract Background Adipose tissue secreted proteins are collectively named adipocytokines and include leptin, adiponectin, resistin, collagenous repeat-containing sequence of 26-kDa protein (CORS-26 and omentin. Several of these adipocytokines influence insulin sensitivity and glucose metabolism and therefore systemic levels may be affected by oral glucose uptake. Whereas contradictory results have been published for leptin and adiponectin, resistin has not been extensively investigated and no reports on omentin and CORS-26 do exist. Methods Therefore the plasma levels of these proteins before and 120 min after an oral glucose load were analyzed in 20 highly-insulin sensitive, young adults by ELISA or immunoblot. Results Circulating leptin was reduced 2 h after glucose uptake whereas adiponectin and resistin levels are not changed. Distribution of adiponectin and CORS-26 isoforms were similar before and after glucose ingestion. Omentin is highly abundant in plasma and immunoblot analysis revealed no alterations when plasma levels before and 2 h after glucose intake were compared. Conclusion Taken together our data indicate that only leptin is reduced by glucose uptake in insulin-sensitive probands whereas adiponectin and resistin are not altered. CORS-26 was demonstrated for the first time to circulate as high molecular weight form in plasma and like omentin was not influenced by oral glucose load. Omentin was shown to enhance insulin-stimulated glucose uptake but systemic levels are not correlated to postprandial blood glucose.

  5. Immune responses of eastern fence lizards (Sceloporus undulatus) to repeated acute elevation of corticosterone.

    Science.gov (United States)

    McCormick, Gail L; Langkilde, Tracy

    2014-08-01

    Prolonged elevations of glucocorticoids due to long-duration (chronic) stress can suppress immune function. It is unclear, however, how natural stressors that result in repeated short-duration (acute) stress, such as frequent agonistic social encounters or predator attacks, fit into our current understanding of the immune consequences of stress. Since these types of stressors may activate the immune system due to increased risk of injury, immune suppression may be reduced at sites where individuals are repeatedly exposed to potentially damaging stressors. We tested whether repeated acute elevation of corticosterone (CORT, a glucocorticoid) suppresses immune function in eastern fence lizards (Sceloporus undulatus), and whether this effect varies between lizards from high-stress (high baseline CORT, invaded by predatory fire ants) and low-stress (low baseline CORT, uninvaded) sites. Lizards treated daily with exogenous CORT showed higher hemagglutination of novel proteins by their plasma (a test of constitutive humoral immunity) than control lizards, a pattern that was consistent across sites. There was no significant effect of CORT treatment on bacterial killing ability of plasma. These results suggest that repeated elevations of CORT, which are common in nature, produce immune effects more typical of those expected at the acute end of the acute-chronic spectrum and provide no evidence of modulated consequences of elevated CORT in animals from high-stress sites. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. simple sequence repeats (EST-SSR)

    African Journals Online (AJOL)

    Yomi

    2012-01-19

    Jan 19, 2012 ... 212 primer pairs selected, based on repeat patterns of n≥8 for di-, tri-, tetra- and penta-nucleotide repeat ... Cluster analysis revealed a high genetic similarity among the sugarcane (Saccharum spp.) breeding lines which could reduce the genetic gain in ..... The multiple allele characteristic of SSR com-.

  7. Nifty Nines and Repeating Decimals

    Science.gov (United States)

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  8. Repeated Prescribed Burning in Aspen

    Science.gov (United States)

    Donald A. Perala

    1974-01-01

    Infrequent burning weather, low flammability of the aspen-hardwood association, and prolific sprouting and seeding of shrubs and hardwoods made repeated dormant season burning a poor tool to convert good site aspen to conifers. Repeat fall burns for wildlife habitat maintenance is workable if species composition changes are not important.

  9. Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species.

    Science.gov (United States)

    Nepal, Madhav P; Andersen, Ethan J; Neupane, Surendra; Benson, Benjamin V

    2017-09-30

    Disease resistance genes (R genes), as part of the plant defense system, have coevolved with corresponding pathogen molecules. The main objectives of this project were to identify non-Toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (nTNL) genes and elucidate their evolutionary divergence across six plant genomes. Using reference sequences from Arabidopsis , we investigated nTNL orthologs in the genomes of common bean, Medicago , soybean, poplar, and rice. We used Hidden Markov Models for sequence identification, performed model-based phylogenetic analyses, visualized chromosomal positioning, inferred gene clustering, and assessed gene expression profiles. We analyzed 908 nTNL R genes in the genomes of the six plant species, and classified them into 12 subgroups based on the presence of coiled-coil (CC), nucleotide binding site (NBS), leucine rich repeat (LRR), resistance to Powdery mildew 8 (RPW8), and BED type zinc finger domains. Traditionally classified CC-NBS-LRR (CNL) genes were nested into four clades (CNL A-D) often with abundant, well-supported homogeneous subclades of Type-II R genes. CNL-D members were absent in rice, indicating a unique R gene retention pattern in the rice genome. Genomes from Arabidopsis , common bean, poplar and soybean had one chromosome without any CNL R genes. Medicago and Arabidopsis had the highest and lowest number of gene clusters, respectively. Gene expression analyses suggested unique patterns of expression for each of the CNL clades. Differential gene expression patterns of the nTNL genes were often found to correlate with number of introns and GC content, suggesting structural and functional divergence.

  10. Locoregional Recurrence of Breast Cancer in Patients Treated With Breast Conservation Surgery and Radiotherapy Following Neoadjuvant Chemotherapy

    International Nuclear Information System (INIS)

    Min, Sun Young; Lee, Seung Ju; Shin, Kyung Hwan; Park, In Hae; Jung, So-Youn; Lee, Keun Seok; Ro, Jungsil; Lee, Seeyoun; Kim, Seok Won; Kim, Tae Hyun; Kang, Han-Sung; Cho, Kwan Ho

    2011-01-01

    Purpose: Breast conservation surgery (BCS) and radiotherapy (RT) following neoadjuvant chemotherapy (NCT) have been linked with high locoregional recurrence (LRR) rates and ipsilateral breast tumor recurrence (IBTR) rates. The purpose of this study was to analyze clinical outcomes in patients who exhibited LRR and IBTR after being treated by BCS and RT following NCT. Methods and Materials: In total, 251 breast cancer patients treated with BCS and RT following NCT between 2001 and 2006 were included. All patients had been shown to be clinically node-positive. Clinical stage at diagnosis (2003 AJCC) was II in 68% of patients and III in 32% of patients. Of those, 50%, 35%, and 15% of patients received anthracycline-based, taxane-based, and combined anthracycline-taxane NCT, respectively. All patients received RT. Results: During follow-up (median, 55 months), 26 (10%) patients had LRR, 19 of these patients had IBTR. Five-year actuarial rates of IBTR-free and LRR-free survival were 91% and 89%, respectively. In multivariate analyses, lack of hormone suppression therapy was found to increase both LRR and IBTR rates. Hazard ratios were 7.99 (p < 0.0001) and 4.22 (p = 0.004), respectively. Additionally, pathology stage N2 to N3 increased LRR rate (hazard ratio, 4.22; p = 0.004), and clinical AJCC stage III IBTR rate (hazard ratio, 9.05; p = 0.034). Achievement of pathological complete response and presence of multifocal tumors did not affect LRR or IBTR. Conclusions: In patients with locally advanced disease, who were clinically node-positive at presentation, BCS after NCT resulted in acceptably low rates of IBTR and LRR. Mastectomy should be considered as an option in patients who present with clinical stage III tumors or who are not treated with adjuvant hormone suppression therapy, because they exhibit high IBTR rates after NCT and BCS.

  11. Local-Regional Recurrence With and Without Radiation Therapy After Neoadjuvant Chemotherapy and Mastectomy for Clinically Staged T3N0 Breast Cancer

    International Nuclear Information System (INIS)

    Nagar, Himanshu; Mittendorf, Elizabeth A.; Strom, Eric A.; Perkins, George H.; Oh, Julia L.; Tereffe, Welela; Woodward, Wendy A.; Gonzalez-Angulo, Ana M.; Hunt, Kelly K.; Buchholz, Thomas A.; Yu, Tse-Kuan

    2011-01-01

    Purpose: The purpose of this study was to determine local-regional recurrence (LRR) risk according to whether postmastectomy radiation therapy (PMRT) was used to treat breast cancer patients with clinical T3N0 disease who received neoadjuvant chemotherapy (NAC) and mastectomy. Methodsand Materials: Clinicopathology data from 162 patients with clinical T3N0 breast cancer who received NAC and underwent mastectomy were retrospectively reviewed. A total of 119 patients received PMRT, and 43 patients did not. The median number of axillary lymph nodes (LNs) dissected was 15. Actuarial rates were calculated using the Kaplan-Meier method and compared using the log-rank test. Results: At a median follow-up of 75 months, 15 of 162 patients developed LRR. For all patients, the 5-year LRR rate was 9% (95% confidence interval [CI], 4%-14%). The 5-year LRR rate for those who received PMRT was 4% (95% CI, 1%-9%) vs. 24% (95% CI, 10%-39%) for those who did not receive PMRT (p <0.001). A significantly higher proportion of irradiated patients had pathology involved LNs and were ≤40 years old. Among patients who had pathology involved LNs, the LRR rate was lower in those who received PMRT (p <0.001). A similar trend was observed for those who did not have pathology involved LN disease. Among nonirradiated patients, the appearance of pathologic LN disease after NAC was the only clinicopathologic factor examined that significantly correlated with the risk of LRR. Conclusions: Breast cancer patients with clinical T3N0 disease treated with NAC and mastectomy but without PMRT had a significant risk of LRR, even when there was no pathologic evidence of LN involvement present after NAC. PMRT was effective in reducing the LRR rate. We suggest PMRT should be considered for patients with clinical T3N0 disease.

  12. Locoregional Recurrence of Breast Cancer in Patients Treated With Breast Conservation Surgery and Radiotherapy Following Neoadjuvant Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sun Young [Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Department of Surgery, Kyung Hee University, Seoul (Korea, Republic of); Lee, Seung Ju [Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Shin, Kyung Hwan, E-mail: radiat@ncc.re.kr [Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Park, In Hae; Jung, So-Youn; Lee, Keun Seok; Ro, Jungsil; Lee, Seeyoun; Kim, Seok Won [Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Kim, Tae Hyun [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Kang, Han-Sung [Center for Breast Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Cho, Kwan Ho [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2011-12-01

    Purpose: Breast conservation surgery (BCS) and radiotherapy (RT) following neoadjuvant chemotherapy (NCT) have been linked with high locoregional recurrence (LRR) rates and ipsilateral breast tumor recurrence (IBTR) rates. The purpose of this study was to analyze clinical outcomes in patients who exhibited LRR and IBTR after being treated by BCS and RT following NCT. Methods and Materials: In total, 251 breast cancer patients treated with BCS and RT following NCT between 2001 and 2006 were included. All patients had been shown to be clinically node-positive. Clinical stage at diagnosis (2003 AJCC) was II in 68% of patients and III in 32% of patients. Of those, 50%, 35%, and 15% of patients received anthracycline-based, taxane-based, and combined anthracycline-taxane NCT, respectively. All patients received RT. Results: During follow-up (median, 55 months), 26 (10%) patients had LRR, 19 of these patients had IBTR. Five-year actuarial rates of IBTR-free and LRR-free survival were 91% and 89%, respectively. In multivariate analyses, lack of hormone suppression therapy was found to increase both LRR and IBTR rates. Hazard ratios were 7.99 (p < 0.0001) and 4.22 (p = 0.004), respectively. Additionally, pathology stage N2 to N3 increased LRR rate (hazard ratio, 4.22; p = 0.004), and clinical AJCC stage III IBTR rate (hazard ratio, 9.05; p = 0.034). Achievement of pathological complete response and presence of multifocal tumors did not affect LRR or IBTR. Conclusions: In patients with locally advanced disease, who were clinically node-positive at presentation, BCS after NCT resulted in acceptably low rates of IBTR and LRR. Mastectomy should be considered as an option in patients who present with clinical stage III tumors or who are not treated with adjuvant hormone suppression therapy, because they exhibit high IBTR rates after NCT and BCS.

  13. The Asian Rice Gall Midge (Orseolia oryzae Mitogenome Has Evolved Novel Gene Boundaries and Tandem Repeats That Distinguish Its Biotypes.

    Directory of Open Access Journals (Sweden)

    Isha Atray

    Full Text Available The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon. The genome presented many unusual features: (1 rearrangement in the order of tRNAs as well as protein coding genes; (2 truncation and unusual secondary structures of tRNAs; (3 presence of two different repeat elements in separate non-coding regions; (4 presence of one pseudo-tRNA gene; (5 inversion of the rRNA genes; (6 higher percentage of non-coding regions when compared with other insect mitogenomes. Rearrangements of the tRNAs and protein coding genes are explained on the basis of tandem duplication and random loss model and why intramitochondrial recombination is a better model for explaining rearrangements in the O. oryzae mitochondrial genome is discussed. Furthermore, we evaluated the number of iterations of the tandem repeat elements found in the mitogenome. This led to the identification of genetic markers capable of differentiating rice gall midge biotypes and the two Orseolia species investigated.

  14. Comparative Pharmacokinetics of Cefquinome (Cobactan 2.5% following Repeated Intramuscular Administrations in Sheep and Goats

    Directory of Open Access Journals (Sweden)

    Mohamed El-Hewaity

    2014-01-01

    Full Text Available The comparative pharmacokinetic profile of cefquinome was studied in sheep and goats following repeated intramuscular (IM administrations of 2 mg/kg body weight. Cefquinome concentrations in serum were determined by microbiological assay technique using Micrococcus luteus (ATCC 9341 as test organism. Following intramuscular injection of cefquinome in sheep and goats, the disposition curves were best described by two-compartment open model in both sheep and goats. The pharmacokinetics of cefquinome did not differ significantly between sheep and goats; similar intramuscular dose rate of cefquinome should therefore be applicable to both species. On comparing the data of serum levels of repeated intramuscular injections with first intramuscular injection, it was revealed that repeated intramuscular injections of cefquinome have cumulative effect in both species sheep and goats. The in vitro serum protein-binding tendency was 15.65% in sheep and 14.42% in goats. The serum concentrations of cefquinome along 24 h after injection in this study were exceeding the MICs of different susceptible microorganisms responsible for serious disease problems. These findings indicate successful use of cefquinome in sheep and goats.

  15. Design of tryptophan-containing mutants of the symmetrical Pizza protein for biophysical studies.

    Science.gov (United States)

    Noguchi, Hiroki; Mylemans, Bram; De Zitter, Elke; Van Meervelt, Luc; Tame, Jeremy R H; Voet, Arnout

    2018-03-18

    β-propeller proteins are highly symmetrical, being composed of a repeated motif with four anti-parallel β-sheets arranged around a central axis. Recently we designed the first completely symmetrical β-propeller protein, Pizza6, consisting of six identical tandem repeats. Pizza6 is expected to prove a useful building block for bionanotechnology, and also a tool to investigate the folding and evolution of β-propeller proteins. Folding studies are made difficult by the high stability and the lack of buried Trp residues to act as monitor fluorophores, so we have designed and characterized several Trp-containing Pizza6 derivatives. In total four proteins were designed, of which three could be purified and characterized. Crystal structures confirm these mutant proteins maintain the expected structure, and a clear redshift of Trp fluorescence emission could be observed upon denaturation. Among the derivative proteins, Pizza6-AYW appears to be the most suitable model protein for future folding/unfolding kinetics studies as it has a comparable stability as natural β-propeller proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host

    Directory of Open Access Journals (Sweden)

    Mota Maria M

    2011-03-01

    Full Text Available Abstract Background The Plasmodium Cysteine Repeat Modular Proteins (PCRMP are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. Methods In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. Results Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. Conclusions PCRMP3 and 4 play multiple roles during the Plasmodium life

  17. De Novo Construction of Redox Active Proteins.

    Science.gov (United States)

    Moser, C C; Sheehan, M M; Ennist, N M; Kodali, G; Bialas, C; Englander, M T; Discher, B M; Dutton, P L

    2016-01-01

    Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways. © 2016 Elsevier Inc. All rights reserved.

  18. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  19. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Lade, E-mail: aln@humgen.au.dk [Department of Human Genetics, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  20. The polymorphic integumentary mucin B.1 from Xenopus laevis contains the short consensus repeat.

    Science.gov (United States)

    Probst, J C; Hauser, F; Joba, W; Hoffmann, W

    1992-03-25

    The frog integumentary mucin B.1 (FIM-B.1), discovered by molecular cloning, contains a cysteine-rich C-terminal domain which is homologous with von Willebrand factor. With the help of the polymerase chain reaction, we now characterize a contiguous region 5' to the von Willebrand factor domain containing the short consensus repeat typical of many proteins from the complement system. Multiple transcripts have been cloned, which originate from a single animal and differ by a variable number of tandem repeats (rep-33 sequences). These different transcripts probably originate solely from two genes and are generated presumably by alternative splicing of an huge array of functional cassettes. This model is supported by analysis of genomic FIM-B.1 sequences from Xenopus laevis. Here, rep-33 sequences are arranged in an interrupted array of individual units. Additionally, results of Southern analysis revealed genetic polymorphism between different animals which is predicted to be within the tandem repeats. A first investigation of the predicted mucins with the help of a specific antibody against a synthetic peptide determined the molecular mass of FIM-B.1 to greater than 200 kDa. Here again, genetic polymorphism between different animals is detected.

  1. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii.

    Science.gov (United States)

    Brendel, Jutta; Stoll, Britta; Lange, Sita J; Sharma, Kundan; Lenz, Christof; Stachler, Aris-Edda; Maier, Lisa-Katharina; Richter, Hagen; Nickel, Lisa; Schmitz, Ruth A; Randau, Lennart; Allers, Thorsten; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita

    2014-03-07

    The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1-8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.

  2. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  3. The prognostic role of Leucine-rich repeat-containing G-protein-coupled receptor 5 in gastric cancer: A systematic review with meta-analysis.

    Science.gov (United States)

    Huang, Tianchen; Qiu, Xinguang; Xiao, Jianan; Wang, Qingbing; Wang, Yanjun; Zhang, Yong; Bai, Dongxiao

    2016-04-01

    The prognostic value of Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) in gastric cancer remains controversial. To further investigate this relationship, we performed meta-analyses to systematically review the association between LGR5 expression and various clinical parameters in gastric cancer patients. Eligible studies from PubMed, Embase, Web of Science, CNKI (Chinese National Knowledge Infrastructure), Wangfang (Database of Chinese Ministry of Science & Technology) and CBM (China Biological Medicine) databases were evaluated to investigate the association of LGR5 expression with overall survival (OS) and clinicopathological features of gastric cancer. LGR5 overexpression was significantly associated with poor OS in patients with gastric cancer (HR 1.66, 95% CI 1.02-2.69). LGR5 overexpression was also significantly associated with TNM stage (TIII/TIV vs TI/TII: OR 5.42, 95% CI 1.02-28.72) and lymph node metastasis (positive vs negative: OR 2.30, 95% CI 1.06-5.0). Our meta-analysis indicates that LGR5 may be a predictive factor for invasion and metastasis, and poor prognosis in patients with gastric cancer. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. [Knocking-out extra domain A alternative splice fragment of fibronectin using a clustered regularly interspaced short palindromic repeats/associated proteins 9 system].

    Science.gov (United States)

    Yang, Yue; Wang, Haicheng; Xu, Shuyu; Peng, Jing; Jiang, Jiuhui; Li, Cuiying

    2015-08-01

    To investigate the effect of the fibronectin extra domain A on the aggressiveness of salivary adenoid cystic carcinoma (SACC) cells, via the clustered regularly interspaced short palindromic repeats (CRISPR)/ associated proteins (Cas) system. One sgRNA was designed to target the upstream of the genome sequences of extra domain A(EDA) exon and the downstream. Then the sgRNA was linked into plasmid PX-330 and transfected into SACC-83 cells. PCR and DNA sequence were used to testify the knockout cells, and the monoclones of EDA absent SACC cells were selected (A+C-2, A+C-6, B+C-10). CCK-8 cell proliferation and invasion was then tested in control group and the experimental group. The sgRNA was successfully linked into PX-330 plasmid. Part of adenoid cystic carcinoma cells' SACC-83 genomic EDA exon was knocked out, and the knockdown efficiency was above 70%, but the total amount of fibronectin did not change significantly. Three monoclones of EDA absent SACC- 83 cells were successfully selected with diminished migration and proliferation. The CRISPR/Cas9 system was a simplified system with relatively high knockout efficiency and EDA knockout could inhibiting SACC cell's mobility and invasiveness.

  5. Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates.

    Science.gov (United States)

    Naville, M; Warren, I A; Haftek-Terreau, Z; Chalopin, D; Brunet, F; Levin, P; Galiana, D; Volff, J-N

    2016-04-01

    Viruses and transposable elements, once considered as purely junk and selfish sequences, have repeatedly been used as a source of novel protein-coding genes during the evolution of most eukaryotic lineages, a phenomenon called 'molecular domestication'. This is exemplified perfectly in mammals and other vertebrates, where many genes derived from long terminal repeat (LTR) retroelements (retroviruses and LTR retrotransposons) have been identified through comparative genomics and functional analyses. In particular, genes derived from gag structural protein and envelope (env) genes, as well as from the integrase-coding and protease-coding sequences, have been identified in humans and other vertebrates. Retroelement-derived genes are involved in many important biological processes including placenta formation, cognitive functions in the brain and immunity against retroelements, as well as in cell proliferation, apoptosis and cancer. These observations support an important role of retroelement-derived genes in the evolution and diversification of the vertebrate lineage. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest.

    Science.gov (United States)

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K

    2016-09-29

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars.

  7. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 colocalizes with insulin receptor substrate 4 (IRS4 in the hypothalamic neurons and mediates IRS4 degradation

    Directory of Open Access Journals (Sweden)

    Xia Zefeng

    2011-09-01

    Full Text Available Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 is expressed in neuropeptide Y and proopiomelanocortin (POMC neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4 is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC and neuropeptide Y (NPY neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.

  8. Heterogeneity of the Epstein-Barr Virus (EBV) Major Internal Repeat Reveals Evolutionary Mechanisms of EBV and a Functional Defect in the Prototype EBV Strain B95-8.

    Science.gov (United States)

    Ba Abdullah, Mohammed M; Palermo, Richard D; Palser, Anne L; Grayson, Nicholas E; Kellam, Paul; Correia, Samantha; Szymula, Agnieszka; White, Robert E

    2017-12-01

    Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified through both coevolution with its host and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging because of the large number and lengths of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat 1 of EBV (IR1; also known as the BamW repeats) for more than 70 strains. The diversity of the latency protein EBV nuclear antigen leader protein (EBNA-LP) resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 open reading frame (ORF) is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp) and one zone upstream of and two within BWRF1. IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as from spontaneous mutation, with interstrain recombination being more common in tumor-derived viruses. This genetic exchange often incorporates regions of Epstein-Barr virus (EBV) infects the majority of the world population but causes illness in only a small minority of people. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity to see if different strains have different disease impacts have excluded regions of repeating sequence, as they are more technically challenging. Here we analyze the sequence of the largest repeat in EBV (IR1). We first characterized the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and we suggest that tumor-associated viruses may be more likely to contain DNA mixed from two strains. The

  9. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.

    Science.gov (United States)

    Ostria-Hernández, Martha Lorena; Sánchez-Vallejo, Carlos Javier; Ibarra, J Antonio; Castro-Escarpulli, Graciela

    2015-08-04

    In recent years the emergence of multidrug resistant Klebsiella pneumoniae strains has been an increasingly common event. This opportunistic species is one of the five main bacterial pathogens that cause hospital infections worldwide and multidrug resistance has been associated with the presence of high molecular weight plasmids. Plasmids are generally acquired through horizontal transfer and therefore is possible that systems that prevent the entry of foreign genetic material are inactive or absent. One of these systems is CRISPR/Cas. However, little is known regarding the clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) system in K. pneumoniae. The adaptive immune system CRISPR/Cas has been shown to limit the entry of foreign genetic elements into bacterial organisms and in some bacteria it has been shown to be involved in regulation of virulence genes. Thus in this work we used bioinformatics tools to determine the presence or absence of CRISPR/Cas systems in available K. pneumoniae genomes. The complete CRISPR/Cas system was identified in two out of the eight complete K. pneumoniae genomes sequences and in four out of the 44 available draft genomes sequences. The cas genes in these strains comprises eight cas genes similar to those found in Escherichia coli, suggesting they belong to the type I-E group, although their arrangement is slightly different. As for the CRISPR sequences, the average lengths of the direct repeats and spacers were 29 and 33 bp, respectively. BLAST searches demonstrated that 38 of the 116 spacer sequences (33%) are significantly similar to either plasmid, phage or genome sequences, while the remaining 78 sequences (67%) showed no significant similarity to other sequences. The region where the CRISPR/Cas systems were located is the same in all the Klebsiella genomes containing it, it has a syntenic architecture, and is located among genes encoding for proteins likely involved in

  10. In situ detection of tandem DNA repeat length

    Energy Technology Data Exchange (ETDEWEB)

    Yaar, R.; Szafranski, P.; Cantor, C.R.; Smith, C.L. [Boston Univ., MA (United States)

    1996-11-01

    A simple method for scoring short tandem DNA repeats is presented. An oligonucleotide target, containing tandem repeats embedded in a unique sequence, was hybridized to a set of complementary probes, containing tandem repeats of known lengths. Single-stranded loop structures formed on duplexes containing a mismatched (different) number of tandem repeats. No loop structure formed on duplexes containing a matched (identical) number of tandem repeats. The matched and mismatched loop structures were enzymatically distinguished and differentially labeled by treatment with S1 nuclease and the Klenow fragment of DNA polymerase. 7 refs., 4 figs.

  11. Automated genotyping of dinucleotide repeat markers

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, M.W.; Hoffman, E.P. [Carnegie Mellon Univ., Pittsburgh, PA (United States)]|[Univ. of Pittsburgh, PA (United States)

    1994-09-01

    The dinucleotide repeats (i.e., microsatellites) such as CA-repeats are a highly polymorphic, highly abundant class of PCR-amplifiable markers that have greatly streamlined genetic mapping experimentation. It is expected that over 30,000 such markers (including tri- and tetranucleotide repeats) will be characterized for routine use in the next few years. Since only size determination, and not sequencing, is required to determine alleles, in principle, dinucleotide repeat genotyping is easily performed on electrophoretic gels, and can be automated using DNA sequencers. Unfortunately, PCR stuttering with these markers generates not one band for each allele, but a pattern of bands. Since closely spaced alleles must be disambiguated by human scoring, this poses a key obstacle to full automation. We have developed methods that overcome this obstacle. Our model is that the observed data is generated by arithmetic superposition (i.e., convolution) of multiple allele patterns. By quantitatively measuring the size of each component band, and exploiting the unique stutter pattern associated with each marker, closely spaced alleles can be deconvolved; this unambiguously reconstructs the {open_quotes}true{close_quotes} allele bands, with stutter artifact removed. We used this approach in a system for automated diagnosis of (X-linked) Duchenne muscular dystrophy; four multiplexed CA-repeats within the dystrophin gene were assayed on a DNA sequencer. Our method accurately detected small variations in gel migration that shifted the allele size estimate. In 167 nonmutated alleles, 89% (149/167) showed no size variation, 9% (15/167) showed 1 bp variation, and 2% (3/167) showed 2 bp variation. We are currently developing a library of dinucleotide repeat patterns; together with our deconvolution methods, this library will enable fully automated genotyping of dinucleotide repeats from sizing data.

  12. Crystal structures of the human G3BP1 NTF2-like domain visualize FxFG Nup Repeat Specificity

    DEFF Research Database (Denmark)

    Vognsen, Tina Reinholdt; Möller, Ingvar Rúnar; Kristensen, Ole

    2013-01-01

    Ras GTPase Activating Protein SH3 Domain Binding Protein (G3BP) is a potential anti-cancer drug target implicated in several cellular functions. We have used protein crystallography to solve crystal structures of the human G3BP1 NTF2-like domain both alone and in complex with an FxFG Nup repeat...... peptide. Despite high structural similarity, the FxFG binding site is located between two alpha helices in the G3BP1 NTF2-like domain and not at the dimer interface as observed for nuclear transport factor 2. ITC studies showed specificity towards the FxFG motif but not FG and GLFG motifs. The unliganded...

  13. A novel disulfide-rich protein motif from avian eggshell membranes.

    Directory of Open Access Journals (Sweden)

    Vamsi K Kodali

    2011-03-01

    Full Text Available Under the shell of a chicken egg are two opposed proteinaceous disulfide-rich membranes. They are fabricated in the avian oviduct using fibers formed from proteins that are extensively coupled by irreversible lysine-derived crosslinks. The intractability of these eggshell membranes (ESM has slowed their characterization and their protein composition remains uncertain. In this work, reductive alkylation of ESM followed by proteolytic digestion led to the identification of a cysteine rich ESM protein (abbreviated CREMP that was similar to spore coat protein SP75 from cellular slime molds. Analysis of the cysteine repeats in partial sequences of CREMP reveals runs of remarkably repetitive patterns. Module a contains a C-X(4-C-X(5-C-X(8-C-X(6 pattern (where X represents intervening non-cysteine residues. These inter-cysteine amino acid residues are also strikingly conserved. The evolutionarily-related module b has the same cysteine spacing as a, but has 11 amino acid residues at its C-terminus. Different stretches of CREMP sequences in chicken genomic DNA fragments show diverse repeat patterns: e.g. all a modules; an alternation of a-b modules; or an a-b-b arrangement. Comparable CREMP proteins are found in contigs of the zebra finch (Taeniopygia guttata and in the oviparous green anole lizard (Anolis carolinensis. In all these cases the long runs of highly conserved modular repeats have evidently led to difficulties in the assembly of full length DNA sequences. Hence the number, and the amino acid lengths, of CREMP proteins are currently unknown. A 118 amino acid fragment (representing an a-b-a-b pattern from a chicken oviduct EST library expressed in Escherichia coli is a well folded, highly anisotropic, protein with a large chemical shift dispersion in 2D solution NMR spectra. Structure is completely lost on reduction of the 8 disulfide bonds of this protein fragment. Finally, solid state NMR spectra suggest a surprising degree of order in intact

  14. Comparative transcriptome analysis of two rice varieties in response to rice stripe virus and small brown planthoppers during early interaction.

    Directory of Open Access Journals (Sweden)

    Wenjing Zheng

    Full Text Available Rice stripe, a virus disease, transmitted by a small brown planthopper (SBPH, has greatly reduced production of japonica rice in East Asia, especially in China. Although we have made great progress in mapping resistance genes, little is known about the mechanism of resistance. By de novo transcriptome assembling, we gained sufficient transcript data to analyze changes in gene expression of early interaction in response to SBPH and RSV infection in rice. Respectively 648 and 937 DEGs were detected from the disease-resistant (Liaonong 979 and the susceptible (Fengjin varieties, most of which were up-regulated. We found 37 genes related to insect resistance, which mainly included genes for jasmonate-induced protein, TIFY protein, lipoxygenase, as well as trypsin inhibitor genes and transcription factor genes. In the interaction process between RSV and rice, 87 genes were thought to be related to RSV resistance; these primarily included 12 peroxidase biosynthesis genes, 12 LRR receptor-like protein kinase genes, 6 genes coding pathogenesis-related proteins, 4 glycine-rich cell wall structural protein genes, 2 xyloglucan hydrolase genes and a cellulose synthase. The results indicate that the rice-pathogen interaction happened both in disease-resistant and susceptible varieties, and some genes related to JA biosynthesis played key roles in the interaction between SBPHs and rice. When rice was infected by RSV a hypersensitive reaction (HR in the disease-resistant variety was suppressed, which resulted from an increase in peroxidase expression and down-regulation of LRR receptor-like protein kinase and pathogenesis-related proteins, while, the changes of peroxidase biosynthesis, glycine-rich cell wall structural protein, cellulose synthase and xyloglucan endotransglucosylase/hydrolase could lead to the strengthening of physical barriers of rice, which may be an important resistance mechanism to RSV in rice.

  15. Comparative transcriptome analysis of two rice varieties in response to rice stripe virus and small brown planthoppers during early interaction.

    Science.gov (United States)

    Zheng, Wenjing; Ma, Li; Zhao, Jiaming; Li, Zhiqiang; Sun, Fuyu; Lu, Xiaochun

    2013-01-01

    Rice stripe, a virus disease, transmitted by a small brown planthopper (SBPH), has greatly reduced production of japonica rice in East Asia, especially in China. Although we have made great progress in mapping resistance genes, little is known about the mechanism of resistance. By de novo transcriptome assembling, we gained sufficient transcript data to analyze changes in gene expression of early interaction in response to SBPH and RSV infection in rice. Respectively 648 and 937 DEGs were detected from the disease-resistant (Liaonong 979) and the susceptible (Fengjin) varieties, most of which were up-regulated. We found 37 genes related to insect resistance, which mainly included genes for jasmonate-induced protein, TIFY protein, lipoxygenase, as well as trypsin inhibitor genes and transcription factor genes. In the interaction process between RSV and rice, 87 genes were thought to be related to RSV resistance; these primarily included 12 peroxidase biosynthesis genes, 12 LRR receptor-like protein kinase genes, 6 genes coding pathogenesis-related proteins, 4 glycine-rich cell wall structural protein genes, 2 xyloglucan hydrolase genes and a cellulose synthase. The results indicate that the rice-pathogen interaction happened both in disease-resistant and susceptible varieties, and some genes related to JA biosynthesis played key roles in the interaction between SBPHs and rice. When rice was infected by RSV a hypersensitive reaction (HR) in the disease-resistant variety was suppressed, which resulted from an increase in peroxidase expression and down-regulation of LRR receptor-like protein kinase and pathogenesis-related proteins, while, the changes of peroxidase biosynthesis, glycine-rich cell wall structural protein, cellulose synthase and xyloglucan endotransglucosylase/hydrolase could lead to the strengthening of physical barriers of rice, which may be an important resistance mechanism to RSV in rice.

  16. Why fibrous proteins are romantic.

    Science.gov (United States)

    Cohen, C

    1998-01-01

    Here I give a personal account of the great history of fibrous protein structure. I describe how Astbury first recognized the essential simplicity of fibrous proteins and their paradigmatic role in protein structure. The poor diffraction patterns yielded by these proteins were then deciphered by Pauling, Crick, Ramachandran and others (in part by model building) to reveal alpha-helical coiled coils, beta-sheets, and the collagen triple helical coiled coil-all characterized by different local sequence periodicities. Longer-range sequence periodicities (or "magic numbers") present in diverse fibrous proteins, such as collagen, tropomyosin, paramyosin, myosin, and were then shown to account for the characteristic axial repeats observed in filaments of these proteins. More recently, analysis of fibrous protein structure has been extended in many cases to atomic resolution, and some systems, such as "leucine zippers," are providing a deeper understanding of protein design than similar studies of globular proteins. In the last sections, I provide some dramatic examples of fibrous protein dynamics. One example is the so-called "spring-loaded" mechanism for viral fusion by the hemagglutinin protein of influenza. Another is the possible conformational changes in prion proteins, implicated in "mad cow disease," which may be related to similar transitions in a variety of globular and fibrous proteins. Copyright 1998 Academic Press.

  17. Possibilities of microscopic detection of isolated porcine proteins in model meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2016-05-01

    Full Text Available In recent years, various protein additives intended for manufacture of meat products have increasing importance in the food industry. These ingredients include both, plant-origin as well as animal-origin proteins. Among animal proteins, blood plasma, milk protein or collagen are used most commonly. Collagen is obtained from pork, beef, and poultry or fish skin. Collagen does not contain all the essential amino acids, thus it is not a full protein in terms of essential amino acids supply for one's organism. However, it is rather rich in amino acids of glycine, hydroxyproline and proline which are almost absent in other proteins and their synthesis is very energy intensive. Collagen, which is added to the soft and small meat products in the form of isolated porcine protein, significantly affects the organoleptic properties of these products. This work focused on detection of isolated porcine protein in model meat products where detection of isolated porcine protein was verified by histological staining and light microscopy. Seven model meat products from poultry meat and 7 model meat products from beef and pork in the ratio of 1:1, which contained 2.5% concentration of various commercially produced isolated porcine proteins, were examined. These model meat products were histologically processed by means of cryosections and stained with hematoxylin-eosin staining, toluidine blue staining and Calleja. For the validation phase, Calleja was utilized. To determine the sensitivity and specificity, five model meat products containing the addition of isolated porcine protein and five model meat products free of it were used. The sensitivity was determined for isolated porcine protein at 1.00 and specificity was determined at 1.00. The detection limit of the method was at the level of 0.001% addition. Repeatability of the method was carried out using products with addition as well as without addition of isolated porcine protein and detection was repeated

  18. A Complex of Cas Proteins 5, 6, and 7 Is Required for the Biogenesis and Stability of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii*

    Science.gov (United States)

    Brendel, Jutta; Stoll, Britta; Lange, Sita J.; Sharma, Kundan; Lenz, Christof; Stachler, Aris-Edda; Maier, Lisa-Katharina; Richter, Hagen; Nickel, Lisa; Schmitz, Ruth A.; Randau, Lennart; Allers, Thorsten; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita

    2014-01-01

    The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA. PMID:24459147

  19. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum.

    Science.gov (United States)

    VieBrock, Lauren; Evans, Sean M; Beyer, Andrea R; Larson, Charles L; Beare, Paul A; Ge, Hong; Singh, Smita; Rodino, Kyle G; Heinzen, Robert A; Richards, Allen L; Carlyon, Jason A

    2014-01-01

    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway.

  20. Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy.

    Science.gov (United States)

    Espinosa, Diego A; Yadava, Anjali; Angov, Evelina; Maurizio, Paul L; Ockenhouse, Christian F; Zavala, Fidel

    2013-08-01

    The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.