WorldWideScience

Sample records for repeat ct images

  1. Repeatability of tumour hypoxia imaging using [{sup 18}F]EF5 PET/CT in head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Silvoniemi, Antti [University of Turku, Turku PET Centre (Finland); Turku University Hospital, Department of Otorhinolaryngology - Head and Neck Surgery (Finland); Suilamo, Sami [Turku University Hospital, Department of Oncology and Radiotherapy (Finland); Turku University Hospital, Department of Medical Physics (Finland); Laitinen, Timo; Forsback, Sarita; Solin, Olof [University of Turku, Turku PET Centre (Finland); Loeyttyniemi, Eliisa [University of Turku, Department of Biostatistics, Turku (Finland); Vaittinen, Samuli [Turku University Hospital, Department of Pathology (Finland); Saunavaara, Virva [University of Turku, Turku PET Centre (Finland); Turku University Hospital, Department of Medical Physics (Finland); Groenroos, Tove J.; Minn, Heikki [University of Turku, Turku PET Centre (Finland); Turku University Hospital, Department of Oncology and Radiotherapy (Finland)

    2018-02-15

    Hypoxia contributes to radiotherapy resistance and more aggressive behaviour of several types of cancer. This study was designed to evaluate the repeatability of intratumour uptake of the hypoxia tracer [{sup 18}F]EF5 in paired PET/CT scans. Ten patients with newly diagnosed head and neck cancer (HNC) received three static PET/CT scans before chemoradiotherapy: two with [{sup 18}F]EF5 a median of 7 days apart and one with [{sup 18}F]FDG. Metabolically active primary tumour volumes were defined in [{sup 18}F]FDG images and transferred to co-registered [{sup 18}F]EF5 images for repeatability analysis. A tumour-to-muscle uptake ratio (TMR) of 1.5 at 3 h from injection of [{sup 18}F]EF5 was used as a threshold representing hypoxic tissue. In 10 paired [{sup 18}F]EF5 PET/CT image sets, SUVmean, SUVmax, and TMR showed a good correlation with the intraclass correlation coefficients of 0.81, 0.85, and 0.87, respectively. The relative coefficients of repeatability for these parameters were 15%, 17%, and 10%, respectively. Fractional hypoxic volumes of the tumours in the repeated scans had a high correlation using the Spearman rank correlation test (r = 0.94). In a voxel-by-voxel TMR analysis between the repeated scans, the mean of Pearson correlation coefficients of individual patients was 0.65. The mean (± SD) difference of TMR in the pooled data set was 0.03 ± 0.20. Pretreatment [{sup 18}F]EF5 PET/CT within one week shows high repeatability and is feasible for the guiding of hypoxia-targeted treatment interventions in HNC. (orig.)

  2. Repeated CT scans in trauma transfers: An analysis of indications, radiation dose exposure, and costs

    International Nuclear Information System (INIS)

    Hinzpeter, Ricarda; Sprengel, Kai; Wanner, Guido A.; Mildenberger, Peter; Alkadhi, Hatem

    2017-01-01

    Highlights: • Repetition of CT in trauma patients occurs relatively often. • Repetition of CT is mainly caused by inadequate image data transfer. • Potentially preventable CT examinations add radiation dose to patients. • Repeated CT is associated with excess costs to the health care system. - Abstract: Objectives: To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. Methods: This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Results: Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n = 45,53%) and major body trauma (n = 23;27%) not manageable in the referring hospital, repatriation from a foreign country (n = 14;16.5%), and no ICU-capacity (n = 3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n = 29;39%), repetition of head CT with completion to WBCT (n = 24;32.5%), and follow-up of known injury (n = 21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81′304mGy*cm) and 35′233€, respectively. Conclusion: A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system.

  3. Repeated CT scans in trauma transfers: An analysis of indications, radiation dose exposure, and costs

    Energy Technology Data Exchange (ETDEWEB)

    Hinzpeter, Ricarda, E-mail: Ricarda.Hinzpeter@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, Zurich CH-8091 (Switzerland); Sprengel, Kai, E-mail: Kai.Sprengel@usz.ch [Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich (Switzerland); Wanner, Guido A., E-mail: Guido.Wanner@sbk-vs.de [Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich (Switzerland); Department of General Surgery, Schwarzwald-Baar Klinikum, University of Freiburg, Klinikstr. 11, D-78052 Villingen-Schwenningen (Germany); Mildenberger, Peter, E-mail: peter.mildenberger@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, University Hospital of Mainz, Langenbeckstr. 1, D-55131 Mainz (Germany); Alkadhi, Hatem, E-mail: hatem.alkadhi@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, Zurich CH-8091 (Switzerland)

    2017-03-15

    Highlights: • Repetition of CT in trauma patients occurs relatively often. • Repetition of CT is mainly caused by inadequate image data transfer. • Potentially preventable CT examinations add radiation dose to patients. • Repeated CT is associated with excess costs to the health care system. - Abstract: Objectives: To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. Methods: This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Results: Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n = 45,53%) and major body trauma (n = 23;27%) not manageable in the referring hospital, repatriation from a foreign country (n = 14;16.5%), and no ICU-capacity (n = 3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n = 29;39%), repetition of head CT with completion to WBCT (n = 24;32.5%), and follow-up of known injury (n = 21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81′304mGy*cm) and 35′233€, respectively. Conclusion: A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system.

  4. Importance of repeated CT scan in Fournier gangrene treatment: clinical case

    International Nuclear Information System (INIS)

    Ignatenco, Sergiu

    2011-01-01

    A patient of 53 years presented fever, swelling and erythema in the perineal region. After computed tomography (CT) was diagnosed Fournier gangrene. After aggressive surgical debridement postoperative evolution was unfavorable. Repeated CT scan trace spread of infection to new areas that led to new surgical debridement on time. Use of CT scan in the postoperative period allows assessment of the effectiveness of surgical debridement and spread of infection. This article presents CT scan images and the most important periods of intraoperative surgical intervention. (authors)

  5. PET/CT. Dose-escalated image fusion?

    International Nuclear Information System (INIS)

    Brix, G.; Beyer, T.

    2005-01-01

    Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hard- and software of PET/CT systems. (orig.)

  6. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.

    Science.gov (United States)

    Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang

    2018-07-01

    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.

  7. Integrating the Radiology Information System with Computerised Provider Order Entry: The Impact on Repeat Medical Imaging Investigations.

    Science.gov (United States)

    Vecellio, Elia; Georgiou, Andrew

    2016-01-01

    Repeat and redundant procedures in medical imaging are associated with increases in resource utilisation and labour costs. Unnecessary medical imaging in some modalities, such as X-Ray (XR) and Computed Tomography (CT) is an important safety issue because it exposes patients to ionising radiation which can be carcinogenic and is associated with higher rates of cancer. The aim of this study was to assess the impact of implementing an integrated Computerised Provider Order Entry (CPOE)/Radiology Information System (RIS)/Picture Archiving and Communications System (PACS) system on the number of XR and CT imaging procedures (including repeat imaging requests) for inpatients at a large metropolitan hospital. The study found that patients had an average 0.47 fewer XR procedures and 0.07 fewer CT procedures after the implementation of the integrated system. Part of this reduction was driven by a lower rate of repeat procedures: the average inpatient had 0.13 fewer repeat XR procedures within 24-hours of the previous identical XR procedure. A similar decrease was not evident for repeat CT procedures. Reduced utilisation of imaging procedures (especially those within very short intervals from the previous identical procedure, which are more likely to be redundant) has implications for the safety of patients and the cost of medical imaging services.

  8. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  9. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  10. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0

    International Nuclear Information System (INIS)

    Boellaard, Ronald; Hoekstra, Otto S.; Delgado-Bolton, Roberto; Oyen, Wim J.G.; Visser, Eric; Giammarile, Francesco; Tatsch, Klaus; Eschner, Wolfgang; Verzijlbergen, Fred J.; Barrington, Sally F.; Pike, Lucy C.; Weber, Wolfgang A.; Stroobants, Sigrid; Delbeke, Dominique; Donohoe, Kevin J.; Holbrook, Scott; Graham, Michael M.; Testanera, Giorgio; Chiti, Arturo; Zijlstra, Josee; Hoekstra, Corneline J.; Pruim, Jan; Willemsen, Antoon; Arends, Bertjan; Kotzerke, Joerg; Bockisch, Andreas; Beyer, Thomas; Krause, Bernd J.

    2015-01-01

    The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings. (orig.)

  11. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Boellaard, Ronald; Hoekstra, Otto S. [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Delgado-Bolton, Roberto [University of La Rioja, Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, San Pedro Hospital and Centre for Biomedical Research of La Rioja (CIBIR), Logrono, La Rioja (Spain); Oyen, Wim J.G.; Visser, Eric [Radboud University Nijmegen Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Giammarile, Francesco [Centre Hospitalier Universitaire de Lyon, Department of Nuclear Medicine, Lyon (France); Tatsch, Klaus [Municipal Hospital Karlsruhe Inc., Department of Nuclear Medicine, Karlsruhe (Germany); Eschner, Wolfgang [University of Cologne, Department of Nuclear Medicine, Cologne (Germany); Verzijlbergen, Fred J. [Erasmus Medical Center, Department of Nuclear Medicine, Rotterdam (Netherlands); Barrington, Sally F.; Pike, Lucy C. [King' s College London, King' s Health Partners, PET Imaging Centre, St Thomas' Hospital, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Weber, Wolfgang A. [Memorial Sloan Kettering Center, Department of Radiology, New York, NY (United States); Stroobants, Sigrid [Antwerp University Hospital, Department of Nuclear Medicine, Antwerp (Belgium); Delbeke, Dominique [Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Donohoe, Kevin J. [Beth Israel Deaconess Medical Center, Boston, MA (United States); Holbrook, Scott [Invivo Molecular Imaging LLC, Gray, TN (United States); Graham, Michael M. [University of Iowa, Department of Radiology, Iowa City, IA (United States); Testanera, Giorgio; Chiti, Arturo [Humanitas Clinical and Research Center, Department of Nuclear Medicine, Rozzano, MI (Italy); Zijlstra, Josee [VU University Medical Centre, Department of Hematology, Amsterdam (Netherlands); Hoekstra, Corneline J. [Jeroen Bosch Hospital, Department of Nuclear Medicine, Den Bosch (Netherlands); Pruim, Jan; Willemsen, Antoon [University Medical Centre Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Arends, Bertjan [Catharina Hospital, Department of Clinical Physics, Eindhoven (Netherlands); Kotzerke, Joerg [University Hospital Dresden, Clinic and Outpatient Clinic for Nuclear Medicine, Dresden (Germany); Bockisch, Andreas [University Hospital Essen, Clinic for Nuclear Medicine, Essen (Germany); Beyer, Thomas [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Vienna (Austria); Krause, Bernd J. [University Hospital Rostock, Department of Nuclear Medicine, Rostock (Germany)

    2014-12-02

    The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings. (orig.)

  12. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  13. 3D Interpolation Method for CT Images of the Lung

    Directory of Open Access Journals (Sweden)

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  14. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion

    International Nuclear Information System (INIS)

    Jin, Xiance; Han, Ce; Zhou, Yongqiang; Yi, Jinling; Yan, Huawei; Xie, Congying

    2013-01-01

    To investigate the feasibility and benefits of a modified adaptive radiotherapy (ART) by replanning in the initial CT (iCT) with new contours from a repeat CT (rCT) based on CT-CT image fusion for nasopharyngeal cancer (NPC) patients underwent volumetric modulated arc radiotherapy (VMAT). Nine NPC patients underwent VMAT treatment with a rCT at 23rd fraction were enrolled in this study. Dosimetric differences for replanning VMAT plans in the iCT and in the rCT were compared. Volumetric and dosimetric changes of gross tumor volume (GTV) and organs at risk (OARs) of this modified ART were also investigated. No dosimetric differences between replanning in the iCT and in the rCT were observed. The average volume of GTV decreased from 78.83 ± 38.42 cm 3 in the iCT to 71.44 ± 37.46 cm 3 in the rCT, but with no significant difference (p = 0.42).The average volume of the left and right parotid decreased from 19.91 ± 4.89 cm 3 and 21.58 ± 6.16 cm 3 in the iCT to 11.80 ± 2.79 cm 3 and 13.29 ± 4.17 cm 3 in the rCT (both p < 0.01), respectively. The volume of other OARs did not shrink very much. No significant differences on PTV GTV and PTV CTV coverage were observed for replanning with this modified ART. Compared to the initial plans, the average mean dose of the left and right parotid after re-optimization were decreased by 62.5 cGy (p = 0.05) and 67.3 cGy (p = 0.02), respectively, and the V5 (the volume receiving 5 Gy) of the left and right parotids were decreased by 7.8% (p = 0.01) and 11.2% (p = 0.001), respectively. There was no significant difference on the dose delivered to other OARs. Patients with NPC undergoing VMAT have significant anatomic and dosimetric changes to parotids. Repeat CT as an anatomic changes reference and re-optimization in the iCT based on CT-CT image fusion was accurate enough to identify the volume changes and to ensure safe dose to parotids

  15. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    International Nuclear Information System (INIS)

    Chen Yang; Shi Luyao; Shu Huazhong; Luo Limin; Coatrieux, Jean-Louis; Yin Xindao; Toumoulin, Christine

    2013-01-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors. (paper)

  16. Comparison of image quality in head CT studies with different dose-reduction strategies

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Nielsen, Rikke; Fink-Jensen, Vibeke

    The number of multi-detector CT examinations is increasing rapidly. They allow high quality reformatted images providing accurate and precise diagnosis at maximum speed. Brain examinations are the most commonly requested studies, and although they come at a lower effective dose than body CT, can...... account to a considerable radiation dose as many patients undergo repeated studies. Therefore, various dose-reduction strategies are applied such as automated tube current and voltage modulation and recently different iterative reconstruction algorithms. However, the trade-off of all dose......-reduction maneuvers is reduction of image quality due to image noise or artifacts. The aim of our study was therefore to find the best diagnostic images with lowest possible dose. We present results of dose- and image quality optimizing strategies of brain CT examinations at our institution. We compare sequential...

  17. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  18. Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan

    International Nuclear Information System (INIS)

    Kim, Hyun Ju; Cho, Jae Hwan; Park, Cheol Soo

    2010-01-01

    The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). CT value of chest image increased at 100 kVp by 14.06%∼27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients

  19. WE-H-207A-04: Impact of Lesion Location On the Repeatability of 18F-NaF PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C; Perk, T; Harmon, S; Perlman, S; Liu, G; Jeraj, R [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: Quantifying the repeatability of imaging biomarkers is critical for assessing therapeutic response. While {sup 18}F-NaF PET/CT has shown to be a repeatable imaging method, research has not shown which factors may influence its repeatability. The purpose of this study was to evaluate whether the location of the lesion impacts the repeatability of quantitative {sup 18}F-NaF PET-derived SUV metrics. Methods: Metastatic castrate-resistant prostate cancer patients with multiple bone lesions received whole-body test-retest NaF PET/CT scans. Malignant bone lesions of PET-defined volume greater than 1.5 cm{sup 3} were identified by a nuclear medicine physician and automatically delineated using a SUV>15 threshold. The maximum (SUVmax), average (SUVmean), and total (SUVtotal) SUV were extracted from each lesion. Atlas-based segmentation was used to divide each patient skeleton into 25 skeletal regions. Test-retest repeatability of each SUV metric was assessed with coefficient of variation (CV). Results: A total of 265 malignant bone lesions from 18 patients were identified by nuclear medicine physician. The largest proportion of bone lesions were localized to the spine (41%), with 41% of those lesions localized to the thoracic spine. One-way ANOVA showed that measurement differences differed significantly for all three metrics across locations (p<0.01 for each metrics). Overall, CV was smallest for SUVmean at 5.3%, followed by SUVmax at 11.5% and SUVtotal at 20.4%. Lesions in the pubis were consistently the most repeatable (CV(SUVmax)= 5.6%, CV(SUVmean)= 0.6%, CV(SUVtotal)= 2.9%). According to SUVmean, repeatability was poorest in the cervical spine (CV = 6.2%), whereas according to SUVmax and SUVtotal, repeatability was poorest in the ribs (CV(SUVmax)= 15.0%, CV(SUVtotal)= 29.8%). Conclusion: Location of the lesion affects the repeatability of {sup 18}F-NaF PET/CT, with the ribs and cervical spine having the lowest repeatability and the pubis having the highest

  20. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  1. CT, PET and MR-Imaging in experimental baromedical research

    DEFF Research Database (Denmark)

    Hansen, Kasper

    Pa pressurisation, and repeatedly after 500 kPa/min decompression. After MRI, venous bubble development was monitored using ultrasound. Second, preclinical μCT, PET/MRI, and high-field 9.4 T MR-Imaging systems evaluated changes in cerebral standard uptake value (SUV) of F-FDG, changes in cerebral blood flow (delta...... it is intrinsically difficult to study humans or animals inside a pressure chamber. We have developed a preclinical pressure chamber system compatible with CT, PET and MR-imaging during pressurisation up to 1.013 mPa, which allows for anatomical visualisations and measurements of certain physiological processes...... in vivo during pressurisation. Material and methods: Anaesthetised rats (simulated diving and control groups) underwent the following imaging protocols: First, a 3T clinical MRI-system was employed to evaluate in vivo cerebral relaxation parameters (T1, T2 and T2*). MRI was performed before, during 709 k...

  2. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  3. Imaging of blunt pancreatic trauma: The value of initial and sequential CT examinations

    International Nuclear Information System (INIS)

    Szmigielski, W.; Darweesh, A.; Kassem, H.; Alhilli, S.

    2008-01-01

    The purpose of the study was to assess the value of initial, repeated and sequential computed tomography (CT) in patients with blunt pancreatic trauma, and then define and correlate CT findings with endoscopic retrograde cholangiopancreatography (ERCP) or magnetic resonance cholangiopancreatography (MRCP), ultrasound (US), both laboratory and surgical findings. This retrospective study covers an eight-year period from 1999 to 2007. The material includes 21 patients (17 males and 4 females) with confirmed pancreatic injury. CT was performed on admission in all cases and in 15 cases follow-up CT was performed from 24 hrs to 14 days later. US was performed in 9 cases, ERCP in 8 cases and MRCP in one case. Serum amylase level was obtained at the admission in all cases. The CT at admission was positive in 17 patients (81.0%); the diagnosis was missed in 4 patients (19.0%), all performed on single row spiral CT. In all these four cases repeated CT was positive. ERCP showed rupture of the main pancreatic duct in 7 cases, one was inconclusive. One MRCP was positive. The serum amylase was elevated in 14 cases (66.7%) Specific CT features in initial and repeated examinations together were: organ fracture - 33.3%, swelling - 38.1%, haematoma/ contusion - 38.1%, fluid between splenic vein and pancreas - 19.0%. Non-specific features were: thickening of anterior-renal fascia- 23.8%, fluid in lesser sac - 28.6%, extra peritoneal fluid - 42.9%, associated splenic injury -14.3% and intraperitoneal fluid - 38.1%. On retrospective analysis, two out of four false negative CT results could have been avoided. No correlation between the CT features and the outcome of surgical and conservative management could be found in this study. A proper technique and accurate reading of images are mandatory for the diagnosis of pancreatic injury. When CT performed on admission is negative and there is abdominal pain and an elevated serum amylase, CT examination should be repeated within 24-48 hours

  4. Choline-PET/CT for imaging prostate cancer; Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd Joachim [Klinik- und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Treiber, U.; Schwarzenboeck, S.; Souvatzoglou, M. [Klinik fuer Urologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany)

    2010-09-15

    PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives - the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [{sup 11}C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA > 3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [{sup 11}C]- and [{sup 18}F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence - local recurrence, lymph node metastasis or systemic dissemination - has important influence on the therapy regimen. (orig.)

  5. Eye lens radiation exposure and repeated head CT scans: A problem to keep in mind

    International Nuclear Information System (INIS)

    Michel, Morgane; Jacob, Sophie; Roger, Gilles; Pelosse, Béatrice; Laurier, Dominique; Le Pointe, Hubert Ducou; Bernier, Marie-Odile

    2012-01-01

    Objectives: The deterministic character of radiation-induced cataract is being called into question, raising the possibility of a risk in patients, especially children, exposed to ionizing radiation in case of repeated head CT-scans. This study aims to estimate the eye lens doses of a pediatric population exposed to repeated head CTs and to assess the feasibility of an epidemiological study. Methods: Children treated for a cholesteatoma, who had had at least one CT-scan of the middle ear before their tenth birthday, were included. Radiation exposure has been assessed from medical records and telephone interviews. Results: Out of the 39 subjects contacted, 32 accepted to participate. A total of 76 CT-scans were retrieved from medical records. At the time of the interview (mean age: 16 years), the mean number of CT per child was 3. Cumulative mean effective and eye lens doses were 1.7 mSv and 168 mGy, respectively. Conclusion: A relatively high lens radiation dose was observed in children exposed to repeated CT-scans. Due to that exposure and despite the difficulties met when trying to reach patients’ families, a large scale epidemiological study should be performed in order to assess the risk of radiation-induced cataracts associated with repeated head CT.

  6. CT and MR imaging of craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, M. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Takahashi, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Higano, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Kurihara, N. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Ikeda, H. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Neurosurgery; Sakamoto, K. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology

    1997-05-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  7. CT and MR imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Tsuda, M.; Takahashi, S.; Higano, S.; Kurihara, N.; Ikeda, H.; Sakamoto, K.

    1997-01-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  8. CT images of gossypiboma

    International Nuclear Information System (INIS)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee

    1994-01-01

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment

  9. CT images of gossypiboma

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee [College of Medicine, Kon-Kuk University, Seoul (Korea, Republic of)

    1994-04-15

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment.

  10. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Park, Hyok; Kim, Dong Ook; Jeong, Hai Jo; Kim, Hee Joung; Yoo, Sun Kook; Kim, Yong Oock; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate the quantitative accuracy of three-dimensional (3D) images by mean of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0 (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm. 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm. Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT.

  11. Usefulness of bone window CT images parallel to the transnasal surgical route for pituitary disorders

    International Nuclear Information System (INIS)

    Abe, T.; Kunii, N.; Ikeda, H.; Izumiyama, H.; Asahina, N.

    2003-01-01

    Before operating on 130 patients with pituitary disorders, we evaluated their bone window CT images sliced parallel to the trans nasal surgical route to assess the surgical anatomy of the nasal cavity for trans nasal surgery. High resolution bone window CT was performed in 3- to 5-mm slices parallel to the imaginary line connecting the inferior margin of the piriform aperture and the top of the sellar floor, parallel to the trans nasal surgical route. This CT angle was useful in evaluating the width and depth of the operative hold, the bony components of the nasal conchas, deviation of the nasal septum, the bony structure and mucosa in the sphenoid sinus, and the condition of the sellar floor. In patients requiring repeat surgery, the location of thin or thick nasal mucosa, residual bony septum, and inadequate sellar floor opening were easily detected. Bone window CT images sliced parallel to the trans nasal surgical route provide direct visualization of the nasal anatomy for the trans nasal approach. This method is helpful in determining how far to remove the sellar floor laterally, especially in cases requiring repeat surgery. (author)

  12. The repeat CT-findings of the contusional hematoma

    International Nuclear Information System (INIS)

    Tsubokawa, Takashi; Yamada, Jitsuhiro; Tomizawa, Noritami; Takeuchi, Totaro; Shinozaki, Hideo

    1980-01-01

    Twenty-seven cases of traumatic intracerebral hematoma were treated from 1977 to 1979. The intracerebral hematomas are classified into three groups: central type, hematoma within contusional area and contusional hematoma, according to the CT findings and the clinical course. Fourteen of these cases are diagnosed as contusional hematoma which show a normal CT scan, subarachnoidal hemorrhage, subdural hematoma and epidural hematoma without any kind of intracerebral high density in the initial CT scan performed within 6 hours after injury. Ten of the cases were found during conservative treatment; in 2 cases, hematomas were revealed within 24 hours; in 2 more cases within 48 hours, and in 6 cases, within 3 - 5 days following injury. In the other 4 cases, hematoma occurred 1 - 2 days following the emergency evacuation of a subdural hematoma and decompressive craniectomy. Based on the clinical experience outlined above, it is our current practice in diagnosing patients with contusional hematoma to perform repeat CT scanning within 5 - 6 days after injury whenever isodensity or subarachnoidal hemorrhage with a shift in the midline structure is observed in an initial CT scan within 6 hours or whenever an evacuation of the subdural hematoma with decompressive craniectomy is performed. (author)

  13. Variation in quantitative CT air trapping in heavy smokers on repeat CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Mets, Onno M.; Gietema, Hester A.; Jong, Pim A. de [University Medical Center Utrecht, Radiology, Heidelberglaan 100, Postbus 85500, Utrecht (Netherlands); Isgum, Ivana; Mol, Christian P. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Zanen, Pieter [University Medical Center Utrecht, Pulmonology, Utrecht (Netherlands); Prokop, Mathias [Radboud University Nijmegen Medical Centre, Radiology, Nijmegen (Netherlands); University Medical Center Utrecht, Radiology, Heidelberglaan 100, Postbus 85500, Utrecht (Netherlands)

    2012-12-15

    To determine the variation in quantitative computed tomography (CT) measures of air trapping in low-dose chest CTs of heavy smokers. We analysed 45 subjects from a lung cancer screening trial, examined by CT twice within 3 months. Inspiratory and expiratory low-dose CT was obtained using breath hold instructions. CT air trapping was defined as the percentage of voxels in expiratory CT with an attenuation below -856 HU (EXP{sub -856}) and the expiratory to inspiratory ratio of mean lung density (E/I-ratio{sub MLD}). Variation was determined using limits of agreement, defined as 1.96 times the standard deviation of the mean difference. The effect of both lung volume correction and breath hold reproducibility was determined. The limits of agreement for uncorrected CT air trapping measurements were -15.0 to 11.7 % (EXP{sub -856}) and -9.8 to 8.0 % (E/I-ratio{sub MLD}). Good breath hold reproducibility significantly narrowed the limits for EXP{sub -856} (-10.7 to 7.5 %, P = 0.002), but not for E/I-ratio{sub MLD} (-9.2 to 7.9 %, P = 0.75). Statistical lung volume correction did not improve the limits for EXP{sub -856} (-12.5 to 8.8 %, P = 0.12) and E/I-ratio{sub MLD} (-7.5 to 5.8 %, P = 0.17). Quantitative air trapping measures on low-dose CT of heavy smokers show considerable variation on repeat CT examinations, regardless of lung volume correction or reproducible breath holds. (orig.)

  14. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  15. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging

    International Nuclear Information System (INIS)

    Hulme, K. W.; Kappadath, S. C.

    2014-01-01

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI vol = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in 99m Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI vol = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ 140 keV on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed 99m Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect

  16. Construction of Realistic Liver Phantoms from Patient Images using 3D Printer and Its Application in CT Image Quality Assessment.

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H

    2015-01-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered backprojection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered backprojection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  17. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  18. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  19. Clinical PET/CT imaging. Promises and misconceptions

    International Nuclear Information System (INIS)

    Czernin, J.; Auerbach, M.A.

    2005-01-01

    PET/CT is now established as the most important imaging tool in oncology. PET/CT stages and restages cancer with a higher accuracy than PET or CT alone. The sometimes irrational approach to combine state of the art PET with the highest end CT devices should give way to a more reasonable equipment design tailored towards the specific clinical indications in well-defined patient populations. The continuing success of molecular PET/CT now depends more upon advances in molecular imaging with the introduction of targeted imaging probes for individualized therapy approaches in cancer patients and less upon technological advances of imaging equipment. (orig.)

  20. Automatic segmentation of lumbar vertebrae in CT images

    Science.gov (United States)

    Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.

  1. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  2. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  3. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  4. The findings and the role of axial CT imaging and 3D imaging of gastric lesion by spiral CT

    International Nuclear Information System (INIS)

    Lee, Dong Ho; Ko, Young Tae

    1996-01-01

    The purpose of this study is to assess the efficacy of axial CT imaging and 3D imaging by spiral CT in the detection and evaluation of gastric lesion. Seventy-seven patients with pathologically-proven gastric lesions underwent axial CT and 3D imaging by spiral CT. There were 49 cases of advanced gastric carcinoma(AGC), 21 of early gastric carcinoma (EGC), three of benign ulcers, three of leiomyomas, and one case of lymphoma. Spiral CT was performed with 3-mm collimation, 4.5mm/sec table feed, and 1-1.5-mm reconstruction interval after the ingestion of gas. 3D imaging was obtained using the SSD technique, and on analysis a grade was given(excellent, good, poor). Axial CT scan was performed with 5-mm collimation, 7mm/sec table feed, and 5-mm reconstruction interval after the ingestion of water. Among 49 cases of AGC, excellent 3D images were obtained in seven patients (14.3%), good 3D images in 30(61.2%), and poor 3D images in 12(24.5%). Among the 12 patients with poor images, the cancers were located at the pyloric antrum in eight cases, were AGC Borrmann type 4 in three cases, and EGC-mimicking lesion in one case. Using axial CT scan alone, Borrmann's classification based tumor morphology were accurately identified in 67.3% of cases, but using 3D imaging, the corresponding figure was 85.7%. In 33 cases receiving surgery, good correlation between axial CT scan and pathology occurred in 72.7% of T class, and 69.7% of N class. Among 21 cases of EGC, excellent 3D images were obtained in three patients (14.3%), good 3D images in 14 (66.7%), and poor 3D images in two (9.5%). The other two cases of EGC were not detected. By axial CT scan, no tumor was detected in four cases, and there were two doubtful cases. 3D images of three benign ulcers were excellent in one case and good in two. 3D images of three leiomyomas and one lymphoma were excellent. Combined axial CT imaging and 3D imaging by spiral CT has the potential to accurately diagnose gastric lesions other than AGC

  5. Algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images

    International Nuclear Information System (INIS)

    Ogino, Takashi; Egawa, Sunao

    1991-01-01

    New algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images were developed. One, designated plane weighting method, is to correct CT value in proportion to the position of the beam element passing through the voxel. The other, designated solid weighting method, is to correct CT value in proportion to the length of the beam element passing through the voxel and the volume of voxel. Phantom experiments showed fair spatial resolution in the transverse direction. In the longitudinal direction, however, spatial resolution of under slice thickness could not be obtained. Contrast resolution was equivalent for both methods. In patient studies, the reconstructed radiotherapy simulation image was almost similar in visual perception of the density resolution to a simulation film taken by X-ray simulator. (author)

  6. Spatial Component Position in Total Hip Arthroplasty. Accuracy and repeatability with a new CT method

    International Nuclear Information System (INIS)

    Olivecrona, H.

    2003-01-01

    Purpose: 3D detection of centerpoints of prosthetic cup and head after total hip arthroplasty (THA) using CT. Material and Methods: Two CT examinations, 10 min apart, were obtained from each of 10 patients after THA. Two independent examiners placed landmarks in images of the prosthetic cup and head. All landmarking was repeated after 1 week. Centerpoints were calculated and compared. Results: Within volumes, all measurements of centerpoints of cup and head fell, with a 95% confidence, within one CT-voxel of any other measurement of the same object. Across two volumes, the mean error of distance between center of cup and prosthetic head was 1.4 mm (SD 0.73). Intra- and interobserver 95% accuracy limit was below 2 mm within and below 3 mm across volumes. No difference between intra- and interobserver measurements occurred. A formula for converting finite sets of point landmarks in the radiolucent tread of the cup to a centerpoint was stable. The percent difference of the landmark distances from a calculated spherical surface was within one CT-voxel. This data was normally distributed and not dependent on observer or trial. Conclusion: The true 3D position of the centers of cup and prosthetic head can be detected using CT. Spatial relationship between the components can be analyzed visually and numerically

  7. Spatial Component Position in Total Hip Arthroplasty. Accuracy and repeatability with a new CT method

    Energy Technology Data Exchange (ETDEWEB)

    Olivecrona, H. [Soedersjukhuset, Stockholm (Sweden). Dept. of Hand Surgery; Weidenhielm, L. [Karolinska Hospital, Stockholm (Sweden). Dept. of Orthopedics; Olivecrona, L. [Karolinska Hospital, Stockholm (Sweden). Dept. of Radiology; Noz, M.E. [New York Univ. School of Medicine, NY (United States). Dept. of Radiology; Maguire, G.Q. [Royal Inst. of Tech., Kista (Sweden). Inst. for Microelectronics and Information Technology; Zeleznik, M. P. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Radiation Oncology; Svensson, L. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Mathematics; Jonson, T. [Eskadern Foeretagsutveckling AB, Goeteborg (Sweden)

    2003-03-01

    Purpose: 3D detection of centerpoints of prosthetic cup and head after total hip arthroplasty (THA) using CT. Material and Methods: Two CT examinations, 10 min apart, were obtained from each of 10 patients after THA. Two independent examiners placed landmarks in images of the prosthetic cup and head. All landmarking was repeated after 1 week. Centerpoints were calculated and compared. Results: Within volumes, all measurements of centerpoints of cup and head fell, with a 95% confidence, within one CT-voxel of any other measurement of the same object. Across two volumes, the mean error of distance between center of cup and prosthetic head was 1.4 mm (SD 0.73). Intra- and interobserver 95% accuracy limit was below 2 mm within and below 3 mm across volumes. No difference between intra- and interobserver measurements occurred. A formula for converting finite sets of point landmarks in the radiolucent tread of the cup to a centerpoint was stable. The percent difference of the landmark distances from a calculated spherical surface was within one CT-voxel. This data was normally distributed and not dependent on observer or trial. Conclusion: The true 3D position of the centers of cup and prosthetic head can be detected using CT. Spatial relationship between the components can be analyzed visually and numerically.

  8. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    Fusion of medical images between different cross-sectional modalities is widely used, mostly where functional images are fused with anatomical data. Ultrasound has for some time now been the standard imaging technique used for treatment planning of prostate cancer cases. While this approach is laudable and has yielded some positive results, latest developments have been the integration of images from ultrasound and other modalities such as PET-CT to compliment missing properties of ultrasound images. This study has sought to enhance diagnosis and treatment of prostate cancers by developing MATLAB algorithms to fuse ultrasound and PET-CT images. The fused ultrasound-PET-CT image has shown to contain improved quality of information than the individual input images. The fused image has the property of reduced uncertainty, increased reliability, robust system performance, and compact representation of information. The objective of co-registering the ultrasound and PET-CT images was achieved by conducting performance evaluation of the ultrasound and PET-CT imaging systems, developing image contrast enhancement algorithm, developing MATLAB image fusion algorithm, and assessing accuracy of the fusion algorithm. Performance evaluation of the ultrasound brachytherapy system produced satisfactory results in accordance with set tolerances as recommended by AAPM TG 128. Using an ultrasound brachytherapy quality assurance phantom, average axial distance measurement of 10.11 ± 0.11 mm was estimated. Average lateral distance measurements of 10.08 ± 0.07 mm, 20.01 ± 0.06 mm, 29.89 ± 0.03 mm and 39.84 ± 0.37 mm were estimated for the inter-target distances corresponding to 10 mm, 20 mm, 30 mm and 40 mm respectively. Volume accuracy assessment produced measurements of 3.97 cm 3 , 8.86 cm 3 and 20.11 cm 3 for known standard volumes of 4 cm 3 , 9 cm 3 and 20 cm 3 respectively. Depth of penetration assessment of the ultrasound system produced an estimate of 5.37 ± 0.02 cm

  9. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  10. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  11. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Wu, T-H; Liang, C-H; Wu, J-K; Lien, C-Y; Yang, B-H; Lee, J J S; Huang, Y-H

    2009-01-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18 F-fluorodeoxyglucose ( 18 F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  12. Clinical assessment of SPECT/CT co-registration image fusion

    International Nuclear Information System (INIS)

    Zhou Wen; Luan Zhaosheng; Peng Yong

    2004-01-01

    Objective: Study the methodology of the SPECT/CT co-registration image fusion, and Assessment the Clinical application value. Method: 172 patients who underwent SPECT/CT image fusion during 2001-2003 were studied, 119 men, 53 women. 51 patients underwent 18FDG image +CT, 26 patients underwent 99m Tc-RBC Liver pool image +CT, 43 patients underwent 99mTc-MDP Bone image +CT, 18 patients underwent 99m Tc-MAA Lung perfusion image +CT. The machine is Millium VG SPECT of GE Company. All patients have been taken three steps image: X-ray survey, X-ray transmission and nuclear emission image (Including planer imaging, SPECT or 18 F-FDG of dual head camera) without changing the position of the patients. We reconstruct the emission image with X-ray map and do reconstruction, 18FDG with COSEM and 99mTc with OSEM. Then combine the transmission image and the reconstructed emission image. We use different process parameters in deferent image methods. The accurate rate of SPECT/CT image fusion were statistics, and compare their accurate with that of single nuclear emission image. Results: The nuclear image which have been reconstructed by X-ray attenuation and OSEM are apparent better than pre-reconstructed. The post-reconstructed emission images have no scatter lines around the organs. The outline between different issues is more clear than before. The validity of All post-reconstructed images is better than pre-reconstructed. SPECT/CT image fusion make localization have worthy bases. 138 patients, the accuracy of SPECT/CT image fusion is 91.3% (126/138), whereas 60(88.2%) were found through SPECT/CT image fusion, There are significant difference between them(P 99m Tc- RBC-SPECT +CT image fusion, but 21 of them were inspected by emission image. In BONE 99m Tc -MDP-SPECT +CT image fusion, 4 patients' removed bone(1-6 months after surgery) and their relay with normal bone had activity, their morphologic and density in CT were different from normal bones. 11 of 20 patients who could

  13. Improving image quality in portal venography with spectral CT imaging

    International Nuclear Information System (INIS)

    Zhao, Li-qin; He, Wen; Li, Jian-ying; Chen, Jiang-hong; Wang, Ke-yang; Tan, Li

    2012-01-01

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  14. Improving image quality in portal venography with spectral CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li-qin, E-mail: zhaolqzr@sohu.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); He, Wen, E-mail: hewen1724@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Li, Jian-ying, E-mail: jianying.li@med.ge.com [CT Advanced Application and Research, GE Healthcare, 100176 China (China); Chen, Jiang-hong, E-mail: chenjianghong1973@hotmail.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Wang, Ke-yang, E-mail: ke7ke@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Tan, Li, E-mail: Litan@ge.com [CT product, GE Healthcare, 100176 China (China)

    2012-08-15

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  15. 90Y microsphere therapy: does 90Y PET/CT imaging obviate the need for 90Y Bremsstrahlung SPECT/CT imaging?

    Science.gov (United States)

    Zade, Anand A; Rangarajan, Venkatesh; Purandare, Nilendu C; Shah, Sneha A; Agrawal, Archi R; Kulkarni, Suyash S; Shetty, Nitin

    2013-11-01

    Transarterial radioembolization using Y microspheres is a novel therapeutic option for inoperable hepatic malignancies. As these spheres are radiolucent, real-time assessment of their distribution during the infusion process under fluoroscopic guidance is not possible. Bremsstrahlung radiations arising from 90Y have conventionally been used for imaging its biodistribution. Recent studies have proved that sources of 90Y also emit positrons, which can further be used for PET/computed tomography (CT) imaging. This study aimed to assess the feasibility of 90Y PET/CT imaging in evaluating microsphere distributions and to compare its findings with those of Bremsstrahlung imaging. Thirty-five sessions of 90Y microsphere transarterial radioembolization were performed on 30 patients with hepatic malignancies. 90Y PET/CT imaging was performed within 3 h of therapy. Bremsstrahlung imaging was also performed for each patient. The imaging findings were compared for concordance in the distribution of microspheres. Exact one-to-one correspondence between 90Y PET/CT imaging and 90Y Bremsstrahlung imaging was observed in 97.14% of cases (i.e. in 34/35 cases). Discordance was observed only in one case in which 90Y PET/CT imaging resolved the microsphere uptake in the inferior vena cava tumor thrombus, which was, however, not visualized on Bremsstrahlung imaging. There is good concordance in the imaging findings of 90Y PET/CT and 90Y Bremsstrahlung imaging. 90Y PET/CT imaging scores over the conventionally used Bremsstrahlung imaging in terms of better resolution, ease of technique, and comparable image acquisition time. This makes it a preferred imaging modality for assessment of the distribution of 90Y microspheres.

  16. PET/CT imaging in head and neck tumors

    International Nuclear Information System (INIS)

    Roedel, R.; Palmedo, H.; Reichmann, K.; Reinhardt, M.J.; Biersack, H.J.; Straehler-Pohl, H.J.; Jaeger, U.

    2004-01-01

    To evaluate the usefulness of combined PET/CT examinations for detection of malignant tumors and their metastases in head and neck oncology. 51 patients received whole body scans on a dual modality PET/CT system. CT was performed without i.v. contrast. The results were compared concerning the diagnostic impact of native CT scan on FDG-PET images and the additional value of fused imaging. From 153 lesions were 97 classified as malignant on CT and 136 on FDG/PET images, as suspicious for malignancy in 33 on CT and 7 on FDG-PET and as benign in 23 on CT and 10 on FDG-PET. With combined PET/CT all primary and recurrent tumors could be found, the detection rate in patients with unknown primary tumors was 45%. Compared to PET or CT alone the sensitivity, specifity and accuracy could be significantly improved by means of combined PET/CT. Fused PET/CT imaging with [F18]-FDG and native CT-scanning enables accurate diagnosis in 93% of lesions and 90% of patients with head and neck oncology. (orig.) [de

  17. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  18. Dual source CT imaging

    International Nuclear Information System (INIS)

    Seidensticker, Peter R.; Hofmann, Lars K.

    2008-01-01

    The introduction of Dual Source Computed Tomography (DSCT) in 2005 was an evolutionary leap in the field of CT imaging. Two x-ray sources operated simultaneously enable heart-rate independent temporal resolution and routine spiral dual energy imaging. The precise delivery of contrast media is a critical part of the contrast-enhanced CT procedure. This book provides an introduction to DSCT technology and to the basics of contrast media administration followed by 25 in-depth clinical scan and contrast media injection protocols. All were developed in consensus by selected physicians on the Dual Source CT Expert Panel. Each protocol is complemented by individual considerations, tricks and pitfalls, and by clinical examples from several of the world's best radiologists and cardiologists. This extensive CME-accredited manual is intended to help readers to achieve consistently high image quality, optimal patient care, and a solid starting point for the development of their own unique protocols. (orig.)

  19. Image mottle in abdominal CT.

    Science.gov (United States)

    Ende, J F; Huda, W; Ros, P R; Litwiller, A L

    1999-04-01

    To investigate image mottle in conventional CT images of the abdomen as a function of radiographic technique factors and patient size. Water-filled phantoms simulating the abdomens of adult (32 cm in diameter) and pediatric (16 cm in diameter) patients were used to investigate image mottle in CT as a function of x-ray tube potential and mAs. CT images from 39 consecutive patients with noncontrast liver scans and 49 patients with iodine contrast scans were analyzed retrospectively. Measurements were made of the mean liver parenchyma Hounsfield unit value and the corresponding image mottle. For a given water phantom and x-ray tube potential, image mottle was proportional to the mAs-0.5. Increasing the phantom diameter from 16 cm (pediatric) to 32 cm increased the mottle by a factor of 2.4, and increasing the x-ray tube potential from 80 kVp to 140 kVp reduced the mottle by a factor of 2.5. All patients were scanned at 120 kVp, with no correlation between patient size and the x-ray tube mAs. The mean mottle level was 7.8 +/- 2.2 and 10.0 +/- 2.5 for the noncontrast and contrast studies, respectively. An increase in patient diameter of 3 cm would require approximately 65% more mAs to maintain the same level of image mottle. The mottle in abdominal CT images may be controlled by adjusting radiographic technique factors, which should be adjusted to take into account the size of the patient undergoing the examination.

  20. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  1. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  2. Pulmonary hypertension CT imaging

    International Nuclear Information System (INIS)

    Nedevska, A.

    2013-01-01

    Full text: The right heart catheterization is the gold standard in the diagnosis and determines the severity of pulmonary hypertension. The significant technical progress of noninvasive diagnostic imaging methods significantly improves the pixel density and spatial resolution in the study of cardiovascular structures, thus changes their role and place in the overall diagnostic plan. Learning points: What is the etiology, clinical manifestation and general pathophysiological disorders in pulmonary hypertension. What are the established diagnostic methods in the diagnosis and follow-up of patients with pulmonary hypertension. What is the recommended protocol for CT scanning for patients with clinically suspected or documented pulmonary hypertension. What are the important diagnostic findings in CT scan of a patient with pulmonary hypertension. Discussion: The prospect of instantaneous complex - anatomical and functional cardiopulmonary and vascular diagnostics seems extremely attractive. The contrast enhanced multislice computed (CT ) and magnetic resonance imaging are very suitable methods for imaging the structures of the right heart, with the possibility of obtaining multiple projections and three-dimensional imaging reconstructions . There are specific morphological features that, if carefully analyzed, provide diagnostic information. Thus, it is possible to avoid or at least reduce the frequency of use of invasive diagnostic cardiac catheterization in patients with pulmonary hypertension. Conclusion: This review focuses on the use of contrast-enhanced CT for comprehensive evaluation of patients with pulmonary hypertension and presents the observed characteristic changes in the chest, lung parenchyma , the structures of the right half of the heart and pulmonary vessels

  3. "6"8Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0

    International Nuclear Information System (INIS)

    Fendler, Wolfgang P.; Eiber, Matthias; Beheshti, Mohsen; Bomanji, Jamshed; Wan, Simon; Ceci, Francesco; Fanti, Stefano; Cho, Steven; Giesel, Frederik; Haberkorn, Uwe; Hope, Thomas A.; Kopka, Klaus; Krause, Bernd J.; Mottaghy, Felix M.; Schoeder, Heiko; Sunderland, John; Wester, Hans-Juergen; Herrmann, Ken

    2017-01-01

    The aim of this guideline is to provide standards for the recommendation, performance, interpretation and reporting of "6"8Ga-PSMA PET/CT for prostate cancer imaging. These recommendations will help to improve accuracy, precision, and repeatability of "6"8Ga-PSMA PET/CT for prostate cancer essentially needed for implementation of this modality in science and routine clinical practice. (orig.)

  4. {sup 68}Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, Wolfgang P. [UCLA, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA (United States); Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Eiber, Matthias [UCLA, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA (United States); Technical University of Munich, Department of Nuclear Medicine, Klinikum Rechts der Isar, Munich (Germany); Beheshti, Mohsen [St. Vincent' s Hospital, Department of Nuclear Medicine and Endocrinology, PET-CT Center, Linz (Austria); Bomanji, Jamshed; Wan, Simon [UCL/UCLH, Institute of Nuclear Medicine, London (United Kingdom); Ceci, Francesco; Fanti, Stefano [University of Bologna, S. Orsola Hospital Bologna, Nuclear Medicine Unit, Bologna (Italy); Cho, Steven [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); Giesel, Frederik; Haberkorn, Uwe [University Hospital Heidelberg and DKFZ Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Hope, Thomas A. [University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Kopka, Klaus [German Cancer Research Center (DKFZ) Heidelberg, Division of Radiopharmaceutical Chemistry, Heidelberg (Germany); Krause, Bernd J. [University Medical Center, University of Rostock, Department of Nuclear Medicine, Rostock (Germany); Mottaghy, Felix M. [University Hospital RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Maastricht University Medical Center (MUMC), Department of Nuclear Medicine, Maastricht (Netherlands); Schoeder, Heiko [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Sunderland, John [University of Iowa Hospitals and Clinics, Department of Radiology, Iowa City, IA (United States); Wester, Hans-Juergen [Technische Universitaet Muenchen, Pharmaceutical Radiochemistry, Garching (Germany); Herrmann, Ken [UCLA, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA (United States); Universitaetsklinikum Essen, Klinik fuer Nuklearmedizin, Essen (Germany)

    2017-06-15

    The aim of this guideline is to provide standards for the recommendation, performance, interpretation and reporting of {sup 68}Ga-PSMA PET/CT for prostate cancer imaging. These recommendations will help to improve accuracy, precision, and repeatability of {sup 68}Ga-PSMA PET/CT for prostate cancer essentially needed for implementation of this modality in science and routine clinical practice. (orig.)

  5. Ring artifacts removal from synchrotron CT image slices

    International Nuclear Information System (INIS)

    Wei Zhouping; Chapman, Dean; Wiebe, Sheldon

    2013-01-01

    Ring artifacts can occur in reconstructed images from x-ray Computerized Tomography (CT) as full or partial concentric rings superimposed on the scanned structures. Due to the data corruption by those ring artifacts in CT images, qualitative and quantitative analysis of these images are compromised. In this paper, we propose to correct the ring artifacts on the reconstructed synchrotron radiation (SR) CT image slices. The proposed correction procedure includes the following steps: (1). transform the reconstructed CT images into polar coordinates; (2) apply discrete two-dimensional (2D) wavelet transform to the polar image to decompose it into four image components: low pass band image component, as well as the components from horizontal, vertical and diagonal details bands; (3). apply 2D Fourier transform to the vertical details band image component only, since the ring artifacts become vertical lines in the polar coordinates; (4). apply Gaussian filtering in Fourier domain along the abscissa direction to suppress the vertical lines, since the information of the vertical lines in Fourier domain is completely condensed to that direction; (5). perform inverse Fourier transform to get the corrected vertical details band image component; (6). perform inverse wavelet transform to get the corrected polar image; (7). transform the corrected polar image back to Cartesian coordinates to get the CT image slice with reduced ring artifacts. This approach has been successfully used on CT data acquired from the Biomedical Imaging and Therapy (BMIT) beamline in Canadian Light Source (CLS), and the results show that the ring artifacts in original SR CT images have been effectively suppressed with all the structure information in the image preserved.

  6. CT urethrography. New imaging technique of the urethra

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Munechika, Hirotsugu

    2005-01-01

    The purpose of the study is to assess the usefulness of CT urethrography for evaluation of the posterior urethra and surrounding structures. The CT images were performed with 4 channel multidetector row CT unit. Twenty-six cases (12 cases of CT urethrography and 14 cases of conventional urethrography) were included in this study. 3D-volume rendering (VR) images and VR-multiplaner reconstruction (MPR) sagittal images were compared with conventional retrograde urethrography (RUG) images to evaluate the following anatomical structures; the inferior wall of bladder, the neck of bladder, the posterior urethra, and the prostate. Two radiologists undertook a task of evaluation of the images. There was no significant difference in image quality between RUG and 3D-VR. However, VR-MPR sagittal images were significantly better than RUG or 3D-VR images in any anatomical structures set up beforehand for evaluation. CT urerthrography was useful for evaluation of the posterior urethra and surrounding structures. (author)

  7. Evaluation of Marfan syndrome: MR imaging versus CT

    International Nuclear Information System (INIS)

    Soulen, R.L.; Fishman, E.K.; Pyeritz, R.E.; Gott, V.L.; Zerhouni, E.A.

    1986-01-01

    Twenty-five patients with Marfan, syndrome underwent both CT and MR imaging. MR imaging were interpreted in blinded fashion and then compared with CT scans MR imaging was found to be equivalent to CT in the detection of aortic, dural, and hip abnormalities in patients not operated on. MR imaging was superior to CT in the evaluation of postoperative patients because the artifact produced by Bjork-Shirley or St. Jude valves precludes adequate evaluation of the aortic root on CT while producing only a small inferior field distortion (a ''pseudo-ventricular septal defect'') on MR imaging. The absence of radiation exposure is another major advantage of MR imaging in this relatively young population requiring serial studies. The authors conclude that MR imaging is the modality of choice for the evaluation and follow-up of patients with Marfan syndrome and offers an appropriate means of screening their kindred

  8. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  9. Adaptive statistical iterative reconstruction improves image quality without affecting perfusion CT quantitation in primary colorectal cancer

    Directory of Open Access Journals (Sweden)

    D. Prezzi

    Full Text Available Objectives: To determine the effect of Adaptive Statistical Iterative Reconstruction (ASIR on perfusion CT (pCT parameter quantitation and image quality in primary colorectal cancer. Methods: Prospective observational study. Following institutional review board approval and informed consent, 32 patients with colorectal adenocarcinoma underwent pCT (100 kV, 150 mA, 120 s acquisition, axial mode. Tumour regional blood flow (BF, blood volume (BV, mean transit time (MTT and permeability surface area product (PS were determined using identical regions-of-interests for ASIR percentages of 0%, 20%, 40%, 60%, 80% and 100%. Image noise, contrast-to-noise ratio (CNR and pCT parameters were assessed across ASIR percentages. Coefficients of variation (CV, repeated measures analysis of variance (rANOVA and Spearman’ rank order correlation were performed with statistical significance at 5%. Results: With increasing ASIR percentages, image noise decreased by 33% while CNR increased by 61%; peak tumour CNR was greater than 1.5 with 60% ASIR and above. Mean BF, BV, MTT and PS differed by less than 1.8%, 2.9%, 2.5% and 2.6% across ASIR percentages. CV were 4.9%, 4.2%, 3.3% and 7.9%; rANOVA P values: 0.85, 0.62, 0.02 and 0.81 respectively. Conclusions: ASIR improves image noise and CNR without altering pCT parameters substantially. Keywords: Perfusion imaging, Multidetector computed tomography, Colorectal neoplasms, Computer-assisted image processing, Radiation dosage

  10. In vivo microCT imaging of rodent cerebral vasculature

    International Nuclear Information System (INIS)

    Seo, Youngho; Hasegawa, Bruce H; Hashimoto, Tomoki; Nuki, Yoshitsugu

    2008-01-01

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I tube x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml -1 at 1.2 ml min -1 ) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel (∼85 μm) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid arteries and major cerebral blood vessels

  11. In vivo microCT imaging of rodent cerebral vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngho; Hasegawa, Bruce H [Center for Molecular and Functional Imaging, Department of Radiology, University of California, San Francisco, CA 94143 (United States); Hashimoto, Tomoki; Nuki, Yoshitsugu [Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143 (United States)], E-mail: youngho.seo@radiology.ucsf.edu

    2008-04-07

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I{sub tube} x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml{sup -1} at 1.2 ml min{sup -1}) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel ({approx}85 {mu}m) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid

  12. Neural network and its application to CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  13. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  14. Image quality of conventional images of dual-layer SPECTRAL CT: a phantom study.

    Science.gov (United States)

    van Ommen, F; Bennink, E; Vlassenbroek, A; Dankbaar, J W; Schilham, A M R; Viergever, M A; de Jong, H W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips), by means of phantom experiments. For both CT scanners conventional CT images were acquired using four adult scanning protocols: i) body helical, ii) body axial, iii) head helical and iv) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10% and 5% MTF of the iCT and IQon showed small but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with

  15. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  16. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    International Nuclear Information System (INIS)

    Poortman, Pieter; Lohle, Paul N.M.; Schoemaker, Cees M.; Cuesta, Miguel A.; Oostvogel, Henk J.M.; Lange-de Klerk, Elly S.M. de; Hamming, Jaap F.

    2010-01-01

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  17. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Poortman, Pieter [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: ppoortman@wlz.nl; Lohle, Paul N.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: plohle@elisabeth.nl; Schoemaker, Cees M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: mcschoemaker@elisabeth.nl; Cuesta, Miguel A. [Department of Surgery, VU Medical Centre, Amsterdam (Netherlands)], E-mail: ma.cuesta@vumc.nl; Oostvogel, Henk J.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: h.oostvogel@elisabeth.nl; Lange-de Klerk, Elly S.M. de [Department of Epidemiology and Biostatistics, VU Medical Centre, Amsterdam (Netherlands)], E-mail: esm.delange@vumc.nl; Hamming, Jaap F. [Department of Surgery, Leiden University Medical Centre (Netherlands)], E-mail: j.f.hamming@lumc.nl

    2010-04-15

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  18. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  19. Research of ART method in CT image reconstruction

    International Nuclear Information System (INIS)

    Li Zhipeng; Cong Peng; Wu Haifeng

    2005-01-01

    This paper studied Algebraic Reconstruction Technique (ART) in CT image reconstruction. Discussed the ray number influence on image quality. And the adopting of smooth method got high quality CT image. (authors)

  20. Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Helck, Andreas D.; Reiser, Maximilian F.; Johnson, Thorsten R.C. [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Moeller, Winfried; Eickelberg, Oliver [Institute for Lung Biology and Disease (iLBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Muenchen, Neuherberg, Munich (Germany); Becker, Sven [Ludwig-Maximilians-Universitaet, Department of Otorhinolaryngology - Head and Neck Surgery, Munich (Germany); Schuschnig, Uwe [Pari Pharma GmbH, Graefelfing (Germany)

    2012-10-15

    To show the feasibility of dual-energy CT (DECT) and dynamic CT for ventilation imaging of the paranasal sinuses in a nasal cast. In a first trial, xenon gas was administered to a nasal cast with a laminar flow of 7 L/min. Dynamic CT acquisitions of the nasal cavity and the sinuses were performed. This procedure was repeated with pulsating xenon flow. Local xenon concentrations in the different compartments of the model were determined on the basis of the enhancement levels. In a second trial, DECT measurements were performed both during laminar and pulsating xenon administration and the xenon concentrations were quantified directly. Neither with dynamic CT nor DECT could xenon-related enhancement be detected in the sinuses during laminar airflow. Using pulsating flow, dynamic imaging showed a xenon wash-in and wash-out in the sinuses that followed a mono-exponential function with time constants of a few seconds. Accordingly, DECT revealed xenon enhancement in the sinuses only after pulsating xenon administration. The feasibility of xenon-enhanced DECT for ventilation imaging was proven in a nasal cast. The superiority of pulsating gas flow for the administration of gas or aerosolised drugs to the paranasal sinuses was demonstrated. (orig.)

  1. Automatic anatomy recognition in whole-body PET/CT images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqian [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China and Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey; Tong, Yubing; Torigian, Drew A. [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Zhao, Liming [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and Research Center of Intelligent System and Robotics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2016-01-15

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  2. Automatic anatomy recognition in whole-body PET/CT images

    International Nuclear Information System (INIS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.; Zhao, Liming

    2016-01-01

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  3. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    International Nuclear Information System (INIS)

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  4. A robotic C-arm cone beam CT system for image-guided proton therapy: design and performance.

    Science.gov (United States)

    Hua, Chiaho; Yao, Weiguang; Kidani, Takao; Tomida, Kazuo; Ozawa, Saori; Nishimura, Takenori; Fujisawa, Tatsuya; Shinagawa, Ryousuke; Merchant, Thomas E

    2017-11-01

    A ceiling-mounted robotic C-arm cone beam CT (CBCT) system was developed for use with a 190° proton gantry system and a 6-degree-of-freedom robotic patient positioner. We report on the mechanical design, system accuracy, image quality, image guidance accuracy, imaging dose, workflow, safety and collision-avoidance. The robotic CBCT system couples a rotating C-ring to the C-arm concentrically with a kV X-ray tube and a flat-panel imager mounted to the C-ring. CBCT images are acquired with flex correction and maximally 360° rotation for a 53 cm field of view. The system was designed for clinical use with three imaging locations. Anthropomorphic phantoms were imaged to evaluate the image guidance accuracy. The position accuracy and repeatability of the robotic C-arm was high (robotic CBCT system provides high-accuracy volumetric image guidance for proton therapy. Advances in knowledge: Ceiling-mounted robotic CBCT provides a viable option than CT on-rails for partial gantry and fixed-beam proton systems with the added advantage of acquiring images at the treatment isocentre.

  5. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  6. Paediatric CT: the effects of increasing image noise on pulmonary nodule detection

    International Nuclear Information System (INIS)

    Punwani, Shonit; Davies, Warren; Greenhalgh, Rebecca; Humphries, Paul; Zhang, Jie

    2008-01-01

    A radiation dose of any magnitude can produce a detrimental effect manifesting as an increased risk of cancer. Cancer development may be delayed for many years following radiation exposure. Minimizing radiation dose in children is particularly important. However, reducing the dose can reduce image quality and may, therefore, hinder lesion detection. We investigated the effects of reducing the image signal-to-noise ratio (SNR) on CT lung nodule detection for a range of nodule sizes. A simulated nodule was placed at the periphery of the lung on an axial CT slice using image editing software. Multiple copies of the manipulated image were saved with various levels of superimposed noise. The image creation process was repeated for a range of nodule sizes. For a given nodule size, output images were read independently by four Fellows of The Royal College of Radiologists. The overall sensitivities in detecting nodules for the SNR ranges 0.8-0.99, 1-1.49, and 1.5-2.35 were 40.5%, 77.3% and 90.3%, respectively, and the specificities were 47.9%, 73.3% and 75%, respectively. The sensitivity for detecting lung nodules increased with nodule size and increasing SNR. There was 100% sensitivity for the detection of nodules of 4-10 mm in diameter at SNRs greater than 1.5. Reducing medical radiation doses in children is of paramount importance. For chest CT examinations this may be counterbalanced by reduced sensitivity and specificity combined with an increased uncertainty of pulmonary nodule detection. This study demonstrates that pulmonary nodules of 4 mm and greater in diameter can be detected with 100% sensitivity provided that the perceived image SNR is greater than 1.5. (orig.)

  7. Three-dimensional multislice CT imaging of otitis media

    International Nuclear Information System (INIS)

    Suzuki, Miyako; Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro; Wada, Akihiro; Ando, Ichiro

    2002-01-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  8. Three-dimensional multislice CT imaging of otitis media

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Miyako [Yanagibasi Hospital, Tokyo (Japan); Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine; Wada, Akihiro; Ando, Ichiro [Juntendo Univ., Chiba (Japan). Urayasu Hospital

    2002-07-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  9. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  10. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    International Nuclear Information System (INIS)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L

    2016-01-01

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  11. Skeletal scintigraphy and SPECT/CT in orthopedic imaging

    International Nuclear Information System (INIS)

    Klaeser, B.; Walter, M.; Krause, T.

    2011-01-01

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  12. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  13. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  14. SU-E-J-222: Evaluation of Deformable Registration of PET/CT Images for Cervical Cancer Brachytherapy

    International Nuclear Information System (INIS)

    Liao, Y; Turian, J; Templeton, A; Kiel, K; Chu, J; Kadir, T

    2014-01-01

    Purpose: PET/CT provides important functional information for radiotherapy targeting of cervical cancer. However, repeated PET/CT procedures for external beam and subsequent brachytherapy expose patients to additional radiation and are not cost effective. Our goal is to investigate the possibility of propagating PET-active volumes for brachytherapy procedures through deformable image registration (DIR) of earlier PET/CT and ultimately to minimize the number of PET/CT image sessions required. Methods: Nine cervical cancer patients each received their brachytherapy preplanning PET/CT at the end of EBRT with a Syed template in place. The planning PET/CT was acquired on the day of brachytherapy treatment with the actual applicator (Syed or Tandem and Ring) and rigidly registered. The PET/CT images were then deformably registered creating a third (deformed) image set for target prediction. Regions of interest with standardized uptake values (SUV) greater than 65% of maximum SUV were contoured as target volumes in all three sets of PET images. The predictive value of the registered images was evaluated by comparing the preplanning and deformed PET volumes with the planning PET volume using Dice's coefficient (DC) and center-of-mass (COM) displacement. Results: The average DCs were 0.12±0.14 and 0.19±0.16 for rigid and deformable predicted target volumes, respectively. The average COM displacements were 1.9±0.9 cm and 1.7±0.7 cm for rigid and deformable registration, respectively. The DCs were improved by deformable registration, however, both were lower than published data for DIR in other modalities and clinical sites. Anatomical changes caused by different brachytherapy applicators could have posed a challenge to the DIR algorithm. The physiological change from interstitial needle placement may also contribute to lower DC. Conclusion: The clinical use of DIR in PET/CT for cervical cancer brachytherapy appears to be limited by applicator choice and requires further

  15. MO-DE-207B-11: Reliability of PET/CT Radiomics Features in Functional and Morphological Components of NSCLC Lesions: A Repeatability Analysis in a Prospective Multicenter Cohort

    Energy Technology Data Exchange (ETDEWEB)

    Desseroit, M [INSERM, LaTIM UMR 1101, Brest (France); EE DACTIM, CHU de Poitiers, Poitiers (France); Tixier, F; Cheze Le Rest, C [EE DACTIM, CHU de Poitiers, Poitiers (France); Majdoub, M; Visvikis, D; Hatt, M [INSERM, LaTIM UMR 1101, Brest (France); Weber, W [Memorial Sloan Kettering Cancer Center, New-york, NY (United States); Siegel, B [Washington University School of Medicine, St Louis, MO (United States)

    2016-06-15

    Purpose: The goal of this study was to evaluate the repeatability of radiomics features (intensity, shape and heterogeneity) in both PET and low-dose CT components of test-retest FDG-PET/CT images in a prospective multicenter cohort of 74 NSCLC patients from ACRIN 6678 and a similar Merck trial. Methods: Seventy-four patients with stage III-IV NCSLC were prospectively included. The primary tumor and up to 3 additional lesions per patient were analyzed. The Fuzzy Locally Adaptive Bayesian algorithm was used to automatically delineate metabolically active volume (MAV) in PET. The 3D SlicerTM software was exploited to delineate anatomical volumes (AV) in CT. Ten intensity first-order features, as well as 26 textural features and four 3D shape descriptors were calculated from tumour volumes in both modalities. The repeatability of each metric was assessed by Bland-Altman analysis. Results: One hundred and five lesions (primary tumors and nodal or distant metastases) were delineated and characterized. The MAV and AV determination had a repeatability of −1.4±11.0% and −1.2±18.7% respectively. Several shape and heterogeneity features were found to be highly or moderately repeatable (e.g., sphericity, co-occurrence entropy or intensity size-zone matrix zone percentage), whereas others were confirmed as unreliable with much higher variability (more than twice that of the corresponding volume determination). Conclusion: Our results in this large multicenter cohort with more than 100 measurements confirm the PET findings in previous studies (with <30 lesions). In addition, our study is the first to explore the repeatability of radiomics features in the low-dose CT component of PET/CT acquisitions (previous studies considered dosimetry CT, CE-CT or CBCT). Several features were identified as reliable in both PET and CT components and could be used to build prognostic models. This work has received a French government support granted to the CominLabs excellence laboratory

  16. Correlative Imaging in a Patient with Cystic Thymoma: CT, MR and PET/CT Comparison

    International Nuclear Information System (INIS)

    Romeo, Valeria; Esposito, Alfredo; Maurea, Simone; Camera, Luigi; Mainenti, Pier Paolo; Palmieri, Giovannella; Buonerba, Carlo; Salvatore, Marco

    2015-01-01

    Cystic thymoma is a rare variant of thymic neoplasm characterized by almost complete cystic degeneration with mixed internal structure. We describe a case of a 60 year-old woman with a cystic thymoma studied with advanced tomographic imaging stydies. CT, MRI and PET/CT with 18 F-FDG were performed; volumetric CT and MRI images provided better anatomic evaluation for pre-operative assessment, while PET/CT was helpful for lesion characterization based on 18 F-FDG uptake. Although imaging studies are mandatory for pre-operative evaluation of cystic thymoma, final diagnosis still remains surgical. A 60-year-old woman with recent chest pain and no history of previous disease was admitted to our departement to investigate the result of a previous chest X-ray that showed bilateral mediastinal enlargement; for this purpose, enhanced chest CT scan was performed using a 64-rows scanner (Toshiba, Aquilion 64, Japan) before and after intravenous bolus administration of iodinated non ionic contrast agent; CT images demonstrated the presence of a large mediastinal mass (11×8 cm) located in the anterior mediastinum who extended from the anonymous vein to the cardio-phrenic space, compressing the left atrium and causing medium lobe atelectasis; bilateral pleural effusion was also present. In conclusion, correlative imaging plays a foundamental role for the diagnostic evaluation of patient with cystic thymoma. In particular, volumetric CT and MRI studies can provide better anatomic informations regarding internal structure and local tumor spread for pre-operative assessment. Conversely, metabolic imaging using 18 F-FDG PET/CT is helpful for lesion characterization differentiating benign from malignant lesion on the basis of intense tracer uptake. The role of PET/MRI is still under investigation. However, final diagnosis still remains surgical even though imaging studies are mandatory for pre-operative patient management

  17. Pulmonary function-morphologic relationships assessed by SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    2012-01-01

    Pulmonary single photon emission computed tomography-computed tomography (SPECT-CT) fusion images provide objective and comprehensive assessment of pulmonary function and morphology relationships at cross-sectional lungs. This article reviewed the noteworthy findings of lung pathophysiology in wide-spectral lung disorders, which have been revealed on SPECT-CT fusion images in 8 years of experience. The fusion images confirmed the fundamental pathophysiologic appearance of lung low CT attenuation caused by airway obstruction-induced hypoxic vasoconstriction and that caused by direct pulmonary arterial obstruction as in acute pulmonary thromboembolism (PTE). The fusion images showed better correlation of lung perfusion distribution with lung CT attenuation changes at lung mosaic CT attenuation (MCA) compared with regional ventilation in the wide-spectral lung disorders, indicating that lung heterogeneous perfusion distribution may be a dominant mechanism of MCA on CT. SPECT-CT angiography fusion images revealed occasional dissociation between lung perfusion defects and intravascular clots in acute PTE, indicating the importance of assessment of actual effect of intravascular colts on peripheral lung perfusion. Perfusion SPECT-CT fusion images revealed the characteristic and preferential location of pulmonary infarction in acute PTE. The fusion images showed occasional unexpected perfusion defects in normal lung areas on CT in chronic obstructive pulmonary diseases and interstitial lung diseases, indicating the ability of perfusion SPECT superior to CT for detection of mild lesions in these disorders. The fusion images showed frequent ''steal phenomenon''-induced perfusion defects extending to the surrounding normal lung of arteriovenous fistulas and those at normal lungs on CT in hepatopulmonary syndrome. Comprehensive assessment of lung function-CT morphology on fusion images will lead to more profound understanding of lung pathophysiology in wide-spectral lung

  18. Dynamic CT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Caruso, Damiano; Eid, Marwen; Schoepf, U. Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie

    2016-01-01

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  19. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  20. Skeletal scintigraphy and SPECT/CT in orthopedic imaging; Knochenszintigrafie und SPECT/CT bei orthopaedischen Fragestellungen

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, B.; Walter, M.; Krause, T. [Inselspital Bern (Switzerland). Universitaetsklinik fuer Nuklearmedizin

    2011-03-15

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  1. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H., E-mail: holly.johnston@utsw.edu [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2 (Canada); Hilts, M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and Medical Physics, BC Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada); Jirasek, A. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and Department of Physics, University of British Columbia—Okanagan Campus, Kelowna, British Columbia V1V 1V7 (Canada)

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  2. Evaluation of third treatment week as temporal window for assessing responsiveness on repeated FDG-PET-CT scans in Non-Small Cell Lung Cancer patients.

    Science.gov (United States)

    Lazzeroni, M; Uhrdin, J; Carvalho, S; van Elmpt, W; Lambin, P; Dasu, A; Wersäll, P; Toma-Dasu, I

    2018-02-01

    Early assessment of tumour response to treatment with repeated FDG-PET-CT imaging has potential for treatment adaptation but it is unclear what the optimal time window for this evaluation is. Previous studies indicate that changes in SUV mean and the effective radiosensitivity (α eff , accounting for uptake variations and accumulated dose until the second FDG-PET-CT scan) are predictive of 2-year overall survival (OS) when imaging is performed before radiotherapy and during the second week. This study aims to investigate if multiple FDG-PET-derived quantities determined during the third treatment week have stronger predictive power. Twenty-eight lung cancer patients were imaged with FDG-PET-CT before radiotherapy (PET1) and during the third week (PET2). SUV mean , SUV max , SUV peak , MTV41%-50% (Metabolic Tumour Volume), TLG41%-50% (Total Lesion Glycolysis) in PET1 and PET2 and their change (), as well as average α eff (α¯ eff ) and the negative fraction of α eff values [Formula: see text] ) were determined. Correlations were sought between FDG-PET-derived quantities and OS with ROC analysis. Neither SUV mean , SUV max , SUV peak in PET1 and PET2 (AUC = 0.5-0.6), nor their changes (AUC = 0.5-0.6) were significant for outcome prediction purposes. Lack of correlation with OS was also found for α¯ eff (AUC = 0.5) and [Formula: see text] (AUC = 0.5). Threshold-based quantities (MTV41%-50%, TLG41%-50%) and their changes had AUC = 0.5-0.7. P-values were in all cases ≫0.05. The poor OS predictive power of the quantities determined from repeated FDG-PET-CT images indicates that the third week of treatment might not be suitable for treatment response assessment. Comparatively, the second week during the treatment appears to be a better time window. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. MR imaging and CT findings after liver transplantation

    International Nuclear Information System (INIS)

    Langer, M.; Langer, R.; Scholz, A.; Zwicker, C.; Astinet, F.

    1990-01-01

    The aim of the paper is to evaluate MR imaging and dynamic CT as noninvasive procedures to image signs of graft failure after an orthotopic liver transplantation (OLT). Thirty MR studies and 50 dynamic CT examinations were performed within 20 days after OLT. MR examinations were performed with a 0.5-T Siemens Magnetom. CT scans were obtained by using a Siemens Somatom Plus. In all patients, MR images demonstrated a perivascular rim of intermediate signal intensity on T1-weighted and increased signal intensity on T2-weighted images in the hilum of the liver; in 20/26, this was seen in peripheral areas also. In all patients, a perivascular area of low attenuation was diagnosed at angio-CT

  4. CT and MR imaging findings of sinonasal angiomatous polyps

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jing [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Man, Fengyuan [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing (China); Deng, Kai [Department of Radiology, Qingdao No. 4 People' s Hospital, Qingdao, Shandong (China); Zheng, Yuanyuan [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Hao, Dapeng, E-mail: haodp_2009@163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Xu, Wenjian, E-mail: cjr.xuwenjian@vip.163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China)

    2014-03-15

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP.

  5. CT and MR imaging findings of sinonasal angiomatous polyps

    International Nuclear Information System (INIS)

    Zou, Jing; Man, Fengyuan; Deng, Kai; Zheng, Yuanyuan; Hao, Dapeng; Xu, Wenjian

    2014-01-01

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP

  6. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  7. Blind CT image quality assessment via deep learning strategy: initial study

    Science.gov (United States)

    Li, Sui; He, Ji; Wang, Yongbo; Liao, Yuting; Zeng, Dong; Bian, Zhaoying; Ma, Jianhua

    2018-03-01

    Computed Tomography (CT) is one of the most important medical imaging modality. CT images can be used to assist in the detection and diagnosis of lesions and to facilitate follow-up treatment. However, CT images are vulnerable to noise. Actually, there are two major source intrinsically causing the CT data noise, i.e., the X-ray photo statistics and the electronic noise background. Therefore, it is necessary to doing image quality assessment (IQA) in CT imaging before diagnosis and treatment. Most of existing CT images IQA methods are based on human observer study. However, these methods are impractical in clinical for their complex and time-consuming. In this paper, we presented a blind CT image quality assessment via deep learning strategy. A database of 1500 CT images is constructed, containing 300 high-quality images and 1200 corresponding noisy images. Specifically, the high-quality images were used to simulate the corresponding noisy images at four different doses. Then, the images are scored by the experienced radiologists by the following attributes: image noise, artifacts, edge and structure, overall image quality, and tumor size and boundary estimation with five-point scale. We trained a network for learning the non-liner map from CT images to subjective evaluation scores. Then, we load the pre-trained model to yield predicted score from the test image. To demonstrate the performance of the deep learning network in IQA, correlation coefficients: Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are utilized. And the experimental result demonstrate that the presented deep learning based IQA strategy can be used in the CT image quality assessment.

  8. CT and MR imaging characteristics of infantile hepatic hemangioendothelioma

    International Nuclear Information System (INIS)

    Feng Shiting; Chan Tao; Ching, A.S.C.; Sun Canhui; Guo Huanyi; Fan Miao; Meng Quanfei; Li Ziping

    2010-01-01

    Aim: This study aims to analyze computed tomography (CT) and magnetic resonance (MR) imaging features of infantile hepatic hemangioendotheliomas before and after treatment. Materials and methods: CT and MR examinations of seven infants with biopsy proven hepatic hemangioendotheliomas were retrospectively analyzed. The distribution, number, size, imaging appearance, enhancement pattern and post-treatment changes of the tumors were evaluated. Results: A total of 153 hepatic hemangioendotheliomas were detected on CT (111) and MR (42) imaging. In six infants, 109/111 (98.2%) tumors were hypodense and 2/111 (1.8%) lesions contained calcification on unenhanced CT. On MR imaging, all 42 lesions in one infant were heterogeneously T1-hypointense and T2-hyperintense compared to the normal liver parenchyma. Contrast-enhanced CT and MRI showed peripheral rim (51.6%), uniform (48.4%), fibrillary (33.3%), and nodular (28.8%) contrast enhancement in the hepatic arterial phase. Homogeneous (100%), rim (98.2%) and mixed enhancement patterns were noted in tumors 2.0 cm and 1.0-2.0 cm in diameter respectively in the hepatic arterial phase. In three patients who underwent steroid therapy, follow-up CT examination demonstrated tumor size reduction and increased intra-tumoral calcification in two patients. Conclusion: Infantile hepatic hemangioendotheliomas show some typical imaging features and size-dependent pattern of contrast enhancement on CT and MR imaging, which allow accurate imaging diagnosis and post-treatment evaluation.

  9. CT image registration in sinogram space.

    Science.gov (United States)

    Mao, Weihua; Li, Tianfang; Wink, Nicole; Xing, Lei

    2007-09-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy.

  10. CT image registration in sinogram space

    International Nuclear Information System (INIS)

    Mao Weihua; Li Tianfang; Wink, Nicole; Xing Lei

    2007-01-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy

  11. In-room CT techniques for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M. Charlie; Paskalev, Kamen M.S.

    2006-01-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments

  12. Importance of PET/CT for imaging of colorectal cancer

    International Nuclear Information System (INIS)

    Meinel, F.G.; Schramm, N.; Graser, A.; Reiser, M.F.; Rist, C.; Haug, A.R.

    2012-01-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has emerged as a very useful imaging modality in the management of colorectal carcinoma. Data from the literature regarding the role of PET/CT in the initial diagnosis, staging, radiotherapy planning, response monitoring and surveillance of colorectal carcinoma is presented. Future directions and economic aspects are discussed. Computed tomography (CT), magnetic resonance imaging (MRI) and FDG-PET for colorectal cancer and endorectal ultrasound for rectal cancer. Combined FDG-PET/CT. While other imaging modalities allow superior visualization of the extent and invasion depth of the primary tumor, PET/CT is most sensitive for the detection of distant metastases of colorectal cancer. We recommend a targeted use of PET/CT in cases of unclear M staging, prior to metastasectomy and in suspected cases of residual or recurrent colorectal carcinoma with equivocal conventional imaging. The role of PET/CT in radiotherapy planning and response monitoring needs to be determined. Currently there is no evidence to support the routine use of PET/CT for colorectal screening, staging or surveillance. To optimally exploit the synergy between morphologic and functional information, FDG-PET should generally be performed as an integrated FDG-PET/CT with a contrast-enhanced CT component in colorectal carcinoma. (orig.) [de

  13. High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT

    International Nuclear Information System (INIS)

    Callahan, Jason; Hofman, Michael S.; Siva, Shankar; Kron, Tomas; Schneider, Michal E.; Binns, David; Eu, Peter; Hicks, Rodney J.

    2014-01-01

    Our group has previously reported on the use of 68 Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for 68 Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of 68 Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p 68 Ga-VQ 4-D PET/CT is feasible and the blurring caused by respiratory motion is well corrected with 4-D acquisition, which principally reduces artefact at the lung bases. The images with the highest spatial overlap were the combined expiration phase or FB PET and average CT. With higher resolution than SPECT/CT, the PET/CT technique has a broad range of potential clinical applications including

  14. CT and MR imaging of the kidney and adrenal glands: CT of the kidney

    International Nuclear Information System (INIS)

    Levine, E.

    1987-01-01

    Because of its high diagnostic yield, safety, and cost-effectiveness, CT has become a major imaging technique for evaluating the kidney. CT is highly accurate for determining the nature and extent of renal masses, and this has become the main indication for renal CT. However, CT is also valuable in assessing patients with renal cystic disease, trauma, inflammatory disease, infarction, hemorrhage and hydronephrosis of unknown cause. This presentation reviews the normal CT anatomy of the kidneys and the usefulness of CT in the diagnosis of all these conditions. Examination techniques are discussed with particular emphasis on avoiding diagnostic pitfalls and tailoring the examination to the nature of the clinical problem. CT findings in various renal disorders are compared with those of other imaging techniques, particularly US and angiography, and the place of CT in the diagnostic approach to these disorders is considered

  15. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  16. Cardiac MR imaging: Comparison with echocardiography and dynamic CT

    International Nuclear Information System (INIS)

    Colletti, P.M.; Norris, S.; Raval, J.; Boswell, W.; Lee, K.; Ralls, P.; Haywood, J.; Halls, J.

    1986-01-01

    The authors compared gated cardiac MR imaging with two-dimensional and Doppler echocardiography and dynamic CT. Gated cardiac MR imaging (VISTA unit, 0.5 T) was performed in 55 patients with a variety of conditions. Accuracy of diagnosis was compared. CT showed arterial, valvular, and pericardial calcifications not seen on MR imaging. Many lesions were seen as well on CT as on MR imaging. Two-dimensional echocardiography was superior in demonstrating wall motion and valvular disease. MR imaging was superior in demonstrating myocardial structures

  17. Design and implementation of a 3D-MR/CT geometric image distortion phantom/analysis system for stereotactic radiosurgery

    Science.gov (United States)

    Damyanovich, A. Z.; Rieker, M.; Zhang, B.; Bissonnette, J.-P.; Jaffray, D. A.

    2018-04-01

    The design, construction and application of a multimodality, 3D magnetic resonance/computed tomography (MR/CT) image distortion phantom and analysis system for stereotactic radiosurgery (SRS) is presented. The phantom is characterized by (1) a 1 × 1 × 1 (cm)3 MRI/CT-visible 3D-Cartesian grid; (2) 2002 grid vertices that are 3D-intersections of MR-/CT-visible ‘lines’ in all three orthogonal planes; (3) a 3D-grid that is MR-signal positive/CT-signal negative; (4) a vertex distribution sufficiently ‘dense’ to characterize geometrical parameters properly, and (5) a grid/vertex resolution consistent with SRS localization accuracy. When positioned correctly, successive 3D-vertex planes along any orthogonal axis of the phantom appear as 1 × 1 (cm)2-2D grids, whereas between vertex planes, images are defined by 1 × 1 (cm)2-2D arrays of signal points. Image distortion is evaluated using a centroid algorithm that automatically identifies the center of each 3D-intersection and then calculates the deviations dx, dy, dz and dr for each vertex point; the results are presented as a color-coded 2D or 3D distribution of deviations. The phantom components and 3D-grid are machined to sub-millimeter accuracy, making the device uniquely suited to SRS applications; as such, we present it here in a form adapted for use with a Leksell stereotactic frame. Imaging reproducibility was assessed via repeated phantom imaging across ten back-to-back scans; 80%–90% of the differences in vertex deviations dx, dy, dz and dr between successive 3 T MRI scans were found to be  ⩽0.05 mm for both axial and coronal acquisitions, and over  >95% of the differences were observed to be  ⩽0.05 mm for repeated CT scans, clearly demonstrating excellent reproducibility. Applications of the 3D-phantom/analysis system are presented, using a 32-month time-course assessment of image distortion/gradient stability and statistical control chart for 1.5 T and 3 T GE TwinSpeed MRI

  18. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  19. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    Science.gov (United States)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  20. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  1. The influence of CT image noise on proton range calculation in radiotherapy planning

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V; Paige, Sandra L

    2010-01-01

    The purpose of this note is to evaluate the relationship between the stochastic errors in CT numbers and the standard deviation of the computed proton beam range in radiotherapy planning. The stochastic voxel-to-voxel variation in CT numbers called 'noise,' may be due to signal registration, processing and numerical image reconstruction technique. Noise in CT images may cause a deviation in the computed proton range from the physical proton range, even assuming that the error due to CT number-stopping power calibration is removed. To obtain the probability density function (PDF) of the computed proton range, we have used the continuing slowing down approximation (CSDA) and the uncorrelated white Gaussian noise along the proton path. The model of white noise was accepted because for the slice-based fan-beam CT scanner; the power-spectrum properties apply only to the axial (x, y) domain and the noise is uncorrelated in the z domain. However, the possible influence of the noise power spectrum on the standard deviation of the range should be investigated in the future. A random number generator was utilized for noise simulation and this procedure was iteratively repeated to obtain convergence of range PDF, which approached a Gaussian distribution. We showed that the standard deviation of the range, σ, increases linearly with the initial proton energy, computational grid size and standard deviation of the voxel values. The 95% confidence interval width of the range PDF, which is defined as 4σ, may reach 0.6 cm for the initial proton energy of 200 MeV, computational grid 0.25 cm and 5% standard deviation of CT voxel values. Our results show that the range uncertainty due to random errors in CT numbers may be significant and comparable to the uncertainties due to calibration of CT numbers. (note)

  2. Advances in CT imaging for urolithiasis

    Directory of Open Access Journals (Sweden)

    Yasir Andrabi

    2015-01-01

    Full Text Available Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT is highly sensitive (>95% and specific (>96% in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT and technological innovations in CT such as dual-energy CT (DECT has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice.

  3. Improved CT imaging in diagnosis of ankylosing spondylitis

    International Nuclear Information System (INIS)

    Mai Yuanfeng; Sun Haixing; Ling Jian; Kuang Jianyi; Pan Ximin

    2006-01-01

    Objective: To evaluate the improved CT imaging of sacroiliac joint in diagnosis of ankylosing spondylitis (AS). Methods: 22 patients, diagnosed as AS by clinical and radiography, undertook both conventional and improved CT imaging. All images were comparatively studied. Results: With conventional CT imaging, in the 44 joints of 22 cases, unremarkable images were obtained in 3 cases; early stage AS was found in 15 joints of 9 cases; AS in progressive stage was revealed in 8 cases/16 joints, stabled AS was presented in 2 cases/4 joints. There were 23 joints in 12 cases diagnosed as early term by improved imaging, progressive staged AS was shown in 8 cases/16 joints as, stable AS was demonstrated in 2 cases/4 joints. Conclusion: The improved imaging is sensitive in the diagnosis of early staged AS, for the application of thin slice scan, which helps to reduce partial volume effect. Scanning along the longitudinal axis of the sacroiliac joint extends the observation of erosion of the joint surface. For progressive or stable staged AS, the alterations of bone and joint space are prominent, improved CT imaging is not superior to the conventional. (authors)

  4. Reconstruction CT imaging of the hypopharynx and the larynx

    International Nuclear Information System (INIS)

    Okuno, Tetsuji; Fujimura, Akiko; Murakami, Yasushi; Shiga, Hayao

    1986-01-01

    The multiplanar reconstruction CT imaging of the hypopharynx and the larynx was performed on a total of 20 cases: 8 with laryngeal carcinomas, 6 with hypopharyngeal carcinomas, 4 with vocal cord paralyses due to various causes, 1 with laryngeal amyloidosis, 1 with inflammatory granuloma of the hypopharynx. Coronal, segittal, and parasagittal reconstruction images were obtained from either 1 or 2 mm overlapping axial scans with 4 or 5 mm slice thickness (3 cases) using 5 sec scan times during queit breathing. In 15 cases with coronal reconstruction imaging, the anatomical derangements of the laryngopharyngeal structures especially along the undersurface of the true vocal cord to the false cord level, the lateral wall of the pyriform sinus, and the paraglottic space were demonstrated more clearly than the axial CT imaging. In 5 cases with sagittal reconstruction imaging, the vertical extension of the lesions through the anterior commisure was more clearly depicted than the axial CT imaging. In 8 cases with parasagittal reconstruction imaging, which is along the vocal fold or across the aryepiglottic fold, pathological changes along the aryepiglottic fold, the arytenoid-corniculate cartilage complex, and the tip of the pyriform sinus were more clearly demonstrated than the axial CT imaging. In determining the feasibility of conservation surgery of the larynx and the hypopharynx, reconstruction CT imaging is recommended as the diagnostic procedure of a choice, which would supplement the findings of the routine axial CT imaging. (author)

  5. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  6. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  7. Clinical PET/CT Atlas: A Casebook of Imaging in Oncology

    International Nuclear Information System (INIS)

    2015-01-01

    Integrated positron emission tomography/computed tomography (PET/CT) has evolved since its introduction into the commercial market more than a decade ago. It is now a key procedure, particularly in oncological imaging. Over the last years in routine clinical service, PET/CT has had a significant impact on diagnosis, treatment planning, staging, therapy, and monitoring of treatment response and has therefore played an important role in the care of cancer patients. The high sensitivity from the PET component and the specificity of the CT component give this hybrid imaging modality the unique characteristics that make PET/CT, even after over 10 years of clinical use, one of the fastest growing imaging modalities worldwide. This publication combines over 90 comprehensive cases covering all major indications of fluorodeoxyglucose (18F-FDG)-PET/CT as well as some cases of clinically relevant special tracers. The cases provide an overview of what the specific disease can look like in PET/CT, the typical pattern of the disease’s spread as well as likely pitfalls and teaching points. This PET/CT Atlas will allow professionals interested in PET/CT imaging to embrace the variety of oncological imaging by providing clinically relevant teaching files on the effectiveness and diagnostic quality of FDG-PET/CT imaging in routine applications

  8. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  9. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    International Nuclear Information System (INIS)

    Won Kim, Chang; Kim, Jong Hyo

    2014-01-01

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/−3.2% in

  10. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, H; Xing, L [Stanford University, Palo Alto, CA (United States); Liang, Z [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  11. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    International Nuclear Information System (INIS)

    Han, H; Xing, L; Liang, Z

    2016-01-01

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  12. Imaging fusion (SPECT/CT) in degenerative disease of spine

    International Nuclear Information System (INIS)

    Bernal, P.; Ucros, G.; Bermudez, S.; Ocampo, M.

    2007-01-01

    Full text: Objective: To determine the utility of Fusion Imaging SPECT/CT in degenerative pathology of the spine and to establish the impact of the use of fusion imaging in spinal pain due to degenerative changes of the spine. Materials and methods: 44 Patients (M=21, F=23) average age of 63 years and with degenerative pathology of spine were sent to Diagnosis Imaging department in FSFB. Bone scintigraphy (SPECT), CT of spine (cervical: 30%, Lumbar 70%) and fusion imaging were performed in all of them. Bone scintigraphy was carried out in a gamma camera Siemens Diacam double head attached to ESOFT computer. The images were acquired in matrix 128 x 128, 20 seg/imag, 64 images. CT of spine was performed same day or two days after in Helycoidal Siemens somatom emotion CT. The fusion was done in a Dicom workstation in sagital, axial and coronal reconstruction. The findings were evaluated by 2 Nuclear Medicine physicians and 2 radiologists of the staff of FSFB in an independent way. Results: Bone scan (SPECT) and CT of 44 patients were evaluated. CT showed facet joint osteoarthrities in 27 (61.3%) patients, uncovertebral joint arthrosis in 7 (15.9%), bulging disc in 9(20.4%), spinal nucleus lesion in 7(15.9%), osteophytes in 9 (20.4%), spinal foraminal stenosis in 7 (15.9%), spondylolysis/spondylolisthesis in 4 (9%). Bone scan showed facet joint osteoarthrities in 29 (65.9%), uncovertebral joint arthrosis in 4 (9%), osteophytes in 9 (20.4%) and normal 3 (6.8%). The imaging fusion showed coincidence findings (main lesion in CT with high uptake in scintigraphy) in 34 patients (77.2%) and no coincidence in 10 (22.8%). In 15 (34.09%) patients the fusion provided additional information. The analysis of the findings of CT and SPECT showed similar results in most of the cases and the fusion didn't provide additional information but it allowed to confirm the findings but when the findings didn't match where the CT showed several findings and SPECT only one area with high uptake

  13. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  14. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    International Nuclear Information System (INIS)

    Sattler, Bernhard; Lee, John A.; Lonsdale, Markus; Coche, Emmanuel

    2010-01-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  15. Automatic segmentation of liver structure in CT images

    International Nuclear Information System (INIS)

    Bae, K.T.; Giger, M.L.; Chen, C.; Kahn, C.E. Jr.

    1993-01-01

    The segmentation and three-dimensional representation of the liver from a computed tomography (CT) scan is an important step in many medical applications, such as in the surgical planning for a living-donor liver transplant and in the automatic detection and documentation of pathological states. A method is being developed to automatically extract liver structure from abdominal CT scans using a priori information about liver morphology and digital image-processing techniques. Segmentation is performed sequentially image-by-image (slice-by-slice), starting with a reference image in which the liver occupies almost the entire right half of the abdomen cross section. Image processing techniques include gray-level thresholding, Gaussian smoothing, and eight-point connectivity tracking. For each case, the shape, size, and pixel density distribution of the liver are recorded for each CT image and used in the processing of other CT images. Extracted boundaries of the liver are smoothed using mathematical morphology techniques and B-splines. Computer-determined boundaries were compared with those drawn by a radiologist. The boundary descriptions from the two methods were in agreement, and the calculated areas were within 10%

  16. Study of CT image texture using deep learning techniques

    Science.gov (United States)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  17. Modified CT imaging by reduction factor transformations

    International Nuclear Information System (INIS)

    Doehring, W.; Linke, G.

    1981-01-01

    The possibilities of CT image modification which had existed so far for given matrix of attenuation values (window setting, highlighting, black-and-white or colour reversal and logarithmic distortion of the video signal) are supplemented by the method of attenuation value transformation. As a specific case a linear interval by interval attenuation value transformation is described. First of all, the intirety of the measured CT values is transformed into the corresponding CT quotients (CTQ) and then subdivided into 5 optional intervals. Each one freely selected CTQ value can be allocated to the first and to the last interval; the intermediate 3 intervals can be linearly transformed at random. The article discusses the influence of such a manipulation on CT image reproduction; this is of particular importance for the image visualisation of the results of quantitative organ analyses by means of computed tomography. The presented paper also points to the possibility of effecting further attenuation value transformations. (orig.) [de

  18. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  19. Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT){sub n} {center_dot} (GA){sub n} microsatellite embedded within the U2 repeat unit

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.; Weiner, A.M. [Yale Univ., New Haven, CT (United States)

    1995-12-10

    The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT){sub n}{center_dot}(GA){sub n} dinucleotide repeat (n {approx} 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to study the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT){sub n} tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, ogangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion. 70 refs., 5 figs.

  20. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  1. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  2. Attenuation correction of myocardial SPECT images with X-ray CT. Effects of registration errors between X-ray CT and SPECT

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Murase, Kenya; Mochizuki, Teruhito; Motomura, Nobutoku

    2002-01-01

    Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. Registerion (fusion) of the X-ray CT and SPECT images was done with standard packaged software in three dimensional fashion, by using linked transaxial, coronal and sagittal images. In the phantom study, and X-ray CT image was shifted 1 to 3 pixels on the x, y and z axes, and rotated 6 degrees clockwise. Attenuation correction maps generated from each misaligned X-ray CT image were used to reconstruct misaligned SPECT images of the phantom filled with 201 Tl. In a human volunteer, X-ray CT was acquired in different conditions (during inspiration vs. expiration). CT values were transferred to an attenuation constant by using straight lines; an attenuation constant of 0/cm in the air (CT value=-1,000 HU) and that of 0.150/cm in water (CT value=0 HU). For comparison, attenuation correction with transmission CT (TCT) data and an external γ-ray source ( 99m Tc) was also applied to reconstruct SPECT images. Simulated breast attenuation with a breast attachment, and inferior wall attenuation were properly corrected by means of the attenuation correction map generated from X-ray CT. As pixel shift increased, deviation of the SPECT images increased in misaligned images in the phantom study. In the human study, SPECT images were affected by the scan conditions of the X-ray CT. Attenuation correction of myocardial SPECT with an X-ray CT image is a simple and potentially beneficial method for clinical use, but accurate registration of the X-ray CT to SPECT image is essential for satisfactory attenuation correction. (author)

  3. PET/CT Atlas on Quality Control and Image Artefacts

    International Nuclear Information System (INIS)

    2014-01-01

    Combined positron emission tomography (PET)/computed tomography (CT) imaging has become a routine procedure in diagnostic radiology and nuclear medicine. The clinical review of both PET and PET/CT images requires a thorough understanding of the basics of image formation as well as an appreciation of variations of inter-patient and intra-patient image appearance. Such variations may be caused by variations in tracer accumulation and metabolism, and, perhaps more importantly, by image artefacts related to methodological pitfalls of the two modalities. This atlas on quality control (QC) and PET/CT artefacts provides guidance on typical image distortions in clinical PET/CT usage scenarios. A number of cases are presented to provide nuclear medicine and radiology professionals with an assortment of examples of possible image distortions and errors in order to support the correct interpretation of images. About 70 typical PET and PET/CT cases, comprised of image sets and cases, have been collected in this book, and all have been catalogued and have explanations as to the causes of and solutions to each individual image problem. This atlas is intended to be used as a guide on how to take proper QC measures, on performing situation and problem analysis, and on problem prevention. This book will be especially useful to medical physicists, physicians, technologists and service engineers in the clinical field

  4. Development of a 3-dimensional CT using an image intensifier

    International Nuclear Information System (INIS)

    Toyofuku, Fukai

    1992-01-01

    A prototype of three-dimensional CT (Fluoroscopic CT) has been developed using an image intensifier as a two-dimensional X-ray detector. A patient on a rotating table is projected onto an image intensifier by a cone beam of X-ray from the X-ray tube. A total of 390 projection images covering 180 degrees are acquired in a single scan (13 sec) and stored on a digital frame recorder (512 x 256 x 8-bit x 480). The transverse axial images are reconstructed by using the usual CT reconstruction algorithm, while longitudinal section images such as sagittal, coronal, oblique, and panoramic images are obtained by directly back-projecting the filtered projection image onto the sections. The radiation exposure was measured with an ionization chamber, and the exposure of the present fluoroscopic CT is about 10 to 20 times less than that of conventional X-ray CT. A similar monochromatic X-ray CT system has also been developed using synchrotron radiation. Large area parallel X-rays are obtained from a wiggler beam using a silicon crystal with [311] asymmetric reflection. By taking two images above and below iodine K-absorption edge (33.17 keV), iodine image is obtained. (author)

  5. Three-dimensional-CT imaging of colorectal disease with thin collimation helical CT scanning

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Koizumi, Koichi; Sakai, Tatsuya; Kai, Shunkichi; Takatsu, Kazuaki; Maruyama, Masakazu

    1998-01-01

    We have conducted research on three-dimensional (3D)-CT-colonoscopy with thin collimation helical CT scanning over the past three years. This has lately become a subject of special interest. 3D-CT-colonoscopy has three kinds of visualizing methods depending on the threshold setting of CT values. The first one is the virtual endoscopy method which is displayed in a similar fashion to colonoscopic images. The second one is the air image method using the air in the digestive tract as a contrast medium. The third one is the pseudo-tract method which has characteristics of both virtual endoscopy and the air image method and visualizes in a shape of the digestive tract. The image visualized by 3D-CT-colonoscopy is similar to that of conventional colonoscopy and barium enema study, which is obtained with minimal invasion to patients. Obvious advanced carcinomas were easily visualized, and even a small flat polyp measuring 5 mm in size, was able to be observed retrospectively. The characteristics of our method are that we can easily make an examination in a short time and with little dependence on expert technique. Also patients have little discomfort compared to that experienced during colonoscopy and barium enema study. Important features are as follows; long calculation time, insufficient air insufflation, fecal material in the patient''s bowel, whole abdominal scan, and spatial resolution. In the near future, a multislice CT scanner system will have ability to overcome these problems. Therefore, 3D-CT-colonoscopy might be applied in the future for first line examination as a mass screening for colorectal carcinoma. (author)

  6. Pediatric renal leukemia: spectrum of CT imaging findings

    International Nuclear Information System (INIS)

    Hilmes, Melissa A.; Dillman, Jonathan R.; Mody, Rajen J.; Strouse, Peter J.

    2008-01-01

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  7. Pediatric renal leukemia: spectrum of CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Hilmes, Melissa A. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); Vanderbilt University Children' s Hospital, Section of Pediatric Radiology, Nashville, TN (United States); Dillman, Jonathan R. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Mody, Rajen J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Division of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Ann Arbor, MI (United States); Strouse, Peter J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States)

    2008-04-15

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  8. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT

    International Nuclear Information System (INIS)

    Kuno, Hirofumi; Onaya, Hiroaki; Fujii, Satoshi; Ojiri, Hiroya; Otani, Katharina; Satake, Mitsuo

    2014-01-01

    Laryngeal and hypopharyngeal cancer, in particular T4a disease associated with cartilage invasion and extralaryngeal spread, needs to be evaluated accurately because treatment can impact heavily on a patient's quality of life. Reliable imaging tools are therefore indispensible. CT offers high spatial and temporal resolution and remains the preferred imaging modality. Although cartilage invasion can be diagnosed with acceptable accuracy by applying defined criteria for combinations of erosion, lysis and transmural extralaryngeal spread, iodine-enhanced tumors and non-ossified cartilage are sometimes difficult to distinguish. MR offers high contrast resolution for images without motion artifacts, although inflammatory changes in cartilage sometimes resemble cartilage invasion. With dual-energy CT, combined iodine overlay images and weighted average images can be used for evaluation of cartilage invasion, since iodine enhancement is evident in tumor tissue but not in cartilage. Extralaryngeal spread can be evaluated from CT, MR or dual-energy CT images and the routes of tumor spread into the extralaryngeal soft tissue must be considered; (1) via the thyrohyoid membrane along the superior laryngeal neurovascular bundle, (2) via the inferior pharyngeal constrictor muscle, and (3) via the cricothyroid membrane. Radiologists need to understand the advantages and limitations of each imaging modality for staging of laryngeal and hypopharyngeal cancer

  9. Automated image-matching technique for comparative diagnosis of the liver on CT examination

    International Nuclear Information System (INIS)

    Okumura, Eiichiro; Sanada, Shigeru; Suzuki, Masayuki; Tsushima, Yoshito; Matsui, Osamu

    2005-01-01

    When interpreting enhanced computer tomography (CT) images of the upper abdomen, radiologists visually select a set of images of the same anatomical positions from two or more CT image series (i.e., non-enhanced and contrast-enhanced CT images at arterial and delayed phase) to depict and to characterize any abnormalities. The same process is also necessary to create subtraction images by computer. We have developed an automated image selection system using a template-matching technique that allows the recognition of image sets at the same anatomical position from two CT image series. Using the template-matching technique, we compared several anatomical structures in each CT image at the same anatomical position. As the position of the liver may shift according to respiratory movement, not only the shape of the liver but also the gallbladder and other prominent structures included in the CT images were compared to allow appropriate selection of a set of CT images. This novel technique was applied in 11 upper abdominal CT examinations. In CT images with a slice thickness of 7.0 or 7.5 mm, the percentage of image sets selected correctly by the automated procedure was 86.6±15.3% per case. In CT images with a slice thickness of 1.25 mm, the percentages of correct selection of image sets by the automated procedure were 79.4±12.4% (non-enhanced and arterial-phase CT images) and 86.4±10.1% (arterial- and delayed-phase CT images). This automated method is useful for assisting in interpreting CT images and in creating digital subtraction images. (author)

  10. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  11. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  12. CT and MRI techniques for imaging around orthopedic hardware

    Energy Technology Data Exchange (ETDEWEB)

    Do, Thuy Duong; Skornitzke, Stephan; Weber, Marc-Andre [Heidelberg Univ. (Germany). Dept. of Clinical Radiology; Sutter, Reto [Uniklinik Balgrist, Zurich (Switzerland). Radiology

    2018-01-15

    Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. All steps of image acquisition from device selection, scan preparations and parameters to image post-processing influence the magnitude of metal artifacts. Technological advances like dual-energy CT with the possibility of virtual monochromatic imaging (VMI) and new materials offer opportunities to further reduce artifacts in CT and MRI. Dedicated metal artifact reduction sequences contain algorithms to reduce artifacts and improve imaging of surrounding tissue and are essential tools in orthopedic imaging to detect postoperative complications in early stages.

  13. Registered error between PET and CT images confirmed by a water model

    International Nuclear Information System (INIS)

    Chen Yangchun; Fan Mingwu; Xu Hao; Chen Ping; Zhang Chunlin

    2012-01-01

    The registered error between PET and CT imaging system was confirmed by a water model simulating clinical cases. A barrel of 6750 mL was filled with 59.2 MBq [ 18 F]-FDG and scanned after 80 min by 2 dimension model PET/CT. The CT images were used to attenuate the PET images. The CT/PET images were obtained by image morphological processing analyses without barrel wall. The relationship of the water image centroids of CT and PET images was established by linear regression analysis, and the registered error between PET and CT image could be computed one slice by one slice. The alignment program was done 4 times following the protocol given by GE Healthcare. Compared with centroids of water CT images, centroids of PET images were shifted to X-axis (0.011slice+0.63) mm, to Y-axis (0.022×slice+1.35) mm. To match CT images, PET images should be translated along X-axis (-2.69±0.15) mm, Y-axis (0.43±0.11) mm, Z-axis (0.86±0.23) mm, and X-axis be rotated by (0.06±0.07)°, Y-axis by (-0.01±0.08)°, and Z-axis by (0.11±0.07)°. So, the systematic registered error was not affected by load and its distribution. By finding the registered error between PET and CT images for coordinate rotation random error, the water model could confirm the registered results of PET-CT system corrected by Alignment parameters. (authors)

  14. TU-AB-BRA-05: Repeatability of [F-18]-NaF PET Imaging Biomarkers for Bone Lesions: A Multicenter Study

    International Nuclear Information System (INIS)

    Lin, C; Bradshaw, T; Perk, T; Harmon, S; Jeraj, R; Liu, G

    2015-01-01

    Purpose: Quantifying the repeatability of imaging biomarkers is critical for assessing therapeutic response. While therapeutic efficacy has been traditionally quantified by SUV metrics, imaging texture features have shown potential for use as quantitative biomarkers. In this study we evaluated the repeatability of quantitative "1"8F-NaF PET-derived SUV metrics and texture features in bone lesions from patients in a multicenter study. Methods: Twenty-nine metastatic castrate-resistant prostate cancer patients received whole-body test-retest NaF PET/CT scans from one of three harmonized imaging centers. Bone lesions of volume greater than 1.5 cm"3 were identified and automatically segmented using a SUV>15 threshold. From each lesion, 55 NaF PET-derived texture features (including first-order, co-occurrence, grey-level run-length, neighbor gray-level, and neighbor gray-tone difference matrix) were extracted. The test-retest repeatability of each SUV metric and texture feature was assessed with Bland-Altman analysis. Results: A total of 315 bone lesions were evaluated. Of the traditional SUV metrics, the repeatability coefficient (RC) was 12.6 SUV for SUVmax, 2.5 SUV for SUVmean, and 4.3 cm"3 for volume. Their respective intralesion coefficients of variation (COVs) were 12%, 17%, and 6%. Of the texture features, COV was lowest for entropy (0.03%) and highest for kurtosis (105%). Lesion intraclass correlation coefficient (ICC) was lowest for maximum correlation coefficient (ICC=0.848), and highest for entropy (ICC=0.985). Across imaging centers, repeatability of texture features and SUV varied. For example, across imaging centers, COV for SUVmax ranged between 11–23%. Conclusion: Many NaF PET-derived SUV metrics and texture features for bone lesions demonstrated high repeatability, such as SUVmax, entropy, and volume. Several imaging texture features demonstrated poor repeatability, such as SUVtotal and SUVstd. These results can be used to establish response criteria

  15. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  16. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  17. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  18. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    Science.gov (United States)

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  19. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  20. Point spread function modeling and image restoration for cone-beam CT

    International Nuclear Information System (INIS)

    Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe

    2015-01-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)

  1. The relationship between image quality and CT dose index of multi-slice low-dose chest CT

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Shao Jiang; Shi Jingyun; You Zhengqian; Li Shijun; Xue Yongming

    2003-01-01

    Objective: To explore the rationality and possibility of multi-slice low-dose CT scan in the examination of the chest. Methods: (1) X-ray dose index measurement: 120 kV tube voltage, 0.75 s rotation, 8 mm and 3 mm slice thickness, and the tube current setting of 115.0, 40.0, 25.0, and 7.5 mAs were employed in every section. The X-ray radiation dose was measured and compared statistically. (2) phantom measurement of homogeneity and noise: The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm sections, and every slice was scanned using tube current of 115.0, 40.0, 25.0, and 7.5 mAs. Five same regions of interest were measured on every image. The homogeneity and noise level of CT were appraised. (3) The multi-slice low-dose CT in patients: 30 patients with mass and 30 with patch shadow in the lung were selected randomly. The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm slice thickness. 115.0, 40.0, 25.0, 15.0, and 7.5 mAs tube current were employed in each same slice. Otherwise, 15 cases with helical scan were examined using 190, 150, 40, 25, and 15 mAs tube current. The reconstruction images of MIP, MPR, CVR, HRCT, 3D, CT virtual endoscopy, and variety of interval reconstruction were compared. (4) Evaluation of image quality: CT images were evaluated by four doctors using single-blind method, and 3 degrees including normal image, image with few artifact, and image with excessive artifact, were employed and analyzed statistically. Results: (1) The CT dose index with 115.0 mAs tube current exceeded those of 40.0, 25.0, and 7.5 mAs by about 60%, 70%, and 85%, respectively. (2) The phantom measurement showed that the lower of CT dose the lower of homogeneity, the lower of CT dose the higher of noise level. (3) Result of image quality evaluation: The percentage of the normal image had no significant difference between 8 and 3 mm in 115, 40, and 25 mAs (P>0.05). Conclusion: Multi-slice low-dose chest CT technology may protect the patients and guarantee the

  2. An evaluation on CT image acquisition method for medical VR applications

    Science.gov (United States)

    Jang, Seong-wook; Ko, Junho; Yoo, Yon-sik; Kim, Yoonsang

    2017-02-01

    Recent medical virtual reality (VR) applications to minimize re-operations are being studied for improvements in surgical efficiency and reduction of operation error. The CT image acquisition method considering three-dimensional (3D) modeling for medical VR applications is important, because the realistic model is required for the actual human organ. However, the research for medical VR applications has focused on 3D modeling techniques and utilized 3D models. In addition, research on a CT image acquisition method considering 3D modeling has never been reported. The conventional CT image acquisition method involves scanning a limited area of the lesion for the diagnosis of doctors once or twice. However, the medical VR application is required to acquire the CT image considering patients' various postures and a wider area than the lesion. A wider area than the lesion is required because of the necessary process of comparing bilateral sides for dyskinesia diagnosis of the shoulder, pelvis, and leg. Moreover, patients' various postures are required due to the different effects on the musculoskeletal system. Therefore, in this paper, we perform a comparative experiment on the acquired CT images considering image area (unilateral/bilateral) and patients' postures (neutral/abducted). CT images are acquired from 10 patients for the experiments, and the acquired CT images are evaluated based on the length per pixel and the morphological deviation. Finally, by comparing the experiment results, we evaluate the CT image acquisition method for medical VR applications.

  3. Lung cancer mimicking lung abscess formation on CT images.

    Science.gov (United States)

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  4. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Pt. 2

    International Nuclear Information System (INIS)

    Alt, Celine D.; Kauczor, Hans-Ulrich; Hallscheidt, Peter; Brocker, Kerstin A.; Eichbaum, Michael; Sohn, Christof; Arnegger, Florian U.

    2011-01-01

    To compose diagnostic standard operating procedures for both clinical and imaging assessment for vulvar and vaginal cancer, for vaginal sarcoma, and for ovarian cancer. The literature was reviewed for diagnosing the above mentioned malignancies in the female pelvis. Special focus herein lies in tumor representation in MRI, followed by the evaluation of CT and PET/CT for this topic. MRI is a useful additional diagnostic complement but by no means replaces established methods of gynecologic diagnostics and ultrasound. In fact, MRI is only implemented in the guidelines for vulvar cancer. According to the current literature, CT is still the cross-sectional imaging modality of choice for evaluating ovarian cancer. PET/CT appears to have advantages for staging and follow-up in sarcomas and cancers of the ovaries. (orig.)

  5. Craniopharyngioma identification by CT and MR imaging at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J.K. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States); Eldevik, O.P. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States); Skalpe, I.O. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States)

    1995-03-01

    To compare the detectability of craniopharyngiomas by CT and MR imaging, preoperative CT and MR studies obtained within 16 days of each other were evaluated retrospectively in 9 patients. MR imaging demonstrated cystic and solid tumor components in all 9 tumors, and enhancement in the 7 tumors that were studied after contrast medium injection. MR imaging demonstrated a signal void consistent with calcification in 4 patients. Combining unenhanced and contrast medium-enhanced studies, CT also identified all the tumors. CT demonstrated cysts in 7 lesions, calcification in 7 and enhancement in 6 of the 7 lesions that received i.v. contrast medium. Calcification was better seen by CT than MR imaging, while MR imaging identified cystic tumor components not seen on CT. The contrast medium enhancement pattern was the same with the 2 modalities. MR imaging of the sellar region, including at least one contrast medium-enhanced sequence, should be sufficient in most instances to establish a preoperative diagnosis of craniopharyngioma. (orig.).

  6. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    -invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy......, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security...

  7. PET CT imaging: the Philippine experience

    International Nuclear Information System (INIS)

    Santiago, Jonas Y.

    2011-01-01

    Currently, the most discussed fusion imaging is PET CT. Fusion technology has tremendous potential in diagnostic imaging to detect numerous conditions such as tumors, Alzheimer's disease, dementia and neural disorders. The fusion of PET with CT helps in the localization of molecular abnormalities, thereby increasing diagnostic accuracy and differentiating benign or artefact lesions from malignant diseases. It uses a radiotracer called fluro deoxyglucose that gives a clear distinction between pathological and physiological uptake. Interest in this technology is increasing and additional clinical validation are likely to induce more health care providers to invest in combined scanners. It is hope that in time, a better appreciation of its advantages over conventional and traditional imaging modalities will be realized. The first PET CT facility in the country was established at the St. Luke's Medical Center in Quezon City in 2008 and has since then provided a state-of-the art imaging modality to its patients here and those from other countries. The paper will present the experiences so far gained from its operation, including the measures and steps currently taken by the facility to ensure optimum workers and patient safety. Plans and programs to further enhance the awareness of the Filipino public on this advanced imaging modality for an improved health care delivery system may also be discussed briefly. (author)

  8. Image analysis of the inner ear with CT and MR imaging

    International Nuclear Information System (INIS)

    Kumakawa, Kohzoh; Takeda, Hidehiko; Mutoh, Naoko; Miyakawa, Kohichi; Yukawa, Kumiko; Funasaka, Sohtaro.

    1992-01-01

    Recent progress in magnetic resonance imaging (MRI) has made it possible to obtain detailed images of the inner ear by delineating the lymphatic fluid within the labyrinth. We analyzed CT scans and MR imaging in 70 ears manifesting profound deafness owing to inner ear lesions and compared their detective ability for inner ear lesions. The following results were obtained. CT scan examination showed slight to extensive ossification of the labyrinth in six ears (9%), whereas MRI examination revealed low to absent signal intensity of the inner ear in nine ears (13%). Therefore, it was concluded that MRI is more sensitive in detecting abnormalities of the inner ear than CT scan. MRI provided useful information as to whether the cochlear turn is filled with lymphatic fluid or obstructed. This point was one of the greatest advantages of MRI over CT scan. Abnormal findings in either or both the CT scan and the MRI were detected in suppurative labyrinthitis occurring secondary to chronic otitis media, bacterial meningitis and in inner ear trauma. However, such abnormal findings were not detected in patients with idiopathic progressive sensorineural hearing loss, ototoxity or sudden deafness. These findings should be taken into consideration in pre-operative assessment of cochlear implant candidates. (author)

  9. Variation in the quality of CT images of the upper abdomen when CT automatic exposure control is employed

    International Nuclear Information System (INIS)

    Aizawa, Isao; Muramatsu, Yoshihisa; Nomura, Keiichi; Shimizu, Fuminori

    2010-01-01

    The aim of this study was to analyze the reason for variation of image quality in the upper abdomen CT with the use of CT-automatic exposure control (AEC). The CT investigated was 3D modulation in the 16 multi detector row CT (MDCT) and lung cancer screening CT (LSCT) phantom was used to simulate the patient. When there was a phase difference, an image noise increase of around 15% at the maximum was accepted. It is concluded that the major reason for variation in image quality is respiratory motion and the importance of respiration control must be recognized. (author)

  10. How safe is teleradiological telediagnosis for CT imaging?

    International Nuclear Information System (INIS)

    Ricke, J.; Wolf, M.; Hosten, N.; Zielinski, C.; Liebig, T.; Lopez-Haenninen, E.; Lemke, A.J.; Siekmann, R.; Stroszczynski, C.; Schauer, W.; Amthauer, H.; Kleinholz, L.; Felix, R.

    1997-01-01

    Purpose: To define the value of teleradiographic studies, a comparison was carried out between digitised copies of CT examinations of the skull with the original images. Differences in image quality obtained from a digital scanner and a camera were quantified. Material and method: 56 CT examinations of the skull, 28 of which had discrete abnormalities, were chosen for ROC analysis. The original films were digitised with a Vidar VXR-12 scanner and Panasonic WV-160 and WV-PB 500 cameras. The images were evaluated by five radiologists after image transfer with Video Conference software to a personal computer. Results: For the analysis of the films the area under the ROC curve was 0.91±0.04, for the digital scanner it was 0.85±0.04, for camera WV-BP 500 0.89±0.06 and for camera WE-160 0.87±0.09. Comprison with the film findings showed a minimal p-value of 0.17 which indicated that there was no significant reduction in diagnostic value following digitisation. Conclusion: The probable reason for the slight deterioration using the digital scanner was the reduction to 75 dpi compared with 134 dpi on the CT films. The cameras produce image noise comparable to CT with low window settings and reduced local resolution. We expect similar results for CT with soft tissue windows or for MRT of the skull. Conventional radiographs containing high local resolution, wide grey scale and low image noise would presumably make higher demands on methods of digitisation. (orig.) [de

  11. CT image construction of a totally deflated lung using deformable model extrapolation

    International Nuclear Information System (INIS)

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim

    2011-01-01

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The

  12. Reporducibilities of cephalometric measurements of three-dimensional CT images reconstructed in the personal computer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kug Jin; Park, Hyok; Lee, Hee Cheol; Kim, Kee Deog; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2003-09-15

    The purpose of this study was to report the reproducibility of intra-observer and inter-observer consistency of cephalometric measurements using three-dimensional (3D) computed tomography (CT), and the degree of difference of the cephalometric measurements. CT images of 16 adult patients with normal class I occlusion were sent to personal computer and reconstructed into 3D images using V-Works 3.5{sup TM} (Cybermed Inc., Seoul, Korea). With the internal program of V-Works 3.5{sup TM}, 12 landmarks on regular cephalograms were transformed into 21 analytic categories and measured by 2 observers and in addition, one of the observers repeated their measurements. Intra-observer difference was calculated using paired t-test, and inter-observer by two sample test. There were significant differences in the intra-observer measurements (p<0.05) in four of the categories which included ANS-Me, ANS-PNS, Cdl-GO (Lt), GoL-GoR, but with the exception of Cdl-Go (Lt), ZmL-ZmR, Zyo-Zyo, the average differences were within 2 mm of each other. The inter-observer observations also showed significant differences in the measurements of the ZmL-ZmR and Zyo-Zyo categories (p<0.05). With the exception of the Cdl-Me (Rt), ZmL-ZmR, Zyo-Zyo categories, the average differences between the two observers were within 2mm, but the ZmL-ZmR and Zyo-Zyo values differed greatly with values of 8.10 and 19.8 mm respectively. In general, 3D CT images showed greater accuracy and reproducibility, with the exception of suture areas such as Zm and Zyo, than regular cephalograms in orthodontic measurement, showing differences of less than 2 mm, therefore 3D CT images can be useful in cephalometric measurements and treatment planning.

  13. Castleman disease of the neck: CT and MR imaging findings

    International Nuclear Information System (INIS)

    Jiang, Xin-hua; Song, Hao-ming; Liu, Qing-yu; Cao, Yun; Li, Guo-hong; Zhang, Wei-dong

    2014-01-01

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases

  14. Castleman disease of the neck: CT and MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin-hua [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Song, Hao-ming [Department of Cardiology, Shanghai Tongji Hospital, Shanghai 200065 (China); Liu, Qing-yu [Department of Radiology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120 (China); Cao, Yun [Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Li, Guo-hong [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Zhang, Wei-dong, E-mail: dongw.z@163.com [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China)

    2014-11-15

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases.

  15. MR imaging and CT in osteoarthritis of the lumbar facet joints

    International Nuclear Information System (INIS)

    Weishaupt, D.; Zanetti, M.; Hodler, J.; Boos, N.

    1999-01-01

    Objective. To test the agreement between MR imaging and CT in the assessment of osteoarthritis of the lumbar facet joints, and thus to provide data about the need for an additional CT scan in the presence of an MR examination. Design and patients. Using a four-point scale, two musculoskeletal radiologists independently graded the severity of osteoarthritis of 308 lumbar facet joints on axial T2-weighted and on sagittal T1- and T2-weighted turbo-spin-echo images and separately on the corresponding axial CT scans. Kappa statistics and percentage agreement were calculated. Results. The weighted kappa coefficients for MR imaging versus CT were 0.61 and 0.49 for readers 1 and 2, respectively. The weighted kappa coefficients for interobserver agreement were 0.41 for MR imaging and 0.60 for CT, respectively. There was agreement within one grade between MR and CT images in 95% of cases for reader 1, and in 97% of cases for reader 2. Conclusion. With regard to osteoarthritis of the lumbar facet joints there is moderate to good agreement between MR imaging and CT. When differences of one grade are disregarded agreement is even excellent. Therefore, in the presence of an MR examination CT is not required for the assessment of facet joint degeneration. (orig.)

  16. Measurement of skeletal muscle area: Comparison of CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinelnikov, Andrey, E-mail: sinelnikovas@upmc.edu [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Qu, Chuanxing [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Fetzer, David T. [Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Pelletier, Jean-Sébastien [Department of Surgery, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Dunn, Michael A. [Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tsung, Allan [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Furlan, Alessandro [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-10-15

    Objective: To investigate the intra- and inter-observer agreement and correlation between CT and MR measurements of skeletal muscle area (SMA) in the abdomen. Methods: CT and MR images from twelve patients were analyzed by two blinded observers using segmentation software (MITK-3M3, Mint Medical and Slice-O-Matic, Tomovision) to quantify SMA. MR images included T1w “in-phase”, T1w “out-of-phase”, and T2w sequences. Inter- and intra-observer agreement was assessed using the intraclass correlation coefficient (ICC). Pearson correlation coefficient (r) was used to correlate measurements obtained on MR with CT. CT and MR measurements were compared with Bland-Altman plots. Results: Intra- and inter-observer agreement for SMA was high for CT and MR. For MR, the measurements on T2w images showed the highest inter-observer agreement (ICC = 0.96). CT SMA correlated closely with MR, with T2w images showing the highest correlation (r = 0.98; P < 0.01). Bland-Altman plots showed a 1.7%–3.9% bias between CT and MR measurements, lowest for T2w images. Conclusions: MR SMA measurements are reproducible and correlate closely with CT. The T2w sequence is recommended to quantify SMA on MR images.

  17. Repeatability of hypoxia PET imaging using [{sup 18}F]HX4 in lung and head and neck cancer patients: a prospective multicenter trial

    Energy Technology Data Exchange (ETDEWEB)

    Zegers, Catharina M.L.; Elmpt, Wouter van; Lambin, Philippe [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht (Netherlands); Szardenings, Katrin [Threshold Pharmaceuticals, South San Francisco, CA (United States); Kolb, Hartmuth; Chien, David [Siemens Medical Solutions USA, Inc., Siemens Molecular Imaging Biomarker Research, Culver City, CA (United States); Waxman, Alan [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Subramaniam, Rathan M. [Boston University School of Medicine, Boston, MA (United States); Johns Hopkins Medical Institutions, Division of Nuclear Medicine, Russell H Morgan Department of Radiology and Radiologic Sciences, Baltimore, MD (United States); Moon, Dae Hyuk [University of Ulsan College of Medicine, Department of Nuclear Medicine, Asan Medical Center, Seoul (Korea, Republic of); Brunetti, Jacqueline C. [Holy Name Medical Center, Teaneck, NJ (United States); Srinivas, Shyam M. [Cleveland Clinic, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States)

    2015-11-15

    Hypoxia is an important factor influencing tumor progression and treatment efficacy. The aim of this study was to investigate the repeatability of hypoxia PET imaging with [{sup 18}F]HX4 in patients with head and neck and lung cancer. Nine patients with lung cancer and ten with head and neck cancer were included in the analysis (NCT01075399). Two sequential pretreatment [{sup 18}F]HX4 PET/CT scans were acquired within 1 week. The maximal and mean standardized uptake values (SUV{sub max} and SUV{sub mean}) were defined and the tumor-to-background ratios (TBR) were calculated. In addition, hypoxic volumes were determined as the volume of the tumor with a TBR >1.2 (HV{sub 1.2}). Bland Altman analysis of the uptake parameters was performed and coefficients of repeatability were calculated. To evaluate the spatial repeatability of the uptake, the PET/CT images were registered and a voxel-wise comparison of the uptake was performed, providing a correlation coefficient. All parameters of [{sup 18}F]HX4 uptake were significantly correlated between scans: SUV{sub max} (r = 0.958, p < 0.001), SUV{sub mean} (r = 0.946, p < 0.001), TBR{sub max} (r = 0.962, p < 0.001) and HV{sub 1.2} (r = 0.995, p < 0.001). The relative coefficients of repeatability were 15 % (SUV{sub mean}), 17 % (SUV{sub max}) and 17 % (TBR{sub max}). Voxel-wise analysis of the spatial uptake pattern within the tumors provided an average correlation of 0.65 ± 0.14. Repeated hypoxia PET scans with [{sup 18}F]HX4 provide reproducible and spatially stable results in patients with head and neck cancer and patients with lung cancer. [{sup 18}F]HX4 PET imaging can be used to assess the hypoxic status of tumors and has the potential to aid hypoxia-targeted treatments. (orig.)

  18. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    Science.gov (United States)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  19. Comparison of measurement results between cervical pedicle specimens and CT images

    International Nuclear Information System (INIS)

    Zhang Guangjian; Li Hua; Liu Haiyan; Gao Zhenping

    2011-01-01

    Objective: To compare the difference between the measurement results of the cervical pedicle specimens and CT image, and provide the basis for clinical cervical screw internal fixation operation. Methods: Twenty-seven Chinese adult cadaver cervical specimens including C3 to C7 vertebrae were measured by a digital calipers and CT image, containing pedicle height (PH, PH'), pedicle width(PW, PW'), total pedicle length (TL, TL') and two pedicle lengths(PL1, PL2; PL1', PL2'). The results of specimens and CT image were compared. Results: Different cervical vertebra in the same side of specimens or CT images, PW (PW'): C3, C4< C5, C6 (P<0.05), C5, C6< C7 (P<0.01); PH (PH'): there were no significant differences; TL, PL1, PL2 (TL', PL1', PL2'): there were no marked differences. In the same cervical vertebra of the specimens or CT images, PW (PW')< PH (PH') (P<0.01), PL1 (PL1') < PL2 (PL2') (P<0.01). Conclusion: The results of measurement by CT images are not markedly different from that of specimens. CT image measurement is available before cervical screw internal fixation operation. (authors)

  20. Selecting optimal monochromatic level with spectral CT imaging for improving imaging quality in hepatic venography

    International Nuclear Information System (INIS)

    Sun Jun; Luo Xianfu; Wang Shou'an; Wang Jun; Sun Jiquan; Wang Zhijun; Wu Jingtao

    2013-01-01

    Objective: To investigate the effect of spectral CT monochromatic images for improving imaging quality in hepatic venography. Methods: Thirty patients underwent spectral CT examination on a GE Discovery CT 750 HD scanner. During portal phase, 1.25 mm slice thickness polychromatic images and optimal monochromatic images were obtained, and volume rendering and maximum intensity projection were created to show the hepatic veins respectively. The overall imaging quality was evaluated on a five-point scale by two radiologists. Inter-observer agreement in subjective image quality grading was assessed by Kappa statistics. Paired-sample t test were used to compare hepatic vein attenuation, hepatic parenchyma attenuation, CT value difference between the hepatic vein and the liver parenchyma, image noise, vein-to-liver contrast-to-noise ratio (CNR), the image quality score of hepatic venography between the two image data sets. Results: The monochromatic images at 50 keV were found to demonstrate the best CNR for hepatic vein.The hepatic vein attenuation [(329 ± 47) HU], hepatic parenchyma attenuation [(178 ± 33) HU], CT value difference between the hepatic vein and the liver parenchyma [(151 ± 33) HU], image noise (17.33 ± 4.18), CNR (9.13 ± 2.65), the image quality score (4.2 ± 0.6) of optimal monochromatic images were significantly higher than those of polychromatic images [(149 ± 18) HU], [(107 ± 14) HU], [(43 ±11) HU], 12.55 ± 3.02, 3.53 ± 1.03, 3.1 ± 0.8 (t values were 24.79, 13.95, 18.85, 9.07, 13.25 and 12.04, respectively, P < 0.01). In the comparison of image quality, Kappa value was 0.81 with optimal monochromatic images and 0.69 with polychromatic images. Conclusion: Monochromatic images of spectral CT could improve CNR for displaying hepatic vein and improve the image quality compared to the conventional polychromatic images. (authors)

  1. Comparative evaluation of the porta hepatis/hepatoduodenal ligament with CT and MR imaging

    International Nuclear Information System (INIS)

    Silverman, P.M.; Feuerstein, I.M.; Zeman, R.K.; Jaffe, M.H.; Garra, B.S.

    1988-01-01

    CT and MR imaging were compared in a retrospective evaluation of 16 patients with abnormalities, predominantly neoplasms, of the porta hepatis/hepatoduodenal ligament. Masses on CT were of decreased density compared with that of liver and were seen in contrast to surrounding periportal fat. On MR images, T1-weighted images demonstrated findings similar to those of CT. T2-weighted images clearly depicted intrahepatic lesions but less distinctly depicted lesions surrounded by fat. Short inversion recovery (STIR) images better demonstrated tumor relative to fat. CT was better than all MR imaging sequences in one of 16 cases, whereas at least one MR imaging sequence was better than CT in six of 16. In nine cases, CT was equivalent to the best MR imaging sequence. In five of six cases where MR imaging was better than CT, STIR sequences were most favorable. In conclusion, MR imaging provided a valuable technique for assessing abnormalities of the porta hepatis/hepatoduodenal ligament

  2. Clinical applications of SPECT/CT in imaging the extremities

    International Nuclear Information System (INIS)

    Huellner, Martin W.; Strobel, Klaus

    2014-01-01

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  3. Clinical applications of SPECT/CT in imaging the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W. [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland)

    2014-05-15

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  4. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  5. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  6. Image quality assessment for CT used on small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co [Universidad Nacional de Colombia, Departamento de Física, Grupo de Física Médica (Colombia)

    2016-07-07

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  7. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  8. High-resolution imaging of pulmonary ventilation and perfusion with {sup 68}Ga-VQ respiratory gated (4-D) PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Jason [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Hofman, Michael S. [The University of Melbourne, Department of Medicine, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia); Siva, Shankar [The University of Melbourne, Peter MacCallum Cancer Centre, Department of Radiation Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); Kron, Tomas [The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Peter MacCallum Cancer Centre, Department of Physical Sciences, East Melbourne, VIC (Australia); Schneider, Michal E. [Monash University, Department of Medical Imaging and Radiation Science, Clayton, VIC (Australia); Binns, David; Eu, Peter [Peter MacCallum Cancer Centre, Centre for Cancer Imaging, East Melbourne, VIC (Australia); Hicks, Rodney J. [The University of Melbourne, Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia)

    2014-02-15

    Our group has previously reported on the use of {sup 68}Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for {sup 68}Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of {sup 68}Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p < 0.05). These values agreed with a visual inspection of the images with improved image coregistration around the lung bases. The diaphragmatic motion during the 4-D CT scan was highly variable with a range of 0.4-3.4 cm (SD 0.81 cm) in the right lung and 0-2.8 cm (SD 0.83 cm) in the left lung. Right-sided diaphragmatic nerve palsy was observed in 3 of 15 patients. {sup 68}Ga-VQ 4-D

  9. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  10. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Rajiah, Prabhakar; Ahn, Richard; Rassouli, Negin; Xi, Yin; Soesbe, Todd C; Lewis, Matthew A; Lenkinski, Robert E; Leyendecker, John R; Abbara, Suhny

    2017-03-01

    To assess virtual non-contrast (VNC) images obtained on a detection-based spectral detector CT scanner and determine how attenuation on VNC images derived from various phases of enhanced CT compare to those obtained from true unenhanced images. In this HIPAA compliant, IRB approved prospective multi-institutional study, 46 patients underwent pre- and post-contrast imaging on a prototype dual-layer spectral detector CT between October 2013 and November 2015, yielding 84 unenhanced and VNC pairs (25 arterial, 39 portal venous/nephrographic, 20 urographic). Mean attenuation was measured by one of three readers in the liver, spleen, kidneys, psoas muscle, abdominal aorta, and subcutaneous fat. Equivalence testing was used to determine if the mean difference between unenhanced and VNC attenuation was less than 5, 10, or 15 HU. VNC image quality was assessed on a 5 point scale. Mean difference between unenhanced and VNC attenuation was VNC attenuation were equivalent in all tissues except fat using a threshold of VNC overestimated the HU relative to unenhanced images. VNC image quality was rated as excellent or good in 84% of arterial phase and 85% of nephrographic phase cases, but only 40% of urographic phase. VNC images derived from novel dual layer spectral detector CT demonstrate attenuation values similar to unenhanced images in all tissues evaluated except for subcutaneous fat. Further study is needed to determine if attenuation thresholds currently used clinically for common pathology should be adjusted, particularly for lesions containing fat.

  11. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors

    International Nuclear Information System (INIS)

    Taguchi, K.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  13. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  14. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  15. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Owen, Megan

    segmental branches, and longitudinal matching of airway branches in repeated scans of the same subject. Methods and Materials: The segmentation process begins from an automatically detected seed point in the trachea. The airway centerline tree is then constructed by iteratively adding locally optimal paths...... differences. Results: The segmentation method has been used on 9711 low dose CT images from the Danish Lung Cancer Screening Trial (DLCST). Manual inspection of thumbnail images revealed gross errors in a total of 44 images. 29 were missing branches at the lobar level and only 15 had obvious false positives...... measurements to segments matched in multiple images of the same subject using image registration was observed to increase their reproducibility. The anatomical branch labeling tool was validated on a subset of 20 subjects, 5 of each category: asymptomatic, mild, moderate and severe COPD. The average inter...

  16. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    International Nuclear Information System (INIS)

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  17. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    Science.gov (United States)

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  18. CT and MR imaging findings of sphenoidal masses

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shoki; Higano, Shuichi (Tohoku Univ., Sendai (Japan). School of Medicine); Ishii, Kiyoshi (and others)

    1994-07-01

    CT and MR imaging findings of 57 sphenoidal masses were retrospectively reviewed to assess the possibility of differential diagnosis between them. Various kinds of masses such as pituitary adenoma, epipharyngeal cancer, mucocele, chordoma, chondroma, chondrosarcoma, distant metastasis, multiple myeloma, fibrous dysplasia, craniopharyngioma, hemangiopericytoma, giant cell tumor, primary sphenoidal cancer, malignant melanoma, leukemia, histiocytosis X, and giant cell tumor were included in this series. CT scanning was performed in all cases using a spin-echo pulse sequence. The relative density of the masses, bony changes and calcification were evaluated on CT, and on MR images, signal intensity of the masses relative to the normal gray matter, contrast enhancement and extension/contour were evaluated. Although no single feature appeared to be specific to the masses, detection of calcification on CT, identification of the normal pituitary gland as deformed or displaced on T1-weighted images, signal intensity on T2-weighted images, and extension of the masses seemed to be useful and should be examined in terms of their ability to assist in differential diagnosis. Finally, accommodative classification of sphenoidal masses primarily based on presumed origin or mode of extension was attempted. (author).

  19. Imaging of neurolymphomatosis with 18F-FDG PET/CT: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Guo-zheng WU

    2016-03-01

    Full Text Available Objective  To explore the value of FDG PET-CT in the diagnosis of neurolymphomatosis (NL. Methods  The clinical manifestation and FDG PET/CT imaging results in a patient with diffuse large B cell lymphoma accompanying peripheral neuropathy, which was confirmed by pathological examination, were introduced. The images as shown by PET/CT were compared with the findings of traditional imaging including MRI and CT. Relevant literature was reviewed. Results  A 38year female patient complaining of left chest-back pain for 2 months came to hospital for treatment. An enhanced MRI of thoracic vertebrae showed osseous destruction on the left side of 4th thoracic vertebra and left posterior segment of 5th rib, and it was primarily diagnosed as a tumor. FDG PET/CT revealed a massively increased radioactive uptake in intervertebral foramen of left 4th, 5th thoracic vertebrae. The lesion was shown as an increase in uptake of radio-active substance along the left 5th intercostal nerve in the form of bundle or threads. A round-like nodule with increased radioactive uptake was observed in the left parasternal 2nd intercostal space. A CT-guided percutaneous needle biopsy of the nodule revealed a diffuse large B-cell lymphoma (A type. The lesion was shown to involve 4th, 5th thoracic vertebrae and left 5th intercostal nerve. It was diagnosed as NL. Repeated FDG PET imaging after chemotherapy showed normal radioactive distribution in the site of primary lesion area. Conclusions  PET/CT is effective and sensitive in the diagnosis of NL, especially in patient with a history of malignant hematologic disease with clinical symptoms concerning peripheral nerve, accompanied by negative results with other examinations. Comparing with MRI, PET/CT can reveal involvement of peripheral nerve earlier, better reflect the degree of pathological condition, and reveal the number of nerves involved, as well as size and morphology of the lesion. It can reveal the active

  20. Role of FDG/CT in imaging of renal lesions

    International Nuclear Information System (INIS)

    Kochhar, R.; Manoharan, P.; Brown, R.K.; Dunnick, N.R.; Frey, K.A.; Wong, C.O.

    2010-01-01

    Full text: Focal incidental renal lesions are commonly encountered on positron emission tomography (PET)/computed tomography (CT) imaging. The wast majority of these lesions are benign. However, the interpretation of renal lesions can be problematic if the imaging criteria of simple cysts are not met. Limited literature exists on the characterisation of renal masses with metabolic imaging. The purpose of this article is to focus on the imaging features of benign and malignant renal masses with PET/CT. The lesions discussed include renal cyst, angiomyolipoma, oncocytoma, renal cell carcinoma, renal metastases and other infiltrating neoplastic processes affecting the kidney. Both the anatomical and metabolic features which characterise these benign and malignant entities are described. We emphasise the importance of viewing the CT component to identify the typical morphological features and discuss how to best use hybrid imaging for management of renal lesions. Metabolic imaging has a promising role in the imaging of renal lesions and can help prevent unnecessary biopsies and ensure optimal management of suspicious lesions.

  1. Dental imaging using laminar optical tomography and micro CT

    Science.gov (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  2. Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

    Science.gov (United States)

    Li, X; Zhang, Y Y; Shi, Y H; Zhou, L H; Zhen, X

    2016-04-29

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast.

  3. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    International Nuclear Information System (INIS)

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-01-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose

  4. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT

    Science.gov (United States)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan

    2017-09-01

    Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (Mea{{n}RHD} , ST{{D}RHD} and C{{V}RHD}{) }~ of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and

  5. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  6. Comparison of CT scanning and radionuclide imaging in liver disease

    International Nuclear Information System (INIS)

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient

  7. Enabling image fusion for a CT guided needle placement robot

    Science.gov (United States)

    Seifabadi, Reza; Xu, Sheng; Aalamifar, Fereshteh; Velusamy, Gnanasekar; Puhazhendi, Kaliyappan; Wood, Bradford J.

    2017-03-01

    Purpose: This study presents development and integration of hardware and software that enables ultrasound (US) and computer tomography (CT) fusion for a FDA-approved CT-guided needle placement robot. Having real-time US image registered to a priori-taken intraoperative CT image provides more anatomic information during needle insertion, in order to target hard-to-see lesions or avoid critical structures invisible to CT, track target motion, and to better monitor ablation treatment zone in relation to the tumor location. Method: A passive encoded mechanical arm is developed for the robot in order to hold and track an abdominal US transducer. This 4 degrees of freedom (DOF) arm is designed to attach to the robot end-effector. The arm is locked by default and is released by a press of button. The arm is designed such that the needle is always in plane with US image. The articulated arm is calibrated to improve its accuracy. Custom designed software (OncoNav, NIH) was developed to fuse real-time US image to a priori-taken CT. Results: The accuracy of the end effector before and after passive arm calibration was 7.07mm +/- 4.14mm and 1.74mm +/-1.60mm, respectively. The accuracy of the US image to the arm calibration was 5mm. The feasibility of US-CT fusion using the proposed hardware and software was demonstrated in an abdominal commercial phantom. Conclusions: Calibration significantly improved the accuracy of the arm in US image tracking. Fusion of US to CT using the proposed hardware and software was feasible.

  8. Clinical feasibility of {sup 90}Y digital PET/CT for imaging microsphere biodistribution following radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Chadwick L.; Binzel, Katherine; Zhang, Jun; Knopp, Michael V. [The Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, Columbus, OH (United States); Wuthrick, Evan J. [The Ohio State University Wexner Medical Center, Department of Radiation Oncology, Columbus, OH (United States)

    2017-07-15

    The purpose of this study was to evaluate the clinical feasibility of next generation solid-state digital photon counting PET/CT (dPET/CT) technology and imaging findings in patients following {sup 90}Y microsphere radioembolization in comparison with standard of care (SOC) bremsstrahlung SPECT/CT (bSPECT/CT). Five patients underwent SOC {sup 90}Y bremsstrahlung imaging immediately following routine radioembolization with 3.5 ± 1.7 GBq of {sup 90}Y-labeled glass microspheres. All patients also underwent dPET/CT imaging at 29 ± 11 h following radioembolization. Matched pairs comparison was used to compare image quality, image contrast and {sup 90}Y biodistribution between dPET/CT and bSPECT/CT images. Volumetric assessments of {sup 90}Y activity using different isocontour thresholds on dPET/CT and bSPECT/CT images were also compared. Digital PET/CT consistently provided better visual image quality and {sup 90}Y-to-background image contrast while depicting {sup 90}Y biodistribution than bSPECT/CT. Isocontour volumetric assessment using a 1% threshold precisely outlined {sup 90}Y activity and the treatment volume on dPET/CT images, whereas a more restrictive 20% threshold on bSPECT/CT images was needed to obtain comparable treatment volumes. The use of a less restrictive 10% threshold isocontour on bSPECT/CT images grossly overestimated the treatment volume when compared with the 1% threshold on dPET/CT images. Digital PET/CT is clinically feasible for the assessment of {sup 90}Y microsphere biodistribution following radioembolization, and provides better visual image quality and image contrast than routine bSPECT/CT with comparable acquisition times. With further optimization and clinical validation, dPET technology may allow faster and more accurate imaging-based assessment of {sup 90}Y microsphere biodistribution. (orig.)

  9. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    International Nuclear Information System (INIS)

    Gahleitner, Andre; Watzek, G.; Imhof, H.

    2003-01-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  10. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    Energy Technology Data Exchange (ETDEWEB)

    Gahleitner, Andre [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Watzek, G. [Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Imhof, H. [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria)

    2003-02-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  11. New prospective 4D-CT for mitigating the effects of irregular respiratory motion

    Science.gov (United States)

    Pan, Tinsu; Martin, Rachael M.; Luo, Dershan

    2017-08-01

    Artifact caused by irregular respiration is a major source of error in 4D-CT imaging. We propose a new prospective 4D-CT to mitigate this source of error without new hardware, software or off-line data-processing on the GE CT scanner. We utilize the cine CT scan in the design of the new prospective 4D-CT. The cine CT scan at each position can be stopped by the operator when an irregular respiration occurs, and resumed when the respiration becomes regular. This process can be repeated at one or multiple scan positions. After the scan, a retrospective reconstruction is initiated on the CT console to reconstruct only the images corresponding to the regular respiratory cycles. The end result is a 4D-CT free of irregular respiration. To prove feasibility, we conducted a phantom and six patient studies. The artifacts associated with the irregular respiratory cycles could be removed from both the phantom and patient studies. A new prospective 4D-CT scanning and processing technique to mitigate the impact of irregular respiration in 4D-CT has been demonstrated. This technique can save radiation dose because the repeat scans are only at the scan positions where an irregular respiration occurs. Current practice is to repeat the scans at all positions. There is no cost to apply this technique because it is applicable on the GE CT scanner without new hardware, software or off-line data-processing.

  12. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  13. Imaging of abdominal tumours: CT or MRI?

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.

    2009-01-01

    The scope of this review is to discuss a theoretical approach to imaging policy, particularly in the perspective of radiation risk reduction. Decisions are ideally driven by empirical evidence about efficacy and risk, e.g., in classical hierarchical efficacy model. As a result of the paucity of empirical evidence (inevitable because of rapid technological development), a pragmatic model is needed. This should avoid overemphasis of factors that currently seem to hamper change, namely personal preference, local expertise, infrastructure, availability. Extrapolation of current general knowledge about CT and MRI demonstrates how a pragmatic approach can be applied in the real world with intermediate goals such as (1) channeling patients from CT to MRI, and (2) reducing CT-delivered radiation. Increased utilisation of MRI in body imaging requires optimisation of scan protocols and equipment, and, being a very operator-dependent modality, the active involvement of the radiologist. In CT dose reduction the main challenge is to benchmark the minimum radiation-dose requirement, and therefore the minimum required image quality that is diagnostically acceptable. As this will ultimately depend on pre-test likelihoods in institutional populations, it is difficult to issue general guidance, and local assessment remains a cornerstone in this effort. (orig.)

  14. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Siva, Shankar; Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J.

    2014-01-01

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with 68 Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V HU ) or Jacobian determinant of deformation (V Jac ). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV HU and ρV Jac ) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ m = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d 20 for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV HU ) with σ m = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d 20 ⩽ 0.68, with r ¯ =0.42±0.16 and d ¯ 20 =0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r ¯ and d ¯ 20 (p ¯ than for unscaled

  15. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  16. Prevalence of Os Trigonum on CT Imaging

    NARCIS (Netherlands)

    Zwiers, Ruben; Baltes, Thomas P. A.; Opdam, Kim T. M.; Wiegerinck, Johannes I.; van Dijk, C. Niek

    2017-01-01

    The os trigonum is known as one of the main causes of posterior ankle impingement. In the literature, a wide variation of occurrence has been reported. All foot and/or ankle computed tomography (CT) scans made between January 2012 and December 2013 were reviewed. CT images were assessed, blinded for

  17. MR and CT imaging of cerebral fat embolism

    International Nuclear Information System (INIS)

    Li Ying; Xu Jianmin; Wan Xiaohong; Chen Yu; Guo Yi

    2003-01-01

    Objective: To summarize the clinical characteristics and imaging features of cerebral fat embolism (CFE). Methods: The clinical features and imaging appearances of 3 cases with acute CFE were analyzed. Results: (1) 3 non-head injured cases had sudden mental status changes after leg injury. (2) The main clinical manifestation was vigil coma. (3) MRI showed lesions of the brain in all 3 cases. Cranial CT showed lesions in only 1 case. (4) MRI and CT showed spotty and patchy symmetrical lesions, which were low signal on T 1 WI and high signal on T 2 WI, and low density on CT scan. The lesions were distributed in the white matter along the boundary zones of the major vascular territories, thalamus and basal ganglia, internal capsule, corpus callosum, brain stem, and cerebellum. The margins of the lesions were obscure. (5) 1 case received MRI examination after therapy for 3 months, which showed no lesions in the brain. Conclusion: Cerebral fat embolism has its own clinical features and imaging characteristics. MRI is superior to CT in diagnosing CFE

  18. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants

    International Nuclear Information System (INIS)

    Goerres, Gerhard W.; Hany, Thomas F.; Kamel, Ehab; Schulthess von, Gustav K.; Buck, Alfred

    2002-01-01

    Germanium-68 based attenuation correction (PET Ge68 ) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET CT ) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET Ge68 and PET CT . Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET CT in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET Ge68 images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET Ge68 and PET CT images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68 Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be

  19. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging

    International Nuclear Information System (INIS)

    Aschoff, Philip; Plathow, Christian; Lichy, Matthias P.; Claussen, Claus D.; Pfannenberg, Christina; Beyer, Thomas; Erb, Gunter; Oeksuez, Mehmet Oe.

    2012-01-01

    State-of-the-art positron emission tomography/computed tomography (PET/CT) systems incorporate multislice CT technology, thus facilitating the acquisition of multiphase, contrast-enhanced CT data as part of integrated PET/CT imaging protocols. We assess the influence of a highly concentrated iodinated contrast medium (CM) on quantification and image quality following CT-based attenuation correction (CT-AC) in PET/CT. Twenty-eight patients with suspected malignant liver lesions were enrolled prospectively. PET/CT was performed 60 min after injection of 400 MBq of 18 F-fluorodeoxyglucose (FDG) and following the biphasic administration of an intravenous CM (400 mg iodine/ml, Iomeron 400). PET images were reconstructed with CT-AC using any of four acquired CT image sets: non-enhanced, pre-contrast (n-PET), arterial phase (art-PET), portal venous phase (pv-PET) and late phase (late-PET). Normal tissue activity and liver lesions were assessed visually and quantitatively on each PET/CT image set. Visual assessment of PET following CT-AC revealed no noticeable difference in image appearance or quality when using any of the four CT data sets for CT-AC. A total of 44 PET-positive liver lesions was identified in 21 of 28 patients. There were no false-negative or false-positive lesions on PET. Mean standardized uptake values (SUV) in 36 evaluable lesions were: 5.5 (n-PET), 5.8 (art-PET), 5.8 (pv-PET) and 5.8 (late-PET), with the highest mean increase in mean SUV of 6%. Mean SUV changes in liver background increased by up to 10% from n-PET to pv-PET. Multiphase CT data acquired with the use of highly concentrated CM can be used for qualitative assessment of liver lesions in torso FDG PET/CT. The influence on quantification of FDG uptake is small and negligible for most clinical applications. (orig.)

  20. Recurrent postoperative sciatica: Evaluation with MR imaging and enhanced CT

    International Nuclear Information System (INIS)

    Duoauferrier, R.; Frocrain, L.; Husson, J.L.

    1987-01-01

    The authors prospectively compared surface coil MR (SCMR) imaging and CT with iodinate contrast enhancement in 50 patients with recurrent postoperative sciatica. Of the 50 patients enrolled in the study, surgical treatment was elected in 27 patients after independent examination of SCMR imaging and enhanced CT. All predictions made with the 27 SCMR images were surgically confirmed. The surgical findings were 20 recurrent disk herniations, five recurrent disk herniations with scar tissue, one disk herniation above the level of diskectomy, and one disk herniation below the level of diskectomy. The surgical findings of the 12 patients who had scar tissue on CT were seven recurrent disk herniations, four recurrent disk herniations with scar tissue, and one disk herniation below the operated level. SCMR imaging was more sensitive and more specific than CT to differentiate scar tissue from recurrent disk herniation

  1. Validation of Diagnostic Imaging Based on Repeat Examinations. An Image Interpretation Model

    International Nuclear Information System (INIS)

    Isberg, B.; Jorulf, H.; Thorstensen, Oe.

    2004-01-01

    Purpose: To develop an interpretation model, based on repeatedly acquired images, aimed at improving assessments of technical efficacy and diagnostic accuracy in the detection of small lesions. Material and Methods: A theoretical model is proposed. The studied population consists of subjects that develop focal lesions which increase in size in organs of interest during the study period. The imaging modality produces images that can be re-interpreted with high precision, e.g. conventional radiography, computed tomography, and magnetic resonance imaging. At least four repeat examinations are carried out. Results: The interpretation is performed in four or five steps: 1. Independent readers interpret the examinations chronologically without access to previous or subsequent films. 2. Lesions found on images at the last examination are included in the analysis, with interpretation in consensus. 3. By concurrent back-reading in consensus, the lesions are identified on previous images until they are so small that even in retrospect they are undetectable. The earliest examination at which included lesions appear is recorded, and the lesions are verified by their growth (imaging reference standard). Lesion size and other characteristics may be recorded. 4. Records made at step 1 are corrected to those of steps 2 and 3. False positives are recorded. 5. (Optional) Lesion type is confirmed by another diagnostic test. Conclusion: Applied on subjects with progressive disease, the proposed image interpretation model may improve assessments of technical efficacy and diagnostic accuracy in the detection of small focal lesions. The model may provide an accurate imaging reference standard as well as repeated detection rates and false-positive rates for tested imaging modalities. However, potential review bias necessitates a strict protocol

  2. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    Science.gov (United States)

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. SU-D-207B-01: Radiomics Feature Reproducibility From Repeat CT Scans of Patients with Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hu, P; Wang, J; Zhong, H; Zhou, Z; Shen, L; Hu, W; Zhang, Z [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: To evaluate the reproducibility of radiomics features by repeating computed tomographic (CT) scans in rectal cancer. To choose stable radiomics features for rectal cancer. Methods: 40 rectal cancer patients were enrolled in this study, each of whom underwent two CT scans within average 8.7 days (5 days to 17 days), before any treatment was delivered. The rectal gross tumor volume (GTV) was distinguished and segmented by an experienced oncologist in both CTs. Totally, more than 2000 radiomics features were defined in this study, which were divided into four groups (I: GLCM, II: GLRLM III: Wavelet GLCM and IV: Wavelet GLRLM). For each group, five types of features were extracted (Max slice: features from the largest slice of target images, Max value: features from all slices of target images and choose the maximum value, Min value: minimum value of features for all slices, Average value: average value of features for all slices, Matrix sum: all slices of target images translate into GLCM and GLRLM matrices and superpose all matrices, then extract features from the superposed matrix). Meanwhile a LOG (Laplace of Gauss) filter with different parameters was applied to these images. Concordance correlation coefficients (CCC) and inter-class correlation coefficients (ICC) were calculated to assess the reproducibility. Results: 403 radiomics features were extracted from each type of patients’ medical images. Features of average type are the most reproducible. Different filters have little effect for radiomics features. For the average type features, 253 out of 403 features (62.8%) showed high reproducibility (ICC≥0.8), 133 out of 403 features (33.0%) showed medium reproducibility (0.8≥ICC≥0.5) and 17 out of 403 features (4.2%) showed low reproducibility (ICC≥0.5). Conclusion: The average type radiomics features are the most stable features in rectal cancer. Further analysis of these features of rectal cancer can be warranted for treatment monitoring and

  4. Evaluation of the low dose cardiac CT imaging using ASIR technique

    Science.gov (United States)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  5. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    Science.gov (United States)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  6. Clinical value of SPECT/CT imaging in the diagnosis of bone metastasis

    International Nuclear Information System (INIS)

    Wang Xinhua; Zhao Yanping; Lu Haijian; Dong Zhanfei

    2010-01-01

    Objective: To evaluate the clinical value of 99 Tc m -methylene diphosphonic acid (MDP) SPECT/CT imaging for the diagnosis of bone metastasis. Methods: Patients suspected for bone metastasis and with bone pain of unknown origin were included in this study (n=237). All cases underwent SPECT and CT imaging at 180 min after 99 Tc m -MDP injection. Diagnosis was confirmed by pathology (n=21), more than 2 kinds of radiologieal imaging (MRI, CT, X-ray) (n=106), and clinical follow up in 2 years (n=110). χ 2 -test was used to compare the results of planar and SPECT/CT imaging using SAS 6.12 software. Results: In 237 patients, planar imaging of 142 cases matched the final diagnosis in which 72 had benign lesions and 70 had bone metastases. The definite coincidence rate was 95.30% (142/149). SPECT/CT imaging of 224 cases matched the final diagnosis in which 104 had benign lesions and 120 cases diagnosed as bone metastases. The coincidence and definite coincidence rates were 94.51% (224/237), and 99.48% (192/193). Difference in the definite coincidence rate between planar and SPECT/CT imaging was statistically significant (χ 2 = 5.37, P=0.024). Conclusion: SPECT/CT imaging is valuable for accurate localization of osseous pathology and for improvement of diagnosing bone metastasis. (authors)

  7. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  8. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  9. Automatic anatomy recognition on CT images with pathology

    Science.gov (United States)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  10. CT imaging features of anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    Shi Zhenshan; You Ruixiong; Cao Dairong; Li Yueming; Zhuang Qian

    2013-01-01

    Objective: To investigate the CT characteristics of anaplastic thyroid carcinoma and evaluate the diagnostic value of CT in this disease. Methods: The CT findings of 10 patients with pathologically proved anaplastic thyroid carcinoma were retrospectively reviewed. The patients included 7 females and 3 males. Their age ranged from 25.0 to 78 years with median of 61 years. Multi-slices plain and post contrast CT scans were performed in all patients. Results: Unilateral thyroid was involved in 6 patients. Unilateral thyroid and thyroid isthmus were both involved in 2 patients due to big size. Bilateral thyroid were involved in 2 patients. The maximum diameter of anaplastic thyroid carcinoma ranged from 2.9-12.8 cm with mean of (4.5 ± 1.4) cm. All lesions demonstrated unclear margins and envelope invasion. The densities of all lesions were heterogeneous and obvious necrosis areas were noted on precontrast images. Seven lesions showed varied calcifications, and coarse granular calcifications were found in 5 lesions among them. All lesions showed remarkable heterogenous enhancement on post-contrast CT. The CT value of solid portion of the tumor increased 40 HU after contrast media administration. The ratios of CT value which comparing of the tumor with contralateral sternocleidomastoid muscle were 0.69-0.82 (0.76 ± 0.18) and 1.25-1.41 (1.33 ± 0.28) on pre and post CT, respectively. Enlarged cervical lymph nodes were found in 6 cases (60.0%). It showed obvious homogeneous enhancement or irregular ring-like enhancement on post-contrast images and dot calcifications were seen in 1 case. Conclusions: Relative larger single thyroid masses with coarse granular calcifications, necrosis,envelope invasion, remarkable heterogeneous enhancing and enlarged lymph nodes on CT are suggestive of anaplastic thyroid carcinoma. (authors)

  11. Hypothalamic-pituitary dwarfism: Comparison between MR imaging and CT findings

    International Nuclear Information System (INIS)

    Maghnie, M.; Larizza, D.; Severi, F.; Triulzi, F.; Scotti, G.; Beluffi, G.; Cecchini, A.

    1990-01-01

    Magnetic Resonance (MR) imaging was carried out on 33 patients with idiopathic growth hormone deficiency, in 22 of whom CT scan had been carried out previously. Twenty-one patients presented some complications at birth. Both MR and CT were positive in the evaluation of the sella. MR imaging exhibited a higher degree of accuracy than CT in the evaluation of pituitary gland, pituitary stalk and brain anomalies. (orig.)

  12. Multi-energy spectral CT: adding value in emergency body imaging.

    Science.gov (United States)

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  13. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  14. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  15. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  16. Edge detection of solid motor' CT image based on gravitation model

    International Nuclear Information System (INIS)

    Yu Guanghui; Lu Hongyi; Zhu Min; Liu Xudong; Hou Zhiqiang

    2012-01-01

    In order to detect the edge of solid motor' CT image much better, a new edge detection operator base on gravitation model was put forward. The edge of CT image is got by the new operator. The superiority turned out by comparing the edge got by ordinary operator. The comparison among operators with different size shows that higher quality CT images need smaller size operator while the lower need the larger. (authors)

  17. Study of CT head scans using different voltages: image quality evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco de Freitas C, I.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P., E-mail: iarapfcorrea@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagem, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  18. Study of CT head scans using different voltages: image quality evaluation

    International Nuclear Information System (INIS)

    Pacheco de Freitas C, I.; Prata M, A.; Alonso, T. C.; Santana, P.

    2016-10-01

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  19. Comparison of MR imaging and CT in neuroendrocrine disorders in children

    International Nuclear Information System (INIS)

    Garreh, M.K.; Ball, W.S.; Brody, A.S.; Dolan, L.; Burton, E.M.

    1989-01-01

    MR imaging has been shown to be superior in imaging the adult hypothalamicpituitary axis. The authors have reviewed the CT and MR findings in children with known abnormalities, including hamartoma of the tuber cinereum, craniopharyngiomas,. pituitary adenoma, Rathke cleft cyst, incomplete pituitary stalk, and septo-optic dysplasia. Clinical correlation and typical CT and MR features were analyzed. In four cases, abnormalities were not visualized on CT. The authors conclude that because of its unique sensitivity and excellent anatomic resolution, MR imaging is the modality of choice in the imaging of neuroendocrine disorders in children

  20. Multidetector row CT for imaging the paediatric tracheobronchial tree

    International Nuclear Information System (INIS)

    Papaioannou, Georgia; Young, Carolyn; Owens, Catherine M.

    2007-01-01

    The introduction of multidetector row computed tomography (MDCT) scanners has altered the approach to imaging the paediatric thorax. In an environment where the rapid acquisition of CT data allows general hospitals to image children instead of referring them to specialist paediatric centres, it is vital that general radiologists have access to protocols appropriate for paediatric applications. Thus a dramatic reduction in the delivered radiation dose is ensured with optimal contrast bolus delivery and timing, and inappropriate repetition of the scans is avoided. This article focuses on the main principles of volumetric CT imaging that apply generically to all MDCT scanners. We describe the reconstruction techniques for imaging the paediatric thorax and the low-dose protocols used in our institution on a 16-slice detector CT scanner. Examples of the commonest clinical applications are also given. (orig.)

  1. Automatic labeling and segmentation of vertebrae in CT images

    Science.gov (United States)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  2. Developing optimized CT scan protocols: Phantom measurements of image quality

    International Nuclear Information System (INIS)

    Zarb, Francis; Rainford, Louise; McEntee, Mark F.

    2011-01-01

    Purpose: The increasing frequency of computerized tomography (CT) examinations is well documented, leading to concern about potential radiation risks for patients. However, the consequences of not performing the CT examination and missing injuries and disease are potentially serious, impacting upon correct patient management. The ALARA principle of dose optimization must be employed for all justified CT examinations. Dose indicators displayed on the CT console as either CT dose index (CTDI) and/or dose length product (DLP), are used to indicate dose and can quantify improvements achieved through optimization. Key scan parameters contributing to dose have been identified in previous literature and in previous work by our group. The aim of this study was to optimize the scan parameters of mA; kV and pitch, whilst maintaining image quality and reducing dose. This research was conducted using psychophysical image quality measurements on a CT quality assurance (QA) phantom establishing the impact of dose optimization on image quality parameters. Method: Current CT scan parameters for head (posterior fossa and cerebrum), abdomen and chest examinations were collected from 57% of CT suites available nationally in Malta (n = 4). Current scan protocols were used to image a Catphan 600 CT QA phantom whereby image quality was assessed. Each scan parameter: mA; kV and pitch were systematically reduced until the contrast resolution (CR), spatial resolution (SR) and noise were significantly lowered. The Catphan 600 images, produced by the range of protocols, were evaluated by 2 expert observers assessing CR, SR and noise. The protocol considered as the optimization threshold was just above the setting that resulted in a significant reduction in CR and noise but not affecting SR at the 95% confidence interval. Results: The limit of optimization threshold was determined for each CT suite. Employing optimized parameters, CTDI and DLP were both significantly reduced (p ≤ 0.001) by

  3. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  4. CT image of thymoma

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, Nobuo; Shudo, Yuji; Jahana, Masanobu; Matsuki, Tsutomu; Kotani, Kazuhiko (Tottori Univ., Yonago (Japan). School of Medicine)

    1983-10-01

    Computor tomographic images of 11 patients who had had thymectomy for myasthenia gravis or thymoma were studied retrospectively. Of those 11 patients, malignant thymoma and benign condition including normal thymus were 6 and 5 respectively. On CT, calcification and lobulation with irregular margin seem to be reliable findings of malignancy. Defect or abscence of fatty plane and non-homogenous density are ancillary.

  5. CT image of thymoma

    International Nuclear Information System (INIS)

    Morioka, Nobuo; Shudo, Yuji; Jahana, Masanobu; Matsuki, Tsutomu; Kotani, Kazuhiko

    1983-01-01

    Computor tomographic images of 11 patients who had had thymectomy for myasthenia gravis or thymoma were studied retrospectively. Of those 11 patients, malignant thymoma and benign condition including normal thymus were 6 and 5 respectively. On CT, calcification and lobulation with irregular margin seem to be reliable findings of malignancy. Defect or abscence of fatty plane and non-homogenous density are ancillary. (author)

  6. Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model.

    Science.gov (United States)

    Rosow, David E; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I; Mueller, Peter R; Fernández-del Castillo, Carlos; Warshaw, Andrew L; Thayer, Sarah P

    2005-12-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly facilitates the use of CT angiography (CTA) in the clinical setting. We sought to determine whether M.D.CT-CTA could accurately demonstrate vascular anatomy and capture the earliest stages of mesenteric ischemia in a porcine model. Pigs underwent embolization of branches of the superior mesenteric artery, then imaging by M.D.CT-CTA with three-dimensional reconstruction protocols. After scanning, diseased bowel segments were surgically resected and pathologically examined. Multidetector row CT and CT angiography reliably defined normal and occluded mesenteric vessels in the pig. It detected early changes of ischemia including poor arterial enhancement and venous dilatation, which were seen in all ischemic animals. The radiographic findings--compared with pathologic diagnoses-- predicted ischemia, with a positive predictive value of 92%. These results indicate that M.D.CT-CTA holds great promise for the early detection necessary for successful treatment of acute mesenteric ischemia.

  7. Evaluation of the reconstruction of image acquired from CT simulator to reduce metal artifact

    International Nuclear Information System (INIS)

    Choi, Ji Hun; Park, Jin Hong; Choi, Byung Don; Won, Hui Su; Chang, Nam Jun; Goo, Jang Hyun; Hong, Joo Wan

    2014-01-01

    This study presents the usefulness assessment of metal artifact reduction for orthopedic implants(O-MAR) to decrease metal artifacts from materials with high density when acquired CT images. By CT simulator, original CT images were acquired from Gammex and Rando phantom and those phantoms inserted with high density materials were scanned for other CT images with metal artifacts and then O-MAR was applied to those images, respectively. To evaluate CT images using Gammex phantom, 5 regions of interest(ROIs) were placed at 5 organs and 3 ROIs were set up at points affected by artifacts. The averages of standard deviation(SD) and CT numbers were compared with a plan using original image. For assessment of variations in dose of tissue around materials with high density, the volume of a cylindrical shape was designed at 3 places in images acquired from Rando phantom by Eclipse. With 6 MV, 7-fields, 15x15cm 2 and 100 cGy per fraction, treatment planning was created and the mean dose were compared with a plan using original image. In the test with the Gammex phantom, CT numbers had a few difference at established points and especially 3 points affected by artifacts had most of the same figures. In the case of O-MAR image, the more reduction in SD appeared at all of 8 points than non O-MAR image. In the test using the Rando Phantom, the variations in dose of tissue around high density materials had a few difference between original CT image and CT image with O-MAR. The CT images using O-MAR were acquired clearly at the boundary of tissue around high density materials and applying O-MAR was useful for correcting CT numbers

  8. Colonic surveillance by CT colonography using axial images only

    International Nuclear Information System (INIS)

    Bruzzi, John F.; Brennan, Darren D.; Fenlon, Helen M.; Moss, Alan C.; MacMathuna, Padraic

    2004-01-01

    Patients at increased risk of colon cancer require strict colon surveillance. Our objective was to establish the efficacy of 2D axial CT colonography as a surveillance test when performed in routine clinical practice. Eighty-two patients at increased risk of colon cancer underwent CT colonography followed by conventional colonoscopy on the same morning. CT colonography studies were performed on a four-ring multidetector CT scanner (100 mAs, 120 kVp, 4 x 2.5 collimation) and were interpreted by two radiologists using 2D axial images only. Results were correlated with findings at colonoscopy. Note was made of subsequent histology reports from polypectomy specimens. A total of 52 polyps were detected at colonoscopy. Using 2D axial images alone, with no recourse to 2D multiplanar or 3D views, the sensitivity of CT colonography was 100, 33 and 19% for polyps larger than 9, 6-9 and smaller than 6 mm, respectively. Per-patient specificities were 98.8, 96 and 81.5%, respectively. Twenty-nine percent of polyps smaller than 1 cm were adenomatous and there were no histological features of severe dysplasia. CT colonography is a useful colon surveillance tool for patients at increased risk of colon cancer. It has a high specificity for identifying patients who should proceed to colonoscopy and polypectomy, while allowing further colon examination to be deferred in patients with normal studies. Using 2D axial images only, CT colonography can be performed as part of the daily CT workload, with a very low rate of referral for unnecessary colonoscopy. (orig.)

  9. Multi-layer cube sampling for liver boundary detection in PET-CT images.

    Science.gov (United States)

    Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian

    2018-06-01

    Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.

  10. PET/CT Imaging and Radioimmunotherapy of Prostate Cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Tagawa, Scott T; Goldsmith, Stanley J

    2011-01-01

    disease (ideal for antigen access and antibody delivery). Furthermore, prostate cancer is also radiation sensitive. Prostate-specific membrane antigen is expressed by virtually all prostate cancers, and represents an attractive target for RIT. Antiprostate-specific membrane antigen RIT demonstrates......Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis...... of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, (18)F-fluorodeoxyglucose (FDG), is not very useful in the imaging of prostate cancer...

  11. Combined FDG PET/CT imaging for restaging of colorectal cancer patients: impact of image fusion on staging accuracy

    International Nuclear Information System (INIS)

    Strunk, H.; Jaeger, U.; Flacke, S.; Hortling, N.; Bucerius, J.; Joe, A.; Reinhardt, M.; Palmedo, H.

    2005-01-01

    Purpose: To evaluate the diagnostic impact of positron emission tomography (PET) with fluorine-18-labeled deoxy-D-glucose (FDG) combined with non-contrast computed tomography (CT) as PET-CT modality in restaging colorectal cancer patients. Material and methods: In this retrospective study, 29 consecutive patients with histologically proven colorectal cancer (17 female, 12 male, aged 51-76 years) underwent whole body scans in one session on a dual modality PET-CT system (Siemens Biograph) 90 min. after i.v. administration of 370 MBq 18 F-FDG. The CT imaging was performed with 40 mAs, 130 kV, slice-thickness 5 mm and without i.v. contrast administration. PET and CT images were reconstructed with a slice-thickness of 5 mm in coronal, sagittal and transverse planes. During a first step of analysis, PET and CT images were scored blinded and independently by a group of two nuclear medicine physicians and a group of two radiologists, respectively. For this purpose, a five-point-scale was used. The second step of data-analysis consisted of a consensus reading by both groups. During the consensus reading, first a virtual (meaning mental) fusion of PET and CT images and afterwards the 'real' fusion (meaning coregistered) PET-CT images were also scored with the same scale. The imaging results were compared with histopathology findings and the course of disease during further follow-up. Results: The total number of malignant lesions detected with the combined PET/CT were 86. For FDG-PET alone it was n=68, and for CT alone n=65. Comparing PET-CT and PET, concordance was found in 81 of 104 lesions. Discrepancies predominantly occurred in the lung, where PET alone often showed true positive results in lymph nodes and soft tissue masses, where CT often was false negative. Comparing mental fusion and 'real' co-registered images, concordance was found in 94 of 104 lesions. In 13 lesions or, respectively, in 7 of 29 patients, a relevant information was gathered using fused images

  12. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    Science.gov (United States)

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (Pdynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  13. Flair MR imaging in the Detection of subarachnoid hemorrhage : comparison with CT and T1-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Min, Soo Hyun; Kim, Soo Youn; Lee, Ghi Jai; Shim, Jae Chan; Oh, Tae Kyung; Kim, Ho Kyun [College of Medicine, Jnje University, Seoul (Korea, Republic of)

    2000-03-01

    To compare the findings of fluid-attenuated inversion recovery (FLAIR) MR imaging in the detection of subarachnoid hemorrhage (SAH), with those of precontrast CT and T1-weighted MR imaging. In 13 patients (14 cases) with SAH, FLAIR MR images were retrospectively analyzed and compared with CT (10 patients, 11 cases) and T1-weighted MR images (9 cases). SAH was confirmed on the basis of high density along the subarachnoid space, as seen on precontrast CT, or lumbar puncture. MR imaging was performed on a 1.0T unit. FLAIR MR and CT images were obtained during the acute stage(less than 3 days after ictus) in 10 and 9 cases, respectively, during the subacute stage (4-14 days after ictus) in two cases and one, respectively, and during the chronic stage (more than 15 days after ictus) in two cases and one, respectively. CT was performed before FLAIR MR imaging, and the interval between CT and FLAIR ranged from 24 hours (6 cases) to 2-3 (2 cases) or 4-7 days (3 cases). In each study, the conspicuity of visualization of SAH was graded as excellent, good, fair, or negative at five locations (sylvian fissure, cortical sulci, anterior basal cistern, posterior basal cistern, and perimesencephalic cistern). In all cases, subarachnoid hemorrhages were demonstrated as high signal intensity areas on FLAIR images. The detection rates for SAH on CT and T1-weighted MR images were 100% (11/11) and 89% (8/9), respectively. FLAIR was superior to T1-weighted imaging in the detection of SAH at all sites except the anterior basal cistern (p less than 0.05) and superior to CT in the detection of SAH at the cortical sulci (p less than 0.05). On FLAIR MR images, subarachnoid hemorrhages at all stages are demonstrated as high signal intensity areas; the FLAIR MR sequence is thus considered useful in the detection of SAH. In particular FLAIR is more sensitive than CT for the detection of SAH in the cortical sulci. (author)

  14. Discrimination and anatomical mapping of PET-positive lesions: comparison of CT attenuation-corrected PET images with coregistered MR and CT images in the abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Felix P.; Crook, David W.; Mader, Caecilia E.; Appenzeller, Philippe; Schulthess, G.K. von; Schmid, Daniel T. [University Hospital Zurich, Department of Medical Radiology, Zurich (Switzerland)

    2013-01-15

    PET/MR has the potential to become a powerful tool in clinical oncological imaging. The purpose of this prospective study was to evaluate the performance of a single T1-weighted (T1w) fat-suppressed unenhanced MR pulse sequence of the abdomen in comparison with unenhanced low-dose CT images to characterize PET-positive lesions. A total of 100 oncological patients underwent sequential whole-body {sup 18}F-FDG PET with CT-based attenuation correction (AC), 40 mAs low-dose CT and two-point Dixon-based T1w 3D MRI of the abdomen in a trimodality PET/CT-MR system. PET-positive lesions were assessed by CT and MRI with regard to their anatomical location, conspicuity and additional relevant information for characterization. From among 66 patients with at least one PET-positive lesion, 147 lesions were evaluated. No significant difference between MRI and CT was found regarding anatomical lesion localization. The MR pulse sequence used performed significantly better than CT regarding conspicuity of liver lesions (p < 0.001, Wilcoxon signed ranks test), whereas no difference was noted for extrahepatic lesions. For overall lesion characterization, MRI was considered superior to CT in 40 % of lesions, equal to CT in 49 %, and inferior to CT in 11 %. Fast Dixon-based T1w MRI outperformed low-dose CT in terms of conspicuity and characterization of PET-positive liver lesions and performed similarly in extrahepatic tumour manifestations. Hence, under the assumption that the technical issue of MR AC for whole-body PET examinations is solved, in abdominal PET/MR imaging the replacement of low-dose CT by a single Dixon-based MR pulse sequence for anatomical lesion correlation appears to be valid and robust. (orig.)

  15. Discrimination and anatomical mapping of PET-positive lesions: comparison of CT attenuation-corrected PET images with coregistered MR and CT images in the abdomen

    International Nuclear Information System (INIS)

    Kuhn, Felix P.; Crook, David W.; Mader, Caecilia E.; Appenzeller, Philippe; Schulthess, G.K. von; Schmid, Daniel T.

    2013-01-01

    PET/MR has the potential to become a powerful tool in clinical oncological imaging. The purpose of this prospective study was to evaluate the performance of a single T1-weighted (T1w) fat-suppressed unenhanced MR pulse sequence of the abdomen in comparison with unenhanced low-dose CT images to characterize PET-positive lesions. A total of 100 oncological patients underwent sequential whole-body 18 F-FDG PET with CT-based attenuation correction (AC), 40 mAs low-dose CT and two-point Dixon-based T1w 3D MRI of the abdomen in a trimodality PET/CT-MR system. PET-positive lesions were assessed by CT and MRI with regard to their anatomical location, conspicuity and additional relevant information for characterization. From among 66 patients with at least one PET-positive lesion, 147 lesions were evaluated. No significant difference between MRI and CT was found regarding anatomical lesion localization. The MR pulse sequence used performed significantly better than CT regarding conspicuity of liver lesions (p < 0.001, Wilcoxon signed ranks test), whereas no difference was noted for extrahepatic lesions. For overall lesion characterization, MRI was considered superior to CT in 40 % of lesions, equal to CT in 49 %, and inferior to CT in 11 %. Fast Dixon-based T1w MRI outperformed low-dose CT in terms of conspicuity and characterization of PET-positive liver lesions and performed similarly in extrahepatic tumour manifestations. Hence, under the assumption that the technical issue of MR AC for whole-body PET examinations is solved, in abdominal PET/MR imaging the replacement of low-dose CT by a single Dixon-based MR pulse sequence for anatomical lesion correlation appears to be valid and robust. (orig.)

  16. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  17. Radiation therapy treatment planning: CT, MR imaging and three-dimensional planning

    International Nuclear Information System (INIS)

    Lichter, A.S.

    1987-01-01

    The accuracy and sophistication of radiation therapy treatment planning have increased rapidly in the last decade. Currently, CT-based treatment planning is standard throughout the country. Care must be taken when CT is used for treatment planning because of clear differences between diagnostic scans and scans intended for therapeutic management. The use of CT in radiation therapy planning is discussed and illustrated. MR imaging adds another dimension to treatment planning. The ability to use MR imaging directly in treatment planning involves an additional complex set of capabilities from a treatment planning system. The ability to unwarp the geometrically distorted MR image is a first step. Three-dimensional dose calculations are important to display the dose on sagittal and acoronal sections. The ability to integrate the MR and CT images into a unified radiographic image is critical. CT and MR images are two-dimensional representations of a three-dimensional problem. Through sophisticated computer graphics techniques, radiation therapists are now able to integrate a three-dimensional image of the patient into the treatment planning process. This allows the use of noncoplanar treatment plans and a detailed analysis of tumor and normal tissue anatomy; it is the first step toward a fully conformational treatment planning system. These concepts are illustrated and future research goals outlined

  18. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling - improved image quality by iterative metal artifact reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bier, Georg; Hempel, Johann-Martin; Oergel, Anja; Hauser, Till-Karsten; Ernemann, Ulrike; Hennersdorf, Florian [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Bongers, Malte Niklas [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2017-07-15

    This paper aims to evaluate a new iterative metal artifact reduction algorithm for post-interventional evaluation of brain tissue and intracranial arteries. The data of 20 patients that underwent follow-up cranial CT and cranial CT angiography after clipping or coiling of an intracranial aneurysm was retrospectively analyzed. After the images were processed using a novel iterative metal artifact reduction algorithm, images with and without metal artifact reduction were qualitatively evaluated by two readers, using a five-point Likert scale. Moreover, artifact strength was quantitatively assessed in terms of CT attenuation and standard deviation alterations. The qualitative analysis yielded a significant increase in image quality (p = 0.0057) in iteratively processed images with substantial inter-observer agreement (k = 0.72), while the CTA image quality did not differ (p = 0.864) and even showed vessel contrast reduction in six cases (30%). The mean relative attenuation difference was 27% without metal artifact reduction vs. 11% for iterative metal artifact reduction images (p = 0.0003). The new iterative metal artifact reduction algorithm enhances non-enhanced CT image quality after clipping or coiling, but in CT-angiography images, the contrast of adjacent vessels can be compromised. (orig.)

  19. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling - improved image quality by iterative metal artifact reduction

    International Nuclear Information System (INIS)

    Bier, Georg; Hempel, Johann-Martin; Oergel, Anja; Hauser, Till-Karsten; Ernemann, Ulrike; Hennersdorf, Florian; Bongers, Malte Niklas

    2017-01-01

    This paper aims to evaluate a new iterative metal artifact reduction algorithm for post-interventional evaluation of brain tissue and intracranial arteries. The data of 20 patients that underwent follow-up cranial CT and cranial CT angiography after clipping or coiling of an intracranial aneurysm was retrospectively analyzed. After the images were processed using a novel iterative metal artifact reduction algorithm, images with and without metal artifact reduction were qualitatively evaluated by two readers, using a five-point Likert scale. Moreover, artifact strength was quantitatively assessed in terms of CT attenuation and standard deviation alterations. The qualitative analysis yielded a significant increase in image quality (p = 0.0057) in iteratively processed images with substantial inter-observer agreement (k = 0.72), while the CTA image quality did not differ (p = 0.864) and even showed vessel contrast reduction in six cases (30%). The mean relative attenuation difference was 27% without metal artifact reduction vs. 11% for iterative metal artifact reduction images (p = 0.0003). The new iterative metal artifact reduction algorithm enhances non-enhanced CT image quality after clipping or coiling, but in CT-angiography images, the contrast of adjacent vessels can be compromised. (orig.)

  20. High Dose MicroCT Does Not Contribute Toward Improved MicroPET/CT Image Quantitative Accuracy and Can Limit Longitudinal Scanning of Small Animals

    Directory of Open Access Journals (Sweden)

    Wendy A. McDougald

    2017-10-01

    Full Text Available Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1 to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2 to evaluate the absorbed dose associated with varying CT parameters.Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA software implemented by Mediso. Measured Hounsfield Unit (HU in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC, uniformity and quantitative bias were also measured.Results: Only less than 2 and 1% of CT acquisition protocols yielded water HU values < −80 and air HU values < −840, respectively. Four out of 11 CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration.Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed toward improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  1. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dullerud, R. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology; Johansen, J.G. [Ullevaal Univ. Hospital, Oslo (Norway). Section of Neuroradiology

    1995-09-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG).

  2. CT-diskography in patients with sciatica. Comparison with plain CT and MR imaging

    International Nuclear Information System (INIS)

    Dullerud, R.; Johansen, J.G.

    1995-01-01

    The findings at CT-diskography (CT-D), including recording of the pain introduced at contrast injection, were compared with plain CT and MR imaging in 111 disks in 101 patients aged 18 to 68 years. Six disks which were normal at CT had normal CT-D and 5 of them had normal signal on MR imaging. The degree of annular degeneration and the depth of the annular tears were significantly associated with each other and with loss of disk height, but not with size or location of the hernias. Only the depth of the tears was significantly associated with loss of signal on MR. However, frequently complete annular tears and severe annular degeneration were seen in association with small bulges and hernias, even in disks with normal or slightly reduced signal on MR and with normal height. The type and intensity of the pain introduced were associated with each other and with the depth of the annular tears, but not with the degree of annular degeneration, size of the hernia or the MR signal intensity of the disks. Annular degeneration and tears on one hand, and the type and intensity of pain introduced on the other, see to be related rather than separate phenomena. (orig./MG)

  3. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan

    2016-01-01

    Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with

  4. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion.

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou

    2016-01-01

    The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated

  5. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw [Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Liu, Shu-Hsin [Department of Nuclear Medicine, Buddhist Tzu-Chi General Hospital, 970, Hualien, Taiwan and Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Mok, Greta S. P. [Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Wu, Tung-Hsin [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 112, Taipei, Taiwan (China)

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  6. Atlas of Skeletal SPECT/CT Clinical Images

    International Nuclear Information System (INIS)

    2016-01-01

    The atlas focuses specifically on single photon emission computed tomography/computed tomography (SPECT/CT) in musculoskeletal imaging, and thus illustrates the inherent advantages of the combination of the metabolic and anatomical component in a single procedure. In addition, the atlas provides information on the usefulness of several sets of specific indications. The publication, which serves more as a training tool rather than a textbook, will help to further integrate the SPECT and CT experience in clinical practice by presenting a series of typical cases with many different patterns of SPECT/CT seen in bone scintigraphy

  7. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Directory of Open Access Journals (Sweden)

    Kim Jae G

    2011-12-01

    Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis

  8. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Science.gov (United States)

    2011-01-01

    Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by

  9. Usefulness of MR imaging for diseases of the small intestine: comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hoon; Ha, Hyun Kwon; Sohn, Min Jae; Shin, Byung Suck; Lee, Young Suk; Chung, Soo Yoon; Kim, Pyo Nyun; Lee, Moon Gyu; Auh, Yong Ho [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2000-03-01

    To evaluate the usefulness of MR imaging for diseases of the small intestine, emphasizing a comparison with CT. Thirty-four patients who underwent both CT and MR imaging using FLASH 2D and HASTE sequences were analyzed. All patients had various small bowel diseases with variable association of peritoneal lesions. We compared the detectabilities of CT and MR imaging using different MR pulse sequences. The capability for analyzing the characteristics of small intestinal disease was also compared. MR imaging was nearly equal to CT for detecting intraluminal or peritoneal masses, lesions in the bowel and mesentery, and small bowel obstruction, but was definitely inferior for detecting omental lesions. The most successful MR imaging sequence was HASTE for demonstrating bowel wall thickening, coronal FLASH 2D for mesenteric lesions, and axial FLASH 2D for omental lesions. MR imaging yielded greater information than CT in six of 12 inflammatory bowel diseases, while it was equal to CT in six of seven neoplasms and inferior in five of seven mesenteric ischemia. In determining the primary causes of 15 intestinal obstructions, MR imaging was correct in 11 (73%) and CT in nine (60%) patients. MR imaging can serve as an alternative diagnostic tool for patients with suspected inflammatory bowel disease, small intestinal neoplasm or obstruction.

  10. Material Science Image Analysis using Quant-CT in ImageJ

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  11. Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiromitsu; Kim, Tonsok; Hori, Masatoshi; Nakaya, Yasuhiro; Tsuboyama, Takahiro; Nakamoto, Atsushi; Tatsumi, Mitsuaki; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Radiology, Suita, Osaka (Japan); Imai, Yasuharu [Ikeda Municipal Hospital, Department of Gastroenterology, Ikeda, Osaka (Japan); Nagano, Hiroaki [Osaka University Graduate School of Medicine, Department of Surgery, Suita, Osaka (Japan); Kumano, Seishi; Okada, Masahiro; Murakami, Takamichi [Kinki University School of Medicine, Department of Radiology, Osakasayama, Osaka (Japan); Takamura, Manabu [Ikeda Municipal Hospital, Department of Radiology, Ikeda, Osaka (Japan); Wakasa, Kenichi [Osaka City University Graduate School of Medicine, Department of Diagnostic Pathology, Osaka, Osaka (Japan)

    2012-04-15

    To retrospectively compare the accuracy of detection of hypervascular hepatocellular carcinoma (HCC) by multiphasic multidetector CT and by gadoxetate disodium-enhanced MR imaging. After ethical approval, we analysed a total of 73 hypervascular HCC lesions from 31 patients suspected of having HCC, who underwent both gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT. Five blinded observers independently reviewed CT images, as well as dynamic MR images alone and combined with hepatobiliary phase MR images. Diagnostic accuracy (Az values), sensitivities and positive predictive values were compared by using the Scheffe post hoc test. The mean Az value for dynamic and hepatobiliary phase MR combined (0.81) or dynamic MR images alone (0.78) was significantly higher than that for CT images (0.67, P < 0.001, 0.005, respectively). The mean sensitivity of the combined MR images (0.67) was significantly higher than that of dynamic MR alone (0.52, P < 0.05) or CT images (0.44, P < 0.05). The mean positive predictive values were 0.96, 0.95 and 0.94, for CT, dynamic MR alone and combined MR images, respectively. Compared with multiphasic multidetector CT, gadoxetate disodium-enhanced MR imaging combining dynamic and hepatobiliary phase images results in significantly improved sensitivity and diagnostic accuracy for detection of hypervascular HCC. (orig.)

  12. Improved method of in vivo respiratory-gated micro-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Erin B; Panda, Kunal; Bankson, James A; Brown, Ellana; Cody, Dianna D [Department of Imaging Physics, Unit 56, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States)

    2004-09-07

    The presence of motion artifacts is a typical problem in thoracic imaging. However, synchronizing the respiratory cycle with computed tomography (CT) image acquisition can reduce these artifacts. We currently employ a method of in vivo respiratory-gated micro-CT imaging for small laboratory animals (mice). This procedure involves the use of a ventilator that controls the respiratory cycle of the animal and provides a digital output signal that is used to trigger data acquisition. After inspection of the default respiratory trigger timing, we hypothesized that image quality could be improved by moving the data-acquisition window to a portion of the cycle with less respiratory motion. For this reason, we developed a simple delay circuit to adjust the timing of the ventilator signal that initiates micro-CT data acquisition. This delay circuit decreases motion artifacts and substantially improves image quality.

  13. Improved method of in vivo respiratory-gated micro-CT imaging

    International Nuclear Information System (INIS)

    Walters, Erin B; Panda, Kunal; Bankson, James A; Brown, Ellana; Cody, Dianna D

    2004-01-01

    The presence of motion artifacts is a typical problem in thoracic imaging. However, synchronizing the respiratory cycle with computed tomography (CT) image acquisition can reduce these artifacts. We currently employ a method of in vivo respiratory-gated micro-CT imaging for small laboratory animals (mice). This procedure involves the use of a ventilator that controls the respiratory cycle of the animal and provides a digital output signal that is used to trigger data acquisition. After inspection of the default respiratory trigger timing, we hypothesized that image quality could be improved by moving the data-acquisition window to a portion of the cycle with less respiratory motion. For this reason, we developed a simple delay circuit to adjust the timing of the ventilator signal that initiates micro-CT data acquisition. This delay circuit decreases motion artifacts and substantially improves image quality

  14. Development of information preserving data compression algorithm for CT images

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio

    1989-01-01

    Although digital imaging techniques in radiology develop rapidly, problems arise in archival storage and communication of image data. This paper reports on a new information preserving data compression algorithm for computed tomographic (CT) images. This algorithm consists of the following five processes: 1. Pixels surrounding the human body showing CT values smaller than -900 H.U. are eliminated. 2. Each pixel is encoded by its numerical difference from its neighboring pixel along a matrix line. 3. Difference values are encoded by a newly designed code rather than the natural binary code. 4. Image data, obtained with the above process, are decomposed into bit planes. 5. The bit state transitions in each bit plane are encoded by run length coding. Using this new algorithm, the compression ratios of brain, chest, and abdomen CT images are 4.49, 4.34. and 4.40 respectively. (author)

  15. Solid models for CT/MR image display

    International Nuclear Information System (INIS)

    ManKovich, N.J.; Yue, A.; Kioumehr, F.; Ammirati, M.; Turner, S.

    1991-01-01

    Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. The authors have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the mode with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of >99.6 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents an accuracy study and discusses ways of assessing the quality of neurosurgical plans when 3-D models re made available as planning tools

  16. Quantitative characterization of liver tumor radiodensity in CT images: a phantom study between two scanners

    Science.gov (United States)

    Berman, Benjamin Paul; Li, Qin; McKenney, Sarah; Fricke, Stanley Thomas; Fang, Yuan; Gavrielides, Marios A.; Petrick, Nicholas

    2018-02-01

    Quantitative assessment of tumor radiodensity is important for the clinical evaluation of contrast enhancement and treatment response, as well as for the extraction of texture-related features for image analysis or radiomics. Radiodensity estimation, Hounsfield Units (HU) in CT images, can be affected by patient factors such as tumor size, and by system factors such as acquisition and reconstruction protocols. In this project, we quantified the measurability of liver tumor HU using a 3D-printed phantom, imaged with two CT systems: Siemens Somatom Force and GE Lightspeed VCT. The phantom was printed by dithering two materials to create spherical tumors (10, 14 mm) with uniform densities (90, 95, 100, 105 HU). Image datasets were acquired at 120 kVp including 15 repeats using two matching exposures across the CT systems, and reconstructed using comparable algorithms. The radiodensity of each tumor was measured using an automated matched-filter method. We assessed the performance of each protocol using the area under the ROC curve (AUC) as the metric for distinguishing between tumors with different radiodensities. The AUC ranged from 0.8 to 1.0 and was affected by tumor size, radiodensity, and scanner; the lowest AUC values corresponded to low dose measurements of 10 mm tumors with less than 5 HU difference. The two scanners exhibited similar performance >0.9 AUC for large lesions with contrast above 7 HU, though differences were observed for the smallest and lowest contrast tumors. These results show that HU estimation should be carefully examined, considering that uncertainty in the tumor radiodensity may propagate to quantification of other characteristics, such as size and texture.

  17. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen, Bavaria 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States) and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2012-01-15

    Purpose: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. Methods: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp/cm, were tested in ''body'' surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. Results: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. Conclusions: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of {approx}1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high

  18. Intraobserver and Interobserver Variability in GTV Delineation on FDG-PET-CT Images of Head and Neck Cancers

    International Nuclear Information System (INIS)

    Breen, Stephen L.; Publicover, Julia; De Silva, Shiroma; Pond, Greg; Brock, Kristy; O'Sullivan, Brian; Cummings, Bernard; Dawson, Laura; Keller, Anne; Kim, John; Ringash, Jolie; Yu, Eugene; Hendler, Aaron; Waldron, John

    2007-01-01

    Purpose: To determine if the addition of fluorodeoxyglucose positron emission tomography (FDG-PET) data changes primary site gross tumor volumes (GTVs) in head and neck cancers. Methods and Materials: Computed tomography (CT), contrast-enhanced CT, and FDG-PET-CT scans were obtained in 10 patients with head and neck cancers. Eight experienced observers (6 head and neck oncologists and 2 neuro-radiologists) with access to clinical and radiologic reports outlined primary site GTVs on each modality. Three cases were recontoured twice to assess intraobserver variability. The magnitudes of the GTVs were compared. Intra- and interobserver variability was assessed by a two-way repeated measures analysis of variance. Inter- and intraobserver reliability were calculated. Results: There were no significant differences in the GTVs across the image modalities when compared as ensemble averages; the Wilcoxon matched-pairs signed-rank test showed that CT volumes were larger than PET-CT. Observers demonstrated the greatest consistency and were most interchangeable on contrast-enhanced CT; they performed less reliably on PET-CT. Conclusions: The addition of PET-CT to primary site GTV delineation of head and neck cancers does not change the volume of the GTV defined by this group of expert observers in this patient sample. An FDG-PET may demonstrate differences in neck node delineation and in other disease sites

  19. Cochlear anatomy: CT and MR imaging

    International Nuclear Information System (INIS)

    Martinez, Manuel; Bruno, Claudio; Martin, Eduardo; Canale, Nancy; De Luca, Laura; Spina, Juan C. h

    2002-01-01

    The authors present a brief overview of the normal cochlear anatomy with CT and MR images in order to allow a more complete identification of the pathological findings in patients with perceptive hipoacusia. (author)

  20. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.

    Science.gov (United States)

    Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut

    2018-06-07

    To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface

  1. Motion-compensated PET image reconstruction with respiratory-matched attenuation correction using two low-dose inhale and exhale CT images

    International Nuclear Information System (INIS)

    Nam, Woo Hyun; Ahn, Il Jun; Ra, Jong Beom; Kim, Kyeong Min; Kim, Byung Il

    2013-01-01

    Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images. (paper)

  2. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Siva, Shankar [Department of Radiation Oncology, Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3052 (Australia); Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J. [Centre for Cancer Imaging, Peter MacCallum Cancer Centre and Department of Medicine, University of Melbourne, Melbourne VIC 3002 (Australia)

    2014-01-15

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant

  3. Fast and Automatic Ultrasound Simulation from CT Images

    Directory of Open Access Journals (Sweden)

    Weijian Cong

    2013-01-01

    Full Text Available Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  4. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT

    International Nuclear Information System (INIS)

    Yu Lifeng; Primak, Andrew N.; Liu Xin; McCollough, Cynthia H.

    2009-01-01

    In dual-source dual-energy CT, the images reconstructed from the low- and high-energy scans (typically at 80 and 140 kV, respectively) can be mixed together to provide a single set of non-material-specific images for the purpose of routine diagnostic interpretation. Different from the material-specific information that may be obtained from the dual-energy scan data, the mixed images are created with the purpose of providing the interpreting physician a single set of images that have an appearance similar to that in single-energy images acquired at the same total radiation dose. In this work, the authors used a phantom study to evaluate the image quality of linearly mixed images in comparison to single-energy CT images, assuming the same total radiation dose and taking into account the effect of patient size and the dose partitioning between the low-and high-energy scans. The authors first developed a method to optimize the quality of the linearly mixed images such that the single-energy image quality was compared to the best-case image quality of the dual-energy mixed images. Compared to 80 kV single-energy images for the same radiation dose, the iodine CNR in dual-energy mixed images was worse for smaller phantom sizes. However, similar noise and similar or improved iodine CNR relative to 120 kV images could be achieved for dual-energy mixed images using the same total radiation dose over a wide range of patient sizes (up to 45 cm lateral thorax dimension). Thus, for adult CT practices, which primarily use 120 kV scanning, the use of dual-energy CT for the purpose of material-specific imaging can also produce a set of non-material-specific images for routine diagnostic interpretation that are of similar or improved quality relative to single-energy 120 kV scans.

  5. New frontiers in CT imaging of airway disease

    International Nuclear Information System (INIS)

    Grenier, Philippe A.; Beigelman-Aubry, Catherine; Fetita, Catalin; Preteux, Francoise; Brauner, Michel W.; Lenoir, Stephane

    2002-01-01

    Combining helical volumetric CT acquisition and thin-slice thickness during breath hold provides an accurate assessment of both focal and diffuse airway diseases. With multiple detector rows, compared with single-slice helical CT, multislice CT can cover a greater volume, during a simple breath hold, and with better longitudinal and in-plane spatial resolution and improved temporal resolution. The result in data set allows the generation of superior multiplanar and 3D images of the airways, including those obtained from techniques developed specifically for airway imaging, such as virtual bronchography and virtual bronchoscopy. Complementary CT evaluation at suspended or continuous full expiration is mandatory to detect air trapping that is a key finding for depicting an obstruction on the small airways. Indications for CT evaluation of the airways include: (a) detection of endobronchial lesions in patients with an unexplained hemoptysis; (b) evaluation of extent of tracheobronchial stenosis for planning treatment and follow-up; (c) detection of congenital airway anomalies revealed by hemoptysis or recurrent infection; (d) detection of postinfectious or postoperative airway fistula or dehiscence; and (e) diagnosis and assessment of extent of bronchiectasis and small airway disease. Improvement in image analysis technique and the use of spirometrically control of lung volume acquisition have made possible accurate and reproducible quantitative assessment of airway wall and lumen areas and lung density. This contributes to better insights in physiopathology of obstructive lung disease, particularly in chronic obstructive pulmonary disease and asthma. (orig.)

  6. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  7. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vaishnav, J. Y., E-mail: jay.vaishnav@fda.hhs.gov; Jung, W. C. [Diagnostic X-Ray Systems Branch, Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Popescu, L. M.; Zeng, R.; Myers, K. J. [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  8. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-01-01

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality

  9. Automated extraction of radiation dose information from CT dose report images.

    Science.gov (United States)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  10. Radiation Dose Reduction of Chest CT with Iterative Reconstruction in Image Space - Part I: Studies on Image Quality Using Dual Source CT

    International Nuclear Information System (INIS)

    Hwang, Hye Jeon; Seo, Joon Beom; Lee, Jin Seong; Song, Jae Woo; Lee, Hyun Joo; Lim, Chae Hun; Kim, Song Soo

    2012-01-01

    To determine whether the image quality (IQ) is improved with iterative reconstruction in image space (IRIS), and whether IRIS can be used for radiation reduction in chest CT. Standard dose chest CT (SDCT) in 50 patients and low dose chest CT (LDCT) in another 50 patients were performed, using a dual-source CT, with 120 kVp and same reference mAs (50 mAs for SDCT and 25 mAs for LDCT) employed to both tubes by modifying a dual-energy scan mode. Full-dose data were obtained by combining the data from both tubes and half-dose data were separated from a single tube. These were reconstructed by using a filtered back projection (FBP) and IRIS: full-dose FBP (F-FBP); full-dose IRIS (F-IRIS); half-dose FBP (H-FBP) and half-dose IRIS (H-IRIS). Objective noise was measured. The subjective IQ was evaluated by radiologists for the followings: noise, contrast and sharpness of mediastinum and lung. Objective noise was significantly lower in H-IRIS than in F-FBP (p < 0.01). In both SDCT and LDCT, the IQ scores were highest in F-IRIS, followed by F-FBP, H-IRIS and H-FBP, except those for sharpness of mediastinum, which tended to be higher in FBP. When comparing CT images between the same dose and different reconstruction (F-IRIS/F-FBP and H-IRIS/H-FBP) algorithms, scores tended to be higher in IRIS than in FBP, being more distinct in half-dose images. However, despite the use of IRIS, the scores were lower in H-IRIS than in F-FBP. IRIS generally helps improve the IQ, being more distinct at the reduced radiation. However, reduced radiation by half results in IQ decrease even when using IRIS in chest CT.

  11. A novel concept for CT with fixed anodes (FACT): Medical imaging based on the feasibility of thermal load capacity.

    Science.gov (United States)

    Kellermeier, Markus; Bert, Christoph; Müller, Reinhold G

    2015-07-01

    Focussing primarily on thermal load capacity, we describe the performance of a novel fixed anode CT (FACT) compared with a 100 kW reference CT. Being a fixed system, FACT has no focal spot blurring of the X-ray source during projection. Monte Carlo and finite element methods were used to determine the fluence proportional to thermal capacity. Studies of repeated short-time exposures showed that FACT could operate in pulsed mode for an unlimited period. A virtual model for FACT was constructed to analyse various temporal sequences for the X-ray source ring, representing a circular array of 1160 fixed anodes in the gantry. Assuming similar detector properties at a very small integration time, image quality was investigated using an image reconstruction library. Our model showed that approximately 60 gantry rounds per second, i.e. 60 sequential targetings of the 1160 anodes per second, were required to achieve a performance level equivalent to that of the reference CT (relative performance, RP = 1) at equivalent image quality. The optimal projection duration in each direction was about 10 μs. With a beam pause of 1 μs between projections, 78.4 gantry rounds per second with consecutive source activity were thermally possible at a given thermal focal spot. The settings allowed for a 1.3-fold (RP = 1.3) shorter scan time than conventional CT while maintaining radiation exposure and image quality. Based on the high number of rounds, FACT supports a high image frame rate at low doses, which would be beneficial in a wide range of diagnostic and technical applications. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. CT myocardial perfusion imaging. Ready for prime time?

    Energy Technology Data Exchange (ETDEWEB)

    Takx, Richard A.P.; Celeng, Csilla [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Ashley River Tower, Heart and Vascular Center, Charleston, SC (United States)

    2018-03-15

    The detection of functional coronary artery stenosis with coronary CT angiography (CCTA) is suboptimal. Additional CT myocardial perfusion imaging (CT-MPI) may be helpful to identify patients with myocardial ischaemia in whom coronary revascularization therapy would be beneficial. CT-MPI adds incremental diagnostic and prognostic value over obstructive disease on CCTA. It allows for the quantitation of myocardial blood flow and calculation of coronary flow reserve and shows good correlation with {sup 15}O-H{sub 2}O positron emission tomography and invasive fractional flow reserve. In addition, patients prefer CCTA/CT-MPI over SPECT, MRI and invasive coronary angiography. CT-MPI is ready for clinical use for detecting myocardial ischaemia caused by obstructive disease. Nevertheless, the clinical utility of CT-MPI to identify ischaemia in patients with non-obstructive/microvascular disease still has to be established. (orig.)

  13. SU-F-J-114: On-Treatment Imagereconstruction Using Transit Images of Treatment Beams Through Patient and Thosethrough Planning CT Images

    International Nuclear Information System (INIS)

    Lee, H; Cho, S; Cheong, K; Jung, J; Jung, S; Kim, J; Yeo, I

    2016-01-01

    Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically, represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.

  14. SU-F-J-114: On-Treatment Imagereconstruction Using Transit Images of Treatment Beams Through Patient and Thosethrough Planning CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H; Cho, S [KAIST, Yuseong-gu, Daejeon (Korea, Republic of); Cheong, K [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Jung, J [East Carolina University Greenville, NC (United States); Jung, S [Samsung Medical Cener, Gangnam-gu, Seoul (Korea, Republic of); Kim, J [Yonsei Cancer Center, Seoul (Korea, Republic of); Yeo, I [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically, represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.

  15. Comparison of positron emission tomography/CT and bremsstrahlung imaging following Y-90 radiation synovectomy

    International Nuclear Information System (INIS)

    Barber, Thomas W.; Yap, Kenneth S.K.; Cherk, Martin H.; Kalff, Victor; Powell, Anne

    2013-01-01

    The aim of this study is to compare the results of positron emission tomography (PET)/CT with bremsstrahlung imaging following Y-90 radiation synovectomy. All patients referred to our institution for Y-90 radiation synovectomy between July 2011 and February 2012 underwent both PET/CT and bremsstrahlung planar (±single photon emission computed tomography (SPECT) or SPECT/CT) imaging at 4 or 24 h following administration of Y-90 silicate colloid. PET image acquisition was performed for between 15 and 20min. In patients who underwent SPECT, side-by-side comparison with PET was performed and image quality/resolution scored using a five-point scale. The distribution pattern of Y-90 on PET and bremsstrahlung imaging was compared with the intra- or extra-articular location of Y-90 activity on fused PET/CT. Thirteen joints (11 knees and two ankles) were imaged with both PET/CT and planar bremsstrahlung imaging with 12 joints also imaged with bremsstrahlung SPECT. Of the 12 joints imaged with SPECT, PET image quality/resolution was superior in 11 and inferior in one. PET demonstrated a concordant distribution pattern compared with bremsstrahlung imaging in all scans, with the pattern classified as diffuse in 12 and predominantly focal in one. In all 12 diffuse scans, PET/CT confirmed the Y-90 activity to be located intra-articularly. In the one predominantly focal scan, the fused PET/CT images localised the Y-90 activity to mostly lie in the extra-articular space of the knee. PET/CT can provide superior image quality compared with bremsstrahlung imaging and may enable reliable detection of extra-articular Y-90 activity when there are focal patterns on planar bremsstrahlung imaging.

  16. 18F-FDOPA PET/CT imaging of insulinoma revisited

    International Nuclear Information System (INIS)

    Imperiale, Alessio; Namer, Izzie-Jacques; Sebag, Frederic; Vix, Michel; Castinetti, Frederic; Kessler, Laurence; Moreau, Francois; Bachellier, Philippe; Guillet, Benjamin; Mundler, Olivier; Taieb, David

    2015-01-01

    18 F-FDOPA PET imaging is increasingly used in the work-up of patients with neuroendocrine tumours. It has been shown to be of limited value in localizing pancreatic insulin-secreting tumours in adults with hyperinsulinaemic hypoglycaemia (HH) mainly due to 18 F-FDOPA uptake by the whole pancreatic gland. The objective of this study was to review our experience with 18 F-FDOPA PET/CT imaging with carbidopa (CD) premedication in patients with HH in comparison with PET/CT studies performed without CD premedication in an independent population. A retrospective study including 16 HH patients who were investigated between January 2011 and December 2013 using 18 F-FDOPA PET/CT (17 examinations) in two academic endocrine tumour centres was conducted. All PET/CT examinations were performed under CD premedication (200 mg orally, 1 - 2 h prior to tracer injection). The PET/CT acquisition protocol included an early acquisition (5 min after 18 F-FDOPA injection) centred over the upper abdomen and a delayed whole-body acquisition starting 20 - 30 min later. An independent series of eight consecutive patients with HH and investigated before 2011 were considered for comparison. All patients had a reference whole-body PET/CT scan performed about 1 h after 18 F-FDOPA injection. In all cases, PET/CT was performed without CD premedication. In the study group, 18 F-FDOPA PET/CT with CD premedication was positive in 8 out of 11 patients with histologically proven insulinoma (73 %). All 18 F-FDOPA PET/CT-avid insulinomas were detected on early images and 5 of 11 (45 %) on delayed ones. The tumour/normal pancreas uptake ratio was not significantly different between early and delayed acquisitions. Considering all patients with HH, including those without imaging evidence of disease, the detection rate of the primary lesions using CD-assisted 18 F-FDOPA PET/CT was 53 %, showing 9 insulinomas in 17 studies performed. In the control group (without CD premedication, eight patients), the final

  17. Effect of CT digital image compression on detection of coronary artery calcification

    International Nuclear Information System (INIS)

    Zheng, L.M.; Sone, S.; Itani, Y.; Wang, Q.; Hanamura, K.; Asakura, K.; Li, F.; Yang, Z.G.; Wang, J.C.; Funasaka, T.

    2000-01-01

    Purpose: To test the effect of digital compression of CT images on the detection of small linear or spotted high attenuation lesions such as coronary artery calcification (CAC). Material and methods: Fifty cases with and 50 without CAC were randomly selected from a population that had undergone spiral CT of the thorax for screening lung cancer. CT image data were compressed using JPEG (Joint Photographic Experts Group) or wavelet algorithms at ratios of 10:1, 20:1 or 40:1. Five radiologists reviewed the uncompressed and compressed images on a cathode-ray-tube. Observer performance was evaluated with receiver operating characteristic analysis. Results: CT images compressed at a ratio as high as 20:1 were acceptable for primary diagnosis of CAC. There was no significant difference in the detection accuracy for CAC between JPEG and wavelet algorithms at the compression ratios up to 20:1. CT images were more vulnerable to image blurring on the wavelet compression at relatively lower ratios, and 'blocking' artifacts occurred on the JPEG compression at relatively higher ratios. Conclusion: JPEG and wavelet algorithms allow compression of CT images without compromising their diagnostic value at ratios up to 20:1 in detecting small linear or spotted high attenuation lesions such as CAC, and there was no difference between the two algorithms in diagnostic accuracy

  18. Peritoneal Lymphomatosis Imaged by F-18 FDG PET/CT

    International Nuclear Information System (INIS)

    Park, Eun Kyung; Lee, Se Ryeon; Kim, Young Chul; Oh, Sun Young; Choe, Jae Gol

    2010-01-01

    Peritoneal lymphomatosis is uncommon, but when encountered is associated with aggressive histological subtypes of high-grade lymphoma, such as small-cell, large-cell, mixed large and small cell, non-cleaved, lymphoblastic Burkitt-like, and diffuse large B-cell lymphomas. The CT findings of peritoneal lymphomatosis are linear or nodular peritoneal thickening, retroperitoneal lymphadenopathy, omental and mesenteric involvement with streak-like infiltrations or a bulky mass, bowel wall thickening, hepatosplenomegaly, and ascites. The authors reports report the first FDG PET/CT images of diffuse large B-cell lymphoma of small bowel origin associated with peritoneal lymphomatosis in a 69-year-old man. The lesions demonstrated intense FDG uptake in PET/CT images.

  19. Interactive machine learning for postprocessing CT images of hardwood logs

    Science.gov (United States)

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2003-01-01

    This paper concerns the nondestructive evaluation of hardwood logs through the analysis of computed tomography (CT) images. Several studies have shown that the commercial value of resulting boards can be increased substantially if log sawing strategies are chosen using prior knowledge of internal log defects. Although CT imaging offers a potential means of obtaining...

  20. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  1. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    Science.gov (United States)

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  2. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  3. Sinusitis and intracranial sepsis: the CT imaging and clinical presentation

    International Nuclear Information System (INIS)

    Saxton, V.J.; Boldt, D.W.; Shield, L.K.

    1995-01-01

    The CT imaging and clinical presentation in 14 children with coexistent intracranial sepsis and sinusitis were reviewed. A routine CT head scan (10-mm thick semi-axial slices through the cranium done before and after intravenous contrast medium administration) was found to be an inadequate initial investigation as the intracranial collection was missed in four patients and the abnormal sinuses not shown in six. In half the children the dagnosis of sinusitis was unsuspected at the time of admission. The dominant clinical features were fever, intense headache and facial swelling in early adolescent males. In this clinical setting we recommend: (1) The routine scan is extended through the frontal and ethmoidal sinuses and photographed at a window level and width showing both bone detail and air/soft tissue interfaces; (2) direct coronal projections are performed through the anterior cranial fossa if no collection is seen on the routine study; (3) an early repeat scan within 48 h if the initial study shows no intracranial pathology but the fronto-ethomoidal sinuses are abnormal and there is a high clinical supicion of intracranial sepsis; and (4) in the presence of intracranial sepsis the vault is viewed at bone window settings to exclude cranial osteomyelitis. (orig.)

  4. An algorithm for 4D CT image sorting using spatial continuity.

    Science.gov (United States)

    Li, Chen; Liu, Jie

    2013-01-01

    4D CT, which could locate the position of the movement of the tumor in the entire respiratory cycle and reduce image artifacts effectively, has been widely used in making radiation therapy of tumors. The current 4D CT methods required external surrogates of respiratory motion obtained from extra instruments. However, respiratory signals recorded by these external makers may not always accurately represent the internal tumor and organ movements, especially when irregular breathing patterns happened. In this paper we have proposed a novel automatic 4D CT sorting algorithm that performs without these external surrogates. The sorting algorithm requires collecting the image data with a cine scan protocol. Beginning with the first couch position, images from the adjacent couch position are selected out according to spatial continuity. The process is continued until images from all couch positions are sorted and the entire 3D volume is produced. The algorithm is verified by respiratory phantom image data and clinical image data. The primary test results show that the 4D CT images created by our algorithm have eliminated the motion artifacts effectively and clearly demonstrated the movement of tumor and organ in the breath period.

  5. Impact of SPECT/CT in imaging inflammation and infection; Wertigkeit der SPECT/CT fuer die nuklearmedizinische Entzuendungsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R. [Klinikum Bremen-Mitte, Bremen (Germany). Klinik fuer Nuklearmedizin; Kuwert, T. [Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik

    2011-03-15

    Even today infection remains a significant concern, and the diagnosis and localization of infectious foci is an important health issue. As an established infection-imaging modality, nuclear medicine plays a vital health-care role in the diagnosis and subsequent effective treatment of this condition. Several techniques in nuclear medicine significantly aid infection diagnosis, including triple-phase bone scanning, {sup 18}F-FDG-PET and imaging with {sup 111}In-oxine-, {sup 99m}Tc-HMPAO-labeled leukocytes. Each radiopharmaceutical has specific advantages and disadvantages that makes it suitable to diagnose different infectious processes (e.g., soft-tissue sepsis, inflammatory bowel disease, osteomyelitis, occult fever, fever of unknown origin, and infections commonly found in immuno-compromised patients). However, their clinical applications may be limited by the relatively low spatial resolution and the lack of anatomic landmarks of a highly specific tracer with only scarce background uptake to use as a framework for orientation. Anatomic imaging modalities such as CT provide a high-quality assessment of structural abnormalities related to infection, but these structural abnormalities may be unspecific. Furthermore, to detect infection before anatomical changes are present, functional imaging could have some advantages over anatomical imaging. Scintigraphic studies have demonstrated high sensitivity and specificity to an infectious process. Diagnosis and precise delineation of infection may be challenging in certain clinical scenarios, rendering decisions concerning further patient management difficult. The SPECT/CT-technology combines the acquisition of SPECT and CT data with the same imaging device enabling perfect overlay of anatomical and functional images. SPECT/CT imaging data has been shown to be beneficial for many clinical settings such as indeterminate findings in bone scintigraphy, orthopaedic disorders, endocrine, and neuroendocrine tumors. Therefore

  6. Multislice CT imaging of pulmonary embolism

    International Nuclear Information System (INIS)

    Schoepf, J.U.; Kessler, M.A.; Rieger, C.T.; Herzog, P.; Wiesgigl, S.; Becker, C.R.; Exarhos, D.N.; Reiser, M.F.

    2001-01-01

    In recent years CT has been established as the method of choice for the diagnosis of central pulmonary embolism (PE) to the level of the segmental arteries. The key advantage of CT over competing modalities is the reliable detection of relevant alternative or additional disease causing the patient's symptoms. Although the clinical relevance of isolated peripheral emboli remains unclear, the alleged poor sensitivity of CT for the detection of such small clots has to date prevented the acceptance of CT as the gold standard for diagnosing PE. With the advent of multislice CT we can now cover the entire chest of a patient with 1-mm slices within one breath-hold. In comparison with thicker sections, the detection rate of subsegmental emboli can be significantly increased with 1-mm slices. In addition, the interobserver correlation which can be achieved with 1-mm sections by far exceeds the reproducibility of competing modalities. Meanwhile use of multislice CT for a combined diagnosis of PE and deep venous thrombosis with the same modality appears to be clinically accepted. In the vast majority of patients who receive a combined thoracic and venous multislice CT examination the scan either confirms the suspected diagnosis or reveals relevant alternative or additional disease. The therapeutic regimen is usually chosen based on the functional effect of embolic vascular occlusion. With the advent of fast CT scanning techniques, also functional parameters of lung perfusion can be non-invasively assessed by CT imaging. These advantages let multislice CT appear as an attractive modality for a non-invasive, fast, accurate, and comprehensive diagnosis of PE, its causes, effects, and differential diagnoses. (orig.)

  7. Automated planning of breast radiotherapy using cone beam CT imaging

    International Nuclear Information System (INIS)

    Amit, Guy; Purdie, Thomas G.

    2015-01-01

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation

  8. SPECT/CT imaging in general orthopedic practice.

    Science.gov (United States)

    Scharf, Stephen

    2009-09-01

    The availability of hybrid devices that combine the latest single-photon emission computed tomography (SPECT) imaging technology with multislice computed tomography (CT) scanning has allowed us to detect subtle, nonspecific abnormalities on bone scans and interpret them as specific focal areas of pathology. Abnormalities in the spine can be separated into those caused by pars fractures, facet joint arthritis, or osteophyte formation on vertebral bodies. Compression fractures can be distinguished from severe degenerative disease, both of which can cause intense activity across the spine on either planar or SPECT imaging. Localizing activity in patients who have had spinal fusion can provide tremendous insight into the causes of therapeutic failures. Infections of the spine now can be diagnosed with gallium SPECT/CT, despite the fact that gallium has long been abandoned because of its failure to detect spine infection on either planar or SPECT imaging. Small focal abnormalities in the feet and ankles can be localized well enough to make specific orthopedic diagnoses on the basis of their location. Moreover, when radiographic imaging provides equivocal or inadequate information, SPECT/CT can provide a road map for further diagnostic studies and has been invaluable in planning surgery. Our ability to localize activity within a bone or at an articular surface has allowed us to distinguish between fractures and joint disease. Increased activity associated with congenital anomalies, such as tarsal coalition and Bertolotti's syndrome have allowed us to understand the pathophysiology of these conditions, to confirm them as the cause of the patient's symptoms, and to provide information that is useful in determining appropriate clinical management. As our experience broadens, SPECT/CT will undoubtedly become an important tool in the evaluation and management of a wider variety of orthopedic patients.

  9. Development and practice for a PACS-based interactive teaching model for CT image

    International Nuclear Information System (INIS)

    Tian Junzhang; Jiang Guihua; Zheng Liyin; Wang Ling; Wenhua; Liang Lianbao

    2002-01-01

    Objective: To explore the interactive teaching model for CT imaging based on PACS, and provide the clinician and young radiologist with continued medical education. Methods: 100 M trunk net was adopted in PACS and 10 M was exchanged on desktop. Teaching model was installed in browse and diagnosis workstation. Teaching contents were classified according to region and managed according to branch model. Text data derived from authoritative textbooks, monograph, and periodicals. Imaging data derived from cases proved by pathology and clinic. The data were obtained through digital camera and scanner or from PACS. After edited and transformed into standard digital image through DICOM server, they were saved in HD of PACS image server with file form. Results: Teaching model for CT imaging provided kinds of cases of CT sign, clinic characteristics, pathology and distinguishing diagnosis. Normal section anatomy, typical image, and its notation could be browsed real time. Teaching model for CT imaging could provide reference to teaching, diagnosis and report. Conclusion: PACS-based teaching model for CT imaging could provide interactive teaching and scientific research tool and improve work quality and efficiency

  10. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    International Nuclear Information System (INIS)

    Wang, Ge; Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang; Kalra, Mannudeep; Murugan, Venkatesh; Vannier, Michael

    2015-01-01

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine

  11. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang [Biomedical Imaging Center/Cluster, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Kalra, Mannudeep; Murugan, Venkatesh [Department of Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Vannier, Michael [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-10-15

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  12. A minimum spanning forest based classification method for dedicated breast CT images

    International Nuclear Information System (INIS)

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei

    2015-01-01

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging

  13. SU-G-IeP2-09: Iodine Imaging at Spectral CT with a Dual-Layer Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ozguner, O [Case Western Reserve University, Cleveland, Ohio (United States); Dhanantwari, A; Halliburton, S; Utrup, S [Philips Healthcare, Highland Heights, OH (United States); Wen, G [The University of Texas at Austin, Austin, TX (United States); Jordan, D [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: To evaluate the attenuation response of iodine and the accuracy of iodine quantification on a detector-based spectral CT scanner. Methods: A Gammex 461A phantom was scanned using a dual-layer detector (IQon, Philips) at 120 kVp using helical acquisition with a CDTIvol of 15 mGy to approximate the hospital’s clinical body protocol. No modifications to the standard protocol were necessary to enable spectral imaging. Iodine inserts at 6 concentrations (2, 5, 7.5, 10, 15, 20 mg/ml) were scanned individually at the center of the phantom and the 20 mg/ml insert was additionally scanned at the 3, 6, and 12 o’clock positions. Scans were repeated 10 times. Conventional, virtual monoenergetic (40–200 keV) and iodine-no-water images (with pixel values equal to iodine concentration of corresponding tissue) were reconstructed from acquired data. A circular ROI (diameter=30 pixels) was used in each conventional and monoenergetic image to measure the mean and standard deviation of the CT number in HU and in each iodine-no-water image to measure iodine concentration in mg/ml. Results: Mean CT number and contrast-to-noise ratio (CNR) measured from monoenergetic images increased with decreasing keV for all iodine concentrations and matched measurements from conventional images at 75 keV. Measurements from the 20 ml insert showed the CT number is independent of location and CNR is a function only of noise, which was higher in the center. Measured concentration from iodine-no-water images matched phantom manufacturer suggested concentration to within 6% on average for inserts at the center of the phantom. Measured concentrations were systematically higher due to optimization of iodine quantification parameters for clinical mixtures of iodine and blood/tissue. Conclusion: Spectral acquisition and reconstruction with a dual-layer detector represents the physical behavior of iodine as expected and accurately quantifies the material concentration. This should permit a

  14. TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning

    International Nuclear Information System (INIS)

    Pan, T.

    2016-01-01

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  15. TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Pan, T. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy. The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the

  16. Lung cancer mimicking lung abscess formation on CT images

    OpenAIRE

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Patient: Male, 64 Final Diagnosis: Lung pleomorphic carcinoma Symptoms: Cough • fever Medication: — Clinical Procedure: — Specialty: Oncology Objective: Unusual clinical course Background: The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resemble...

  17. Split-bolus CT-urography using dual-energy CT: Feasibility, image quality and dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuru, E-mail: m2rbimn@gmail.com [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Kawai, Tatsuya; Ito, Masato; Ogawa, Masaki [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Ohashi, Kazuya [Nagoya City University Hospital, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan); Hara, Masaki; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601 (Japan)

    2012-11-15

    Purpose: To prospectively evaluate the feasibility of dual-energy (DE) split-bolus CT-urography (CTU) and the quality of virtual non-enhanced images (VNEI) and DE combined nephrographic-excretory phase images (CNEPI), and to estimate radiation dose reduction if true non-enhanced images (TNEI) could be omitted. Patients and methods: Between August and September 2011, 30 consecutive patients with confirmed or suspected urothelial cancer or with hematuria underwent DE CT. Single-energy TNEI and DE CNEPI were obtained. VNEI was reconstructed from CNEPI. Image quality of CNEPI and VNEI was evaluated using a 5-point scale. The attenuation of urine in the bladder on TNEI and VNEI was measured. The CT dose index volume (CTDI (vol)) of the two scans was recorded. Results: The mean image quality score of CNEPI and VNEI was 4.7 and 3.3, respectively. The mean differences in urine attenuation between VNEI and TNEI were 14 {+-} 15 [SD] and -16 {+-} 29 in the anterior and posterior parts of the bladder, respectively. The mean CTDI (vol) for TNEI and CNEPI was 11.8 and 10.9 mGy, respectively. Omission of TNEI could reduce the total radiation dose by 52%. Conclusion: DE split-bolus CTU is technically feasible and can reduce radiation exposure; however, an additional TNEI scan is necessary when the VNEI quality is poor or quantitative evaluation of urine attenuation is required.

  18. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Science.gov (United States)

    Li, Xin; Zhang, Yuyu; Shi, Yinghua; Wu, Shuyu; Xiao, Yang; Gu, Xuejun; Zhen, Xin; Zhou, Linghong

    2017-01-01

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) for propagating contours between planning computerized tomography (CT) images and treatment CT/cone-beam CT (CBCT) images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N) cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e., the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB), the vertebral foramen (VF), the parotid gland (PG) and the submandibular gland (SMG). It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  19. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  20. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT

    International Nuclear Information System (INIS)

    Gervaise, Alban; Osemont, Benoit; Lecocq, Sophie; Blum, Alain; Noel, Alain; Micard, Emilien; Felblinger, Jacques

    2012-01-01

    To evaluate the impact of Adaptive Iterative Dose Reduction (AIDR) on image quality and radiation dose in phantom and patient studies. A phantom was examined in volumetric mode on a 320-detector CT at different tube currents from 25 to 550 mAs. CT images were reconstructed with AIDR and with Filtered Back Projection (FBP) reconstruction algorithm. Image noise, Contrast-to-Noise Ratio (CNR), Signal-to-Noise Ratio (SNR) and spatial resolution were compared between FBP and AIDR images. AIDR was then tested on 15 CT examinations of the lumbar spine in a prospective study. Again, FBP and AIDR images were compared. Image noise and SNR were analysed using a Wilcoxon signed-rank test. In the phantom, spatial resolution assessment showed no significant difference between FBP and AIDR reconstructions. Image noise was lower with AIDR than with FBP images with a mean reduction of 40%. CNR and SNR were also improved with AIDR. In patients, quantitative and subjective evaluation showed that image noise was significantly lower with AIDR than with FBP. SNR was also greater with AIDR than with FBP. Compared to traditional FBP reconstruction techniques, AIDR significantly improves image quality and has the potential to decrease radiation dose. (orig.)

  1. Optimizing the balance between radiation dose and image quality in pediatric head CT: findings before and after intensive radiologic staff training.

    Science.gov (United States)

    Paolicchi, Fabio; Faggioni, Lorenzo; Bastiani, Luca; Molinaro, Sabrina; Puglioli, Michele; Caramella, Davide; Bartolozzi, Carlo

    2014-06-01

    The purpose of this study was to assess the radiation dose and image quality of pediatric head CT examinations before and after radiologic staff training. Outpatients 1 month to 14 years old underwent 215 unenhanced head CT examinations before and after intensive training of staff radiologists and technologists in optimization of CT technique. Patients were divided into three age groups (0-4, 5-9, and 10-14 years), and CT dose index, dose-length product, tube voltage, and tube current-rotation time product values before and after training were retrieved from the hospital PACS. Gray matter conspicuity and contrast-to-noise ratio before and after training were calculated, and subjective image quality in terms of artifacts, gray-white matter differentiation, noise, visualization of posterior fossa structures, and need for repeat CT examination was visually evaluated by three neuroradiologists. The median CT dose index and dose-length product values were significantly lower after than before training in all age groups (27 mGy and 338 mGy ∙ cm vs 107 mGy and 1444 mGy ∙ cm in the 0- to 4-year-old group, 41 mGy and 483 mGy ∙ cm vs 68 mGy and 976 mGy ∙ cm in the 5- to 9-year-old group, and 51 mGy and 679 mGy ∙ cm vs 107 mGy and 1480 mGy ∙ cm in the 10- to 14-year-old group; p training were significantly lower than the levels before training (p staff training can be effective in reducing radiation dose while preserving diagnostic image quality in pediatric head CT examinations.

  2. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeniya, T.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T

    2001-07-21

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  3. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Science.gov (United States)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  4. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  5. Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.

    Science.gov (United States)

    Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G; Shekher, Raj; Hata, Nobuhiko

    2015-06-01

    Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  6. Cranial CT with 64-, 16-, 4- and single-slice CT systems-comparison of image quality and posterior fossa artifacts in routine brain imaging with standard protocols

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, Birgit; Eftimov, Lara; Becker, Christoph; Reiser, Maximilian [University of Munich, Grosshadern (Germany). Institute of Clinical Radiology; Blume, Jeffrey; Cormack, Jean [Brown University, Center for Statistical Sciences, Providence, RI (United States); Bruening, Roland; Brueckmann, Hartmut [University of Munich, Grosshadern (Germany). Department of Neuroradiology

    2008-08-15

    Posterior fossa artifacts constitute a characteristic limitation of cranial CT. To identify practical benefits and drawbacks of newer CT systems with reduced collimation in routine cranial imaging, we aimed to investigate image quality, posterior fossa artifacts and parenchymal delineation in non-enhanced CT (NECT) with 1-, 4-, 16- and 64-slice scanners using standard scan protocols. We prospectively enrolled 25 consecutive patients undergoing NECT on a 64-slice CT. Three groups with 25 patients having undergone NECT on 1-, 4- and 16-slice CT machines were matched regarding age and sex. Standard routine CT parameters were used on each CT system with helical acquisition in the posterior fossa; the parameters varied regarding collimation and radiation dose. Three blinded readers independently assessed the cases regarding image quality, infra- and supratentorial artifacts and delineation of brain parenchymal structures on a five-point ordinal scale. Reading orders were randomized. A proportional odds model that accounted for the correlated nature of the data was fit using generalized estimating equations. Posterior fossa artifacts were significantly reduced, and the delineation of infratentorial brain structures was significantly improved with the thinner collimation used for the newer CT systems (p<0.001). No significant differences were observed for midbrain structures (p>0.5). The thinner collimation available on modern CT systems leads to reduced posterior fossa artifacts and to a better delineation of brain parenchyma in the posterior fossa. (orig.)

  7. Objective image characterization of a spectral CT scanner with dual-layer detector

    Science.gov (United States)

    Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David

    2018-01-01

    This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.

  8. CT imaging and histopathological features of renal epithelioid angiomyolipomas

    International Nuclear Information System (INIS)

    Cui, L.; Zhang, J.-G.; Hu, X.-Y.; Fang, X.-M.; Lerner, A.; Yao, X.-J.; Zhu, Z.-M.

    2012-01-01

    Aim: To describe computed tomography (CT) imaging and histopathological manifestations of renal epithelioid angiomyolipomas (EAMLs) for better understanding and cognition in the diagnosis of this new category of renal tumours. Materials and methods: Clinical data and CT images from 10 cases of EAML were retrospectively analysed. All patients underwent CT with and without contrast medium administration, with multiplanar reconstruction (MPR) when needed. Results: Plain CT manifestations of EAMLs were a higher density of mass (10–25 HU) than renal parenchyma, bulging contour of the involved kidney, absence of fat, distinct edges without a lobulate appearance. Contrast-enhanced CT features were markedly heterogeneous enhancement (from rapid wash-in to slow wash-out), large tumour size without lobular appearance, complete capsule with distinct margins and frequent mild necrotic areas. Histopathological features were epithelioid cells with eosinophilic cytoplasm, large and deeply stained nuclei, and dense arrangement of tumour cells with patchy necrosis; diffuse sheets of epithelioid cells were positive for HMB-45 (melanoma-associated antigen) and negative for epithelial membrane antigen (EMA) staining. Conclusion: Multiple specific CT features correlated well with the histopathology and may play an important role in the primary diagnosis of EAMLs.

  9. The preliminary study of CT cerebral perfusion imaging in transient ischemic attacks

    International Nuclear Information System (INIS)

    Lu Jie; Li Kuncheng; Du Xiangying

    2002-01-01

    Objective: To probe the application of CT cerebral perfusion imaging on transient ischemic attacks (TIA). Methods: Conventional CT and CT cerebral perfusion imaging were performed on 5 normal adults and 20 patients with clinically diagnosed TIA. After regular CT examination, dynamic scans of 40 seconds were performed on selected slice (usually on the basal ganglia slice), while 40 ml non-ionic contrast material were bolus injected through antecubital vein with. These dynamic images were processed with the 'Perfusion CT' software package on a PC based workstation. Cerebral blood flow (CBF) and time to peak (TP) enhancement were measured within specific regions of the brain on CT perfusion images. Quantitative analysis was performed for these images. Results: A gradient of perfusion between gray matter and white matter was showed on cT perfusion images in normal adults and TIA patients. CBF and TP for normal cortical and white matter were 378.2 ml·min -1 ·L -1 , 7.8 s and 112.5 ml·min -1 ·L -1 , 9.9 s, respectively. In 20 cases with TIA, persisting abnormal perfusion changes corresponding to clinical symptoms were found in 15 cases with prolonged TP. Other 5 cases showed normal results. TP of affected side (11.8 +- 4.4) s compared with that of the contralateral side (9.1 +- 3.1) s was significantly prolonged (t = 5.277, P -1 · -1 ] and contralateral side [(229.1 +- 41.4) ml·min -1 ·L -1 ]. Conclusion: Perfusion CT provides valuable hemodynamic information and shows the extent of perfusion disturbances for patients with TIA

  10. In vivo 3D PIXE-micron-CT imaging of Drosophila melanogaster using a contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Shigeo; Hamada, Naoki; Ishii, Keizo; Nozawa, Yuichiro; Ohkura, Satoru; Terakawa, Atsuki; Hatori, Yoshinobu; Fujiki, Kota; Fujiwara, Mitsuhiro; Toyama, Sho

    2015-04-01

    In this study, we developed a three-dimensional (3D) computed tomography (CT) in vivo imaging system for imaging small insects with micrometer resolution. The 3D CT imaging system, referred to as 3D PIXE-micron-CT (PIXEμCT), uses characteristic X-rays produced by ion microbeam bombardment of a metal target. PIXEμCT was used to observe the body organs and internal structure of a living Drosophila melanogaster. Although the organs of the thorax were clearly imaged, the digestive organs in the abdominal cavity could not be clearly discerned initially, with the exception of the rectum and the Malpighian tubule. To enhance the abdominal images, a barium sulfate powder radiocontrast agent was added. For the first time, 3D images of the ventriculus of a living D. melanogaster were obtained. Our results showed that PIXEμCT can provide in vivo 3D-CT images that reflect correctly the structure of individual living organs, which is expected to be very useful in biological research.

  11. MR and CT imaging patterns in post-varicella encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Darling, C.F. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Larsen, M.B. [Div. of Neurology, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Byrd, S.E. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Radkowski, M.A. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Palka, P.S. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States); Allen, E.D. [Div. of Neuroimaging, Children`s Memorial Center, Northwestern Univ. Medical School, Chicago, IL (United States)

    1995-06-01

    The aim of the investigation was to determine the patterns of cerebral involvement on computed tomography (CT) and magnetic resonance (MR) imaging in post-varicella encephalitis. Four children between the ages of 2 and 11 years presented over a 5-year period with a diagnosis of post-varicella encephalitis. Their imaging studies and clinical data were reviewed retrospectively. The medical histories of all four children were noncontributory except for recent bouts of chickenpox 1 week to 3 months prior to hospitalization. Three children presented with parkinsonian manifestations. Bilateral, symmetric hypodense, nonenhancing basal ganglia lesions were found on CT. These areas showed nonenhancing low signal intensity on T1-weighted images and high signal intensity on T2-weighted images on MR. One child presented with diffuse, multiple gray and white matter lesions of similar imaging characteristics; some lesions, however, did enhance. This child had no gait disturbances. Post-varicella encephalitis can produce two patterns of dramatic CT and MR findings. With an appropriate history and clinical findings, varicella as a cause of bilateral basal ganglia or diffuse cerebral lesions can be differentiated from other possible etiologies which include trauma, anoxia, metabolic disorders and demyelinating diseases. (orig.)

  12. Imaging of Acute Mesenteric Ischemia Using Multidetector CT and CT Angiography in a Porcine Model

    OpenAIRE

    Rosow, David E.; Sahani, Dushyant; Strobel, Oliver; Kalva, Sanjeeva; Mino-Kenudson, Mari; Holalkere, Nagaraj S.; Alsfasser, Guido; Saini, Sanjay; Lee, Susanna I.; Mueller, Peter R.; Castillo, Carlos Fernández-del; Warshaw, Andrew L.; Thayer, Sarah P.

    2005-01-01

    Acute mesenteric ischemia, a frequently lethal disease, requires prompt diagnosis and intervention for favorable clinical outcomes. This goal remains elusive due, in part, to lack of a noninvasive and accurate imaging study. Traditional angiography is the diagnostic gold standard but is invasive and costly. Computed tomography (CT) is readily available and noninvasive but has shown variable success in diagnosing this disease. The faster scanning time of multidetector row CT (M.D.CT) greatly f...

  13. F-18 FDG PET/CT imaging of primary hepatic neuroendocrine tumor

    Directory of Open Access Journals (Sweden)

    Katsuya Mitamura

    2015-01-01

    Full Text Available Primary hepatic neuroendocrine tumors (PHNETs are extremely rare neoplasms. Herein, we report a case of a 70-year-old man with a hepatic mass. The non-contrast computed tomography (CT image showed a low-density mass, and dynamic CT images indicated the enhancement of the mass in the arterial phase and early washout in the late phase. F18- fluorodeoxyglucose (18F-FDG positron emission tomography (PET and fused PET/CT images showed increased uptake in the hepatic mass. Whole-body 18F-FDG PET images showed no abnormal activity except for the liver lesion. Presence of an extrahepatic tumor was also ruled out by performing upper gastrointestinal endoscopy, total colonoscopy, and chest and abdominal CT. A posterior segmentectomy was performed, and histologic examination confirmed a neuroendocrine tumor (grade 1. The patient was followed up for about 2 years after the resection, and no extrahepatic lesions were radiologically found. Therefore, the patient was diagnosed with PHNET. To the best of our knowledge, no previous case of PHNET have been detected by 18F-FDG PET imaging.

  14. Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

  15. Cardiodiagnostic imaging. MRT, CT, echocardiography and other methods

    International Nuclear Information System (INIS)

    Erbel, R.; Kreitner, K.F.; Barkhausen, J.; Thelen, M.

    2007-01-01

    The book presents a differentiated approach to cardiac imaging. The focus is n cardio-MR/-CT and echocardiography. These are highly complex methods involving new equipment, new protocols and indications. The techniques are new and difficult to learn for everybody concerned. MR, CT and echocardiography must always be viewed in the context of other diagnostic methods. The interdisciplinary approach of the book addresses both radiologists and cardiologists and relies on the vast experience of the authors. The book offers more than 500 large high-quality reference images reflecting the latest state of the art. It has amethodological section in which the current methods are described (X-ray, echocardiography, nuclear medicine, angiography, CT, MRT etc.) along with their advantages and shortcomings, and a clinical section in which the main indications are described in the common standardized way (anatomy, clinical picture, interpretation, differential diagnosis). (orig.)

  16. A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images.

    Science.gov (United States)

    Mendonca, Paulo R S; Lamb, Peter; Sahani, Dushyant V

    2014-01-01

    The ability of dual-energy computed-tomographic (CT) systems to determine the concentration of constituent materials in a mixture, known as material decomposition, is the basis for many of dual-energy CT's clinical applications. However, the complex composition of tissues and organs in the human body poses a challenge for many material decomposition methods, which assume the presence of only two, or at most three, materials in the mixture. We developed a flexible, model-based method that extends dual-energy CT's core material decomposition capability to handle more complex situations, in which it is necessary to disambiguate among and quantify the concentration of a larger number of materials. The proposed method, named multi-material decomposition (MMD), was used to develop two image analysis algorithms. The first was virtual unenhancement (VUE), which digitally removes the effect of contrast agents from contrast-enhanced dual-energy CT exams. VUE has the ability to reduce patient dose and improve clinical workflow, and can be used in a number of clinical applications such as CT urography and CT angiography. The second algorithm developed was liver-fat quantification (LFQ), which accurately quantifies the fat concentration in the liver from dual-energy CT exams. LFQ can form the basis of a clinical application targeting the diagnosis and treatment of fatty liver disease. Using image data collected from a cohort consisting of 50 patients and from phantoms, the application of MMD to VUE and LFQ yielded quantitatively accurate results when compared against gold standards. Furthermore, consistent results were obtained across all phases of imaging (contrast-free and contrast-enhanced). This is of particular importance since most clinical protocols for abdominal imaging with CT call for multi-phase imaging. We conclude that MMD can successfully form the basis of a number of dual-energy CT image analysis algorithms, and has the potential to improve the clinical utility

  17. Comparison of MR imaging and CT in the evaluation of uterine tumors

    International Nuclear Information System (INIS)

    Janus, C.L.; Dottino, P.; Brodman, M.; Goodman, H.; Gendal, E.S.; Rabinowitz, J.G.

    1987-01-01

    The authors compared the usefulness of MR imaging and CT in staging uterine tumors. Forty women with known cervical carcinoma, endometrial cancer, or leiomyosarcoma underwent CT and MR imaging within 1 week prior to surgery. MR imaging was better than CT for localizing tumors to the endometrium of myometrium and in the evaluation of lymph node involvement and extension to the cervix and parametria. MR imaging, with its superior ability to demonstrate pelvic anatomy and its lack of ionizing radiation and risk from iodinated contrast media, has an important place in the staging of uterine tumors

  18. Improved detection of sentinel lymph nodes in SPECT/CT images acquired using a low- to medium-energy general-purpose collimator.

    Science.gov (United States)

    Yoneyama, Hiroto; Tsushima, Hiroyuki; Kobayashi, Masato; Onoguchi, Masahisa; Nakajima, Kenichi; Kinuya, Seigo

    2014-01-01

    The use of the low-energy high-resolution (LEHR) collimator for lymphoscintigraphy causes the appearance of star-shaped artifacts at injection sites. The aim of this study was to confirm whether the lower resolution of the low- to medium-energy general-purpose (LMEGP) collimator is compensated by decrease in the degree of septal penetration and the reduction in star-shaped artifacts. A total of 106 female patients with breast cancer, diagnosed by biopsy, were enrolled in this study. Tc phytate (37 MBq, 1 mCi) was injected around the tumor, and planar and SPECT/CT images were obtained after 3 to 4 hours. When sentinel lymph nodes (SLNs) could not be identified from planar and SPECT/CT images by using the LEHR collimator, we repeated the study with the LMEGP collimator. Planar imaging performed using the LEHR and LEHR + LMEGP collimators positively identified SLNs in 96.2% (102/106) and 99.1% (105/106) of the patients, respectively. Using combination of planar and SPECT/CT imaging with the LEHR and LEHR + LMEGP collimators, SLNs were positively identified in 97.2% (103/106) and 100% (106/106) of the patients, respectively. The LMEGP collimator provided better results than the LEHR collimator because of the lower degree of septal penetration. The use of the LMEGP collimator improved SLN detection.

  19. CT and MR imaging of the liver. Clinical importance of nutritional status

    International Nuclear Information System (INIS)

    Leander, P.; Sjoeberg, S.; Hoeglund, P.

    2000-01-01

    Purpose: In an experimental study in rats a correlation between nutritional status and hepatic attenuation in CT and signal intensities in MR imaging was shown. Is physiological nutritional status of importance in clinical CT and MR imaging? Material and methods: In a cross-over study including 12 healthy volunteers (6 women and 6 men, mean age 34 years), CT and MR imaging of the liver were performed with nutritional status at three different levels, i.e., normal, fasting and after glycogen-rich meals. CT and MR were performed on clinical imaging systems and hepatic attenuation and signal intensity, respectively, were assessed. In MR, T1-weighted, proton density-weighted and T2-weighted pulse-sequences were used. Results: In CT there were significantly (p<0.01) higher liver attenuations in normal nutritional status and after glycogen rich-meals compared to the fasting condition. The difference between fasting and glycogen-rich meals were 10.5 HU for men, 7.4 for women and mean 8.8 HU for all 12 volunteers. In MR imaging the differences were small and non-significant. The results of this study are in accordance with an earlier experimental study in rats. Conclusion: In CT it may be of importance not to have patients in a fasting condition as it lowers the attenuation in normal liver tissue. The findings are important for planning of clinical studies where hepatic attenuation will be assessed and may be of some importance in clinical CT. In MR imaging the results indicate that the nutritional status is of less importance

  20. CT imaging vs. traditional radiographic imaging for evaluating Harris Lines in tibiae

    DEFF Research Database (Denmark)

    Primeau, Charlotte; Jakobsen, Lykke Schrøder; Lynnerup, Niels

    2016-01-01

    This paper is the first to systematically investigate computer tomography (CT) images vs. ordinary flat plane radiography for evaluating Harris Lines (HL) on tibiae. Harris Lines are traditionally investigated using radiographic images and recorded as either present or absent, or by counting...

  1. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.

    Science.gov (United States)

    Zhao, Wei; Vernekohl, Don; Han, Fei; Han, Bin; Peng, Hao; Yang, Yong; Xing, Lei; Min, James K

    2018-04-21

    Many clinical applications depend critically on the accurate differentiation and classi-fication of different types of materials in patient anatomy. This work introduces a unified framework for accurate nonlinear material decomposition and applies it, for the first time, in the concept of triple-energy CT (TECT) for enhanced material differentiation and classification as well as dual-energy CT METHODS: We express polychromatic projection into a linear combination of line integrals of material-selective images. The material decomposition is then turned into a problem of minimizing the least-squares difference between measured and estimated CT projections. The optimization problem is solved iteratively by updating the line integrals. The proposed technique is evaluated by using several numerical phantom measurements under different scanning protocols The triple-energy data acquisition is implemented at the scales of micro-CT and clinical CT imaging with commercial "TwinBeam" dual-source DECT configuration and a fast kV switching DECT configu-ration. Material decomposition and quantitative comparison with a photon counting detector and with the presence of a bow-tie filter are also performed. The proposed method provides quantitative material- and energy-selective images exam-ining realistic configurations for both dual- and triple-energy CT measurements. Compared to the polychromatic kV CT images, virtual monochromatic images show superior image quality. For the mouse phantom, quantitative measurements show that the differences between gadodiamide and iodine concentrations obtained using TECT and idealized photon counting CT (PCCT) are smaller than 8 mg/mL and 1 mg/mL, respectively. TECT outperforms DECT for multi-contrast CT imag-ing and is robust with respect to spectrum estimation. For the thorax phantom, the differences between the concentrations of the contrast map and the corresponding true reference values are smaller than 7 mg/mL for all of the realistic

  2. CT and MR images of pleomorphic adenoma in major and minor salivary glands

    International Nuclear Information System (INIS)

    Kakimoto, Naoya; Gamoh, Shoko; Tamaki, Junko; Kishino, Mitsunobu; Murakami, Shumei; Furukawa, Souhei

    2009-01-01

    Purpose: To investigate the CT and MR imaging features of pleomorphic adenoma in the head and neck area. Materials and methods: Our materials of this study consisted of 50 pleomorphic adenomas from 50 patients which were all histopathologically diagnosed. The CT and MR images were retrospectively evaluated. The following features were evaluated: the detectability of the lesion, the tumor margin, the border of the lesion, the aspect of the lesion, the contrast between the lesion and surrounding tissue, the signal intensity of the lesion, the enhancement of contrast medium, the aspect of the lesion after the injection of contrast medium, the detectability of the capsule, and the detectability of bone resorption of the lesion. Results: The tumor detectabilities were 77% on axial plain CT images and 90% on axial CE CT images, respectively. On CT images, pleomorphic adenoma tended to show a well-defined margin, a smooth border, an inhomogeneous aspect, a low or high contrast, and intermediate or high signal intensity. After contrast medium administration, pleomorphic adenoma tended to show a slightly high enhancement and either an inhomogeneous or a periphery enhancement on the CE CT images. The capsule could be hardly detected on CT images. The tumor detectabilities were 86% on axial T1-weighted MR images, 88% on axial T2-weighted MR images, and 85% on axial CE T1-weighted MR images, respectively. On MR images, pleomorphic adenomas tended to show well-defined margin, a lobulate border, an inhomogeneous aspect, a high contrast, and intermediate or high signal intensity. After contrast medium administration, pleomorphic adenoma tended to show a high enhancement and either an inhomogeneous or a periphery enhancement on MR images. The capsule could be detected in many cases on MR images. Conclusions: It was possible to detect the capsule in pleomorphic adenoma using MR images. The pleomorphic adenomas in head and neck area should be evaluated with MR images.

  3. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Directory of Open Access Journals (Sweden)

    Xin Li

    Full Text Available Deformable image registration (DIR is a critical technic in adaptive radiotherapy (ART for propagating contours between planning computerized tomography (CT images and treatment CT/cone-beam CT (CBCT images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT. Three similarity metrics, i.e., the Dice similarity coefficient (DSC, the percentage error (PE and the Hausdorff distance (HD, were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB, the vertebral foramen (VF, the parotid gland (PG and the submandibular gland (SMG. It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  4. Dual-source CT cardiac imaging: initial experience

    International Nuclear Information System (INIS)

    Johnson, Thorsten R.C.; Nikolaou, Konstantin; Wintersperger, Bernd J.; Rist, Carsten; Buhmann, Sonja; Reiser, Maximilian F.; Becker, Christoph R.; Leber, Alexander W.; Ziegler, Franz von; Knez, Andreas

    2006-01-01

    The relation of heart rate and image quality in the depiction of coronary arteries, heart valves and myocardium was assessed on a dual-source computed tomography system (DSCT). Coronary CT angiography was performed on a DSCT (Somatom Definition, Siemens) with high concentration contrast media (Iopromide, Ultravist 370, Schering) in 24 patients with heart rates between 44 and 92 beats per minute. Images were reconstructed over the whole cardiac cycle in 10% steps. Two readers independently assessed the image quality with regard to the diagnostic evaluation of right and left coronary artery, heart valves and left ventricular myocardium for the assessment of vessel wall changes, coronary stenoses, valve morphology and function and ventricular function on a three point grading scale. The image quality ratings at the optimal reconstruction interval were 1.24±0.42 for the right and 1.09±0.27 for the left coronary artery. A reconstruction of diagnostic systolic and diastolic images is possible for a wide range of heart rates, allowing also a functional evaluation of valves and myocardium. Dual-source CT offers very robust diagnostic image quality in a wide range of heart rates. The high temporal resolution now also makes a functional evaluation of the heart valves and myocardium possible. (orig.)

  5. CT Imaging for Evaluation of Calcium Crystal Deposition in the Knee: Initial Experience from The Multicenter Osteoarthritis (MOST) Study

    Science.gov (United States)

    Misra, Devyani; Guermazi, Ali; Sieren, Jered P.; Lynch, John; Torner, James; Neogi, Tuhina; Felson, David T.

    2014-01-01

    Objective Role of intra-articular calcium crystals in osteoarthritis (OA) is unclear. Imaging modalities used to date for its evaluation have limitations in their ability to fully characterize intra-articular crystal deposition. Since Computed Tomography (CT) imaging provides excellent visualization of bones and calcified tissue, in this pilot project we evaluated the utility of CT scan in describing intra-articular calcium crystal deposition in the knees. Method We included 12 subjects with and 4 subjects without radiographic chondrocalcinosis in the most recent visit from the Multicenter Osteoarthritis (MOST) study, which is a longitudinal cohort of community-dwelling older adults with or at risk for knee OA. All subjects underwent CT scans of bilateral knees. Each knee was divided into 25 subregions and each subregion was read for presence of calcium crystals by a musculoskeletal radiologist. To assess reliability, readings were repeated 4 weeks later. Results CT images permitted visualization of 25 subregions with calcification within and around the tibio-femoral and patello-femoral joints in all 24 knees with radiographic chondrocalcinosis. Intra-articular calcification was seen universally including meniscal cartilage (most common site involved in 21/24 knees), hyaline cartilage, cruciate ligaments, medial collateral ligament and joint capsule. Readings showed good agreement for specific tissues involved with calcium deposition (kappa: 0.70, 95% CI 0.62–0.80). Conclusion We found CT scan to be a useful and reliable tool for describing calcium crystal deposition in the knee and therefore potentially for studying role of calcium crystals in OA. We also confirmed that “chondrocalcinosis” is a misnomer because calcification is present ubiquitously. PMID:25451303

  6. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  7. A temporal subtraction method for thoracic CT images based on generalized gradient vector flow

    International Nuclear Information System (INIS)

    Miyake, Noriaki; Kim, H.; Maeda, Shinya; Itai, Yoshinori; Tan, J.K.; Ishikawa, Seiji; Katsuragawa, Shigehiko

    2010-01-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes (such as formation of new lesions and changes in existing abnormalities) on medical images by removing most of the normal structures. If image registration is incorrect, not only the interval changes but also the normal structures would be appeared as some artifacts on the temporal subtraction image. In a temporal subtraction technique for 2-D X-ray image, the effectiveness is shown through a lot of clinical evaluation experiments, and practical use is advancing. Moreover, the MDCT (Multi-Detector row Computed Tomography) can easily introduced on medical field, the development of a temporal subtraction for thoracic CT Images is expected. In our study, a temporal subtraction technique for thoracic CT Images is developed. As the technique, the vector fields are described by use of GGVF (Generalized Gradient Vector Flow) from the previous and current CT images. Afterwards, VOI (Volume of Interest) are set up on the previous and current CT image pairs. The shift vectors are calculated by using nearest neighbor matching of the vector fields in these VOIs. The search kernel on previous CT image is set up from the obtained shift vector. The previous CT voxel which resemble standard the current voxel is detected by voxel value and vector of the GGVF in the kernel. And, the previous CT image is transformed to the same coordinate of standard voxel. Finally, temporal subtraction image is made by subtraction of a warping image from a current one. To verify the proposal method, the result of application to 7 cases and the effectiveness are described. (author)

  8. Brain CT image and handedness of schizophrenia

    International Nuclear Information System (INIS)

    Hirose, Katsutoshi; Maehara, Katsuya; Iizuka, Reiji; Mikami, Akihiro.

    1989-01-01

    Brain CT images were reviewed of 98 schizophrenic patients and 90 healthy persons in relation to handedness and aging. CT images were further reconstructed to examine morphologically subtle changes in each region. Schizophrenic patients had progressive brain atrophy and dilated lateral ventricles, especially on the left side and in the posterior part of the lateral ventricle. These findings were more marked in left-handed than in right-handed schizophrenic patients. According to age groups, there were significant differences between schizophrenic and normal persons over the age of 40. The incidence of left handedness was significantly higher in schizophrenic patients in their fourties than the age-matched normal persons (31.4% vs 15.1%). Morphological abnormality and laterality might be due to the same pathologic consequences. (N.K.)

  9. Low dose CT image restoration using a database of image patches

    Science.gov (United States)

    Ha, Sungsoo; Mueller, Klaus

    2015-01-01

    Reducing the radiation dose in CT imaging has become an active research topic and many solutions have been proposed to remove the significant noise and streak artifacts in the reconstructed images. Most of these methods operate within the domain of the image that is subject to restoration. This, however, poses limitations on the extent of filtering possible. We advocate to take into consideration the vast body of external knowledge that exists in the domain of already acquired medical CT images, since after all, this is what radiologists do when they examine these low quality images. We can incorporate this knowledge by creating a database of prior scans, either of the same patient or a diverse corpus of different patients, to assist in the restoration process. Our paper follows up on our previous work that used a database of images. Using images, however, is challenging since it requires tedious and error prone registration and alignment. Our new method eliminates these problems by storing a diverse set of small image patches in conjunction with a localized similarity matching scheme. We also empirically show that it is sufficient to store these patches without anatomical tags since their statistics are sufficiently strong to yield good similarity matches from the database and as a direct effect, produce image restorations of high quality. A final experiment demonstrates that our global database approach can recover image features that are difficult to preserve with conventional denoising approaches.

  10. Repeat CT-scan assessment of lymph node motion in locally advanced cervical cancer patients

    International Nuclear Information System (INIS)

    Bondar, Luiza; Velema, Laura; Mens, Jan Willem; Heijmen, Ben; Hoogeman, Mischa; Zwijnenburg, Ellen

    2014-01-01

    In cervical cancer patients the nodal clinical target volume (CTV, defined using the major pelvic blood vessels and enlarged lymph nodes) is assumed to move synchronously with the bony anatomy. The aim of this study was to verify this assumption by investigating the motion of the major pelvic blood vessels and enlarged lymph nodes visible in CT scans. For 13 patients treated in prone position, four variable bladder-filling CT scans per patient, acquired at planning and after 40 Gy, were selected from an available dataset of 9-10 CT scans. The bladder, rectum, and the nodal-vessels structure containing the iliac vessels and all visible enlarged nodes were delineated in each selected CT scan. Two online patient setup correction protocols were simulated. The first corrected bony anatomy translations and the second corrected translations and rotations. The efficacy of each correction was calculated as the overlap between the nodal-vessels structure in the reference and repeat CT scans. The motion magnitude between delineated structures was quantified using nonrigid registration. Translational corrections resulted in an average overlap of 58 ± 13% and in a range of motion between 9.9 and 27.3 mm. Translational and rotational corrections significantly improved the overlap (64 ± 13%, p value = 0.007) and moderately reduced the range of motion to 7.6-23.8 mm (p value = 0.03). Bladder filling changes significantly correlated with the nodal-vessels motion (p [de

  11. CT, MRI, and FDG-PET/CT imaging findings of abdominopelvic desmoplastic small round cell tumors: Correlation with histopathologic findings

    International Nuclear Information System (INIS)

    Zhang Weidong; Li Chuanxing; Liu Qingyu; Hu Yingying; Cao Yun; Huang Jinhua

    2011-01-01

    Objective: To analyze computed tomography (CT), magnetic resonance imaging (MRI), and fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT imaging features of abdominopelvic desmoplastic small round cell tumor (DSRCT) and to improve the diagnostic efficacy of these techniques for the detection of such tumor. Methods: We retrospectively analyzed 7 cases of abdominopelvic DSRCT confirmed by histopathologic analysis. Among the 7 patients, 5 patients had undergone CT scanning, 2 of which were also examined with FDG-PET/CT imaging, and 2 had undergone MRI. Unenhanced and contrast-enhanced examinations were performed in all patients, and 2 patients had also undergone dynamic CT contrast-enhanced examinations. Image characteristics, such as shape, size, number, edge, attenuation, and intensity of each lesion before and after contrast enhancement were analyzed and compared with the pathomorphology of the tumors. Results: Multiple large masses in the abdominopelvis were detected in 6 cases, and a large mass in the pelvis was detected in 1 case. Six cases showed largest mass in pelvis, and 1 case in mesentery. None of the masses had a definite organ origin. CT showed soft tissue masses with patchy foci of hypodense areas. MR T1-weighted images revealed lesions with mild hypointense areas and patchy hypointense areas in 2 cases and lesions with patchy hyperintense areas in 1 case. T2-weighted images showed lesions with mixed isointense and hyperintense areas in 1 case and lesions with mixed hypointense, isointense, and hyperintense areas in another. Contrast-enhanced CT and T1-weighted images showed mildly heterogeneous enhancement of the lesions. Other associated findings included peritoneal seeding (n = 3), peritoneal effusions (n = 3), hepatic metastasis (n = 2), bone metastasis (n = 1), and mesenteric and retroperitoneal lymphadenopathy (n = 4). FDG-PET/CT showed multiple nodular foci of increased metabolic activity in the abdominopelvic masses, in the hepatic and

  12. Algorithm of pulmonary emphysema extraction using thoracic 3D CT images

    Science.gov (United States)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2007-03-01

    Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.

  13. Repfinder: Finding approximately repeated scene elements for image editing

    KAUST Repository

    Cheng, Ming-Ming

    2010-07-26

    Repeated elements are ubiquitous and abundant in both manmade and natural scenes. Editing such images while preserving the repetitions and their relations is nontrivial due to overlap, missing parts, deformation across instances, illumination variation, etc. Manually enforcing such relations is laborious and error-prone. We propose a novel framework where user scribbles are used to guide detection and extraction of such repeated elements. Our detection process, which is based on a novel boundary band method, robustly extracts the repetitions along with their deformations. The algorithm only considers the shape of the elements, and ignores similarity based on color, texture, etc. We then use topological sorting to establish a partial depth ordering of overlapping repeated instances. Missing parts on occluded instances are completed using information from other instances. The extracted repeated instances can then be seamlessly edited and manipulated for a variety of high level tasks that are otherwise difficult to perform. We demonstrate the versatility of our framework on a large set of inputs of varying complexity, showing applications to image rearrangement, edit transfer, deformation propagation, and instance replacement. © 2010 ACM.

  14. Variability in "1"8F-FDG PET/CT methodology of acquisition, reconstruction and analysis for oncologic imaging: state survey

    International Nuclear Information System (INIS)

    Fischer, Andreia C.F. da S.; Druzian, Aline C.; Bacelar, Alexandre; Pianta, Diego B.; Silva, Ana M. Marques da

    2016-01-01

    The SUV in "1"8F-FDG PET/CT oncological imaging is useful for cancer diagnosis, staging and treatment assessment. There are, however, several factors that can give rise to bias in SUV measurements. When using SUV as a diagnostic tool, one needs to minimize the variability in this measurement by standardization of patient preparation, acquisition and reconstruction parameters. The aim of this study is to evaluate the methodological variability in PET/CT acquisition in Rio Grande do Sul State. For that, in each department, a questionnaire was applied to survey technical information from PET/CT systems and about the acquisitions and analysis methods utilized. All departments implement quality assurance programs consistent with (inter)national recommendations. However, the acquisition and reconstruction methods of acquired PET data differ. The implementation of a harmonized strategy for quantifying the SUV is suggested, in order to obtain greater reproducibility and repeatability. (author)

  15. Three-dimensional CT endoscopic images of the larynx. Clinical application of helical CT

    International Nuclear Information System (INIS)

    Yumoto, Eiji; Sanuki, Tetsuji; Yasuhara, Yoshifumi; Ochi, Takashi

    1998-01-01

    Twenty-seven patients with several laryngeal ailments underwent helical computed tomography (CT) on 37 occasions. Ten of these 27 patients suffered from unilateral vocal fold paralysis (UVFP). Three-dimensional (3D) images of the laryngeal lumen viewed from various angles were produced for all sets of CT volumetric data, except for three which contained excessive motion artifacts. The present paper examined whether 3D endoscopic images could offer useful diagnostic and therapeutic information about UVFP. The 3D endoscopic images viewed from the tracheal side and the hemilaryngeal images viewed from the opposite side could delineate the vocal folds, ventricular fold and ventricle three-dimensionally. Atrophy and hypotonic changes to the vocal fold and expansion of the ventricle on the affected side were clearly shown. The 3D endoscopic images accurately showed the phonosurgical effects on the laryngeal structures. The 3D endoscopic images could be produced even when the vocal folds could not be observed with conventional endoscopy due to their overadduction. Multiplanar reconstruction (MPR) images in the coronal plane were reconstructed at a right angle to the glottic axis when the whole larynx was deviated. In addition, coronal MPR images showed a better resolution among the different layers of the vocal fold soft tissue than X-ray tomography. In conclusion, 3D endoscopic images combined with coronal MPR images can provide useful diagnostic an therapeutic information about UVFP, although motion artifacts may occur. (author)

  16. A pilot study of three dimensional color CT images of brain diseases to improve informed consent

    International Nuclear Information System (INIS)

    Tanizaki, Yoshio; Akiyama, Takenori; Hiraga, Kenji; Akaji, Kazunori

    2005-01-01

    We have described brain diseases to patients and their family using monochrome CT images. It is thought that patients have difficulties in giving their consent to our conventional explanation because their understanding of brain diseases is based on three dimensional and color images, however, standard CT images are two dimensional and gray scale images. We have been trying to use three dimensional color CT images to improve the typical patient's comprehension of brain diseases. We also try to simulate surgery using these images. Multi-slice CT accumulates precise isotropic voxel data within a half minute. These two dimensional and monochrome data are converted to three dimensional color CT images by 3D workstation. Three dimensional color CT images of each brain structures (e.g. scalp, skull, brain, ventricles and lesions) are created separately. Then, selected structures are fused together for different purposes. These images are able to rotate around any axis. Because the methods to generate three-dimensional color images have not established, we neurosurgeons must create these images. In particular, when an operation is required, the surgeon should create the images. In this paper, we demonstrate how three-dimensional color CT images can improve informed consent. (author)

  17. Kinematic CT and MR imaging of the patellofemoral joint

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Heller, M.

    1999-01-01

    Anterior knee pain is a frequently encountered orthopedic symptom and is often associated with patellofemoral malalignment, which may cause chondromalacia of the patella. The difficulty in determining the patellar position between 0 and 30 of knee flexion with a conventional axial radiographic examination is well known. The introduction of computed tomography (CT) and magnetic resonance (MR) imaging for the diagnosis of knee joint abnormalities has enabled assessment of the patellar position in this critical range. More recently, emphasis has been placed on dynamic visualization of patellar motion to detect an abnormal tracking pattern. The important influence of the quadriceps muscle on the patellar tracking pattern is well known and has been examined during active knee extension by the use of ultrafast CT, and motion-triggered and ultrafast MR imaging. This article provides an overview of the current status of kinematic CT and MR imaging in the diagnosis of patellofemoral alignment, its clinical implications, and future directions. (orig.)

  18. Kinematic CT and MR imaging of the patellofemoral joint

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C.; Brossmann, J.; Heller, M. [Klinik fuer Radiologische Diagnostik, Christian-Albrechts-Universitaet, Kiel (Germany)

    1999-04-01

    Anterior knee pain is a frequently encountered orthopedic symptom and is often associated with patellofemoral malalignment, which may cause chondromalacia of the patella. The difficulty in determining the patellar position between 0 and 30 of knee flexion with a conventional axial radiographic examination is well known. The introduction of computed tomography (CT) and magnetic resonance (MR) imaging for the diagnosis of knee joint abnormalities has enabled assessment of the patellar position in this critical range. More recently, emphasis has been placed on dynamic visualization of patellar motion to detect an abnormal tracking pattern. The important influence of the quadriceps muscle on the patellar tracking pattern is well known and has been examined during active knee extension by the use of ultrafast CT, and motion-triggered and ultrafast MR imaging. This article provides an overview of the current status of kinematic CT and MR imaging in the diagnosis of patellofemoral alignment, its clinical implications, and future directions. (orig.) With 13 figs., 5 tabs., 47 refs.

  19. Improvement in printing technique of spiral CT three-dimensional colour image

    International Nuclear Information System (INIS)

    Wang Yicheng; Liu Feng; Zhang Ling

    2005-01-01

    Objective: To investigate the printing technique of spiral CT three-dimensional (3D) colour image. Methods: The 3D colour images of 136 patients were printed, with the equipment of Marconi spiral CT, personnel computer, colour ink printer, and network switchboard. Results: All printed images were satisfied by this method. Conclusion: This technique is economic, simple, and useful, and can meet the need for clinical diagnosis and operation. (authors)

  20. Recurrent postoperative sciatica: Evaluation with MR imaging and enhanced CT

    International Nuclear Information System (INIS)

    Duvauferrier, R.; Frocain, L.; Husson, J.L.

    1987-01-01

    The authors prospectively compared MR imaging performed with a surface coil and CT performed with iodinated contrast agent enhancement in 50 patients with recurrent postoperative sciatica. Surgical decision was an objective measure of accuracy. Surgical treatment was selected for 27 patients. All 27 underwent MR imaging. The 15 patients who underwent CT/surgical treatment were included in the 27 indications of SCMR. All predictions based on MR imaging findings were confirmed at surgery. There were 25 recurrent disk herniations, including five with scar tissue, and two disk herniations above or below the level of the diskectomy. In the 12 patients with scar tissue detected on CT there were seven recurrent disk hernitions, four recurrent disk herniations with scar tissue, and one disk herniation below the level of the diskectomy

  1. Imaging features of primary Sarcomas of the great vessels in CT, MRI and PET/CT: a single-center experience

    International Nuclear Information System (INIS)

    Falck, Christian von; Meyer, Bernhard; Fegbeutel, Christine; Länger, Florian; Bengel, Frank; Wacker, Frank; Rodt, Thomas

    2013-01-01

    To investigate the imaging features of primary sarcomas of the great vessels in CT, MRI and 18 F-FDG PET/CT. Thirteen patients with a primary sarcoma of the great vessels were retrospectively evaluated. All available images studies including F-18 FDG PET(/CT) (n = 4), MDCT (n = 12) and MRI (n = 6) were evaluated and indicative image features of this rare tumor entity were identified. The median interval between the first imaging study and the final diagnosis was 11 weeks (0–12 weeks). The most frequently observed imaging findings suggestive of malignant disease in patients with sarcomas of the pulmonary arteries were a large filling defect with vascular distension, unilaterality and a lack of improvement despite effective anticoagulation. In patients with aortic sarcomas we most frequently observed a pedunculated appearance and an atypical location of the filling defect. The F-18 FDG PET(/CT) examinations demonstrated an unequivocal hypermetabolism of the lesion in all cases (4/4). MRI proved lesion vascularization in 5/6 cases. Intravascular unilateral or atypically located filling defects of the great vessels with vascular distension, a pedunculated shape and lack of improvement despite effective anticoagulation are suspicious for primary sarcoma on MDCT or MRI. MR perfusion techniques can add information on the nature of the lesion but the findings may be subtle and equivocal. F-18 FDG PET/CT may have a potential role in these patients and may be considered as part of the imaging workup

  2. Deep learning methods for CT image-domain metal artifact reduction

    Science.gov (United States)

    Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Shan, Hongming; Claus, Bernhard; Jin, Yannan; De Man, Bruno; Wang, Ge

    2017-09-01

    Artifacts resulting from metal objects have been a persistent problem in CT images over the last four decades. A common approach to overcome their effects is to replace corrupt projection data with values synthesized from an interpolation scheme or by reprojection of a prior image. State-of-the-art correction methods, such as the interpolation- and normalization-based algorithm NMAR, often do not produce clinically satisfactory results. Residual image artifacts remain in challenging cases and even new artifacts can be introduced by the interpolation scheme. Metal artifacts continue to be a major impediment, particularly in radiation and proton therapy planning as well as orthopedic imaging. A new solution to the long-standing metal artifact reduction (MAR) problem is deep learning, which has been successfully applied to medical image processing and analysis tasks. In this study, we combine a convolutional neural network (CNN) with the state-of-the-art NMAR algorithm to reduce metal streaks in critical image regions. Training data was synthesized from CT simulation scans of a phantom derived from real patient images. The CNN is able to map metal-corrupted images to artifact-free monoenergetic images to achieve additional correction on top of NMAR for improved image quality. Our results indicate that deep learning is a novel tool to address CT reconstruction challenges, and may enable more accurate tumor volume estimation for radiation therapy planning.

  3. CT Imaging of Craniofacial Fibrous Dysplasia

    Directory of Open Access Journals (Sweden)

    Zerrin Unal Erzurumlu

    2015-01-01

    Full Text Available Fibrous dysplasia is a benign fibroosseous bone dysplasia that can involve single (monostotic or multiple (polyostotic bones. Monostotic form is more frequent in the jaws. It is termed as craniofacial fibrous dysplasia, when it involves, though rarely, adjacent craniofacial bones. A 16-year-old girl consulted for a painless swelling in the right posterior mandible for two years. Panoramic radiography revealed ground-glass ill-defined lesions in the three different regions of the maxilla and mandible. Axial CT scan (bone window showed multiple lesions involving skull base and facial bones. Despite lesions in the skull base, the patient had no abnormal neurological findings. The lesion was diagnosed as fibrous dysplasia based on radiological and histopathological examination. In this paper, CT findings and differential diagnosis of CFD are discussed. CT is a useful imaging technique for CFD cases.

  4. A MRI-CT prostate registration using sparse representation technique

    Science.gov (United States)

    Yang, Xiaofeng; Jani, Ashesh B.; Rossi, Peter J.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    Purpose: To develop a new MRI-CT prostate registration using patch-based deformation prediction framework to improve MRI-guided prostate radiotherapy by incorporating multiparametric MRI into planning CT images. Methods: The main contribution is to estimate the deformation between prostate MRI and CT images in a patch-wise fashion by using the sparse representation technique. We assume that two image patches should follow the same deformation if their patch-wise appearance patterns are similar. Specifically, there are two stages in our proposed framework, i.e., the training stage and the application stage. In the training stage, each prostate MR images are carefully registered to the corresponding CT images and all training MR and CT images are carefully registered to a selected CT template. Thus, we obtain the dense deformation field for each training MR and CT image. In the application stage, for registering a new subject MR image with the same subject CT image, we first select a small number of key points at the distinctive regions of this subject CT image. Then, for each key point in the subject CT image, we extract the image patch, centered at the underlying key point. Then, we adaptively construct the coupled dictionary for the underlying point where each atom in the dictionary consists of image patches and the respective deformations obtained from training pair-wise MRI-CT images. Next, the subject image patch can be sparsely represented by a linear combination of training image patches in the dictionary, where we apply the same sparse coefficients to the respective deformations in the dictionary to predict the deformation for the subject MR image patch. After we repeat the same procedure for each subject CT key point, we use B-splines to interpolate a dense deformation field, which is used as the initialization to allow the registration algorithm estimating the remaining small segment of deformations from MRI to CT image. Results: Our MRI-CT registration

  5. Benign versus malignant osseous lesions in spine: differentiation by means of bone SPECT/CT fused image

    International Nuclear Information System (INIS)

    Yao Zhiming; Qu Wanying

    2004-01-01

    This study compared the efficiency of SPECT-CT fused image with planar bone scan, bone SPECT and CT in differentiating malignant from benign lesions and detecting metastases to the spine. Methods. Total 144 patients with spinal lesions underwent planar bone scan (WB), single photon tomography (SPECT), CT and SPECT-CT fused image by a SPECT/CT system. The malignant or benign nature of lesions was proved by radiological Methods, histological findings, 6-24 month follow-up, or all of these. The diagnostic results was divided into 4 types, i.e., normal, benign, doubtful malignant and malignant. Results. There were 137 malignant and 252 benign lesions in 144 patients, respectively. The percentages of doubtful malignant diagnosed by WB, SPECT, CT and fused image are 22.6%, 5.1%, 9.5% and 0%, respectively, p < 0.01-0.001, except for the comparison between the percentages of SPECT and CT. Sensitivities in detection of malignant lesions by WB, SPECT, CT and fused image are 75.2%, 94.2%, 96.6% and 99.3%, respectively, P < 0.001, excepting for the comparisons between those of SPECT and CT, and between those of CT and fused image. The sensitivities m detection of benign lesions by WB, SPECT, CT and fused image are, 56.7%, 86.5%, 90.1% and 96.8%, respectively, P < 0.005 - 0.001, excepting for the comparison between those of SPECT and CT. The specificities in detection of maliganant lesions by WB, SPECT, CT and fused image are 70.6%, 88.9%, 97.2% and 97.6%, respectively, P < 0.001, excepting for the comparison between those of CT and fused image. Conclusion. Bone SPECT-CT fused image has highest diagnostic and differentiating diagnostic values in detection of spinal abnormalities over the planar bone scanning and SPECT. The CT by present SPECT/CT system can complement planar bone scanning and SPECT and is clinically valuable in detection of spinal abnormalities. (authors)

  6. Image Quality Improvement after Implementation of a CT Accreditation Program

    International Nuclear Information System (INIS)

    Kim, You Sung; Jung, Seung Eun; Choi, Byung Gil; Shin, Yu Ri; Hwang, Seong Su; Ku, Young Mi; Lim, Yeon Soo; Lee, Jae Mun

    2010-01-01

    The purpose of this study was to evaluate any improvement in the quality of abdominal CTs after the utilization of the nationally based accreditation program. Approval was obtained from the Institutional Review Board, and informed consent was waived. We retrospectively analyzed 1,011 outside abdominal CTs, from 2003 to 2007. We evaluated images using a fill-up sheet form of the national accreditation program, and subjectively by grading for the overall CT image quality. CT scans were divided into two categories according to time periods; before and after the implementation of the accreditation program. We compared CT scans between two periods according to parameters pertaining to the evaluation of images. We determined whether there was a correlation between the results of a subjective assessment of the image quality and the evaluation scores of the clinical image. The following parameters were significantly different after the implementation of the accreditation program: identifying data, display parameters, scan length, spatial and contrast resolution, window width and level, optimal contrast enhancement, slice thickness, and total score. The remaining parameters were not significantly different between scans obtained from the two different periods: scan parameters, film quality, and artifacts. After performing the CT accreditation program, the quality of the outside abdominal CTs show marked improvement, especially for the parameters related to the scanning protocol

  7. CT imaging, then and now: a 30-year review of the economics of computed tomography.

    Science.gov (United States)

    Stockburger, Wayne T

    2004-01-01

    The first computed tomography (CT) scanner in the US was installed in June 1973 at the Mayo Clinic in Rochester, MN. By the end of 1974, 44 similar systems had been installed at medical facilities around the country. Less than 4 years after the introduction of CT imaging in the US, at least 400 CT systems had been installed. The practice of pneumoencephalography was eliminated. The use of nuclear medicine brain scans significantly diminished. At the time, CT imaging was limited to head studies, but with the introduction of contrast agents and full body CT systems the changes in the practice of medicine became even more significant. CT imaging was hailed by the US medical community as the greatest advance in radiology since the discovery of x-rays. But the rapid spread of CT systems, their frequency of use, and the associated increase in healthcare costs combined to draw the attention of decision-makers within the federal and state governments, specifically to establish policies regarding the acquisition and use of diagnostic technologies. Initially, CT imaging was limited to neurological applications, but in the 30 years since its inception, capabilities and applications have been expanded as a result of the advancements in technology and software development. While neurological disorders are still a common reason for CT imaging, many other medical disciplines (oncology, emergency medicine, orthopedics, etc.) have found CT imaging to be the definitive tool for diagnostic information. As such, the clinical demand for CT imaging has steadily increased. Economically, the development of CT imaging has been one of success, even in the face of governmental action to restrict its acquisition and utilization by healthcare facilities. CTimaging has increased the cost of healthcare, but in turn has added unquantifiable value to the practice of medicine in the US.

  8. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    Science.gov (United States)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  9. The role of key image notes in CT imaging study interpretation.

    Science.gov (United States)

    Fan, Shu-Feng; Xu, Zhe; He, Hai-Qing; Ding, Jian-Rong; Teng, Gao-Jun

    2011-04-01

    The objective of the study was to investigate the clinical effects of CT key image notes (KIN) in the interpretation of a CT image study. All experiments were approved by the ethics committee of the local district. Six experienced radiologists were equally divided into routine reporting (RR) group and KIN reporting (KIN) group. CT scans of each 100 consecutive cases before and after using KIN technique were randomly selected, and the reports were made by group RR and KIN, respectively. All the reports were again reviewed 3 months later by both groups. All the results with using or not using KIN were interpreted and reinterpreted after 3 months by six clinicians, who were experienced in picture archiving and communication system (PACS) applications and were equally divided into the clinical routine report group and the clinical KIN report group, respectively. The results were statistically analyzed; the time used in making a report, the re-reading time 3 months later, and the consistency of imaging interpretation were determined and compared between groups. After using KIN technique, the time used in making a report was significantly increased (8.77 ± 5.27 vs. 10.53 ± 5.71 min, P < 0.05), the re-reading time was decreased (5.23 ± 2.54 vs. 4.99 ± 1.70 min, P < 0.05), the clinical interpretation and reinterpretation time after 3 months were decreased, and the consistency of the interpretation, reinterpretation between different doctors in different time was markedly improved (P < 0.01). CT report with KIN technique in PACS can significantly improve the consistency of the interpretation and efficiency in routine clinical work.

  10. CT and MR imaging of the knee joint in the ''plica syndrome''

    International Nuclear Information System (INIS)

    Passariello, R.; Trecco, F.; De Paulis, F.; Masciocchi, C.; Zobel, B.B.; Buoni, C.

    1986-01-01

    ''Synovial plicae'' are present in 60% of adult knees and can be the cause of a nonspecific clinical picture known as the plica syndrome. Direct high-resolution CT and MR imaging were performed on 30 patients with serious clinical signs of plica syndrome. All patients underwent anthroscopy. Twelve infrapetallar, eight suprapatellar, and 22 medical synovial plicae were shown (in 12 cases two different plicae were present). In seven cases there were other associated lesions: one case of patellar tendinitis, three medial meniscus lesions, one lateral diskoid meniscus, and two patellar subluxations. The diagnostic accuracy of both CT and MR imaging were compared with arthroscopy. CT always showed the plicae and defined their types, locations, and associations with other lesions. MR imaging was superior to CT in characterizing the morphology of the plica (related with symptomatology) and in showing the femoral and patellar chondromalacia secondary to the plica itself. MR imaging was equally accurate in revealing the tendinitis and the patellar subluxations, but CT was superior in displaying the meniscal lesions and the diskoid meniscus

  11. CT and MR imaging findings of xanthogranulomatous cholecystitis: correlation with pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Shuto, R.; Kiyosue, H.; Komatsu, E.; Matsumoto, S.; Mori, H. [Oita Medical Univ. (Japan). Dept. of Radiology; Kawano, K. [Oita Medical Univ. (Japan). Dept. of First Surgery; Kondo, Y.; Yokoyama, S. [Oita Medical Univ. (Japan). Dept. of First Pathology

    2004-03-01

    The aim of this study was to evaluate CT and MRI findings in xanthogranulomatous cholecystitis (XGC) and to correlate the imaging findings with various pathologic parameters. The study included 13 patients with histopathologically confirmed XGC. The CT (n=13) and MRI (n=5) obtained in these patients were evaluated retrospectively. On CT, low-attenuation areas in the wall of XGC correlated with foam and inflammatory cells or necrosis and/or abscess in XGC. Areas of iso- to slightly high signal intensity on T2-weighted images, showing slight enhancement at early phase and strong enhancement at last phase on dynamic study, corresponded with areas of abundant xanthogranulomas. Areas with very high signal intensity on T2-weighted images without enhancement corresponded with necrosis and/or abscesses. Luminal surface enhancement (LSE) of gallbladder wall represented preservation of the epithelial layer. The early-enhanced areas of the liver bed on dynamic CT and MR images corresponded with accumulation of inflammatory cells and abundant fibrosis. Our results indicate that CT and MRI findings correlate well with the histopathologic findings of XGC.

  12. Improving the quality of brain CT image from Wavelet filters

    International Nuclear Information System (INIS)

    Pita Machado, Reinaldo; Perez Diaz, Marlen; Bravo Pino, Rolando

    2012-01-01

    An algorithm to reduce Poisson noise is described using Wavelet filters. Five tomographic images of patients and a head anthropomorphic phantom were used. They were acquired with two different CT machines. Due to the original images contain the acquisition noise; some simulated free noise lesions were added to the images and after that the whole images were contaminated with noise. Contaminated images were filtered with 9 Wavelet filters at different decomposition levels and thresholds. Image quality of filtered and unfiltered images was graded using the Signal to Noise ratio, Normalized Mean Square Error and the Structural Similarity Index, as well as, by the subjective JAFROC methods with 5 observers. Some filters as Bior 3.7 and dB45 improved in a significant way head CT image quality (p<0.05) producing an increment in SNR without visible structural distortions

  13. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours

    International Nuclear Information System (INIS)

    Hillel, P.G.; Beek, E.J.R. van; Taylor, C.; Lorenz, E.; Bax, N.D.S.; Prakash, V.; Tindale, W.B.

    2006-01-01

    AIM: With a combined gamma camera/CT imaging system, CT images are obtained which are inherently registered to the emission images and can be used for the attenuation correction of SPECT and for mapping the functional information from these nuclear medicine tomograms onto anatomy. The aim of this study was to evaluate the clinical impact of SPECT/CT using such a system for somatostatin receptor imaging (SRI) of neuroendocrine tumours. MATERIALS AND METHODS: SPECT/CT imaging with 111 In-Pentetreotide was performed on 29 consecutive patients, the majority of whom had carcinoid disease. All SPECT images were first reported in isolation and then re-reported with the addition of the CT images for functional anatomical mapping (FAM). RESULTS: Fifteen of the 29 SPECT images were reported as abnormal, and in 11 of these abnormal images (73%) FAM was found to either establish a previously unknown location (7/11) or change the location (4/11) of at least one lesion. The revised location could be independently confirmed in 64% of these cases. Confirmation of location was not possible in the other patients due to either a lack of other relevant investigations, or the fact that lesions seen in the SPECT images were not apparent in the other investigations. FAM affected patient management in 64% of the cases where the additional anatomical information caused a change in the reported location of lesions. CONCLUSION: These results imply that FAM can improve the reporting accuracy for SPECT SRI with significant impact on patient management

  14. SU-C-207A-03: Development of Proton CT Imaging System Using Thick Scintillator and CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Uesaka, M [The University of Tokyo, Tokyo (Japan); Nishio, T; Tsuneda, M [Hiroshima University, Hiroshima (Japan); Matsushita, K [Rikkyo University, Tokyo (Japan); Kabuki, S [Tokai University, Isehara (Japan)

    2016-06-15

    Purpose: In the treatment planning of proton therapy, Water Equivalent Length (WEL), which is the parameter for the calculation of dose and the range of proton, is derived by X-ray CT (xCT) image and xCT-WEL conversion. However, about a few percent error in the accuracy of proton range calculation through this conversion has been reported. The purpose of this study is to construct a proton CT (pCT) imaging system for an evaluation of the error. Methods: The pCT imaging system was constructed with a thick scintillator and a cooled CCD camera, which acquires the two-dimensional image of integrated value of the scintillation light toward the beam direction. The pCT image is reconstructed by FBP method using a correction between the light intensity and residual range of proton beam. An experiment for the demonstration of this system was performed with 70-MeV proton beam provided by NIRS cyclotron. The pCT image of several objects reconstructed from the experimental data was evaluated quantitatively. Results: Three-dimensional pCT images of several objects were reconstructed experimentally. A finestructure of approximately 1 mm was clearly observed. The position resolution of pCT image was almost the same as that of xCT image. And the error of proton CT pixel value was up to 4%. The deterioration of image quality was caused mainly by the effect of multiple Coulomb scattering. Conclusion: We designed and constructed the pCT imaging system using a thick scintillator and a CCD camera. And the system was evaluated with the experiment by use of 70-MeV proton beam. Three-dimensional pCT images of several objects were acquired by the system. This work was supported by JST SENTAN Grant Number 13A1101 and JSPS KAKENHI Grant Number 15H04912.

  15. Transient small-bowel intussusception in children on CT

    International Nuclear Information System (INIS)

    Strouse, Peter J.; DiPietro, Michael A.; Saez, Fermin

    2003-01-01

    To determine the frequency and significance of small-bowel intussusception identified in children on CT. All abdomen CT reports between July 1995 and April 2002 were reviewed to identify patients with small-bowel intussusception. Intussusceptions were identified as an intraluminal mass with a characteristic layered appearance and/or continuity with adjacent mesenteric fat. Ileocolic intussusceptions and intussusceptions related to feeding tubes were excluded. Imaging studies and medical records were reviewed. Twenty-five pediatric patients (16 boys, 9 girls; mean age 11.2 years) were identified with small-bowel intussusception on CT. No patient had a persistent intussusception requiring surgery. Fourteen had limited immediate repeat CT images as part of the same examination, ten of which demonstrated resolution of the CT abnormality. Follow-up CT [n=13 (6 within 24 h)], ultrasound (n=3), small-bowel follow-through (n=4) and surgery (n=3) showed no intussusception. In four patients with persistent symptoms, underlying pathology was identified requiring treatment (giardiasis, 2; small-bowel inflammation/strictures, 1; abscess and partial small-bowel obstruction after perforated appendicitis, 1). In 21 other patients, direct correlation of symptoms to CT abnormality was absent or questionable, no treatment was required, and there was no clinical or imaging evidence of persistence or recurrence. Most small-bowel intussusceptions identified in children by CT are transient and of no clinical significance. (orig.)

  16. {sup 18}F-FDOPA PET/CT imaging of insulinoma revisited

    Energy Technology Data Exchange (ETDEWEB)

    Imperiale, Alessio; Namer, Izzie-Jacques [University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Strasbourg (France); University of Strasbourg/CNRS and FMTS, Faculty of Medicine, ICube - UMR 7357, Strasbourg (France); Sebag, Frederic [Aix-Marseille University, Department of Endocrine Surgery, La Timone University Hospital, Marseille (France); Vix, Michel [University of Strasbourg, Department of General, Digestive, and Endocrine Surgery, IRCAD-IHU, Strasbourg (France); Castinetti, Frederic [Aix-Marseille University, Department of Endocrinology, Diabetes and Metabolic Disorders, La Timone University Hospital, Marseille (France); Kessler, Laurence; Moreau, Francois [University of Strasbourg, Department of Diabetology, University Hospital of Strasbourg, Strasbourg (France); Bachellier, Philippe [University Hospitals of Strasbourg, Department of Visceral Surgery and Transplantation, Strasbourg (France); Guillet, Benjamin; Mundler, Olivier [Aix-Marseille University, Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Marseille (France); Taieb, David [Aix-Marseille University, Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Marseille (France); Aix-Marseille University, Biophysics and Nuclear Medecine, La Timone University Hospital, European Center for Research in Medical Imaging, Marseille (France)

    2014-11-01

    {sup 18}F-FDOPA PET imaging is increasingly used in the work-up of patients with neuroendocrine tumours. It has been shown to be of limited value in localizing pancreatic insulin-secreting tumours in adults with hyperinsulinaemic hypoglycaemia (HH) mainly due to {sup 18}F-FDOPA uptake by the whole pancreatic gland. The objective of this study was to review our experience with {sup 18}F-FDOPA PET/CT imaging with carbidopa (CD) premedication in patients with HH in comparison with PET/CT studies performed without CD premedication in an independent population. A retrospective study including 16 HH patients who were investigated between January 2011 and December 2013 using {sup 18}F-FDOPA PET/CT (17 examinations) in two academic endocrine tumour centres was conducted. All PET/CT examinations were performed under CD premedication (200 mg orally, 1 - 2 h prior to tracer injection). The PET/CT acquisition protocol included an early acquisition (5 min after {sup 18}F-FDOPA injection) centred over the upper abdomen and a delayed whole-body acquisition starting 20 - 30 min later. An independent series of eight consecutive patients with HH and investigated before 2011 were considered for comparison. All patients had a reference whole-body PET/CT scan performed about 1 h after {sup 18}F-FDOPA injection. In all cases, PET/CT was performed without CD premedication. In the study group, {sup 18}F-FDOPA PET/CT with CD premedication was positive in 8 out of 11 patients with histologically proven insulinoma (73 %). All {sup 18}F-FDOPA PET/CT-avid insulinomas were detected on early images and 5 of 11 (45 %) on delayed ones. The tumour/normal pancreas uptake ratio was not significantly different between early and delayed acquisitions. Considering all patients with HH, including those without imaging evidence of disease, the detection rate of the primary lesions using CD-assisted {sup 18}F-FDOPA PET/CT was 53 %, showing 9 insulinomas in 17 studies performed. In the control group (without

  17. Fractal Dimension Of CT Images Of Normal Parotid Glands

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Heo, Min Suk; You, Dong Soo

    1999-01-01

    This study was to investigate the age and sex differences of the fractal dimension of the normal parotid glands in the digitized CT images. The six groups, which were composed of 42 men and women from 20's, 40's and 60's and over were picked. Each group contained seven people of the same sex. The normal parotid CT images were digitized, and their fractal dimensions were calculated using Scion Image PC program. The mean of fractal dimensions in males was 1.7292 (+/-0.0588) and 1.6329 (+/-0.0425) in females. The mean of fractal dimensions in young males was 1.7617, 1.7328 in middle males, and 1.6933 in old males. The mean of fractal dimensions in young females was 1.6318, 1.6365 in middle females, and 1.6303 in old females. There was no statistical difference in fractal dimension between left and right parotid gland of the same subject (p>0.05). Fractal dimensions in male were decreased in older group (p 0.05). The fractal dimension of parotid glands in the digitized CT images will be useful to evaluate the age and sex differences.

  18. Vascular imaging with spiral CT. The way to CY angiography

    International Nuclear Information System (INIS)

    Prokop, M.; Schaefer, C.; Kalender, W.A.; Polacin, A.; Galanski, M.

    1993-01-01

    Spiral CT is a technique that allows for high-quality two-dimensional angiographic projections and 3D imaging of vascular structures. The authors present the technical and methodological principles of the technique, including scan parameters and parameters of contrast application for various clinical imaging tasks. They present their experience with over 150 clinical cases using spiral CT angiography. Suitable applications of this technique include cogenital anomalies, aneurysms, dissections, stenoses, thrombi and vascular tumor involvement. Given a problem-adapted examination technique, pathologic changes in vessels of as little as 2 mm can be visualized. In some cases with complex vascular anatomy, spiral CT angiography can be superior to arterial angiography. (orig.) [de

  19. Automated detection of acute haemorrhagic stroke in non-contrasted CT images

    International Nuclear Information System (INIS)

    Meetz, K.; Buelow, T.

    2007-01-01

    An efficient treatment of stroke patients implies a profound differential diagnosis that includes the detection of acute haematoma. The proposed approach provides an automated detection of acute haematoma, assisting the non-stroke expert in interpreting non-contrasted CT images. It consists of two steps: First, haematoma candidates are detected applying multilevel region growing approach based on a typical grey value characteristic. Second, true haematomas are differentiated from partial volume artefacts, relying on spatial features derived from distance-based histograms. This approach achieves a specificity of 77% and a sensitivity of 89.7% in detecting acute haematoma in non-contrasted CT images when applied to a set of 25 non-contrasted CT images. (orig.)

  20. Contribution of brain imaging techniques: CT-scan and magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pasco-Papon, A.; Gourdier, A.L.; Papon, X.; Caron-Poitreau, C.

    1996-01-01

    In light of the current lack of consensus on the benefit of carotid artery surgery to treat asymptomatic carotid artery stenosis, the decision to operate on a patient depends on individual evaluation and characterization of risk factors on carotid artery stenosis greater than 70 %. The assessment of such risk factors is based especially on non-invasive brain imaging techniques.Computed tomography scanning (CT-scan) and magnetic resonance imaging (MRI) enable two types of stenosis to be differentiated, i.e. stenoses which are symptomatic and those that are radiologically proven versus those which are clinically and radiologically silent. CT-scan investigation (with and without injection of iodinated contrast media) still continues to be a common routine test in 1996 whenever a surgical revascularization procedure is planned. The presence of deep lacunar infarcts ipsilateral to the carotid artery stenosis generally evidence the reality of stenosis and thus are useful to the surgeon in establishing whether surgery is indicated. In the absence a consensus on indications for surgical management, the surgeon could use the CT-scan and MRI as medicolegal records which could be compared to a subsequent postoperative CT-scan in case of ischemic complications associated with the surgical procedure. Furthermore, recent cerebral ischemia as evidenced by filling with contrast material, will call for postponing treatment by a few weeks. Although conventional MRI is more contributive than brain CT-scan in terms of sensibility and specificity, its indications are narrower because of its limited availability and cost constraints. But, development of angio-MRI and functional imaging promise that its future is assured and even perhaps as the sole diagnostic method if its indications are expanded to include preoperative angiographic evaluation of atheromatous lesions of supra-aortic trunks. (authors). 37 refs

  1. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    Science.gov (United States)

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CTCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  2. Quantitative assessment for pneumoconiosis severity diagnosis using 3D CT images

    Science.gov (United States)

    Hino, Koki; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Kato, Katsuya; Kishimoto, Takumi; Ashizawa, Kazuto

    2018-02-01

    Pneumoconiosis is an occupational respiratory illness that occur by inhaling dust to the lungs. 240,000 participants are screened for diagnosis of pneumoconiosis every year in Japan. Radiograph is used for staging of severity rate in pneumoconiosis worldwide. CT imaging is useful for the differentiation of requirements for industrial accident approval because it can detect small lesions in comparison with radiograph. In this paper, we extracted lung nodules from 3D pneumoconiosis CT images by two manual processes and automatic process, and created a database of pneumoconiosis CT images. We used the database to analyze, compare, and evaluate visual diagnostic results of radiographs and quantitative assessment (number, size and volume) of lung nodules. This method was applied to twenty pneumoconiosis patients. Initial results showed that the proposed method can assess severity rate in pneumoconiosis quantitatively. This study demonstrates effectiveness on diagnosis and prognosis of pneumoconiosis in CT screening.

  3. Evaluation of the robustness of the preprocessing technique improving reversible compressibility of CT images: Tested on various CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Chang Ho; Kim, Bohyoung; Gu, Bon Seung; Lee, Jong Min [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of); Kim, Kil Joong [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Department of Radiation Applied Life Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Lee, Kyoung Ho [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Institute of Radiation Medicine, Seoul National University Medical Research Center, and Clinical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744 (Korea, Republic of); Kim, Tae Ki [Medical Information Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)

    2013-10-15

    Purpose: To modify the preprocessing technique, which was previously proposed, improving compressibility of computed tomography (CT) images to cover the diversity of three dimensional configurations of different body parts and to evaluate the robustness of the technique in terms of segmentation correctness and increase in reversible compression ratio (CR) for various CT examinations.Methods: This study had institutional review board approval with waiver of informed patient consent. A preprocessing technique was previously proposed to improve the compressibility of CT images by replacing pixel values outside the body region with a constant value resulting in maximizing data redundancy. Since the technique was developed aiming at only chest CT images, the authors modified the segmentation method to cover the diversity of three dimensional configurations of different body parts. The modified version was evaluated as follows. In randomly selected 368 CT examinations (352 787 images), each image was preprocessed by using the modified preprocessing technique. Radiologists visually confirmed whether the segmented region covers the body region or not. The images with and without the preprocessing were reversibly compressed using Joint Photographic Experts Group (JPEG), JPEG2000 two-dimensional (2D), and JPEG2000 three-dimensional (3D) compressions. The percentage increase in CR per examination (CR{sub I}) was measured.Results: The rate of correct segmentation was 100.0% (95% CI: 99.9%, 100.0%) for all the examinations. The median of CR{sub I} were 26.1% (95% CI: 24.9%, 27.1%), 40.2% (38.5%, 41.1%), and 34.5% (32.7%, 36.2%) in JPEG, JPEG2000 2D, and JPEG2000 3D, respectively.Conclusions: In various CT examinations, the modified preprocessing technique can increase in the CR by 25% or more without concerning about degradation of diagnostic information.

  4. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  5. Clinical applications of SPECT/CT: New hybrid nuclear medicine imaging system

    International Nuclear Information System (INIS)

    2008-08-01

    Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop-shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries. It has been reported that moving from SPECT alone to SPECT/CT could change diagnoses in 30% of cases. Large numbers of people could therefore benefit from this shift all over the world. This report presents an overview of clinical applications of SPECT/CT and a relevant source of information for nuclear medicine physicians, radiologists and clinical practitioners. This information may also be useful for decision making when allocating resources dedicated to the health care system, a critical issue that is especially important for the development of nuclear medicine in developing countries. In this regard, the IAEA may be heavily involved in the promotion of programmes aimed at the IAEA's coordinated research projects and Technical Cooperation projects

  6. Clinical application of subtraction CT imaging for evaluation of pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Kato, Shiro; Asai, Toshihiko; Yatagai, Shigeo; Oonuma, Noboru; Ohno, Kunihiko; Nakamoto, Takaaki; Iizuka, Masahiko

    1991-01-01

    In this clinical study, one normal subject, one patient with primary interstitial pneumonia, one patient with segmental pneumonia due to Staphylococcus aureus, one patient with post-operative esophageal carcinoma, and two patients with mitral stenosis were studied. Dynamic CT scan images under continuous injection of low osmotic contrast medium were analyzed in series, in an attempt to evaluate vascular permeability quantitatively. The following results were obtained. Subtraction CT scan image 10 minutes after the start of contrast medium injection in two patients with pneumonia, showed a reduction of pulmonary vascular permeability following therapy. Subtraction CT scan image of the patient with post-operative esophageal carcinoma treated with 25 Gy radiation showed a discrepancy between pulmonary vascular permeability and other findings. In hemodynamically stable patients with mitral stenosis, subtraction CT images demonstrated that pulmonary vascular permeability was not affected by pulmonary congestion, irrespective of its severity. (author)

  7. Improved quality of image got through whole-body CT scanner

    International Nuclear Information System (INIS)

    Asahina, Kiyotaka

    1980-01-01

    The quality of brain images taken with a whole-body CT scanner has so far been generally inferior in quality to those got through a CT scanner exclusively used for brains. In order to improve the whole-body CT scanner so as to get better brain image, its detection system has been made multichannel; the capacity of its X-ray tube, increased; and its software, innovated. As a result, the spatial resolution has been improved from 5.51 p/cm to 9.01 p/cm, the contrast resolution has been improved from 3.2 mm% to 1.5 mm%, with the noise maintained at 0.5%. In clinical examination, the image quality has been improved equally well for brains, abdomens and lungs. Especially high appreciation is given to the diagnosis information got through this new scanner. (author)

  8. Image quality and dose optimisation for infant CT using a paediatric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Jack W.; Phelps, Andrew S.; Courtier, Jesse L.; Gould, Robert G.; MacKenzie, John D. [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2016-05-15

    To optimise image quality and reduce radiation exposure for infant body CT imaging. An image quality CT phantom was created to model the infant body habitus. Image noise, spatial resolution, low contrast detectability and tube current modulation (TCM) were measured after adjusting CT protocol parameters. Reconstruction method (FBP, hybrid iterative and model-based iterative), image quality reference parameter, helical pitch and beam collimation were systematically investigated for their influence on image quality and radiation output. Both spatial and low contrast resolution were significantly improved with model-based iterative reconstruction (p < 0.05). A change in the helical pitch from 0.969 to 1.375 resulted in a 23 % reduction in total TCM, while a change in collimation from 20 to 40 mm resulted in a 46 % TCM reduction. Image noise and radiation output were both unaffected by changes in collimation, while an increase in pitch enabled a dose length product reduction of ∝6 % at equivalent noise. An optimised protocol with ∝30 % dose reduction was identified using model-based iterative reconstruction. CT technology continues to evolve and require protocol redesign. This work provides an example of how an infant-specific phantom is essential for leveraging this technology to maintain image quality while reducing radiation exposure. (orig.)

  9. Diagnostic test accuracy study of 18F-sodium fluoride PET/CT, 99mTc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer

    DEFF Research Database (Denmark)

    Fonager, Randi F; Zacho, Helle D; Langkilde, Niels C

    2017-01-01

    The aim of this study was to prospectively compare planar, bone scan (BS) versus SPECT/CT and NaF PET/CT in detecting bone metastases in prostate cancer. Thirty-seven consecutive, newly diagnosed, prostate cancer patients with prostate specific antigen (PSA) levels ≥ 50 ng/mL and who were...... considered eligible for androgen-deprivation therapy (ADT) were included in this study. BS, SPECT/CT, and NaF PET/CT, were performed prior to treatment and were repeated after six months of ADT. Baseline images from each index test were independently read by two experienced readers. The reference standard......%, and 96%, respectively, and the negative predictive values were 60%, 77% and 75%, respectively. No statistically significant difference among the three imaging modalities was observed. All three imaging modalities showed high sensitivity and specificity. NaF PET/CT and SPECT/CT showed numerically improved...

  10. Functional Imaging: CT and MRI

    OpenAIRE

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advan...

  11. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  12. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  13. High precision measurement of the micro-imaging system to check repeatability of precision

    International Nuclear Information System (INIS)

    Cheng Lin; Song Li; Ma Chuntao; Luo Hongxin; Wang Jie

    2010-01-01

    The beamlines slits of Shanghai Synchrotron Radiation Facility (SSRF) are required to have a repeatability of better than 1 μm. Before the slits installation, the off-line and/or on-line repeatability measurements must be conducted. A machine vision measuring system based on high resolution CCD and adjustable high magnification lens was used in this regard. A multi-level filtering method was used to treat the imaging data. After image binarization, the imaging noises were depressed effectively by using of algebraic mean filtering, statistics median filtering,and the least square filtering. Using the subtracted image between the images before and after slit movement, an average displacement of slit blades could be obtained, and the repeatability of slit could be measured, with a resolution of 0.3 μm of the measurement system. The experimental results show that this measurement system meets the requirements for non-contact measurements to the repeatability of slits. (authors)

  14. 'Ready-access' CT imaging for an orthopaedic trauma clinic.

    LENUS (Irish Health Repository)

    Cawley, D

    2011-03-01

    \\'Ready-Access\\' to CT imaging facilities in Orthopaedic Trauma Clinics is not a standard facility. This facility has been available at the regional trauma unit, in Merlin Park Hospital, Galway for the past four years. We reviewed the use of this facility over a 2-year period when 100 patients had CT scans as part of their trauma clinic assessment. The rate of CT scan per clinic was 0.6. The mean waiting time for a CT scan was 30 minutes. 20 (20%) new fractures were confirmed, 33 (33%) fractures were out-ruled, 25 (25%) fractures demonstrated additional information and 8 (8%) had additional fractures. 20 (20%) patients were discharged and 12 (12%) patients were admitted as a result of the CT scan. It adds little time and cost to CT scanning lists.

  15. Image quality of cone beam CT on respiratory motion

    International Nuclear Information System (INIS)

    Zhang Ke; Li Minghui; Dai Jianrong; Wang Shi

    2011-01-01

    In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform, an image quality phantom, and a kV X-ray CBCT. A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction, separately or together, was simulated by considering different respiration amplitudes, periods and hysteresis. The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility, geometric accuracy, spatial resolution and uniformity of CT values. The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction, and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis. The CBCT image quality and its characteristics influenced by the respiration motion, and may be exploited in finding solutions. (authors)

  16. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Justin, E-mail: justin.solomon@duke.edu [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Biomedical Engineering and Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  17. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    International Nuclear Information System (INIS)

    Solomon, Justin; Samei, Ehsan

    2014-01-01

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  18. Frequency Selective Non-Linear Blending to Improve Image Quality in Liver CT.

    Science.gov (United States)

    Bongers, M N; Bier, G; Kloth, C; Schabel, C; Fritz, J; Nikolaou, K; Horger, M

    2016-12-01

    Purpose: To evaluate the effects of a new frequency selective non-linear blending (NLB) algorithm on the contrast resolution of liver CT with low intravascular concentration of iodine contrast. Materials and Methods: Our local ethics committee approved this retrospective study. The informed consent requirement was waived. CT exams of 25 patients (60 % female, mean age: 65 ± 16 years of age) with late phase CT scans of the liver were included as a model for poor intrahepatic vascular contrast enhancement. Optimal post-processing settings to enhance the contrast of hepatic vessels were determined. Outcome variables included signal-to-noise (SNR) and contrast-to-noise ratios (CNR) of hepatic vessels and SNR of liver parenchyma of standard and post-processed images. Image quality was quantified by two independent readers using Likert scales. Results: The post-processing settings for the visualization of hepatic vasculature were optimal at a center of 115HU, delta of 25HU, and slope of 5. Image noise was statistically indifferent between standard and post-processed images. The CNR between the hepatic vasculature (HV) and liver parenchyma could be significantly increased for liver veins (CNR Standard 1.62 ± 1.10, CNR NLB 3.6 ± 2.94, p = 0.0002) and portal veins (CNR Standard 1.31 ± 0.85, CNR NLB 2.42 ± 3.03, p = 0.046). The SNR of liver parenchyma was significantly higher on post-processed images (SNR NLB 11.26 ± 3.16, SNR Standard 8.85 ± 2.27, p = 0.008). The overall image quality and depiction of HV were significantly higher on post-processed images (NLB DHV : 4 [3 - 4.75], S tandardDHV : 2 [1.3 - 2.5], p = algorithm increases the contrast resolution of liver CT and can improve the visibility of the hepatic vasculature in the setting of a low contrast ratio between vessels and the parenchyma. Key Points: • Using the new frequency selective non-linear blending algorithm is feasible in contrast

  19. Accuracy verification of PET-CT image fusion and its utilization in target delineation of radiotherapy

    International Nuclear Information System (INIS)

    Wang Xuetao; Yu Jinming; Yang Guoren; Gong Heyi

    2005-01-01

    Objective: Evaluate the accuracy of co-registration of PET and CT (PET-CT) images on line with phantom, and utilize it on patients to provide clinical evidence for target delineation in radiotherapy. Methods: A phantom with markers and different volume cylinders was infused with various concentrations of 18 FDG, and scanned at 4 mm by PET and CT respectively. After having been transmitted into GE eNTEGRA and treatment planning system (TPS) workstations, the images were fused and reconstructed. The distance between the markers and the errors were monitored in PET and CT images respectively. The volume of cylinder in PET and CT images were measured and compared by certain pixel value proportion deduction method. The same procedure was performed on the pulmonary tumor image in ten patients. Results: eNTEGRA and TPS workstations had a good length linearity, but the fusion error of the latter was markedly greater than the former. Tumors in different volume filled by varying concentrations of 18 FDG required different pixel deduction proportion. The cylinder volume of PET and CT images were almost the same, so were the images of pulmonary tumor of ten patients. Conclusions: The accuracy of image co-registration of PET-CT on line may fulfill the clinical demand. Pixel value proportion deduction method can be used for target delineation on PET image. (authors)

  20. Evaluation of video-printer images as secondary CT images for clinical use

    International Nuclear Information System (INIS)

    Doi, K.; Rubin, J.

    1983-01-01

    Video-printer (VP) images of 24 abnormal views from a body CT scanner were made. Although the physical quality of printer images was poor, a group of radiologists and clinicians found that VP images are adequate to confirm the lesion described in the radiology report. The VP images can be used as secondary images, and they can be attached to a report as a part of the radiology service to increase communication between radiologists and clinicians and to prevent the loss of primary images from the radiology file

  1. Comparison of the image quality between volumetric and conventional high-resolution CT with 64-slice row CT

    International Nuclear Information System (INIS)

    Gao Yanli; Zhang Lei; Zhao Xia; Ma Min; Zhai Renyou

    2008-01-01

    Objective: To compare the image quality between volumetric high-resolution CT (VHRCT) and conventional high-resolution CT (CHRCT), and investigate the feasibility of VHRCT. Methods: Catphan 412 phantom was scanned with protocols of CHRCT and VHRCT on a set of GE Lightspeed VCT. The spatial-resolution (LP/cm), noise (standard deviation in an ROI) and radiation close (CTDI) were recorded for each CT scan. Difference of noise between CHRCT and VHRCT were evaluated by paired t test. In clinical study, 32 patients were scanned with VHRCT and CHRCT protocols. The image quality of CHRCT and VHRCT was rated and compared. The quality difference between CHRCT and VHRCT was assessed by Wilcoxon paired signed rank sum test. Results: In phantom study, the in-plane spatial-resolution of both VHRCT and CHRCT was 11 LP/cm for axial images and 12 LP/cm for coronal reformatted images. The noise of VHRCT and CHRCT was (69.18±2.77)HU and (54.62±2.12) HU respectively (t=-15.929, P 0.05). The quality assessment scores of VHRCT coronal reformatted images and CHRCT coronal reformatted images were 3.05 and 1.88 respectively with significant difference (Z= -5.088, P<0.01). Conclusion: The image quality of VHRCT cross-sectional image is similar to that of CHRCT. Multiplanar images with high resolution of VHRCT are recommended. The radiation dose of VHRCT remains to be optimized. (authors)

  2. The interpolation method based on endpoint coordinate for CT three-dimensional image

    International Nuclear Information System (INIS)

    Suto, Yasuzo; Ueno, Shigeru.

    1997-01-01

    Image interpolation is frequently used to improve slice resolution to reach spatial resolution. Improved quality of reconstructed three-dimensional images can be attained with this technique as a result. Linear interpolation is a well-known and widely used method. The distance-image method, which is a non-linear interpolation technique, is also used to convert CT value images to distance images. This paper describes a newly developed method that makes use of end-point coordinates: CT-value images are initially converted to binary images by thresholding them and then sequences of pixels with 1-value are arranged in vertical or horizontal directions. A sequence of pixels with 1-value is defined as a line segment which has starting and end points. For each pair of adjacent line segments, another line segment was composed by spatial interpolation of the start and end points. Binary slice images are constructed from the composed line segments. Three-dimensional images were reconstructed from clinical X-ray CT images, using three different interpolation methods and their quality and processing speed were evaluated and compared. (author)

  3. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  4. Comparison of CT numbers between cone-beam CT and multi-detector CT

    International Nuclear Information System (INIS)

    Kim, Dong Soo; Han, Won Jeong; Kim, Eun Kyung

    2010-01-01

    To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, ρ(g/cm 3 ), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were ρ=0.001 H+1.07 with R2 value of 0.999 for Somatom Emotion, ρ=0.002 H+1.09 with R2 value of 0.991 for Alphard VEGA, ρ=0.001 H+1.43 with R2 value of 0.980 for i-CAT and ρ=0.001 H+1.30 with R2 value of 0.975 for Implagraphy. CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

  5. Comparison of CT numbers between cone-beam CT and multi-detector CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Soo; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-06-15

    To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, {rho}(g/cm{sup 3}), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were {rho}=0.001 H+1.07 with R2 value of 0.999 for Somatom Emotion, {rho}=0.002 H+1.09 with R2 value of 0.991 for Alphard VEGA, {rho}=0.001 H+1.43 with R2 value of 0.980 for i-CAT and {rho}=0.001 H+1.30 with R2 value of 0.975 for Implagraphy. CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

  6. Low-dose CT image reconstruction using gain intervention-based dictionary learning

    Science.gov (United States)

    Pathak, Yadunath; Arya, K. V.; Tiwari, Shailendra

    2018-05-01

    Computed tomography (CT) approach is extensively utilized in clinical diagnoses. However, X-ray residue in human body may introduce somatic damage such as cancer. Owing to radiation risk, research has focused on the radiation exposure distributed to patients through CT investigations. Therefore, low-dose CT has become a significant research area. Many researchers have proposed different low-dose CT reconstruction techniques. But, these techniques suffer from various issues such as over smoothing, artifacts, noise, etc. Therefore, in this paper, we have proposed a novel integrated low-dose CT reconstruction technique. The proposed technique utilizes global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive dictionary-based statistical iterative reconstruction (ADSIR)-based reconstruction techniques. In case the dictionary (D) is predetermined, then GDSIR can be used and if D is adaptively defined then ADSIR is appropriate choice. The gain intervention-based filter is also used as a post-processing technique for removing the artifacts from low-dose CT reconstructed images. Experiments have been done by considering the proposed and other low-dose CT reconstruction techniques on well-known benchmark CT images. Extensive experiments have shown that the proposed technique outperforms the available approaches.

  7. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  8. A comparative study of surface- and volume-based techniques for the automatic registration between CT and SPECT brain images

    International Nuclear Information System (INIS)

    Kagadis, George C.; Delibasis, Konstantinos K.; Matsopoulos, George K.; Mouravliansky, Nikolaos A.; Asvestas, Pantelis A.; Nikiforidis, George C.

    2002-01-01

    Image registration of multimodality images is an essential task in numerous applications in three-dimensional medical image processing. Medical diagnosis can benefit from the complementary information in different modality images. Surface-based registration techniques, while still widely used, were succeeded by volume-based registration algorithms that appear to be theoretically advantageous in terms of reliability and accuracy. Several applications of such algorithms for the registration of CT-MRI, CT-PET, MRI-PET, and SPECT-MRI images have emerged in the literature, using local optimization techniques for the matching of images. Our purpose in this work is the development of automatic techniques for the registration of real CT and SPECT images, based on either surface- or volume-based algorithms. Optimization is achieved using genetic algorithms that are known for their robustness. The two techniques are compared against a well-established method, the Iterative Closest Point--ICP. The correlation coefficient was employed as an independent measure of spatial match, to produce unbiased results. The repeated measures ANOVA indicates the significant impact of the choice of registration method on the magnitude of the correlation (F=4.968, p=0.0396). The volume-based method achieves an average correlation coefficient value of 0.454 with a standard deviation of 0.0395, as opposed to an average of 0.380 with a standard deviation of 0.0603 achieved by the surface-based method and an average of 0.396 with a standard deviation equal to 0.0353 achieved by ICP. The volume-based technique performs significantly better compared to both ICP (p<0.05, Neuman Keuls test) and the surface-based technique (p<0.05, Neuman-Keuls test). Surface-based registration and ICP do not differ significantly in performance

  9. Atlas of PET/CT. A quick guide to image interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Fanti, Stefano [Bologna Univ. (Italy). PET; Farsad, Mohsen [Central Hospital of Bolzano (Italy). Nuclear Medicine; Mansi, Luigi [Second Univ. of Naples (Italy). Nuclear Medicine

    2009-07-01

    This user-friendly atlas, featuring about 500 images, should be a quick guide to interpreting PET/CT images with FDG in oncology. It also illustrates how to recognize normal, para-physiological, and benign pathological uptakes in a case-based practical manner. The text, which includes most relevant technical and pathophysiological premises, covers the main clinical applications and clearly articulates learning points and pitfalls. This atlas aims to become a standard text for nuclear medicine physicians and radiologists, residents and technicians whose work involves PET/CT imaging. This book is also suitable for both undergraduate and postgraduate courses. (orig.)

  10. Studies on diagnosis of lung emphysema by CT image using experimental models and clinical cases

    International Nuclear Information System (INIS)

    Nakatani, Seiki

    1998-01-01

    Since the detailed report between the degree of functional disorder in lung emphysema and the analysis of CT image is quite unknown, the present study was attempted to produce the experimental model of lung emphysema with various stages by the administration of papain to the focal lobe in canine lung. Using this model or clinical lung emphysema, the relationship between the degree of destruction of alveolar walls, clinical pulmonary functions and CT images was investigated. CT scan was performed at the level of 50% vital capacity in both experimental models and clinical subjects by using spirometric gating CT. CT density histogram was obtained from CT image which was produced by using the developed software for this purpose. Densitometric parameters, such as mean CT value, %LAA, the peak in the histogram and 5% tile were selected from CT image. Papain solution of 5 mg/kg body weight was cumulatively administered to the left lower lobe in canine lung, resulting in the destruction of lung alveolar walls in parallel to the increasing dosage of papain. There was a significant correlation between not only the increasing dosage of papain, but also %FEV 1.0 and CT densitometric parameters, indicating that the histological changes of alveolar walls and the lung function in lung emphysema could be estimated by analysis of CT image. These experimental and clinical studies suggest that the analysis of CT image can reflect the pathophysiological changes in the lung and be useful for precise clinical diagnosis of lung emphysema. (author)

  11. Application of SPECT/CT imaging in the diagnosis of benign diseases

    International Nuclear Information System (INIS)

    Garcheva, M.; Demirev, A.

    2014-01-01

    The application of recently introduced hybrid nuclear medicine methods gains importance in a variety of clinical fields, mainly because of the unique combination between functional and anatomical data provided by those methods and their capability for a precise localization of pathological processes. Single photon emission computed tomography, combined with computed tomography (SPECT/CT) is one of those methods. Its role in nuclear cardiology is important, because it provides quick attenuation correction and calculates the calcium score. In nuclear endocrinology SPECT/CT participates in thyroid and parathyroid examinations, especially in cases, where there is a need for localization of ectopic parathyroid or thyroid tissue. In nuclear pulmonology, one of the best ways to attribute certain changes seen on the SPECT, to the zone of interest on the CT, is to study the fused images obtained from the SPECT/ CT scanner. In cases of suspected infection and inflammation, fused images are indispensable for accurate localization of the involved tissue (structure) and for discrimination between normal/abnormal uptake. Careful reading of the CT component (even low-dose) is related (in 10% of cases) to clinically important incidental findings: effusions, tumors, metastases or lymph node pathology. SPECT/CT increases the specificity of the examinations and improves significantly the localization of pathological processes. It provides additional information, shortens the diagnostic algorithm and influences the extent of surgical procedures. In many hybrid examinations the preferred CT component is a low-dose one, without considerable radiation exposure. The opportunity to combine nuclear medicine techniques and contrast CT images, aiming at better diagnosis needs further development. SPECT/CT provides important additional information and more accurate diagnostics in patients with benign diseases. (authors) Key words: SPECT/CT. BENIGN DISEASES

  12. Multi-detector CT imaging in the postoperative orthopedic patient with metal hardware

    International Nuclear Information System (INIS)

    Vande Berg, Bruno; Malghem, Jacques; Maldague, Baudouin; Lecouvet, Frederic

    2006-01-01

    Multi-detector CT imaging (MDCT) becomes routine imaging modality in the assessment of the postoperative orthopedic patients with metallic instrumentation that degrades image quality at MR imaging. This article reviews the physical basis and CT appearance of such metal-related artifacts. It also addresses the clinical value of MDCT in postoperative orthopedic patients with emphasis on fracture healing, spinal fusion or arthrodesis, and joint replacement. MDCT imaging shows limitations in the assessment of the bone marrow cavity and of the soft tissues for which MR imaging remains the imaging modality of choice despite metal-related anatomic distortions and signal alteration

  13. CT and MR imaging after middle ear surgery

    International Nuclear Information System (INIS)

    Koesling, Sabrina; Bootz, F.

    2001-01-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue

  14. CT and MR imaging after middle ear surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, Sabrina E-mail: sabrina.koesling@medizin.uni-halle.de; Bootz, F

    2001-11-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue.

  15. Electronic noise in CT detectors: Impact on image noise and artifacts.

    Science.gov (United States)

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  16. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement.

    Science.gov (United States)

    Beik, Jaber; Jafariyan, Maryam; Montazerabadi, Alireza; Ghadimi-Daresajini, Ali; Tarighi, Parastoo; Mahmoudabadi, Alireza; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2017-12-12

    X-ray computed tomography (CT) requires an optimal compromise between image quality and patient dose. While high image quality is an important requirement in CT, the radiation dose must be kept minimal to protect the patients from ionizing radiation-associated risks. The use of probes based on gold nanoparticles (AuNPs) along with active targeting ligands for specific recognition of cancer cells may be one of the balanced solutions. Herein, we report the effect of folic acid (FA)-modified AuNP as a targeted nanoprobe on the contrast enhancement of CT images as well as its potential for patient dose reduction. For this purpose, nasopharyngeal KB cancer cells overexpressing FA receptors were incubated with AuNPs with and without FA modification and imaged in a CT scanner with the following X-ray tube parameters: peak tube voltage of 130 KVp, and tube current-time products of 60, 90, 120, 160 and 250 mAs. Moreover, in order to estimate the radiation dose to which the patient was exposed during a head CT protocol, the CT dose index (CTDI) value was measured by an X-ray electrometer by changing the tube current-time product. Raising the tube current-time product from 60 to 250 mAs significantly increased the absorbed dose from 18 mGy to 75 mGy. This increase was not associated with a significant enhancement of the image quality of the KB cells. However, an obvious increase in image brightness and CT signal intensity (quantified by Hounsfield units [HU]) were observed in cells exposed to nanoparticles without any increase in the mAs product or radiation dose. Under the same Au concentration, KB cells exposed to FA-modified AuNPs had significantly higher HU and brighter CT images than those of the cells exposed to AuNPs without FA modification. In conclusion, FA-modified AuNP can be considered as a targeted CT nanoprobe with the potential for dose reduction by keeping the required mAs product as low as possible while enhancing image contrast.

  17. Static and dynamic CT imaging of the cervical spine in patients with rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Soederman, Tomas; Shalabi, Adel; Sundin, Anders [Uppsala University Hospital, Department of Radiology, Uppsala (Sweden); Olerud, Claes; Alavi, Kamran [Uppsala University Hospital, Department of Orthopedic Surgery, Uppsala (Sweden)

    2014-09-18

    To compare CR with CT (static and dynamic) to evaluate upper spine instability and to determine if CT in flexion adds value compared to MR imaging in neutral position to assess compression of the subarachnoid space and of the spinal cord. Twenty-one consecutive patients with atlantoaxial subluxation due to rheumatoid arthritis planned for atlantoaxial fusion were included. CT and MRI were performed with the neck in the neutral position and CT also in flexion. CR in neutral position and flexion were obtained in all patients except for one subject who underwent examination in flexion and extension. CR and CT measurements of atlantoaxial subluxation correlated but were larger by CR than CT in flexion, however, the degree of vertical dislocation was similar with both techniques irrespective of the position of the neck. Cervical motion was larger at CR than at CT. The spinal cord compression was significantly worse at CT obtained in the flexed position as compared to MR imaging in the neutral position. Functional CR remains the primary imaging method but CT in the flexed position might be useful in the preoperative imaging work-up, as subarachnoid space involvement may be an indicator for the development of neurologic dysfunction. (orig.)

  18. Roentgen and X-ray computerized tomographic (CT) imaging of cysts in the maxilla

    International Nuclear Information System (INIS)

    Rahmatulla, M

    1999-01-01

    Two cysts in the maxilla were subjected to routine roentgen imaging followed by CT scanning. Roentgen investigation included periapical, occlusal, and panoramic views. CT imaging included axial and coronal scans. While roentgen views were adequate in establishing the diagnosis of the cystic lesions, CT scan was useful in understanding the precise antero-posterior expansion and depth of the lesion. Interpretation of CT scan of cystic jaw lesions without con-ventional radiographs can be misleading. Hence, the CT procedure may be used only as supplement to the routine radiographic investigations particularly in cystic lesions of the jaws. (author)

  19. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    Science.gov (United States)

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-07-08

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons

  20. Imaging of jaw with dental CT software program: Normal Anatomy

    International Nuclear Information System (INIS)

    Kim, Myong Gon; Seo, Kwang Hee; Jung, Hak Young; Sung, Nak Kwan; Chung, Duk Soo; Kim, Ok Dong; Lee, Young Hwan

    1994-01-01

    Dental CT software program can provide reformatted cross-sectional and panoramic images that cannot be obtained with conventional axial and direct coronal CT scan. The purpose of this study is to describe the method of the technique and to identify the precise anatomy of jaw. We evaluated 13 mandibles and 7 maxillae of 15 subjects without bony disease who were being considered for endosseous dental implants. Reformatted images obtained by the use of bone algorithm performed on GE HiSpeed Advantage CT scanner were retrospectively reviewed for detailed anatomy of jaw. Anatomy related to neurovascular bundle(mandibular foramen, inferior alveolar canal, mental foramen, canal for incisive artery, nutrient canal, lingual foramen and mylohyoid groove), muscular insertion(mylohyoid line, superior and inferior genial tubercle and digastric fossa) and other anatomy(submandibular fossa, sublingual fossa, contour of alveolar process, oblique line, retromolar fossa, temporal crest and retromolar triangle) were well delineated in mandible. In maxilla, anatomy related to neurovascular bundle(greater palatine foramen and groove, nasopalatine canal and incisive foramen) and other anatomy(alveolar process, maxillary sinus and nasal fossa) were also well delineated. Reformatted images using dental CT software program provided excellent delineation of the jaw anatomy. Therefore, dental CT software program can play an important role in the preoperative assessment of mandible and maxilla for dental implants and other surgical conditions

  1. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy.

    Directory of Open Access Journals (Sweden)

    Chae Young Lee

    Full Text Available The purposes of this study were to optimize a proton computed tomography system (pCT for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy.

  2. CT imaging spectrum of infiltrative renal diseases.

    Science.gov (United States)

    Ballard, David H; De Alba, Luis; Migliaro, Matias; Previgliano, Carlos H; Sangster, Guillermo P

    2017-11-01

    Most renal lesions replace the renal parenchyma as a focal space-occupying mass with borders distinguishing the mass from normal parenchyma. However, some renal lesions exhibit interstitial infiltration-a process that permeates the renal parenchyma by using the normal renal architecture for growth. These infiltrative lesions frequently show nonspecific patterns that lead to little or no contour deformity and have ill-defined borders on CT, making detection and diagnosis challenging. The purpose of this pictorial essay is to describe the CT imaging findings of various conditions that may manifest as infiltrative renal lesions.

  3. Mobile CT. Technical aspects of prehospital stroke imaging before intravenous thrombolysis

    International Nuclear Information System (INIS)

    Gierhake, Daniel; Villringer, K.; Fiebach, J.B.; Weber, J.E.; Audebert, H.J.; Charite - Universitaetsmedizin Berlin; Ebinger, M.; Charite - Universitaetsmedizin Berlin

    2013-01-01

    To reduce the time from symptom onset to treatment with tissue plasminogen activator (tPA) in ischemic stroke, an ambulance was equipped with a CT scanner. We analyzed process and image quality of CT scanning during the pilot study regarding image quality and safety issues. The pilot study of a stroke emergency mobile unit (STEMO) ran over a period of 12 weeks on 5 weekdays from 7a. m. to 6:30 p. m. A teleradiological service for the justifying indication and reporting was established. The radiographer was responsible for the performance of the CT scan on the ambulance. 64 cranial CT scans and 1 intracranial CT angiography were performed. We compared times from ambulance alarm to treatment decision (time of last brain scan) with a cohort of 50 consecutive tPA treatments before implementation of STEMO. 62 (95 %) of the 65 scans performed had sufficient quality for reading. Technical quality was not optimal in 45 cases (69 %) mainly caused by suboptimal positioning of patient or eye lense protection. Motion artefacts were observed in 8 exams (12 %). No safety issues occurred for team or patients. 23 patients were treated with thrombolysis. Time from alarm to last CT scan was 18 minutes shorter than in the tPA cohort before STEMO implementation. A teleradiological support for primary stroke imaging by CT on-site is feasible, quality-wise of diagnostic value and has not raised safety issues. (orig.)

  4. Coronary imaging techniques with emphasis on CT and MRI

    International Nuclear Information System (INIS)

    Lederlin, Mathieu; Latrabe, Valerie; Corneloup, Olivier; Cochet, Hubert; Montaudon, Michel; Laurent, Francois; Thambo, Jean-Benoit

    2011-01-01

    Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques. (orig.)

  5. Image processing based detection of lung cancer on CT scan images

    Science.gov (United States)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  6. Helical 3D-CT images of soft tissue tumors in the hand

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Kazuhiro; Kikuchi, Hiraku; Tan, Akihiro; Hamanishi, Chiaki; Tanaka, Seisuke [Kinki Univ., Osaka-Sayama (Japan). School of Medicine

    2000-02-01

    X-ray, ultrasonograph CT, MRI and angiography are used to detect tumoral lesions. Recently, helical CT has been revealed to be a useful method for the diagnosis and preoperative evaluation of soft tissue tumors, by which high quality and accurate three dimensional (3D) images can be obtained quickly. We analyzed the preoperative 3D-CT images of soft tissue tumors in the hands of 11 cases (hemangioma in 6 cases, giant cell tumor, lipoma, angiofibroma, chondrosarcoma and malignant fibro-histiocytoma in one case each). Enhanced 3D-CT clearly visualized hemangiomas and solid tumors from the surrounding tissues. The tumors could easily be observed from any direction and color-coded according to the CT number. Helical 3D-CT was thus confirmed to be useful for the diagnosis and preoperative planning by indicating the details of tumor expansion into surrounding tissues. (author)

  7. Present and future of the hybrid imaging method SPECT/CT

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2013-01-01

    Full text: Introduction: Based on the data in the literature and on our 4 year clinical experience applied for the first time in our country hybrid imaging - single photon emission tomography combined with computed tomography (SPECT / CT) it is clear that to obtain comprehensive information about the function and structure of the studied organ; the time for the diagnosis and thus the start of adequate treatment become shorter. The resulting scintigraphic image is with better quality due to CT correction of ‘diffusion’ gamma radiation, which leads to greater diagnostic accuracy. What you will learn: complex imaging method is used mainly in the field of endocrinology, cardiology, oncology, orthopedics, pulmology, neurology, and neurosurgery. It can be prove a given disease by visualization and localization of the organ lesions and determine the stage of the tumor process, to plan the type of subsequent treatment, to follow the effects of the therapy, and to predict the effect of an interventional or miniinvasive surgical procedure. Discussion: The result of the application of the hybrid imaging method is a change in the interpretation of more than half of the studied patients and in the treatment in more than a quarter of them. Conclusion: The clinical indications for SPECT/CT, and evidence of increased diagnostic accuracy compared with self- administered scintigraphic or CT methods are continuous expanded

  8. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    Science.gov (United States)

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  9. The value of spiral CT thin imaging reconstruction in the diagnosis of obstructive jaundice

    International Nuclear Information System (INIS)

    Huang Zhi; Liu Zhang; Yang Chaoxiang; Lin Chengye; Zhang Li; Li Yuxiang; Ma Yunyan; Xiao Haisong; Lu Zhifeng; Wang Bo; Zhou Yunhong

    2009-01-01

    Objective: To approach the value of spiral CT thin imaging reconstruction in the diagnosis of obstructive jaundice in order to improve the correctness of the diagnosis. Methods: Analysis the cases' clinical manifestation and the CT images, who were diagnosed as obstructive jaundice by operation. All of cases had high-resolution computed tomograyhy scan. The thickness and the interval is 5mm, reconstructed the thickness and the interval to 1 mm and 1.5 mm, then send the images to the workstation and MRR were processed. Analysis the date with the pathology. Results: Spiral CT thin imaging reconstruction have 98% and 93% in the accuracy of location and characterization in the obstruction. Conclusion: The spiral CT thin imaging reconstruction is a good method to improve the accuracy of location and characterization in the obstructive jaundice. (authors)

  10. Repeated CT studies of a patient with herpes simplex encephalitis during his entire clinical course

    International Nuclear Information System (INIS)

    Shiraishi, Masahiro; Fukui, Keiji; Takeda, Sadanori; Sadamoto, Kazuhiko; Kimura, Hideki; Sakaki, Saburo.

    1985-01-01

    We encountered a patient with herpes simplex encephalitis whose cerebral lesions were studied by repeated CT scannings during his entire clinical course. The purpose of this paper is to report the earliest lesions of the brain as revealed by CT scans. A 63-year-old man was admitted to our clinic complaining of headache, nausea, fever, and disorientation. On admission, a physical examination showed a high fever, while a neurological examination revealed a stiff neck, a positive Kernig's sign, and disorientation. Laboratory examinations revealed a pleocytosis of the cerebrospinal fluid. Electroencephalograms showed the so-called ''periodic sharp-and-slow-waves complex''. The complement fixation titer for herpes simplex virus was x32 in the serum and x128 in the cerebrospinal fluid, suggesting the diagnosis of herpes simplex encephalitis. We treated him with adenine arabinoside and gamma-globulin, but the patient did not recover; rather, he died of pneumonia and gastrointestinal bleeding three months later. Plain CT scans taken on the 12th day after the onset revealed a low-density area with signs of a slight mass in the region from the right island of Reil to the right uncus. Contrast-enhanced CT scans revealed an irregular enhancement in the low-density area. CT scans taken on the 19th day after the onset showed an extensive low-density area with a streak-like enhancement in the right temporal lobe, which is in aggreement with the findings reported by others as characteristic CT findings for herpes simplex encephalitis. In order to make an early diagnosis of a patient, we should pay attention to a low-density area with an irregular contrast enhancement in the region from the island of Reil to the uncus on a CT scan. (author)

  11. Cone-beam volume CT mammographic imaging: feasibility study

    Science.gov (United States)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  12. In Vivo Respiratory-Gated Micro-CT Imaging in Small-Animal Oncology Models

    Directory of Open Access Journals (Sweden)

    Dawn Cavanaugh

    2004-01-01

    Full Text Available Micro-computed tomography (micro-CT is becoming an accepted research tool for the noninvasive examination of laboratory animals such as mice and rats, but to date, in vivo scanning has largely been limited to the evaluation of skeletal tissues. We use a commercially available micro-CT device to perform respiratory gated in vivo acquisitions suitable for thoracic imaging. The instrument is described, along with the scan protocol and animal preparation techniques. Preliminary results confirm that lung tumors as small as 1 mm in diameter are visible in vivo with these methods. Radiation dose was evaluated using several approaches, and was found to be approximately 0.15 Gy for this respiratory-gated micro-CT imaging protocol. The combination of high-resolution CT imaging and respiratory-gated acquisitions appears well-suited to serial in vivo scanning.

  13. TH-CD-202-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Evaluation of the Use of Direct Electron Density CT Images in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, T; Sun, B; Li, H; Mutic, S [Washington University School of Medicine, St. Louis, MO (United States); Mistry, N [Siemens Healthcare, Cary, NC (United States); Raupach, R; Huenemohr, N; Ritter [Siemens Healthcare GmbH, Forchheim, Bavaria (Germany)

    2016-06-15

    Purpose: The current standard for calculation of photon and electron dose requires conversion of Hounsfield Units (HU) to Electron Density (ED) by applying a calibration curve specifically constructed for the corresponding CT tube voltage. This practice limits the use of the CT scanner to a single tube voltage and hinders the freedom in the selection of optimal tube voltage for better image quality. The objective of this study is to report a prototype CT reconstruction algorithm that provides direct ED images from the raw CT data independently of tube voltages used during acquisition. Methods: A tissue substitute phantom was scanned for Stoichiometric CT calibrations at tube voltages of 70kV, 80kV, 100kV, 120kV and 140kV respectively. HU images and direct ED images were acquired sequentially on a thoracic anthropomorphic phantom at the same tube voltages. Electron densities converted from the HU images were compared to ED obtained from the direct ED images. A 7-field treatment plan was made on all HU and ED images. Gamma analysis was performed to demonstrate quantitatively dosimetric change from the two schemes in acquiring ED. Results: The average deviation of EDs obtained from the direct ED images was −1.5%±2.1% from the EDs from HU images with the corresponding CT calibration curves applied. Gamma analysis on dose calculated on the direct ED images and the HU images acquired at the same tube voltage indicated negligible difference with lowest passing rate at 99.9%. Conclusion: Direct ED images require no CT calibration while demonstrate equivalent dosimetry compared to that obtained from standard HU images. The ability of acquiring direct ED images simplifies the current practice at a safer level by eliminating CT calibration and HU conversion from commissioning and treatment planning respectively. Furthermore, it unlocks a wider range of tube voltages in CT scanner for better imaging quality while maintaining similar dosimetric accuracy.

  14. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    International Nuclear Information System (INIS)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa; McCullough, William P.; Mecca, Patricia

    2016-01-01

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash "r"e"g"i"s"t"e"r"e"d CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI_v_o_l) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality

  15. Reconstruction of MRI/CT compatible ring and tandem applicators in CT or MRI images used for treatment planning in brachytherapy

    International Nuclear Information System (INIS)

    Surendran, N.; Kim, Hayeon; Beriwal, Sushil; Saiful Huq, M.

    2008-01-01

    Brachytherapy (BT) plays a crucial role in the management of invasive cervix cancer from stage I to IV. Intracavitary techniques are based on afterloading devices, with different types of applicators. CT and/or MRI compatible applicators allow a sectional image based approach with a better assessment of gross tumour volume (GTV) and definition and delineation of target volume (CTV) compared to traditional approaches. To evaluate reconstruction of MRI/CT compatible ring and tandem applicators in 3D CT or MRI images used for treatment planning in Brachytherapy

  16. Image Fusion of CT and MR with Sparse Representation in NSST Domain

    Directory of Open Access Journals (Sweden)

    Chenhui Qiu

    2017-01-01

    Full Text Available Multimodal image fusion techniques can integrate the information from different medical images to get an informative image that is more suitable for joint diagnosis, preoperative planning, intraoperative guidance, and interventional treatment. Fusing images of CT and different MR modalities are studied in this paper. Firstly, the CT and MR images are both transformed to nonsubsampled shearlet transform (NSST domain. So the low-frequency components and high-frequency components are obtained. Then the high-frequency components are merged using the absolute-maximum rule, while the low-frequency components are merged by a sparse representation- (SR- based approach. And the dynamic group sparsity recovery (DGSR algorithm is proposed to improve the performance of the SR-based approach. Finally, the fused image is obtained by performing the inverse NSST on the merged components. The proposed fusion method is tested on a number of clinical CT and MR images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation.

  17. Comparison of radiation dose estimates, image noise, and scan duration in pediatric body imaging for volumetric and helical modes on 320-detector CT and helical mode on 64-detector CT

    International Nuclear Information System (INIS)

    Johnston, Jennifer H.; Podberesky, Daniel J.; Larson, David B.; Alsip, Christopher; Yoshizumi, Terry T.; Angel, Erin; Barelli, Alessandra; Toncheva, Greta; Egelhoff, John C.; Anderson-Evans, Colin; Nguyen, Giao B.; Frush, Donald P.; Salisbury, Shelia R.

    2013-01-01

    Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting. (orig.)

  18. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2016-01-01

    -correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs...

  19. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  20. Clinical application of three-dimensional imaging with multislice CT for laparoscopic colorectal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, Mitsuru; Okuda, Jyunji; Yoshikawa, Syushi [Osaka Medical Coll., Takatsuki (Japan)] (and others)

    2003-03-01

    Laparoscopic colorectal surgery, while minimally invasive, is a complicated technique. Therefore, prior to this surgery, it is important to determine the anatomical information of colorectal cancer. Fifty-eight cases of patients with a confirmed diagnosis of colon cancer [caecal (n=4), ascending colon (n=6), transverse colon (n=7), descending colon (n=2), sigmoid colon (n=22), and rectal (n=17) cancer] were evaluated using multislice CT before laparoscopic surgery. CT examination was performed in an air-filled colorectum by colon fiberscopy. Contrast-enhanced images on multislice CT were obtained at arterial and venous phases. All images were reviewed on a workstation, and three-dimensional (3D) images of vessels, colorectum, cancer, and swollen lymph nodes were reconstructed by volume rendering and fused (integrated 3D imaging). We evaluated the usefulness of integrated 3D imaging with multislice CT for laparoscopic colorectal surgery. Integrated 3D imaging demonstrated clearly the distribution of arteries feeding the colorectal cancer and the anatomical location of colorectal cancer and arterial and venous systems. Moreover, measurement of the distance between the aortic bifurcation and the origin of the inferior mesenteric artery and that between the base of the inferior mesenteric artery and the origin of the left colic artery on integrated 3D imaging contributed to safe, prompt ligation of the vessels and excision of lymph nodes. Integrated 3D imaging with multislice CT was useful for simulation of laparoscopic colorectal surgery. (author)

  1. Clinical application of three-dimensional imaging with multislice CT for laparoscopic colorectal surgery

    International Nuclear Information System (INIS)

    Matsuki, Mitsuru; Okuda, Jyunji; Yoshikawa, Syushi

    2003-01-01

    Laparoscopic colorectal surgery, while minimally invasive, is a complicated technique. Therefore, prior to this surgery, it is important to determine the anatomical information of colorectal cancer. Fifty-eight cases of patients with a confirmed diagnosis of colon cancer [caecal (n=4), ascending colon (n=6), transverse colon (n=7), descending colon (n=2), sigmoid colon (n=22), and rectal (n=17) cancer] were evaluated using multislice CT before laparoscopic surgery. CT examination was performed in an air-filled colorectum by colon fiberscopy. Contrast-enhanced images on multislice CT were obtained at arterial and venous phases. All images were reviewed on a workstation, and three-dimensional (3D) images of vessels, colorectum, cancer, and swollen lymph nodes were reconstructed by volume rendering and fused (integrated 3D imaging). We evaluated the usefulness of integrated 3D imaging with multislice CT for laparoscopic colorectal surgery. Integrated 3D imaging demonstrated clearly the distribution of arteries feeding the colorectal cancer and the anatomical location of colorectal cancer and arterial and venous systems. Moreover, measurement of the distance between the aortic bifurcation and the origin of the inferior mesenteric artery and that between the base of the inferior mesenteric artery and the origin of the left colic artery on integrated 3D imaging contributed to safe, prompt ligation of the vessels and excision of lymph nodes. Integrated 3D imaging with multislice CT was useful for simulation of laparoscopic colorectal surgery. (author)

  2. SPECT/CT imaging in bone scintigraphy of a case of clavicular osteoma

    International Nuclear Information System (INIS)

    Yamamoto, Yuka; Nishiyama, Yoshihiro

    2014-01-01

    Osteoma is a benign bone-forming tumor that usually arises in the craniofacial bones and rarely in the long bones. Clavicular involvement is extremely rare. We report a 51-year-old woman with osteoma of the left clavicle. Radiograph of the left shoulder showed a well-defined lobulated blastic mass in the proximal and mid-portion of the left clavicle. Bone scintigraphy was performed 4 hours after an intravenous injection of Tc-99m hydroxymethylene diphosphonate (HMDP). Whole-body image showed a focus of intensely increased uptake in the clavicle. Single photon emission computed tomography / computed tomography (SPECT/CT) images were also acquired and clearly showed intense uptake at the tumor site. Integrated SPECT/CT imaging supplies both functional and anatomic information about bone the SPECT imaging improves sensitivity compared with planar imaging, the CT imaging provides precise localization of the abnormal uptake, and information on the shape and structure of the abnormalities improves the specificity of the diagnosis

  3. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    Science.gov (United States)

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  4. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

    Science.gov (United States)

    Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z

    2018-05-01

    Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  5. CT-MR image data fusion for computer assisted navigated neurosurgery of temporal bone tumors

    International Nuclear Information System (INIS)

    Nemec, Stefan Franz; Donat, Markus Alexander; Mehrain, Sheida; Friedrich, Klaus; Krestan, Christian; Matula, Christian; Imhof, Herwig; Czerny, Christian

    2007-01-01

    Purpose: To demonstrate the value of multi detector computed tomography (MDCT) and magnetic resonance imaging (MRI) in the preoperative work up of temporal bone tumors and to present, especially, CT and MR image fusion for surgical planning and performance in computer assisted navigated neurosurgery of temporal bone tumors. Materials and methods: Fifteen patients with temporal bone tumors underwent MDCT and MRI. MDCT was performed in high-resolution bone window level setting in axial plane. The reconstructed MDCT slice thickness was 0.8 mm. MRI was performed in axial and coronal plane with T2-weighted fast spin-echo (FSE) sequences, un-enhanced and contrast-enhanced T1-weighted spin-echo (SE) sequences, and coronal T1-weighted SE sequences with fat suppression and with 3D T1-weighted gradient-echo (GE) contrast-enhanced sequences in axial plane. The 3D T1-weighted GE sequence had a slice thickness of 1 mm. Image data sets of CT and 3D T1-weighted GE sequences were merged utilizing a workstation to create CT-MR fusion images. MDCT and MR images were separately used to depict and characterize lesions. The fusion images were utilized for interventional planning and intraoperative image guidance. The intraoperative accuracy of the navigation unit was measured, defined as the deviation between the same landmark in the navigation image and the patient. Results: Tumorous lesions of bone and soft tissue were well delineated and characterized by CT and MR images. The images played a crucial role in the differentiation of benign and malignant pathologies, which consisted of 13 benign and 2 malignant tumors. The CT-MR fusion images supported the surgeon in preoperative planning and improved surgical performance. The mean intraoperative accuracy of the navigation system was 1.25 mm. Conclusion: CT and MRI are essential in the preoperative work up of temporal bone tumors. CT-MR image data fusion presents an accurate tool for planning the correct surgical procedure and is a

  6. CT imaging of hepatic veno-occlusive disease (an analysis 14 cases)

    International Nuclear Information System (INIS)

    Zhang Guohua; Kong Azhao; Fang Junwei; Chen Yuejing; Zheng Weiliang; Dong Danjun; Zhang Shizheng

    2006-01-01

    Objective: To probe imaging characteristics of the hepatic veno-occlusive disease (VOD) based on clinical features and abdomen CT findings. Methods: Fourteen patients including 6 male and 8 female aged from 41 to 73 years were enrolled in this study. They all had previous trauma history and notoginseng was given as herbal remedy. Dynamic enhanced CT and color Dopplor ultrasound examinations were routinely used. Two of them received venous angiography and four cases were pathologically proved as VOD after CT guided needle biopsy. Results: Hepatic swelling and ascites were found on plain CT scan. Diffuse patchy areas without enhancement indicative of poorly hepatic perfusion were found. Hepatic veins were compressed and became thin, and inferior vena cava was flat and narrow without distal dilation or collateral circulation. No obstruction of hepatic veins and inferior vena cava was found on ultrasound and venography. Conclusion: Dynamic enhanced CT is highly valuable for early assessing VOD and imaging features of venous hepatic congestion found on CT was strongly suggestive of VOD if there's previous history of treatment of gynura segetum. (authors)

  7. Comparison of CT and positron emission tomography/CT coregistered images in planning radical radiotherapy in patients with non-small-cell lung cancer

    International Nuclear Information System (INIS)

    MacManus, M.; D'Costa, I.; Ball, D.; Everitt, S.; Andrews, J.; Ackerly, T.; Binns, D.; Lau, E.; Hicks, R.J.; Weih, L.

    2007-01-01

    Imaging with F-18 fluorodeoxyglucose positron emission tomography (PET) significantly improves lung cancer staging, especially when PET and CT information are combined. We describe a method for obtaining CT and PET images at separate acquisitions, which allows coregistration and incorporation of PET information into the radiotherapy (RT) planning process for non-small-cell lung cancer. The influence of PET information on RT planning was analysed for 10 consecutive patients. Computed tomography and PET images were acquired with the patient in an immobilization device, in the treatment position. Using specially written software, PET and CT data were coregistered using fiducial markers and imported into our RT planning system (Cadplan version 6). Treatment plans were prepared with and without access to PET/CT coregistered images and then compared. PET influenced the treatment plan in all cases. In three cases, geographic misses (gross tumour outside planning target volume) would have occurred had PET not been used. In a further three cases, better planning target volume marginal coverage was achieved with PET. In four patients, three with atelectasis, there were significant reductions in V20 (percentage of the total lung volume receiving 20 Gy or more). Use of coregistered PET/CT images significantly altered treatment plans in a majority of cases. This method could be used in routine practice at centres without access to a combined PET/CT scanner

  8. Registration of 3D FMT and CT Images of Mouse via Affine Transformation using Sequential Monte Carlo

    International Nuclear Information System (INIS)

    Xia Zheng; Zhou Xiaobo; Wong, Stephen T. C.; Sun Youxian

    2007-01-01

    It is difficult to directly co-register the 3D FMT (Fluorescence Molecular Tomography) image of a small tumor in a mouse whose maximal diameter is only a few mm with a larger CT image of the entire animal that spans about ten cm. This paper proposes a new method to register 2D flat and 3D CT image first to facilitate the registration between small 3D FMT images and large CT images. A novel algorithm based on SMC (Sequential Monte Carlo) incorporated with least square operation for the registration between the 2D flat and 3D CT images is introduced and validated with simulated images and real images of mice. The visualization of the preliminary alignment of the 3D FMT and CT image through 2D registration shows promising results

  9. An experimental study on the noise properties of x-ray CT sinogram data in Radon space

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jing; Liang Zhengrong; Eremina, Daria; Wang Su; Manzione, James [Department of Radiology, State University of New York, Stony Brook, NY 11794 (United States); Lu Hongbing [Department of Biomedical Engineering, Fourth Military Medical University, Xi' An, Shaanxi 710032 (China); Zhang Guangxiang; Chen, John [Department of Preventive Medicine, State University of New York, Stony Brook, NY 11794 (United States)], E-mail: jerome.liang@sunysb.edu

    2008-06-21

    Computed tomography (CT) has been well established as a diagnostic tool through hardware optimization and sophisticated data calibration. For screening purposes, the associated x-ray exposure risk must be minimized. An effective way to minimize the risk is to deliver fewer x-rays to the subject or lower the mAs parameter in data acquisition. This will increase the data noise. This work aims to study the noise property of the calibrated or preprocessed sinogram data in Radon space as the mAs level decreases. An anthropomorphic torso phantom was scanned repeatedly by a commercial CT imager at five different mAs levels from 100 down to 17 (the lowest value provided by the scanner). The preprocessed sinogram datasets were extracted from the CT scanner to a laboratory computer for noise analysis. The repeated measurements at each mAs level were used to test the normality of the repeatedly measured samples for each data channel using the Shapiro-Wilk statistical test merit. We further studied the probability distribution of the repeated measures. Most importantly, we validated a theoretical relationship between the sample mean and variance at each channel. It is our intention that the statistical test and particularly the relationship between the first and second statistical moments will improve low-dose CT image reconstruction for screening applications.

  10. Metallic artifacts caused by dental metal prostheses on PET images. A PET/CT phantom study using different PET/CT scanners

    International Nuclear Information System (INIS)

    Shimamoto, Hiroaki; Kakimoto, Naoya; Murakami, Shumei; Furukawa, Souhei; Fujino, Kouichi; Hamada, Seiki; Shimosegawa, Eku; Hatazawa, Jun

    2009-01-01

    The objective of this study was to investigate the effects of computed tomography (CT) artifacts caused by dental metal prostheses on positron emission tomography (PET) images. A dental arch cast was fixed in a cylindrical water-bath phantom. A spherical phantom positioned in the vicinity of the dental arch cast was used to simulate a tumor. To simulate the tumor imaging, the ratio of the 18 F-fluoro-deoxy-glucose radioactivity concentration of the spherical phantom to that of the water-bath phantom was set at 2.5. A dental bridge composed of a gold-silver-palladium alloy on the right mandibular side was prepared. A spherical phantom was set in the white artifact area on the CT images (site A), in a slightly remote area from the white artifact (site B), and in a black artifact area (site C). A PET/CT scan was performed with and without the metal bridge at each simulated tumor site, and the artifactual influence was evaluated on the axial attenuation-corrected (AC) PET images, in which the simulated tumor produced the strongest accumulation. Measurements were performed using three types of PET/CT scanners (scanners 1 and 2 with CT-based attenuation correction, and 3 with Cesium-137 ( 137 Cs)-based attenuation correction). The influence of the metal bridge was evaluated using the change rate of the SUVmean with and without the metal bridge. At site A, an overestimation was shown (scanner 1: +5.0% and scanner 2: +2.5%), while scanner 3 showed an underestimation of -31.8%. At site B, an overestimation was shown (scanner 1: +2.1% and scanner 2: +2.0%), while scanner 3 showed an underestimation of -2.6%. However, at site C, an underestimation was shown (scanner 1: -25.0%, scanner 2: -32.4%, and scanner 3: -8.4%). When CT is used for attenuation correction in patients with dental metal prostheses, an underestimation of radioactivity of accumulated tracer is anticipated in the dark streak artifact area on the CT images. In this study, the dark streak artifacts of the CT

  11. Measurement repeatability of tibial tuberosity-trochlear groove offset distance in red fox (Vulpes vulpes) cadavers

    NARCIS (Netherlands)

    Miles, J.E.; Jensen, B.R.; Kirpensteijn, J.; Svalastoga, E.L.; Eriksen, T.

    2013-01-01

    Abstract OBJECTIVE: To describe CT image reconstruction criteria for measurement of the tibial tuberosity-trochlear groove (TT-TG) offset distance, evaluate intra- and inter-reconstruction repeatability, and identify key sources of error in the measurement technique, as determined in vulpine hind

  12. Intrathoracic kidney. Diagnostic value of CT scan imaging

    International Nuclear Information System (INIS)

    Baillet, A.M.; Escure, M.N.

    1988-01-01

    Two cases are reported of an ectopic right kidney that was partially intrathoracic in position. Diagnosis was simple from CT scan imaging appearances, the examination being performed to investigate an intrathoracic mass. Images showed a tissular mass within a fatty zone in sections without contrast and the typical appearance of the kidney on sections with contrast [fr

  13. Weight preserving image registration for monitoring disease progression in lung CT.

    Science.gov (United States)

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  14. CT perfusion imaging in the management of posterior reversible encephalopathy

    International Nuclear Information System (INIS)

    Casey, S.O.; McKinney, A.; Teksam, M.; Liu, H.; Truwit, C.L.

    2004-01-01

    A 13-year-old girl with a renal transplant presented with hypertension and seizures. CT and MRI demonstrated typical bilateral parietal, occipital and posterior frontal cortical and subcortical edema, thought to represent posterior reversible encephalopathy syndrome. The cause was presumed to be hypertension. Antihypertensive therapy was started, lowering of the blood pressure in the range of 110-120 mmHg systolic. However, stable xenon (Xe) CT perfusion imaging revealed ischemia within the left parietal occipital region. The antihypertensive was adjusted which increased both the systolic and diastolic blood pressure by 31 mm Hg. The patient was re-imaged with Xe CT and was found to have resolution of the ischemic changes within the left parietal occipital region. In this report, we present a case in which stable Xe CT was used to monitor the degree of cerebral perfusion and guide titration of antihypertensive therapy. Such brain perfusion monitoring may have helped to prevent infarction of our patient. (orig.)

  15. Variance analysis of x-ray CT sinograms in the presence of electronic noise background.

    Science.gov (United States)

    Ma, Jianhua; Liang, Zhengrong; Fan, Yi; Liu, Yan; Huang, Jing; Chen, Wufan; Lu, Hongbing

    2012-07-01

    Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments of low-dose CT data in the presence of electronic noise background. The authors first studied the statistical moment properties of detected signals in CT transmission domain, where the noise of detected signals is considered as quanta fluctuation upon electronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the mean-variance relationship of the detected signals in CT sinogram domain, wherein the image formation becomes a linear operation between the sinogram data and the unknown image, rather than a nonlinear operation in the CT transmission domain. To get insight into the derived new formula by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT scanner at five different mAs levels from 100 down to 17. The results demonstrated that the electronic noise background is significant when low-mAs (or low-dose) scan is performed. The influence of the electronic noise background should be considered in low-dose CT imaging.

  16. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J; Nishikawa, R [University of Pittsburgh, Pittsburgh, PA (United States); Reiser, I [The University of Chicago, Chicago, IL (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benign or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification

  17. Algorithm of pulmonary emphysema extraction using thoracic 3-D CT images

    Science.gov (United States)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2008-03-01

    Emphysema patients have the tendency to increase due to aging and smoking. Emphysematous disease destroys alveolus and to repair is impossible, thus early detection is essential. CT value of lung tissue decreases due to the destruction of lung structure. This CT value becomes lower than the normal lung- low density absorption region or referred to as Low Attenuation Area (LAA). So far, the conventional way of extracting LAA by simple thresholding has been proposed. However, the CT value of CT image fluctuates due to the measurement conditions, with various bias components such as inspiration, expiration and congestion. It is therefore necessary to consider these bias components in the extraction of LAA. We removed these bias components and we proposed LAA extraction algorithm. This algorithm has been applied to the phantom image. Then, by using the low dose CT(normal: 30 cases, obstructive lung disease: 26 cases), we extracted early stage LAA and quantitatively analyzed lung lobes using lung structure.

  18. CT and MR imaging of gynecological emergency disease

    International Nuclear Information System (INIS)

    Fujii, Shinya; Kinoshita, Toshibumi; Tahara, Takatoshi; Matsusue, Eiji; Ogawa, Toshihide

    2004-01-01

    We describe the CT and MRI findings of gynecologic emergency diseases: pelvic inflammatory disease, ectopic pregnancy, ovarian hemorrhage, ovarian torsion, rupture of ovarian tumor, eclampsia, and HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome. Diagnostic keys to these diseases are presented in this review. CT and MRI play a complementary role to sonography in accurately diagnosing these diseases. In situations that require an exact, immediate diagnosis, radiologists should be familiar with the key imaging findings. (author)

  19. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  20. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    International Nuclear Information System (INIS)

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-01-01

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  1. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    International Nuclear Information System (INIS)

    Cui, Y; Bowsher, J; Yan, S; Cai, J; Das, S; Yin, F

    2014-01-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with 18 F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medical Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy

  2. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Y; Bowsher, J; Yan, S; Cai, J; Das, S; Yin, F [Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medical Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.

  3. CT and MR imaging of primary tumors of the masticator space

    International Nuclear Information System (INIS)

    Aspestrand, F.; Boysen, M.

    1992-01-01

    A retrospective study of CT and MR examinations in 14 patients with benign and malignant tumors originating in the masticator space is presented. At presentation, 12 patients revealed tumor extension to adjacent regions and spaces. Perineutral tumor spread along trigeminal nerve branches to the cavernous sinus and orbits was combined with facial pain, and/or numbness, ophthalmoplegia, and exophthalmus. Detailed analysis of tumor growth and spread, enhancement and signal features at CT and MR imaging indicated that tumor histology was, with a few exceptions, nonspecific. More extensive growth and bone destruction was noted only among malignant tumors. MR imaging was found superior to CT in delineating tumor extension due to better soft tissue contrast resolution and multiplanar imaging. Posttreatment examinations were available in 11 patients and showed long-standing regional edema of the adjacent temporal lobe and masticator muscles in 4 out of 5 patients without clinical evidence of tumor. In 6 patients, CT and MR features were found almost unchanged with only small size differences after various forms of treatment. (orig.)

  4. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  5. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    International Nuclear Information System (INIS)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-01

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with 99m Tc-MDP, DMSA, and 18 F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, 99m Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined 99 mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and 18 F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug

  6. An image acquisition and registration strategy for the fusion of hyperpolarized helium-3 MRI and x-ray CT images of the lung

    Science.gov (United States)

    Ireland, Rob H.; Woodhouse, Neil; Hoggard, Nigel; Swinscoe, James A.; Foran, Bernadette H.; Hatton, Matthew Q.; Wild, Jim M.

    2008-11-01

    The purpose of this ethics committee approved prospective study was to evaluate an image acquisition and registration protocol for hyperpolarized helium-3 magnetic resonance imaging (3He-MRI) and x-ray computed tomography. Nine patients with non-small cell lung cancer (NSCLC) gave written informed consent to undergo a free-breathing CT, an inspiration breath-hold CT and a 3D ventilation 3He-MRI in CT position using an elliptical birdcage radiofrequency (RF) body coil. 3He-MRI to CT image fusion was performed using a rigid registration algorithm which was assessed by two observers using anatomical landmarks and a percentage volume overlap coefficient. Registration of 3He-MRI to breath-hold CT was more accurate than to free-breathing CT; overlap 82.9 ± 4.2% versus 59.8 ± 9.0% (p < 0.001) and mean landmark error 0.75 ± 0.24 cm versus 1.25 ± 0.60 cm (p = 0.002). Image registration is significantly improved by using an imaging protocol that enables both 3He-MRI and CT to be acquired with similar breath holds and body position through the use of a birdcage 3He-MRI body RF coil and an inspiration breath-hold CT. Fusion of 3He-MRI to CT may be useful for the assessment of patients with lung diseases.

  7. Fast parallel algorithm for CT image reconstruction.

    Science.gov (United States)

    Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2012-01-01

    In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).

  8. WE-AB-202-06: Correlating Lung CT HU with Transformation-Based and Xe-CT Derived Ventilation

    International Nuclear Information System (INIS)

    Du, K; Patton, T; Bayouth, J; Reinhardt, J; Christensen, G

    2016-01-01

    Purpose: Regional lung ventilation is useful to reduce radiation-induced function damage during lung cancer radiation therapy. Recently a new direct HU (Hounsfield unit)-based method was proposed to estimate the ventilation potential without image registration. The purpose of this study is to examine if there is a functional dependence between HU values and transformation-based or Xe-CT derived ventilation. Methods: 4DCT images acquired from 13 patients prior to radiation therapy and 4 mechanically ventilated sheep subjects which also have associated Xe-CT images were used for this analysis. Transformation-based ventilation was computed using Jacobian determinant of the transformation field between peak-exhale and peak-inhale 4DCT images. Both transformation and Xe-CT derived ventilation was computed for each HU bin. Color scatter plot and cumulative histogram were used to compare and validate the direct HU-based method. Results: There was little change of the center and shape of the HU histograms between free breathing CT and 4DCT average, with or without smoothing, and between the repeated 4DCT scans. HU of −750 and −630 were found to have the greatest transformation-based ventilation for human and sheep subjects, respectively. Maximum Xe-CT derived ventilation was found to locate at HU of −600 in sheep subjects. The curve between Xe-CT ventilation and HU was noisy for tissue above HU −400, possibly due to less intensity change of Xe gas during wash-out and wash-in phases. Conclusion: Both transformation-based and Xe-CT ventilation demonstrated that lung tissues with HU values in the range of (-750, −600) HU have the maximum ventilation potential. The correlation between HU and ventilation suggests that HU might be used to help guide the ventilation calculation and make it more robust to noise and image registration errors. Research support from NIH grants CA166703 and CA166119 and a gift from Roger Koch.

  9. WE-AB-202-06: Correlating Lung CT HU with Transformation-Based and Xe-CT Derived Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Du, K; Patton, T; Bayouth, J [University of Wisconsin, Madison, WI (United States); Reinhardt, J; Christensen, G [The University of Iowa, Iowa City, IA (United States)

    2016-06-15

    Purpose: Regional lung ventilation is useful to reduce radiation-induced function damage during lung cancer radiation therapy. Recently a new direct HU (Hounsfield unit)-based method was proposed to estimate the ventilation potential without image registration. The purpose of this study is to examine if there is a functional dependence between HU values and transformation-based or Xe-CT derived ventilation. Methods: 4DCT images acquired from 13 patients prior to radiation therapy and 4 mechanically ventilated sheep subjects which also have associated Xe-CT images were used for this analysis. Transformation-based ventilation was computed using Jacobian determinant of the transformation field between peak-exhale and peak-inhale 4DCT images. Both transformation and Xe-CT derived ventilation was computed for each HU bin. Color scatter plot and cumulative histogram were used to compare and validate the direct HU-based method. Results: There was little change of the center and shape of the HU histograms between free breathing CT and 4DCT average, with or without smoothing, and between the repeated 4DCT scans. HU of −750 and −630 were found to have the greatest transformation-based ventilation for human and sheep subjects, respectively. Maximum Xe-CT derived ventilation was found to locate at HU of −600 in sheep subjects. The curve between Xe-CT ventilation and HU was noisy for tissue above HU −400, possibly due to less intensity change of Xe gas during wash-out and wash-in phases. Conclusion: Both transformation-based and Xe-CT ventilation demonstrated that lung tissues with HU values in the range of (-750, −600) HU have the maximum ventilation potential. The correlation between HU and ventilation suggests that HU might be used to help guide the ventilation calculation and make it more robust to noise and image registration errors. Research support from NIH grants CA166703 and CA166119 and a gift from Roger Koch.

  10. Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images

    Science.gov (United States)

    Yang, Juan; Zhang, You; Yin, Yong

    2015-01-01

    Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI

  11. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  12. The usefulness of CT and MR imaging in the preoperative evaluation of neoplasms of the craniofacial region

    International Nuclear Information System (INIS)

    Grzesiakowska, U.; Tacikowska, M.; Krajewski, R.; Starosciak, S.; Smorczewska, M.; Wiszniewska-Rawlik, D.

    2005-01-01

    The aim of the study was to determine the usefulness of CT and MR imaging in the preoperative evaluation of neoplasms of the craniofacial region. All the patients were treated surgically. CT and/or MR imaging was done in every patient for preoperative evaluation of soft tissue infiltration, destruction of bone structures, and metastasis of lymph nodes of the head and neck. The results of these imagings were compared with surgical evaluations and microscopic examination of postoperative specimens. Both CT and MR imaging have high accuracy in evaluating soft tissue infiltration. CT imaging is much better than MR in evaluating bony destruction. MR imaging is better in evaluating recurrent tumors, in which CT has very low specificity. MR imaging is the only method for evaluating infiltration of the central nervous system.The authors propose the following diagnostic algorithm: CT imaging for initial evaluation before treatment, MR imaging in suspected cases of infiltration of the central nervous system, and MR imaging in recurrent tumors after surgical and radiation treatment. (author)

  13. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    International Nuclear Information System (INIS)

    Krengli, Marco; Inglese, Eugenio; Milia, Maria E; Turri, Lucia; Mones, Eleonora; Bassi, Maria C; Cannillo, Barbara; Deantonio, Letizia; Sacchetti, Gianmauro; Brambilla, Marco

    2010-01-01

    FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 × 10 -4 ) and CT-CTV (p = 2.9 × 10 -4 ). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 × 10 -5 ) and CT-CTV (p = 6 × 10 -5 ). FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

  14. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  15. Predicting CT Image From MRI Data Through Feature Matching With Learned Nonlinear Local Descriptors.

    Science.gov (United States)

    Yang, Wei; Zhong, Liming; Chen, Yang; Lin, Liyan; Lu, Zhentai; Liu, Shupeng; Wu, Yao; Feng, Qianjin; Chen, Wufan

    2018-04-01

    Attenuation correction for positron-emission tomography (PET)/magnetic resonance (MR) hybrid imaging systems and dose planning for MR-based radiation therapy remain challenging due to insufficient high-energy photon attenuation information. We present a novel approach that uses the learned nonlinear local descriptors and feature matching to predict pseudo computed tomography (pCT) images from T1-weighted and T2-weighted magnetic resonance imaging (MRI) data. The nonlinear local descriptors are obtained by projecting the linear descriptors into the nonlinear high-dimensional space using an explicit feature map and low-rank approximation with supervised manifold regularization. The nearest neighbors of each local descriptor in the input MR images are searched in a constrained spatial range of the MR images among the training dataset. Then the pCT patches are estimated through k-nearest neighbor regression. The proposed method for pCT prediction is quantitatively analyzed on a dataset consisting of paired brain MRI and CT images from 13 subjects. Our method generates pCT images with a mean absolute error (MAE) of 75.25 ± 18.05 Hounsfield units, a peak signal-to-noise ratio of 30.87 ± 1.15 dB, a relative MAE of 1.56 ± 0.5% in PET attenuation correction, and a dose relative structure volume difference of 0.055 ± 0.107% in , as compared with true CT. The experimental results also show that our method outperforms four state-of-the-art methods.

  16. FDG PET/CT for therapeutic response monitoring in multi-site non-respiratory tuberculosis

    International Nuclear Information System (INIS)

    Geng Tian; Yong Xiao; Bin Chen; Jun Xia; Hong Guan; Qunyi Deng

    2010-01-01

    Background: Tuberculosis (TB) can produce positive signals during 18 F-fluorodeoxyglucose positron emission/computed tomography (FDG PET/CT) scanning. Until now, there has been no better method than clinical assessment to evaluate the therapeutic response of non-respiratory TB (NRTB). Purpose: To retrospectively assess the ability of FDG PET/CT to evaluate the response to anti-TB treatment in patients with NRTB. Material and Methods: Three patients with multi-site NRTB underwent repeat PET/CT scans during anti-TB treatment. Changes in maximal standard uptake value (SUVmax) of the TB lesions on PET/CT images were analyzed between two scans. Initial PET/CT scans were performed before the start of anti-TB treatment, and later scans were performed after completion of the treatment. Results: Patient 1, a 63-year-old female, and patient 2, a 50-year-old male, were diagnosed as multi-site NRTB by biopsy. Patient 3, a 37-year-old male was diagnosed clinically. These patients demonstrated multiple FDG-avid lesions in whole body on initial PET/CT images. The highest SUVmax of patient 1, 2, and 3 were 13.6, 17.7, and 13.9 separately. After completion of the treatment, all positive signals of patient 1, 2, and 3 decreased to undetectable value on repeated PET/CT scans with intervals of 318 days, 258 days, and 182 days separately. Conclusion: FDG PET/CT scan may be useful for monitoring responses to anti-TB treatment in patients with NRTB

  17. Feasibility of breathing-adapted PET/CT imaging for radiation therapy of Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Aznar, M C; Andersen, Flemming; Berthelsen, A K

    2011-01-01

    Aim: Respiration can induce artifacts in positron emission tomography (PET)/computed tomography (CT) images leading to uncertainties in tumour volume, location and uptake quantification. Respiratory gating for PET images is now established but is not directly translatable to a radiotherapy setup....... in PET/CT images. These results suggest that advanced therapies (such as SUV-based dose painting) will likely require breathing-adapted PET images and that the relevant SUV thresholds are yet to be investigated....

  18. A Novel Approach of Cardiac Segmentation In CT Image Based On Spline Interpolation

    International Nuclear Information System (INIS)

    Gao Yuan; Ma Pengcheng

    2011-01-01

    Organ segmentation in CT images is the basis of organ model reconstruction, thus precisely detecting and extracting the organ boundary are keys for reconstruction. In CT image the cardiac are often adjacent to the surrounding tissues and gray gradient between them is too slight, which cause the difficulty of applying classical segmentation method. We proposed a novel algorithm for cardiac segmentation in CT images in this paper, which combines the gray gradient methods and the B-spline interpolation. This algorithm can perfectly detect the boundaries of cardiac, at the same time it could well keep the timeliness because of the automatic processing.

  19. Automated interpretation of PET/CT images in patients with lung cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Jakobsson, David; Olofsson, Fredrik

    2007-01-01

    cancer. METHODS: A total of 87 patients who underwent PET/CT examinations due to suspected lung cancer comprised the training group. The test group consisted of PET/CT images from 49 patients suspected with lung cancer. The consensus interpretations by two experienced physicians were used as the 'gold...... method measured as the area under the receiver operating characteristic curve, was 0.97 in the test group, with an accuracy of 92%. The sensitivity was 86% at a specificity of 100%. CONCLUSIONS: A completely automated method using artificial neural networks can be used to detect lung cancer......PURPOSE: To develop a completely automated method based on image processing techniques and artificial neural networks for the interpretation of combined [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) images for the diagnosis and staging of lung...

  20. Experimental validation of incomplete data CT image reconstruction techniques

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Hsiao, M.L.; Tam, K.C.

    1989-01-01

    X-ray CT inspection of large metal parts is often limited by x-ray penetration problems along many of the ray paths required for a complete CT data set. In addition, because of the complex geometry of many industrial parts, manipulation difficulties often prevent scanning over some range of angles. CT images reconstructed from these incomplete data sets contain a variety of artifacts which limit their usefulness in part quality determination. Over the past several years, the authors' company has developed 2 new methods of incorporating a priori information about the parts under inspection to significantly improve incomplete data CT image quality. This work reviews the methods which were developed and presents experimental results which confirm the effectiveness of the techniques. The new methods for dealing with incomplete CT data sets rely on a priori information from part blueprints (in electronic form), outer boundary information from touch sensors, estimates of part outer boundaries from available x-ray data, and linear x-ray attenuation coefficients of the part. The two methods make use of this information in different fashions. The relative performance of the two methods in detecting various flaw types is compared. Methods for accurately registering a priori information with x-ray data are also described. These results are critical to a new industrial x-ray inspection cell built for inspection of large aircraft engine parts

  1. Fast reconstruction of industry CT image based on Wintel and P4 structure

    CERN Document Server

    Su Jian Ping; Zhang Li; Zhao Zi Ran; Gao Wen Huan; Kang Ke Jun

    2002-01-01

    Largescale I-CT is used to inspect large workpiece with high spiral resolution and its reconstructed image is very large. So it often relies on special workstation. Now with the development of P4 CPU and Windows2000, it is possible to reconstruct, deal and display I-CT image on Wintel structure. The authors discuss the possibility and future of this scheme. This is important for the improvement of economical value of I-CT

  2. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose.

    Science.gov (United States)

    Lell, M M; May, M S; Brand, M; Eller, A; Buder, T; Hofmann, E; Uder, M; Wuest, W

    2015-07-01

    CT is the imaging technique of choice in the evaluation of midface trauma or inflammatory disease. We performed a systematic evaluation of scan protocols to optimize image quality and radiation exposure on third-generation dual-source CT. CT protocols with different tube voltage (70-150 kV), current (25-300 reference mAs), prefiltration, pitch value, and rotation time were systematically evaluated. All images were reconstructed with iterative reconstruction (Advanced Modeled Iterative Reconstruction, level 2). To individually compare results with otherwise identical factors, we obtained all scans on a frozen human head. Conebeam CT was performed for image quality and dose comparison with multidetector row CT. Delineation of important anatomic structures and incidental pathologic conditions in the cadaver head was evaluated. One hundred kilovolts with tin prefiltration demonstrated the best compromise between dose and image quality. The most dose-effective combination for trauma imaging was Sn100 kV/250 mAs (volume CT dose index, 2.02 mGy), and for preoperative sinus surgery planning, Sn100 kV/150 mAs (volume CT dose index, 1.22 mGy). "Sn" indicates an additional prefiltration of the x-ray beam with a tin filter to constrict the energy spectrum. Exclusion of sinonasal disease was possible with even a lower dose by using Sn100 kV/25 mAs (volume CT dose index, 0.2 mGy). High image quality at very low dose levels can be achieved by using a Sn100-kV protocol with iterative reconstruction. The effective dose is comparable with that of conventional radiography, and the high image quality at even lower radiation exposure favors multidetector row CT over conebeam CT. © 2015 by American Journal of Neuroradiology.

  3. Clinical study of the image fusion between CT and FDG-PET in the head and neck region

    International Nuclear Information System (INIS)

    Shozushima, Masanori; Moriguchi, Hitoshi; Shoji, Satoru; Sakamaki, Kimio; Ishikawa, Yoshihito; Kudo, Keigo; Satoh, Masanobu

    1999-01-01

    Image fusion using PET and CT from the head and neck region was performed with the use of external markers on 7 patients with squamous cell carcinoma. The purpose of this study was to examine a resultant error and the clinical usefulness of image fusion. Patients had primary lesions of the tongue, the maxillary gingiva or the maxillary sinus. All patients underwent PET with FDG and CT to detect tumor sites. Of these 7 patients, diagnostic images and the clinical observation found 6 cases of regional lymph node metastasis of the neck. To ensure the anatomical detail of the PET images, small radioactive markers were placed on the philtrum and below both earlobes. The PET image and CT image were then overlapped on a computer. The image fusion of PET and CT was successfully performed on all patients. The superposition error of this method was examined between the PET and CT images. The accuracy of fit measured as the mean distance between the PET and CT image was in the range of 2-5 mm. PET-CT superimposed images produced an increase in the localization of tumor FDG uptake and localized FDG uptake on the palatine tonsils. The marker system described here for the alignment of PET and CT images can be used on a routine basis without the invasive fixation of external markers, and also improve the management and follow up on patients with head and neck carcinoma. (author)

  4. SU-F-I-51: CT/MR Image Deformation: The Clinical Assessment QA in Target Delineation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C; Chen, Y [Monmouth Medical Center, Long Branch, NJ (United States)

    2016-06-15

    Purpose: To study the deformation effects in CT/MR image registration of head and neck (HN) cancers. We present a clinical indication in guiding and simplifying registration procedures of this process while CT images possessed artifacts. Methods: CT/MR image fusion provides better soft tissue contrast in intracranial GTV definition with artifacts. However, whether the fusion process should include the deformation process is questionable and not recommended. We performed CT/MR image registration of a HN patient with tonsil GTV and nodes delineation on Varian Velocity™ system. Both rigid transformation and deformable registration of the same CT/MR imaging data were processed separately. Physician’s selection of target delineation was implemented to identify the variations. Transformation matrix was shown with visual identification, as well as the deformation QA numbers and figures were assessed. Results: The deformable CT/MR images were traced with the calculated matrix, both translation and rotational parameters were summarized. In deformable quality QA, the calculated Jacobian matrix was analyzed, which the min/mean/max of 0.73/0/99/1.37, respectively. Jacobian matrix of right neck node was 0.84/1.13/1.41, which present dis-similarity of the nodal area. If Jacobian = 1, the deformation is at the optimum situation. In this case, the deformation results have shown better target delineation for CT/MR deformation than rigid transformation. Though the root-mean-square vector difference is 1.48 mm, with similar rotational components, the cord and vertebrae position were aligned much better in the deformable MR images than the rigid transformation. Conclusion: CT/MR with/without image deformation presents similar image registration matrix; there were significant differentiate the anatomical structures in the region of interest by deformable process. Though vendor suggested only rigid transformation between CT/MR assuming the geometry remain similar, our findings

  5. Super resolution reconstruction of μ-CT image of rock sample using neighbour embedding algorithm

    Science.gov (United States)

    Wang, Yuzhu; Rahman, Sheik S.; Arns, Christoph H.

    2018-03-01

    X-ray computed tomography (μ-CT) is considered to be the most effective way to obtain the inner structure of rock sample without destructions. However, its limited resolution hampers its ability to probe sub-micro structures which is critical for flow transportation of rock sample. In this study, we propose an innovative methodology to improve the resolution of μ-CT image using neighbour embedding algorithm where low frequency information is provided by μ-CT image itself while high frequency information is supplemented by high resolution scanning electron microscopy (SEM) image. In order to obtain prior for reconstruction, a large number of image patch pairs contain high- and low- image patches are extracted from the Gaussian image pyramid generated by SEM image. These image patch pairs contain abundant information about tomographic evolution of local porous structures under different resolution spaces. Relying on the assumption of self-similarity of porous structure, this prior information can be used to supervise the reconstruction of high resolution μ-CT image effectively. The experimental results show that the proposed method is able to achieve the state-of-the-art performance.

  6. Design of a practical model-observer-based image quality assessment method for CT imaging systems

    Science.gov (United States)

    Tseng, Hsin-Wu; Fan, Jiahua; Cao, Guangzhi; Kupinski, Matthew A.; Sainath, Paavana

    2014-03-01

    The channelized Hotelling observer (CHO) is a powerful method for quantitative image quality evaluations of CT systems and their image reconstruction algorithms. It has recently been used to validate the dose reduction capability of iterative image-reconstruction algorithms implemented on CT imaging systems. The use of the CHO for routine and frequent system evaluations is desirable both for quality assurance evaluations as well as further system optimizations. The use of channels substantially reduces the amount of data required to achieve accurate estimates of observer performance. However, the number of scans required is still large even with the use of channels. This work explores different data reduction schemes and designs a new approach that requires only a few CT scans of a phantom. For this work, the leave-one-out likelihood (LOOL) method developed by Hoffbeck and Landgrebe is studied as an efficient method of estimating the covariance matrices needed to compute CHO performance. Three different kinds of approaches are included in the study: a conventional CHO estimation technique with a large sample size, a conventional technique with fewer samples, and the new LOOL-based approach with fewer samples. The mean value and standard deviation of area under ROC curve (AUC) is estimated by shuffle method. Both simulation and real data results indicate that an 80% data reduction can be achieved without loss of accuracy. This data reduction makes the proposed approach a practical tool for routine CT system assessment.

  7. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    Science.gov (United States)

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no

  8. CT imaging features of tuberculous spondylitis in children

    International Nuclear Information System (INIS)

    Song Min; Liu Wen; Fang Weijun; Wang Fukang; Li Ziping

    2009-01-01

    Objective: To investigate CT imaging features of tuberculous spondylitis in children. Methods: The CT imagings of two groups of patients with Tuberculous Spondylitis between January 2004 and March 2008 were retrospectively reviewed. One group included 28 children from 0 to 14 years old. Another group included 159 adults. All the patients were diagnosed as tuberculous spondylitis by pathology or biopsy, or by anti-turboelectric therapy. The CT imagings of the two groups were read retrospectively, including infections of vertebras and its appendix, the proportion of the total length of paravertebral abscess to the height of relative vertebra, the information of paravertebral abscess and dura mate of spinal cord and nerve root compression. Results The ratio of kyphosis in children group was 75% (21/28), higher than that in adults'. Tuberculous spondylitis in children was most often involved thoracic vertebra (53.7%,51/95). In children, involvement was more often seen than that of cervical vertebra and lumbar. The ratio of tuberculous spondylitis of children's cervical vertebrae was 10.5% (10/95)and of lumbar was 31.6% (30/95, while in adults that of cervical vertebrae was 3.3% (16/479)and of lumbar was 44.5% (213/479). There was statistical difference between them. The percentages of central type of tuberculous vertebral osteitis in chlidren was 57.1% (16/28)and was different with that in adults'(P=0.001 0.05). The incidence of dura mate of spinal cord or nerve root compression in children was 78.6%(22/28), much higher than that in adults (49.7%(79/159), P=0.005 <0.05). Conclusion: Special features of tuberculous spondylitis in childrencan be observed on CT imaging, kyphosis is often seen. The incidence of tuberculous spondylitis of thoracic vertebra and cervical vertebrae is high, central type of tuberculous vertebral osteitis in children is more popular than that in adults, but there is higher ratio of dura mate of spinal cord or nerve root compression in children

  9. Characteristic MR and CT imaging findings of hepatobiliary paragonimiasis and their pathologic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunyan; Hu, Yajun; Chen, Weixia [Dept of Radiology, West China Hospital of Sichuan Univ., Sichuan (China)], e-mail: wxchen25@126.com

    2012-06-15

    Background: Hepatobiliary paragonimiasis (HP) is not commonly encountered and may be confused with hepatobiliary tumors; however, computed tomography (CT) and magnetic resonance imaging (MRI) features of HP allow this entity to be distinguished from other diseases. Purpose: To present the CT and MRI findings in patients with HP and to describe some specific imaging findings along with their pathological correlations. Material and Methods: Imaging and clinical findings of 21 patients (9 boys/men and 12 girls/women; age range 3-67 years; mean age 40 years) who were diagnosed with HP were retrospectively evaluated. Among these patients, 16 underwent CT examination only, two had MR examination only, and three underwent both CT and MR. All patients underwent surgery, and the HP diagnosis was confirmed by the surgical and histopathologic results. Results: Chronic abdominal pain or back pain was reported by 14 patients, severe abdominal pain with acute onset was reported by one patient, and six patients were asymptomatic and were discovered incidentally. Peripheral eosinophilia was present in 14 patients (14/21, 66.7%), and abnormal liver function tests were found in 16 patients (16/21, 76.2%). Of the 19 patients who underwent CT imaging, 17 patients showed multiple mixed hypodense lesions or multiple cysts with inlaying septation with separate irregular rims or circular enhancement on post-contrast CT images. Tunnel-shaped micro abscesses and necrotic cavities were found in the lesions of 12 of those 17 patients. The other two patients showed smaller cystic masses. MRI showed faveolate T1 hypointense and T2 hyperintense areas in the liver parenchyma with rim or peripheral enhancement. Nodular or circular hyperintense materials were found scattered in the lesions on T1-weighted imaging. Conclusion: CT and MRI can reveal the radiological-pathological features of HP. Together with laboratory findings, MRI and CT findings may provide diagnostic clues, especially in endemic

  10. Characteristic MR and CT imaging findings of hepatobiliary paragonimiasis and their pathologic correlations

    International Nuclear Information System (INIS)

    Lu, Chunyan; Hu, Yajun; Chen, Weixia

    2012-01-01

    Background: Hepatobiliary paragonimiasis (HP) is not commonly encountered and may be confused with hepatobiliary tumors; however, computed tomography (CT) and magnetic resonance imaging (MRI) features of HP allow this entity to be distinguished from other diseases. Purpose: To present the CT and MRI findings in patients with HP and to describe some specific imaging findings along with their pathological correlations. Material and Methods: Imaging and clinical findings of 21 patients (9 boys/men and 12 girls/women; age range 3-67 years; mean age 40 years) who were diagnosed with HP were retrospectively evaluated. Among these patients, 16 underwent CT examination only, two had MR examination only, and three underwent both CT and MR. All patients underwent surgery, and the HP diagnosis was confirmed by the surgical and histopathologic results. Results: Chronic abdominal pain or back pain was reported by 14 patients, severe abdominal pain with acute onset was reported by one patient, and six patients were asymptomatic and were discovered incidentally. Peripheral eosinophilia was present in 14 patients (14/21, 66.7%), and abnormal liver function tests were found in 16 patients (16/21, 76.2%). Of the 19 patients who underwent CT imaging, 17 patients showed multiple mixed hypodense lesions or multiple cysts with inlaying septation with separate irregular rims or circular enhancement on post-contrast CT images. Tunnel-shaped micro abscesses and necrotic cavities were found in the lesions of 12 of those 17 patients. The other two patients showed smaller cystic masses. MRI showed faveolate T1 hypointense and T2 hyperintense areas in the liver parenchyma with rim or peripheral enhancement. Nodular or circular hyperintense materials were found scattered in the lesions on T1-weighted imaging. Conclusion: CT and MRI can reveal the radiological-pathological features of HP. Together with laboratory findings, MRI and CT findings may provide diagnostic clues, especially in endemic

  11. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    Science.gov (United States)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  12. Automatic extraction of via in the CT image of PCB

    Science.gov (United States)

    Liu, Xifeng; Hu, Yuwei

    2018-04-01

    In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.

  13. CT imaging of complications of catheter ablation for atrial fibrillation

    International Nuclear Information System (INIS)

    Shroff, G.S.; Guirguis, M.S.; Ferguson, E.C.; Oldham, S.A.A.; Kantharia, B.K.

    2014-01-01

    The complication rate following radiofrequency catheter ablation for atrial fibrillation is low (<5%). Complications include pericardial effusion, cardiac tamponade, pulmonary vein stenosis, oesophageal ulceration or perforation, atrio-oesophageal fistula formation, stroke/transient ischaemic attack, phrenic nerve injury, haematoma at the puncture site, and femoral arteriovenous fistula. Among available imaging tools, computed tomography (CT) can be very useful in diagnosing complications of the procedure, particularly in the subacute and delayed stages after ablation. This review illustrates CT imaging of several of the common and uncommon complications of radiofrequency catheter ablation

  14. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  15. X-ray micro-CT and neutron CT as complementary imaging tools for non-destructive 3D imaging of rare silicified fossil plants

    Science.gov (United States)

    Karch, J.; Dudák, J.; Žemlička, J.; Vavřík, D.; Kumpová, I.; Kvaček, J.; Heřmanová, Z.; Šoltés, J.; Viererbl, L.; Morgano, M.; Kaestner, A.; Trtík, P.

    2017-12-01

    Computed tomography provides 3D information of inner structures of investigated objects. The obtained information is, however, strongly dependent on the used radiation type. It is known that as X-rays interact with electron cloud and neutrons with atomic nucleus, the obtained data often provide different contrast of sample structures. In this work we present a set of comparative radiographic and CT measurements of rare fossil plant samples using X-rays and thermal neutrons. The X-ray measurements were performed using large area photon counting detectors Timepix at IEAP CTU in Prague and Perkin Elmer flat-panel detector at Center of Excellence Telč. The neutron CT measurement was carried out at Paul Scherrer Institute using BOA beam-line. Furthermore, neutron radiography of fossil samples, provided by National Museum, were performed using a large-area Timepix detector with a neutron-sensitive converting 6LiF layer at Research Centre Rez, Czech Republic. The obtained results show different capabilities of both imaging approaches. While X-ray micro-CT provides very high resolution and enables visualization of fine cracks or small cavities in the samples neutron imaging provides high contrast of morphological structures of fossil plant samples, where X-ray imaging provides insufficient contrast.

  16. Three-dimensional CT and MR imaging in congenital dislocation of the hip: Technical considerations

    International Nuclear Information System (INIS)

    Lang, P.; Steiger, P.; Lindquist, T.; Skinner, S.; Moore, S.; Chafetz, N.I.; Genant, H.K.

    1987-01-01

    Two-dimensional (2D) software techniques were developed to generate diagnostic-quality three-dimensional (3D) MR studies in two patients with congenital dislocation of the hip. Comparable 3D CT studies were obtained in two other patients. Unsharp masks were divided into the original MR images to correct for local variations in signal intensity. Combinations of first- and second-echo images improved the object contrast. Pixels with insufficient homogeneity relative to their neighboring data were excluded. CT did not require 2D preprocessing. Three-dimensional CT and MR images demonstrated subluxation and dislocation. 3D MR, in contrast to CT, demonstrated the cartilaginous femoral head. The described 2D MR preprocessing provides diagnostic-quality 3D MR studies. It will be useful for generating 3D MR images of other anatomic structures

  17. CT dose modulation using automatic exposure control in whole-body PET/CT: effects of scout imaging direction and arm positioning.

    Science.gov (United States)

    Inoue, Yusuke; Nagahara, Kazunori; Kudo, Hiroko; Itoh, Hiroyasu

    2018-01-01

    Automatic exposure control (AEC) modulates tube current and consequently X-ray exposure in CT. We investigated the behavior of AEC systems in whole-body PET/CT. CT images of a whole-body phantom were acquired using AEC on two scanners from different manufactures. The effects of scout imaging direction and arm positioning on dose modulation were evaluated. Image noise was assessed in the chest and upper abdomen. On one scanner, AEC using two scout images in the posteroanterior (PA) and lateral (Lat) directions provided relatively constant image noise along the z-axis with the arms at the sides. Raising the arms increased tube current in the head and neck and decreased it in the body trunk. Image noise increased in the upper abdomen, suggesting excessive reduction in radiation exposure. AEC using the PA scout alone strikingly increased tube current and reduced image noise in the shoulder. Raising the arms did not substantially influence dose modulation and decreased noise in the abdomen. On the other scanner, AEC using the PA scout alone or Lat scout alone resulted in similar dose modulation. Raising the arms increased tube current in the head and neck and decreased it in the trunk. Image noise was higher in the upper abdomen than in the middle and lower chest, and was not influenced by arm positioning. CT dose modulation using AEC may vary greatly depending on scout direction. Raising the arms tended to decrease radiation exposure; however, the effect depends on scout direction and the AEC system.

  18. CT and MR imaging in the evaluation of leptomeningeal metastases

    International Nuclear Information System (INIS)

    Xiao Jiahe; Wang Dayou; Deng Kaihong

    1999-01-01

    Objective: To study the manifestations of leptomeningeal metastases on CT and MR imaging, and evaluate the diagnostic significance of both modalities for this disease. Methods: Clinical and neuroradiological data of 21 cases with leptomeningeal metastases were retrospectively reviewed. In this series, 16 patients were studied by CT and 7 patients by MRI, 2 patients by both CT and MRI. Results: Abnormal enhancement of pia and subarachnoid space, appearing as diffuse pattern in 10 cases, nodular pattern in 8 cases and mixed pattern with diffuse plus nodules in 3 cases, were visualized by CE-CT and Gd-MRI. Diffuse enhancement followed the convolutions of gyri and surface of brainstem, and extended into cerebral cisterns and sulci. the foci appeared as enhanced nodules 0.2-3.0 cm in diameter and 1 or more in number. Nodules with infiltration of cerebral parenchymal were found in 4 patients. In 86% of all cases, diffuse or nodular foci occurred in basilar systems and adjacent cerebellar and cerebral sulci. There were 4 cases associated with ependymal nodular enhancement and 10 cases with widened irregular tentorial enhancement. Intracerebral metastases in 9 cases and hydrocephalus in 13 cases were found in this series. Conclusions: CE-CT and Gd-MRI are had significant clinical diagnostic value for leptomeningeal metastases, Gd-MRI is superior to CE-CT. Because of the limitation in the evaluation of leptomeningeal invasion by neoplasms on CT and MRI, definitive diagnosis of leptomeningeal metastases depends on combination of clinical and imaging data

  19. Minimizing image noise in on-board CT reconstruction using both kilovoltage and megavoltage beam projections

    International Nuclear Information System (INIS)

    Zhang Junan; Yin Fangfang

    2007-01-01

    We studied a recently proposed aggregated CT reconstruction technique which combines the complementary advantages of kilovoltage (kV) and megavoltage (MV) x-ray imaging. Various phantoms were imaged to study the effects of beam orientations and geometry of the imaging object on image quality of reconstructed CT. It was shown that the quality of aggregated CT was correlated with both kV and MV beam orientations and the degree of this correlation depended upon the geometry of the imaging object. The results indicated that the optimal orientations were those when kV beams pass through the thinner portion and MV beams pass through the thicker portion of the imaging object. A special preprocessing procedure was also developed to perform contrast conversions between kV and MV information prior to image reconstruction. The performance of two reconstruction methods, one filtered backprojection method and one iterative method, were compared. The effects of projection number, beam truncation, and contrast conversion on the CT image quality were investigated

  20. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    Energy Technology Data Exchange (ETDEWEB)

    Park, M; Rosica, D; Agarwal, V; Di Carli, M; Dorbala, S [Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984 pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.