WorldWideScience

Sample records for repassivation potential temperature

  1. Repassivation potential for localized corrosion of Alloys 625 and C22 in simulated repository environments

    International Nuclear Information System (INIS)

    Cragnolino, G.A.; Dunn, D.S.; Sridhar, N.

    1998-01-01

    Two corrosion resistant nickel-based alloys, 625 and C22, have been selected by the US Department of Energy as candidate materials for the inner container of high-level radioactive waste packages. The susceptibility of these materials to localized corrosion was evaluated by measuring the repassivation potential as a function of solution chloride concentration and temperature using cyclic potentiodynamic polarization and lead-in-pencil potential step test methods. At intermediate Cl- concentrations, e.g., 0.028--0.4 M, the repassivation potential of alloy 625 is greater than that for alloy 825 and is dependent on the Cl- concentration. However, at higher concentrations, the repassivation potential is slightly less than that for alloy 825 and is weakly dependent on Cl- concentration. The repassivation potentials for alloy C-22 under all test conditions are considerably higher than those of either alloy 625 or 825 and are in the range where oxygen evolution is expected to occur

  2. Repassivation potentials determination of crevice corrosion of alloy in Chloride solutions

    International Nuclear Information System (INIS)

    Rincon Ortiz, Mauricio

    2009-01-01

    Alloy 22 (UNS N06022) belongs to the Ni-Cr-Mo family and it is highly resistant to general and localized corrosion, but it may suffer crevice corrosion in aggressive environmental conditions, such as high chloride concentration, high applied potential and high temperature. Alloy 22 is one of the candidates to be considered for the outer corrosion-resistant shell of high-level nuclear waste containers. It is assumed that localized corrosion will only occur when the corrosion potential (E CORR ) is equal or higher than the crevice corrosion repassivation potential (E R,CREV ). This parameter is obtained by different electrochemical techniques using artificially creviced specimens. These techniques include cyclic potentiodynamic polarization (CPP) curves, Tsujikawa-Hisamatsu electrochemical (THE) method or other non-standardized methods. Recently, as a variation of THE method, the PD-GS-PD technique was introduced. The aim of the present work was to determine reliable critical potentials for crevice corrosion of Alloy 22 in pure chloride solutions at 90 C degrees. Conservative methodologies (which include extended potentiostatic steps) were applied for determining protection potentials below which crevice corrosion cannot initiate and propagate. Results from PD-GS-PD technique were compared with those from these methodologies in order to assess their reliability. Results from the CPP and the THE methods were also considered for comparison. The repassivation potentials from the PD-GS-PD technique were conservative and reproducible, and they did not depend on the amount of previous crevice corrosion propagation in the studied conditions. (author)

  3. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

    International Nuclear Information System (INIS)

    Rebak, R B; Ilevbare, G O; Carranza, R M

    2007-01-01

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions

  4. The use of repassivation potential in predicting the performance of high-level nuclear waste container materials

    International Nuclear Information System (INIS)

    Sridhar, N.; Dunn, D.; Cragnolino, G.

    1995-01-01

    Localized corrosion in aqueous environments forms an important bounding condition for the performance assessment of high-level waste (HLW) container materials. A predictive methodology using repassivation potential is examined in this paper. It is shown, based on long-term (continuing for over 11 months) testing of alloy 825, that repassivation potential of deep pits or crevices is a conservative and robust parameter for the prediction of localized corrosion. In contrast, initiation potentials measured by short-term tests are non-conservative and highly sensitive to several surface and environmental factors. Corrosion data from various field tests and plant equipment performance are analyzed in terms of the applicability of repassivation potential. The applicability of repassivation potential for predicting the occurrence of stress corrosion cracking (SCC) and intergranular corrosion in chloride containing environments is also examined

  5. Re-passivation Potential of Alloy 22 in Chloride plus Nitrate Solutions using the Potentiodynamic-Galvano-static-Potentiostatic Method

    International Nuclear Information System (INIS)

    Evans, Kenneth J.; Rebak, Raul B.

    2007-01-01

    In general, the susceptibility of Alloy 22 to suffer crevice corrosion is measured using the Cyclic Potentiodynamic Polarization (CPP) technique. This is a fast technique that gives rather accurate and reproducible values of re-passivation potential (ER1) in most cases. In the fringes of susceptibility, when the environment is not highly aggressive, the values of re-passivation potential using the CPP technique may not be highly reproducible, especially because the technique is fast. To circumvent this, the re-passivation potential of Alloy 22 was measured using a slower method that combines Potentiodynamic-Galvano-static-Potentiostatic steps (called here the Tsujikawa-Hisamatsu Electrochemical or THE method). The THE method applies the charge to the specimen in a more controlled way, which may give more reproducible re-passivation potential values, especially when the environment is not aggressive. The values of re-passivation potential of Alloy 22 in sodium chloride plus potassium nitrate solutions were measured using the THE and CPP methods. Results show that both methods yield similar values of re-passivation potential, especially under aggressive conditions. (authors)

  6. Standard test method for determining the crevice repassivation potential of corrosion-resistant alloys using a potentiodynamic-galvanostatic-potentiostatic technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers a procedure for conducting anodic polarization studies to determine the crevice repassivation potential for corrosion–resistant alloys. The concept of the repassivation potential is similar to that of the protection potential given in Reference Test Method G 5. 1.2 The test method consists in applying successively potentiodynamic, galvanostatic, and potentiostatic treatments for the initial formation and afterward repassivation of crevice corrosion. 1.3 This test method is a complement to Test Method G 61. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Optimization of the method for determining the corrosion-crevice repassivation potential of Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    In order to quantitatively evaluate the resistance of a candidate overpack material for geological disposal of high-level nuclear waste to the crevice corrosion, the optimized test method for determining the corrosion-crevice repassivation potential, E R,CREV , of a Ni-Cr-Mo alloy (Alloy 22) was developed based on that of stainless steels (JIS G0592). It was found that two restrictions shall be satisfied for determining the valid value of E R,CREV for Alloy 22. Restriction (a) was to avoid transpassive dissolution, and (b) was to obtain a penetration depth of 65 μm or more in creviced areas. The recommended procedure in JIS G 0592 at the corrosion-crevice initiation stage, which involved the potentiodynamic anodic polarization at a scan rate of 30 mV min -1 , could not satisfy the restriction (a). Consequently, we adopted the potentiostatic holding at the potential below the critical potential for transpassive dissolution. The recommended procedure in JIS G 0592 at the corrosion-crevice propagation stage, which involved the galvanostatic holding at an applied current of 200 μA for 2 hours, could not always satisfy the restriction (b), and the applied current of 1600 μA or more could not satisfy the restriction (a). Therefore, we adopted the galvanostatic holding at a current of 800 μA for 2 hours. The limits of safety usage of Alloy 22 were evaluated by values of E R,CREV which were measured with the optimized procedure in 0.1 to 4 mol dm -3 sodium chloride solutions at 90degC. (author)

  8. Study of the pitting and repassiv,tion corrosion potential of zicaloy-4 halides solutions at 250C and several pH

    International Nuclear Information System (INIS)

    Gardiazabal, J.I.; Cordova, R.; Gomez, H.; Layana, G.; Schrebler, R.

    1987-01-01

    The electrochemical behaviour of Zircaloy-4 electrode in chloride, bromide and iodide acid solution was investigated at 25 0 C employing stationary, quasi-stationary and potentiodynamic techniques. The results show that the pitting and repassivation potentials are independent on pH but both are dependent on halice concentration, following linear relation ships in these cases. It is also possible to correlate the pitting potential with the ionic radius of the anions, allowing thus to establish an order in their agressive properties. This order was extrapolated for fluoride ion and further experimental measurements show that the corrosion potential of Zircaloy-4 in acid or neutra solution of this ion (which undergoes active dissolution) is coincident with that predicted from the Ep v/s ionic radius determined for the other halides. (Author) [pt

  9. Depassivation and repassivation of austenitic stainless steels. Consequences on stress corrosion cracking

    International Nuclear Information System (INIS)

    Helie, M.; Desjardins, D.; Puiggali, M.; Petit, M.C.

    1983-06-01

    The influence of strain rate and solution temperature on depassivation and repassivation processes, and the consequences on stress corrosion cracking phenomenon are presented. The tests are performed in concentrated magnesium chloride solutions at various boiling temperatures (160 0 C, 153 0 C, 140 0 C, 130 0 C, 125 0 C, 110 0 C, 102 0 C) to which potassium dichromate is added in some cases. The depassivation and repassivation of the tested wires are analysed in term of current-time curves at fixed potential. The wire is placed into a ''corrosion cell'' with the boiling chloride solution on a tensile testing machine. Tests at 153 0 C on 304L and 309L stainless steels show that competition between passivation and depassivation depends on applied strain rate: at low strain rates rupture is mainly due to mechanical stress, at high strain rates the wire shows track of corrosion and the rupture is ductile. Between the two, stress corrosion cracking presents a maximum and in this case the rupture is mainly brittle. Influence of temperature shows the existence of a transitional temperature 130 0 C for a 304L. The cracking velocity is 100 times higher above 130 0 C than below and the cracking mode is transgranular and mainly intergranular below 130 0 C. Addition of potassium dichromate modifies both electrochemical and mechanical properties; it is more difficult to obtain a frank depassivation and the repassivation rate is higher

  10. Considerations on the repassivation of corroded reinforced concrete structures

    International Nuclear Information System (INIS)

    Cobo, A.; Gonzalez, M. N.; Otero, E.; Gonzalez, J. A.

    2000-01-01

    An analysis is made of the responses of clean and precorroded steel electrodes in Ca(OH) 2 saturated solutions and in cement mortar, using gravimetric, metallographic and electrochemical techniques, essentially polarisation resistance measurements. The paper aims to answer some important questions about the corrosion of reinforced concrete structures (RCS) which, though seemingly elementary, continue to arouse controversy in scientific, technical and economical circles, such as the following: What corrosion rates are dangerous in RCS? What concrete resistivities guarantee sufficient durability of RCS?. Is it possible to detain corrosion once it has begun?. Can corroded RCS be repassivated? Are electrochemical RCS rehabilitation methods efficient, and if so, when? The results obtained indicate that electrochemical chloride removal and realkalisation cannot repassive heavily corroded steel surfaces, however they can be effective methods to prevent corrosion provided they are used before the transition from the passive state to the active one occurs. If applied to late, are useless for this purpose. (Author) 25 refs

  11. Effect of sigma phase in the repassivation potential of austenitic-ferritic stainless steel SEW 410 Nr. 14517; Efeito da fase sigma no potencial de repassivacao do aco inoxidavel austeno-ferritico SEW 410 Nr. 14517

    Energy Technology Data Exchange (ETDEWEB)

    Itman Filho, A.; Pimenta, C.C.; Santos, C.M.L. [Instituto Federal do Espirito Santo, Vitoria (Brazil)], e-mail: andrei@ifes.edu.br; Casteletti, L.C. [Escola de Engenharia de Sao Carlos - EESC/USP, SP (Brazil)

    2010-07-01

    The austenitic-ferritic stainless steels, due to the optimum compromise between mechanical properties and corrosion resistance, are being used in many applications, as chemical and oil industries. In the oil exploitation, the effect of erosion-corrosion in acid environment is responsible for the increment in the equipment maintenance costs. Regarding the interest in researches of deep water oil exploitation, the proposal of this study was to evaluate the effect of the heat treatment at 850 degree C of the austenitic-ferritic stainless steel SEW 410 Nr.14517. Microstructural characterizations, microhardness measurements of the phases and corrosion tests were accomplished to evaluate the samples. The pitting potential values were obtained by galvanostatic tests in H{sub 2}SO{sub 4} acid solution. The results showed that the volumetric percentages of sigma phase increased while the ferritic phase percentages decreased, when the heat treatment time increased. The sigma phase promoted hardness increase with little corrosion resistance decrease in the austenitic-ferritic stainless steel, too. (author)

  12. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures

    International Nuclear Information System (INIS)

    Igual Munoz, A.; Garcia Anton, J.; Lopez Nuevalos, S.; Guinon, J.L.; Perez Herranz, V.

    2004-01-01

    The corrosion behavior of three stainless steels EN 14311, EN 14429 (austenitic stainless steels) and EN 14462 (duplex stainless steel) was studied in a commercial LiBr solution (850 g/l LiBr solution containing chromate as inhibitor) at different temperatures (25, 50, 75 and 85 deg C) by electrochemical methods. Open circuit potentials shifted towards more active values as temperature increased, while corrosion potentials presented the opposite tendency. The most resistant alloys to general corrosion were EN 14429 and EN 14462 because they had the lowest corrosion current for all temperatures. In all the cases corrosion current increases with temperature. Pitting corrosion resistance is improved by the EN 14462, which presented the highest pitting potential, and the lowest passivation current for the whole range of temperatures studied. The duplex alloy also presents the worst repassivation behavior (in terms of the narrowest difference between corrosion potential and pitting potential); it does not repassivate from 50 deg C

  13. Finite-Temperature Higgs Potentials

    International Nuclear Information System (INIS)

    Dolgopolov, M.V.; Gurskaya, A.V.; Rykova, E.N.

    2016-01-01

    In the present article we consider the short description of the “Finite-Temperature Higgs Potentials” program for calculating loop integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions. Here we collect the analytic forms of the relevant loop integrals for our work in reconstruction of the effective Higgs potential parameters in extended models (MSSM, NMSSM and etc.)

  14. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  15. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288 C water

    International Nuclear Information System (INIS)

    Angeliu, T.M.; Andresen, P.L.

    1996-01-01

    The effect of Zn water chemistry additions on the mechanism of intergranular stress corrosion cracking (IGSCC) of Fe-based alloys in water at 288 C was evaluated in terms of the slip-dissolution model. In this model, an increase in the oxide film rupture strain or surface film repassivation kinetics improved resistance to IGSCC. The oxide rupture strain of type 304L (UNS S30403) stainless steel (SS) increased up to a factor of two in deaerated and 200 ppb oxygenated, high-purity water ( 300 h of exposure. Repassivation kinetics experiments showed Zn additions of ∼ 100 ppb increased the repassivation rate of an Fe-12% Cr alloys up to a factor of two in various deaerated water environments at 288 C. Life prediction modeling revealed that the combination of a more ductile oxide film and faster repassivation kinetics resulted in a reduction in the overall crack growth rate (CGR) by at least a factor of four. This factor of improvement was consistent with data from compact tension experiments in similar environments where CGR decreased as the Zn addition increased, with a greater decrease in CGR realized at lower pre-Zn CGR

  16. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo

    1992-01-01

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na 2 SO 4 +H 2 SO 4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  17. Potential applications of high temperature helium

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  18. The Influences of Artificial Aging Temperature and Time on Pitting Susceptibility of SiCp/ AA2024 MMCs

    International Nuclear Information System (INIS)

    Kim, S. K.; Jo, C. J.; Kwon, B. H.; Hwang, W. S.

    2000-01-01

    The effects of artificial aging temperature and time were investigated on the pitting behaviors of SiCp/ AA2024 composites through measuring the changes of open circuit potential, pitting potential, and repassivation potential in a 3.5 wt% NaCl solution. And, the influence of microstructure on the pitting susceptibility was studied by measurement of TEM images. AA2024 Al alloy and 15vol%SiCp/ AA2024 composites were fabricated by vacuum hot pressing and hot extrusion with an extrusion ratio of 25 : 1. They were solutionized at 495 .deg. C for 4 hours, and aged at 130, 150, 170, and 190 .deg. C for 1, 2, 4, 8, and 16 hours. In aerated 3.5% NaCl solutions, the open circuit potential and pitting potential of both AA2024 alloy and composites were similar each other, and pitting occurred immediately at immersed condition. The pitting potential was decreased with increasing aging temperature and time. Also, the repassivation potential of SiCp/ AA2024 composites was decreased as increasing aging temperature and time. It was concluded that formation and growth of S' and S phase by artificial aging promoted the pitting susceptibility of SiCp/ AA2024 composites because these phases, easily soluble by forming galvanic couples with substrate Al alloy, served as preferential sites for nucleation of pits

  19. Evaluation of the absolute regional temperature potential

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2012-09-01

    Full Text Available The Absolute Regional Temperature Potential (ARTP is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90–28° S, 28° S–28° N, 28–60° N and 60–90° N as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within ±20% of the actual responses, though there are some exceptions for 90–28° S and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the ±20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39–45% and 9–39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  20. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  1. Temperature corrections, supersymmetric effective potentials and inflation

    International Nuclear Information System (INIS)

    Binetruy, P.; Gaillard, M.K.; California Univ., Berkeley

    1985-01-01

    We calculate the one-loop temperature corrections to general potentials in N=1 supergravity, and study the conditions under which a new inflationary scenario is possible. The results are sensitive to the total number N of chiral superfields. For large N, we find that in 'hidden sector' models supersymmetry must be broken at a scale governed by the energy density of the false vacuum: msub(3/2) > or approx. 2√8π μ 2 /Msub(p), where μ approx.= (10 -3 -10 -4 )Msub(p) in typical inflationary scenarios. We also discuss an alternative picture where inflation occurs at the preonic level, before the preon-confining phase transition. (orig.)

  2. Projections of precipitation, air temperature and potential ...

    African Journals Online (AJOL)

    mabouelhaggag

    Precipitation and air temperature records from 6 sites in Rwanda in the period from 1964 to 2010 are used for past/present climate assessment. Future climate projections (2010-2099) based on 3 general circulation models and 2 emission scenarios (A2 and B1) are used for climate projections. Precipitation, air temperature ...

  3. Kinetics of growth of semi-spheric pittings in the vicinity repassivation potential depending on bulk concentration of activator anions

    International Nuclear Information System (INIS)

    Frejman, L.I.

    1985-01-01

    A general case of semi-spheric pittings development in aqueous solutions of electrolyte of NaCl or LiCl type at different values of C 0 , usually studied in the range approximately equal to 10 -5 -10 -3 g-ionxcm -3 (approximately equal to 10 -2 -10 0 g-ionxl -1 ), has been analyzed. On the basis of experimental data on participation of anion-activators and water molecules in the process of metal dissolution in pitting, and using the previously obtained equations, kinetics of open and closed semi-spheric pittings during galvanostatic anode polarization in neutral chloride solutions with different volumetric concentration of Cl - -ions (C 0 ) has been considered. In a general case the process kinetics is described by a complex equation, the boundary, more simple forms of which, correspond to the initial (A) and subsequent (B) stages of open pitting development, or to certain stable conditions of closed pitting development

  4. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  5. Temperature, chemical potential and the ρ meson

    International Nuclear Information System (INIS)

    Roberts, C. D.; Schmidt, S. M.

    2000-01-01

    Models of QCD must confront nonperturbative phenomena such as confinement, dynamical chiral symmetry breaking (DCSB) and the formation of bound states. In addition, a unified approach should describe the deconfinement and chiral symmetry restoring phase transition exhibited by strongly-interacting matter under extreme conditions of temperature and density. Nonperturbative Dyson-Schwinger equation (DSE) models provide insight into a wide range of zero temperature hadronic phenomena; e.g., non-hadronic electroweak interactions of light- and heavy-mesons, and diverse meson-meson and meson-nucleon form factors. This is the foundation for their application at nonzero-(T, μ). Herein the authors describe the calculation of the reconfinement and chiral symmetry restoring phase boundary, and the medium dependence of ρ-meson properties. They also introduce an extension to describe the time-evolution in the plasma of the quark's scalar and vector self energies based on a Vlasov equation

  6. Microbiological influence on the electro-chemical potential of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guempel, P.; Moos, O. [Fachhochschule Konstanz, Brauneggerstr. 55, 78462 Konstanz (Germany); Arlt, N. [ThyssenKrupp Nirosta, Postfach 18 02 61, 40569 Duesseldorf (Germany); Telegdi, J. [Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri ut 59/67, H-1025 Budapest (Hungary); Schiller, D. [WITg, Institut fuer Werkstoffsystemtechnik, Konstanzer Str. 19, CH-8274 Taegerwilen (Switzerland)

    2006-09-15

    The microbiologically caused ennoblement appears in natural water on all stainless steels equally and can only be prevented by the use of biocides. Temperature and supply of nutrients have an influence on the increasing rate of the potential, as well as the presence of manganese ions in the water favors the potential rise. The final value of the potential is substantially regulated by the biological system and is independent of the steel composition. An endangerment of stainless steels by a selective corrosion attack e.g. pitting corrosion arises if the critical repassivation potential of the steel lies below the open-circuit potential appearing in the natural system. This can be due to the alloy composition or due to process-conditioned weakening of the passive layer, for example by annealing colors on and beside welded joints. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Gravitational Coleman–Weinberg potential and its finite temperature counterpart

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Srijit [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Discipline of Physics, Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424 (India); Majumdar, Parthasarathi [Department of Physics, Ramakrishna Mission Vivekananada University, Belur Math, Howrah 711202 (India)

    2014-08-15

    Coleman–Weinberg (CW) phenomena for the case of gravitons minimally coupled to massless scalar field is studied. The one-loop effect completely vanishes if there is no self-interaction term present in the matter sector. The one-loop effective potential is shown to develop an instability in the form of acquiring an imaginary part, which can be traced to the tachyonic pole in the graviton propagator. The finite temperature counterpart of this CW potential is computed to study the behaviour of the potential in the high and low temperature regimes with respect to the typical energy scale of the theory. Finite temperature contribution to the imaginary part of gravitational CW potential exhibits a damped oscillatory behaviour; all thermal effects are damped out as the temperature vanishes, consistent with the zero-temperature result.

  8. Percolation temperature and the 'instability' of the effective potential

    International Nuclear Information System (INIS)

    Carvalho, C.A. de; Bazeia Filho, D.; Eboli, O.J.P.; Marques, G.C.; Silva, A.J. da; Ventura, I.

    1984-01-01

    It is shown that in spontaneously broken lambda phi 4 theory the percolation temperature coincides with the temperature at which the semiclassical (loop) expansion of the effective potential (free energy) of the system around a uniform field configuration fails. This allows us to extract the percolation temperature directly from the effective potential. The addition of fermions or gauge fields does not alter the result as long as they are weakly coupled to the scalars. The coincidence holds in the high temperature limit at every order in the loop expansion. (Author) [pt

  9. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  10. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  11. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Science.gov (United States)

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  12. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  13. Effect of Temperature on the Biotic Potential of Honeybee Microsporidia▿

    Science.gov (United States)

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-01-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33°C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37°C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns. PMID:19233948

  14. Eulerian velocity reconstruction in ideal atmospheric dynamics using potential vorticity and potential temperature

    Science.gov (United States)

    Blender, R.

    2009-04-01

    An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.

  15. The Born-Mayer-Huggins potential in high temperature superconductors

    Science.gov (United States)

    Singh, Hempal; Singh, Anu; Indu, B. D.

    2016-07-01

    The Born-Mayer-Huggins potential which has been found the best suitable potential to study the YBa2Cu3O7-δ type high temperature superconductors is revisited in a new framework. A deeper insight in it reveals that the Born-Mayer parameters for different interactions in high temperature superconductor are not simple quantities but several thermodynamic and spatial functions enter the problem. Based on the new theory, the expressions for pressure, bulk modulus and Born-Mayer parameters have been derived and it is established that these quantities depend upon Gruneisen parameter which is the measure of the strength of anharmonic effects in high temperature superconductors. This theory has been applied to a specific model YBa2Cu3O7-δ crystal for the purpose of numerical estimates to justify the new results.

  16. Survey of potential electronic applications of high temperature superconductors

    International Nuclear Information System (INIS)

    Hammond, R.B.; Bourne, L.C.

    1991-01-01

    In this paper the authors present a survey of the potential electronic applications of high temperature superconductor (HTSC) thin films. During the past four years there has been substantial speculation on this topic. The authors will cover only a small fraction of the potential electronic applications that have been identified. Their treatment is influenced by the developments over the past few years in materials and device development and in market analysis. They present their view of the most promising potential applications. Superconductors have two important properties that make them attractive for electronic applications. These are (a) low surface resistance at high frequencies, and (b) the Josephson effect

  17. Estimating Potential Evapotranspiration by Missing Temperature Data Reconstruction

    Directory of Open Access Journals (Sweden)

    Eladio Delgadillo-Ruiz

    2015-01-01

    Full Text Available This work studies the statistical characteristics of potential evapotranspiration calculations and their relevance within the water balance used to determine water availability in hydrological basins. The purpose of this study was as follows: first, to apply a missing data reconstruction scheme in weather stations of the Rio Queretaro basin; second, to reduce the generated uncertainty of temperature data: mean, minimum, and maximum values in the evapotranspiration calculation which has a paramount importance in the manner of obtaining the water balance at any hydrological basin. The reconstruction of missing data was carried out in three steps: (1 application of a 4-parameter sinusoidal type regression to temperature data, (2 linear regression to residuals to obtain a regional behavior, and (3 estimation of missing temperature values for a certain year and during a certain season within the basin under study; estimated and observed temperature values were compared. Finally, using the obtained temperature values, the methods of Hamon, Papadakis, Blaney and Criddle, Thornthwaite, and Hargreaves were employed to calculate potential evapotranspiration that was compared to the real observed values in weather stations. With the results obtained from the application of this procedure, the surface water balance was corrected for the case study.

  18. Responses of hadrons to the chemical potential at finite temperature

    International Nuclear Information System (INIS)

    Choe, S.; Liu, Y.; Miyamura, O.; Forcrand, Ph. de; Garcia Perez, M.; Hioki, S.; Matsufuru, H.; Nakamura, A.; Stamatescu, I.-O.; Takaishi, T.; Umeda, T.

    2002-01-01

    We present a framework to compute the responses of hadron masses to the chemical potential in lattice QCD simulations. As a first trial, the screening mass of the pseudoscalar meson and its first and second responses are evaluated. We present results on a 16x8 2 x4 lattice with two flavors of staggered quarks below and above T c . The responses to both the isoscalar and isovector chemical potentials are obtained. They show different behavior in the low and the high temperature phases, which may be explained as a consequence of chiral symmetry breaking and restoration, respectively

  19. Fluctuation induced critical behavior at nonzero temperature and chemical potential

    International Nuclear Information System (INIS)

    Splittorff, K.; Lenaghan, J.T.; Wirstam, J.

    2003-01-01

    We discuss phase transitions in relativistic systems as a function of both the chemical potential and temperature. The presence of a chemical potential explicitly breaks Lorentz invariance and may additionally break other internal symmetries. This introduces new subtleties in the determination of the critical properties. We discuss separately three characteristic effects of a nonzero chemical potential. First, we consider only the explicit breaking of Lorentz invariance using a scalar field theory with a global U(1) symmetry. Second, we study the explicit breaking of an internal symmetry in addition to Lorentz invariance using two-color QCD at nonzero baryonic chemical potential. Finally, we consider the spontaneous breaking of a symmetry using three-color QCD at nonzero baryonic and isospin chemical potential. For each case, we derive the appropriate three-dimensional effective theory at criticality and study the effect of the chemical potential on the fixed point structure of the β functions. We find that the order of the phase transition is not affected by the explicit breaking of Lorentz invariance but is sensitive to the breaking of additional symmetries by the chemical potential

  20. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  1. Lattice fermions at non-zero temperature and chemical potential

    International Nuclear Information System (INIS)

    Bender, I.

    1993-01-01

    We study the free fermion gas at finite temperature and chemical potential in the lattice regularized version proposed by Hasenfratz and Karsch. Special emphasis is placed on the identification of the particle and antiparticle contributions to the partition function. In the case of naive fermions we show that the partition function no longer separates into particle-antiparticle contributions in the way familiar from the continuum formulation. The use of Wilson fermions, on the other hand, eliminates this unpleasant feature, and leads, after subtracting the vacuum contributions, to the familiar expressions for the average energy and charge densities. (orig.)

  2. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  3. Temperature dependence in interatomic potentials and an improved potential for Ti

    International Nuclear Information System (INIS)

    Ackland, G J

    2012-01-01

    The process of deriving an interatomic potentials represents an attempt to integrate out the electronic degrees of freedom from the full quantum description of a condensed matter system. In practice it is the derivatives of the interatomic potentials which are used in molecular dynamics, as a model for the forces on a system. These forces should be the derivative of the free energy of the electronic system, which includes contributions from the entropy of the electronic states. This free energy is weakly temperature dependent, and although this can be safely neglected in many cases there are some systems where the electronic entropy plays a significant role. Here a method is proposed to incorporate electronic entropy in the Sommerfeld approximation into empirical potentials. The method is applied as a correction to an existing potential for titanium. Thermal properties of the new model are calculated, and a simple method for fixing the melting point and solid-solid phase transition temperature for existing models fitted to zero temperature data is presented.

  4. Potential of low-temperature nuclear heat applications

    International Nuclear Information System (INIS)

    1986-12-01

    At present, more than one third of the fossil fuel currently used is being consumed to produce space heating and to meet industrial needs in many countries of the world. Imported oil still represents a large portion of this fossil fuel and despite its present relatively low price future market evolutions with consequent upward cost revisions cannot be excluded. Thus the displacement of the fossil fuel by cheaper low-temperature heat produced in nuclear power plants is a matter which deserves careful consideration. Technico-economic studies in many countries have shown that the use of nuclear heat is fully competitive with most of fossil-fuelled plants, the higher investment costs being offset by lower production cost. Another point in favour of heat generation by nuclear source is its indisputable advantage in terms of benefits to the environment. The IAEA activity plans for 1985-86 concentrate on information exchange with specific emphasis on the design criteria, operating experience, safety requirements and specifications of heat-only reactors, co-generation plants and existing power plants backfitted for additional heat applications. The information gained up to 1985 was discussed during the Advisory Group Meeting on the Potential of Low-Temperature Nuclear Heat Applications held in the Federal Institute for Reactor Research, Wuerenlingen, Switzerland in September 1985 and, is included in the present Technical Document

  5. Photochemistry at high temperatures - potential of ZnO as a high temperature photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Schubnell, M; Beaud, P; Kamber, I [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Direct conversion of solar radiation into useful, storeable and transportable chemical products is the primary goal of solar chemistry. In this paper we discuss some fundamental aspects of photochemistry at elevated temperatures. We show that luminescence can serve as an indicator of the potential use of a system as a photoconverter. As an example we present experimental data on the chemical potential and on the lifetime of the excited states of ZnO. The low luminescence quantum yield together with a lifetime of about 200 ps indicate that an efficient photochemical conversion on ZnO is highly improbable. We believe this to be a general feature of chemical systems based on a semiconductor photocatalyst, in particular of photoreactions at a solid/gas interface. (author) 3 figs., 6 refs

  6. Average Potential Temperature of the Upper Mantle and Excess Temperatures Beneath Regions of Active Upwelling

    Science.gov (United States)

    Putirka, K. D.

    2006-05-01

    The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and

  7. The indirect global warming potential and global temperature change potential due to methane oxidation

    International Nuclear Information System (INIS)

    Boucher, Olivier; Collins, Bill; Friedlingstein, Pierre; Shine, Keith P

    2009-01-01

    Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO 2 -induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO 2 -induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.

  8. A high temperature interparticle potential for an alternative gauge model

    International Nuclear Information System (INIS)

    Doria, R.M.

    1984-01-01

    A thermal Wilson loop for a model with two gauge fields associated with the same gauge group is discussed. Deconfinement appears at high temperature. It is not possible however specify the colour of the deconfined matter. (Author) [pt

  9. Potentialities in electronics of new high critical temperature superconductors

    International Nuclear Information System (INIS)

    Hartemann, P.

    1989-01-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed [fr

  10. Environmental stressors during space flight: potential effects on body temperature

    Science.gov (United States)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  11. Potential market and characteristics of low-temperature reactors

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The low-temperature (100 to 200 deg C) heat market for industrial applications and district heating is very important. Two main studies have been developed: a swimming pool reactor delivering water at 110 deg C and a prestressed concrete vessel reactor delivering water at 200 deg C [fr

  12. The potential for EMS Maglev using high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodall, R [Loughborough Univ. (United Kingdom); Macleod, C [Loughborough Univ. (United Kingdom); El-Abbar, A [Loughborough Univ. (United Kingdom); Jones, H [Oxford Univ. (United Kingdom); Jenkins, R [Oxford Univ. (United Kingdom); Campbell, A [Cambridge Univ. (United Kingdom)

    1996-12-31

    Various aspects relating to the use of high temperature superconducting materials in iron-cored magnets for Maglev are considered. The particular emphasis is upon direct control of the superconducting coils, and a control analysis is undertaken to assess the requirements. Experimental results form tests conducted to determine how a superconducting magnet will perform under the conditions required for Maglev are included, and the final section determines the likely effect on the magnet design of using superconducting rather than normal coils. (orig.)

  13. Higher spin entanglement entropy at finite temperature with chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871 (China)

    2016-07-11

    It is generally believed that the semiclassical AdS{sub 3} higher spin gravity could be described by a two dimensional conformal field theory with W-algebra symmetry in the large central charge limit. In this paper, we study the single interval entanglement entropy on the torus in the CFT with a W{sub 3} deformation. More generally we develop the monodromy analysis to compute the two-point function of the light operators under a thermal density matrix with a W{sub 3} chemical potential to the leading order. Holographically we compute the probe action of the Wilson line in the background of the spin-3 black hole with a chemical potential. We find exact agreement.

  14. Temperature-dependent optical potential and mean free path based on Skyrme interactions

    International Nuclear Information System (INIS)

    Ge Lingxiao; Zhuo Yizhong; Noerenberg, W.; Technische Hochschule Darmstadt

    1986-03-01

    Optical potentials and mean free paths of nucleons at finite temperatures are studied by utilizing effective Skyrme interactions which yield 'good' optical potentials at zero temperature. The results for nuclear matter (symmetric and asymmetric) are applied within the local density approximation of finite nuclei at various temperatures. Because of the limitation due to zero-range forces used and the assumptions of temperature independent nuclear densities and effective Skyrme interactions made, the calculations are expected to be limited to nucleon energies between 10 and 50 MeV above the Fermi energy and to nuclear temperatures of less than 8 MeV. (orig.)

  15. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2017-11-01

    Full Text Available The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger. It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

  16. Studies of the corrosion and cracking behavior of steels in high temperature water by electrochemical techniques

    International Nuclear Information System (INIS)

    Cheng, Y.F.; Bullerwell, J.; Steward, F.R.

    2003-01-01

    Electrochemical methods were used to study the corrosion and cracking behavior of five Fe-Cr alloy steels and 304L stainless steel in high temperature water. A layer of magnetite film forms on the metal surface, which decreases the corrosion rate in high temperature water. Passivity can be achieved on A-106 B carbon steel with a small content of chromium, which cannot be passivated at room temperature. The formation rate and the stability of the passive film (magnetite film) increased with increasing Cr-content in the steels. A mechanistic model was developed to simulate the corrosion and cracking processes of steels in high temperature water. The crack growth rate on steels was calculated from the maximum current of the repassivation current curves according to the slip-oxidation model. The highest crack growth rate was found for 304L stainless steel in high temperature water. Of the four Fe-Cr alloys, the crack growth rate was lower on 0.236% Cr- and 0.33% Cr-steels than on 0.406% Cr-steel and 2.5% Cr-1% Mo steel. The crack growth rate on 0.33% Cr-steel was the smallest over the tested potential range. A higher temperature of the electrolyte led to a higher rate of electrochemical dissolution of steel and a higher susceptibility of steel to cracking, as shown by the positive increase of the electrochemical potential. An increase in Cr-content in the steel is predicted to reduce the corrosion rate of steel at high temperatures. However, this increase in Cr-content is predicted not to reduce the susceptibility of steel to cracking at high temperatures. (author)

  17. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  18. Empirical temperature-dependent intermolecular potentials determined by data mining from crystal data

    Science.gov (United States)

    Hofmann, D. W. M.; Kuleshova, L. N.

    2018-05-01

    Modern force fields are accurate enough to describe thermal effects in molecular crystals. Here, we have extended our earlier approach to discrete force fields for various temperatures to a force field with a continuous function. For the parametrisation of the force field, we used data mining on experimental structures with the temperature as an additional descriptor. The obtained force field can be used to minimise energy at a finite temperature and for molecular dynamics with zero-K potentials. The applicability of the method has been demonstrated for the prediction of crystal density, temperature density gradients and transition temperature.

  19. Temperature-dependent interaction potential between NF3 molecules and thermophysical properties of gaseous NF3

    International Nuclear Information System (INIS)

    Damyanova, M; Balabanova, E; Hohm, U

    2014-01-01

    A temperature-dependent effective intermolecular interaction potential is applied to describe the interaction between two nitrogen fluoride (NF 3 ) molecules in gas phase. To this end, a spherically-symmetric (n-6) Lennard-Jones temperature-dependent potential (LJTDP) is used. The (n-6) LJTDP takes into account the influence of vibrational excitation of the molecules on the potential parameters, namely, the equilibrium distance r m and the potential well depth ε. The potential parameters at T = 0 K were obtained from the very small amount of existing thermophysical equilibrium and transport properties of low-density NF 3 gas. Fitting formulae are tabulated for a fast and reliable prediction of the thermophysical properties and potential parameters in the temperature range between 200 K and 1200 K. A comparison is also presented between our estimates for some thermophysical properties of the NF 3 gas with the available experimental and calculated data.

  20. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    Science.gov (United States)

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  1. Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    Hornus, Edgard C.; Rodríguez, Martin A.

    2011-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly corrosive environments. Alloys 625, C-22, C-22HS and Hybrid-BC1 are considered among candidates as engineered barriers of nuclear repositories. The objective of the present work was to assess the effect of temperature on the crevice corrosion resistance of these alloys. The crevice corrosion re-passivation potential (E CO ) of the tested alloys was determined by the Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloy Hybrid-BC1 was the most resistant to chloride-induced crevice corrosion, followed by alloys C-22HS, C-22 and 625. E CO showed a linear decrease with temperature. There is a temperature above which E CO does not decrease anymore, reaching a minimum value. This E CO value is a strong parameter for assessing the localized corrosion susceptibility of a material in a long term timescale, since it is independent of temperature, chloride concentration and geometrical variables such as crevicing mechanism, crevice gap and type of crevice formers. (author) [es

  2. Finite-temperature effective potential of a system with spontaneously broken symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E.P. [Yaroslavl State Technical Univ. (Russian Federation)

    1995-12-01

    A quantum-mechanical system with spontaneously broken symmetry is considered the effective potential is determined, and it is shown that with reduction of temperature the system undergoes a phase transition of the first kind.

  3. Interpretation of fast measurements of plasma potential, temperature and density in SOL of ASDEX Upgrade

    DEFF Research Database (Denmark)

    Horacek, J.; Adamek, J.; Müller, H.W.

    2010-01-01

    This paper focuses on interpretation of fast (1 µs) and local (2–4 mm) measurements of plasma density, potential and electron temperature in the edge plasma of tokamak ASDEX Upgrade. Steady-state radial profiles demonstrate the credibility of the ball-pen probe. We demonstrate that floating...... potential fluctuations measured by a Langmuir probe are dominated by plasma electron temperature rather than potential. Spatial and temporal scales are found consistent with expectations based on interchange-driven turbulence. Conditionally averaged signals found for both potential and density are also...

  4. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate

    DEFF Research Database (Denmark)

    Haider, Najmul; Kirkeby, Carsten Thure; Kristensen, Birgit

    2017-01-01

    We quantified the difference between the meteorological temperature recorded by the Danish Meteorological Institute (DMI) weather stations and the actual microclimatic temperatures at two or three different heights at six potential insect habitats. We then compared the impact of the hourly temper...

  5. The finite-temperature Gaussian effective potential from a variational principle

    International Nuclear Information System (INIS)

    Haugerud, H.; Ravndal, F.

    1990-08-01

    Writing the partition function for a scalar quantum field theory as a functional integral, it follows that the finite-temperature Gaussian effective potential is an upper limit to the free energy of the system. Explicit results are given for the anharmonic oscillator at finite temperature. 5 refs., 2 figs

  6. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Measurements of fatigue crack length at elevated temperature by D. C. electrical potential method

    International Nuclear Information System (INIS)

    Matsumoto, Masakatsu; Yamauchi, Isamu; Kodaira, Tsuneo

    1982-07-01

    The direct current (d.c.) electrical potential method was used to automatically and continuously measure the crack length in cyclic crack growth test at elevated temperature. This report describes some results concerning the calibration curves, i.e. the relation between electrical potential change and amount of crack extention, using SUS 304 and 2 1/4Cr-1Mo steels. It can be concluded that the measurements of fatigue crack length is possible even at elevated temperature as well as at room temperature with the equivalent accuracy. (author)

  8. Temperature, density and potential fluctuations by a swept Langmuir probe in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Niedermeyer, H; Endler, M; Theimer, G; Rudyj, A; Verplancke, Ph [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    1994-12-31

    Numerous experiments using a Langmuir probe to investigate the magnitude of temperature fluctuations and their contribution to heat transport in the edge region of tokamak plasmas have been carried out. Sweeping the voltage applied to a tip fast enough to ensure that the ion saturation current, floating potential and electron temperature may be assumed to be constant during the sweep is experimentally more difficult than alternative schemes but this disadvantage is compensated by the ability to measure all three of these quantities at one spatial location. Sweep frequencies up to 600 kHz have been employed to obtain the current-voltage characteristic. A radial scan in the vicinity of the velocity shear layer on W7-AS stellarator was performed. Inside and outside the shear layer the normalised magnitude of the temperature fluctuations was found to be approximately 30% larger than the magnitude of the electron density fluctuations, approaching a value of 0.12 and 0.09 respectively at a radial position 1 cm inside the shear layer. An increase in the coherency of the temperature, floating potential and density fluctuations between tips with a poloidal separation of 2 mm was also measured as the shear layer was crossed. Heat conduction produced by correlated temperature and poloidal electric field fluctuations is therefore possible. An increasing coherence of temperature and floating potential fluctuations leads to an increase in the coherence of temperature and plasma potential fluctuations as the shear layer was crossed. (author) 7 refs., 3 figs.

  9. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  10. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded

  11. A gradient approximation for calculating Debye temperatures from pairwise interatomic potentials

    International Nuclear Information System (INIS)

    Jackson, D.P.

    1975-09-01

    A simple gradient approximation is given for calculating the effective Debye temperature of a cubic crystal from central pairwise interatomic potentials. For examples of the Morse potential applied to cubic metals the results are in generally good agreement with experiment. (author)

  12. Effect of the potential well on low temperature pressure broadening in CO-He

    Science.gov (United States)

    Palma, A.; Green, S.

    1986-01-01

    Previously reported low-temperature pressure-broadening calculations (Green, 1985) for CO-He interacting via an SCF-CI potential are compared with new calculations in which the attractive part of the potential is either reduced by half or eliminated entirely. Results demonstrate that the attractive well is responsible for low-temperature enhancement of pressure-broadening cross sections and suggest that agreement with recent experimental values at 4 K (Messer and DeLucia, 1984) can be obtained by a modest reduction, probably within the expected uncertainty, in the attractive part of the SCF-CI potential.

  13. Temperature dependent relativistic microscopic optical potential and mean free paths of nucleons

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhuo Yizhong

    1993-01-01

    The relativistic microscopic optical potential, mean free paths and Schroedinger equivalent potential of nucleons at finite temperature in nuclear matter are studied based on Walecka's model and thermo field dynamics. We let only the Hartree-Fock self-energy of nucleon represent to be the real part of the microscopic optical potential and the fourth order of meson exchange diagrams, i.e. the core polarization represent the imaginary part of microscopic optical potential in nuclear matter. The microscopic optical potential of finite nuclei is obtained with the local density approximation

  14. Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures.

    Science.gov (United States)

    Hemmings, Sarah N J; Hartel, Peter G

    2006-01-01

    When poultry litter is landspread, steroidal hormones present in the litter may reach surface waters, where they may have undesirable biological effects. In a laboratory study, we determined the mineralization of [4-14C]-labeled 17beta-estradiol, estrone, and testosterone in breeder litter at three different water potentials (-56, -24, and -12 MPa) and temperatures (25, 35, and 45 degrees C), and in broiler litter at two different water potentials (-24 and -12 MPa) and temperatures (25 and 35 degrees C). Mineralization was similar in both litters and generally increased with increasing water content and decreasing temperature. After 23 wk at -24 MPa, an average of 27, 11, and litter was mineralized to 14CO2 at 25, 35, and 45 degrees C, respectively. In contrast, mineralization of the radiolabeled estradiol and estrone was mineralized. The minimal mineralization suggests that the litters may still be potential sources of hormones to surface and subsurface waters.

  15. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  16. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto

    2015-01-01

    We extend the definition of the electronic chemical potential (μ e ) and chemical hardness (η e ) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ e . Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness

  17. Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: qimfranco@hotmail.com, E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340 (Mexico); Ayers, Paul W. [Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México D. F. 07360 (Mexico)

    2015-10-21

    We extend the definition of the electronic chemical potential (μ{sub e}) and chemical hardness (η{sub e}) to finite temperatures by considering a reactive chemical species as a true open system to the exchange of electrons, working exclusively within the framework of the grand canonical ensemble. As in the zero temperature derivation of these descriptors, the response of a chemical reagent to electron-transfer is determined by the response of the (average) electronic energy of the system, and not by intrinsic thermodynamic properties like the chemical potential of the electron-reservoir which is, in general, different from the electronic chemical potential, μ{sub e}. Although the dependence of the electronic energy on electron number qualitatively resembles the piecewise-continuous straight-line profile for low electronic temperatures (up to ca. 5000 K), the introduction of the temperature as a free variable smoothens this profile, so that derivatives (of all orders) of the average electronic energy with respect to the average electron number exist and can be evaluated analytically. Assuming a three-state ensemble, well-known results for the electronic chemical potential at negative (−I), positive (−A), and zero values of the fractional charge (−(I + A)/2) are recovered. Similarly, in the zero temperature limit, the chemical hardness is formally expressed as a Dirac delta function in the particle number and satisfies the well-known reciprocity relation with the global softness.

  18. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    International Nuclear Information System (INIS)

    Allen, P.D.; Hargrave, N.J.

    1992-09-01

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  19. Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential

    Science.gov (United States)

    Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.

    2018-05-01

    Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.

  20. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon; Trevor A. Atkinson; Travis L. McLing; Thomas R. Wood; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host

  1. Measurement of plasma potential and electron temperature by ball-pen probes in RFX-MOD

    International Nuclear Information System (INIS)

    Brotankova, J.; Adamek, J.; Stockel, J.; Martines, E.; Spolaore, M.; Cavazzana, R.; Serianni, G.; Vianello, N.; Zuin, M.

    2009-01-01

    The ball-pen probe (BPP) is an innovative electric probe for direct measurements of the plasma potential. This probe was developed in IPP Prague and it is based on the Katsumata probe concept. Combined measurements of the plasma potential by a BPP and floating potential by a Langmuir probe provide also the value of the electron temperature. First test of the BPP on the RFX-mod reversed field pinch in Padova has been performed in November 2006. The BPP head, made of boron nitride, is equipped with four graphite collectors, which are positioned at four different radial positions h inside four shafts hollow into the probe head. The radial profile of the plasma potential and also the electron temperature were measured

  2. Three loop HTL perturbation theory at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael [Department of Physics, Kent State University, Kent, OH 44242 (United States); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Su, Nan [Faculty of Physics, University of Bielefeld, D-33615 Bielefeld (Germany)

    2014-11-15

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  3. Temperature dependence of the in situ widths of a rotating condensate in one dimensional optical potential

    International Nuclear Information System (INIS)

    Hassan, Ahmed S.; Soliman, Shemi S.M.

    2016-01-01

    In this paper, a conventional method of quantum statistical mechanics is used to study the temperature dependence of the in situ widths of a rotating condensate bosons in 1D optical potential. We trace the experimentally accessible parameters for which the temperature dependence of the in situ widths becomes perceivable. The calculated results showed that the temperature dependence of the in situ widths is completely different from that of a rotating condensate or trapped bosons in the optical lattice separately. The z-width shows distinct behavior from x- and y-widths due to the rotation effect. The obtained results provide useful qualitative theoretical results for future Bose Einstein condensation experiments in such traps. - Highlights: • The temperature dependence of the in situ widths of a rotating condensate boson in 1D optical potential is investigated. • We trace the experimentally accessible parameters for which the in situ widths become perceivable. • The above mentioned parameters exhibit a characteristic rotation rate and optical potential depth dependence. • Characteristic dependence of the effective widths on temperature is investigated. • Our results provide useful qualitatively and quantitative theoretical results for experiments in various traps.

  4. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    Science.gov (United States)

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The potentially neglected culprit of DC surface flashover: electron migration under temperature gradients.

    Science.gov (United States)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2017-06-12

    This report intends to reveal the role of electron migration and its effects in triggering direct current (DC) surface flashover under temperature gradient conditions when using epoxy-based insulating composites. The surface potential and the surface flashover voltage are both measured using insulators that are bridged between two thermo-regulated electrodes. The space charge injection and migration properties under different temperature are detected. The results show that the surface potential rises significantly because of electron migration near the high voltage (HV) electrode under high temperature conditions, thus creating an "analogous ineffective region". The expansion of this "analogous ineffective region" results in most of the voltage drop occurring near the ground electrode, which serves as an important factor triggering positive streamers across the insulation surface. This work is helpful in understanding of DC surface flashover mechanism from a new perspective and also has important significance in design of a suitable DC insulator to avoid surface flashover problem.

  6. The stability of PEMFC electrodes : platinum dissolution vs potential and temperature investigated by quartz crystal microbalance

    NARCIS (Netherlands)

    Dam, V.A.T.; Bruijn, de F.A.

    2007-01-01

    The stability of platinum in proton exchange membrane fuel cell (PEMFC) electrodes has been investigated by determining the dissolution of platinum from a thin platinum film deposited on a gold substrate in 1 M HClO4 at different temperatures ranging between 40 and 80°C and potentials between 0.85

  7. Effect of temperature on development and growth potential of axillary buds in roses

    NARCIS (Netherlands)

    Marcelis-van Acker, C.A.M.

    1995-01-01

    The effect of temperature during axillary bud formation on axillary bud development and subsequent shoot growth was investigated. Growth potential of the axillary buds was studied either in situ, by pruning the parent shoot above the bud, or in isolation, by grafting the bud or by culturing the bud

  8. Protein thermostability prediction within homologous families using temperature-dependent statistical potentials.

    Directory of Open Access Journals (Sweden)

    Fabrizio Pucci

    Full Text Available The ability to rationally modify targeted physical and biological features of a protein of interest holds promise in numerous academic and industrial applications and paves the way towards de novo protein design. In particular, bioprocesses that utilize the remarkable properties of enzymes would often benefit from mutants that remain active at temperatures that are either higher or lower than the physiological temperature, while maintaining the biological activity. Many in silico methods have been developed in recent years for predicting the thermodynamic stability of mutant proteins, but very few have focused on thermostability. To bridge this gap, we developed an algorithm for predicting the best descriptor of thermostability, namely the melting temperature Tm, from the protein's sequence and structure. Our method is applicable when the Tm of proteins homologous to the target protein are known. It is based on the design of several temperature-dependent statistical potentials, derived from datasets consisting of either mesostable or thermostable proteins. Linear combinations of these potentials have been shown to yield an estimation of the protein folding free energies at low and high temperatures, and the difference of these energies, a prediction of the melting temperature. This particular construction, that distinguishes between the interactions that contribute more than others to the stability at high temperatures and those that are more stabilizing at low T, gives better performances compared to the standard approach based on T-independent potentials which predict the thermal resistance from the thermodynamic stability. Our method has been tested on 45 proteins of known Tm that belong to 11 homologous families. The standard deviation between experimental and predicted Tm's is equal to 13.6°C in cross validation, and decreases to 8.3°C if the 6 worst predicted proteins are excluded. Possible extensions of our approach are discussed.

  9. Constraints on Ωm and σ8 from the potential-based cluster temperature function

    Science.gov (United States)

    Angrick, Christian; Pace, Francesco; Bartelmann, Matthias; Roncarelli, Mauro

    2015-12-01

    The abundance of galaxy clusters is in principle a powerful tool to constrain cosmological parameters, especially Ωm and σ8, due to the exponential dependence in the high-mass regime. While the best observables are the X-ray temperature and luminosity, the abundance of galaxy clusters, however, is conventionally predicted as a function of mass. Hence, the intrinsic scatter and the uncertainties in the scaling relations between mass and either temperature or luminosity lower the reliability of galaxy clusters to constrain cosmological parameters. In this article, we further refine the X-ray temperature function for galaxy clusters by Angrick et al., which is based on the statistics of perturbations in the cosmic gravitational potential and proposed to replace the classical mass-based temperature function, by including a refined analytic merger model and compare the theoretical prediction to results from a cosmological hydrodynamical simulation. Although we find already a good agreement if we compare with a cluster temperature function based on the mass-weighted temperature, including a redshift-dependent scaling between mass-based and spectroscopic temperature yields even better agreement between theoretical model and numerical results. As a proof of concept, incorporating this additional scaling in our model, we constrain the cosmological parameters Ωm and σ8 from an X-ray sample of galaxy clusters and tentatively find agreement with the recent cosmic microwave background based results from the Planck mission at 1σ-level.

  10. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  11. District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Grundahl, Lars

    2018-01-01

    District heating has the potential to play a key role in the transition towards a renewable energy system. However, the development towards reduced heat demands threatens the feasibility of district heating. Despite this challenge, opportunity exists in the form of fourth generation district...... heating, which operates at lower temperatures and enables better renewable integration. This article investigates this challenge by examining the district heating potential within three scenarios: The first is a reference scenario with current heat demand and temperatures, the second includes heat demand...... costs. The models are applied using an example case of The Northern Region of Denmark. The article concludes that the district heating potential is highest in the reference scenario. When heat savings are introduced, district heating expansions, in most cases, will not be feasible. Introducing low...

  12. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    Science.gov (United States)

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  13. Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites

    Science.gov (United States)

    Nisbet, E. G.; Cheadle, M. J.; Arndt, N. T.; Bickle, M. J.

    1993-09-01

    The maximum potential temperature of the Archaean mantle is poorly known, and is best constrained by the MgO contents of komatiitic liquids, which are directly related to eruptive temperatures. However, most Archaean komatiites are significantly altered and it is difficult to assess the composition of the erupted liquid. Relatively fresh lavas from the SASKMAR suite, Belingwe Greenstone Belt, Zimbabwe (2.7 Ga) include chills of 25.6 wt.% MgO, and olivines ranging to Fo 93.6, implying eruption at around 1520°C. A chill sample from Alexo Township, Ontario (also 2.7 Ga) is 28 wt.% MgO, and associated olivines range to Fo 94.1, implying eruption at 1560°C. However, inferences of erupted liquids containing 32-33 wt.% MgO, from lavas in the Barberton Greenstone Belt, South Africa (3.45 Ga) and from the Perseverance Complex, Western Australia (2.7 Ga) may be challenged on the grounds that they contain excess (cumulate) olivine, or were enriched in Mg during alteration or metamorphism. Re-interpretation of olivine compositions from these rocks shows that they most likely contained a maximum of 29 wt.% MgO corresponding to an eruption temperature of 1580°C. This composition is the highest liquid MgO content of an erupted lava that can be supported with any confidence. The hottest modern magma, on Gorgona Island (0.155 Ga) contained 18-20% MgO and erupted at circa 1400°C. If 1580°C is taken as the temperature of the most magnesian known eruption, then the source mantle from which the liquids rose would have been at up to 2200°C at pressures of 18 GPa corresponding to a mantle potential temperature of 1900°C. These temperatures are in excess of the mantle temperatures predicted by secular cooling models, and thus komatiites can only be formed in hot rising convective jets in the mantle. This result requires that Archaean mantle jets may have been 300°C hotter than the Archaean ambient mantle temperature. This temperature difference is similar to the 200-300

  14. S-parameter at Non-Zero Temperature and Chemical Potential

    DEFF Research Database (Denmark)

    Søndergaard, Ulrik Ishøj; Sannino, Francesco; Pica, Claudio

    2011-01-01

    We compute the finite-temperature and matter density corrections to the S-parameter at the one loop level. At non-zero temperature T and matter density Lorentz symmetry breaks and therefore we suggest a suitable generalization of the S-parameter. By computing the plasma correction, we discover...... a reduction of the S-parameter in the physically relevant region of small external momenta for any non-zero chemical potential and T. In particular, the S-parameter vanishes at small m/T, where m is the mass of the fermions, due to the finite extent of the temporal direction. Our results are directly...

  15. The effective potential for composite operator in the scalar model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ananos, G.N.J.; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: nfuxsvai@lafex.cbpf.br; gino@lafex.cbpf.br

    2000-10-01

    We discuss the {phi}{sup 4} and {phi}{sup 6} theory defined in a flat D-dimensional space-time. We assume that the system is in equilibrium with a thermal bath at temperature {beta}{sup -1}. To obtain non-perturbative result, the 1?N expansion is used. The method of the composite operator for summing a large set of Feynman graphs, is developed for the finite temperature system. The resumed effective potential and the analysis of the D=3 and D=4 cases are given .(author)

  16. The effective potential for composite operator in the scalar model at finite temperature

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Svaiter, N.F.

    2000-10-01

    We discuss the φ 4 and φ 6 theory defined in a flat D-dimensional space-time. We assume that the system is in equilibrium with a thermal bath at temperature β -1 . To obtain non-perturbative result, the 1?N expansion is used. The method of the composite operator for summing a large set of Feynman graphs, is developed for the finite temperature system. The resumed effective potential and the analysis of the D=3 and D=4 cases are given .(author)

  17. Lifespan metabolic potential of the unicellular organisms expressed by Boltzmann constant, absolute temperature and proton mass

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2016-12-01

    The unicellular organisms and phages are the first appeared fundamental living organisms on the Earth. The total metabolic energy (Els, J) of these organisms can be expressed by their lifespan metabolic potential (Als, J/kg) and body mass (M, kg): Els =Als M. In this study we found a different expression - by Boltzmann's constant (k, J/K), nucleon mass (mp+, kg) of protons (and neutrons), body mass (M, kg) of organism or mass (Ms) of biomolecules (proteins, nucleotides, polysaccharides and lipids) building organism, and the absolute temperature (T, K). The found equations are: Els= (M/mp+)kT for phages and Els=(Ms/mp+)kT for the unicellular organisms. From these equations the lifespan metabolic potential can be expressed as: Als=Els/M= (k/mp+)T for phages and Als=Els/M= (k/3.3mp+)T for unicellular organisms. The temperature-normated lifespan metabolic potential (Als/T, J/K.kg) is equals to the ratio between Boltzmann's constant and nucleon mass: Als/T=k/mp+ for phages and Als/T=k/3.3mp+ for unicellular organisms. The numerical value of the k/mp+ ratio is equals to 8.254×103 J/K.kg, and the numerical value of k/3.3mp+ ratio is equal to 2.497×103 J/K.kg. These values of temperature-normated lifespan metabolic potential could be considered fundamental for the unicellular organisms.

  18. Iterative optimized effective potential and exact exchange calculations at finite temperature

    International Nuclear Information System (INIS)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Muller, Richard Partain; Desjarlais, Michael Paul; Lippert, Ross A.; Sears, Mark P.; Wright, Alan Francis

    2006-01-01

    We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

  19. Evaluation of low-temperature geothermal potential in Cache Valley, Utah. Report of investigation No. 174

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, J.L.

    1982-11-01

    Field work consisted of locating 90 wells and springs throughout the study area, collecting water samples for later laboratory analyses, and field measurement of pH, temperature, bicarbonate alkalinity, and electrical conductivity. Na/sup +/, K/sup +/, Ca/sup +2/, Mg/sup +2/, SiO/sub 2/, Fe, SO/sub 4//sup -2/, Cl/sup -/, F/sup -/, and total dissolved solids were determined in the laboratory. Temperature profiles were measured in 12 additional, unused walls. Thermal gradients calculated from the profiles were approximately the same as the average for the Basin and Range province, about 35/sup 0/C/km. One well produced a gradient of 297/sup 0/C/km, most probably as a result of a near-surface occurrence of warm water. Possible warm water reservoir temperatures were calculated using both the silica and the Na-K-Ca geothermometers, with the results averaging about 50 to 100/sup 0/C. If mixing calculations were applied, taking into account the temperatures and silica contents of both warm springs or wells and the cold groundwater, reservoir temperatures up to about 200/sup 0/C were indicated. Considering measured surface water temperatures, calculated reservoir temperatures, thermal gradients, and the local geology, most of the Cache Valley, Utah area is unsuited for geothermal development. However, the areas of North Logan, Benson, and Trenton were found to have anomalously warm groundwater in comparison to the background temperature of 13.0/sup 0/C for the study area. The warm water has potential for isolated energy development but is not warm enough for major commercial development.

  20. Potential for use of high-temperature superconductors in fusion reactors

    International Nuclear Information System (INIS)

    Hull, J.R.

    1991-01-01

    The present rate of development of high-temperature superconductors (HTSs) is sufficiently rapid that there may be opportunities for their use in contemporary fusion devices such as the International Thermonuclear Experimental Reactor (ITER). The most likely 1application is for delivering power to the superconducting magnets, especially in substituting for the current leads between the temperatures of 4 K and 77K. A second possible application of HTSs is as a liquid-nitrogen-cooled power bus, connecting the power supplies to the magnets, thus reducing the ohmic heating losses over these relatively long cables. A third potential application of HTSs is as an inner high-field winding of the toroidal field coils that would operate at ∼20 K. While the use of higher temperature magnets offers significant advantages to the reactor system, it is unlikely that tested conductors of this type will be available within the ITER time frame. 23 refs., 2 figs

  1. Ground Source Heat Supply in Moscow Oblast: Temperature Potential and Sustainable Depth of Heat Wells

    Science.gov (United States)

    Vasil'ev, G. P.; Gornov, V. F.; Dmitriev, A. N.; Kolesova, M. V.; Yurchenko, V. A.

    2018-01-01

    The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a "Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow" is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5-6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.

  2. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    International Nuclear Information System (INIS)

    Balbin, R.; Hidalgo, C.; Carlson, A.; Endler, M.; Giannone, L.; Herre, G.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1992-01-01

    Measurements of ion saturation current, floating potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to obtain the radial profiles of these fluctuations in W7-AS and ASDEX. In both devices, a reversal of the radial electric field and an associated velocity shear layer at the plasma boundary have been observed. At the radial position where the phase velocity the poloidal direction of the fluctuations goes to zero, the normalised ion saturation current fluctuation level of 0.2 is the same for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between floating potential and ion saturation current fluctuations has been observed in both machines and this feature can be explained in terms of turbulent eddies. A comparison of fluctuations in a tokamak and stellarator therefore shows many features in common. (orig.)

  3. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  4. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  5. Gravity dual corrections to the heavy quark potential at finite-temperature

    International Nuclear Information System (INIS)

    Grigoryan, Hovhannes R.; Kovchegov, Yuri V.

    2011-01-01

    We apply gauge/gravity duality to compute 1/N c 2 corrections to the heavy quark potentials of a quark-anti-quark pair (QQ-bar) and of a quark-quark pair (QQ) immersed into the strongly coupled N=4 SYM plasma. On the gravity side these corrections come from the exchanges of supergravity modes between two string worldsheets stretching from the UV boundary of AdS space to the black hole horizon in the bulk and smeared over S 5 . We find that the contributions to the QQ-bar potential coming from the exchanges of all of the relevant modes (such as dilaton, massive scalar, 2-form field, and graviton) are all attractive, leading to an attractive net QQ-bar potential. We show that at large separations r and/or high-temperature T the potential is of Yukawa-type, dominated by the graviton exchange, in agreement with earlier findings. On the other hand, at small-rT the QQ-bar potential scales as ∼(1/r)ln(1/rT). In the case of QQ potential the 2-form contribution changes sign and becomes repulsive: however, the net QQ potential remains attractive. At large-rT it is dominated by the graviton exchange, while at small-rT the QQ potential becomes Coulomb-like.

  6. Electromagnetic Acoustic Transducers Applied to High Temperature Plates for Potential Use in the Solar Thermal Industry

    Directory of Open Access Journals (Sweden)

    Maria Kogia

    2015-12-01

    Full Text Available Concentrated Solar Plants (CSPs are used in solar thermal industry for collecting and converting sunlight into electricity. Parabolic trough CSPs are the most widely used type of CSP and an absorber tube is an essential part of them. The hostile operating environment of the absorber tubes, such as high temperatures (400–550 °C, contraction/expansion, and vibrations, may lead them to suffer from creep, thermo-mechanical fatigue, and hot corrosion. Hence, their condition monitoring is of crucial importance and a very challenging task as well. Electromagnetic Acoustic Transducers (EMATs are a promising, non-contact technology of transducers that has the potential to be used for the inspection of large structures at high temperatures by exciting Guided Waves. In this paper, a study regarding the potential use of EMATs in this application and their performance at high temperature is presented. A Periodic Permanent Magnet (PPM EMAT with a racetrack coil, designed to excite Shear Horizontal waves (SH0, has been theoretically and experimentally evaluated at both room and high temperatures.

  7. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    Directory of Open Access Journals (Sweden)

    Lindsay M Beck-Johnson

    Full Text Available The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases.

  8. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    Science.gov (United States)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  9. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid

    Science.gov (United States)

    Sun, Hongbing; Feistel, Rainer; Koch, Manfred; Markoe, Andrew

    2008-10-01

    A set of fitted polynomial equations for calculating the physical variables density, entropy, heat capacity and potential temperature of a thermal saline fluid for a temperature range of 0-374 °C, pressure range of 0.1-100 MPa and absolute salinity range of 0-40 g/kg is established. The freshwater components of the equations are extracted from the recently released tabulated data of freshwater properties of Wagner and Pruß [2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31, 387-535]. The salt water component of the equation is based on the near-linear relationship between density, salinity and specific heat capacity and is extracted from the data sets of Feistel [2003. A new extended Gibbs thermodynamic potential of seawater. Progress in Oceanography 58, 43-114], Bromley et al. [1970. Heat capacities and enthalpies of sea salt solutions to 200 °C. Journal of Chemical and Engineering Data 15, 246-253] and Grunberg [1970. Properties of sea water concentrates. In: Third International Symposium on Fresh Water from the Sea, vol. 1, pp. 31-39] in a temperature range 0-200 °C, practical salinity range 0-40, and varying pressure and is also calibrated by the data set of Millero et al. [1981. Summary of data treatment for the international high pressure equation of state for seawater. UNESCO Technical Papers in Marine Science 38, 99-192]. The freshwater and salt water components are combined to establish a workable multi-polynomial equation, whose coefficients were computed through standard linear regression analysis. The results obtained in this way for density, entropy and potential temperature are comparable with those of existing models, except that our new equations cover a wider temperature—(0-374 °C) than the traditional (0-40 °C) temperature range. One can apply these newly established equations to the calculation of in-situ or

  10. Potential drop crack growth monitoring in high temperature biaxial fatigue tests

    International Nuclear Information System (INIS)

    Fitzgerald, B.P.; Krempl, E.

    1993-01-01

    The present work describes a procedure for monitoring crack growth in high temperature, biaxial, low cycle fatigue tests. The reversing DC potential drop equipment monitors smooth, tubular type 304 stainless steel specimens during fatigue testing. Electrical interference from an induction heater is filtered out by an analog filter and by using a long integration time. A Fourier smoothing algorithm and two spline interpolations process the large data set. The experimentally determined electrical potential drop is compared with the theoretical electrostatic potential that is found by solving Laplace's equation for an elliptical crack in a semi-infinite conducting medium. Since agreement between theory and experiment is good, the method can be used to measure crack growth to failure from the threshold of detectability

  11. The local temperature and chemical potential inside a mesoscopic device driven out of equilibrium

    International Nuclear Information System (INIS)

    Wang, Pei

    2011-01-01

    In this paper we introduce a method for calculating the local temperature and chemical potential inside a mesoscopic device out of equilibrium. We show how to check the conditions of local thermal equilibrium when the whole system is out of equilibrium. In particular, we study the on-site chemical potentials inside a chain coupled to two reservoirs at a finite voltage bias. We observe in the presence of disorder a large fluctuation in on-site chemical potentials, which can be suppressed by the electron–electron interaction. By taking the average with respect to the configurations of the disorder, we recover the classical picture where the voltage drops monotonically through the resistance wire. We prove the existence of local intensive variables in a mesoscopic device which is in equilibrium or not far from equilibrium

  12. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  13. Some aspects of thermal inflation: The finite temperature potential and topological defects

    International Nuclear Information System (INIS)

    Barreiro, T.; Copeland, E.J.; Lyth, D.H.; Prokopec, T.

    1996-01-01

    Currently favored extensions of the standard model typically contain open-quote open-quote flaton fields close-quote close-quote defined as fields with large vacuum expectation values (VEV close-quote s) and almost flat potentials. If a flaton field is trapped at the origin in the early Universe, one expects open-quote open-quote thermal inflation close-quote close-quote to take place before it rolls away to the true vacuum, because the finite-temperature correction to the potential will hold it at the origin until the temperature falls below 1 TeV or so. In the first part of the paper, that expectation is confirmed by an estimate of the finite-temperature corrections and of the tunneling rate to the true vacuum, paying careful attention to the validity of the approximations that are used. The second part of the paper considers topological defects which may be produced at the end of an era of thermal inflation. If the flaton fields associated with the era are grand unified theory (GUT) Higgs fields, then its end corresponds to the GUT phase transition. In that case monopoles (as well as GUT Higgs particles) will have to be diluted by a second era of thermal inflation. Such an era will not affect the cosmology of GUT strings, for which the crucial parameter is the string mass per unit length. Because of the flat Higgs potential, the GUT symmetry-breaking scale required for the strings to be a candidate for the origin of large scale structure and the CMB anisotropy is about three times bigger than usual, but given the uncertainties it is still compatible with the one required by the unification of the standard model gauge couplings. The cosmology of textures and of global monopoles is unaffected by the flatness of the potential. copyright 1996 The American Physical Society

  14. Heavy-quark potential at finite temperature using the holographic correspondence

    International Nuclear Information System (INIS)

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2008-01-01

    We revisit the calculation of a heavy-quark potential in N=4 supersymmetric Yang-Mills theory at finite temperature using the AdS/CFT correspondence. As is widely known, the potential calculated in the pioneering works of Rey et al.[Nucl. Phys. B527, 171 (1998)] and Brandhuber et al.[Phys. Lett. B 434, 36 (1998)] is zero for separation distances r between the quark and the antiquark above a certain critical separation, at which the potential has a kink. We point out that by analytically continuing the string configurations into the complex plane, and using a slightly different renormalization subtraction, one obtains a smooth nonzero (negative definite) potential without a kink. The obtained potential also has a nonzero imaginary (absorptive) part for separations r>r c =0.870/πT. Most importantly, at large separations r the real part of the potential does not exhibit the exponential Debye falloff expected from perturbation theory and instead falls off as a power law, proportional to 1/r 4 for r>r 0 =2.702/πT.

  15. Potential forcings of summer temperature variability of the southeastern Tibetan Plateau in the past 12 ka

    Science.gov (United States)

    Zhang, Enlou; Chang, Jie; Sun, Weiwei; Cao, Yanmin; Langdon, Peter; Cheng, Jun

    2018-06-01

    Investigating potential forcing mechanisms of terrestrial summer temperature changes from the Asian summer monsoon influenced area is of importance to better understand the climate variability in these densely populated regions. The results of spectral and wavelet analyses of the published chironomid reconstructed mean July temperature data from Tiancai Lake on the SE Tibetan Plateau are presented. The evidence of solar forcing of the summer temperature variability from the site on centennial timescales where key solar periodicities (at 855 ± 40, 465 ± 40, 315 ± 40 and 165 ± 40 year) are revealed. By using a band-pass filter, coherent fluctuations were found in the strength of Asian summer monsoon, Northern Hemisphere high latitude climate and high elevation mid-latitude (26°N) terrestrial temperatures with solar sunspot cycles since about 7.6 ka. The two abrupt cooling events detected from the Tiancai Lake record, centered at ∼9.7 and 3.5 ka were examined respectively. Coupled with the paleoclimate modeling results, the early Holocene event (9.7 ka) is possibly linked to an ocean-atmospheric feedback mechanism whereas the latter event (3.5 ka) may be more directly related to external forcing.

  16. Potential denitrification in arable soil samples at winter temperatures - measurements by 15N gas analysis

    International Nuclear Information System (INIS)

    Lippold, H.; Foerster, I.; Matzel, W.

    1989-01-01

    In samples from the plough horizon of five soils taken after cereal harvest, denitrification was measured as volatilization of N 2 and N 2 O from 15 N nitrate in the absence of O 2 . Nitrate contents lower than 50 ppm N (related to soil dry matter) had only a small effect on denitrification velocity in four of the five soils. In a clay soil dependence on nitrate concentration corresponded to a first-order reaction. Available C was no limiting factor. Even at zero temperatures remarkable N amounts (on average 0.2 ppm N per day) were still denitrified. The addition of daily turnover rates in relation to soil temperatures prevailing from December to March revealed potential turnovers in the 0-to-30-cm layer of the soils to average 28 ± 5 ppm N. (author)

  17. Finite grid radius and thickness effects on retarding potential analyzer measured suprathermal electron density and temperature

    International Nuclear Information System (INIS)

    Knudsen, W.C.

    1992-01-01

    The effect of finite grid radius and thickness on the electron current measured by planar retarding potential analyzers (RPAs) is analyzed numerically. Depending on the plasma environment, the current is significantly reduced below that which is calculated using a theoretical equation derived for an idealized RPA having grids with infinite radius and vanishingly small thickness. A correction factor to the idealized theoretical equation is derived for the Pioneer Venus (PV) orbiter RPA (ORPA) for electron gases consisting of one or more components obeying Maxwell statistics. The error in density and temperature of Maxwellian electron distributions previously derived from ORPA data using the theoretical expression for the idealized ORPA is evaluated by comparing the densities and temperatures derived from a sample of PV ORPA data using the theoretical expression with and without the correction factor

  18. Potential for cladding thermal failure in LWRs during high temperature transients

    International Nuclear Information System (INIS)

    El Genk, M.S.

    1979-01-01

    The temperature increase in the fuel and the cladding during a PCM accident produces film boiling at the cladding surface which may induce zircaloy cladding failure, due to embrittlement, and fuel melting at the centerline of the fuel pellets. Molten fuel may extrude through radial cracks in the fuel and relocate in the fuel-cladding gap. Contact of extruded molten fuel with the cladding, which is at high temperature during film boiling, may induce cladding thermal failure due to melting. An assessment of central fuel melting and molten fuel extrusion into the fuel-cladding gap during a PCM accident is presented. The potential for thermal failure of the zircaloy cladding upon being contacted by molten fuel during such an accident is also analyzed and compared with the applicable experimental evidence

  19. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1993-12-31

    Measurements of density, potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. The properties of plasma fluctuations in a tokamak and stellarator can then be compared. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to measure the radial profiles of fluctuations in the ion saturation current and floating potential in W7-AS and ASDEX. In both devices, a reversal in radial electric field and an associated velocity shear layer at the plasma boundary have been observed and in both cases the normalized ion saturation current fluctuation level decreases monotonically moving towards the plasma centre and through the shear layer. At the radial position where the phase velocity in the poloidal direction of the fluctuations goes to zero, the normalized ion saturation current fluctuation level of 0.25 are similar for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between fluctuations in floating potential and ion saturation current has been observed in both machines. (author) 6 refs., 4 figs.

  20. Using Streamflow and Stream Temperature to Assess the Potential Responses of Freshwater Fish to Climate Change

    Science.gov (United States)

    VanCompernolle, M.; Ficklin, D. L.; Knouft, J.

    2017-12-01

    Streamflow and stream temperature are key variables influencing growth, reproduction, and mortality of freshwater fish. Climate-induced changes in these variables are expected to alter the structure and function of aquatic ecosystems. Using Maxent, a species distribution model (SDM) based on the principal of maximum entropy, we predicted potential distributional responses of 100 fish species in the Mobile River Basin (MRB) to changes in climate based on contemporary and future streamflow and stream temperature estimates. Geologic, topographic, and landcover data were also included in each SDM to determine the contribution of these physical variables in defining areas of suitable habitat for each species. Using an ensemble of Global Climate Model (GCM) projections under a high emissions scenario, predicted distributions for each species across the MRB were produced for both a historical time period, 1975-1994, and a future time period, 2060-2079, and changes in total area and the percent change in historical suitable habitat for each species were calculated. Results indicate that flow (28%), temperature (29%), and geology (29%), on average, contribute evenly to determining areas of suitable habitat for fish species in the MRB, with landcover and slope playing more limited roles. Temperature contributed slightly more predictive ability to SDMs (31%) for the 77 species experiencing overall declines in areas of suitable habitat, but only 21% for the 23 species gaining habitat across all GCMs. Species are expected to lose between 15-24% of their historical suitable habitat, with threatened and endangered species losing 22-30% and those endemic to the MRB losing 19-28%. Sculpins (Cottidae) are expected to lose the largest amount of historical habitat (up to 84%), while pygmy sunfish (Elassomatidae) are expected to lose less than 1% of historical habitat. Understanding which species may be at risk of habitat loss under future projections of climate change can help

  1. Determining the potential independent critical pitting temperature (CPT) by a potentiostatic method using the Avesta Cell

    International Nuclear Information System (INIS)

    Arnvig, P.E.; Bisgard, A.D.

    1996-01-01

    The development of a potentiostatic method for determining the potential independent Critical Pitting Temperature (CPT) using the Avesta Cell is presented. The new potentiostatic method has been used to determine the CPT for austenitic stainless steels. The precision of the potentiostatic method of approximately ±2 C is close to that of the traditional potentiodynamic method. The time required to determine a CPT is much shorter than when using the potentiodynamic method. A CPT is obtained within 1.5 to 3 hours for each specimen. The influence of various experimental parameters such as electrochemical potential, evaluation criteria for the CPT, test area, stabilization time prior to polarization and inert gas purging is described. The lack of sensitivity towards many of these parameters as well as the high reproducibility obtained is associated with fundamentals of the pitting process. It is argued that the potential independent CPT characterizes the stable propagating pitting event as opposed to the potential dependent CPT or pitting potentials, which to a larger extent are affected by the nucleation part of the pitting process

  2. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    OpenAIRE

    Lina María Romero Millán; María Alejandra Cruz Domínguez; Fabio Emiro Sierra Vargas

    2016-01-01

    Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield an...

  3. Anharmonic effective pair potentials of gold under high pressure and high temperature

    CERN Document Server

    Okube, M; Ohtaka, O; Fukui, H; Katayama, Y; Utsumi, W

    2002-01-01

    In order to examine the effect of pressure on the anharmonicity of Au, extended x-ray absorption fine-structure spectra near the Au L sub 3 edge were measured in the temperature range from 300 to 1100 K under pressures up to 14 GPa using large-volume high-pressure devices and synchrotron radiation. The anharmonic effective pair potentials of Au, V (u) = au sup 2 + bu sup 3 , at 0.1 MPa, 6 and 14 GPa have been calculated. The pressure dependence of the thermal expansion coefficients has also been evaluated. The reliability of the anharmonic correction proposed on the basis of the Anderson scale has been discussed.

  4. Finite temperature and chemical potential in lattice QCD and its critical point

    International Nuclear Information System (INIS)

    Fodor, Z.

    2002-01-01

    We propose a method to study lattice QCD at finite temperature (T) and chemical potential (μ). We compare the method with direct results and with the Glasgow method by using n f =4 QCD at Im(μ)≠0. We locate the critical endpoint (E) of QCD on the Re(μ)-T plane. We use n f =2+1 dynamical staggered quarks with semi-realistic masses on L t =4 lattices. Our results are based on O(10 3 - 10 4 ) configurations. (orig.)

  5. The diffusion cross section for atomic hydrogen in helium gas at low temperature and the H-He potential

    International Nuclear Information System (INIS)

    Jochemsen, R.; Berlinsky, A.J.; Hardy, W.N.

    1984-01-01

    A calculation of the diffusion cross section Q sub(D) of hydrogen atoms in helium gas at low temperature is performed and compared with recent experimental results. The comparison allows an improved determination of the H-He potential. Calculations were done for three different potentials: our own empirical potential based on experimental high-energy scattering results and calculated long-range dispersion terms, which gives good results for Q sub(D) and total collision cross sections; a recently determined semi-empirical potential, and an ab initio calculated potential. All three potentials imply a strong temperature dependence of Q sub(D) for T < 1.5 K

  6. Floating potential in electronegative plasmas for non-zero ion temperatures

    Science.gov (United States)

    Regodón, Guillermo Fernando; Fernández Palop, José Ignacio; Tejero-del-Caz, Antonio; Díaz-Cabrera, Juan Manuel; Carmona-Cabezas, Rafael; Ballesteros, Jerónimo

    2018-02-01

    The floating potential of a Langmuir probe immersed in an electronegative plasma is studied theoretically under the assumption of radial positive ion fluid movement for non-zero positive ion temperature: both cylindrical and spherical geometries are studied. The model is solvable exactly. The special characteristics of the electronegative pre-sheath are found and the influence of the stratified electronegative pre-sheath is shown to be very small in practical applications. It is suggested that the use of the floating potential in the measurement of negative ions population density is convenient, in view of the numerical results obtained. The differences between the two radial geometries, which become very important for small probe radii of the order of magnitude of the Debye length, are studied.

  7. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    Directory of Open Access Journals (Sweden)

    Lina María Romero Millán

    2016-06-01

    Full Text Available Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield and in the energy content of produced solids and gases were analyzed. Results: With a maximum mass yield of 50%, the char is considered the main product of oil palm shells pyrolysis, containing up to 73% of the raw biomass energy. The heating value of char raised with the temperature, from 29,6 MJ/kg at 300°C to 31,34 MJ/kg at 500°C. Moreover, the gas produced in the established temperature range had up to 13% of the energy content of the raw biomass, with a heating value near 12,5 MJ/m3. Conclusions: According to the results, slow pyrolysis can be considered an interesting process for the valorization of residual biomass as oil palm shells, through the production of solids and gases that can be used as fuels, or as precursor of other value-added products.

  8. The Potential for Low-Temperature Abiotic Hydrogen Generation and a Hydrogen-Driven Deep Biosphere

    Science.gov (United States)

    Huang, Shanshan; Thorseth, Ingunn H.

    2011-01-01

    Abstract The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged. Key Words: Serpentinization—Olivine—Hydrogen—Deep biosphere—Water—Mars. Astrobiology 11, 711–724. PMID:21923409

  9. Density, temperature, and potential fluctuation measurements by the swept Langmuir probe technique in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Giannone, L.; Balbin, R.; Niedermeyer, H.; Endler, M.; Herre, G.; Hidalgo, C.; Rudyj, A.; Theimer, G.; Verplanke, P.

    1994-01-01

    In the Wendelstein 7-AS stellarator (W7-AS) [Plasma Phys. Controlled Fusion 33, 1591 (1991)], current-voltage characteristics of the Langmuir probe at sweep frequencies in the range 400 kHz to 1 MHz were measured and it was found that the mean and fluctuation values of the ion saturation current, floating potential, and electron temperature were independent of the sweep frequency. A radial scan in the vicinity of the velocity shear layer was performed. The simultaneous sweeping of 3 probe tips showed a statistically significant spatial coherence of the fluctuations in the poloidal direction and a decrease in spatial coherence of the fluctuations with increasing tip separation could be demonstrated. The observation of a change in the propagation direction of fluctuations as the shear layer was crossed and a calculation of the transport spectrum show that the swept probe method is capable of reproducing known results. Apparent temperature fluctuations, due to variations of density and potential during a sweep, are shown by simulations to be only of importance at frequencies above half the Nyquist frequency

  10. Potential impact of increased temperature and CO2 on particulate dimethylsulfoniopropionate in the Southeastern Bering Sea

    Directory of Open Access Journals (Sweden)

    Peter A. Lee

    2011-06-01

    Full Text Available The potential impact of elevated sea surface temperature (SST and pCO2 on algal community structure and particulate dimethylsulfoniopropionate (DMSPp concentrations in the southeastern Bering Sea was examined using a shipboard “Ecostat” continuous culture system. The ecostat system was used to mimic the conditions projected to exist in the world's oceans by the end of this century (i.e. elevated pCO2 (750 ppm and elevated SST (ambient + 4°C. Two experiments were conducted using natural phytoplankton assemblages from the high-nutrient low-chlorophyll (HNLC central basin and from the middle domain of the southeastern continental shelf. At the HNLC site, the relative abundances of haptophytes and pelagophytes were higher and the relative abundance of diatoms lower under “greenhouse” conditions (i.e. combined 750 ppm CO2 and elevated temperature than control conditions (380 ppm CO2 and ambient temperature. This shift in algal community structure was accompanied by increases in DMSPp (2–3 fold, DMSPp:Chl a (2–3 fold and DMSP:PON (2 fold. At the continental shelf site, the changes in the relative abundances of haptophytes, pelagophytes and diatoms under “greenhouse” conditions were similar to those observed at the HNLC site, with 2.5 fold increases in DMSPp, 50–100% increases in DMSPp:Chl a and 1.8 fold increases in DMSP:PON. At both locations, changes in community structure and the DMSPp parameters were largely driven by increasing temperature. The observed changes were also consistent with the phytoplankton-DMS-albedo climate feedback mechanism proposed in the Charlson-Lovelock-Andreae-Warren (CLAW hypothesis.

  11. Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature

    International Nuclear Information System (INIS)

    Durán-Klie, Gabriela; Rodrigues, Davide; Delpech, Sylvie

    2016-01-01

    Measurement of redox potential in fluoride media is a major problem due to the difficulty to design a reference electrode with high stability, high mechanical resistance and high accuracy. In the frame of molten salt reactor studies, a dynamic reference electrode (DRE) is developed to measure redox potential in fluoride molten salt at high temperature. DRE is based on the in-situ generation of a transient redox system. The choice of the redox couple corresponds to the cathodic limit of the molten salt considered. As a preliminary step, the demonstration of feasibility of generating a DRE was done in LiF-NaF-KF (46.5–11.5–42 mol%) media at 500 °C. In this salt, the reference redox system generated by coulometry at applied current is KF/K, metallic potassium being electrodeposited on a tungsten wire electrode. The validation of the DRE response and the experimental optimization parameters for DRE generation were realized by following the NiF 2 /Ni redox potential evolution as a function of NiF 2 concentration in the fused salt. The current value applied for DRE generation was optimized. It depends on the amount of metallic cations contained in the fused salt and which can be electrochemically reduced simultaneously during the DRE generation. The current corresponding to the DRE generation has to be 4 times greater than the current corresponding to the reduction of the other elements.

  12. Potentialities in electronics of new high critical temperature superconductors. Potentialites en electronique des nouveaux supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, P [Thomson-CSF, 75 - Paris (FR)

    1989-09-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed.

  13. Potential Usage of Thermoelectric Devices in a High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Andreasen, Søren Juhl

    2012-01-01

    Methanol fuelled high temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved and they still rely on a large Li-ion battery...... for system startup. In this paper, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. Firstly, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas......-liquid heat exchanger to jointly form a heat recovery subsystem for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To further improve the TEG subsystem performance, a finite...

  14. Dominant two-loop corrections to the MSSM finite temperature effective potential

    International Nuclear Information System (INIS)

    Espinosa, J.R.

    1996-04-01

    We show that two-loop corrections to the finite temperature effective potential in the MSSM can have a dramatic effect on the strength of the electroweak phase transition, making it more strongly first order. The change in the order parameter v/Tc can be as large as 75% of the one-loop daisy improved result. This effect can be decisive to widen the region in parameter space where erasure of the created baryons by sphaleron processes after the transition is suppressed and hence, where electroweak baryogenesis might be successful. We find an allowed region with tan β< or∼4.5 and a Higgs boson with standard couplings and mass below 80 GeV within the reach of LEP II. (orig.)

  15. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels.

    Science.gov (United States)

    Clapham, David E; Miller, Christopher

    2011-12-06

    The exceptionally high temperature sensitivity of certain transient receptor potential (TRP) family ion channels is the molecular basis of hot and cold sensation in sensory neurons. The laws of thermodynamics dictate that opening of these specialized TRP channels must involve an unusually large conformational standard-state enthalpy, ΔH(o): positive ΔH(o) for heat-activated and negative ΔH(o) for cold-activated TRPs. However, the molecular source of such high-enthalpy changes has eluded neurobiologists and biophysicists. Here we offer a general, unifying mechanism for both hot and cold activation that recalls long-appreciated principles of protein folding. We suggest that TRP channel gating is accompanied by large changes in molar heat capacity, ΔC(P). This postulate, along with the laws of thermodynamics and independent of mechanistic detail, leads to the conclusion that hot- and cold-sensing TRPs operate by identical conformational changes.

  16. Regional Projections of Extreme Apparent Temperature Days in Africa and the Related Potential Risk to Human Health

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2015-10-01

    Full Text Available Regional climate modelling was used to produce high resolution climate projections for Africa, under a “business as usual scenario”, that were translated into potential health impacts utilizing a heat index that relates apparent temperature...

  17. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Flyvbjerg, Henrik; Mouritsen, Ole G.

    1989-01-01

    -temperature Potts-ordered phase to an intermediate phase which lacks conventional long-range order, and another transition which takes the system to the high-temperature disordered phase. The linear nature of the sine potential used makes it a marginal case in the sense that it favors neither hard domain boundaries...

  18. Investigation of potential factors affecting the measurement of dew point temperature in oil-soaked transformers

    Science.gov (United States)

    Kraus, Adam H.

    Moisture within a transformer's insulation system has been proven to degrade its dielectric strength. When installing a transformer in situ, one method used to calculate the moisture content of the transformer insulation is to measure the dew point temperature of the internal gas volume of the transformer tank. There are two instruments commercially available that are designed for dew point temperature measurement: the Alnor Model 7000 Dewpointer and the Vaisala DRYCAPRTM Hand-Held Dewpoint Meter DM70. Although these instruments perform an identical task, the design technology behind each instrument is vastly different. When the Alnor Dewpointer and Vaisala DM70 instruments are used to measure the dew point of the internal gas volume simultaneously from a pressurized transformer, their differences in dew point measurement have been observed to vary as much as 30 °F. There is minimal scientific research available that focuses on the process of measuring dew point of a gas inside a pressurized transformer, let alone this observed phenomenon. The primary objective of this work was to determine what effect certain factors potentially have on dew point measurements of a transformer's internal gas volume, in hopes of understanding the root cause of this phenomenon. Three factors that were studied include (1) human error, (2) the use of calibrated and out-of-calibration instruments, and (3) the presence of oil vapor gases in the dry air sample, and their subsequent effects on the Q-value of the sampled gas. After completing this portion of testing, none of the selected variables proved to be a direct cause of the observed discrepancies between the two instruments. The secondary objective was to validate the accuracy of each instrument as compared to its respective published range by testing against a known dew point temperature produced by a humidity generator. In a select operating range of -22 °F to -4 °F, both instruments were found to be accurate and within their

  19. Hydrothermal system of the Papandayan Volcano from temperature, self-potential (SP) and geochemical measurements

    Science.gov (United States)

    Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra

    2017-07-01

    Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.

  20. The potential for using urinary bladder temperature in monitoring whole body hyperthermia

    International Nuclear Information System (INIS)

    Martin, P.A.; Robins, H.I.; Dennis, W.H.

    1985-01-01

    Urinary bladder, esophageal and rectal temperatures of patients were determined by thermistor thermometry during systemic hyperthermia treatments. When deep temperatures were raised from 37 0 to 41.8 0 , the esophageal temperature increases led those of the bladder and rectum. Throughout the heating phases the paired difference of esophageal and bladder temperatures was significantly greater than zero while the difference between bladder and rectal was less. In this system, urinary bladder temperature is a measure of deep tissue temperature and not a good estimate of arterial blood temperature

  1. Germination response of Hylocereus setaceus (Salm-Dyck ex DC: ) Ralf Bauer (Cactaceae) seeds to temperature and reduced water potentials.

    Science.gov (United States)

    Simão, E; Takaki, M; Cardoso, V J M

    2010-02-01

    The germination response of Hylocereus setaceus seeds to isothermic incubation at different water potentials was analysed by using the thermal time and hydrotime models, aiming to describe some germination parameters of the population and to test the validity of the models to describe the response of the seeds to temperature and water potential. Hylocereus setaceus seeds germinated relatively well in a wide range of temperatures and the germination was rate limited from 11 to 20 degrees C interval and beyond 30 degrees C until 40 degrees C, in which the germination rate respectively shifts positively and negatively with temperature. The minimum or base temperature (T(b)) for the germination of H. setaceus was 7 degrees C, and the ceiling temperature varied nearly from 43.5 to 59 degrees C depending on the percent fraction, with median set on 49.8 degrees C. The number of degrees day necessary for 50% of the seeds to germinate in the infra-optimum temperature range was 39.3 degrees C day, whereas at the supra-optimum interval the value of theta = 77 was assumed to be constant throughout. Germination was sensitive to decreasing values of psi in the medium, and both the germinability and the germination rate shift negatively with the reduction of psi, but the rate of reduction changed with temperature. The values of base water potential (psi(b)) shift to zero with increasing temperatures and such variation reflects in the relatively greater effect of low psi on germination in supra optimum range of T. In general, the model described better the germination time courses at lower than at higher water potentials. The analysis also suggest that Tb may not be independent of psi and that psi(b(g)) may change as a function of temperature at the infra-otimum temperature range.

  2. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems

    Science.gov (United States)

    Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

    2015-04-01

    Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

  3. Temperature Dependence of Receptor Potential and Noise in Fly (Calliphora erythrocephala) Photoreceptor Cells

    NARCIS (Netherlands)

    Roebroek, J.G.H.; Tjonger, M. van; Stavenga, D.G.

    1990-01-01

    We investigated the effect of temperature on the response to light of photoreceptors of the blowfly Calliphora erythrocephala. The latency and the time-to-peak of the responses become shorter as the temperature increases; Q10 = 2.8 ± 0.6. The response amplitude is independent of the temperature in

  4. Potential applications of helium-cooled high-temperature reactors to process heat use

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1981-01-01

    High-Temperature Gas-Cooled Reactors (HTRs) permit nuclear energy to be applied to a number of processes presently utilizing fossil fuels. Promising applications of HTRs involve cogeneration, thermal energy transport using molten salt systems, steam reforming of methane for production of chemicals, coal and oil shale liquefaction or gasification, and - in the longer term - energy transport using a chemical heat pipe. Further, HTRs might be used in the more distant future as the energy source for thermochemical hydrogen production from water. Preliminary results of ongoing studies indicate that the potential market for Process Heat HTRs by the year 2020 is about 150 to 250 GW(t) for process heat/cogeneration application, plus approximately 150 to 300 GW(t) for application to fossil conversion processes. HTR cogeneration plants appear attractive in the near term for new industrial plants using large amounts of process heat, possibly for present industrial plants in conjunction with molten-salt energy distribution systems, and also for some fossil conversion processes. HTR reformer systems will take longer to develop, but are applicable to chemicals production, a larger number of fossil conversion processes, and to chemical heat pipes

  5. Temperature-dependent relativistic microscopic optical potential and the mean free path of a nucleon based on Walecka's model

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhuo Yizhong

    1994-01-01

    The relativistic microscopic optical potential, the Schroedinger equivalent potential, and mean free paths of a nucleon at finite temperature in nuclear matter and finite nuclei are studied based on Walecka's model and thermo-field dynamics. We let only the Hartree-Fock self-energy of a nucleon represent the real part of the microscopic optical potential and the fourth order of meson exchange diagrams, i.e. the polarization diagrams represent the imaginary part of the microscopic optical potential in nuclear matter. The microscopic optical potential of finite nuclei is obtained by means of the local density approximation. (orig.)

  6. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    International Nuclear Information System (INIS)

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-01-01

    Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  7. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  8. Grain temperature, radiation pressure and electric potential in the vicinity of main sequence and white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Leiknes, J.; Havnes, O. (University of Tromso, Auroral Observatory (Norway))

    1984-08-01

    We present results of calculations of the grain physical parameters temperature, lifetime against evaporation, radiation pressure and electric potential for spherical grains near main sequence stars, hydrogen type (DA) white dwarfs and helium type (DB) white dwarfs. These parameters are essential in determining the behaviour of grains near such stars. The grain temperature as a function of stellar distance is calculated for grains of sizes 0.1 and 1 ..mu.. (micron) for grain materials of silicate (obsidian), iron and graphite. The lifetime due to thermal evaporation as a function of grain temperature of these materials is also given. The radiation pressure is given for grain sizes from 0.01 to 10 ..mu.. for the same three grain materials. Grain potentials have been calculated as functions of stellar distance for one photoelectron high yield material (silicate) and one low yield material (graphite) for grains of radius 0.1 ..mu.. embedded in a thermal plasma of temperature T = 10/sup 4/ K.

  9. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change.

    Science.gov (United States)

    Shakya, S K; Goss, E M; Dufault, N S; van Bruggen, A H C

    2015-02-01

    Global climate change will have effects on diurnal temperature oscillations as well as on average temperatures. Studies on potato late blight (Phytophthora infestans) development have not considered daily temperature oscillations. We hypothesize that growth and development rates of P. infestans would be less influenced by change in average temperature as the magnitude of fluctuations in daily temperatures increases. We investigated the effects of seven constant (10, 12, 15, 17, 20, 23, and 27°C) and diurnally oscillating (±5 and ±10°C) temperatures around the same means on number of lesions, incubation period, latent period, radial lesion growth rate, and sporulation intensity on detached potato leaves inoculated with two P. infestans isolates from clonal lineages US-8 and US-23. A four-parameter thermodynamic model was used to describe relationships between temperature and disease development measurements. Incubation and latency progression accelerated with increasing oscillations at low mean temperatures but slowed down with increasing oscillations at high mean temperatures (P effects of global climate change on disease development.

  10. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome.

    Science.gov (United States)

    De Vrieze, Jo; Saunders, Aaron Marc; He, Ying; Fang, Jing; Nielsen, Per Halkjaer; Verstraete, Willy; Boon, Nico

    2015-05-15

    Anaerobic digestion is regarded as a key environmental technology in the present and future bio-based economy. The microbial community completing the anaerobic digestion process is considered complex, and several attempts already have been carried out to determine the key microbial populations. However, the key differences in the anaerobic digestion microbiomes, and the environmental/process parameters that drive these differences, remain poorly understood. In this research, we hypothesized that differences in operational parameters lead to a particular composition and organization of microbial communities in full-scale installations. A total of 38 samples were collected from 29 different full-scale anaerobic digestion installations, showing constant biogas production in function of time. Microbial community analysis was carried out by means of amplicon sequencing and real-time PCR. The bacterial community in all samples was dominated by representatives of the Firmicutes, Bacteroidetes and Proteobacteria, covering 86.1 ± 10.7% of the total bacterial community. Acetoclastic methanogenesis was dominated by Methanosaetaceae, yet, only the hydrogenotrophic Methanobacteriales correlated with biogas production, confirming their importance in high-rate anaerobic digestion systems. In-depth analysis of operational and environmental parameters and bacterial community structure indicated the presence of three potential clusters in anaerobic digestion. These clusters were determined by total ammonia concentration, free ammonia concentration and temperature, and characterized by an increased relative abundance of Bacteroidales, Clostridiales and Lactobacillales, respectively. None of the methanogenic populations, however, could be significantly attributed to any of the three clusters. Nonetheless, further experimental research will be required to validate the existence of these different clusters, and to which extent the presence of these clusters relates to stable or sub

  11. Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy

    Science.gov (United States)

    Drury, Anna Joy; John, Cédric M.

    2016-10-01

    Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and δ18O) or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (U37k'). We examine clumped isotope (Δ47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The Δ47-derived temperatures from 63 μm fraction removes most nonmixed layer components; however, the Δ47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 μm) are removed during the size fraction separation process. The c1 and <63 μm c2 Δ47-derived temperatures are comparable to concurrent U37k' SSTs. The <20, <10, and 2-5 μm c2 Δ47-derived temperatures are consistently cooler than expected. The Δ47-U37k' temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 μm fraction (˜53% by area), which potentially precipitated at bottom water temperatures of ˜6°C. Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and time scale is undertaken.

  12. Near fifty percent sodium substituted lanthanum manganites—A potential magnetic refrigerant for room temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Omari, I. A. [Department of Physics, Sultan Qaboos University, PC 123 Muscat, Sultanate of Oman (Oman); Suresh, K. G. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2014-03-03

    Nearly half of lanthanum sites in lanthanum manganites were substituted with monovalent ion-sodium and the compound possessed distorted orthorhombic structure. Ferromagnetic ordering at 300 K and the magnetic isotherms at different temperature ranges were analyzed for estimating magnetic entropy variation. Magnetic entropy change of 1.5 J·kg{sup −1}·K{sup −1} was observed near 300 K. An appreciable magnetocaloric effect was also observed for a wide range of temperatures near 300 K for small magnetic field variation. Heat capacity was measured for temperatures lower than 300 K and the adiabatic temperature change increases with increase in temperature with a maximum of 0.62 K at 280 K.

  13. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    Science.gov (United States)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost

  14. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China

    Directory of Open Access Journals (Sweden)

    Ruiwu Zhou

    2018-04-01

    Full Text Available The distribution of forest vegetation and forest carbon sequestration potential are significantly influenced by climate change. In this study, a map of the current distribution of vegetation in Yunnan Province was compiled based on data from remote sensing imagery from the Advanced Land Observing Satellite (ALOS from 2008 to 2011. A classification and regression tree (CART model was used to predict the potential distribution of the main forest vegetation types in Yunnan Province and estimate the changes in carbon storage and carbon sequestration potential (CSP in response to increasing temperature. The results show that the current total forest area in Yunnan Province is 1.86 × 107 ha and that forest covers 48.63% of the area. As the temperature increases, the area of forest distribution first increases and then decreases, and it decreases by 11% when the temperature increases from 1.5 to 2 °C. The mean carbon density of the seven types of forest vegetation in Yunnan Province is 84.69 Mg/ha. The total carbon storage of the current forest vegetation in Yunnan Province is 871.14 TgC, and the CSP is 1100.61 TgC. The largest CSP (1114.82 TgC occurs when the temperature increases by 0.5 °C. Incremental warming of 2 °C will sharply decrease the forest CSP, especially in those regions with mature coniferous forest vegetation. Semi-humid evergreen broad-leaved forests were highly sensitive to temperature changes, and the CSP of these forests will decrease with increasing temperature. Warm-hot coniferous forests have the greatest CSP in all simulation scenarios except the scenario of a 2 °C temperature increase. These results indicate that temperature increases can influence the CSP in Yunnan Province, and the largest impact emerged in the 2 °C increase scenario.

  15. Physiological potential of Oryza sativa seeds treated with growth regulators at low temperatures

    Directory of Open Access Journals (Sweden)

    Mara Grohs

    Full Text Available ABSTRACT The rapid and uniform establishment of rice crops is important for improving production. However, this condition is influenced by several factors, including the soil temperature when planting, which may delay seed germination and compromise the final stand. The aim of this study was to evaluate the behaviour of substances which have the effect of growth regulator when applied to the seeds of different rice cultivars under low-temperature conditions. The experiment was carried out in a completely randomised design with four replications in a bi-factorial scheme, where factor A was represented by the different products (gibberellic acid - AG3, tiamethoxam - TMX, Haf Plus® - HAF, and a control with water - TEST, and factor B by the irrigated rice cultivars (IRGA 424, IRGA 425, Puitá INTA CL, and Avaxi CL. In addition, the experiment was repeated at temperatures of 17 °C and 25 °C in order to simulate low-temperature conditions. The results showed that AG3 is effective in increasing seed vigour in the rice cultivars at both temperatures, with the AG3, TMX and HAF responsible for increasing germination percentage only at the temperature of 17 °C. The effect of the products is more pronounced at low temperatures, and is dependent on the cultivar; in cultivars which are sensitive to cold there is no effect from the products used.

  16. Effect of temperature dependence of the Langmuir constant molecular pair potentials on gas hydrates formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, B.; Enayati, M. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of); Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch

    2008-07-01

    Theoretical methods show that crystalline hydrates can form from single-phase systems consisting of both vapor water with gaseous hydrate former and liquid water with dissolved hydrate former. Two phase systems consist of both liquid water with gaseous hydrate former and with liquid hydrate former on the surface. This paper presented a Langmuir constant related model for the prediction of equilibrium pressures and cage occupancies of pure component hydrates. Intermolecular potentials were fit to quantum mechanical energies to obtain the Langmuir constants, which differed from the procedure utilized with the vdWP model. The paper described the experimental method and model calculations. This included the Fugacity model and Van der Waals and Platteeuw model. The paper also discussed pair potential of non-spherical molecules, including the multicentre (site-site) potential; Gaussian overlap potential; Lennard-Jones potential; and Kihara generalized pair potential. It was concluded that fraction of occupied cavities is a function of pair potentials between hard core and empty hydrate lattice. These pair potentials could be calculated from some model as Kihara cell potential, Gaussian potential, Lennard-Jones potential and multicentre pair potential. 49 refs., 3 figs.

  17. Potential uses of high gradient magnetic filtration for high-temperature water purification in boiling water reactors

    International Nuclear Information System (INIS)

    Elliott, H.H.; Holloway, J.H.; Abbott, D.G.

    1979-01-01

    Studies of various high-temperature filter devices indicate a potentially positive impact for high gradient magnetic filtration on boiling water reactor radiation level reduction. Test results on in-plant water composition and impurity crystallography are presented for several typical boiling water reactors (BWRs) on plant streams where high-temperature filtration may be particularly beneficial. An experimental model on the removal of red iron oxide (hematite) from simulated reactor water with a high gradient magnetic filter is presented, as well as the scale-up parameters used to predict the filtration efficiency on various high temperature, in-plant streams. Numerical examples are given to illustrate the crud removal potential of high gradient magnetic filters installed at alternative stream locations under typical, steady-state, plant operating conditions

  18. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, which are the two main environmental stress factors that promote potential-induced degradation (PID). This model was derived...

  19. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-01-01

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module pow...

  20. Gravitropic reaction of primary seminal roots of Zea mays L. influenced by temperature and soil water potential.

    Science.gov (United States)

    Nakamoto, T

    1995-03-01

    The growth of the primary seminal root of maize (Zea mays L.) is characterized by an initial negative gravitropic reaction and a later positive one that attains a plagiotropic liminal angle. The effects of temperature and water potential of the surrounding soil on these gravitropic reactions were studied. Temperatures of 32, 25, and 18C and soil water potentials of -5, -38, and -67 kPa were imposed and the direction of growth was measured for every 1 cm length of the root. The initial negative gravitropic reaction extended to a distance of about 10 cm from the grain. Higher temperatures reduced the initial negative gravitropic reaction. Lower soil water potential induced a downward growth at root emergence. A mathematical model, in which it was assumed that the rate of the directional change of root growth was a sum of a time-dependent negative gravitropic reaction and an establishment of the liminal angle, adequately fitted the distance-angle relations. It was suggested that higher temperatures and/or a lower water potential accelerated the diminution of the initial negative gravitropic reaction.

  1. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland.

    Science.gov (United States)

    Hu, Xiao Wen; Fan, Yan; Baskin, Carol C; Baskin, Jerry M; Wang, Yan Rong

    2015-05-01

    Temperature and water potential for germination based on the thermal and hydrotime models have been successfully applied in predicting germination requirements of physiologically dormant seeds as well as nondormant seeds. However, comparative studies of the germination requirements of physically dormant seeds from different ecosystems have not been done. Germination of scarified seeds of four legume species collected from the Qing-Tibetan Plateau and of four collected in the Alax Desert in China was compared over a range of temperatures and water potentials based on thermal time and hydrotime models. Seeds of species from the Qing-Tibetan Plateau had a lower base temperature (T b) and optimal temperature (T o) for germination than those from the Alax Desert. Seeds of the four species from the Qing-Tibetan Plateau germinated to high percentages at 5°C, whereas none of the four desert species did so. Seeds of species from the Alax Desert germinated to a high percentage at 35°C or 40°C, while no seeds of species from the Qing-Tibetan Plateau germinated at 35°C or 40°C. The base median water potential [Ψ b(50)] differed among species but not between the two habitats. The thermal time and hydrotime models accurately predicted the germination time course of scarified seeds of most of the eight species in response to temperature and water potential; thus, they can be useful tools in comparative studies on germination of seeds with physical dormancy. Habitat temperatures but not rainfall is closely related to germination requirements of these species. © 2015 Botanical Society of America, Inc.

  2. Corrosion of similar and dissimilar metal crevices in the engineered barrier system of a potential nuclear waste repository

    International Nuclear Information System (INIS)

    He, X.; Dunn, D.S.; Csontos, A.A.

    2007-01-01

    Crevice corrosion is considered possible if the corrosion potential (E corr ) exceeds the repassivation potential for crevice corrosion (E rcrev ). In this study, potentiodynamic polarization and potentiostatic hold were used to determine the E rcrev of similar and dissimilar metal crevices in the engineered barrier system of the potential Yucca Mountain repository in 0.5 M NaCl, 4 M NaCl, and 4 M MgCl 2 solutions at 95 deg. C. The results were compared with data previously obtained using crevices formed between Alloy 22 and polytetrafluoroethylene. It was observed that, except for Type 316L stainless steel, all other metal-to-metal crevices were less susceptible to crevice corrosion than the corresponding metal-to-polytetrafluoroethylene crevices. Measurements of galvanic coupling were used to evaluate the crevice corrosion propagation behavior in 5 M NaCl solution at 95 deg. C. The crevice specimens were coupled to either an Alloy 22 or a Titanium Grade 7 plate using metal or polytetrafluoroethylene crevice washers. Crevice corrosion of Type 316L stainless steel propagated without repassivation. For all the tests using a polytetrafluoroethylene crevice washer, crevice corrosion of Alloy 22 was initiated at open circuit potential by the addition of CuCl 2 as an oxidant, whereas no crevice corrosion of Alloy 22 was initiated for all the tests using Alloy 22 or Titanium Grade 7 metals as crevice washer. However, crevice corrosion propagation was found to be very limited under such test conditions

  3. Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential

    Science.gov (United States)

    Haber, E.; Badea, R.; Berezovsky, J.

    2018-05-01

    The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.

  4. Simulation of uranium transport with variable temperature and oxidation potential: The computer program THCC [Thermo-Hydro-Chemical Coupling

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1986-12-01

    A simulator of reactive chemical transport has been constructed with the capabilities of treating variable temperatures and variable oxidation potentials within a single simulation. Homogeneous and heterogeneous chemical reactions are simulated at temperature-dependent equilibrium, and changes of oxidation states of multivalent elements can be simulated during transport. Chemical mass action relations for formation of complexes in the fluid phase are included explicitly within the partial differential equations of transport, and a special algorithm greatly simplifies treatment of reversible precipitation of solid phases. This approach allows direct solution of the complete set of governing equations for concentrations of all aqueous species and solids affected simultaneously by chemical and physical processes. Results of example simulations of transport, along a temperature gradient, of uranium solution species under conditions of varying pH and oxidation potential and with reversible precipitation of uraninite and coffinite are presented. The examples illustrate how inclusion of variable temperature and oxidation potential in numerical simulators can enhance understanding of the chemical mechanisms affecting migration of multivalent waste elements

  5. Potential energy savings using dynamically optimizing control in refrigeration systems under daily variations in ambient temperature

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus; Wisniewski, Rafal

    2007-01-01

    The objective of this study is to investigate the energy saving potential for refrigeration systems by refrigeration more at the colder night time than at the warmer day time. The potential is evaluated using an optimal control policy and illustrated on a simulation example. The results show...

  6. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  7. Cannabis co-administration potentiates MDMA effects on temperature and heart rate

    NARCIS (Netherlands)

    Dumont, G.; Kramers, C.; Sweep, E.; Touw, D.; Van Hasselt, J.; De Kam, M.; Van Gerven, J.; Buitelaar, J.; Verkes, R.J.

    2009-01-01

    3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) is a frequently used club-drug in Western societies. Ecstasy users generally are multi-drug users, and cannabis (THC) is commonly combined with MDMA. MDMA is a potent psychostimulant, increasing heart rate, blood pressure and body temperature.

  8. Temperature-dependent built-in potential in organic semiconductor devices

    NARCIS (Netherlands)

    Kemerink, M.; Kramer, J.M.; Gommans, H.H.P.; Janssen, R.A.J.

    2006-01-01

    The temperature dependence of the built-in voltage of organic semiconductor devices is studied. The results are interpreted using a simple analytical model for the band bending at the electrodes. It is based on the notion that, even at zero current, diffusion may cause a significant charge density

  9. Effects of light and temperature on the growth rate of potentially ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... presenting with a 11 ± 0.5°C temperature, 33% salinity, 24L:0D daylength, 38.7 ..... Light Stress, and Nitrogen Source on Physiological Aspects of Marine. Red Tide Alga. J. Plant Nutr. ... The possible importance of silicon in.

  10. Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Alfredo; Ibanez, Adolfo [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)

    2017-11-15

    We consider an analysis of potentials related to Schroedinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks. (orig.)

  11. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, L.M. (Department of Molecular Genetics, Institute of Genetics, Sofia (Bulgaria)); Mullenders, L.H.F.; Natarajan, A.T. (J.A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection, Leiden (Netherlands))

    1994-12-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations.

  12. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    International Nuclear Information System (INIS)

    Stoilov, L.M.; Mullenders, L.H.F.; Natarajan, A.T.

    1994-01-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations

  13. Potential of Gdgts as Temperature Proxies Along Altitudinal Transects in East Africa

    Science.gov (United States)

    Coffinet, Sarah; Huguet, Arnaud; Omuombo, Christine; Williamson, David; Fosse, Céline; Anquetil, Christine; Derenne, Sylvie

    2014-05-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are lipids of high molecular weight and include the isoprenoid GDGTs (iGDGTs) produced by Archaea and the branched GDGTs (brGDGTs) produced by unknown bacteria. Several indices were developed to describe the relationship between GDGT distribution and environmental parameters: the TEX86 (tetraether index of tetraethers consisting of 86 carbons), based on the relative abundances of iGDGTs in sediments, and the MBT (methylation index of branched tetraethers) and CBT (cyclisation ratio of branched tetraethers), based on the relative abundance of brGDGTs in soils. The TEX86 was shown to correlate well with water surface temperature, and the MBT and CBT with mean annual air temperature (MAAT) and soil pH. The GDGTs are increasingly used as temperature proxies. In this study, 41 surface soils were sampled along two altitudinal transects, from 500 to 2800 meters in Mount Rungwe (South western, Tanzania) and from 1897 to 3268 meters in Mount Kenya (Central Kenya). MAAT was reconstructed along the two transects using the MBT/CBT proxies. A linear correlation between the MBT/CBT-derived temperatures and the altitude (R2=0.83) was obtained by combining results of the two transects. The reconstructed temperature lapse rate (0.5 ° C/100 m) was consistent with the one determined from temperature measurements at six altitudes. These results show that the MBT/CBT is a suitable and robust temperature proxy in East Africa. In Mt. Rungwe soil samples, the TEX86 index, which was mainly used to reconstruct water surface temperatures until now, was found to vary linearly with altitude (R2=0.50). Such a relationship between TEX86 and altitude in organic soils has also been recently noticed in Mt. Xiangpi, China (Liu et al., 2013; R2=0.68). The adiabatic cooling of air with altitude could explain the TEX86 variation with altitude. If such a relationship is confirmed, the use of the TEX86 as a temperature proxy could be extended to soil

  14. High temperature solution-nitriding and low-temperature nitriding of AISI 316: Effect on pitting potential and crevice corrosion performance

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jellesen, Morten Stendahl; Christiansen, Thomas Lundin

    2018-01-01

    in a 0.1M NaCl solution and crevice corrosion immersion tests in 3wt% FeCl3 solution were studied before and after the bulk and surface treatments.Nitrogen addition in the bulk proved to have a beneficial effect on the pitting resistance of the alloy. The formation of a zone of expanded austenite...... at the material surface through low-temperature nitriding resulted in a considerable improvement of the pitting potential and the crevice corrosion performance of the steels....

  15. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.

    Science.gov (United States)

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-10-07

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber ('time giver') and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16-20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.

  16. Exact effective action for (1+1)-dimensional fermions in an Abelian background at finite temperature and chemical potential

    International Nuclear Information System (INIS)

    Maciel, Soraya G.; Perez, Silvana

    2008-01-01

    In this paper we study the effects of a nonzero chemical potential in (1+1)-dimensional quantum field models at finite temperature. We particularly consider massless fermions in an Abelian gauge field background and calculate the effective action by evaluating the n-point functions. We find that the structure of the amplitudes corresponds to a generalization of the structure noted earlier in a calculation without a chemical potential (the associated integrals carry the dependence on the chemical potential). Our calculation shows that the chiral anomaly is unaffected by the presence of a chemical potential at finite temperature. However, unlike in the absence of a chemical potential, odd point functions do not vanish. We trace this to the fact that in the presence of a chemical potential the generalized charge conjugation symmetry of the theory allows for such amplitudes. In fact, we find that all the even point functions are even functions of μ, while the odd point functions are odd functions of μ which is consistent with this generalized charge conjugation symmetry. We show that the origin of the structure of the amplitudes is best seen from a formulation of the theory in terms of left- and right-handed spinors. The calculations are also much simpler in this formulation and it clarifies many other aspects of the theory.

  17. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken....... This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other corrosion mechanisms...... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment...

  18. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been...... undertaken. This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...

  19. Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage

    OpenAIRE

    Zarmina Gillani; Nuzhat Huma; Aysha Sameen; Mulazim Hussain Bukhari

    2017-01-01

    Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 °C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturati...

  20. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature

    KAUST Repository

    Bargiela, Rafael

    2015-06-29

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  1. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature

    KAUST Repository

    Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Torné s, Jesú s; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V.; Cappello, Simone; Gertler, Christoph; Genovese, Marí a; Denaro, Renata; Martí nez-Martí nez, Mó nica; Fodelianakis, Stilianos; Amer, Ranya A.; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N.; Golyshina, Olga V.; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R.; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I.; Golyshin, Peter N.; Yakimov, Michail M.; Daffonchio, Daniele; Ferrer, Manuel

    2015-01-01

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  2. Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature

    Science.gov (United States)

    Kos, L.; Tskhakaya, D. D.; Jelić, N.

    2011-05-01

    A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile Φ(x) near the sheath edge xs in the limit ɛ ≡λD/ℓ =0 (where λD is the Debye length and ℓ is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation (ɛ =0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys. D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since "the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity" [Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and "water-bag" ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to "practical infinity." While within limits of "very low" and "relatively high" ion source temperatures

  3. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  4. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    International Nuclear Information System (INIS)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Amundsen, D. S.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  5. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, CEA Paris-Saclay, F-91191 Gif-Sur-Yvette (France); Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Amundsen, D. S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 (United States); Fromang, S., E-mail: pascal.tremblin@cea.fr [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-20

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  6. Improved loop expansion for the effective potential of coupled boson-fermion systems at finite temperature and density

    International Nuclear Information System (INIS)

    Weiss, N.

    1983-01-01

    The effective potential V(phi) of a scalar field theory coupled to fermions is undefined near phi = 0 if the scalar field has a spontaneously broken symmetry. This shows up in a loop expansion as an imaginary part in V(phi) which persists to all temperatures and densities, even when the symmetry is restored. This paper presents a modification of the loop expansion which yields a real V(phi) whenever the one-loop fermion corrections restore the symmetry

  7. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    Science.gov (United States)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  8. Stress, strain, and temperature induced permeability changes in potential repository rocks

    International Nuclear Information System (INIS)

    Heard, H.C.; Duba, A.

    1977-01-01

    Work is in progress to assess the permeability characteristics of coarse-grained igneous rocks as affected by pressure, deviatoric stress, and temperature. In order to predict the long-term behavior of these rocks, both virgin and fractured, permeability and all principal strains resulting from an imposed deviatoric stress under various simulated lithostatic pressures are being measured. In addition, compressional as well as shear velocities and electrical conductivity are being evaluated along these principal directions. These simultaneous measurements are being made initially at 25 0 C on a 15 cm diameter by 30 cm long sample in a pressure apparatus controlled by a mini-computer. Correlation of these data with similar field observations should then allow simplified exploration for a suitable repository site as well as the prediction of the response of a mined cavity with both distance and time at this site. After emplacement of the waste canisters, the mechanical stability and hydrologic integrity of this mined repository will be directly influenced by the fracturing of the surrounding rock which results from local temperature differences and the thermal expansion of that rock. Temperatures (and, hence, these differences) in the vicinity of the repository are expected to be affected by the presence of pore fluids (single- or two-phase) in the rock, the heat capacity and the thermal conductivity of this system. In turn, these are all dependent upon lithostatic pressure, pore pressure, and stress. Thermal expansion (and fracturing) will also be affected by the lithostatic (and effective) pressure, the deviatoric stress field, and the initial anisotropy of the rock

  9. Economics and market potential of the modular high temperature reactor in the Netherlands

    International Nuclear Information System (INIS)

    Lako, P.; Stoffer, A.; Beeldman, M.

    1995-04-01

    This report considers the economics and market potential of the modular HTR under circumstances representative for the Netherlands. First power generation costs for different types of nuclear power plants, such as the HTR, are estimated. Then a comparison is made with power generation costs of fossil fuel fired alternatives. The market potential of the modular HTR for industrial cogeneration is analysed, as well as the fossil fuel prices needed for economic competition with a gas fired plant for cogeneration. At last the economics of the HTR are analysed under different CO 2 reduction constraints. (orig.)

  10. Investigating aftergrowth potential of polymers in drinking water – the effect of water replacement and temperature

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    The aftergrowth potential of polymers used in drinking water distribution was investigated by a batch set-up, where test pieces were incubated in biostable, inorganic nutrient amended drinking water inoculated with surface water. Biomass production was measured as ATP and followed over 16 weeks...... difference on the biomass production of no replacement of the test water, replacement once a week or every second week. Periodical water replacement could nevertheless be considered beneficial, since a substantial NVOC migration occurred within the first six weeks of incubation, which potentially could...

  11. Chlorella mirabilis as a Potential Species for Biomass Production in Low-Temperature Environment.

    Science.gov (United States)

    Shukla, S P; Kvíderová, J; Tříska, J; Elster, J

    2013-01-01

    Successful adaptation/acclimatization to low temperatures in micro-algae is usually connected with production of specific biotechnologically important compounds. In this study, we evaluated the growth characteristics in a micro-scale mass cultivation of the Antarctic soil green alga Chlorella mirabilis under different nitrogen and carbon sources followed by analyses of fatty acid contents. The micro-scale mass cultivation was performed in stable (in-door) and variable (out-door) conditions during winter and/or early spring in the Czech Republic. In the in-door cultivation, the treatments for nitrogen and carbon sources determination included pure Z medium (control, Z), Z medium + 5% glycerol (ZG), Z medium + 5% glycerol + 50 μM KNO3 (ZGN), Z medium + 5% glycerol + 200 μM NH4Cl (ZGA), Z medium + 5% glycerol + 1 mM Na2CO3 (ZNC), Z medium + 5% glycerol + 1 mM Na2CO3 + 200 μM NH4Cl (ZGCA) and Z medium + 5% glycerol + 1 mM Na2CO3 + 50 μM KNO3 (ZGCN) and were performed at 15°C with an irradiance of 75 μmol m(-2) s(-1). During the out-door experiments, the night-day temperature ranged from -6.6 to 17.5°C (daily average 3.1 ± 5.3°C) and irradiance ranged from 0 to 2,300 μmol m(-2) s(-1) (daily average 1,500 ± 1,090 μmol m(-2) s(-1)). Only the Z, ZG, ZGN, and ZGC treatments were used in the out-door cultivation. In the in-door mass cultivation, all nitrogen and carbon sources additions increased the growth rate with the exception of ZGA. When individual sources were considered, only the effect of 5% glycerol addition was significant. On the other hand, the growth rate decreased in the ZG and ZGN treatments in the out-door experiment, probably due to carbon limitation. Fatty acid composition showed increased production of linoleic acid in the glycerol treatments. The studied strain of C. mirabilis is proposed to be a promising source of linoleic acid in low-temperature

  12. Chlorella mirabilis as a potential species for biomass production in low temperature environment

    Directory of Open Access Journals (Sweden)

    Satya Prakash Shukla

    2013-04-01

    Full Text Available Successful adaptation/acclimatization to low temperatures in micro-algae is usually connected with production of specific biotechnologically important compounds. In this study, we evaluated the growth characteristics in a micro-scale mass cultivation of the Antarctic soil green alga Chlorella mirabilis under different nitrogen and carbon sources followed by analyses of fatty acid contents. The micro-scale mass cultivation was performed in stable (in-door and variable (out-door conditions during winter and/or early spring in the Czech Republic. In the in-door cultivation, the treatments for nitrogen and carbon sources determination included pure Z medium (control, Z, Z medium + 5% glycerol (ZG, Z medium + 5% glycerol + 50 µM KNO3 (ZGN, Z medium + 5% glycerol + 200µM NH4Cl (ZGA, Z medium + 5% glycerol + 1 mM Na2CO3 (ZNC, Z medium + 5% glycerol + 1 mM Na2CO3 + 200µM NH4Cl (ZGCA and Z medium + 5% glycerol + 1 mM Na2CO3 + 50 µM KNO3 (ZGCN and were performed at 15°C with an irradiance of 75 µmol m-2 s-1. During the out-door experiments, the night-day temperature ranged from -6.6°C to 17.5°C (daily average 3.1±5.3 °C and irradiance ranged from 0 to 2300 µmol m-2 s-1 (daily average 1500±1090 µmol m-2 s-1. Only the Z, ZG, ZGN and ZGC treatments were used in the out-door cultivation. In the in-door mass cultivation, all nitrogen and carbon sources additions increased the growth rate with the exception of ZGA. When individual sources were considered, only the effect of 5% glycerol addition was significant. On the other hand, the growth rate decreased in the ZG and ZGN treatments in the out-door experiment, probably due to carbon limitation. Fatty acid composition showed increased production of linoleic acid in the glycerol treatments. The studied strain of C. mirabilis is proposed to be a promising source of linoleic acid in low temperature mass cultivation biotechnology. This strain is a perspective model organism for biotechnology in low-temperature

  13. On the potential of CARS spectroscopy in low-temperature plasma diagnostics

    International Nuclear Information System (INIS)

    Ambrazyavichyus, A.B.; Gladkov, S.M.; Grigajtis, Yu.P.; Koroteev, N.I.

    1989-01-01

    The principles of coherent anti-Stokes Raman spectroscopy (CARS) and its application to the diagnostics of technological plasmas are briefly discussed. THe CARS spectrometer is described, developed in IPTPE, Caunas for investigations of a nitrogen plasma stream generated by an industrial plasmatron, and several CARS spectra of nitrogen molecules are presented. As the CARS signal from vibrational-rotational energy levels decreases substantially at plasma temperatures above 2000 K, an alternative scheme using electronlevels of atoms or ions has to be used. To test the method, CARS signals from the lines of the first nitrogen ion were studied in a low-voltage spark discharge. (J.U.)

  14. The potential to supply low temperature district heating to existing building area

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    Low-temperature district heating (LTDH) has the advantages as reduced network heat loss, improved quality match between energy supply and energy demand, and increased utilization of low-grade waste heat and renewable energy. The LTDH represents the next generation district heating (DH) system...... to supply existing building areas which are characterized with high heating demand needs to be examined. In this paper, the DH network deliverable capacity to supply LTDH to an existing building area is studied based on building thermal performance and DH network hydraulic performance simulation....

  15. Effect of SRT and temperature on biological conversions and the related scum-forming potential

    NARCIS (Netherlands)

    Halalsheh, M.M.I.; Koppes, J.; Elzen, den J.; Zeeman, G.; Fayyad, M.; Lettinga, G.

    2005-01-01

    Sludge flotation was reported to cause several operational problems in anaerobic systems including UASB reactors treating both strong domestic sewage and some industrial wastewater. This research is to investigate the effect of anaerobic digestion on scum-forming potential (SFP) of sludge and other

  16. Laboratory determined suction potential of Topopah Spring tuff at high temperatures

    International Nuclear Information System (INIS)

    Daily, W.; Lin, Wunan.

    1991-01-01

    The purpose of this work is to experimentally determine the capillary suction potential of Topopah Spring tuff from Yucca Mountain, Nye County, Nevada. This data can be used to help characterize the unsaturated hydraulic properties of the densely welded tuff at this site. 7 refs., 4 figs., 1 tab

  17. Shutdown cooling temperature perturbation test for analysis of potential flow blockages

    International Nuclear Information System (INIS)

    Handbury, J.; Newman, C.; Shynot, T.

    1996-01-01

    This paper details the methods and results of the 'shutdown cooling test' in October 1995. This novel test was conducted at PLGS while the reactor was shutdown and shutdown cooling (SDC) waster was recirculating to find potential channel blockages resulting from the introduction of wood debris. This test discovered most of the channels that contained major wood and metal debris. (author)

  18. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    International Nuclear Information System (INIS)

    Ly, V.; Wu, X.; Smillie, L.; Shoji, T.; Kato, A.; Manabe, A.; Suzuki, K.

    2014-01-01

    Highlights: • The spin reorientation temperature of MnBi is suppressed by nanoscale grain refinement. • Hardness parameter of MnBi reaches as large as 2.8 at 580 K. • MnBi has a great potential as a hard phase in rare-earth free nanocomposite magnets. • Improving the surface passivity is a remaining task for MnBi-based permanent magnets. - Abstract: The low-temperature phase (LTP) MnBi is one of the few rare-earth free compounds that exhibit a large magnetocrystalline anisotropy energy in the order of 10 6 J/m 3 . A large coercive field (μ 0 H cj ) above 1 T can be obtained readily by reducing the crystallite size (D) through mechanical grinding (MG). The room-temperature H cj values follow a phenomenological expression μ 0 H cj = μ 0 H a (δ/D) n where the anisotropy field (μ 0 H a ) is ∼4 T, the Bloch wall width (δ) is 7 nm and the exponent (n) is about 0.7 in our study. The grain refinement upon MG is accompanied by suppression of the spin reorientation transition temperature (T SR ) from 110 K to below 50 K. The coercive field starts to exhibit positive temperature dependence approximately 50 K above T SR and the room-temperature magnetic hardening induced by MG could partially be brought about by the lowered onset of this positive temperature dependence. The suppression of T SR by MG is likely to be induced by the surface anisotropy with which the 2nd order crystal field term is enhanced. One of the shortcomings of LTP-MnBi is its poor phase stability under the ambient atmosphere. The spontaneous magnetization decreases considerably after room-temperature aging for 1 week. This is due to oxidation of Mn which leads to decomposition of the MnBi phase. Hence, the surface passivity needs to be established before this material is considered for a permanent magnet in practical uses. Another shortcoming is the limited spontaneous magnetization. The theoretical upper limit of the maximum energy product in LTP-MnBi remains only a quarter of that in Nd 2

  19. Testing the potential of an elevated temperature IRSL signal from K-feldspar

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Murray, A.S.; Thomsen, Kristina Jørkov

    2009-01-01

    on laboratory tests (recycling ratio, recuperation, dose recovery) we show that our SAR protocol is suitable for these samples. The observed post-IR IR fading rates (mean g2days = 1.62 ± 0.06%/decade, n = 24; assuming logarithmic fading) are significantly lower than those measured at 50 °C (mean g2days = 3...... the conventional IRSL signal stimulated at 50 °C and detected in the blue–violet region of the spectrum. One of these was the post-IR IR signal in which first an IR bleach is carried out at a low temperature (e.g. 100 s at 50 °C) and a remaining IRSL signal is measured at an elevated temperature (100 s at 225 °C......; detection in the blue–violet region). It is the latter signal that is of interest in this paper. We test such a post-IR IR dating protocol on K-feldspar extracts from a variety of locations and depositional environments and compare the results with those from the conventional IR at 50 °C protocol. Based...

  20. Temperature dependent optical characterization of Ni-TiO2 thin films as potential photocatalytic material

    Science.gov (United States)

    De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Rao, K. Divakar; Singh, Ranveer; Som, T.; Sahoo, N. K.

    2017-09-01

    Along with other transition metal doped titanium dioxide materials, Ni-TiO2 is considered to be one of the most efficient materials for catalytic applications due to its suitable energy band positions in the electronic structure. The present manuscript explores the possibility of improving the photocatalytic activity of RF magnetron sputtered Ni-TiO2 films upon heat treatment. Optical, structural and morphological and photocatalytic properties of the films have been investigated in detail for as deposited and heat treated samples. Evolution of refractive index (RI) and total film thickness as estimated from spectroscopic ellipsometry characterization are found to be in agreement with the trend in density and total film thickness estimated from grazing incidence X-ray reflectivity measurement. Interestingly, the evolution of these macroscopic properties were found to be correlated with the corresponding microstructural modifications realized in terms of anatase to rutile phase transformation and appearance of a secondary phase namely NiTiO3 at high temperature. Corresponding morphological properties of the films were also found to be temperature dependent which leads to modifications in the grain structure. An appreciable reduction of optical band gap from 2.9 to 2.5 eV of Ni-TiO2 thin films was also observed as a result of post deposition heat treatment. Testing of photocatalytic activity of the films performed under UV illumination demonstrates heat treatment under atmospheric ambience to be an effective means to enhance the photocatalytic efficiency of transition metal doped titania samples.

  1. Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at 'Evolution Canyon'.

    Science.gov (United States)

    Shen, Yu; Lansky, Ephraim; Traber, Maret; Nevo, Eviatar

    2013-09-01

    Biosynthesis of tocols (vitamin E isoforms) is linked to response to temperature in plants. 'Evolution Canyon', an ecogeographical microcosm extending over an average of 200 meters (range 100-400) wide area in the Carmel Mountains of northern Israel, has been suggested as a model for studying global warming. Both domestic (Hordeum vulgare) and wild (Hordeum spontaneum) barley compared with wheat, oat, corn, rice, and rye show high tocotrienol/tocopherol ratios. Therefore, we hypothesized that tocol distribution might change in response to global warming. α-, β-, γ-, and δ-tocopherol, and α-, β-, γ-, and δ-tocotrienol concentrations were measured in wild barley (H. spontaneum) seeds harvested from the xeric (African) and mesic (European) slopes of Evolution Canyon over a six-year period from 2005-2011. Additionally, we examined seeds from areas contiguous to and distant from the part of the Canyon severely burned during the Carmel Fire of December 2010. Increased α-tocotrienol (pslope in contrast to the cooler 'European' slope, and 3) to propinquity to the fire. The study illustrates the role of α-tocotrienol in both chronic and acute temperature adaptation in wild barley and suggests future research into thermoregulatory mechanisms in plants. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  2. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  3. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    Science.gov (United States)

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  4. Effects of light and temperature on the growth rate of potentially ...

    African Journals Online (AJOL)

    Thalassiosira allenii is a potentially harmful marine diatom distributed along the Northern Aegean and Southern Black Sea coasts of Turkey. In order to better understand the effect of environmental factors on T. allenii, the effects of 6 different light intensities (6.5, 38.7, 77.5, 116.2, 15 and 193.7 mmol/m2s (PAR)) and 4 ...

  5. Silicotungstate, a Potential Electron Transporting Layer for Low-Temperature Perovskite Solar Cells.

    Science.gov (United States)

    Choi, Yoon Ho; Kim, Hyun Bin; Yang, In Seok; Sung, Sang Do; Choi, Young Sik; Kim, Jeongho; Lee, Wan In

    2017-08-02

    Thin films of a heteropolytungstate, lithium silicotungstate (Li 4 SiW 12 O 40 , termed Li-ST), prepared by a solution process at low temperature, were successfully applied as electron transporting layer (ETL) of planar-type perovskite solar cells (PSCs). Dense and uniform Li-ST films were prepared on FTO glass by depositing a thin Li-ST buffer layer, followed by coating of a main Li-ST layer. The film thickness was controlled by varying the number of coating cycles, consisting of spin-coating and thermal treatment at 150 °C. In particular, by employing 60 nm-thick Li-ST layer obtained by two cycles of coating, the fabricated CH 3 NH 3 PbI 3 PSC device demonstrates the photovoltaic conversion efficiency (PCE) of 14.26% with J SC of 22.16 mA cm -2 , V OC of 0.993 mV and FF of 64.81%. The obtained PCE is significantly higher than that of the PSC employing a TiO 2 layer processed at the same temperature (PCE = 12.27%). Spectroscopic analyses by time-resolved photoluminescence and pulsed light-induced transient measurement of photocurrent indicate that the Li-ST layer collects electrons from CH 3 NH 3 PbI 3 more efficiently and also exhibits longer electron lifetime than the TiO 2 layer thermally treated at 150 °C. Thus, Li-ST is considered to be a promising ETL material that can be applied for the fabrication of flexible PSC devices.

  6. Temperature and ionic strength influences on actinide(VI)/(V) redox potentials for carbonate limiting complexes

    International Nuclear Information System (INIS)

    Capdevila, H.; Vitorge, P.

    1998-01-01

    Actinide behaviour was studied in two limiting aqueous solutions: acidic and carbonate. Cyclic voltametry was validated with well-known U redox system. SIT was used to account for I influence. Taylor's series expansions to the second order were used to account for T influence. Redox potentials of actinide couples had previously been measured in non complexing media. The above data treatments give standard values for redox potential E 0 , for the corresponding entropy ΔS 0 , enthalpy ΔH 0 and heat capacity ΔC p 0 changes, and also for the corresponding excess values (i.e. the variation of these thermodynamic constants with ionic strength). This methodology was here used in carbonate media to measure the potential of the redox couple PuO 2 (CO 3 ) 3 4- /PuO 2 (CO 3 ) 3 5- from 5 to 70 degC and from I = 0.5 to 4.5 M in Na 2 CO 3 , NaClO 4 media. Experimental details and full results are given for Pu. Only final results are given for Np. Previous and/or published data for U and Am are discussed. E and ΔS variations with T or I were enough to be measured. The values obtained for the fitted SIT coefficients Δε, and for ΔS and ΔCp are similar for U, Np and Pu redox reactions. Using this analogy for Am missing data is discussed. β 3 V /β 3 VI formation constant ratio of the carbonate limiting complexes were deduced from the potential shift from complexing to non complexing media for the Actinide(VI)/Actinide(V) redox couples. β 3 V (U and Pu) and β 3 VI (Np) were finally proposed using published β3 VI (U and Pu) and β 3 V (Np). For Am, this data treatment was used to discuss the AmO 2 2+ / AmO 2 + redox potential

  7. Potential Temperatures of Sources of MORB, OIB and LIPs Based on AL Partitioning Between Olivine and Spinel

    Science.gov (United States)

    Sobolev, A. V.; Batanova, V. G.; Krasheninnikov, S.; Borisov, A.; Arndt, N.; Kuzmin, D.; Krivolutskaya, N.; Sushevskaya, N.

    2013-12-01

    Knowledge of potential temperatures of convecting mantle is required for the understanding the global processes on the Earth [1]. The common way to estimate these is the reconstruction of primary melt compositions and liquidus temperatures based on the Fe-Mg partitioning between olivine and melt. This approach requires knowledge of the compositions of primitive melts in equilibrium with olivine alone as well as composition of olivine equilibrium with primary melts. This information is in most cases unavailable or of questionable quality. Here we report a new approach to obtain crystallization temperatures of primary melts based on the olivine-spinel Al-Cr geothermometer [2]. The advantages of this approach are: (1) low rate of diffusion of Al in the olivine, which promises to preserve high magmatic temperatures and (2) common presence of spinel in assemblage with high-Mg olivine. In order to decipher influence of elevated Ti concentrations in spinel we have run several experiments at high temperatures (1400-1200 degree C), atmospheric pressure and controled oxygen fugacity. We also analysed over two thousand spinel inclusions and high-Mg host olivines from different MORB, OIB, LIP and Archean komatiites on the JXA-8230 EPMA at ISTerre, Grenoble, France. Concentrations of Al, Ti, Na, P, Zn, Cr, Mn, Ca, Co, Ni were determined with a precision of 10 ppm (2 standard errors) using a newly developed protocol [3]. When available, we also analysed matrix glass and glass inclusions in olivine and found that temperature estimations from olivine-spinel (Al-Cr) and olivine-melt (Fe-Mg) [4] equilibrium match within (+/-30 degree C). The results show contrasting crystallization temperatures of Mg-rich olivine of the same Fo content from different types of mantle-derived magmas, from the lowest (down to 1220 degree C) for MORB to the highest (up to 1550 degree C) for komatiites and Siberian meimechites. These results match predictions from Fe-Mg olivine-melt equilibrium and

  8. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    Science.gov (United States)

    Suherman, A.; Rahman, M. Z. A.; Busu, I.

    2014-02-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.

  9. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    International Nuclear Information System (INIS)

    Suherman, A; Rahman, M Z A; Busu, I

    2014-01-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area

  10. The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (Betulaceae trees

    Directory of Open Access Journals (Sweden)

    G. P. Тikhova

    2017-02-01

    Full Text Available Linear multiple models were developed to describe diurnal and seasonal dynamics of water potential (Ψ of the foliated shoots in the plants of Betula genus related to air temperature and relative humidity in the middle taiga (southern Karelia. The results of the study revealed unidirectional changes, but different effect strength of air temperature and relative humidity on Ψ of the foliated shoots of common silver birch (Betula pendula Roth and curly (Karelian birch (Betula pendula Roth var. carelica. It was shown that increasing air temperature 1°С results in similar decreasing of Ψ value equal to 0.037–0.038 MPa in both of the birches (p > 0.05. Since the diurnal air temperature range achieves 10–15 °С, the contribution of this factor may be up to 0.57 MPa. On the contrary, the contribution of relative air humidity to Ψ value differs significantly in distinct birch forms (p < 0.05. In this case the change range of Ψ value in silver birch and curly birch may be up to 0.46 (0.015 MPa/1 % RH and 0.52 МПа (0.017 MPa/1 % RH, respectively. The results indicate that curly birch responds to the increase of relative air humidity with higher magnification of Ψ in comparison with common silver birch.

  11. Assessing the potential of Southern Caribbean corals for reconstructions of Holocene temperature variability

    International Nuclear Information System (INIS)

    Giry, Cyril; Felis, Thomas; Scheffers, Sander; Fensterer, Claudia

    2010-01-01

    We present a 40-year long monthly resolved Sr/Ca record from a fossil Diploria strigosa coral from Bonaire (Southern Caribbean Sea) dated with U/Th at 2.35 ka before present (BP). Secondary modifiers of this sea surface temperature (SST) proxy in annually-banded corals such as diagenetic alteration of the skeleton and skeletal growth-rate are investigated. Extensive diagenetic investigations reveal that this fossil coral skeleton is pristine which is further supported by clear annual cycles in the coral Sr/Ca record. No significant correlation between annual growth rate and Sr/Ca is observed, suggesting that the Sr/Ca record is not affected by coral growth. Therefore, we conclude that the observed interannual Sr/Ca variability was influenced by ambient SST variability. Spectral analysis of the annual mean Sr/Ca record reveals a dominant frequency centred at 6-7 years that is not associated with changes of the annual growth rate. The first monthly resolved coral Sr/Ca record from the Southern Caribbean Sea for preindustrial time suggests that fossil corals from Bonaire are suitable tools for reconstructing past SST variability. Coastal deposits on Bonaire provide abundant fossil D. strigosa colonies of Holocene age that can be accurately dated and used to reconstruct climate variability. Comparisons of long monthly resolved Sr/Ca records from multiple fossil corals will provide a mean to estimate seasonality and interannual to interdecadal SST variability of the Southern Caribbean Sea during the Holocene.

  12. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    International Nuclear Information System (INIS)

    Sugioka, Yuji; Takayanagi, Toshiyuki

    2012-01-01

    Highlights: ► Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. ► Temperature effects can be reasonably reproduced with the present model. ► All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H 2 O and CF 3 Cl, for which several previous studies are available from both the experimental and theoretical sides.

  13. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Yuji [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2012-09-11

    Highlights: Black-Right-Pointing-Pointer Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. Black-Right-Pointing-Pointer Temperature effects can be reasonably reproduced with the present model. Black-Right-Pointing-Pointer All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H{sub 2}O and CF{sub 3}Cl, for which several previous studies are available from both the experimental and theoretical sides.

  14. The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Tse, Herman; Teng, Jade L L; Curreem, Shirly O T; Tsang, Alan K L; Fan, Rachel Y Y; Wong, Gilman K M; Huang, Yi; Loman, Nicholas J; Snyder, Lori A S; Cai, James J; Huang, Jian-Dong; Mak, William; Pallen, Mark J; Lok, Si; Yuen, Kwok-Yung

    2009-03-01

    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors-such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases-are present. Proteomes of L. hongkongensis HLHK9 cultured at 37 degrees C (human body temperature) and 20 degrees C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)-NAGK-20 and NAGK-37-in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20 degrees C, whereas NAGK-37 showed higher expression at 37 degrees C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other

  15. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak.

    Czech Academy of Sciences Publication Activity Database

    Dimitrova, Miglena; Popov, Tsv.K.; Adámek, Jiří; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, Jakub; Vondráček, Petr; Dejarnac, Renaud; Stöckel, Jan; Imríšek, Martin; Pánek, Radomír

    2017-01-01

    Roč. 59, č. 12 (2017), č. článku 125001. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GA15-10723S; GA MŠk(CZ) LM2015045 Institutional support: RVO:61389021 Keywords : Plasma potential * electron temperature * bi-Maxwellian EEDF * ball-pen probe * Langmuir probe * COMPASS tokamak * last closed flux surface Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  16. Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production.

    Science.gov (United States)

    Massé, D I; Masse, L; Xia, Y; Gilbert, Y

    2010-04-01

    Environmental issues associated with swine production are becoming a major concern among the general public and are thus an important challenge for the swine industry. There is now a renewed interest in environmental biotechnologies that can minimize the impact of swine production and add value to livestock by-products. An anaerobic biotechnology called psychrophilic anaerobic digestion (PAD) in sequencing batch reactors (SBR) has been developed at Agriculture and Agri-Food Canada. This very stable biotechnology recovers usable energy, stabilizes and deodorizes manure, and increases the availability of plant nutrients. Experimental results indicated that PAD of swine manure slurry at 15 to 25 degrees C in intermittently fed SBR reduces the pollution potential of manure by removing up to 90% of the soluble chemical oxygen demand. The process performs well under intermittent feeding, once to 3 times a week, and without external mixing. Bioreactor feeding activities can thus be easily integrated into the routine manure removal procedures in the barn, with minimal interference with other farm operations and use of existing manure-handling equipment. Process stability was not affected by the presence of antibiotics in manure. The PAD process was efficient in eliminating populations of zoonotic pathogens and parasites present in raw livestock manure slurries. Psychrophilic anaerobic digestion in SBR could also be used for swine mortality disposal. The addition of swine carcasses, at loading rates representing up to 8 times the normal mortality rates on commercial farms, did not affect the stability of SBR. No operational problems were related to the formation of foam and scum. The biotechnology was successfully operated at semi-industrial and full commercial scales. Biogas production rate exceeded 0.20 L of methane per gram of total chemical oxygen demand fed to the SBR. The biogas was of excellent quality, with a methane concentration ranging from 70 to 80%. The

  17. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available Geothermal habitats in Yellowstone National Park (YNP provide an unparalled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (~40-45 Mbase Sanger sequencing per site was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G+C content and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH. These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high temperature systems of YNP.

  18. TRUMP, Steady-State and Transient 1-D, 2-D and 3-D Potential Flow, Temperature Distribution

    International Nuclear Information System (INIS)

    Elrod, D.C.; Turner, W.D.

    1981-01-01

    1 - Description of problem or function: TRUMP solves a general non- linear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady- state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state. 2 - Method of solution: Solutions may be obtained by use of explicit- or implicit-difference equations, or by an optimized combination of both. 3 - Restrictions on the complexity of the problem: The program currently provides for maxima of: 40 materials, 5 reactants, 105 surface conditions, 20 boundary nodes, 16 entries per tabulated function (table-length)

  19. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials

    International Nuclear Information System (INIS)

    Damian, F.

    2001-01-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  20. A novel extracellular low-temperature active phytase from Bacillus aryabhattai RS1 with potential application in plant growth.

    Science.gov (United States)

    Pal Roy, Moushree; Datta, Subhabrata; Ghosh, Shilpi

    2017-05-01

    Bacillus aryabhattai RS1 isolated from rhizosphere produced an extracellular, low temperature active phytase. The cultural conditions for enzyme production were optimized to obtain 35 U mL -1 of activity. Purified phytase had specific activity and molecular weight of 72.97 U mg -1 and ∼40 kDa, respectively. The enzyme was optimally active at pH 6.5 and 40°C and was highly specific to phytate. It exhibited higher catalytic activity at low temperature, retaining over 40% activity at 10°C. Phytase was more thermostable in presence of Ca 2+ ion and retained 100% residual activity on preincubation at 20-50°C for 30 min. Partial phytase encoding gene, phy B (816 bp) was cloned and sequenced. The encoded amino acid sequence (272 aa) contained two conserved motifs, DA[A/T/E]DDPA[I/L/V]W and NN[V/I]D[I/L/V]R[Y/D/Q] of β-propellar phytase and had lower sequence homology with other Bacillus phytases, indicating its novelty. Phytase and the bacterial inoculum were effective in improving germination and growth of chickpea seedlings under phosphate limiting condition. Moreover, the potential applications of the enzyme with relatively high activity at lower temperatures (20-30°C) could also be extended to aquaculture and food processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:633-641, 2017. © 2017 American Institute of Chemical Engineers.

  1. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ly, V.; Wu, X.; Smillie, L. [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Shoji, T.; Kato, A.; Manabe, A. [Toyota Motor Corporation, Mishuku, Susono, Shizuoka 410-1193 (Japan); Suzuki, K., E-mail: kiyonori.suzuki@monash.edu [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-12-05

    Highlights: • The spin reorientation temperature of MnBi is suppressed by nanoscale grain refinement. • Hardness parameter of MnBi reaches as large as 2.8 at 580 K. • MnBi has a great potential as a hard phase in rare-earth free nanocomposite magnets. • Improving the surface passivity is a remaining task for MnBi-based permanent magnets. - Abstract: The low-temperature phase (LTP) MnBi is one of the few rare-earth free compounds that exhibit a large magnetocrystalline anisotropy energy in the order of 10{sup 6} J/m{sup 3}. A large coercive field (μ{sub 0}H{sub cj}) above 1 T can be obtained readily by reducing the crystallite size (D) through mechanical grinding (MG). The room-temperature H{sub cj} values follow a phenomenological expression μ{sub 0}H{sub cj} = μ{sub 0}H{sub a}(δ/D){sup n} where the anisotropy field (μ{sub 0}H{sub a}) is ∼4 T, the Bloch wall width (δ) is 7 nm and the exponent (n) is about 0.7 in our study. The grain refinement upon MG is accompanied by suppression of the spin reorientation transition temperature (T{sub SR}) from 110 K to below 50 K. The coercive field starts to exhibit positive temperature dependence approximately 50 K above T{sub SR} and the room-temperature magnetic hardening induced by MG could partially be brought about by the lowered onset of this positive temperature dependence. The suppression of T{sub SR} by MG is likely to be induced by the surface anisotropy with which the 2nd order crystal field term is enhanced. One of the shortcomings of LTP-MnBi is its poor phase stability under the ambient atmosphere. The spontaneous magnetization decreases considerably after room-temperature aging for 1 week. This is due to oxidation of Mn which leads to decomposition of the MnBi phase. Hence, the surface passivity needs to be established before this material is considered for a permanent magnet in practical uses. Another shortcoming is the limited spontaneous magnetization. The theoretical upper limit of the maximum

  2. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  3. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sö nke; Banguera Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  4. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    Science.gov (United States)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  5. A new method for temperature-field reconstruction during ultrasound-monitored cryosurgery using potential-field analogy.

    Science.gov (United States)

    Thaokar, Chandrajit; Rossi, Michael R; Rabin, Yoed

    2016-02-01

    The current study aims at developing computational tools in order to gain information about the thermal history in areas invisible to ultrasound imaging during cryosurgery. This invisibility results from the high absorption rate of the ultrasound energy by the frozen region, which leads to an apparent opacity in the cryotreated area and a shadow behind it. A proof-of-concept for freezing-front estimation is demonstrated in the current study, using the new potential-field analogy method (PFAM). This method is further integrated with a recently developed temperature-field reconstruction method (TFRM) to estimate the temperature distribution within the frozen region. This study uses prostate cryosurgery as a developmental model and trans-rectal ultrasound imaging as a choice of practice. Results of this study indicate that the proposed PFAM is a viable and computationally inexpensive solution to estimate the extent of freezing in the acoustic shadow region. Comparison of PFAM estimations and experimental data shows an average mismatch of less than 2 mm in freezing-front location, which is comparable to the uncertainty in ultrasound imaging. Comparison of the integrated PFAM + TFRM scheme with a full-scale finite-elements analysis (FEA) indicates an average mismatch of 0.9 mm for the freezing front location and 0.1 mm for the lethal temperature isotherm of -45 °C. Comparison of the integrated PFAM + TFRM scheme with experimental temperature measurements show a difference in the range of 2 °C and 6 °C for selected points of measurement. Results of this study demonstrate the integrated PFAM + TFRM scheme as a viable and computationally inexpensive means to gain information about the thermal history in the frozen region during ultrasound-monitored cryosurgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. SU-E-J-273: Skin Temperature Recovery Rate as a Potential Predictor for Radiation-Induced Skin Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, N C; Wu, Z; Chu, J [Rush University Medical Center, Chicago, IL (United States); Sun, J [Argonne National Laboratory, Lemont, IL (United States)

    2015-06-15

    Purpose: To assess the potential of dynamic infrared imaging to evaluate early skin reactions during radiation therapy in cancer patients. Methods: Thermal images were captured by our home-built system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 °C from ∼1 ms short flashes; the camera then captured a series of IR images for 10 seconds. For each image series, a basal temperature was recorded for 0.5 seconds before flash was triggered. The temperature gradients (ε) were calculated between a reference point (immediately after the flash) and at a time point of 2sec, 4sec and 9sec after that. A 1.0 cm region of interest (ROI) on the skin was drawn; the mean and standard deviations of the ROIs were calculated. The standard ε values for normal human skins were evaluated by imaging 3 healthy subjects with different skin colors. All of them were imaged on 3 separate days for consistency checks. Results: The temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue, i.e. thermal conductivity. The average ε for three volunteers averaged over 3 measurements were 0.64±0.1, 0.72±0.2 and 0.80±0.3 at 2sec, 4sec and 9sec respectively. The standard deviations were within 1.5%–3.2%. One of the volunteers had a prior small skin burn on the left wrist and the ε values for the burned site were around 9% (at 4sec) and 13% (at 9sec) lower than that from the nearby normal skin. Conclusion: The temperature gradients from the healthy subjects were reproducible within 1.5%–3.2 % and that from a burned skin showed a significant difference (9%–13%) from the normal skin. We have an IRB approved protocol to image head and neck patients scheduled for radiation therapy.

  7. SU-E-J-273: Skin Temperature Recovery Rate as a Potential Predictor for Radiation-Induced Skin Reactions

    International Nuclear Information System (INIS)

    Biswal, N C; Wu, Z; Chu, J; Sun, J

    2015-01-01

    Purpose: To assess the potential of dynamic infrared imaging to evaluate early skin reactions during radiation therapy in cancer patients. Methods: Thermal images were captured by our home-built system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 °C from ∼1 ms short flashes; the camera then captured a series of IR images for 10 seconds. For each image series, a basal temperature was recorded for 0.5 seconds before flash was triggered. The temperature gradients (ε) were calculated between a reference point (immediately after the flash) and at a time point of 2sec, 4sec and 9sec after that. A 1.0 cm region of interest (ROI) on the skin was drawn; the mean and standard deviations of the ROIs were calculated. The standard ε values for normal human skins were evaluated by imaging 3 healthy subjects with different skin colors. All of them were imaged on 3 separate days for consistency checks. Results: The temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue, i.e. thermal conductivity. The average ε for three volunteers averaged over 3 measurements were 0.64±0.1, 0.72±0.2 and 0.80±0.3 at 2sec, 4sec and 9sec respectively. The standard deviations were within 1.5%–3.2%. One of the volunteers had a prior small skin burn on the left wrist and the ε values for the burned site were around 9% (at 4sec) and 13% (at 9sec) lower than that from the nearby normal skin. Conclusion: The temperature gradients from the healthy subjects were reproducible within 1.5%–3.2 % and that from a burned skin showed a significant difference (9%–13%) from the normal skin. We have an IRB approved protocol to image head and neck patients scheduled for radiation therapy

  8. Potential for reducing air-pollutants while achieving 2 °C global temperature change limit target.

    Science.gov (United States)

    Hanaoka, Tatsuya; Akashi, Osamu; Fujiwara, Kazuya; Motoki, Yuko; Hibino, Go

    2014-12-01

    This study analyzes the potential to reduce air pollutants while achieving the 2 °C global temperature change limit target above pre-industrial levels, by using the bottom-up optimization model, AIM/Enduse[Global]. This study focuses on; 1) estimating mitigation potentials and costs for achieving 2 °C, 2.5 °C, and 3 °C target scenarios, 2) assessing co-benefits of reducing air pollutants such as NOx, SO2, BC, PM, and 3) analyzing features of sectoral attributions in Annex I and Non-Annex I groups of countries. The carbon tax scenario at 50 US$/tCO2-eq in 2050 can reduce GHG emissions more than the 3 °C target scenario, but a higher carbon price around 400 US$/tCO2-eq in 2050 is required to achieve the 2 °C target scenario. However, there is also a co-benefit of large reduction potential of air pollutants, in the range of 60-80% reductions in 2050 from the reference scenario while achieving the 2 °C target. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  10. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  11. Recent developments in the use of temperature, resistivity and self-potential methods for monitoring embankment dam performance

    Energy Technology Data Exchange (ETDEWEB)

    Sheffer, M.R. [BC Hydro, Vancouver, BC (Canada); Johansson, S.; Sjodahl, P. [HydroResearch AB, Taby (Sweden)

    2009-07-01

    Significant research is being undertaken in the application and development of non-intrusive geophysical techniques as a result of the need for more comprehensive surveillance to detect internal erosion in embankment dams. Seepage and piezometric measurements are the most common methods utilized for dam surveillance. However, the spatial resolution of these measurements is generally not refined enough to detect small, local seepage changes. This paper summarized the current state of the art in the application of temperature, electrical resistivity and self-potential methods to seepage monitoring at embankment dam sites. The paper presented recent developments in using the technique and interpreting seepage parameters for each method. The methods were discussed in the context of both investigation and monitoring applications. It was concluded that the resistivity method is a non-destructive method that is well suited to long-term monitoring and has the ability to cover the entire dam. 25 refs., 11 figs.

  12. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature.

    Science.gov (United States)

    Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N; Golyshina, Olga V; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I; Golyshin, Peter N; Yakimov, Michail M; Daffonchio, Daniele; Ferrer, Manuel

    2015-06-29

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  13. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    Science.gov (United States)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  14. An Evaluation of C1-C3 Hydrochlorofluorocarbon (HCFC) Metrics: Lifetimes, Ozone Depletion Potentials, Radiative Efficiencies, Global Warming and Global Temperature Potentials

    Science.gov (United States)

    Burkholder, J. B.; Papanastasiou, D. K.; Marshall, P.

    2017-12-01

    Hydrochlorofluorocarbons (HCFCs) have been used as chlorofluorocarbon (CFC) substitutes in a number of applications, e.g. refrigerator and air-conditioning systems. Although HCFCs have lower ozone-depletion potentials (ODPs) compared to CFCs, they are potent greenhouse gases. The twenty-eighth meeting of the parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali, 2016) included a list of 274 HCFCs to be controlled under the Montreal Protocol. However, from this list, only 15 of the HCFCs have values for their atmospheric lifetime, ODP, global warming potential (GWP), and global temperature potential (GTP) that are based on fundamental experimental studies, while 48 are registered compounds. In this work, we present a comprehensive evaluation of the atmospheric lifetimes, ODPs, radiative efficiencies (REs), GWPs, and GTPs for all 274 HCFCs to be included in the Montreal Protocol. Atmospheric lifetimes were estimated based on HCFC reactivity with OH radicals and O(1D), as well as their removal by UV photolysis using structure activity relationships and reactivity trends. ODP values are based on the semi-empirical approach described in the WMO/UNEP ozone assessment. Radiative efficiencies were estimated, based on infrared spectra calculated using theoretical electronic structure methods (Gaussian 09). GWPs and GTPs were calculated relative to CO2 using our estimated atmospheric lifetimes and REs. The details of the methodology will be discussed as well as the associated uncertainties. This study has provided a consistent set of atmospheric metrics for a wide range of HCFCs that support future policy decisions. More accurate metrics for a specific HCFC, if desired, would require fundamental laboratory studies to better define the OH reactivity and infrared absorption spectrum of the compound of interest. Overall, HCFCs within the same family (isomers) show a large ODP, GWP, GTP dependence on the molecular geometry of the isomers. The

  15. The structure factor and the pair potential of liquid rubidium at temperatures between 450 K and 1,400 K

    International Nuclear Information System (INIS)

    Block de Priego, R.A.

    1977-11-01

    The structure factor S(Q) of liquid rubidium has been measured for temperatures between 450 K and 1400 K and pressures up to 200 atm. The corresponding densities varied between 1.42 and 0.98 g cm -3 . The incident energy of the neutrons was 3.4 MeV, the momentum transfer Q being 0.2 - 2.5 A -1 . A significant change in the order of the liquid has been registrated. Compressibility and electrical conductivity were derived from the structure factors and compared with the direct measured quantities, showing a good agreement. Further interpretation of the data was done by means of a hard core and a square well potential. Using these models it was already possible to get some information about the interactions between the rubidium atoms. A more exact calculation with a modified STLS model and a pseudopotential leads to a good description of the measured S(Q). In order to describe at high temperatures S(Q) for smaller values a new term had to be added to the pseudopotential. (orig.) [de

  16. Effect of dynamic strain ageing on the environmentally assisted cracking of low-alloy steels oxygenated high-temperature water

    International Nuclear Information System (INIS)

    Devrient, B.; Roth, A.; Kuester, K.; Ilg, U.; Widera, M.

    2007-01-01

    corrosion potential to negative values was observed during the SSRT-test, which is obviously caused by a higher rate of oxide rupture compared to the rate of repassivation in LAS types with higher susceptibility to DSA. Thus, it is concluded that crack initiation on smooth surfaces with subsequent crack advance will preferentially occur if LAS types have a high degree of susceptibility to DSA. Finally, the processes of crack initiation and crack growth depending on the effect of DSA are discussed based on the slip-step dissolution model. (author)

  17. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups.

    Science.gov (United States)

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  18. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    Science.gov (United States)

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    achievement of downstream temperature goals requires that releases of warm water near the surface of the lake and cold water below the thermocline are both possible with the available dam outlets during spring, summer, and autumn. This constraint can be met to some extent with existing outlets, but only if access to the spillway is extended into autumn by keeping the lake level higher than called for by the current rule curve (the typical target water-surface elevation throughout the year). If new outlets are considered, a variable-elevation outlet such as a sliding gate structure, or a floating outlet in combination with a fixed-elevation outlet at sufficient depth to access cold water, is likely to work well in terms of accessing a range of water temperatures and achieving downstream temperature targets. Furthermore, model results indicate that it is important to release warm water from near the lake surface during midsummer. If not released downstream, the warm water will build up at the top of the lake as a result of solar energy inputs and the thermocline will deepen, potentially causing warm water to reach the depth of deeper fixed-elevation outlets in autumn, particularly when the lake level is drawn down to make room for flood storage. Delaying the drawdown in autumn can help to keep the thermocline above such outlets and preserve access to cold water. Although it is important to generate hydropower at Detroit Dam, minimum power-production requirements limit the ability of dam operators to meet downstream temperature targets with existing outlet structures. The location of the power penstocks below the thermocline in spring and most of summer causes the release of more cool water during summer than is optimal. Reducing the power-production constraint allows the temperature target to be met more frequently, but at the cost of less power generation. Finally, running the Detroit Dam, Big Cliff Dam, and North Santiam and Santiam River models in series allows dam operators

  19. ''Cs-tetra-ferri-annite:'' High-pressure and high-temperature behavior of a potential nuclear waste disposal phase

    International Nuclear Information System (INIS)

    Comodi, P.; Zanazzi, P.F.

    1999-01-01

    Structure deformations induced by pressure and temperature in synthetic Cs-tetra-ferri-annite 1M [Cs 1.78 (Fe 2+ 5.93 Fe 3+ 0.07 )(Si 6.15 Fe 3+ 1.80 Al 0.05 )O 20 (OH) 4 ], space group C2/m, were analyzed to investigate the capability of the mica structure to store the radiogenic isotopes 135 Cs and 137 Cs. Cs-tetra-ferri-annite is not a mineral name, but for the sake of brevity is used here to designate a synthetic analog of the mineral tetra-ferri-annite. The bulk modulus and its pressure derivative determined by fitting the unit-cell volumes between 0 a/nd 47 kbar to a third-order Birch-Murnaghan equation of state are K 0 = 257(8) kbar and K' 0 = 21(1), respectively. Between 23 C and 582 C, the a and b lattice parameters remain essentially unchanged, but the thermal expansion coefficient of the c axis is α c = 3.12(9) x 10 -5 degree C -1 . High pressure (P) and high temperature (T) produce limited internal strain in the structure. The tetrahedral rotation angle, α, is very small and does not change significantly throughout the P and T range investigated. Above 450 C in air, Cs-tetra-ferri-annite underwent an oxidation of octahedral iron in the M2cis site, balanced by the loss of H and shown by a decrease of the unit-cell volume. Independent isobaric data on thermal expansion and isothermal compressibility data define the geometric equation of state for Cs-tetra-ferri-annite. On the whole, the data confirm that the structure of Cs-tetra-ferri-annite may be a suitable candidate for the storage of large ions, such as Cs in the interlayer and should be considered as a potential Synroc component

  20. SU-E-T-353: Effects of Time and Temperature On a Potential Reusable 3D Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Juang, T; Miles, D; Crockett, E [Medical Physics Graduate Program, Duke University Medical Center, Durham, NC (United States); Adamovics, J [Rider University, Skillman, NJ (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: Preliminary studies of a novel, optically-clearing PRESAGE 3D dosimeter formulation (Presage-RU) demonstrated potential reusability. This study investigates the effects of time and temperature on the accuracy and reusability of Presage-RU, and reports on progress toward developing a reusable 3D dosimeter. Methods: Presage-RU was cast as small volume samples (1×1×4.5cm). The effect of dose response sensitivity with reirradiation and time was evaluated by irradiating samples from 0–10Gy, measuring change in optical density (ΔOD), clearing at room temperature (RT) (5–7 days to fully clear), and then repeating for a total of 5 irradiations. Effects of heating on clearing rate were investigated by irradiating samples to 8Gy, then tracking measurements with samples held at RT, 35°C, and 45°C. Two cylindrical dosimeters (11cm diameter, 9.5cm length) were evaluated for dosimetric accuracy when stored at RT and −3°C prior to irradiation. Plans delivered were 2 overlapping AP fields (RT) and VMAT (-3°C). Results: Heating the dosimeters reduced the clearing half-life from 16.3h at RT to 5.8h (35°C) and 5.1h (45°C), but also increased background ΔOD by 1.7x (35°C) and 2.3x (45°C). Reductions in dose response were more closely linked to age than reirradiation, and storage at RT showed pronounced desensitization from dosimeter edges. These results suggest desensitization from oxygen diffusion. It should be noted that atmospheric diffusion into the dosimeter is not seen in standard, single-use PRESAGE, and is likely caused by differences in the Presage-RU polyurethane matrix. The dosimeter kept in cold storage, however, showed no evidence of desensitization and exhibited accuracy on par with standard PRESAGE with a 3%/3mm 3D gamma passing rate of 98.1%. Conclusions: Presage-RU is sensitive to storage temperatures and time, both of which affect oxygen diffusion and subsequent desensitization. Development shows promising progress with further formulation

  1. Cadmium Manganese Telluride (Cd1-xMnxTe): A potential material for room-temperature radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A.; Cui, Y.; Bolotnikov, A.; Camarda, G.; Yang, G.; Kim, K-H.; Gul, R.; Xu, L.; Li, L.; Mycielski, A.; and James, R.B.

    2010-07-11

    Cadmium Manganese Telluride (CdMnTe) recently emerged as a promising material for room-temperature X- and gamma-ray detectors. It offers several potential advantages over CdZnTe. Among them is its optimal tunable band gap ranging from 1.7-2.2 eV, and its relatively low (< 50%) content of Mn compared to that of Zn in CdZnTe that assures this favorable band-gap range. Another important asset is the segregation coefficient of Mn in CdTe that is approximately unity compared to 1.35 for Zn in CdZnTe, so ensuring the homogenous distribution of Mn throughout the ingot; hence, a large-volume stoichiometric yield is attained. However, some materials issues primarily related to the growth process impede the production of large, defect-free single crystals. The high bond-ionicity of CdMnTe entails a higher propensity to crystallize into a hexagonal structure rather than to adopt the expected zinc-blend structure, which is likely to generate twins in the crystals. In addition, bulk defects generate in the as-grown crystals due to the dearth of high-purity Mn, which yields a low-resistivity material. In this presentation, we report on our observations of such material defects in current CdMnTe materials, and our evaluation of its potential as an alternative detector material to the well-known CdZnTe detectors. We characterized the bulk defects of several indium- and vanadium-doped Cd1-xMnxTe crystals by using several advanced techniques, viz., micro-scale mapping, white-beam x-ray diffraction/reflection topography, and chemical etching. Thereafter, we fabricated some detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results indicate that CdMnTe materials could well prove to become a viable alternative in the near future.

  2. Massive Gross-Neveu model in the leading order of the 1/N expansion. Allowance for the temperature and the chemical potential

    International Nuclear Information System (INIS)

    Klimenko, K.G.

    1988-01-01

    The massive Gross-Neveu model is treated self-consistently in the leading order of the 1/N expansion. The properties of the model when the temperature and the chemical potential are included are studied. It is shown that there exists a critical value of the chemical potential at which the effective mass of the fermion abruptly changes its value

  3. Mulch and groundcover effects on soil temperature and moisture, surface reflectance, grapevine water potential, and vineyard weed management

    Directory of Open Access Journals (Sweden)

    Christina M. Bavougian

    2018-06-01

    Full Text Available The objectives of this research were to identify alternatives to glyphosate for intra-row (under-trellis vineyard floor management and to evaluate the potential for intra-row and inter-row (alleyway groundcovers to reduce vegetative vigor of ‘Marquette’ grapevines (Vitis spp. in a southeast Nebraska vineyard. The experiment was a randomized factorial design with five intra-row treatments (crushed glass mulch [CG], distillers’ grain mulch [DG], creeping red fescue [CRF], non-sprayed control [NSC], and glyphosate [GLY] and three inter-row treatments (creeping red fescue [CRF], Kentucky bluegrass [KB], and resident vegetation [RV]. Treatments were established in 2010–2011 and measurements were conducted during 2012 and 2013 on 5- and 6-year-old vines. Soil temperatures were mostly higher under mulches and lower under intra-row groundcovers, compared to GLY. Weed cover in CG, DG, and CRF treatments was the same or less than GLY. At most sampling dates, inter-row soil moisture was lowest under KB. Intra-row soil moisture was highest under DG mulch and lowest under CRF and NSC; CG had the same or lower soil moisture than GLY. Surprisingly, we did not detect differences in mid-day photosynthetically active radiation (PAR reflectance, despite visual differences among the intra-row treatments. Mid-day vine water potential did not differ among treatments. We concluded it is not necessary to maintain a bare soil strip under established vines in this region, where soil fertility and moisture are non-limiting.

  4. Regulation of Mnemiopsis leidyi dynamics by potential changes in temperature and zooplankton conditions in the Black Sea.

    Science.gov (United States)

    Salihoglu, B.; Fach, B.; Oguz, T.

    2009-04-01

    Providing a comprehensive understanding of the effects that cause formations of ctenophore blooms in the Black Sea is the main objective of this study. In order to analyse ctenophore dynamics in the Black Sea a zero-dimensional population based model of the ctenophore Mnemiopsis leidyi is developed. The stage resolving ctenophore model combines the modified form of stage resolving approach of Fennel, 2001 with the growth dynamics model of Kremer, 1976; Kremer and Reeve, 1989 under 4 stages of model-ctenophore. These stages include the different growth characteristics of egg, juvenile, transitional and adult stages. The dietary patterns of the different stages follows the observations obtained from the literature. The model is able to represent consistent development patterns, while reflecting the physiological complexity of a population of Mnemiopsis leidyi. Model results suggest that different nutritional requirement of each stage may serve as the bottlenecks for population growth and only when growth conditions are favorable for both larval and lobate stages, the high overall population growth rates may occur. Model is also used to analyse the influence of climatic changes on Mnemiopsis leidyi reproduction and outburst. This study presents and discussed how potential changes in temperature and zooplankton conditions in the Black Sea may regulate Mnemiopsis leidyi dynamics.

  5. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application

    Science.gov (United States)

    Zhang, Ri-Chao; Sun, Dan; Zhang, Ruirui; Lin, Wen-Feng; Macias-Montero, Manuel; Patel, Jenish; Askari, Sadegh; McDonald, Calum; Mariotti, Davide; Maguire, Paul

    2017-04-01

    Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The resulting AuNPs/PEDOT:PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT:PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT:PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT:PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces.

  7. The potential effect of differential ambient and deployment chamber temperatures on PRC derived sampling rates with polyurethane foam (PUF) passive air samplers

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Karen, E-mail: k.kennedy@uq.edu.a [University of Queensland, EnTox (National Research Centre for Environmental Toxicology), 39 Kessels Rd., Coopers Plains QLD 4108 (Australia); Hawker, Darryl W. [Griffith University, School of Environment, Nathan QLD 4111 (Australia); Bartkow, Michael E. [University of Queensland, EnTox (National Research Centre for Environmental Toxicology), 39 Kessels Rd., Coopers Plains QLD 4108 (Australia); Carter, Steve [Queensland Health Forensic and Scientific Services, Coopers Plains QLD 4108 (Australia); Ishikawa, Yukari; Mueller, Jochen F. [University of Queensland, EnTox (National Research Centre for Environmental Toxicology), 39 Kessels Rd., Coopers Plains QLD 4108 (Australia)

    2010-01-15

    Performance reference compound (PRC) derived sampling rates were determined for polyurethane foam (PUF) passive air samplers in both sub-tropical and temperate locations across Australia. These estimates were on average a factor of 2.7 times higher in summer than winter. The known effects of wind speed and temperature on mass transfer coefficients could not account for this observation. Sampling rates are often derived using ambient temperatures, not the actual temperatures within deployment chambers. If deployment chamber temperatures are in fact higher than ambient temperatures, estimated sampler-air partition coefficients would be greater than actual partition coefficients resulting in an overestimation of PRC derived sampling rates. Sampling rates determined under measured ambient temperatures and estimated deployment chamber temperatures in summer ranged from 7.1 to 10 m{sup 3} day{sup -1} and 2.2-6.8 m{sup 3} day{sup -1} respectively. These results suggest that potential differences between ambient and deployment chamber temperatures should be considered when deriving PRC-based sampling rates. - Internal deployment chamber temperatures rather than ambient temperatures may be required to accurately estimate PRC-based sampling rates.

  8. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    Science.gov (United States)

    Bąk, Joanna

    2018-02-01

    At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water - air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  9. Measurements of water temperature in fountains as an indicator of potential secondary water pollution caused by Legionella bacteria

    Directory of Open Access Journals (Sweden)

    Bąk Joanna

    2018-01-01

    Full Text Available At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water – air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.

  10. On the potential of Hg-Photo-CVD process for the low temperature growth of nano-crystalline silicon (Topical review)

    International Nuclear Information System (INIS)

    Barhdadi, A.

    2005-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides an overview of this technique, with the emphasis on its potential in low temperature elaboration of nano-crystalline silicon for the development of thin films photovoltaic technology. (author)

  11. Sea surface salinity and temperature-based predictive modeling of southwestern US winter precipitation: improvements, errors, and potential mechanisms

    Science.gov (United States)

    Liu, T.; Schmitt, R. W.; Li, L.

    2017-12-01

    Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.

  12. The effect of potential upon the high-temperature fatigue crack growth response of low-alloy steels. Part 1: Crack growth results

    International Nuclear Information System (INIS)

    James, L.A.; Moshier, W.C.

    1997-01-01

    Corrosion-fatigue crack propagation experiments were conducted on several low-alloy steels in elevated temperature aqueous environments, and experimental parameters included temperature, sulfur content of the steel, applied potential level, and dissolved hydrogen (and in one case, dissolved oxygen) concentration in the water. Specimen potentials were controlled potentiostatically, and the observation (or non-observation) of accelerated fatigue crack growth rates was a complex function of the above parameters. Electrochemical results and the postulated explanation for the complex behavior are given in Part II

  13. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    Science.gov (United States)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  14. The Morphology, Dynamics and Potential Hotspots of Land Surface Temperature at a Local Scale in Urban Areas

    Directory of Open Access Journals (Sweden)

    Jiong Wang

    2015-12-01

    Full Text Available Current characterization of the Urban Heat Island (UHI remains insufficient to support the effective mitigation and adaptation of increasing temperatures in urban areas. Planning and design strategies are restricted to the investigation of temperature anomalies at a city scale. By focusing on Land Surface Temperature of Wuhan, China, this research examines the temperature variations locally where mitigation and adaptation would be more feasible. It shows how local temperature anomalies can be identified morphologically. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. They are first considered as noisy observations of the latent temperature patterns. The continuous latent patterns of the temperature are then recovered from these discrete observations by using the non-parametric Multi-Task Gaussian Process Modeling. The Multi-Scale Shape Index is then applied in the area of focus to extract the local morphological features. A triplet of shape, curvedness and temperature is formed as the criteria to extract local heat islands. The behavior of the local heat islands can thus be quantified morphologically. The places with critical deformations are identified as hotpots. The hotspots with certain yearly behavior are further associated with land surface composition to determine effective mitigation and adaptation strategies. This research can assist in the temperature and planning field on two levels: (1 the local land surface temperature patterns are characterized by decomposing the variations into fundamental deformation modes to allow a process-based understanding of the dynamics; and (2 the characterization at local scale conforms to planning and design conventions where mitigation and adaptation strategies are supposed to be more practical. The weaknesses and limitations of the study are addressed in the closing section.

  15. The Effect of Temperature and Water Potential on Seed Germination of Asian spiderflower (Cleome viscose L.: As Invasive Weed in Soybean Fields in Golestan Province

    Directory of Open Access Journals (Sweden)

    M. Shirdel

    2016-09-01

    Full Text Available Introduction: Cleome viscose Linn. with a common name as “Asian spiderflower”, belongs to the Capparidacea family. It is an annual, sticky herb found as a common weed all over the tropical regions of the world. It is a very competitive weed of annual crops. This plant is currently introduced as an invasive plant in soybean fields of Golestan province. There is no management recommendation to control Asian spider flower. Thus large quantities of soybean destroyed by this weed every year. Germination and emergence are the two most important stages in the life cycle of plants. Environmental factors such as temperature, light, pH, planting depth and soil moisture are known to affect seed germination and emergence of weeds. An understanding of the germination biology of Asian spider flower would facilitate the development of better management strategies for this weed. Therefore, the purposes of this research were to study the effects of temperature and water potential on Asian spider flower seed germination. Material and Methods: To evaluate the effect of temperature and water potential on seed germination and determination of seed germination cardinal temperatures of Asian spider flower, an experiment was conducted as Factorial Experiment in Completely Randomized Design with 4 replications in Agricultural Research and Natural Resources Center of Golestan Province during 2013. Treatments were included temperatures with seven levels (15, 20, 25, 30, 35, 38 and 400C and water potentials with six levels (0, -2, -4, -6, -8 and -10 bar. Germination was monitored daily until germination discontinued and the number of the germinated seeds was recorded. Seeds were observed twice daily and considered germinated when the radical was approximately >2mm long. To quantify the response of germination rate to temperature and to determine the cardinal temperatures for germination original beta, and modified beta, segmented and dent models were used. Water

  16. A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: Renewed potential for the application of GDGT-paleothermometry in lakes

    Science.gov (United States)

    Pearson, Emma J.; Juggins, Steve; Talbot, Helen M.; Weckström, Jan; Rosén, Peter; Ryves, David B.; Roberts, Stephen J.; Schmidt, Roland

    2011-10-01

    Quantitative climate reconstructions are fundamental to understand long-term trends in natural climate variability and to test climate models used to predict future climate change. Recent advances in molecular geochemistry have led to calibrations using glycerol dialkyl glycerol tetraethers (GDGTs), a group of temperature-sensitive membrane lipids found in Archaea and bacteria. GDGTs have been used to construct temperature indices for oceans (TEX 86 index) and soils (MBT/CBT index). The aim of this study is to examine GDGT-temperature relationships and assess the potential of constructing a GDGT-based palaeo-thermometer for lakes. We examine GDGT-temperature relationships using core top sediments from 90 lakes across a north-south transect from the Scandinavian Arctic to Antarctica including sites from Finland, Sweden, Siberia, the UK, Austria, Turkey, Ethiopia, Uganda, Chile, South Georgia and the Antarctic Peninsula. We examine a suite of 15 GDGTs, including compounds used in the TEX 86 and MBT/CBT indices and reflecting the broad range of GDGT inputs to small lake systems. GDGTs are present in varying proportions in all lakes examined. The TEX 86 index is not applicable to our sites because of the large relative proportions of soil derived and methanogenic components. Similarly, the MBT/CBT index is also not applicable and predicts temperatures considerably lower than those measured. We examine relationships between individual GDGT compounds and temperature, pH, conductivity and water depth. Temperature accounts for a large and statistically independent fraction of variation in branched GDGT composition. We propose a GDGT-temperature regression model with high accuracy and precision ( R2 = 0.88; RMSE = 2.0 °C; RMSEP = 2.1 °C) for use in lakes based on a subset of branched GDGT compounds and highlight the potential of this new method for reconstructing past temperatures using lake sediments.

  17. Study of temperature-growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development.

    Science.gov (United States)

    Davidson, G; Phelps, K; Sunderland, K D; Pell, J K; Ball, B V; Shaw, K E; Chandler, D

    2003-01-01

    To investigate the thermal biology of entomopathogenic fungi being examined as potential microbial control agents of Varroa destructor, an ectoparasite of the European honey bee Apis mellifera. Colony extension rates were measured at three temperatures (20, 30 and 35 degrees C) for 41 isolates of entomopathogenic fungi. All of the isolates grew at 20 and 30 degrees C but only 11 isolates grew at 35 degrees C. Twenty-two isolates were then selected on the basis of appreciable growth at 30-35 degrees C (the temperature range found within honey bee colonies) and/or infectivity to V. destructor, and their colony extension rates were measured at 10 temperatures (12.5-35 degrees C). This data were then fitted to Schoolfield et al. [J Theor Biol (1981)88:719-731] re-formulation of the Sharpe and DeMichele [J Theor Biol (1977)64:649-670] model of poikilotherm development. Overall, this model accounted for 87.6-93.9% of the data variance. Eleven isolates exhibited growth above 35 degrees C. The optimum temperatures for extension rate ranged from 22.9 to 31.2 degrees C. Only three isolates exhibited temperature optima above 30 degrees C. The super-optimum temperatures (temperature above the optimum at which the colony extension rate was 10% of the maximum rate) ranged from 31.9 to 43.2 degrees C. The thermal requirements of the isolates examined against V. destructor are well matched to the temperatures in the broodless areas of honey bee colonies, and a proportion of isolates, should also be able to function within drone brood areas. Potential exists for the control of V. destructor with entomopathogenic fungi in honey bee colonies. The methods employed in this study could be utilized in the selection of isolates for microbial control prior to screening for infectivity and could help in predicting the activity of a fungal control agent of V. destructor under fluctuating temperature conditions.

  18. Temperature Impacts the Development and Survival of Common Cutworm (Spodoptera litura: Simulation and Visualization of Potential Population Growth in India under Warmer Temperatures through Life Cycle Modelling and Spatial Mapping.

    Directory of Open Access Journals (Sweden)

    Babasaheb B Fand

    Full Text Available The common cutworm, Spodoptera litura, has become a major pest of soybean (Glycine max throughout its Indian range. With a changing climate, there is the potential for this insect to become an increasingly severe pest in certain regions due to increased habitat suitability. To examine this possibility, we developed temperature-based phenology model for S. litura, by constructing thermal reaction norms for cohorts of single life stages, at both constant and fluctuating temperatures within the ecologically relevant range (15-38°C for its development. Life table parameters were estimated stochastically using cohort updating and rate summation approach. The model was implemented in the geographic information system to examine the potential future pest status of S. litura using temperature change projections from SRES A1B climate change scenario for the year 2050. The changes were visualized by means of three spatial indices demonstrating the risks for establishment, number of generations per year and pest abundance according to the temperature conditions. The results revealed that the development rate as a function of temperature increased linearly for all the immature stages of S. litura until approximately 34-36°C, after which it became non-linear. The extreme temperature of 38°C was found lethal to larval and pupal stages of S. litura wherein no development to the next stage occurred. Females could lay no eggs at the extreme low (15°C and high (> 35°C test temperatures, demonstrating the importance of optimum temperature in determining the suitability of climate for the mating and reproduction in S. litura. The risk mapping predicts that due to temperature increase under future climate change, much of the soybean areas in Indian states like Madhya Pradesh, Maharashtra and Rajasthan, will become suitable for S. litura establishment and increased pest activity, indicating the expansion of the suitable and favourable areas over time. This has

  19. Temperature-dependency analysis and correction methods of in-situ power-loss estimation for crystalline silicon modules undergoing potential-induced degradation stress testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-01-01

    We propose a method of in-situ characterization of the photovoltaic module power at standard test conditions using superposition of the dark current-voltage (I-V) curve measured at elevated stress temperature during potential-induced degradation (PID) testing. PID chamber studies were performed o...

  20. The effects of constant and alternating temperatures on the reproductive potential, life span, and life expectancy of Anastrepha fraterculus (Wiedemann (Dipteria: Tephritidae

    Directory of Open Access Journals (Sweden)

    V. V. CARDOSO

    Full Text Available Ovarian development, oviposition, larval eclosion, ornithine decarboxylase (ODC activity, ovarian, testis and ejaculatory apodeme measurements (length, width, and area, and the number of spermatozoa of Anastrepha fraterculus (Wiedemann were analyzed at alternating (20º/6ºC and 20º/13°C and constant (6°C; 25°C temperatures. Life span and life expectancy were also analyzed for both genders. All the results suggest that temperature, especially alternating temperatures, increase not only male and female reproductive potential but also their life span and life expectancy. These changes can be a powerful strategy triggered by A. fraterculus as a means to survive the stressful temperature conditions found in winter in the apple production region in Brazil, enabling this species to increase its population density and cause apple damage when spring begins.

  1. The effects of constant and alternating temperatures on the reproductive potential, life span, and life expectancy of Anastrepha fraterculus (Wiedemann (Dipteria: Tephritidae

    Directory of Open Access Journals (Sweden)

    CARDOSO V. V.

    2002-01-01

    Full Text Available Ovarian development, oviposition, larval eclosion, ornithine decarboxylase (ODC activity, ovarian, testis and ejaculatory apodeme measurements (length, width, and area, and the number of spermatozoa of Anastrepha fraterculus (Wiedemann were analyzed at alternating (20masculine/6masculineC and 20masculine/13degreesC and constant (6degreesC; 25degreesC temperatures. Life span and life expectancy were also analyzed for both genders. All the results suggest that temperature, especially alternating temperatures, increase not only male and female reproductive potential but also their life span and life expectancy. These changes can be a powerful strategy triggered by A. fraterculus as a means to survive the stressful temperature conditions found in winter in the apple production region in Brazil, enabling this species to increase its population density and cause apple damage when spring begins.

  2. The effect of potential on the high-temperature fatigue crack growth response of low alloy steels: Part II, electrochemical results

    International Nuclear Information System (INIS)

    Moshier, W.C.; James, L.A.

    1997-01-01

    Environmentally assisted cracking (EAC) in low alloy steels was found to be dependent on externally applied potential in low sulfur steels in high temperature water. EAC could be turned on when the specimen was polarized anodically above a critical potential. However, hydrogen (H) additions inhibited the ability of potential to affect EAC. The behavior was related to formation of H ions during H oxidation at the crack mouth. A mechanism based on formation of H sulfide at the crack tip and H ions at the crack mouth is presented to describe the process by which sulfides and H ions affect the critical sulfide concentration at the crack tip

  3. Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering

    Science.gov (United States)

    Raczkowska, Joanna; Stetsyshyn, Yurij; Awsiuk, Kamil; Lekka, Małgorzata; Marzec, Monika; Harhay, Khrystyna; Ohar, Halyna; Ostapiv, Dmytro; Sharan, Mykola; Yaremchuk, Iryna; Bodnar, Yulia; Budkowski, Andrzej

    2017-06-01

    The novel temperature-responsive poly(cholesteryl methacylate) (PChMa) coatings derived from renewable sources were synthesized and characterized. Temperature induced changes in wettability were accompanied by surface roughness modifications, traced with AFM. Topographies recorded for temperatures increasing from 5 to 25 °C showed a slight but noticeable increase of calculated root mean square (RMS) roughness by a factor of 1.5, suggesting a horizontal rearrangement in the structure of PChMa coatings. Another structural reordering was observed in the 55-85 °C temperature range. The recorded topography changed noticeably from smooth at 55 °C to very structured and rough at 60 °C and returned eventually to relatively smooth at 85 °C. In addition, temperature transitions of PChMa molecules were revealed by DSC measurements. The biocompatibility of the PChMa-grafted coatings was shown for cultures of granulosa cells and a non malignant bladder cancer cell (HCV29 line) culture.

  4. Potential impact of thermal effects during ultrasonic neurostimulation: retrospective numerical estimation of temperature elevation in seven rodent setups

    Science.gov (United States)

    Constans, Charlotte; Mateo, Philippe; Tanter, Mickaël; Aubry, Jean-François

    2018-01-01

    In the past decade, a handful but growing number of groups have reported worldwide successful low intensity focused ultrasound induced neurostimulation trials on rodents. Its effects range from movement elicitations to reduction of anesthesia time or reduction of the duration of drug induced seizures. The mechanisms underlying ultrasonic neuromodulation are still not fully understood. Given the low intensities used in most of the studies, a mechanical effect is more likely to be responsible for the neuromodulation effect, but a clear description of the thermal and mechanical effects is necessary to optimize clinical applications. Based on five studies settings, we calculated the temperature rise and thermal doses in order to evaluate its implication in the neuromodulation phenomenon. Our retrospective analysis shows thermal rise ranging from 0.002 °C to 0.8 °C in the brain for all setups, except for one setup for which the temperature increase is estimated to be as high as 7 °C. We estimate that in the latter case, temperature rise cannot be neglected as a possible cause of neuromodulation. Simulations results were supported by temperature measurements on a mouse with two different sets of parameters. Although the calculated temperature is compatible with the absence of visible thermal lesions on the skin, it is high enough to impact brain circuits. Our study highlights the usefulness of performing thermal simulations prior to experiment in order to fully take into account not only the impact of the peak intensity but also pulse duration and pulse repetition.

  5. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons

    Directory of Open Access Journals (Sweden)

    Vinicius eScofield

    2015-04-01

    Full Text Available Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP, respiration (BR and growth efficiency (BGE in tropical coastal lagoons. We used a factorial design with 3 levels of water temperature (25, 30 and 35 °C and 4 levels of N and/or P additions (Control, N, P and NP additions in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~ 4% in BR, a decrease of ~ 0.9% in BP, and a decrease of ~ 4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on DOC concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different lagoons but seems to be related to the DOC

  6. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons

    Science.gov (United States)

    Scofield, Vinicius; Jacques, Saulo M. S.; Guimarães, Jean R. D.; Farjalla, Vinicius F.

    2015-01-01

    Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP), bacterioplankton respiration (BR) and bacterial growth efficiency (BGE) in tropical coastal lagoons. We used a factorial design with three levels of water temperature (25, 30, and 35°C) and four levels of N and/or P additions (Control, N, P, and NP additions) in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~4% in BR, a decrease of ~0.9% in BP, and a decrease of ~4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on Dissolved Organic Carbon (DOC) concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P, and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different

  7. Time and temperature affect glycolysis in blood samples regardless of fluoride-based preservatives: a potential underestimation of diabetes.

    Science.gov (United States)

    Stapleton, Mary; Daly, Niamh; O'Kelly, Ruth; Turner, Michael J

    2017-11-01

    Background The inhibition of glycolysis prior to glucose measurement is an important consideration when interpreting glucose tolerance tests. This is particularly important in gestational diabetes mellitus where prompt diagnosis and treatment is essential. A study was planned to investigate the effect of preservatives and temperature on glycolysis. Methods Blood samples for glucose were obtained from consented females. Lithium heparin and fluoride-EDTA samples transported rapidly in ice slurry to the laboratory were analysed for glucose concentration and then held either in ice slurry or at room temperature for varying time intervals. Paired fluoride-citrate samples were received at room temperature and held at room temperature, with analysis at similar time intervals. Results No significant difference was noted between mean glucose concentrations when comparing different sample types received in ice slurry. The mean glucose concentrations decreased significantly for both sets of samples when held at room temperature (0.4 mmol/L) and in ice slurry (0.2 mmol/L). A review of patient glucose tolerance tests reported in our hospital indicated that 17.8% exceeded the recommended diagnostic criteria for gestational diabetes mellitus. It was predicted that if the results of fasting samples were revised to reflect the effect of glycolysis at room temperature, the adjusted diagnostic rate could increase to 35.3%. Conclusion Preanalytical handling of blood samples for glucose analysis is vital. Fluoride-EDTA is an imperfect antiglycolytic, even when the samples are transported and analysed rapidly provides such optimal conditions. The use of fluoride-citrate tubes may offer a viable alternative in the diagnosis of diabetes mellitus.

  8. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential.

    Science.gov (United States)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  9. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential

    Science.gov (United States)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  10. Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands

    NARCIS (Netherlands)

    Wesselink, Maxim; Liu, Wen; Koornneef, Joris; van den Broek, Machteld

    2018-01-01

    High temperature aquifer thermal energy storage (HT-ATES) can contribute to the integration of renewable energy sources in the energy system, the replacement of fossil fuel-based heat supply and the utilization of surplus heat from industrial sources. However, there is limited understanding on the

  11. The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States.

    Science.gov (United States)

    McGeehin, M A; Mirabelli, M

    2001-05-01

    Heat and heat waves are projected to increase in severity and frequency with increasing global mean temperatures. Studies in urban areas show an association between increases in mortality and increases in heat, measured by maximum or minimum temperature, heat index, and sometimes, other weather conditions. Health effects associated with exposure to extreme and prolonged heat appear to be related to environmental temperatures above those to which the population is accustomed. Models of weather-mortality relationships indicate that populations in northeastern and midwestern U.S. cities are likely to experience the greatest number of illnesses and deaths in response to changes in summer temperature. Physiologic and behavioral adaptations may reduce morbidity and mortality. Within heat-sensitive regions, urban populations are the most vulnerable to adverse heat-related health outcomes. The elderly, young children, the poor, and people who are bedridden or are on certain medications are at particular risk. Heat-related illnesses and deaths are largely preventable through behavioral adaptations, including the use of air conditioning and increased fluid intake. Overall death rates are higher in winter than in summer, and it is possible that milder winters could reduce deaths in winter months. However, the relationship between winter weather and mortality is difficult to interpret. Other adaptation measures include heat emergency plans, warning systems, and illness management plans. Research is needed to identify critical weather parameters, the associations between heat and nonfatal illnesses, the evaluation of implemented heat response plans, and the effectiveness of urban design in reducing heat retention.

  12. Rainbow trout adaptation to a warmer Patagonia and its potential to increase temperature tolerance in cultured stocks

    Directory of Open Access Journals (Sweden)

    Sonia Alejandra Crichigno

    2018-02-01

    Full Text Available The viability of rainbow trout Oncorhynchus mykiss (Walbaum, 1792 culture is being challenged progressively by global warming. Previous trials with Australian and Japanese rainbow trout lines suggested that improvements in thermal performance may be possible. Here, we hypothesized that strain-related differences in physiological response to temperature exist between a north Patagonian hatchery stock (CENSALBA, a Neotropical one (Criadero Boca de Río, and a thermal stream (Valcheta population of wild introduced rainbow trout. This was tested by comparing, at 20 °C, the thermal preference, specific metabolic rate, thermal tolerance, growth, and condition on juveniles of the three strains, and on a Valcheta stream male x CENSALBA female F1 cross. Preferred temperature (PT and loss of equilibrium temperature (LET, a measure of thermal tolerance of Valcheta stream and F1 were significantly higher than those of CENSALBA, and the average PTs of Valcheta stream and F1 were higher than the 95% confidence interval of available reference data for rainbow trout. These results suggest that the F1, reared under standard hatchery conditions and selected by growth and thermal preference, presents higher thermal preference and higher thermal tolerance than the current CENSALBA hatchery stock. Introduction of this naturally adapted strain to hatchery stocks would likely result in the improvement of their temperature resistance to warmer waters. Current studies on adults of this F1 generation are underway.

  13. The interrelationship between dengue incidence and diurnal ranges of temperature and humidity in a Sri Lankan city and its potential applications.

    Science.gov (United States)

    Ehelepola, N D B; Ariyaratne, Kusalika

    2015-01-01

    Temperature, humidity, and other weather variables influence dengue transmission. Published studies show how the diurnal fluctuations of temperature around different mean temperatures influence dengue transmission. There are no published studies about the correlation between diurnal range of humidity and dengue transmission. The goals of this study were to determine the correlation between dengue incidence and diurnal fluctuations of temperature and humidity in the Sri Lankan city of Kandy and to explore the possibilities of using that information for better control of dengue. We calculated the weekly dengue incidence in Kandy during the period 2003-2012, after collecting data on all of the reported dengue patients and estimated midyear populations. Data on daily maximum and minimum temperatures and night-time and daytime humidity were obtained from two weather stations, averaged, and converted into weekly data. The number of days per week with a diurnal temperature range (DTR) of >10°C and humidity range (DHR) of >20 and humidity. There were negative correlations between dengue incidence and a DTR >10°C and a DHR >20% with 3.3-week and 4-week lag periods, respectively. Additionally, positive correlations between dengue incidence and a DTR humidity in the future. We suggest ways and means to use this information for local dengue control and to mitigate the potential effects of the ongoing global reduction of DTR on dengue incidence.

  14. Conformational temperature-dependent behavior of a histone H2AX: a coarse-grained Monte Carlo approach via knowledge-based interaction potentials.

    Directory of Open Access Journals (Sweden)

    Miriam Fritsche

    Full Text Available Histone proteins are not only important due to their vital role in cellular processes such as DNA compaction, replication and repair but also show intriguing structural properties that might be exploited for bioengineering purposes such as the development of nano-materials. Based on their biological and technological implications, it is interesting to investigate the structural properties of proteins as a function of temperature. In this work, we study the spatial response dynamics of the histone H2AX, consisting of 143 residues, by a coarse-grained bond fluctuating model for a broad range of normalized temperatures. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential.We find a variety of equilibrium structures including global globular configurations at low normalized temperature (T* = 0.014, combination of segmental globules and elongated chains (T* = 0.016,0.017, predominantly elongated chains (T* = 0.019,0.020, as well as universal SAW conformations at high normalized temperature (T* ≥ 0.023. The radius of gyration of the protein exhibits a non-monotonic temperature dependence with a maximum at a characteristic temperature (T(c* = 0.019 where a crossover occurs from a positive (stretching at T* ≤ T(c* to negative (contraction at T* ≥ T(c* thermal response on increasing T*.

  15. Longitudinal changes of nerve conduction velocity, distal motor latency, compound motor action potential duration, and skin temperature during prolonged exposure to cold in a climate chamber.

    Science.gov (United States)

    Maetzler, Walter; Klenk, Jochen; Becker, Clemens; Zscheile, Julia; Gabor, Kai-Steffen; Lindemann, Ulrich

    2012-09-01

    Changes of nerve conduction velocity (NCV), distal motor latency (DML), compound motor action potential (CMAP) duration, and skin temperature with regard to cold have been investigated by use of ice packs or cold water baths, but not after cooling of environmental temperature which has higher ecological validity. The aim of this study was to investigate these parameters during cooled room temperature. NCV, DML, and CMAP duration of the common fibular nerve, and skin temperature were measured in 20 healthy young females during exposure to 15°C room temperature, coming from 25°C room. We found that NCV decreased and DML increased linearly during 45 min observation time, in contrast to CMAP duration and skin temperature which changes followed an exponential curve. To the best of our knowledge, this is the first study investigating changes of these parameters during exposure to environmental cold. The results may pilot some new hypotheses and studies on physiological and pathological changes of the peripheral nervous system and skin to environmental cold, e.g., in elderly with peripheral neuropathies.

  16. Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in tap and shower water

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data contained in this worksheet provides the quantitative detection of potential pathogens for the bathroom water samples used in this study. This dataset is...

  17. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    Science.gov (United States)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Microclimatic temperatures of Danish cattle farms: a better understanding of the variation in transmission potential of Schmallenberg virus

    DEFF Research Database (Denmark)

    Haider, Najmul; Cuellar, Ana Carolina; Kjær, Lene Jung

    virus [inter quantile range (IQR)] of all the cattle farms during spring, summer, and autumn for 17 years period were 16 [13-17], 15 [13-16] and 40 [38-42] days respectively, when using microclimatic temperatures. These estimated EIP values were much shorter compared to EIP estimated using DMI...... temperatures for the same periods of spring (29 [27-30]), summer (21 [19-24]), and autumn (56 [55-58]) days respectively. For the summer period, we observed a large area where farms with shorter EIP for Schmallenberg virus were grouped together, comprising southern Funen and associated islands, Lolland....... The objective of this study was to quantify the variation of EIP of Schmallenberg virus among Danish cattle farms and identify possible spatial patterns of the EIPs. Methods: We quantified 21 different land cover classes within a 500 meter radius of all cattle farms in Denmark (N=22092) using CORINE land cover...

  19. A direct current potential drop method for evaluating oxide film thickness formed in high-temperature water

    International Nuclear Information System (INIS)

    Anzai, Hideya; Ishibashi, Ryo; Saka, Masumi

    2016-01-01

    To establish an evaluation technique for oxide film thickness in-situ, the applicability of a four-point-probe direct current potential drop method is discussed in this study. Several samples of JIS SUS316L stainless steel with different oxide film thickness were prepared after immersing them in oxygenated pure water at 288°C for different periods. The oxide film thickness was measured by cross sectional observation using a transmission electron microscope. Potential drop on the oxide surface was measured every second during an acquisition period of about 20 s while a constant current was being injected into the sample simultaneously. This kind of measurement was repeatedly carried out at several arbitrary contact positions on the surface of the same sample. The measurement results showed that the potential drop slightly changed during the acquisition period and the tendency varied at the different contact positions. Multiple measurements at different contact positions revealed that the tendency could be categorized into two general types: the decreasing potential drop and the increasing potential drop, defined by the overall trend of the potential drop during the acquisition time. It was found that the ratio of contact positions with a decreasing potential drop tendency to all the contact positions of measurement tended to increase as applied current increased. This tendency depended on the oxide film thickness. The threshold value of applied current was found to correlate well with the oxide film thickness when the occurrence rate of decreasing potential drop ranged from 70 to 90% showing the best correlation at 70%. (author)

  20. Temperature dependent magnetic properties and application potential of intermetallic Fe11-xCox TiCe

    International Nuclear Information System (INIS)

    Goll, D.; Loeffler, R.; Stein, R.; Pflanz, U.; Goeb, S.; Karimi, R.; Schneider, G.

    2014-01-01

    The novel quaternary compound Fe 11-x Co x TiCe (x = 0 to 3.25) of Mn 12 Th structure has been fabricated by arc melting. The analysis is focused on temperature dependent determination of intrinsic properties from 4 K to 750 K using domain pattern analysis and magnetometry. Above room temperature RT maximum values of anisotropy constant K 1 and saturation polarization J s are observed for a Co content of 15 at% (x = 1.95) with K 1 and J s of 2.15 MJ/m 3 (1.22 MJ/m 3 ) and 1.27 T (1.05 T) at RT (200 C). At operating temperatures of 100 C for this material magnetic properties (BH) max = 282 kJ/m 3 , μ 0 H c = 0.94 T are expected. If a suitable microstructure could be processed, based on intrinsic properties of the phases the costs would be 35% per J/m 3 of the costs of Dy-free Fe-Nd-B. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Improvements on high voltage capacity and high temperature performances of Si-based Schottky potential barrier diode

    International Nuclear Information System (INIS)

    Wang Yongshun; Rui Li; Adnan Ghaffar; Wang Zaixing; Liu Chunjuan

    2015-01-01

    In order to improve the reverse voltage capacity and low junction temperature characteristics of the traditional silicon-based Schottky diode, a Schottky diode with high reverse voltage capacity and high junction temperature was fabricated using ion implantation, NiPt60 sputtering, silicide-forming and other major technologies on an N-type silicon epitaxial layer of 10.6–11.4 μm and (2.2–2.4) × 10 15 cm −3 doping concentration. The measurement results show that the junction temperature of the Schottky diode fabricated can reach 175 °C, that is 50 °C higher than that of the traditional one; the reverse voltage capacity V R can reach 112 V, that is 80 V higher than that of the traditional one; the leakage current is only 2 μA and the forward conduction voltage drop is V F = 0.71 V at forward current I F = 3 A. (semiconductor devices)

  2. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress.

    Science.gov (United States)

    Masondo, Nqobile A; Kulkarni, Manoj G; Finnie, Jeffrey F; Van Staden, Johannes

    2018-01-01

    Extreme temperatures, drought and salinity stress adversely affect seed germination and seedling growth in crop species. Seed priming has been recognized as an indispensable technique in the production of stress-tolerant plants. Seed priming increases seed water content, improves protein synthesis using mRNA and DNA and repair mitochondria in seeds prior to germination. The current study aimed to determine the role of biostimulants-seed-priming during germination and seedling growth of Ceratotheca triloba (Bernh.) Hook.f. (an indigenous African leafy vegetable) under low temperature, low osmotic potential and salinity stress conditions. Ceratotheca triloba seeds were primed with biostimulants [smoke-water (SW), synthesized smoke-compound karrikinolide (KAR 1 ), Kelpak ® (commercial seaweed extract), phloroglucinol (PG) and distilled water (control)] for 48h at 25°C. Thereafter, primed seeds were germinated at low temperatures, low osmotic potential and high NaCl concentrations. Low temperature (10°C) completely inhibited seed germination. However, temperature shift to 15°C improved germination. Smoke-water and KAR 1 enhanced seed germination with SW improving seedling growth under different stress conditions. Furthermore, priming seeds with Kelpak ® stimulated percentage germination, while PG and the control treatment improved seedling growth at different PEG and NaCl concentrations. Generally, high concentrations of PEG and NaCl brought about detrimental effects on seed germination and seedling growth. Findings from this study show the potential role of seed priming with biostimulants in the alleviation of abiotic stress conditions during seed germination and seedling growth in C. triloba plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Evaluation of NLDAS 12-km and downscaled 1-km temperature products in New York State for potential use in health exposure response studies

    Science.gov (United States)

    Estes, M. G., Jr.; Insaf, T.; Crosson, W. L.; Al-Hamdan, M. Z.

    2017-12-01

    Heat exposure metrics (maximum and minimum daily temperatures,) have a close relationship with human health. While meteorological station data provide a good source of point measurements, temporal and spatially consistent temperature data are needed for health studies. Reanalysis data such as the North American Land Data Assimilation System's (NLDAS) 12-km gridded product are an effort to resolve spatio-temporal environmental data issues; the resolution may be too coarse to accurately capture the effects of elevation, mixed land/water areas, and urbanization. As part of this NASA Applied Sciences Program funded project, the NLDAS 12-km air temperature product has been downscaled to 1-km using MODIS Land Surface Temperature patterns. Limited validation of the native 12-km NLDAS reanalysis data has been undertaken. Our objective is to evaluate the accuracy of both the 12-km and 1-km downscaled products using the US Historical Climatology Network station data geographically dispersed across New York State. Statistical methods including correlation, scatterplots, time series and summary statistics were used to determine the accuracy of the remotely-sensed maximum and minimum temperature products. The specific effects of elevation and slope on remotely-sensed temperature product accuracy were determined with 10-m digital elevation data that were used to calculate percent slope and link with the temperature products at multiple scales. Preliminary results indicate the downscaled temperature product improves accuracy over the native 12-km temperature product with average correlation improvements from 0.81 to 0.85 for minimum and 0.71 to 0.79 for maximum temperatures in 2009. However, the benefits vary temporally and geographically. Our results will inform health studies using remotely-sensed temperature products to determine health risk from excessive heat by providing a more robust assessment of the accuracy of the 12-km NLDAS product and additional accuracy gained from

  4. The influence of D2O, perchlorate, and variation in temperature on the potential-dependent contractile function of frog skeletal muscle

    International Nuclear Information System (INIS)

    Foulks, J.G.; Morishita, L.

    1985-01-01

    D 2 O and perchlorate manifest opposing effects on the contractile function of skeletal muscle (amplitude of twitches and maximum K contractures, potential dependence of contraction and inactivation), and when combined the influence of one may effectively antagonize that of the other. The ratio of perchlorate concentrations required to produce effects of equal intensity, (e.g., twitch enhancement and restoration of maximum K contractures in media lacking divalent cations or containing a depressant concentration of a cationic amphipath) in H 2 O and D 2 O solutions was generally rather constant. These findings are compatible with the view that both agents can influence contractile function by virtue of their effects on solvent structure. In the absence of divalent cations, the effects of reduced temperature resemble those of D 2 O whereas the effects of increased temperature resemble those of the chaotropic anion. However, in other media, variation in temperature was found to result in additional nonsolvent effects so that low temperature could oppose rather than enhance the effects of D 2 O. These observations are discussed in terms of a model which postulates a role for solvent influences on the kinetics of two separate potential-dependent conformational transitions of membrane proteins which mediate the activation and inactivation of contraction in skeletal muscle

  5. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    International Nuclear Information System (INIS)

    Zanáška, M.; Kudrna, P.; Tichý, M.; Adámek, J.; Peterka, M.

    2015-01-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I sat − /I sat + to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa

  6. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    Science.gov (United States)

    Zanáška, M.; Adámek, J.; Peterka, M.; Kudrna, P.; Tichý, M.

    2015-03-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents Isat-/Isat+ to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  7. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zanáška, M.; Kudrna, P.; Tichý, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Adámek, J. [Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 18200 Prague 8 (Czech Republic); Peterka, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 18200 Prague 8 (Czech Republic)

    2015-03-15

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup −}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  8. Thermoelectric potential in UO2 and (U,Pu)O2 and its influence on oxygen migration in presence of a temperature gradient

    International Nuclear Information System (INIS)

    D'Annucci, F.

    1979-09-01

    Measurement of the thermoelectric power have been carried out in sintered pellets of uranium-oxide and uranium-plutonium mixed oxides up to 1800 K. For the thermal treatment an inducting furnace is used. The temperatures and the thermoelectric potential are measured with two thermocouples wich are contained in two holes in the lower end of the pellet. During the experiments a temperature difference of 80 K is maintained between the two measuring points. The Seebeck coefficients are calculated from the EMF measurements as a function of temperature and of the O/M ratio. The results show that these oxides have the typical electric properties of a classic semiconductor. The conductivity is of p-type up to a defined temperature wich is a function of the stoichiometry. The Seebeck coefficients are characterized by a defined energy of activation wich is independent from the stochiometry in the regions of hypo- and hyperstochiometric oxides. The thermoelectric forces and the lattice forces drive ions along the temperature gradients. Both forces can be described by the heat of transport of oxygen ions wich contains a thermoelectric and a thermal part. The thermoelectric part of the heat of transport is calculated with the values of the Seebeck coefficients and the contribution to the total heat of transport is discussed. (orig.) [de

  9. Multiyear Rainfall and Temperature Trends in the Volta River Basin and their Potential Impact on Hydropower Generation in Ghana

    Directory of Open Access Journals (Sweden)

    Amos T. Kabo-Bah

    2016-10-01

    Full Text Available The effects of temperature and rainfall changes on hydropower generation in Ghana from 1960–2011 were examined to understand country-wide trends of climate variability. Moreover, the discharge and the water level trends for the Akosombo reservoir from 1965–2014 were examined using the Mann-Kendall test statistic to assess localised changes. The annual temperature trend was positive while rainfall showed both negative and positive trends in different parts of the country. However, these trends were not statistically significant in the study regions in 1960 to 2011. Rainfall was not evenly distributed throughout the years, with the highest rainfall recorded between 1960 and 1970 and the lowest rainfalls between 2000 and 2011. The Mann-Kendall test shows an upward trend for the discharge of the Akosombo reservoir and a downward trend for the water level. However, the discharge irregularities of the reservoir do not necessarily affect the energy generated from the Akosombo plant, but rather the regular low flow of water into the reservoir affected power generation. This is the major concern for the operations of the Akosombo hydropower plant for energy generation in Ghana.

  10. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.K.; Rao, C.R.

    1978-10-01

    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  11. Standard deviation analysis of the mastoid fossa temperature differential reading: a potential model for objective chiropractic assessment.

    Science.gov (United States)

    Hart, John

    2011-03-01

    This study describes a model for statistically analyzing follow-up numeric-based chiropractic spinal assessments for an individual patient based on his or her own baseline. Ten mastoid fossa temperature differential readings (MFTD) obtained from a chiropractic patient were used in the study. The first eight readings served as baseline and were compared to post-adjustment readings. One of the two post-adjustment MFTD readings fell outside two standard deviations of the baseline mean and therefore theoretically represents improvement according to pattern analysis theory. This study showed how standard deviation analysis may be used to identify future outliers for an individual patient based on his or her own baseline data. Copyright © 2011 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  12. US/FRG joint report on the pebble bed high temperature reactor resource conservation potential and associated fuel cycle costs

    International Nuclear Information System (INIS)

    Teuchert, E.; Ruetten, H.J.; Worley, B.A.; Vondy, D.R.

    1979-11-01

    Independent analyses at ORNL and KFA have led to the general conclusion that the flexibility in design and operation of a high-temperature gas-cooled pebble-bed reactor (PBR) can result in favorable ore utilization and fuel costs in comparison with other reactor types, in particular, with light-water reactors (LWRs). Fuel reprocessign and recycle show considerable promise for reducing ore consumption, and even the PBR throwaway cycle is competitive with fuel recycle in an LWR. The best performance results from the use of highly enriched fuel. Proliferation-resistant measures can be taken using medium-enriched fuel at a modest ore penalty, while use of low-enriched fuel would incur further ore penalty. Breeding is possible but net generation of fuel at a significant rate would be expensive, becoming more feasible as ore costs increase substantially. The 233 U inventory for a breeder could be produced by prebreeders using 235 U fuel

  13. Temperature-dependent development, cold tolerance, and potential distribution of Cricotopus lebetis (Diptera: Chironomidae), a tip miner of Hydrilla verticillata (Hydrocharitaceae).

    Science.gov (United States)

    Stratman, Karen N; Overholt, William A; Cuda, James P; Mukherjee, A; Diaz, R; Netherland, Michael D; Wilson, Patrick C

    2014-10-15

    A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    Science.gov (United States)

    King, David A.; Bachelet, Dominique M.; Symstad, Amy J.; Ferschweiler, Ken; Hobbins, Michael

    2014-01-01

    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and longwave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change.

  16. The potential effects of concurrent increases in temperature, CO2 and O3 on net photosynthesis, as mediated by rubisCO

    International Nuclear Information System (INIS)

    Long, S.; Essex Univ., Colchester

    1992-07-01

    At the leaf level, under light saturating and light limiting conditions, it is shown that elevated atmospheric CO 2 concentration not only alters the scale of the response of carbon gain to rising temperature, but can alter the direction of response. These points bring into serious question the value of any predictions of plant production which ignore not only the direct effect Of C0 2 on carbon gain, but also the basic interactions of temperature, C0 2 and 0 3 . Whilst many factors may potentially diminish the enhancement of lightsaturated leaf photosynthetic rates with increase in atmospheric CO 2 concentrations, no mechanism has so far been identified which could remove the parallel stimulation of light-limited photosynthesis

  17. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes

    International Nuclear Information System (INIS)

    Yoo, Ji Hoon; Park, Su Bin; Kim, Ji Man; Han, Dae Sang; Chae, Jangwoo; Kwak, Jeonghun

    2014-01-01

    Highly conductive, solution-processed silver thin-films were obtained at a low sintering temperature of 100 °C in a short sintering time of 10 min by introducing oximes as a potential reductant for silver complex. The thermal properties and reducibility of three kinds of oximes, acetone oxime, 2-butanone oxime, and one dimethylglyoxime, were investigated as a reducing agent, and we found that the thermal decomposition product of oximes (ketones) accelerated the conversion of silver complex into highly conductive silver at low sintering temperature in a short time. Using the acetone oxime, the silver thin-film exhibited the lowest surface resistance (0.91 Ω sq −1 ) compared to those sing other oximes. The silver thin-film also showed a high reflectance of 97.8%, which is comparable to evaporated silver films. We also demonstrated inkjet printed silver patterns with the oxime-added silver complex inks. (paper)

  18. Heating/ethanol-response of poly methyl methacrylate (PMMA) with gradient pre-deformation and potential temperature sensor and anti-counterfeit applications

    International Nuclear Information System (INIS)

    Lu, Haibao; Huang, Wei Min; Ge, Yu Chun; Zhang, Fan; Zhao, Yong; Wu, Xue Lian; Geng, Junfeng

    2014-01-01

    In this paper, the heating/ethanol-response of a commercial poly methyl methacrylate (PMMA) is investigated. All PMMA samples are pre-deformed by means of impression (surface compression with a mold) to introduce a gradient pre-strain/stress field. Two types of molds are applied in impression. One is a Singaporean coin and the other is a particularly designed mold with a variable protrusive feature on top. Two potential applications—temperature sensors to monitor overheating temperatures and anti-counterfeit labels with a water-mark that appears only upon heating to a particular temperature—are demonstrated. Since the heating-responsive shape memory effect (SME) is an intrinsic feature of almost all polymers, other conventional polymers may be used in such applications as well. (technical note)

  19. Biocontrol Potential of Lariophagus distinguendus (Hymenoptera: Pteromalidae) Against Sitophilus granarius (Coleoptera: Curculionidae) at Low Temperatures: Reproduction and Parasitoid-Induced Mortality

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård

    2007-01-01

    Lariophagus distinguendus Förster (Hymenoptera: Pteromalidae) has been suggested as a biological control agent against the granary weevil, Sitophilus granarius (L.), in grain stores. Information on the effect of low temperatures prevailing in grain stores is necessary to be able to predict...... the potential of this parasitoid against S. granarius in temperate regions, where grain is cooled with ambient air to achieve safe storage conditions. The influence of constant temperatures of 16, 18, and 20°C on life table parameters and parasitoid-induced mortality (PIM) was investigated in the laboratory. L...... is quicker than that of its host, estimated from the literature; and it kills many hosts in addition to those used for reproduction....

  20. The platelet-derived growth factor signaling system in snapping turtle embryos, Chelydra serpentina: potential role in temperature-dependent sex determination and testis development.

    Science.gov (United States)

    Rhen, Turk; Jangula, Adam; Schroeder, Anthony; Woodward-Bosh, Rikki

    2009-05-01

    The platelet-derived growth factor (Pdgf) signaling system is known to play a significant role during embryonic and postnatal development of testes in mammals and birds. In contrast, genes that comprise the Pdgf system in reptiles have never been cloned or studied in any tissue, let alone developing gonads. To explore the potential role of PDGF ligands and their receptors during embryogenesis, we cloned cDNA fragments of Pdgf-A, Pdgf-B, and receptors PdgfR-alpha and PdgfR-beta in the snapping turtle, a reptile with temperature-dependent sex determination (TSD). We then compared gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature, as well as between hatchling testes and ovaries. Expression of Pdgf-B mRNA in embryonic gonads was significantly higher at a male temperature than at a female temperature, but there was no difference between hatchling testes and ovaries. This developmental pattern was reversed for Pdgf-A and PdgfR-alpha mRNA: expression of these genes did not differ in embryos, but diverged in hatchling testes and ovaries. Levels of PdgfR-beta mRNA in embryonic gonads were not affected by temperature and did not differ between testes and ovaries. However, expression of both receptors increased at least an order of magnitude from the embryonic to the post-hatching period. Finally, we characterized expression of these genes in several other embryonic tissues. The brain, heart, and liver displayed unique expression patterns that distinguished these tissues from each other and from intestine, lung, and muscle. Incubation temperature had a significant effect on expression of PdgfR-alpha and PdgfR-beta in the heart but not other tissues. Together, these findings demonstrate that temperature has tissue specific effects on the Pdgf system and suggest that Pdgf signaling is involved in sex determination and the ensuing differentiation of testes in the snapping turtle.

  1. Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    radiator sizes and heating demands in 4 existing Danish single-family houses from the 1930s. A year-long dynamic simulation was performed for each of the houses to evaluate the potential to lower the heating system temperatures. The results indicate that there is a large potential to use low......-temperature district heating in existing single-family houses. In order to obtain the full potential of low-temperature district heating, critical radiators must be replaced. Based on a novel method, a total of nine radiators were identified to be critical to ensure thermal comfort and low return temperatures in two...

  2. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential

    International Nuclear Information System (INIS)

    Xu Shu-Sheng; Shi Chao; Cui Zhu-Fang; Zong Hong-Shi; Jiang Yu

    2015-01-01

    Generally speaking, the quark propagator is dependent on the quark chemical potential in the dense quantum chromodynamics (QCD). By means of the generating functional method, we prove that the quark propagator actually depends on p_4 + iμ from the first principle of QCD. The relation between quark number density and quark condensate is discussed by analyzing their singularities. It is concluded that the quark number density has some singularities at certain μ when T = 0, and the variations of the quark number density as well as the quark condensate are located at the same point. In other words, at a certain μ the quark number density turns to nonzero, while the quark condensate begins to decrease from its vacuum value. (paper)

  3. High NDVI and Potential Canopy Photosynthesis of South American Subtropical Forests despite Seasonal Changes in Leaf Area Index and Air Temperature

    Directory of Open Access Journals (Sweden)

    Piedad M. Cristiano

    2014-02-01

    Full Text Available The canopy photosynthesis and carbon balance of the subtropical forests are not well studied compared to temperate and tropical forest ecosystems. The main objective of this study was to assess the seasonal dynamics of Normalized Difference Vegetation Index (NDVI and potential canopy photosynthesis in relation to seasonal changes in leaf area index (LAI, chlorophyll concentration, and air temperatures of NE Argentina subtropical forests throughout the year. We included in the analysis several tree plantations (Pinus, Eucalyptus and Araucaria species that are known to have high productivity. Field studies in native forests and tree plantations were conducted; stem growth rates, LAI and leaf chlorophyll concentration were measured. MODIS satellite-derived LAI (1 km SIN Grid and NDVI (250m SIN Grid from February 2000 to 2012 were used as a proxy of seasonal dynamics of potential photosynthetic activity at the stand level. The remote sensing LAI of the subtropical forests decreased every year from 6 to 5 during the cold season, similar to field LAI measurements, when temperatures were 10 °C lower than during the summer. The yearly maximum NDVI values were observed during a few months in autumn and spring (March through May and November, respectively because high and low air temperatures may have a small detrimental effect on photosynthetic activity during both the warm and the cold seasons. Leaf chlorophyll concentration was higher during the cold season than the warm season which may have a compensatory effect on the seasonal variation of the NDVI values. The NDVI of the subtropical forest stands remained high and fairly constant throughout the year (the intra-annual coefficient of variation was 1.9%, and were comparable to the values of high-yield tree plantations. These results suggest that the humid subtropical forests in NE Argentina potentially could maintain high canopy photosynthetic activity throughout the year and thus this ecosystem may

  4. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials; Analyse des capacites des reacteurs a haute temperature sous l'aspect de l'utilisation des matieres fissiles

    Energy Technology Data Exchange (ETDEWEB)

    Damian, F

    2001-07-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  5. Analyse of the potential of the high temperature reactor with respect to the use of fissile materials; Analyse des capacites des reacteurs a haute temperature sous l'aspect de l'utilisation des matieres fissiles

    Energy Technology Data Exchange (ETDEWEB)

    Damian, F

    2001-07-01

    The high temperature reactors fuel is made of micro-particles dispersed in a graphite matrix. This configuration makes it possible to reach high burnup, higher than 700 GWj/t. Thanks to the decoupling between the thermal and the neutronic behaviors in the core many types of fuels can be used. These characteristics give to HTR reactor very good capacities to burn fissile materials. This work was done in the frame of the evaluation of HTR capacities to enhance the value of the plutonium stocks. These stocks are currently composed of the irradiated fuels discharged from classical PWR or the dismantling of the nuclear weapons and represent a significant energy potential. These studies concluded that high cycles length can be reached whatever the plutonium quality is (from 50 % to 94 % of fissile plutonium). In addition, it was demonstrated that the moderator temperature coefficient becomes locally positive for highly burn fuel while the core global moderator temperature coefficient remained negative in the operation range of the reactor. A significant share of this work was first devoted to the setting of a modeling of the fuel element but also of the reactor's core with the codes of system SAPHYR. The whole of modeling was validated by reference calculations. This work of code assessment is justified by a preliminary work that showed that the classical calculation scheme used for PWR could not be transposed directly to HTR core. (author)

  6. Mesopause temperature perturbations caused by infrasonic waves as a potential indicator for the detection of tsunamis and other geo-hazards

    Directory of Open Access Journals (Sweden)

    M. Bittner

    2010-07-01

    Full Text Available Many geo-hazards such as earthquakes, tsunamis, volcanic eruptions, severe weather, etc., produce acoustic waves with sub-audible frequency, so called infrasound. This sound propagates from the surface to the middle and upper atmosphere causing pressure and temperature perturbations. Temperature fluctuations connected with the above mentioned events usually are very weak at the surface, but the amplitude increases with height because of the exponential decrease of atmospheric pressure with increasing altitude. At the mesopause region (80–100 km height signal amplitudes are about two to three orders of magnitude larger than on the ground.

    The GRIPS (GRound-based Infrared P-branch Spectrometer measurement system operated by the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD derives temperatures of the mesopause region by observing hydroxyl (OH airglow emissions in the near infrared atmospheric emission spectrum originating from a thin layer at approximately 87 km height.

    The GRIPS instrument is in principle suited for the detection of infrasonic signals generated by e.g. tsunamis and other geo-hazards. This is due to the fact that the infrasound caused by such events should induce observable short-period fluctuations in the OH airglow temperatures. First results obtained during a field campaign performed at the Environmental Research Station "Schneefernerhaus", Zugspitze (47.4° N, 11.0° E from October to December 2008 are presented regarding potential sources of meteorological and orographical origin.

    An adequate distinction of the overlapping infrasonic signatures caused by different infrasound sources in the OH temperature record is needed for the ascription to the proper source. The approach presented here could form a contribution to a hazard monitoring and early warning system.

  7. Recovery and growth potential of Listeria monocytogenes in temperature abused milkshakes prepared from naturally contaminated ice cream linked to a listeriosis outbreak

    OpenAIRE

    Yi eChen; Emma eAllard; Anna eWooten; Minji eHur; Ishani eSheth; Anna eLassri; Thomas S Hammack; Dumitru eMacarisin

    2016-01-01

    The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Mil...

  8. Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells - Effect of Humidification

    DEFF Research Database (Denmark)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Zhong, Lijie

    2018-01-01

    In the present work, high-temperature polymer electrolyte membrane fuel cells were subjected to accelerated stress tests of 30,000 potential cycles between 0.6 and 1.0 V at 160 textdegreeC (133 h cycling time). The effect that humidity has on the catalyst durability was studied by testing either...... with or without humidification of the nitrogen that was used as cathode gas during cycling segments. Pronounced degradation was seen from the polarization curves in both cases, though permanent only in the humidified case. In the unhumidified case, the performance loss was more or less recoverable following 24 h...

  9. Microclimatic temperatures at Danish cattle farms, 2000-2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus.

    Science.gov (United States)

    Haider, Najmul; Cuellar, Ana Carolina; Kjær, Lene Jung; Sørensen, Jens Havskov; Bødker, Rene

    2018-03-05

    Microclimatic temperatures provide better estimates of vector-borne disease transmission parameters than standard meteorological temperatures, as the microclimate represent the actual temperatures to which the vectors are exposed. The objectives of this study were to quantify farm-level geographic variations and temporal patterns in the extrinsic incubation period (EIP) of Schmallenberg virus transmitted by Culicoides in Denmark through generation of microclimatic temperatures surrounding all Danish cattle farms. We calculated the hourly microclimatic temperatures at potential vector-resting sites within a 500 m radius of 22,004 Danish cattle farms for the months April to November from 2000 to 2016. We then modeled the daily EIP of Schmallenberg virus at each farm, assuming vectors choose resting sites either randomly or based on temperatures (warmest or coolest available) every hour. The results of the model output are presented as 17-year averages. The difference between the warmest and coolest microhabitats at the same farm was on average 3.7 °C (5th and 95th percentiles: 1.0 °C to 7.8 °C). The mean EIP of Schmallenberg virus (5th and 95th percentiles) for all cattle farms during spring, summer, and autumn was: 23 (18-33), 14 (12-18) and 51 (48-55) days, respectively, assuming Culicoides select resting sites randomly. These estimated EIP values were considerably shorter than those estimated using standard meteorological temperatures obtained from a numerical weather prediction model for the same periods: 43 (39-52), 21 (17-24) and 57 (55-58) days, respectively. When assuming that vectors actively select the coolest resting sites at a farm, the EIP was 2.3 (range: 1.1 to 4.1) times longer compared to that of the warmest sites at the same farm. We estimated a wide range of EIP in different microclimatic habitats surrounding Danish cattle farms, stressing the importance of identifying the specific resting sites of vectors when modeling vector-borne disease

  10. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials

    Science.gov (United States)

    Gabrieli, Andrea; Sant, Marco; Izadi, Saeed; Shabane, Parviz Seifpanahi; Onufriev, Alexey V.; Suffritti, Giuseppe B.

    2018-02-01

    Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed "globally optimal" point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel-Fulcher-Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315-5 K. We also verified that for the coefficient of thermal expansion α P ( T, P), the isobaric α P ( T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

  11. Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: chemical analysis and potential toxicity.

    Science.gov (United States)

    Bach, Cristina; Dauchy, Xavier; Severin, Isabelle; Munoz, Jean-François; Etienne, Serge; Chagnon, Marie-Christine

    2013-08-15

    The purpose of this study was to investigate the impact of temperature on the release of PET-bottle constituents into water and to assess the potential health hazard using in vitro bioassays with bacteria and human cell lines. Aldehydes, trace metals and other compounds found in plastic packaging were analysed in PET-bottled water stored at different temperatures: 40, 50, and 60°C. In this study, temperature and the presence of CO2 increased the release of formaldehyde, acetaldehyde and antimony (Sb). In parallel, genotoxicity assays (Ames and micronucleus assays) and transcriptional-reporter gene assays for estrogenic and anti-androgenic activity were performed on bottled water extracts at relevant consumer exposure levels. As expected, and in accordance with the chemical formulations specified for PET bottles, neither phthalates nor UV stabilisers were present in the water extracts. However, 2,4-di-tert-butylphenol, a degradation compound of phenolic antioxidants, was detected. In addition, an intermediary monomer, bis(2-hydroxyethyl)terephthalate, was found but only in PET-bottled waters. None of the compounds are on the positive list of EU Regulation No. 10/2011. However, the PET-bottled water extracts did not induce any cytotoxic, genotoxic or endocrine-disruption activity in the bioassays after exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Investigation of the Optimum Farming Temperature for Grifola frondosa and Growth Promotion using the Bio-Electric Potential as an Index

    Science.gov (United States)

    Yanagibashi, Hideyuki; Hirama, Junji; Matsuda, Masato; Miyamoto, Toshio

    The purpose of this study was to investigate the optimum farming conditions for mushrooms from the view point of engineering field. As the bio-electric potential of mushrooms is considered to be closely related to the activation of mushroom cells, this relationship has been used to analyze the dependence of the morphogenetic characteristics of Grifola frondosa on farming temperatures (from 16 to 22 degree C). The experimental results indicated that a maximum response was exhibited, with correspondingly favorable morphogenesis obtained at 18 degree C. Based on the experimental results, including those in a previous study, it was assumed that the larger the bio-electric potential becomes, the higher the growth yield reaches. In order to support this assumption, growth promotion was conducted by intentionally activating the bio-electric potential within the mushrooms by stimulating them with short bursts of illumination. The resulting observation of growth promotion permitted the conclusion that the bio-electric potential can, indeed, be regarded as an index of growth.

  13. Development of geothermal field following the 2000 eruption of Usu volcano as revealed by ground temperature, resistivity and self-potential variations

    Directory of Open Access Journals (Sweden)

    T. Mogi

    2007-06-01

    Full Text Available The 2000 eruption of Usu volcano, NE Japan, took place on the foot of the somma, and formed a cryptodome of 65 m high accompanying numerous faults. We made repeated measurements of ground temperature, Self-Potential (SP and electrical resistivity, in order to clarify the mechanism of development of the newly formed geothermal field on the fault zone. Prior to the expansion of the geothermal field, we detected a resistive zone at the center of the geothermal zone and it supposed to evidence that the zone involving dry steam phase had been formed beneath the fault zone. A rapid expansion of the geothermal field followed along the fault zone away from the craters. The place of maximum amplitude of the SP field also migrated following the expansion of the high ground temperature zone. The high resistive part has shrunk as a consequence of the progress of condensation to warm the surroundings. Based on the observations, we delineated the process of the hydrothermal circulation. Considering the topographic effect of the SP field observed on the highly permeable zone in the Usu somma, the potential flow along the slope of the soma was expected to play an important role to promote the rapid expansion of the geothermal field and the migration of the most active part.

  14. Potential formation in a one-dimensional bounded plasma system containing a two-electron temperature plasma: Kinetic model and PIC simulation

    International Nuclear Information System (INIS)

    Gyergyek, T.; Jurcic-Zlobec, B.; Cercek, M.

    2008-01-01

    Potential formation in a bounded plasma system that contains electrons with a two-temperature velocity distribution and is terminated by a floating, electron emitting electrode (collector) is studied by a one-dimensional kinetic model. A method on how to determine the boundary conditions at the collector for the numerical solution of the Poisson equation is presented. The difference between the regular and the irregular numerical solutions of the Poisson equation is explained. The regular numerical solution of the Poisson equation fulfills the boundary conditions at the source and can be computed for any distance from the collector. The irregular solution does not fulfill the source boundary conditions and the computation breaks down at some distance from the collector. An excellent agreement of the values of the potential at the inflection point found from the numerical solution of the Poisson equation with the values predicted by the analytical model is obtained. Potential, electric field, and particle density profiles found by the numerical solution of the Poisson equation are compared to the profiles obtained with the particle in cell computer simulation. A very good quantitative agreement of the potential and electric field profiles is obtained. For certain values of the parameters the analytical model predicts three possible values of the potential at the inflection point. In such cases always only one of the corresponding numerical solutions of the Poisson equation is regular, while the other two are irregular. The regular numerical solution of the Poisson equation always corresponds to the solution of the model that predicts the largest ion flux to the collector

  15. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  16. The potential for adaptation in a natural Daphnia magna population: broad and narrow-sense heritability of net reproductive rate under Cd stress at two temperatures.

    Science.gov (United States)

    Messiaen, M; Janssen, C R; Thas, O; De Schamphelaere, K A C

    2012-10-01

    The existence of genetic variability is a key element of the adaptive potential of a natural population to stress. In this study we estimated the additive and non-additive components of the genetic variability of net reproductive rate (R(0)) in a natural Daphnia magna population exposed to Cd stress at two different temperatures. To this end, life-table experiments were conducted with 20 parental and 39 offspring clonal lineages following a 2 × 2 design with Cd concentration (control vs. 3.7 μg Cd/L) and temperature (20 vs. 24 °C) as factors. Offspring lineages were obtained through inter-clonal crossing of the different parental lineages. The population mean, additive and non-additive genetic components of variation in each treatment were estimated by fitting an Animal Model to the observed R(0) values using restricted maximum likelihood estimation. From those estimates broad-sense heritabilities (H(2)), narrow-sense heritabilities (h(2)), total (CV(G)) and additive genetic coefficients of variation (CV(A)) of R(0) were calculated. The exposure to Cd imposed a considerable level of stress to the population, as shown by the fact that the population mean of R(0) exposed to Cd was significantly lower than in the control at the corresponding temperature, i.e. by 23 % at 20 °C and by 88 % at 24 °C. The latter difference indicates that increasing temperature increased the stress level imposed by Cd. The H² and CV(G) were significantly greater than 0 in all treatments, suggesting that there is a considerable degree of genetic determination of R(0) in this population and that clonal selection could rapidly lead to increasing population mean fitness under all investigated conditions. More specifically, the H² was 0.392 at 20 °C+Cd and 0.563 at 24 °C+Cd; the CV(G) was 30.0 % at 20 °C+Cd and was significantly higher (147.6 %) in the 24 °C+Cd treatment. Significant values of h(2) (= 0.23) and CV(A) (= 89.7 %) were only found in the 24 °C+Cd treatment, suggesting

  17. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2008-01-01

    The low-frequency corrosion fatigue (CF) crack growth behaviour of different low-alloy reactor pressure vessel steels was characterized under simulated boiling water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in the temperature range of 240-288 deg. C with different loading parameters at different electrochemical corrosion potentials (ECPs). Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by SEM were used to quantify the cracking response. In this paper the effect of ECP on the CF crack growth behaviour is discussed and compared with the crack growth model of General Electric (GE). The ECP mainly affected the transition from fast ('high-sulphur') to slow ('low-sulphur') CF crack growth, which appeared as critical frequencies ν crit = f(ΔK, R, ECP) and ΔK-thresholds ΔK EAC f(ν, R, ECP) in the cycle-based form and as a critical air fatigue crack growth rate da/dt Air,crit in the time-domain form. The critical crack growth rates, frequencies, and ΔK EAC -thresholds were shifted to lower values with increasing ECP. The CF crack growth rates of all materials were conservatively covered by the 'high-sulphur' CF line of the GE-model for all investigated temperatures and frequencies. Under most system conditions, the model seems to reasonably well predict the experimentally observed parameter trends. Only under highly oxidizing conditions (ECP ≥ 0 mV SHE ) and slow strain rates/low loading frequencies the GE-model does not conservatively cover the experimentally gathered crack growth rate data. Based on the GE-model and the observed cracking behaviour a simple time-domain superposition-model could be used to develop improved reference CF crack growth curves for codes

  18. Growth potential of Salmonella spp. and Listeria monocytogenes in nine types of ready-to-eat vegetables stored at variable temperature conditions during shelf-life.

    Science.gov (United States)

    Sant'Ana, Anderson S; Barbosa, Matheus S; Destro, Maria Teresa; Landgraf, Mariza; Franco, Bernadette D G M

    2012-06-15

    Growth potential (δ) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of δ of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the δ of both pathogens in nine different types of RTE vegetables (escarole, collard green, spinach, watercress, arugula, grated carrot, green salad, and mix for yakisoba) stored at refrigeration (7°C) and abuse temperature (15°C). The population of aerobic microorganisms and lactic acid bacteria, including those showing antimicrobial activity has been also determined. Results indicated that L. monocytogenes was able to grow (δ≥0.5 log(10)) in more storage conditions and vegetables than Salmonella. Both microorganisms were inhibited in carrots, although a more pronounced effect has been observed against L. monocytogenes. The highest δ values were obtained when the RTE vegetables were stored 15°C/6days in collard greens (δ=3.3) and arugula (δ=3.2) (L. monocytogenes) and arugula (δ=4.1) and escarole (δ=2.8) (Salmonella). In most vegetables and storage conditions studied, the counts of total aerobic microorganisms raised significantly independent of the temperature of storage (pvegetables partially or fully stored at abuse temperature with recovery of isolates showing antimicrobial activity. In conclusion, the results of this study show that Salmonella and L. monocytogenes may grow and reach high populations in RTE vegetables depending on storage conditions and the definition of effective intervention strategies are needed to control their growth in these products. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Adsorption behavior of modified Iron stick yam skin with Polyethyleneimine as a potential biosorbent for the removal of anionic dyes in single and ternary systems at low temperature.

    Science.gov (United States)

    Zhang, Yan-Zhuo; Li, Jun; Zhao, Jing; Bian, Wei; Li, Yun; Wang, Xiu-Jie

    2016-12-01

    The skin of Iron stick yam (ISY) was modified with Polyethyleneimine (ISY@PEI) and evaluated for use as a potential biosorbent to remove the anionic dyes Sunset yellow (SY), Lemon yellow (LY), and Carmine (CM) from wastewater under low temperature conditions (5-15°C) in single and ternary dye systems. Both in the single and ternary systems, experimental data showed that adsorption capacity reached the highest value at 5°C, and adsorption capacity decreased when the temperature increased (10-50°C). The equilibrium data fitted very well to the Langmuir model and the extended Langmuir isotherm, for the single and ternary systems, respectively. The maximum adsorption capability was 138.92, 476.31, and 500.13mg/g for LY, SY, and CM, respectively, in a single system and 36.63, 303.31, and 294.12mg/g for LY, SY, and CM, respectively, in a ternary system. The adsorption followed pseudo-second-order kinetics. The thermodynamic parameters indicated that it was a spontaneous and exothermic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Low temperature rate coefficients of the H + CH(+) → C(+) + H2 reaction: New potential energy surface and time-independent quantum scattering.

    Science.gov (United States)

    Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry

    2015-09-21

    The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.

  1. Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s

    International Nuclear Information System (INIS)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    Low-temperature district heating is a promising technology for providing homes with energy-efficient heating in the future. However, it is of great importance to maintain thermal comfort in existing buildings when district heating temperatures are lowered. This case study evaluated the actual radiator sizes and heating demands in 4 existing Danish single-family houses from the 1930s. A year-long dynamic simulation was performed for each of the houses to evaluate the potential to lower the heating system temperatures. The results indicate that there is a large potential to use low-temperature district heating in existing single-family houses. In order to obtain the full potential of low-temperature district heating, critical radiators must be replaced. Based on a novel method, a total of nine radiators were identified to be critical to ensure thermal comfort and low return temperatures in two of the case-houses. If these radiators were replaced it would be possible to lower the average heating system temperatures to 50 °C/27 °C in all four houses. - Highlights: • Comparison of dynamically calculated heat demands and radiator sizes. • Method for identification and evaluation of critical radiators was tested. • Existing houses can be heated with low-temperature heating for most of the year. • Replacing critical radiators helps ensure comfort and low return temperatures.

  2. Modeling low-temperature serpentinization reactions to estimate molecular hydrogen production with implications for potential microbial life on Saturn's moon Enceladus.

    Science.gov (United States)

    Zwicker, Jennifer; Smrzka, Daniel; Taubner, Ruth-Sophie; Bach, Wolfgang; Rittmann, Simon; Schleper, Christa; Peckmann, Jörn

    2017-04-01

    Serpentinization of ultramafic rocks attracts much interest in research on the origin of life on Earth and the search for life on extraterrestrial bodies including icy moons like Enceladus. Serpentinization on Earth occurs in peridotite-hosted systems at slow-spreading mid-ocean ridges, and produces large amounts of molecular hydrogen and methane. These reduced compounds can be utilized by diverse chemosynthetic microbial consortia as a metabolic energy source. Although many hydrothermal vents emit hot and acidic fluids today, it is more likely that life originated in the Archean at sites producing much cooler and more alkaline fluids that allowed for the synthesis and stability of essential organic molecules necessary for life. Therefore, a detailed understanding of water-rock interaction processes during low-temperature serpentinization is of crucial importance in assessing the life-sustaining potential of these environments. In the course of serpentinization, the metasomatic hydration of olivine and pyroxene produces various minerals including serpentine minerals, magnetite, brucite, and carbonates. Hydrogen production only occurs if ferrous iron within iron-bearing minerals is oxidized and incorporated as ferric iron into magnetite. The PHREEQC code was used to model the pH- and temperature-dependent dissolution of olivine and pyroxene to form serpentine, magnetite and hydrogen under pressure and temperature conditions that may exist on Saturn's icy moon Enceladus. Various model setups at 25 and 50°C were run to assess the influence of environmental parameters on hydrogen production. The results reveal that hydrogen production rates depend on the composition of the initial mineral assemblage and temperature. The current assumption is that there is a gaseous phase between Enceladus' ice sheet and subsurface ocean. To test various scenarios, model runs were conducted with and without the presence of a gas phase. The model results show that hydrogen production is

  3. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures

    International Nuclear Information System (INIS)

    Kalbus, E.; Schmidt, C.; Bayer-Raich, M.; Leschik, S.; Reinstorf, F.; Balcke, G.U.; Schirmer, M.

    2007-01-01

    The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60 m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272 μg m -2 d -1 MCB and 71 μg m -2 d -1 DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream. - We provide a new methodology to quantify the potential contaminant mass flux from an aquifer to a stream

  4. Temperature and water potential of grey clays in relation to their physical, chemical and microbiological characteristics and phytocoenology within the scope of the Radovesice Dump

    Directory of Open Access Journals (Sweden)

    Lenka Zoubková

    2015-07-01

    Full Text Available Radovesice Dump is a part of brown-coal Most basin, which is situated in the northern part of the Czech Republic. Grey clays are the anthropogenic substrates, which have been used here as a reclamation material in most cases. Water potential of these substrates corresponds to their physical properties, annual precipitation, soil temperature and terrain exposition. All of these characteristics are the limiting factors of soil water, which is available to plants. Area left to spontaneous succession and reclaimed area served as the serviced ones. Water potential was studied in three depths (10, 20 and 30 cm of soil profile and the evaluated values showed significant difference between individual depths as well as exposition. As far as chemical analyses are concerned, the highest values were recorded in case of reclaimed area, whereas the levels of soil moisture here were medium. On the other hand, area left to spontaneous succession showed the lowest values in this sense, however specific representation of vegetation was much large-scale. As far as microbiological characteristics are concerned, the concentrations of phospholipid fatty acids were relatively low in both cases. To the dominant herb species belonged Calamagrostis epigejos, Urtica dioica, Alopecurus pratensis and Astragalus glycyphyllos. It was found that spontaneous succession was more variable as far as the specific representation of vegetation is concerned, though favourable soil physical and chemical properties were provided by technical reclamation too.

  5. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Solecka, Danuta; Dziewulska, Aleksandra; Ochodzki, Piotr; Jończyk, Maciej; Bilski, Henryk; Sowiński, Paweł

    2017-03-01

    The cell wall emerged as one of the important structures in plant stress responses. To investigate the effect of cold on the cell wall properties, the content and localization of pectins and pectin methylesterase (PME) activity, were studied in two maize inbred lines characterized by different sensitivity to cold. Low temperature (14/12 °C) caused a reduction of pectin content and PME activity in leaves of chilling-sensitive maize line, especially after prolonged treatment (28 h and 7 days). Furthermore, immunocytohistological studies, using JIM5 and JIM7 antibodies, revealed a decrease of labeling of both low- and high-methylesterified pectins in this maize line. The osmotic potential, quantified by means of incipient plasmolysis was lower in several types of cells of chilling-sensitive maize line which was correlated with the accumulation of sucrose. These studies present new finding on the effect of cold stress on the cell wall properties in conjunction with changes in the osmotic potential of maize leaf cells.

  6. Potential Predictability of the Sea-Surface Temperature Forced Equatorial East Africa Short Rains Interannual Variability in the 20th Century

    Science.gov (United States)

    Bahaga, T. K.; Gizaw, G.; Kucharski, F.; Diro, G. T.

    2014-12-01

    In this article, the predictability of the 20th century sea-surface temperature (SST) forced East African short rains variability is analyzed using observational data and ensembles of long atmospheric general circulation model (AGCM) simulations. To our knowledge, such an analysis for the whole 20th century using a series of AGCM ensemble simulations is carried out here for the first time. The physical mechanisms that govern the influence of SST on East African short rains in the model are also investigated. It is found that there is substantial skill in reproducing the East African short rains variability, given that the SSTs are known. Consistent with previous recent studies, it is found that the Indian Ocean and in particular the western pole of the Indian Ocean dipole (IOD) play a dominant role for the prediction skill, whereas SSTs outside the Indian Ocean play a minor role. The physical mechanism for the influence of the western Indian Ocean on East African rainfall in the model is consistent with previous findings and consists of a gill-type response to a warm (cold) anomaly that induces a westerly(easterly) low-level flow anomaly over equatorial Africa and leads to moisture flux convergence (divergence) over East Africa. On the other hand, a positive El Nino-Southern Oscillation (ENSO) anomaly leads to a spatially non-coherent reducing effect over parts of East Africa, but the relationship is not strong enough to provide any predictive skill in our model. The East African short rains prediction skill is also analyzed within a model-derived potential predictability framework and it is shown that the actual prediction skill is broadly consistent with the model potential prediction skill. Low-frequency variations of the prediction skill are mostly related to SSTs outside the Indian Ocean region and are likely due to an increased interference of ENSO with the Indian Ocean influence on East African short rains after the mid-1970s climate shift.

  7. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    Science.gov (United States)

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recovery and growth potential of Listeria monocytogenes in temperature abused milkshakes prepared from naturally contaminated ice cream linked to a listeriosis outbreak

    Directory of Open Access Journals (Sweden)

    Yi eChen

    2016-05-01

    Full Text Available The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 hours. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average level increase per sample at 14 h was 1.15 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h was significantly longer (P 3 CFU/g (8.60 h. The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case-study.

  9. Recovery and Growth Potential of Listeria monocytogenes in Temperature Abused Milkshakes Prepared from Naturally Contaminated Ice Cream Linked to a Listeriosis Outbreak.

    Science.gov (United States)

    Chen, Yi; Allard, Emma; Wooten, Anna; Hur, Minji; Sheth, Ishani; Laasri, Anna; Hammack, Thomas S; Macarisin, Dumitru

    2016-01-01

    The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h) was significantly longer (P 3 CFU/g (8.60 h). The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case study.

  10. Evaluation of the IGSCC(Intergranular Stress Corrosion Cracking) resistance of inconel alloys by static potential method in high temperature and high pressure environment

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Nam, Tae Woon

    1997-01-01

    Inconel alloys which have good high temperature mechanical properties and corrosion resistance have been used extensively as steam generator tube of nuclear power plants. There have been some reports on the intergranular stress corrosion cracking (IGSCC) failure problems in steam generator tubes of nuclear reactors. In order to evaluate the effects of heat treatment and composition on the IGSCC behavior of inconel alloys in simulated nuclear reactor environment, four different specimens (inconel 600 MA, 600 TT, 690 MA and 690 TT) were prepared and tested by eletrochemical method. Static potential tests for stressed C-ring type inconel specimens were carried out in 10% NaOH solution at 300 deg C (75 atm). It was found that IGSCC was initiated in inconel 600 MA specimen, but the other three specimens were not cracked. Based on the gradients of corrosion current density of the four specimens as a function of test time, thermally treated alloys show better IGSCC resistance than mull-annealed alloys, and inconel 690 TT has better passivation characteristic than inconel 600 MA. Inconel 690 TT shows clear periodic passivation that indicates good SCC resistance. The good IGSCC resistance of inconel 690 TT is due to periodic passivation characteristics of surface layer. (author)

  11. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing

    Directory of Open Access Journals (Sweden)

    Caradee Y. Wright

    2017-01-01

    Full Text Available Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2–4 °C on average. Apparent temperature (AT incorporating relative humidity readings made in the clinics showed ‘realfeel’ temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of ‘stuffiness’ and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat–health impact warning categories of ‘caution’ and ‘extreme caution’.

  12. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing.

    Science.gov (United States)

    Wright, Caradee Y; Street, Renée A; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N; Mathee, Angela

    2017-01-06

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2-4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed 'realfeel' temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of 'stuffiness' and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat-health impact warning categories of 'caution' and 'extreme caution'.

  13. Dependence of leaf surface potential response of a plant (Ficus Elastica) to light irradiation on room temperature; Shokubutsu (gomunoki) hamen den`i no hikari shosha oto no shitsuon izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, H; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    In order to clarify plant body potential information, study was made on a leaf surface potential response to light irradiation. The leaf surface potential change, total transpiration and transpiration rate of Ficus Elastica were measured using light irradiation period and room temperature as parameters. The leaf surface potential change shows a positive peak after the start of light irradiation, while a negative peak after its end. Arrival time to both peaks is constant regardless of the light irradiation period, while decrease with an increase in room temperature. Although the total transpiration increases with room temperature, this tendency disappears with an increase in light irradiation period. The transpiration rate shows its peak after the start of light irradiation. Arrival time to the peak is saturated with the light irradiation period of 60min, while decreases with an increase in room temperature. These results suggest that opening of stomata becomes active with an increase in room temperature, and the peak of the leaf surface potential after the start of light irradiation relates to the opening. 3 refs., 11 figs.

  14. Effects of Nitrogen on the DOS and the Passive Film Breakdown Potential of AISI 304 Stainless Steel

    International Nuclear Information System (INIS)

    Choe, Han Cheol; Kim, Kwan Hyu; Kim, Myung Soo; Lee, Ho Jong

    1992-01-01

    Effects of nitrogen on the degree of sensitization (DOS) and the passive film breakdown potential (Eb) of AISI 304 stainless steel were studied by potentiostat. AISI 304 stainless steel samples containing 0.02 ∼ 0.10wt% nitrogen were sensitized by heat treatment at 650 .deg. C. The DOS was measured using the double-loop reactivation method of the electrochemical potentiodynamic reactivation (EPR) test with the potential scan rate of 150 mV/min in the electrolyte of 0.5 M H 2 SO 4 + 0.01 M KSCN solution at 25 .deg. C. The passive film breakdown potential (Eb) and repassivation potential (Er) were detected by using the cyclic potentiodynamic polarization test (CPPT) in 0.5M HCI solution at 25 .deg. C. In addition, corrosion morphologies were observed by SEM and optical microscope. It was found that nitrogen additions up to 0.1wt% decreased DOS and increased Eb and Er of AISI 304 stainless steel, whereas the increasing sensitization time increased the DOS and decreased Eb and Er. The corrosion morphologies showed severe pits and intergranular attacks in the samples of low nitrogen content and high DOS

  15. Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, W.-J.; Lee, J.-O.; Kang, C.-H.

    2000-01-01

    The sealing performance of buffer material in a high-level waste repository depends largely upon the hydraulic conductivity, the swelling pressure, and the dissolution of organic carbon in the buffer material. Temperature effects on these properties were evaluated. The hydraulic conductivity and the swelling pressure of compacted bentonite increase with increasing temperature, but the effect of temperature elevation is not large. The dissolution of organic carbon in bentonite also increases with increasing temperature, but the resultant aqueous concentrations of organic carbon in bentonite suspensions are less than those of deep groundwater in granite. Therefore, the organic carbon dissolved from the bentonite will not cause a significant increase in the organic carbon content of deep groundwater in the repository environment. Overall, temperature effects on the sealing performance of buffer material in a waste repository is not important, if the maximum temperature is maintained below 100 deg. C

  16. Assessment of risk associated with long-term corrosion of alloy 22 and Ti-7 in the potential yucca mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Ahn, T.M.; Pensado, O.; Dunn, D.

    2004-01-01

    Full text of publication follows: The potential high-level nuclear waste (HLW) repository at Yucca Mountain (YM) may rely on the robustness of the outer container of the waste package (WP) as one of many barriers for waste isolation. The container is proposed to be constructed of Alloy 22, a Ni-Cr-Mo alloy known to be resistant to localized corrosion and stress corrosion cracking. Additionally, drip shields (DS) will be emplaced above the WP to minimize the groundwater contact, in the form of seepage, with the WP. The candidate alloy to construct the drip shields is a titanium based alloy (Ti-7) with some small amounts of Pd and is also known for resistance to localized corrosion. To enhance confidence of long-term WP and DS lifetimes, it is necessary to assess the conditions under which loss of passivity or localized degradation processes could occur. The accelerated degradation processes may include uniform passivity breakdown, localized corrosion, and stress corrosion cracking. This paper evaluates how such processes may occur under the long-term YM repository conditions. In the uniform passivity breakdown, three potential concerns are evaluated. The first is anodic sulphur segregation at the interface between the passive film and the bare metal. This paper models the cyclic behavior of free transient fast dissolution (induced by sulfur segregation) and re-passivation. The second is the potential accumulation of corrosion products on the WP surface, which may act as cathode of large surface area leading to fast corrosion. The effective ratio of the corrosion product area to the bare metal area is evaluated. The third is the ion selectivity in the corrosion products to alter the aqueous chemistry, which may accelerate or inhibit the corrosion. Thermodynamics of ionic sorption in the corrosion products is reviewed. In the localized corrosion, the groundwater chemistry on the WP surface is evaluated at the temperatures of the WP above 100 deg. C during the early

  17. Effect of Simulated Tillage in Combination with Post-Shattering Temperature Conditions on Senna obtusifolia and Xanthium strumarium Seed Survival, Seedling Emergence and Seedbank Potential

    Directory of Open Access Journals (Sweden)

    Taghi Bararpour

    2018-04-01

    Full Text Available Two of the most troublesome weeds in soybean, cotton, and corn in cropping systems of mid-south United States (US are Senna obtusifolia and Xanthium strumarium. Understanding their population dynamics, particularly weed seedling emergence patterns, is important for the timely implementation and the success of weed management strategies. Identifying the sources of variation of emergence patterns could greatly improve our ability to predict emergence timing. A three-years field study was conducted to determine the effect of environmental conditions on S. obtusifolia and X. strumarium seedling emergence and seedbank potential. The experiment was conducted with two seed sources; X. strumarium burs and S. obtusifolia seeds from a single maternal plant source, and X. strumarium burs and S. obtusifolia seeds from multiple maternal plant sources, both being exposed either to 5 cm burial depth (buried or left on the soil surface (soil surface in the fallow or planted in spring after their storage under chilled (chill or room temperature (no chill conditions. X. strumarium and S. obtusifolia seedling emergence was lower from burs and seeds that were planted in the soil in September as compared with the chill and/or no chill seeds/burs stored for six months. X. strumarium seedling emergence was reduced from 37 to 1% when burs were left on the soil surface when compared to buried burs. S. obtusifolia seedling emergence was reduced from 47 to 13% when seeds were left on the soil surface as compared to buried. At the end of the experimental period, the soil seedbank of X. strumarium had been significantly depleted, whereas the remaining seeds of S. obtusifolia were viable.

  18. Evaluation of yield and identifying potential regions for Saffron (Crocus sativus L. cultivation in Khorasan Razavi province according to temperature parameters

    Directory of Open Access Journals (Sweden)

    Moein Tosan

    2015-04-01

    Full Text Available Saffron is cultivated in most part of Iran, because of low water requirement and well adaptation to diverse environmental condition. In recent years, for many reasons such as low water requirement, saffron cultivation areas has been increased especially in Khorasan Razavi province. Temperature is one of the most important factors in saffron flowering phenomena. The aim of this research was to evaluate the response of saffron to temperature in Khorasan Razavi province counties (Torbat-e-Heydarieh, Gonabad, Nishabour, Sabzevar and Ghoochan. Climatic data (monthly minimum, average, maximum temperatures and diurnal temperature range and saffron yield data were collected for past 20 years period. The stepwise regression methods were used to remove extra parameters and only keep the most important ones. By using these equations and ArcGIS software zoning, Spline method was find the best for saffron crop zoning. The results of linear regression in Gonabad showed that minimum, maximum and average temperature and also diurnal temperature range in March and April months had the greatest impact on saffron yield. For each of the four indices (the minimum, maximum and average temperature and also diurnal temperature range the best area for saffron cultivation was the southern part of the province (particularly Gonabad; so by increasing distance from this area to north areas (such as Kashmar, Torbat-e-Heydarieh, Sabzevar, Nishabour, Mashhad and finally Ghoochan saffron yield reduced by 30 to 50 percent. Therefore, the northern areas of the province had relatively low saffron yield. According to result of this research, saffron yield in Khorasan Razavi province was significantly influenced by temperature parameters. Flowering which basically is the most important stage of plant growth, is directly setting up with temperature.

  19. [Effects of transient receptor potential melastatin 8 cation channels on inflammatory reaction induced by cold temperatures in human airway epithelial cells].

    Science.gov (United States)

    Li, Min-chao; Perelman, Juliy M; Kolosov, Victor P; Zhou, Xiang-dong

    2011-10-01

    To explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) in cold-induced production of inflammatory factors in airway epithelial cells and related signal transduction mechanism. The 16HBE human airway epithelial cells were stimulated with cold temperature (18°C). In intervention experiments, cells were pretreated with TRPM8 channel antagonist BCTC, protein kinase C (PKC) specific inhibitor calphostin C and transfected with TRPM8 shRNA or control shRNA respectively, and thereafter cold stimulation was applied. Cells were divided into 6 groups: a control group (incubated at 37°C), a cold stimulation group, a cold stimulation + BCTC group, a cold stimulation + TRPM8 shRNA group, a cold stimulation + control shRNA group, a cold stimulation + calphostin C group. Western blot was performed to show the extent of knockdown in TRPM8 protein expression in the TRPM8 shRNA transfected cells. Dynamics of relative concentration of intracellular Ca(2+) in the former 5 groups were measured by calcium imaging techniques. Images were taken at one frame per 10 seconds. The levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α mRNA and protein were detected by real-time PCR and ELISA respectively. The highest relative concentration of intracellular calcium in cold stimulation group (2.36 ± 0.24) was higher than that of control group (1.01 ± 0.02) (t = 12.52, P cold stimulation group (t = 6.69 and 9.12, all P cold stimulation group[0.66 ± 0.16, 0.77 ± 0.15, 0.73 ± 0.09 and (92 ± 13) ng/L, (125 ± 22) ng/L, (88 ± 12) ng/L ] were significantly higher than those in control group [0.37 ± 0.08, 0.32 ± 0.07, 0.48 ± 0.10 and (52 ± 8) ng/L, (50 ± 9) ng/L, (61 ± 8) ng/L] (t = 3.20 - 6.26, all P cold stimulation + BCTC group [0.42 ± 0.09, 0.52 ± 0.13, 0.52 ± 0.12 and (72 ± 8) ng/L, (92 ± 14) ng/L, (68 ± 11) ng/L], cold stimulation + TRPM8 shRNA group [0.41 ± 0.10, 0.49 ± 0.08, 0.50 ± 0.08 and (60 ± 12) ng/L, (89 ± 14) ng

  20. Studies of Redox Equilibria at Elevated Temperatures I. The Estimation of Equilibrium Constants and Standard Potentials for Aqueous Systems up to 374 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Derek

    1969-07-01

    A method is described for the estimation of equilibrium constants for aqueous systems at temperatures up to 374 deg C from entropy and free energy data for 25 deg C and data on the variation of heat capacity with temperature. Partial molal heat capacities of aqueous ions are estimated on the basis of the principle that, with suitably chosen standard states, the partial molal entropies of ions of a particular class at any given temperature are linearly related to the corresponding entropies at some reference temperature. The method suggested is compared with other methods, based on the Van't Hoff isobar and on an extension of the conventional scale of ionic free energy at 25 deg C, and the general dependence of aqueous equilibria on ionic heat capacity is considered.

  1. Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms

    Science.gov (United States)

    Cole, C.; Finch, A. A.; Hintz, C.; Hintz, K.; Allison, N.

    2018-06-01

    Understanding how rising seawater pCO2 and temperatures impact coral aragonite accretion is essential for predicting the future of reef ecosystems. Here, we report 2 long-term (10-11 month) studies assessing the effects of temperature (25 and 28 °C) and both high and low seawater pCO2 (180-750 μatm) on the calcification, photosynthesis and respiration of individual massive Porites spp. genotypes. Calcification rates were highly variable between genotypes, but high seawater pCO2 reduced calcification significantly in 4 of 7 genotypes cultured at 25 °C but in only 1 of 4 genotypes cultured at 28 °C. Increasing seawater temperature enhanced calcification in almost all corals, but the magnitude of this effect was seawater pCO2 dependent. The 3 °C temperature increase enhanced calcification rate on average by 3% at 180 μatm, by 35% at 260 μatm and by > 300% at 750 μatm. The rate increase at high seawater pCO2 exceeds that observed in inorganic aragonites. Responses of gross/net photosynthesis and respiration to temperature and seawater pCO2 varied between genotypes, but rates of all these processes were reduced at the higher seawater temperature. Increases in seawater temperature, below the thermal stress threshold, may mitigate against ocean acidification in this coral genus, but this moderation is not mediated by an increase in net photosynthesis. The response of coral calcification to temperature cannot be explained by symbiont productivity or by thermodynamic and kinetic influences on aragonite formation.

  2. Effects of Loading Rate on Gas Seepage and Temperature in Coal and Its Potential for Coal-Gas Disaster Early-Warning

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2017-08-01

    Full Text Available The seepage velocity and temperature externally manifest the changing structure, gas desorption and energy release that occurs in coal containing gas failure under loading. By using the system of coal containing gas failure under loading, this paper studies the law of seepage velocity and temperature under different loading rates and at 1.0 MPa confining pressure and 0.5 MPa gas pressure, and combined the on-site results of gas pressure and temperature. The results show that the stress directly affects the seepage velocity and temperature of coal containing gas, and the pressure and content of gas have the most sensitivity to mining stress. Although the temperature is not sensitive to mining stress, it has great correlation with mining stress. Seepage velocity has the characteristic of critically slowing down under loading. This is demonstrated by the variance increasing before the main failure of the samples. Therefore, the variance of seepage velocity with time and temperature can provide an early warning for coal containing gas failing and gas disasters in a coal mine.

  3. Effect of microbial action on the corrosion potential of austenitic alloy containers for high-level nuclear waste

    International Nuclear Information System (INIS)

    Angell, P.; Dunn, D.S.; Cragnolino, G.A.

    1996-01-01

    The safe disposal of high-level nuclear waste (HLW) entails the ability to ensure the integrity of waste containers for prolonged time periods. It is generally accepted that under certain conditions, microbial action may change local benign environments to those in which localized corrosion can be actively promoted. The use of repassivation potential (E rp ) in relation to the value of the corrosion potential (E corr ) has been proposed as a means of assessing the propensity of a metallic material to localized corrosion. Microbial activity is known to influence E corr however, the precise mechanism is unresolved. Shewanella putrefaciens, a bacteria with many of the characteristics of sulfate-reducing bacteria (SRB), are being grown under controlled conditions on 316L stainless steel (SS) surfaces to understand the relationship between E corr and metabolic activity. It has been observed that the growth of the bacteria under aerobic conditions, without the production of metabolic sulfide, leads to only minor variation in E corr . These changes possibly correlate to the periods of active bacterial growth

  4. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  5. High temperature aqueous potassium and sodium phosphate solutions: two-liquid-phase boundaries and critical phenomena, 275-4000C; potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1981-12-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases nor liquid-liquid immiscibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators. 16 refs

  6. The effects of post-treatments and temperature on recovering the methane potential of > 2 mm solid fraction of digested cow manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Rintala, J.A.

    2005-01-01

    The effects of thermal and chemical treatments, mechanical maceration and freezing and thawing on recovering the remaining methane potential of the > 2 mm solid fraction of digested cow manure - which accounted for 30% of the original potential of digested cow manure - were studied in laboratory...

  7. Microclimatic temperatures at Danish cattle farms, 2000–2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus

    DEFF Research Database (Denmark)

    Haider, Najmul; Cuellar, Ana Carolina; Kjær, Lene Jung

    2018-01-01

    Microclimatic temperatures provide better estimates of vector-borne disease transmission parameters than standard meteorological temperatures, as the microclimate represent the actual temperatures to which the vectors are exposed. The objectives of this study were to quantify farm-level geographic......-resting sites within a 500 m radius of 22,004 Danish cattle farms for the months April to November from 2000 to 2016. We then modeled the daily EIP of Schmallenberg virus at each farm, assuming vectors choose resting sites either randomly or based on temperatures (warmest or coolest available) every hour....... The results of the model output are presented as 17-year averages. Results: The difference between the warmest and coolest microhabitats at the same farm was on average 3.7 °C (5th and 95th percentiles: 1.0 °C to 7.8 °C). The mean EIP of Schmallenberg virus (5th and 95th percentiles) for all cattle farms...

  8. Investigations to the potential of the high temperature reactor for steam power processes with highest steam conditions and comparison with according conventional power plants

    International Nuclear Information System (INIS)

    Mondry, M.

    1988-04-01

    Already in the fifties conventional power plants with high parameters of the live steam were built to improve the total efficiency. The power plant with the highest steam conditions in the Federal Republic of Germany has 300 bar pressure and 600deg C temperature. Because of high material costs and other problems power plants with such high conditions were not continued to be built. Standard conditions of today's power plants are in the order of 180-250 bar pressure and 535deg C temperature. As the high temperature reactor is partly built up in another way than a conventional power plant, the results regarding the high steam parameters are not transferable. Possibilities for the technical realization of determined HTR-specific components are introduced and discussed. Then different HTR-power plants with steam conditions up to 350 bar pressure and 650deg C temperature are projected. Economical considerations show that an HTR with higher steam parameters brings financial profits. Further efficiency increase, which is possible by the high steam conditions, is shortly presented. The work ends with a technical and economical comparison of corresponding conventional power plants. (orig./UA) [de

  9. Ga-doped ZnO films deposited with varying sputtering powers and substrate temperatures by pulsed DC magnetron sputtering and their property improvement potentials

    International Nuclear Information System (INIS)

    Lee, Sanghun; Cheon, Dongkeun; Kim, Won-Jeong; Ham, Moon-Ho; Lee, Woong

    2012-01-01

    Ga-doped ZnO (GZO) transparent conductive oxide (TCO) films were deposited on glass substrates by pulsed DC magnetron sputtering with varying sputtering power and substrate temperature while fixing the Ga concentration in the sputtering target. The application of higher sputtering power by pulsed DC magnetrons sputtering at a moderate temperature of 423 K results in increased carrier concentration and mobility which accompanied improved doping efficiency and crystalline quality. Substrate temperature was found to be the more dominant parameter in controlling the electrical properties and crystallinity, while the sputtering power played synergistic auxiliary roles. Electrical and optical properties of the GZO TCO films fulfilled requirements for transparent electrodes, despite relatively low substrate temperature (423 K) and small thickness (100 nm). In an attempt to improve the electrical properties of the GZO films by hydrogen-treatment, it was observed that the substitutional Ga plays the complex role of carrier generator as donor and carrier suppressor deactivating the oxygen vacancy simultaneously, which would complicate the property improvement by increasing doping efficiency.

  10. A study on the swelling characteristics of a potential buffer material : Effect of ionic strength and temperature on the swelling pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    This study is intended to investigate the effect of ionic strength and temperature on the swelling pressure of bentonite. The dry density for compacted bentonite was adjusted between 1.4 Mg/m{sup 3} - 1.8 Mg/m{sup 3}. The effect of temperature was tested at 20 deg C, 40 deg C, 60 deg C, 80 deg C, and the effect of ionic strength with distilled water, synthetic ground water, and 0.01 M - 0.1 M NaCl solution. The swelling pressure decreased with increasing ionic strength, and its dependency got lower at high dry density. Temperature had negligible effect on the swelling pressure of compacted bentonite, which could be explained by the change in hydration pressure, osmotic pressure, and pore water pressure in accordance with temperature. The swelling pressure of compacted bentonite with low dry density was dominated mainly by osmosis. However, hydration was thought to become important at higher dry density, compared with the osmosis. 32 refs., 11 figs., 4 tabs. (Author)

  11. An investigation on the tribological properties of Co(ReO4)2/MoS2 composite as potential lubricating additive at various temperatures

    Science.gov (United States)

    Wang, Junhai; Lu, Bing; Zhang, Lixiu; Li, Ting; Yan, Tingting; Li, Mengxu

    2018-02-01

    The Co(ReO4)2 powder was fabricated via the aqueous solution method, and mixed with MoS2 powder using ball milling technique. A certain concentration of Co(ReO4)2/MoS2 composite additive was dispersed into the poly alpha olefin base oil with the assistance of surface active agents. The load-carrying property and lubricating behavior of base oil containing a certain content of Co(ReO4)2/MoS2 composite additive at various temperatures were evaluated by four-ball test and ball-on-disc sliding friction test. The physical properties and friction-reducing mechanism of synthesized composite were ascertained by a series of characterization techniques including X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and differential thermal analysis/thermogravimetry. The four-ball test results suggested the Co(ReO4)2/MoS2 composite additive could effectively promote the load-carrying capacity of base oil, and decrease the friction coefficient as well as wear scar diameter. Ball-on-disc sliding friction test results showed that the base oil with Co(ReO4)2/MoS2 composite additive possessed lower friction coefficients than that of base oil in the whole temperature range, particularly at high temperatures. The protective layer consisted of composite additive and native oxides from superalloy substrate formed on the worn surface to prevent the direct contact between friction pair. The Co(ReO4)2/MoS2 composite played a dominant role in friction-reducing function in the protective layer at elevated temperatures, and the reason for this was that MoS2 possessed layered structure and superior adsorption capacity, and Co(ReO4)2 had experienced thermal softening with elevated temperatures and maintained shear-susceptible hexagonal structure.

  12. Monitoring of crack growth and crack mouth opening displacement in compact tension specimens at high temperatures : Development and implementation of the Direct Current Potential Drop (DCPD) method

    OpenAIRE

    Malmqvist, Philip

    2016-01-01

    The mechanical engineering department at the University of Idaho is conducting a project with the purpose of developing a complete system for investigating creep-, creep-fatigue- and fatigue properties of metallic materials at elevated temperatures up to 650 ˚C with Compact Tension (CT) specimens. Considerable efforts have been made to study and understand these phenomena, although numerous problems still exist. It is important to explore more extensively the complicated phenomena of creep, f...

  13. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress

    Czech Academy of Sciences Publication Activity Database

    Ač, Alexander; Malenovský, Z.; Olejníčková, Julie; Gallé, A.; Rascher, U.; Mohammed, G.

    2015-01-01

    Roč. 168, oct (2015), s. 420-436 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : steady-state chlorophyll fluorescence * passive sun-induced fluorescence * active laser-induced fluorescence * photosynthesis * stress * water * temperature * nitrogen * random-effects meta-analysis * FLEX satellite mission Subject RIV: EH - Ecology, Behaviour Impact factor: 5.881, year: 2015

  14. A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature.

    Science.gov (United States)

    Bhunia, Subhajit; Banerjee, Biplab; Bhaumik, Asim

    2015-03-25

    We have designed a new hypercrosslinked supermicroporous polymer (HMP-1) with a BET surface area of 913 m(2) g(-1) by FeCl3 via a catalyzed Friedel-Crafts alkylation reaction between carbazole and α,α'-dibromo-p-xylene. Upon sulfonation HMP-1 yielded a very efficient solid acid catalyst for the production of biodiesels via esterification/transesterification of free fatty acids (FFA)/esters at room temperature.

  15. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  16. Investigating the Influence of Temperature on the Kaolinite-Base Synthesis of Zeolite and Urease Immobilization for the Potential Fabrication of Electrochemical Urea Biosensors.

    Science.gov (United States)

    Anderson, David Ebo; Balapangu, Srinivasan; Fleischer, Heidimarie N A; Viade, Ruth A; Krampa, Francis D; Kanyong, Prosper; Awandare, Gordon A; Tiburu, Elvis K

    2017-08-08

    Temperature-dependent zeolite synthesis has revealed a unique surface morphology, surface area and pore size which influence the immobilization of urease on gold electrode supports for biosensor fabrication. XRD characterization has identified zeolite X (Na) at all crystallization temperatures tested. However, N₂ adsorption and desorption results showed a pore size and pore volume of zeolite X (Na) 60 °C, zeolite X (Na) 70 °C and zeolite X (Na) 90 °C to range from 1.92 nm to 2.45 nm and 0.012 cm³/g to 0.061 cm³/g, respectively, with no significant differences. The specific surface area of zeolite X (Na) at 60, 70 and 90 °C was 64 m²/g, 67 m²/g and 113 m²/g, respectively. The pore size, specific surface area and pore volumes of zeolite X (Na) 80 °C and zeolite X (Na) 100 °C were dramatically increased to 4.21 nm, 295 m²/g, 0.762 cm³/g and 4.92 nm, 389 m²/g, 0.837 cm³/g, in that order. The analytical performance of adsorbed urease on zeolite X (Na) surface was also investigated using cyclic voltammetry measurements, and the results showed distinct cathodic and anodic peaks by zeolite X (Na) 80 °C and zeolite X (Na) 100 °C. These zeolites' molar conductance was measured as a function of urea concentration and gave an average polynomial regression fit of 0.948. The findings in this study suggest that certain physicochemical properties, such as crystallization temperature and pH, are critical parameters for improving the morphological properties of zeolites synthesized from natural sources for various biomedical applications.

  17. Geothermal potential of northern Bavaria: Analysis of geothermal resources by evaluation of geophysical temperature logs in drinking water wells and deep wells; Geothermisches Potential Nordbayerns - Untersuchungen der geothermischen Verhaeltnisse durch Auswertung geophysikalischer Temperaturmessungen in Trinkwasser- und Tiefbohrungen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W; Udluft, P [Lehr- und Forschungsbereich Hydrogeologie und Umwelt, Inst. fuer Geologie, Wuerzburg Univ. (Germany)

    1997-12-01

    The geothermal potential of northern Bavaria was investigated. Thermal water in the lower heat range may be used, e.g., for space heating, bath heating and agricultural purposes. Geophysical data were obtained from a number of drinking water wells with a depth of less than 150 m and a few deep wells of more than 150 m. The data are to serve as a decision aid for potential users of geothermal energy and reduce the exploration risk. (orig.) [Deutsch] Zielsetzung des Forschungsvorhabens ist die Bewertung des geothermischen Potentials Nordbayerns im Hinblick auf die Nutzung von Tiefenwasser zur Gewinnung von hydrothermaler Energie. Niedrigthermale Tiefenwaesser bieten sich z.B. als Energietraeger fuer Raumwaerme, Baederheizung and landwirtschaftliche Nutzung an. Die geothermischen Daten liegen in Form von geophysikalischen Temperaturmessungen aus zahlreichen Trinkwasserbohrungen mit weniger als 150 m Bohrtiefe und einigen Tiefbohrungen mit mehr als 150 m Bohrtiefe vor. Die Bewertung des geothermischen Potentials Nordbayerns soll als Planungsgrundlage fuer potentialle Erdwaermenutzer dienen und zu einer Minimierung des Explorationsrisikos beitragen. (orig.)

  18. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry.

    Science.gov (United States)

    Qiu, Zhenhua; Shi, Pengjun; Luo, Huiying; Bai, Yingguo; Yuan, Tiezheng; Yang, Peilong; Liu, Suchun; Yao, Bin

    2010-05-05

    A xylanase gene, xynAM6, was isolated from the genomic DNA library of Streptomyces megasporus DSM 41476 using colony PCR screening method. The 1440-bp full-length gene encodes a 479-amino acid peptide consisting of a putative signal peptide of 36 residues, a family 10 glycoside hydrolase domain and a family 2 carbohydrate-binding module. The mature peptide of xynAM6 was successfully expressed in Pichia pastoris GS115. The optimal pH and temperature were pH 5.5 and 70°C, respectively. The enzyme showed broad temperature adaptability (>60% of the maximum activity at 50-80°C), had good thermostability at 60°C and 70°C, remained stable at pH 4.0-11.0, and was resistant to most proteases. The Km and Vmax values for oat spelt xylan were 1.68mgml(-1) and 436.76μmolmin(-1)mg(-1), respectively, and 2.33mgml(-1) and 406.93μmolmin(-1)mg(-1) for birchwood xylan, respectively. The hydrolysis products of XYNAM6 were mainly xylose and xylobiose. Addition of XYNAM6 (80U) to the brewery mash significantly reduced the filtration rate and viscosity by 36.33% and 35.51%, respectively. These favorable properties probably make XYNAM6 a good candidate for application in brewing industry. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Effects of Tetraethyl Orthosilicate (TEOS on the Light and Temperature Stability of a Pigment from Beta vulgaris and Its Potential Food Industry Applications

    Directory of Open Access Journals (Sweden)

    Gustavo A. Molina

    2014-11-01

    Full Text Available A novel, simple and inexpensive modification method using TEOS to increase the UV light, pH and temperature stability of a red-beet-pigment extracted from Beta vulgaris has been proposed. The effects on the molecular structure of betalains were studied by FTIR spectroscopy. The presence of betacyanin was verified by UV-Vis spectroscopy and its degradation in modified red-beet-pigment was evaluated and compared to the unmodified red-beet-pigment; performance improvements of 88.33%, 16.84% and 20.90% for UV light, pH and temperature stability were obtained, respectively,. Measurements of reducing sugars, phenol, and antioxidant contents were performed on unmodified and modified red-beet-pigment and losses of close to 21%, 54% and 36%, respectively, were found to be caused by the addition of TEOS. Polar diagrams of color by unmodified and modified red-beet-pigment in models of a beverage and of a yogurt were obtained and the color is preserved, although here is a small loss in the chromaticity parameter of the modified red-beet-pigment.

  20. The Potential Impact of CO2 and Air Temperature Increases on Krummholz's Transformation into Arborescent Form in the Southern Siberian Mountains

    Science.gov (United States)

    Kharuk, V. I.; Dvinskaya, M. L.; Im, S. T.; Ranson, K. J.

    2011-01-01

    Trees in the southern Siberian Mountains forest-tundra ecotone have considerably increased their radial and apical growth increments during the last few decades. This leads to the widespread vertical transformation of mat and prostrate krummholz forms of larch (Larix sibirica Ledeb) and Siberian pine (Pinus sibirica Du Tour). An analysis of the radial growth increments showed that these transformations began in the mid-1980s. Larch showed a greater resistance to the harsh alpine environment and attained a vertical growth form in areas where Siberian pine is still krummholz. Upper larch treeline is about 10 m higher than Siberian pine treeline. Observed apical and radial growth increment increases were correlated with CO2 concentration (r = 0.83-0.87), summer temperatures (r = 0.55-0.64), and "cold period" (i.e. September-May) air temperatures (r = 0.36-0.37). Positive correlation between growth increments and winter precipitation was attributed to snow cover protection for trees during wintertime.

  1. NiTi shape-memory alloy oxidized in low-temperature plasma with carbon coating: Characteristic and a potential for cardiovascular applications

    Science.gov (United States)

    Witkowska, Justyna; Sowińska, Agnieszka; Czarnowska, Elżbieta; Płociński, Tomasz; Borowski, Tomasz; Wierzchoń, Tadeusz

    2017-11-01

    Surface layers currently produced on NiTi alloys do not meet all the requirements for materials intended for use in cardiology. Plasma surface treatments of titanium and its alloys under glow discharge conditions make it possible to produce surface layers, such as TiN or TiO2, which increases corrosion resistance and biocompatibility. The production of layers on NiTi alloys with the same properties, and maintaining their shape memory and superelasticity features, requires the use of low-temperature processes. At the same time, since it is known that the carbon-based layers could prevent excessive adhesion and aggregation of platelets, we examined the composite a-CNH + TiO2 type surface layer produced by means of a hybrid method combining oxidation in low-temperature plasma and Radio Frequency Chemical Vapor Deposition (RFCVD) processes. Investigations have shown that this composite layer increases the corrosion resistance of the material, and both the low degree of roughness and the chemical composition of the surface produced lead to decreased platelet adhesion and aggregation and proper endothelialization, which could extend the range of applications of NiTi shape memory alloys.

  2. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions

    Science.gov (United States)

    Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas

    2018-02-01

    Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.

  3. Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming

    Energy Technology Data Exchange (ETDEWEB)

    Matsunoshita, Hirotaka [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Edalati, Kaveh, E-mail: kaveh.edalati@zaiko6.zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Furui, Mitsuaki [Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan); Horita, Zenji [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395 (Japan); WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)

    2015-07-29

    A Mg–Li alloy with 8 wt% Li was processed by severe plastic deformation (SPD) through the process of high-pressure torsion (HPT) to achieve ultrafine grains with an average grain size of ~500 nm. Tensile testing with an initial strain rate of 10{sup −3} s{sup −1} showed that the alloy exhibited superplasticity at a temperature of 323 K or higher. Tensile testing in boiling water confirmed that the specimens were elongated to 350–480% at 373 K under the initial strain rates of 10{sup −3} s{sup −1} to {sup 1}0{sup −2} s{sup −1} with a strain rate sensitivity of ~0.3. The current study suggests that not only superplastic forming but also superplastic hydroforming should be feasible after the grain refinement using the HPT method.

  4. Ultrafine-grained magnesium–lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming

    International Nuclear Information System (INIS)

    Matsunoshita, Hirotaka; Edalati, Kaveh; Furui, Mitsuaki; Horita, Zenji

    2015-01-01

    A Mg–Li alloy with 8 wt% Li was processed by severe plastic deformation (SPD) through the process of high-pressure torsion (HPT) to achieve ultrafine grains with an average grain size of ~500 nm. Tensile testing with an initial strain rate of 10 −3 s −1 showed that the alloy exhibited superplasticity at a temperature of 323 K or higher. Tensile testing in boiling water confirmed that the specimens were elongated to 350–480% at 373 K under the initial strain rates of 10 −3 s −1 to 1 0 −2 s −1 with a strain rate sensitivity of ~0.3. The current study suggests that not only superplastic forming but also superplastic hydroforming should be feasible after the grain refinement using the HPT method

  5. Accurate Prediction of One-Electron Reduction Potentials in Aqueous Solution by Variable-Temperature H-Atom Addition/Abstraction Methodology

    Czech Academy of Sciences Publication Activity Database

    Bím, Daniel; Rulíšek, Lubomír; Srnec, Martin

    2016-01-01

    Roč. 7, č. 1 (2016), s. 7-13 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GJ15-10279Y; GA ČR(CZ) GA14-31419S Institutional support: RVO:61388963 ; RVO:61388955 Keywords : density functional theory * redox potentials * computational electrochemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.353, year: 2016

  6. Growth potential of Salmonella spp. and Listeria monocytogenes in nine types of ready-to-eat vegetables stored at variable temperature conditions during shelf-life

    OpenAIRE

    Sant'Ana, Anderson S.; Barbosa, Matheus S.; Destro, Maria Teresa; Landgraf, Mariza; Franco, Bernadette D. G. M.

    2012-01-01

    Growth potential (delta) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of 6 of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the delta of both pathogens in nine differen...

  7. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery

    International Nuclear Information System (INIS)

    Yu Lihong; Qiu Xinping; Xi Jingyu; Zhu Wentao; Chen Liquan

    2006-01-01

    The surface of spinel LiMn 2 O 4 was modified with TiO 2 by a simple sol-gel method to improve its electrochemical performance at elevated temperatures and higher working potentials. Compared with pristine LiMn 2 O 4 , surface-modification improved the cycling stability of the material. The capacity retention of TiO 2 -modified LiMn 2 O 4 was more than 85% after 60 cycles at high potential cycles between 3.0 and 4.8 V at room temperature and near to 90% after 30 cycles at elevated temperature of 55 deg. C at 1C charge-discharge rate. SEM studies shows that the surface morphology of TiO 2 -modified LiMn 2 O 4 was different from that of pristine LiMn 2 O 4 . Powder X-ray diffraction indicated that spinel was the only detected phase in TiO 2 -modified LiMn 2 O 4 . Introduction of Ti into LiMn 2 O 4 changed the electronic structures of the particle surface. Therefore a surface solid compound of LiTi x Mn 2-x O 4 may be formed on LiMn 2 O 4 . The improved electrochemical performance of surface-modified LiMn 2 O 4 was attributed to the improved stability of crystalline structure and the higher Li + conductivity

  8. Investigation of ZPE and temperature effects on the Eley-Rideal recombination of hydrogen atoms on graphene using a multidimensional graphene-H-H potential

    Science.gov (United States)

    Sizun, M.; Bachellerie, D.; Aguillon, F.; Sidis, V.

    2010-09-01

    We study the Eley-Rideal recombination of H atoms on graphene under the physical conditions of the interstellar medium. Effects of the ZPE motions of the chemisorbed H atom and of the graphene thermal motions are investigated. Classical molecular dynamics calculations undertaken with the multidimensional potential of Bachellerie et al. [Phys. Chem. Chem. Phys. 11 (2009) 2715] are reported. The ZPE effects are the strongest. The closer the collision energy is to the classical reaction threshold the more sizeable the effects. The quantum reaction cross section is also estimated below and above the classical threshold using a capture model.

  9. The market potential of HTR modular reactors as a heat source for high - temperature processes in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    1988-01-01

    The HTR is the only reactor system which can provide process heat in a wide temperature range up to 950 0 C. The HTR module is designed as an unsophisticated, safe and universal heat source with a large field of applications. The following applications have been considered: the steam reforming of natural gas and coal conversion processes for the production of methanol, hydrogen and SNG. They are investigated in many different modifications and nuclear and autothermal processes are compared. Other applications of nuclear process heat in the chemical and petrochemical industry seem to be appropriate and promising, but could not be analysed because of lack of data. The economic results show that for today's coal and gas processing the HTR can only compete against conventional conversion processes for specific premises. Especially, those processses in which valuable fossil fuels such as natural gas are substituted by nuclear process heat promise an economic bebefit. Looking to the market of the year 2030 and the need for process heat in the chemical and steel industries (including the demand for synthesis gas), cement and refinery industries, for the production of aluminium oxide and for tertiary oil recovery, a total theoretical market in the Federal Republic of Germany of up to 60 HTR-2 module plants is estimated

  10. Potential Fluctuations at Low Temperatures in Mesoscopic-Scale SmTiO3/SrTiO3/SmTiO3 Quantum Well Structures.

    Science.gov (United States)

    Hardy, Will J; Isaac, Brandon; Marshall, Patrick; Mikheev, Evgeny; Zhou, Panpan; Stemmer, Susanne; Natelson, Douglas

    2017-04-25

    Heterointerfaces of SrTiO 3 with other transition metal oxides make up an intriguing family of systems with a bounty of coexisting and competing physical orders. Some examples, such as LaAlO 3 /SrTiO 3 , support a high carrier density electron gas at the interface whose electronic properties are determined by a combination of lattice distortions, spin-orbit coupling, defects, and various regimes of magnetic and charge ordering. Here, we study electronic transport in mesoscale devices made with heterostructures of SrTiO 3 sandwiched between layers of SmTiO 3 , in which the transport properties can be tuned from a regime of Fermi-liquid like resistivity (ρ ∝ T 2 ) to a non-Fermi liquid (ρ ∝ T 5/3 ) by controlling the SrTiO 3 thickness. In mesoscale devices at low temperatures, we find unexpected voltage fluctuations that grow in magnitude as T is decreased below 20 K, are suppressed with increasing contact electrode size, and are independent of the drive current and contact spacing distance. Magnetoresistance fluctuations are also observed, which are reminiscent of universal conductance fluctuations but not entirely consistent with their conventional properties. Candidate explanations are considered, and a mechanism is suggested based on mesoscopic temporal fluctuations of the Seebeck coefficient. An improved understanding of charge transport in these model systems, especially their quantum coherent properties, may lead to insights into the nature of transport in strongly correlated materials that deviate from Fermi liquid theory.

  11. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Increasing persistent haze in Beijing: potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends

    Directory of Open Access Journals (Sweden)

    L. Pei

    2018-03-01

    Full Text Available Over the past decades, Beijing, the capital city of China, has encountered increasingly frequent persistent haze events (PHE. While the increased pollutant emissions are considered as the most important reason, changes in regional atmospheric circulations associated with large-scale climate warming also play a role. In this study, we find a significant positive trend of PHE in Beijing for the winters from 1980 to 2016 based on updated daily observations. This trend is closely related to an increasing frequency of extreme anomalous southerly episodes in North China, a weakened East Asian trough in the mid-troposphere and a northward shift of the East Asian jet stream in the upper troposphere. These conditions together depict a weakened East Asian winter monsoon (EAWM system, which is then found to be associated with an anomalous warm, high-pressure system in the middle–lower troposphere over the northwestern Pacific. A practical EAWM index is defined as the seasonal meridional wind anomaly at 850 hPa in winter over North China. Over the period 1900–2016, this EAWM index is positively correlated with the sea surface temperature anomalies over the northwestern Pacific, which indicates a wavy positive trend, with an enhanced positive phase since the mid-1980s. Our results suggest an observation-based mechanism linking the increase in PHE in Beijing with large-scale climatic warming through changes in the typical regional atmospheric circulation.

  13. Potential probiotic characterization of Lactobacillus reuteri from traditional Chinese highland barley wine and application for room-temperature-storage drinkable yogurt.

    Science.gov (United States)

    Chen, Su; Chen, Lin; Chen, Lie; Ren, Xueliang; Ge, Hongjuan; Li, Baolei; Ma, Guanghui; Ke, Xueqin; Zhu, Jun; Li, Li; Feng, Yuhong; Li, Yanjun

    2018-04-25

    The aim of this study was to select probiotic strains that could be used in drinkable yogurt to yield viable cells following storage at room temperature (RT). The uniquely high altitude conditions in Tibet and the alcoholic environment of certain products, such as the highland barley wine homemade in Tibet, may induce unusual characteristics of microbial strains. A total of 27 lactic acid bacteria were isolated from homemade highland barley wines. One strain, Lactobacillus reuteri WHH1689, demonstrated no ability for lactose utilization, exhibited a high survival rate during storage at RT in drinkable yogurts, and produced very weak post-acidification. This strain showed great resistance to conditions simulating the gastrointestinal tract, including strong adherence to HT-29 cells and inhibitory activity against Escherichia coli, Shigella flexneri, Salmonella paratyphi β, and Staphylococcus aureus. A dextran sulfate sodium (DSS)-induced mouse model was used to evaluate the in vivo influence of Lb. reuteri WHH1689 on the intestinal flora and showed that strain WHH1689 increased viable counts of bifidobacteria in feces of mice. The probiotic strain selected in this study-with its high survival at RT and lack of serious post-acidification problems-may provide significant improvements for dairy industry products by extending the storage time of dairy products with living cells. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. The inclusions of Mg-B (MgB12?) as potential pinning centres in high-pressure-high-temperature-synthesized or sintered magnesium diboride

    International Nuclear Information System (INIS)

    Prikhna, T A; Gawalek, W; Savchuk, Ya M; Habisreuther, T; Wendt, M; Sergienko, N V; Moshchil, V E; Nagorny, P; Schmidt, Ch; Dellith, J; Dittrich, U; Litzkendorf, D; Melnikov, V S; Sverdun, V B

    2007-01-01

    A systematic study of the structure and superconductive characteristics of high-pressure-high-temperature (2 GPa, 700-1000 deg. C )-synthesized and sintered MgB 2 without additions from different initial powders was performed. Among various secondary phases Mg-B inclusions with a stoichiometry close to MgB 12 were identified. With an increasing amount of these inclusions the critical current density increased. So these inclusions can be feasible pinning centres in MgB 2 . The highest j c values in zero field were 1300 kA cm -2 at 10 K, 780 kA cm -2 at 20 K and 62 kA cm -2 at 35 K and in 1 T field were 1200 kA cm -2 at 10 K, 515 kA cm -2 at 20 K and 0.1 kA cm -2 at 35 K for high-pressure-synthesized magnesium diboride and the field of irreversibility at 20 K reached 8 T. The average grain sizes calculated from x-ray examinations in materials having high j c were 15-37 nm

  15. Coastal circulation and potential coral-larval dispersal in Maunalua Bay, O'ahu, Hawaii—Measurements of waves, currents, temperature, and salinity, June-September 2010

    Science.gov (United States)

    Presto, M. Katherine; Storlazzi, Curt D.; Logan, Joshua B.; Reiss, Thomas E.; Rosenberger, Kurt J.

    2012-01-01

    This report presents a summary of fieldwork conducted in Maunalua Bay, O'ahu, Hawaii to address coral-larval dispersal and recruitment from June through September, 2010. The objectives of this study were to understand the temporal and spatial variations in currents, waves, tides, temperature, and salinity in Maunalua Bay during the summer coral-spawning season of Montipora capitata. Short-term vessel surveys and satellite-tracked drifters were deployed to measure currents during the June 2010 spawning event and to supplement the longer-term measurements of currents and water-column properties by fixed, bottom-mounted instruments deployed in Maunalua Bay. These data show that currents at the surface and just below the surface where coral larvae are found are often oriented in opposite directions due primarily to tidal and trade-winds forcing as the primary mechanisms of circulation in the bay. These data extend our understanding of coral-larvae dispersal patterns due to tidal and wind-driven currents and may be applicable to larvae of other Hawaiian corals.

  16. Potential of nitrate addition to control the activity of sulfate-reducing prokaryotes in high-temperature oil production systems - a comparative study on a nitrate-treated and an untreated system

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. Adding nitrate to the injection water is applied to control SRP activity by favoring the growth of heterotrophic, nitrate-reducing bacteria (h......NRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Microbial diversity, abundance of Bacteria, Archaea and sulfate-reducing prokaryotes (SRP) and the potential activity of SRP were studied in production water samples from a nitrate-treated and an untreated system. The reservoirs and the produced water......) and Desulfotomaculum (system with nitrate). In samples from the untreated site, the presence of active SRP was supported by demonstrating their activity (incubations with 35S-sulfate) and growth in batch cultures at pipeline temperature. No SRP activity was detected at reservoir temperature and in samples from...

  17. Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids

    International Nuclear Information System (INIS)

    Le, Van Long; Feidt, Michel; Kheiri, Abdelhamid; Pelloux-Prayer, Sandrine

    2014-01-01

    This paper presents the system efficiency optimization scenarios of basic and regenerative supercritical ORCs (organic Rankine cycles) using low-GWP (global warming potential) organic compounds as working fluid. A more common refrigerant, i.e. R134a, was also employed to make the comparison. A 150-°C, 5-bar-pressurized hot water is used to simulate the heat source medium. Power optimization was equally performed for the basic configuration of supercritical ORC. Thermodynamic performance comparison of supercritical ORCs using different working fluids was achieved by ranking method and exergy analysis method. The highest optimal efficiency of the system (η sys ) is always obtained with R152a in both basic (11.6%) and regenerative (13.1%) configurations. The highest value of optimum electrical power output (4.1 kW) is found with R1234ze. By using ranking method and considering low-GWP criterion, the best working fluids for system efficiency optimization of basic and regenerative cycles are R32 and R152a, respectively. The best working fluid for net electrical power optimization of basic cycle is R1234ze. Although CO 2 has many desirable environmental and safety properties (e.g. zero ODP (Ozone Depletion Potential), ultra low-GWP, non toxicity, non flammability, etc.), the worst thermodynamic performance is always found with the cycle using this compound as working fluid. - Highlights: • Performance optimizations were carried out for the supercritical ORCs using low-GWP working fluids. • Heat regeneration was used to improve the system efficiency of the supercritical ORC. • Thermodynamic performances of supercritical ORCs at the optima were evaluated by ranking method and exergy analysis

  18. Effects of Organic Corrosion Inhibitor and Chloride Ion Concentration on Steel Depassivation and Repassivation in Solution

    Institute of Scientific and Technical Information of China (English)

    WANG Zixiao; YU Lei; LIU Zhiyong; SONG Ning

    2015-01-01

    Effect of an organic corrosion inhibitor (OCI) named PCI-2014 added in chloride solution on the critical chlo-ride concentration of mild steel depassivation and the critical OCI concentrations for repairing the steel in different chlo-ride solution were investigated. The results show that the critical chloride concentration increases exponentially with raises of PCI-2014 concentration in the solution. Within a certain chloride ion concentration range, the critical PCI-2014 concentration for repairing the corroded steel is also increases exponentially with enhancement of chloride content in the solution. Atomic force microscopy images display the molecular particles of inhibitor are adsorbed on the steel surface and formed a protective layer. Analysis of X-ray photoelectron spectroscopy shows the chloride ions at the surface of steel are displaced by atoms or molecules of the inhibitor in chloride condition.

  19. Transpiração e temperatura foliar da cana-de-açúcar sob diferentes valores de potencial matricial Transpiration and leaf temperature of sugarcane under different matric potential values

    Directory of Open Access Journals (Sweden)

    Roberto Trentin

    2011-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a variação diurna da transpiração e da temperatura foliar da cana-de-açúcar, cv. RB867515, sob diferentes potenciais matriciais de água no substrato de cultivo e as condições meteorológicas em ambiente protegido. O efeito do estresse hídrico na transpiração e temperatura foliar foi determinado a partir da suspensão da irrigação, quando foram realizadas três campanhas de medições, iniciadas aos 122; 150 e 185 dias após o plantio (DAP até que o potencial matricial de água no substrato (Ψ alcançasse -1.500 kPa, aproximadamente. Sob ausência de estresse hídrico (Ψ>-50 kPa, a transpiração das plantas atingiu o valor máximo entre 10 e 13 h, próximo de 60; 70 e 100 g planta-1 h-1 para 122; 150 e 185 DAP, respectivamente. Sob condições de estresse hídrico severo (ΨThe objective of this study was to evaluate the diurnal behaviour of transpiration and leaf temperature of sugarcane (cv. RB867515 under different water matrix potential in the cultivation substrate and greenhouse meteorological conditions. The water stress effect on transpiration and leaf temperature was determined after irrigation suspension, when three measurement campaigns were initiated at 122; 150 and 185 days after planting (DAP until the matrix water potential in the substrate (Ψ reached -1,500 kPa, approximately. Under the absence of water stress (Ψ>-50 kPa, plant transpiration reached the maximum value between 10:00 AM and 13:00 PM, near to 60; 70 e 100 gplant-1h-1, for 122; 150 and 185 DAP, respectively. Under severe water stress (Ψ<-1,100 kPa, there was daily transpiration reduction of approximately 73%, compared to measurements performed without water stress and under similar meteorological conditions. Under the absence of water stress and overcast sky conditions, the average value of the difference between leaf temperature and air temperature was -2.9 ºC. In contrast, under severe water stress and high

  20. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism.

    Science.gov (United States)

    Li, MinChao; Li, Qi; Yang, Gang; Kolosov, Victor P; Perelman, Juliy M; Zhou, Xiang Dong

    2011-09-01

    Cold air stimulus is a major environmental factor that exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. At the molecular level, cold is detected by transient receptor potential melastatin 8 (TRPM8). To date, TRPM8 expression has not been characterized in the airway epithelium of patients with COPD. The role of TRPM8 channels in a series of airway responses induced by cold stimuli and the molecular and biochemical pathways of TRPM8 in regulating cold-induced responses are largely unknown. We sought to explore the role of TRPM8 in cold air-provoked mucus hypersecretion and the potential signaling pathway involved in this process. The expression of TRPM8 in the bronchial epithelium was examined by means of immunohistochemistry, RT-PCR, and Western blotting. TRPM8 receptor function and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) were characterized by means of Ca(2+) imaging and spatiotemporal dynamics of phospholipase C (PLC) δ1-pleckstrin homology-green fluorescent protein, respectively. The expression of MUC5AC mRNA and MUC5AC mucin protein was measured by using real-time PCR and ELISA, respectively. Four serine residues in the myristoylated alanine-rich C kinase substrate (MARCKS)-phosphorylation site domain were mutated to identify the function of MARCKS in TRPM8-mediated airway mucus hypersecretion. TRPM8 protein and mRNA expression were significantly increased in patients with COPD compared with expression seen in healthy subjects. Cold produced robust increases in intracellular Ca(2+) levels and promoted translocation of PLCδ1-pleckstrin homology-green fluorescent protein. Cold increased expression of MUC5AC mRNA and intracellular and secreted MUC5AC protein in a nonsustained way. Phosphorylation site domain-mutant MARCKS cDNA hindered MUC5AC secretion induced by cold. These results indicate that the TRPM8 receptor is involved in cold-induced mucus hypersecretion through the Ca(2

  1. Molecular characterization of elongase of very long-chain fatty acids 6 (elovl6) genes in Misgurnus anguillicaudatus and their potential roles in adaptation to cold temperature.

    Science.gov (United States)

    Chen, Jingwen; Cui, Yun; Yan, Jie; Jiang, Jimin; Cao, Xiaojuan; Gao, Jian

    2018-08-05

    Elongase of very long-chain fatty acids 6 (ELOVL6) is a rate-limiting enzyme catalyzing elongation of saturated and monounsaturated long-chain fatty acid. Although functional characteristics of Elovl6 have been demonstrated in mammal, the role of elovl6 in fish remains unclear. In this study, we firstly cloned three isoforms of elovl6 (elovl6a, elovl6b and elovl6-like) from loach (Misgurnus anguillicaudatus). Molecular characterizations of the three elovl6 isoforms in loach and their expressions of early life stages and different tissues were then determined. We also functionally characterized the three elovl6 isoforms using heterologous expression in baker's yeast. Results obtained here showed the three elovl6 proteins in loach can elongate C16:0 and C16:1 to C18:0 and C18:1, respectively. At last, to confirm the role of three loach elovl6 isoforms for elongation of fatty acids in adaption to cold stress, differences in skin histological structures, body fatty acid compositions, expressions of four hepatic lipogenesis or lipolysis related genes, and expressions of the three elovl6 isoforms and their related gene uncoupling protein 1 (ucp1) in different tissues were investigated in the loach reared in two different water temperatures (28 °C and 4 °C) for ten days. Cold stress increased ratios of C18/C16 and C20:5n-3/C18:3n-3 in loach body, and induced expressions of hepatic acyl-CoA delta-9 desaturase 1 (scd1), sterol-regulator element-binding protein 1 (srebp1), carnitine palmitoyltransferase 1 (cpt1) and fatty acid synthase (fas). Meanwhile, significant differences were found in expressions of the three elovl6 isoforms in different tissues between 28 °C and 4 °C groups. Overall, this study suggests that the three elovl6 isoforms in loach have ability to elongate C16 to C18, and elovl6 proteins in loach may play a role in adaptation to cold stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Using the Abitibi Greenstone Belt to Understand Martian Hydrothermal Systems and the Potential for Biosignature Preservation in High Temperature Aqueous Environments

    Science.gov (United States)

    Hurowitz, J.; Abelson, J.; Allwood, A.; Anderson, R.; Atkinson, B.; Beaty, D.; Bristow, T.; Ehlmann, B.; Eigenbrode, J.; Grotzinger, J.; hide

    2011-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 +/- 0.07% (+/- SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  3. Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation

    KAUST Repository

    Guo, Huimin; Li, Min; Liu, Xin; Meng, Changgong; Linguerri, Roberto; Han, Yu; Chambaud, Gilberte

    2017-01-01

    We investigated the oxidation of formaldehyde, one of the major indoor air pollutants, into CO2 and H2O over Fe atoms trapped in defects on graphene by first-principles based calculations. These trapped Fe atoms are not only stable to withstand interference from the reaction environments but are also efficient in catalyzing the reactions between coadsorbed O-2 and formaldehyde. The oxidation of formaldehyde starts with the formation of a peroxide-like intermediate and continues by its dissociation into. eta(1)-OCHO coadsorbed with an OH radical. Then, the adsorbed OCHO undergoes conformational changes and hydride transfer, leading to the formation of H2O and CO2. Subsequent adsorption of O2 or formaldehyde facilitates desorption of H2O and a new reaction cycle initiates. The calculated barriers for formation and dissociation of the peroxide-like intermediate are 0.43 and 0.40 eV, respectively, and those for conformation changes and hydride transfer are 0.47 and 0.13 eV, respectively. These relatively low barriers along the reaction path suggest the potential high catalytic performance of trapped Fe atoms for formaldehyde oxidation.

  4. Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation

    KAUST Repository

    Guo, Huimin

    2017-03-24

    We investigated the oxidation of formaldehyde, one of the major indoor air pollutants, into CO2 and H2O over Fe atoms trapped in defects on graphene by first-principles based calculations. These trapped Fe atoms are not only stable to withstand interference from the reaction environments but are also efficient in catalyzing the reactions between coadsorbed O-2 and formaldehyde. The oxidation of formaldehyde starts with the formation of a peroxide-like intermediate and continues by its dissociation into. eta(1)-OCHO coadsorbed with an OH radical. Then, the adsorbed OCHO undergoes conformational changes and hydride transfer, leading to the formation of H2O and CO2. Subsequent adsorption of O2 or formaldehyde facilitates desorption of H2O and a new reaction cycle initiates. The calculated barriers for formation and dissociation of the peroxide-like intermediate are 0.43 and 0.40 eV, respectively, and those for conformation changes and hydride transfer are 0.47 and 0.13 eV, respectively. These relatively low barriers along the reaction path suggest the potential high catalytic performance of trapped Fe atoms for formaldehyde oxidation.

  5. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  6. Evaluation of Temperature Based Potential Evapotranspiration ...

    African Journals Online (AJOL)

    user

    (PET) ESTIMATION METHOD FOR ABBAY RIVER BASIN. Semu Ayalew ... Water resources and agricultural engineers and practitioners often face ..... Theoretical and Applied. Climatology. 38(3): ... in Pangani Basin. Physics and Chemistry of.

  7. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    C. Lievens; J. Yperman; J. Vangronsveld; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-08-15

    Presently, little or no information of implementing fast pyrolysis for looking into the potential valorisation of heavy metal contaminated biomass is available. Fast pyrolysis of heavy metal contaminated biomass (birch and sunflower), containing high amounts of Cd, Cu, Pb and Zn, resulting from phytoremediation, is investigated. The effect of the pyrolysis temperature (623, 673, 773 and 873 K) and the type of solid heat carrier (sand and fumed silica) on the distribution of the heavy metals in birch and sunflower pyrolysis fractions are studied. The goal of the set-up is 'concentrating' heavy metals in the ash/char fraction after thermal treatment, preventing them to be released in the condensable and/or volatile fractions. The knowledge of the behaviour of heavy metals affects directly future applications and valorisation of the pyrolysis products and thus contaminated biomass. They are indispensable for making and selecting the proper thermal conditions for their maximum recovery. In view of the future valorisation of these biomasses, the amounts of the pyrolysis fractions and the calorific values of the obtained liquid pyrolysis products, as a function of the pyrolysis temperature, are determined. 46 refs., 8 figs., 4 tabs.

  8. Evaluación del potencial reproductivo del chorito (Mytilus chilensis de dos poblaciones naturales sometidas a diferentes temperaturas de acondicionamiento Assessment of the reproductive potential of the mussel (Mytilus chilensis from two natural populations subjected to different conditioning temperatures

    Directory of Open Access Journals (Sweden)

    Luis Lagos

    2012-07-01

    Full Text Available Mytilus chilensis tiene ciclos reproductivos que varían latitudinalmente. Presenta reducida diferenciación genética y morfológica debido a un gran potencial de dispersión. Se acondicionaron reproductores de bahía Yaldad (Chiloé y bahía Zenteno (Punta Arenas a 9 ± 0,5°C y 15 ± 0,5°C, alimentados con dieta (1:1 de Isochrysis galbana y Chaetoceros neogracile. Se espera dilucidar si el acondicionamiento a diferentes temperaturas produce variaciones en el potencial reproductivo de las poblaciones. El menor desarrollo gonadal se produjo en los reproductores acondicionados a 9°C, mientras que el mayor se produjo en los reproductores acondicionados a 15°C provenientes de Chiloé. La fecundidad de los reproductores de Yaldad fue mayor que los de Zenteno. El diámetro de los ovocitos fue mayor en los reproductores de Zenteno y en ambas poblaciones fue mayor a 9°C. Ni el porcentaje de huevos fecundados ni el porcentaje de eclosión de larvas D mostraron diferencias significativas entre las poblaciones a ninguna de las temperaturas de acondicionamiento. De acuerdo con estos resultados, no se logra establecer diferencias en el potencial reproductivo en las poblaciones y bajo las condiciones de este estudio.The reproductive cycles of Mytilus chilensis vary latitudinally. This species has reduced genetic and morphological differentiation due to its high potential for dispersal. Broodstocks from Yaldad Bay (Chiloé and Zenteno Bay (Punta Arenas were conditioned at 9 ± 0.5°C and 15 ± 0.5°C, and were fed a diet (1:1 of Isochrysis galbana and Chaetoceros neogracile. We expected to determine whether conditioning at different temperatures produces changes in the reproductive potential of the populations. Gonadal development was lowest in the broodstocks conditioned at 9°C, and highest in those conditioned at 15°C, from Chiloé. Fertility was greater in broodstocks from Yaldad than in those from Zenteno. Oocyte diameter was greater in broodstocks

  9. Temperature Pill

    Science.gov (United States)

    1988-01-01

    Ingestible Thermal Monitoring System was developed at Johns Hopkins University as means of getting internal temperature readings for treatments of such emergency conditions as dangerously low (hypothermia) and dangerously high (hyperthermia) body temperatures. ITMS's accuracy is off no more than one hundredth of a degree and provides the only means of obtaining deep body temperature. System has additional applicability in fertility monitoring and some aspects of surgery, critical care obstetrics, metabolic disease treatment, gerontology (aging) and food processing research. Three-quarter inch silicone capsule contains telemetry system, micro battery, and a quartz crystal temperature sensor inserted vaginally, rectally, or swallowed.

  10. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  11. Finite temperature field theory

    CERN Document Server

    Das, Ashok

    1997-01-01

    This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al

  12. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes

    Science.gov (United States)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego

    2017-07-01

    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process

  13. Temperature metrology

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.

    2005-05-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  14. Temperature metrology

    International Nuclear Information System (INIS)

    Fischer, J; Fellmuth, B

    2005-01-01

    The majority of the processes used by the manufacturing industry depend upon the accurate measurement and control of temperature. Thermal metrology is also a key factor affecting the efficiency and environmental impact of many high-energy industrial processes, the development of innovative products and the health and safety of the general population. Applications range from the processing, storage and shipment of perishable foodstuffs and biological materials to the development of more efficient and less environmentally polluting combustion processes for steel-making. Accurate measurement and control of temperature is, for instance, also important in areas such as the characterization of new materials used in the automotive, aerospace and semiconductor industries. This paper reviews the current status of temperature metrology. It starts with the determination of thermodynamic temperatures required on principle because temperature is an intensive quantity. Methods to determine thermodynamic temperatures are reviewed in detail to introduce the underlying physical basis. As these methods cannot usually be applied for practical measurements the need for a practical temperature scale for day-to-day work is motivated. The International Temperature Scale of 1990 and the Provisional Low Temperature Scale PLTS-2000 are described as important parts of the International System of Units to support science and technology. Its main importance becomes obvious in connection with industrial development and international markets. Every country is strongly interested in unique measures, in order to guarantee quality, reproducibility and functionability of products. The eventual realization of an international system, however, is only possible within the well-functioning organization of metrological laboratories. In developed countries the government established scientific institutes have certain metrological duties, as, for instance, the maintenance and dissemination of national

  15. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  16. Crowdsourcing urban air temperatures from smartphone battery temperatures

    Science.gov (United States)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree

  17. The geothermal system of Caviahue-Copahue Volcanic Complex (Chile-Argentina): New insights from self-potential, soil CO2 degassing, temperature measurements and helium isotopes, with structural and fluid circulation implications.

    Science.gov (United States)

    Roulleau, Emilie; Bravo, Francisco; Barde-Cabusson, Stephanie; Pizarro, Marcela; Muños, Carlos; Sanchez, Juan; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; de Cal, Federico; Esteban, Carlos

    2016-04-01

    Geothermal systems represent natural heat transfer engines in a confined volume of rock which are strongly influenced by the regional volcano-tectonic setting controlling the formation of shallow magmatic reservoirs, and by the local faults/fracture network, that permits the development of hydrothermal circulation cells and promote the vertical migration of fluids and heat. In the Southern Volcanic Zone of Chile-Argentina, geothermal resources occur in close spatial relationship with active volcanism along the Cordillera which is primarily controlled by the 1000 km long, NNE Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropy of overall NE-SW (extensional) and NW-SE orientation (compressional). However there is still a lack of information on how fault network (NE and WNW strinking faults) and lithology control the fluid circulation. In this study, we propose new data of dense self-potential (SP), soil CO2 emanation and temperature (T) measurements within the geothermal area from Caviahue-Copahue Volcanic Complex (CCVC), coupled with helium isotopes ratios measured in fumaroles and thermal springs. We observe that inside the geothermal system the NE-striking faults, characterized by a combination of SP-CO2 and T maxima with high 3He/4He ratios (7.86Ra), promote the formation of high vertical permeability pathways for fluid circulation. Whereas, the WNW-striking faults represent low permeability pathways for hydrothermal fluids ascent associated with moderate 3He/4He ratios (5.34Ra), promoting the infiltration of meteoric water at shallow depth. These active zones are interspersed by SP-CO2- T minima, which represent self-sealed zones (e.g. impermeable altered rocks) at depth, creating a barrier inhibiting fluids rise. The NE-striking faults seem to be associated with the upflow zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the

  18. Redox potentials of PuO{sub 2}{sup 2+}/PuO{sub 2}{sup +} and Pu{sup 4+}/Pu{sup 3+} at different ionic strengths and temperatures; entropy and heat capacity; Potentiels Redox des couples PuO{sub 2}{sup 2+}/PuO{sub 2}{sup +} et Pu{sup 4+}/Pu{sup 3+} a force ionique et temperature variables. Entropie et capacite calorifique

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, H.; Vitorge, P.

    1994-05-01

    The reversible redox potentials of the Plutonium couples are measured by using cyclic voltammetry, in perchloric media at ionic strength, I from 0,5 M to 3M, and temperature, T, from 5 deg C to 65 deg C. At each T, experimental results, E(T,I), are extrapolated to I = O by applying the Specific Interaction Theory (S.I.T.) to get interaction coefficients, {Delta} is element of (T), and E(T,O) (e.g. standard potentials when T = 25 deg C). At T = 25 deg C the numerical values of the potentials of all the Pu couples are nearly the same. It is then not easy to detect a systematic error due to disproportionation or redox impurity. This can explain some discrepancy on numerical values already published. We finally propose ``recommended values`` of the reversible redox potentials. As a first approximation, the variations of these potentials seem to be quite linear versus temperature: entropy variation versus T is small. But taking into account heat capacity that is involved in the E(T,I) second order derivative, usually improves the fitting. A second order expansion of {epsilon}(T) and of the Debye Huckel term, D(T) are used to propose equations that account for simultaneous ionic strength and temperature influences on G, S, Cp, H, and lg K. These equations, in particular those modelling the ionic strength influence on {Delta}S, {Delta}Cp, and {Delta}H are first checked for published mean activity coefficients of HCI and NaCI. Small discrepancy between the numerical values of entropy changes of actinides redox couples, deduced from electrochemical and calorimetric techniques are discussed. (authors). 27 refs., 6 tabs., 10 figs.

  19. temperature overspecification

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2001-01-01

    Full Text Available Two different finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the (3,3 alternating direction implicit (ADI finite difference scheme and the (3,9 alternating direction implicit formula. These schemes are unconditionally stable. The basis of analysis of the finite difference equation considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett [17]. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. These schemes use less central processor times than the fully implicit schemes for two-dimensional diffusion with temperature overspecification. The alternating direction implicit schemes developed in this report use more CPU times than the fully explicit finite difference schemes, but their unconditional stability is significant. The results of numerical experiments are presented, and accuracy and the Central Processor (CPU times needed for each of the methods are discussed. We also give error estimates in the maximum norm for each of these methods.

  20. Two-liquid-phase boundaries and critical phenomena at 275 to 4000C for high-temperature aqueous potassium phosphate and sodium phosphate solutions. Potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1982-01-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases or liquid-liquid immisibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators

  1. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  2. Supersymmetry at finite temperature

    International Nuclear Information System (INIS)

    Oliveira, M.W. de.

    1986-01-01

    The consequences of the incorporation of finite temperature effects in fields theories are investigated. Particularly, we consider the sypersymmetric non-linear sigma model, calculating the effective potencial in the large N limit. Initially, we present the 1/N expantion formalism and, for the O(N) model of scalar field, we show the impossibility of spontaneous symmetry breaking. Next, we study the same model at finite temperature and in the presence of conserved charges (the O(N) symmetry's generator). We conclude that these conserved charges explicitly break the symmetry. We introduce a calculation method for the thermodynamic potential of the theory in the presence of chemical potentials. We present an introduction to Supersymmetry in the aim of describing some important concepts for the treatment at T>0. We show that Suppersymmetry is broken for any T>0, in opposition to what one expects, by the solution of the Hierachy Problem. (author) [pt

  3. Temperature Gradient in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  4. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  5. Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential

    Directory of Open Access Journals (Sweden)

    Linlin Zhong

    2017-07-01

    Full Text Available C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO which are likely to exist in the mixtures, are calculated based on the G4(MP2 theory. The isomers of the above molecules are selected according to their Gibbs energy. The compositions of C5F10O-CO2-O2 mixtures are then determined using the minimization of the Gibbs free energy. Next, the thermodynamic properties (mass density, specific enthalpy, and specific heat are derived from the previously calculated compositions. Lastly, the transport coefficients (electrical conductivity, viscosity, and thermal conductivity are calculated based on Chapman-Enskog method. It is found that, as an arc quenching gas, C5F10O could not recombine into itself with the temperature decreasing down to room temperature after the arc extinction. Besides, the key species at room temperature are always CF4, CO2, and C4F6 if graphite is not considered. When taken into account, graphite will replace C4F6 as one of the dominate particles. The mixing of CO2 with C5F10O plasma significantly affects the thermodynamic properties (e.g. vanishing and/or shifting of the peaks in specific heat and transport coefficients (e.g. reducing viscosity and changing the number of peaks in thermal conductivity, while the addition of O2 with C5F10O-CO2 mixtures has no remarkable influence on both thermodynamic and transport properties.

  6. Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential

    Science.gov (United States)

    Zhong, Linlin; Rong, Mingzhe; Wang, Xiaohua; Wu, Junhui; Han, Guiquan; Han, Guohui; Lu, Yanhui; Yang, Aijun; Wu, Yi

    2017-07-01

    C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO) which are likely to exist in the mixtures, are calculated based on the G4(MP2) theory. The isomers of the above molecules are selected according to their Gibbs energy. The compositions of C5F10O-CO2-O2 mixtures are then determined using the minimization of the Gibbs free energy. Next, the thermodynamic properties (mass density, specific enthalpy, and specific heat) are derived from the previously calculated compositions. Lastly, the transport coefficients (electrical conductivity, viscosity, and thermal conductivity) are calculated based on Chapman-Enskog method. It is found that, as an arc quenching gas, C5F10O could not recombine into itself with the temperature decreasing down to room temperature after the arc extinction. Besides, the key species at room temperature are always CF4, CO2, and C4F6 if graphite is not considered. When taken into account, graphite will replace C4F6 as one of the dominate particles. The mixing of CO2 with C5F10O plasma significantly affects the thermodynamic properties (e.g. vanishing and/or shifting of the peaks in specific heat) and transport coefficients (e.g. reducing viscosity and changing the number of peaks in thermal conductivity), while the addition of O2 with C5F10O-CO2 mixtures has no remarkable influence on both thermodynamic and transport properties.

  7. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures

    DEFF Research Database (Denmark)

    Meyer, Simon; Nikiforov, Aleksey V.; Petrushina, Irina M.

    2015-01-01

    One limitation for large scale water electrolysis is the high price of the Pt cathode catalyst. Transition metal carbides, which are considered as some of the most promising non-Pt catalysts, are less active than Pt at room temperature. The present work demonstrates that the situation is different......C > TaC. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  8. Metabolic rates and tissue composition of the coral Pocillopora verrucosa over 12 latitudes in the Red Sea characterized by strong temperature and nutrient gradient, supplement to: Sawall, Yvonne; Al-Sofyani, A; Hohn, S; Banguera-Hinestroza, E; Voolstra, Christian R; Wahl, Martin (2015): Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Scientific Reports, 5, 8940

    KAUST Repository

    Sawall, Yvonne

    2015-01-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals

  9. Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential

    OpenAIRE

    Linlin Zhong; Mingzhe Rong; Xiaohua Wang; Junhui Wu; Guiquan Han; Guohui Han; Yanhui Lu; Aijun Yang; Yi Wu

    2017-01-01

    C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO) which are likely to exist in the mixtures, are calculated based on the G4(MP2) theory. The isomers of the above molecules are selected according to their Gibbs en...

  10. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan.

    Science.gov (United States)

    Tsai, Cheng-Hui; Chen, Tien-Huang; Lin, Cheo; Shu, Pei-Yun; Su, Chien-Ling; Teng, Hwa-Jen

    2017-11-07

    We evaluated the impact of temperature and Wolbachia infection on vector competence of the local Aedes aegypti and Ae. albopictus populations of southern Taiwan in the laboratory. After oral infection with dengue serotype 1 virus (DENV-1), female mosquitoes were incubated at temperatures of 10, 16, 22, 28 and 34 °C. Subsequently, salivary gland, head, and thorax-abdomen samples were analyzed for their virus titer at 0, 5, 10, 15, 20, 25 and 30 days post-infection (dpi) by real-time RT-PCR. The results showed that Ae. aegypti survived significantly longer and that dengue viral genome levels in the thorax-abdomen (10 3.25 ± 0.53 -10 4.09 ± 0.71 PFU equivalents/ml) and salivary gland samples (10 2.67 ± 0.33 -10 3.89 ± 0.58 PFU equivalents/ml) were significantly higher at high temperature (28-34 °C). The survival of Ae. albopictus was significantly better at 16 or 28 °C, but the virus titers from thorax-abdomen (10 0.70 -10 2.39 ± 1.31 PFU equivalents/ml) and salivary gland samples (10 0.12 ± 0.05 -10 1.51 ± 0.31 PFU equivalents/ml) were significantly higher at 22-28 °C. Within viable temperature ranges, the viruses were detectable after 10 dpi in salivary glands and head tissues in Ae. aegypti and after 5-10 dpi in Ae. albopictus. Vector competence was measured in Ae. albopictus with and without Wolbachia at 28 °C. Wolbachia-infected mosquitoes survived significantly better and carried lower virus titers than Wolbachia-free mosquitoes. Wolbachia coinfections (92.8-97.2%) with wAlbA and wAlbB strains were commonly found in a wild population of Ae. albopictus. In southern Taiwan, Ae. aegypti is the main vector of dengue and Ae. albopictus has a non-significant role in the transmission of dengue virus due to the high prevalence of Wolbachia infection in the local mosquito population of southern Taiwan.

  11. High temperature corrosion behaviour of Ti-46.6Al-1.4Mn-2Mo in environments of low oxygen and high sulphur potentials at 750 and 900 C

    International Nuclear Information System (INIS)

    Du, H.L.; Datta, P.K.; Hwang, S.K.

    1997-01-01

    In this paper, the oxidation and sulphidation behaviour of a TiAl-based intermetallic, Ti-46.6Al-1.4Mn-2Mo (at%) with duplex and laminar microstructures, was investigated in environments of H 2 /H 2 S/H 2 O at 750 and 900 C. The corrosion kinetics of the intermetallic were determined by means of discontinuous gravimetry and the as-received and exposed samples were characterised using SEM, EDX and XRD. The weight gain/time data in the oxygen and sulphur containing environment used indicated parabolic kinetics with Kp∝10 -12 g 2 /cm 4 /s at 750 C and cubic kinetics at 900 C. The increase in exposure temperature did not significantly change the corrosion behaviour of the materials. The material showed the development of a multilayered scale consisting of an outermost TiO 2 layer beneath which an Al 2 O 3 layer existed: the formation of MnS and Al 2 S 3 was observed to occur between the oxide layers and substrate. This paper will discuss the significance of these results and consider the mechanisms responsible for degradation of this type of intermetallics in high sulphur and low oxygen environment with reference to their limit of temperature tolerance. (orig.)

  12. Potential Theory

    CERN Document Server

    Lukeš, Jaroslav; Netuka, Ivan; Veselý, Jiří

    1988-01-01

    Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in­ cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal...

  13. Core body temperature in obesity.

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  14. Potential rare-earth modified CeO{sub 2} catalysts for soot oxidation. Part III. Effect of dopant loading and calcination temperature on catalytic activity with O{sub 2} and NO + O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, K.; Bueno-Lopez, A.; Makkee, M.; Moulijn, J.A. [Catalysis Engineering, DelftChemTech, Delft University of Technology, Julianalaan 136, NL 2628 BL Delft (Netherlands)

    2007-09-26

    CeO{sub 2} and CeReO{sub xy} catalysts are prepared by the calcination at different temperatures (y = 500-1000 C) and having a different composition (Re = La{sup 3+} or Pr{sup 3+/4+}{sub ,} 0-90 wt.%). The catalysts are characterised by XRD, H{sub 2}-TPR, Raman, and BET surface area. The soot oxidation is studied with O{sub 2} and NO + O{sub 2} in the tight and loose contact conditions, respectively. CeO{sub 2} sinters between 800-900 C due to a grain growth, leading to an increased crystallite size and a decreased BET surface area. La{sup 3+} or Pr{sup 3+/4+} hinders the grain growth of CeO{sub 2} and, thereby, improving the surface catalytic properties. Using O{sub 2} as an oxidant, an improved soot oxidation is observed over CeLaO{sub xy} and CePrO{sub xy} in the whole dopant weight loading and calcination temperature range studied, compared with CeO{sub 2}. Using NO + O{sub 2}, the soot conversion decreased over CeLaO{sub xy} catalysts calcined below 800 C compared with the soot oxidation over CeO{sub 2y}. CePrO{sub xy}, on the other hand, showed a superior soot oxidation activity in the whole composition and calcination temperature range using NO + O{sub 2}. The improvement in the soot oxidation activity over the various catalysts with O{sub 2} can be explained based on an improvement in the external surface area. The superior soot oxidation activity of CePrO{sub xy} with NO + O{sub 2} is explained by the changes in the redox properties of the catalyst as well as surface area. CePrO{sub xy}, having 50 wt.% of dopant, is found to be the best catalyst due to synergism between cerium and praseodymium compared to pure components. NO into NO{sub 2} oxidation activity, that determines soot oxidation activity, is improved over all CePrO{sub x} catalysts. (author)

  15. Spinor pregeometry at finite temperature

    International Nuclear Information System (INIS)

    Yoshimoto, Seiji.

    1985-10-01

    We derive the effective action for gravity at finite temperature in spinor pregeometry. The temperature-dependent effective potential for the vierbein which is parametrized as e sub(kμ) = b.diag(1, xi, xi, xi) has the minimum at b = 0 for fixed xi, and behaves as -xi 3 for fixed b. These results indicate that the system of fundamental matters in spinor pregeometry cannot be in equilibrium. (author)

  16. Potential bags

    International Nuclear Information System (INIS)

    Ferreira, P.L.; Tomio, L.

    1992-01-01

    In this paper, relativistic confining potential models, endowed with bag constants associated to volume energy terms, are investigated. In contrast to the usual bag model, these potential bags are distinguished by having smeared bag surfaces. Based on the dynamical assumptions underlying the fuzzy bag model, these bag constants are derived from the corresponding energy-momentum tensor. Explicit expressions for the single-quark energies and for the nucleon bag constant are obtained by means of an improved analytical version of the saddle-point variational method for the Dirac equation with confining power-law potentials of the scalar plus vector (S + V) or pure scalar (S) type

  17. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    4Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Corresponding ... integrated for the classification of the study area into different groundwater potential zones. .... table is mainly controlled by subsurface movement of water into ...

  18. Potentiel et limites d'utilisation, aux températures élevées, des lubrifiants liquides dans les moteurs Potential and Limitations of Use of Liquid Lubricants in Engines At High Temperatures

    Directory of Open Access Journals (Sweden)

    Toulhoat H.

    2006-11-01

    favorable. Les nouvelles formules à développer devront naturellement conserver les propriétés désirables telles que les effets anti-usure et anti-corrosion, la détergence, le pouvoir dispersant, et une bonne aptitude à l'écoulement à basse température. Les solutions techniques sont assurément à la portée de l'industrie des lubrifiants, mais au prix d'un effort de développement qui ne doit pas être sous-estimé, et cette valeur ajoutée aura dans une certaine mesure des conséquences sur les coûts. En même temps que les températures opératoires s'élèveront, de nouveaux matériaux continueront leur pénétration en tant que pièces de frottement ou barrières thermiques : les composites, les cermets, les métaux durcis superficiellement, les revêtements céramiques ou les céramiques massives. Il s'avère que les céramiques thermo-mécaniques non lubrifiées ne fonctionnent pas. D'un autre côté, les lubrifiants pourraient étendre le champ d'application des pièces de friction non métalliques en régime de lubrification limite, ou en tant que solutions à des problèmes de fatigue. On donne des exemples de formation de films interfaciaux protecteurs par réaction du DTPZn dans des conditions de frottement représentatives, avec de la zircone pure, du nitrure de silicium et de l'oxyde de chrome déposé par plasma sur de l'acier et de l'aluminium. Les coefficients de frottement se situent dans le domaine 0,03-0,1, valeurs comparables à celles des contacts métal-métal en régime de lubrification limite. This article examines the possible responses of lubricant formulations to a rise of temperatures in engines in the next decade. The increase in the specific powers of engines and the reduction of their overall dimensions and weights, the penetration of turbocompressors and catalytic mufflers, and, to some extent, a tendency to reduce heat discharges are driving forces for such a rise. An increase in the mean temperature at the oil gallery by about 15

  19. Elevation in brain temperature during paradoxical sleep.

    Science.gov (United States)

    Kawamura, H; Sawyer, C H

    1965-11-12

    During ordinary sleep, the temperature of the rabbit brain tended to drop, but during paradoxical sleep it rose sharply 0.1 degrees to 0.4 degrees C, a greater elevation than was observed during arousal. Changes in body temperature generally did not parallel the alterations in brain temperature. Shifts of direct-current potential in the brain are basically independent of the changes in brain temperature.

  20. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  1. CTCP temperature fields and stresses

    Directory of Open Access Journals (Sweden)

    Minjiang Zhang

    2017-11-01

    Full Text Available Cross-tensioned concrete pavements (CTCPs are used in the construction of continuous Portland cement concrete pavements. They eliminate the need for transverse joints and also restrict cracking of the pavement. A CTCP consists of three components, namely, the CTCP slab, the sand sliding layer (SSL, and the cement-stabilized macadam base, from top to down. The retard-bonded tendons (RBTs of the CTCP slab are arranged diagonally. In the present study, a detailed 3D finite element model was developed and used to examine the temperature fields and stresses of a CTCP by thermal-mechanical coupling analysis, and the results were compared with field measurements. The model investigations revealed that, under typical cloudless summer conditions, the temperature field of the CTCP varied nonlinearly with both time and depth. The resultant step-type temperature gradient of the CTCP represents a significant deviation from that of a conventional pavement and impacts the thermal contact resistance of the SSL. It was found that the SSL could effectively reduce the temperature stresses in the CTCP, and that the residual temperature stresses were effectively resisted by the staged cross-tensioned RBTs. The potential problem areas in the vicinity of the temperature stresses were also investigated by the finite element method and field tests. Keywords: Portland cement concrete pavement, Prestressed concrete pavement, Temperature stress, Temperature field, Finite element method, Retard-bonded tendon

  2. Influence of potentially lethal temperature and food on the behavior of juvenile chum salmon, Oncorhynchus keta, under simulated marine conditions. Canadian data report of fisheries and aquatic sciences Number 1040

    International Nuclear Information System (INIS)

    Korstrom, J.S.

    1998-01-01

    This is one of a series of reports that describe results of field and laboratory studies on the effect of heated sea water on juvenile chum salmon. The studies were initiated in response to potential increases in the thermal discharge from BC Hydro's Burrard Generating Station into the marine waters of Port Moody Arm, Burrard Inlet. The report presents results of the first of two 1997 studies, in which the behaviour of chum salmon in response to heated sea water was investigated in the laboratory using a water column simulator that mimicked conditions the fish may encounter in Port Moody Arm. The behaviour of the salmon was examined under controlled conditions during a changing thermal regime and under thermally stratified conditions. The response of the fish to food, their swimming, and school positions were quantified in relation to experimental conditions

  3. Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-Western Pacific on the variability of typhoon landfall on the China coast

    Science.gov (United States)

    Yang, Lei; Chen, Sheng; Wang, Chunzai; Wang, Dongxiao; Wang, Xin

    2017-12-01

    The landfall activity of typhoons (TYs) along the coast of China during July-August-September (JAS) shows significant interdecadal variation during 1965-2010. We identify three sub-periods of TY landfall activity in JAS along the China coast in this period, with more TY landfall during 1965-1978 (Period I) and 1998-2010 (Period III), and less during 1982-1995 (Period II). We find that the interdecadal variation might be related to the combined effects of Pacific Decadal Oscillation (PDO) phase changes and sea surface temperature (SST) variation in the tropical Indian Ocean and Western Pacific (IO-WP). During the negative PDO phase in Periods I and III, a cyclonic anomaly is located in the western North Pacific (WNP), inducing easterly flow in its northern part, which favors TY landfall along the eastern China coast. Warm SST anomalies over the tropical IO-WP during Period III induce an anomalous anticyclonic circulation in the WNP through both the Gill-pattern response to the warm SST in the tropical IO and the anomalous meridional circulation induced by the warm SST in the tropical WNP. As a result, the northern South China Sea and WNP (10°-20° N) are dominated by southeasterly flow, which favors TYs making landfall on both the southern and eastern China coast. With both landfalling-favorable conditions satisfied, there are significantly more TYs making landfall along the China coast during Period III than during Period I, which shows cool SST anomalies in the tropical IO-WP.

  4. Zero Temperature Hope Calculations

    International Nuclear Information System (INIS)

    Rozsnyai, B. F.

    2002-01-01

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the

  5. Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system

    Directory of Open Access Journals (Sweden)

    Tsuruta James K

    2012-01-01

    Full Text Available Abstract Background Studies published in the 1970s by Mostafa S. Fahim and colleagues showed that a short treatment with ultrasound caused the depletion of germ cells and infertility. The goal of the current study was to determine if a commercially available therapeutic ultrasound generator and transducer could be used as the basis for a male contraceptive. Methods Sprague-Dawley rats were anesthetized and their testes were treated with 1 MHz or 3 MHz ultrasound while varying power, duration and temperature of treatment. Results We found that 3 MHz ultrasound delivered with 2.2 Watt per square cm power for fifteen minutes was necessary to deplete spermatocytes and spermatids from the testis and that this treatment significantly reduced epididymal sperm reserves. 3 MHz ultrasound treatment reduced total epididymal sperm count 10-fold lower than the wet-heat control and decreased motile sperm counts 1,000-fold lower than wet-heat alone. The current treatment regimen provided nominally more energy to the treatment chamber than Fahim's originally reported conditions of 1 MHz ultrasound delivered at 1 Watt per square cm for ten minutes. However, the true spatial average intensity, effective radiating area and power output of the transducers used by Fahim were not reported, making a direct comparison impossible. We found that germ cell depletion was most uniform and effective when we rotated the therapeutic transducer to mitigate non-uniformity of the beam field. The lowest sperm count was achieved when the coupling medium (3% saline was held at 37 degrees C and two consecutive 15-minute treatments of 3 MHz ultrasound at 2.2 Watt per square cm were separated by 2 days. Conclusions The non-invasive nature of ultrasound and its efficacy in reducing sperm count make therapeutic ultrasound a promising candidate for a male contraceptive. However, further studies must be conducted to confirm its efficacy in providing a contraceptive effect, to test the

  6. Therapeutic ultrasound as a potential male contraceptive: power, frequency and temperature required to deplete rat testes of meiotic cells and epididymides of sperm determined using a commercially available system.

    Science.gov (United States)

    Tsuruta, James K; Dayton, Paul A; Gallippi, Caterina M; O'Rand, Michael G; Streicker, Michael A; Gessner, Ryan C; Gregory, Thomas S; Silva, Erick J R; Hamil, Katherine G; Moser, Glenda J; Sokal, David C

    2012-01-30

    Studies published in the 1970s by Mostafa S. Fahim and colleagues showed that a short treatment with ultrasound caused the depletion of germ cells and infertility. The goal of the current study was to determine if a commercially available therapeutic ultrasound generator and transducer could be used as the basis for a male contraceptive. Sprague-Dawley rats were anesthetized and their testes were treated with 1 MHz or 3 MHz ultrasound while varying power, duration and temperature of treatment. We found that 3 MHz ultrasound delivered with 2.2 Watt per square cm power for fifteen minutes was necessary to deplete spermatocytes and spermatids from the testis and that this treatment significantly reduced epididymal sperm reserves. 3 MHz ultrasound treatment reduced total epididymal sperm count 10-fold lower than the wet-heat control and decreased motile sperm counts 1,000-fold lower than wet-heat alone. The current treatment regimen provided nominally more energy to the treatment chamber than Fahim's originally reported conditions of 1 MHz ultrasound delivered at 1 Watt per square cm for ten minutes. However, the true spatial average intensity, effective radiating area and power output of the transducers used by Fahim were not reported, making a direct comparison impossible. We found that germ cell depletion was most uniform and effective when we rotated the therapeutic transducer to mitigate non-uniformity of the beam field. The lowest sperm count was achieved when the coupling medium (3% saline) was held at 37 degrees C and two consecutive 15-minute treatments of 3 MHz ultrasound at 2.2 Watt per square cm were separated by 2 days. The non-invasive nature of ultrasound and its efficacy in reducing sperm count make therapeutic ultrasound a promising candidate for a male contraceptive. However, further studies must be conducted to confirm its efficacy in providing a contraceptive effect, to test the result of repeated use, to verify that the contraceptive effect is

  7. Temperature compensation and entrainment in circadian rhythms

    International Nuclear Information System (INIS)

    Bodenstein, C; Heiland, I; Schuster, S

    2012-01-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles. (paper)

  8. [On Atomic Nuclear Fusion Processes at Low-Temperatures. An Enhancement of the Probability of Transition through a Potential Barrier Due to the So-Called Barrier Anti-Zeno Effect].

    Science.gov (United States)

    Namiot, V A

    2016-01-01

    It is known that in quantum mechanics the act of observing the experiment can affect the experimental findings in some cases. In particular, it happens under the so-called Zeno effect. In this work it is shown that in contrast to the "standard" Zeno-effect where the act of observing a process reduces the probability of its reality, an inverse situation when a particle transmits through a potential barrier (a so-called barrier anti-Zeno effect) can be observed, the observation of the particle essentially increases the probability of its transmission through the barrier. The possibility of using the barrier anti-Zeno effect is discussed to explain paradoxical results of experiments on "cold nuclear fusion" observed in various systems including biological ones. (According to the observers who performed the observations, the energy generation, which could not be explained by any chemical processes, as well as the change in the isotope and even element composition of the studied object may occur in these systems.

  9. Violent Potentials

    DEFF Research Database (Denmark)

    Mikkelsen, Henrik Hvenegaard; Søgaard, Thomas Friis

    2015-01-01

    ” plays a critical role in relation to Bugkalot men’s construction of hegemonic masculinity and the sustaining of complex egalitarian relations. The Bugkalot have a notoriously violent history; until the late 1970s more than half of the adult men engaged in ritual killings. While most Bugkalot men has...... that can also be used in other contexts to understand how men construct hegemonic masculinity by strategically adopting the interspace of civility and violence.......This article explores the social significance of violence as potentiality and performance among former headhunters. Taking its outset in an ethnographic study of violence and masculinity among the Philippine people known as the Bugkalot, we explore how violence as “performed violent potentiality...

  10. Potential theory

    CERN Document Server

    Helms, Lester L

    2014-01-01

    Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In ...

  11. A study on the effect of solution heat treatment on the corrosion resistance of super duplex stainless steels

    International Nuclear Information System (INIS)

    Park, Jee Yong; Park, Yong Soo; Kim, Soon Tae

    2001-01-01

    High temperature solution heat treatment(typically higher than 1100 .deg. C) is known generally to reduces the resistance to localized corrosion on super duplex stainless. This is attributed to the formation of zone depleted of alloying elements. In this study, the corrosion properties were investigated on super duplex stainless steels with various solution heat treatments. The corrosion resistance of these steels was evaluated in terms of critical pitting temperature and cyclic potentiodynamic polarization test. Chemical composition of the austenite and ferrite phases were analyzed by SEM-EDS. The following results were obtained. (1) By conducting furnace cooling, critical pitting temperature and repassivation potential increased. (2) By omitting furnace cooling, solution heat treatment produced Cr and Mo depleted zone in the phase boundary. (3) During furnace cooling, Cr and Mo rediffused through the phase boundary. This increased the corrosion resistance of super duplex stainless steels

  12. Effect of Potential Range in Pressure-Temperature Behavior in Isotropic-Nematic Transition of 4-4´-Bis(EthyloxyAzoxybenzene (P-Azoxyphenetole, Pap, 4-Pentyl-4´-Cyanobiphenyl (5cb, P-Methoxybenzydidene-P-N-Butylaniline (Mbba and P–Ethoxybenzylidene–P–N-Butylaniline (Ebba

    Directory of Open Access Journals (Sweden)

    García-Sánchez E.

    2011-04-01

    Full Text Available In this work we employed the Density Functional Theory (IPCM model to calculate molecular volume and k, and the perturbation theory proposed by García-Sánchez et al. (2002 to predict phase diagram and experimental behavior pressure-temperature for isotropic-nematic transition of 4-4´-bis(ethyloxyazoxybenzene (p-azoxyphenetole, PAP, 4-pentyl-4´-cyanobiphenyl (5CB, p-methoxybenzydidene-p-n-butylaniline (MBBA and p–ethoxybenzylidene–p–n-butylaniline (EBBA at 1 atm. If during the theoretical prediction bigger potential values of potential range of square well (l > k are considered in the theoretical model, it is possible to get better prediction of the experimental behavior. The above mentioned is according with the theoretical formulation of the Second Order Perturbation Theory since Ponce-Renon approximation is included.

  13. Relations between effective potentials in different dimensions

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1983-01-01

    Using dimensional regularization, the one-loop approximation for the effective potential (finite temperature) is computed as an analytic function of the number of dimensions. It is shown that a simple relation exists between potentials for different dimensions. This relation reduces to a simple derivative when these numbers differ by two units. The limit of zero temperature is calculated and also the finite temperature corrections are given. (Author) [pt

  14. Body temperature norms

    Science.gov (United States)

    Normal body temperature; Temperature - normal ... Morrison SF. Regulation of body temperature. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 59. Sajadi MM, Mackowiak ...

  15. Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1994-07-01

    This year saw the completion of three accelerator improvement projects (AIP) and two capital equipment projects pertaining to the Tevatron cryogenic system. The projects result in the ability to operate the Tevatron at lower temperature, and thus higher energy. Each project improves a subsystem by expanding capabilities (refrigerator controls), ensuring reliability (valve box, subatmospheric hardware, and compressor D), or enhancing performance (cold compressors and coldbox II). In January of 1994, the Tevatron operated at an energy of 975 GeV for the first time. This was the culmination, of many years of R ampersand D, power testing in a sector (one sixth) of the Tevatron, and final system installation during the summer of 1993. Although this is a modest increase in energy, the discovery potential for the Top quark is considerably improved

  16. Violent potentials

    DEFF Research Database (Denmark)

    Mikkelsen, Henrik Hvenegaard; Friis Søgaard, Thomas

    2016-01-01

    as ‘performed violent potentiality’ plays a critical role in relation to Bugkalot men’s construction of hegemonic masculinity and the sustaining of complex egalitarian relations. The Bugkalot have a notoriously violent history; until the late 1970s more than half of the adult men engaged in ritual killings...... provide general insights that can also be used in other contexts to understand how men construct hegemonic masculinity by strategically adopting the interspace of civility and violence.......This article explores the social significance of violence as potentiality and performance among former headhunters engaged in ritual killings. Taking its outset in an ethnographic study of violence and masculinity among the Philippine people known as the Bugkalot, we explore how violence...

  17. On chemical potential

    International Nuclear Information System (INIS)

    Araki, H.

    1981-01-01

    In the framework of the C*-algebra formalism of quantum statistical mechanics, the concept of chemical potential or its vector generalization in the case of an arbitrary (not necessarily abelian) separable compact gauge group (of the first kind) is described as an algebraic label of equilibrium states at a given inverse temperature β. It is mathematically attained by extending a (clustering) KMS state of the gauge-invariant part of a C*-algebra F to a state of F and by examining the KMS property of the extension. (Auth.)

  18. Calculating the critical temperature for Coleman-Weinberg GUTS

    International Nuclear Information System (INIS)

    Easther, R.; Moreau, W.

    1992-01-01

    We study the finite-temperature effective potential of the Higgs scalar in GUTs with Coleman-Weinberg symmetry breaking. The critical temperature is derived without employing a high-temperature approximation to the effective potential, and the limitations of such approximations are discussed. (author)

  19. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  20. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    Science.gov (United States)

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  1. Corrosion behaviour of sintered Ti–Ni–Cu–Nb in 0.9% NaCl environment

    Directory of Open Access Journals (Sweden)

    Moipone Linda Lethabane

    2015-10-01

    Full Text Available The uniform and localized corrosion behaviour of sintered Ti–Ni containing niobium and copper additions were studied using potentiodynamic and cyclic polarization measurements in 0.9% sodium chloride. Results indicated that copper and niobium addition did not have significant effects on the uniform corrosion characteristics, but significantly improved the pitting corrosion resistance. Both copper and niobium additions significantly increased the re-passivation potentials, while copper was observed to reduce the pitting hysteresis loop area. Alloys containing 15% copper and 2% niobium additions depicted the most improved pitting corrosion resistance, and increased the re-passivation value from −315.60 mV to a high re-passivation potential of 840.68 mV.

  2. Singular gauge potentials and the gluon condensate at zero temperature

    OpenAIRE

    Langfeld, K.; Ilgenfritz, E. -M.; Reinhardt, H.; Schäfke, A.

    2001-01-01

    We consider a new cooling procedure which separates gluon degrees of freedom from singular center vortices in SU(2) LGT in a gauge invariant way. Restricted by a cooling scale $\\kappa^4/\\sigma^2$ fixing the residual SO(3) gluonic action relative to the string tension, the procedure is RG invariant. In the limit $\\kappa \\to 0$ a pure Z(2) vortex texture is left. This {\\it minimal} vortex content does not contribute to the string tension. It reproduces, however, the lowest glueball states. With...

  3. Singular gauge potentials and the gluon condensate at zero temperature

    International Nuclear Information System (INIS)

    Langfeld, K.; Ilgenfritz, E.-M.; Reinhardt, H.; Schaefke, A.

    2002-01-01

    We consider a new cooling procedure which separates gluon degrees of freedom from singular center vortices in SU(2) LGT in a gauge invariant way. Restricted by a cooling scale κ 4 /σ 2 fixing the residual SO(3) gluonic action relative to the string tension, the procedure is RG invariant. In the limit κ → 0 a pure Z(2) vortex texture is left. This minimal vortex content does not contribute to the string tension. It reproduces, however, the lowest glueball states. With an action density scaling like a 4 with β, it defines a finite contribution to the action density at T = 0 in the continuum limit. We propose to interpret this a mass dimension 4 condensate related to the gluon condensate. Similarly, this vortex texture is revealed in the Landau gauge

  4. The market potential of the high-temperature reactor

    International Nuclear Information System (INIS)

    Knizia, K.

    1982-01-01

    It seems urgently necessary to plant the power supplies of the industrial countries in a more flexible fashion and thereby to make them more susceptible to disturbances arising externally through restrictions on fuel deliveries or price increases. The development and introduction of advanced reactors and the further development of coal processing are of prime importance in this respect. This development will lead in the long-term to the production of hydrogen with the use of nuclear energy. (orig.) [de

  5. Pitting by corrosion in aluminium and Al-6201 alloy

    International Nuclear Information System (INIS)

    Vera, R.; Schrebler, R.; Layana, G.; Orellana, F.; Olguin, A.

    1998-01-01

    The susceptibility of pure aluminum 6201 alloy to pitting was investigated in sodium chloride solutions through determination of the corrosion, repassivation and pitting potentials. Potentiodynamic polarization including scratching techniques were employed being also determined the type and relative amount of corrosion damage to the metals. The morphology of the attach was determined using scanning electrons microscopy (SEM). The results showed a similar performance for aluminum 6201 alloy and aluminum. It was also observed that an increase in chloride concentration resulted in a decrease in the corrosion, pitting and repassivation potentials of both materials. (Author) 19 refs

  6. Electrochemical Study of Welded AISI 304 and 904L Stainless Steel in Seawater in View of Corrosion

    Directory of Open Access Journals (Sweden)

    Richárd Székely

    2010-10-01

    Full Text Available This is a comparative study of the corrosion behaviour of welds in AISI 304 and AISI 904L stainless steels carried out in seawater model solution in the temperature range 5-35°C and the standard of corrosion testing of welds was followed. The corrosion rate and corrosion attack characteristics were determined for welds of the examined steels with several type of treatment. The aim of this work was to compare the steels based on their resistance against the corrosion in terms of pitting potential (Epit and repassivation potential (Erepass. Seawater is an electrochemically aggressive medium, which can initiate localised corrosion in welded stainless steels. Different electrochemical and testing methods were used, including cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy (EIS, pH measuring and penetration tests.

  7. Potential and profile experiments in MM-4

    International Nuclear Information System (INIS)

    Tian Zhongyu; Ming Linzhou; Feng Xiaozhen; Feng Chuntang; Yin Youjun; Liu Yuhua; Wang Jihai

    1988-01-01

    Experimental results in MM-4 are presented. These results show that there were double potential wells and double ion temperatures in the plasma. The mechanism giving rise to such potential profiles can be attributed to the Stormer region in the cusp system and the different operation regimes of the electron gun used. The measured plasma potential was about - 200 - 300V

  8. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  9. Temperature indicating device

    International Nuclear Information System (INIS)

    Angus, J.P.; Salt, D.

    1988-01-01

    A temperature indicating device comprises a plurality of planar elements some undergoing a reversible change in appearance at a given temperature the remainder undergoing an irreversible change in appearance at a given temperature. The device is useful in indicating the temperature which an object has achieved as well as its actual temperature. The reversible change is produced by liquid crystal devices. The irreversible change is produced by an absorbent surface carrying substances e.g. waxes which melt at predetermined temperatures and are absorbed by the surface; alternatively paints may be used. The device is used for monitoring processes of encapsulation of radio active waste. (author)

  10. Sound beam manipulation based on temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  11. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  12. Ionometric determination of fluorides at low temperatures

    International Nuclear Information System (INIS)

    Kostyukova, I.S.; Ennan, A.A.; Dzerzhko, E.K.; Leivikova, A.A.

    1995-01-01

    A method for determining fluoride ions in solution at low temperatures using a solid-contact fluorine-selective electrode (FSE) has been developed. The effect of temperature (60 to -15 degrees C) on the calibration slope, potential equilibrium time, and operational stability is studied; the effect of an organic additive (cryoprotector) on the calibration slope is also studied. The temperature relationships obtained for the solid-contact FSEs allow appropriate corrections to be applied to the operational algorithm of the open-quotes Ftoringclose quotes hand-held semiautomatic HF gas analyzer for the operational temperature range of -16 to 60 degrees C

  13. pVT-Second Virial Coefficients B(T ), Viscosity η(T ), and Self-Diffusion ρD(T) of the Gases: BF3, CF4, SiF4, CCl4, SiCl4, SF6, MoF6, WF6, UF6, C(CH3)4, and Si(CH3)4 Determined by Means of an Isotropic Temperature-Dependent Potential

    Science.gov (United States)

    Zarkova, L.; Hohm, U.

    2002-03-01

    We present results on self-consistent calculations of second pVT-virial coefficients B(T), viscosity data η(T), and diffusion coefficients ρD(T) for eleven heavy globular gases: boron trifluoride (BF3), carbon tetrafluoride (CF4), silicon tetrafluoride (SiF4), carbon tetrachloride (CCl4), silicon tetrachloride (SiCl4), sulfur hexafluoride (SF6), molybdenum hexafluoride (MoF6), tungsten hexafluoride (WF6), uranium hexafluoride (UF6), tetramethyl methane (C(CH3)4, TMM), and tetramethyl silane (Si(CH3)4, TMS). The calculations are performed mainly in the temperature range between 200 and 900 K by means of isotropic n-6 potentials with temperature-dependent separation rm(T) and potential well depth ɛ(T). The potential parameters at T=0 K (ɛ, rm, n) and the enlargement of the first level radii δ are obtained solving an ill-posed problem of minimizing the squared deviations between experimental and calculated values normalized to their relative experimental error. The temperature dependence of the potential is obtained as a result of the influence of vibrational excitation on binary interactions. This concept of the isotropic temperature-dependent potential (ITDP) is presented in detail where gaseous SF6 will serve as an example. The ITDP is subsequently applied to all other gases. This approach and the main part of the results presented here have already been published during 1996-2000. However, in some cases the data are upgraded due to the recently improved software (CF4, SF6) and newly found experimental data (CF4, SiF4, CCl4, SF6).

  14. Chemical potentials in gauge theories

    International Nuclear Information System (INIS)

    Actor, A.; Pennsylvania State Univ., Fogelsville

    1985-01-01

    One-loop calculations of the thermodynamic potential Ω are presented for temperature gauge and non-gauge theories. Prototypical formulae are derived which give Ω as a function of both (i) boson and/or fermion chemical potential, and in the case of gauge theories (ii) the thermal vacuum parameter Asub(O)=const (Asub(μ) is the euclidean gauge potential). From these basic abelian gauge theory formulae, the one-loop contribution to Ω can readily be constructed for Yang-Mills theories, and also for non-gauge theories. (orig.)

  15. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  16. Temperature fluctuations superimposed on background temperature change

    International Nuclear Information System (INIS)

    Otto, James; Roberts, J.A.

    2016-01-01

    Proxy data allows the temperature of the Earth to be mapped over long periods of time. In this work the temperature fluctuations for over 200 proxy data sets were examined and from this set 50 sets were analyzed to test for periodic and quasi-periodic fluctuations in the data sets. Temperature reconstructions over 4 different time scales were analyzed to see if patterns emerged. Data were put into four time intervals; 4,000 years, 14,000 years, 1,000,000 years, and 3,000,000 years and analyzed with a goal to understanding periodic and quasi-periodic patterns in global temperature change superimposed on a “background” average temperature change. Quasi-periodic signatures were identified that predate the Industrial Revolution, during much of which direct data on temperature are not available. These data indicate that Earth temperatures have undergone a number of periodic and quasi-periodic intervals that contain both global warming and global cooling cycles. The fluctuations are superimposed on a background of temperature change that has a declining slope during the two periods, pre-ice age and post ice age with a transition about 12,000 BCE. The data are divided into “events” that span the time periods 3,000,000 BCE to “0” CE, 1,000,000 BCE to “0” CE, 12,000 BCE to 2,000 CE and 2,000 BCE to 2,000 CE. An equation using a quasi-periodic (frequency modulated sine waves) patterns was developed to analyze the date sets for quasi-periodic patterns. “Periodicities” which show reasonable agreement with the predictions of Milankovitch and other investigators were found in the data sets.

  17. Temperature scaling method for Markov chains.

    Science.gov (United States)

    Crosby, Lonnie D; Windus, Theresa L

    2009-01-22

    The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of water clusters is complicated by the computational expense of the potential energy determinations. Furthermore, the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to reduce the expense of performing simulations at many different temperatures. A method is detailed that allows a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can be generally applied to simulations geared for numerous applications. This paper shows the quality of results which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains. Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential for water to obtain statistical properties at various temperatures.

  18. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    Science.gov (United States)

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  19. Maine River Temperature Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We collect seasonal and annual temperature measurements on an hourly or quarter hourly basis to monitor habitat suitability for ATS and other species. Temperature...

  20. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  1. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  2. Supersymmetry at finite temperature

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1983-01-01

    Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)

  3. Room temperature superconductors

    International Nuclear Information System (INIS)

    Sleight, A.W.

    1995-01-01

    If the Holy Grail of room temperature superconductivity could be achieved, the impact on could be enormous. However, a useful room temperature superconductor for most applications must possess a T c somewhat above room temperature and must be capable of sustaining superconductivity in the presence of magnetic fields while carrying a significant current load. The authors will return to the subject of just what characteristics one might seek for a compound to be a room temperature superconductor. 30 refs., 3 figs., 1 tab

  4. Digital temperature meter

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S

    1982-01-01

    Digital temperature meter for precise temperature measurements is presented. Its parts such as thermostat, voltage-frequency converter and digital frequency meter are described. Its technical parameters such as temperature range 50degC-700degC, measurement precision 1degC, measurement error +-1degC are given. (A.S.).

  5. Rescaling Temperature and Entropy

    Science.gov (United States)

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  6. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  7. Distribution of electric potential in hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shcherbakov, N.D.; Plitsyn, V.T.

    1978-01-01

    A study was made of the distribution of electrical potential and temperatures in laminar methane and propane--butane flames when the excess air coefficient in the mixture is changed from 0 to 1.2. 7 references, 3 figures.

  8. Temperature compensated photovoltaic array

    Science.gov (United States)

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  9. Locality of Temperature

    Science.gov (United States)

    Kliesch, M.; Gogolin, C.; Kastoryano, M. J.; Riera, A.; Eisert, J.

    2014-07-01

    This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice systems with short-range interactions. We provide results leading to a local definition of temperature, thereby extending the notion of "intensivity of temperature" to interacting quantum models. More precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly given in terms of a generalized covariance. For this covariance, we prove exponential clustering of correlations above a universal critical temperature that upper bounds physical critical temperatures such as the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature, local expectation values can be approximated efficiently in the error and the system size.

  10. Potential use of high-temperature and low-temperature steam ...

    African Journals Online (AJOL)

    The effectiveness of different treatment methods to improve the nutritional value of the sugarcane by-products (pith or bagasse) has been evaluated. The treatment methods included a high-pressure steam treatment (HPST; 19 bar, 3 min), treating the products with sodium hydroxide, sulphuric acid plus an enzyme mixture, ...

  11. Free-energy coarse-grained potential for C60

    International Nuclear Information System (INIS)

    Edmunds, D. M.; Tangney, P.; Vvedensky, D. D.; Foulkes, W. M. C.

    2015-01-01

    We propose a new deformable free energy method for generating a free-energy coarse-graining potential for C 60 . Potentials generated from this approach exhibit a strong temperature dependence and produce excellent agreement with benchmark fully atomistic molecular dynamics simulations. Parameter sets for analytical fits to this potential are provided at four different temperatures

  12. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  13. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, R. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Baccam, N. [Department of Mathematics, Southwestern University, Georgetown, Texas 78626 (United States); Dayal, Kaushik [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Sharma, P. [Department of Mechanical Engineering and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  14. Experimental determination of the temperature dependence of metallic work functions at low temperatures. Progress report

    International Nuclear Information System (INIS)

    Pipes, P.B.

    1977-01-01

    Progress made under ERDA Contract No. EY-76-S-02-2314.002 is described. Efforts to gain theoretical insight into the temperature dependence of the contact potential of Nb near the superconducting transition have only been qualitatively successful. Preliminary measurements of adsorbed 4 He gas on the temperature dependence of the contact potentials of metals were performed and compared with a previously developed theory

  15. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    Science.gov (United States)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  16. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  17. Calculation of baryon chemical potential and strangeness chemical potential in resonance matter

    International Nuclear Information System (INIS)

    Fu Yuanyong; Hu Shouyang; Lu Zhongdao

    2006-01-01

    Based on the high energy heavy-ion collisions statistical model, the baryon chemical potential and strangeness chemical potential are calculated for resonance matter with net baryon density and net strangeness density under given temperature. Furthermore, the relationship between net baryon density, net strangeness density and baryon chemical potential, strangeness chemical potential are analyzed. The results show that baryon chemical potential and strangeness chemical potential increase with net baryon density and net strangeness density increasing, the change of net baryon density affects baryon chemical potential and strangeness chemical potential more strongly than the change of net strangeness density. (authors)

  18. Chapter 6: Temperature

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.

    2017-01-01

    Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.

  19. Domain walls at finite temperature

    International Nuclear Information System (INIS)

    Carvalho, C.A. de; Marques, G.C.; Silva, A.J. da; Ventura, I.

    1983-08-01

    It is suggested that the phase transition of lambda phi 4 theory as a function of temperature coincides with the spontaneous appearance of domain walls. Based on one-loop calculations, T sub(c) = 4M/√ lambda is estimated as the temperature for these domains to because energetically favored, to be compared with T sub(c) = 4.9M/√ lambda from effective potential calculations (which are performed directly in the broken phase). Domain walls, as well as other Types of fluctuations, disorder the system above T sub(c), leading to =0. The critical exponent for the specific heat above T sub(c) is computed; and α=2/3 + 0 (√ lambda) is obtained. (Author) [pt

  20. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  1. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  2. Low temperature carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, A A

    1934-01-10

    A process is described in which coal is passed through a distillation chamber in one retort at a comparatively low temperature, then passing the coal through a distillation chamber of a second retort subjected to a higher temperature, thence passing the coal through the distillation chamber of a third retort at a still higher temperature and separately collecting the liquid and vapors produced from each retort.

  3. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  4. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  5. Neutron ion temperature measurement

    International Nuclear Information System (INIS)

    Strachan, J.D.; Hendel, H.W.; Lovberg, J.; Nieschmidt, E.B.

    1986-11-01

    One important use of fusion product diagnostics is in the determination of the deuterium ion temperature from the magnitude of the 2.5 MeV d(d,n) 3 He neutron emission. The detectors, calibration methods, and limitations of this technique are reviewed here with emphasis on procedures used at PPPL. In most tokamaks, the ion temperature deduced from neutrons is in reasonable agreement with the ion temperature deduced by other techniques

  6. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  7. Finite temperature effects in primordial inflation

    Science.gov (United States)

    Gelmini, G. B.; Nanopoulos, D. V.; Olive, K. A.

    1983-11-01

    We present a detailed study of a recently proposed model for primordial inflation based on an N=1 locally supersymmetric potential. For a large class of parameters with which all cosmological constraints are satisfied, the temperature corrections can be neglected during the inflation period. At higher temperatures, the minimum is not at the origin, but very close to it. Address after July 1, 1983: Theory Group, Fermilab, PO Box 500, Batavia, IL 60510, USA.

  8. Applications of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  9. Thermal operator representation of finite temperature graphs

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Das, Ashok; Espinosa, Olivier; Perez, Silvana

    2005-01-01

    Using the mixed space representation (t,p→) in the context of scalar field theories, we prove in a simple manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature diagrams through a simple thermal operator, both in the imaginary time as well as in the real time formalisms. This result is generalized to the case when there is a nontrivial chemical potential present. Several interesting properties of the thermal operator are also discussed

  10. Effects of temperature increase in insect community

    International Nuclear Information System (INIS)

    Tuda, Midori; Fujii, Koichi

    1993-01-01

    Temperature will rise by 2degC in the near future. Potential effects of the rise on biological community are predicted with little evidence on the subjects. Individualistic responses of component species in community are often ignored. We performed experiments on a lab host-parasitoid community and tested the hypothesis that individualistic changes in developmental schedules by temperature rise can generate drastic community change. (author)

  11. Molecular potentials and relaxation dynamics

    International Nuclear Information System (INIS)

    Karo, A.M.

    1981-01-01

    The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. Recent calculations of the X 1 Σ + and a 3 Σ + states of LiH, NaH, KH, RbH, and CsH and the X 2 Σ + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, higly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm -1 over most of the potential curves) with the difference curves being considerably more accurate. In the method of computer molecular dynamics, the force acting on each particle is the resultant of all interactions with other atoms in the neighborhood and is obtained as the derivative of an effective many-body potential. Exploiting the pseudopotential approach, in obtaining the appropriate potentials may be very fruitful in the future. In the molecular dynamics example considered here, the conventional sum-of-pairwise-interatomic-potentials (SPP) approximation is used with the potentials derived either from experimental spectroscopic data or from Hartree-Fock calculations. The problem is the collisional de-excitation of vibrationally excited molecular hydrogen at an Fe surface. The calculations have been carried out for an initial vibrotational state v = 8, J = 1 and a translational temperature corresponding to a gas temperature of 500 0 K. Different angles of approach and different initial random impact points on the surface have been selected. For any given collision with the wall, the molecule may pick up or lose vibrotatonal and translational energy

  12. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  13. Temperature controlled 'void' formation

    International Nuclear Information System (INIS)

    Dasgupta, P.; Sharma, B.D.

    1975-01-01

    The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)

  14. Disorders of body temperature.

    Science.gov (United States)

    Gomez, Camilo R

    2014-01-01

    The human body generates heat capable of raising body temperature by approximately 1°C per hour. Normally, this heat is dissipated by means of a thermoregulatory system. Disorders resulting from abnormally high or low body temperature result in neurologic dysfunction and pose a threat to life. In response to thermal stress, maintenance of normal body temperature is primarily maintained by convection and evaporation. Hyperthermia results from abnormal temperature regulation, leading to extremely elevated body temperature while fever results from a normal thermoregulatory mechanism operating at a higher set point. The former leads to specific clinical syndromes with inability of the thermoregulatory mechanism to maintain a constant body temperature. Heat related illness encompasses heat rash, heat cramps, heat exhaustion and heat stroke, in order of severity. In addition, drugs can induce hyperthermia and produce one of several specific clinical syndromes. Hypothermia is the reduction of body temperature to levels below 35°C from environmental exposure, metabolic disorders, or therapeutic intervention. Management of disorders of body temperature should be carried out decisively and expeditiously, in order to avoid secondary neurologic injury. © 2014 Elsevier B.V. All rights reserved.

  15. Developing simplified Regional Potential Evapotranspiration (PET ...

    African Journals Online (AJOL)

    Regional Potential Evapotranspiration (PET) estimation method was developed to estimate the potential evapotranspiration (reference evapotranspiration) over Abbay Basin as a function of basin maximum and minimum temperature, and modulated by site specific elevation data. The method is intended to estimate PET in ...

  16. Impact of climate change on maize potential productivity and the potential productivity gap in southwest China

    Science.gov (United States)

    He, Di; Wang, Jing; Dai, Tong; Feng, Liping; Zhang, Jianping; Pan, Xuebiao; Pan, Zhihua

    2014-12-01

    The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China (SWC) are investigated in this paper. We analyze the impact of climate change on the photosynthetic, light-temperature, and climatic potential productivity of maize and their gaps in SWC, by using a crop growth dynamics statistical method. During the maize growing season from 1961 to 2010, minimum temperature increased by 0.20°C per decade ( p gap between light-temperature and climatic potential productivity varied from 12 to 2729 kg ha-1, with the high value areas centered in northern and southwestern SWC. Climatic productivity of these areas reached only 10%-24% of the light-temperature potential productivity, suggesting that there is great potential to increase the maize potential yield by improving water management in these areas. In particular, the gap has become larger in the most recent 10 years. Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC. The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC.

  17. Solar potential in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    Most of the locations in Turkey receive abundant solar-energy, because Turkey lies in a sunny belt between 36 deg. and 42 deg. N latitudes. Average annual temperature is 18 to 20 deg. C on the south coast, falls to 14-16 deg. C on the west coat, and fluctuates between 4 and 18 deg. C in the central parts. The yearly average solar-radiation is 3.6 kW h/m 2 day, and the total yearly radiation period is ∼2610 h. In this study, a new formulation based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG), Pola-Ribiere conjugate gradient (CGP), and Levenberg-Marquardt (LM) learning algorithms and logistic sigmoid (logsig) transfer function were used in the networks. Meteorological data for last four years (2000-2003) from 12 cities (Canakkale, Kars, Hakkari, Sakarya, Erzurum, Zonguldak, Balikesir, Artvin, Corum, Konya, Siirt, and Tekirdag) spread over Turkey were used in order to train the neural-network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network. Solar-radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 3.832% and R 2 values to be about 99.9738% for the selected stations. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values accurately

  18. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  19. NASA space applications of high-temperature superconductors

    Science.gov (United States)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of attaining these temperatures has been with cryogenic fluids which severely limits mission lifetime. The development of materials with superconducting transition temperatures (T sub c) above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Potential applications of high-temperature superconducting technology in cryocoolers and remote sensing, communications, and power systems are discussed.

  20. Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junkai; Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn; Fan, Weiwei; Wang, Wendong; Wu, Kai; Cheng, Yonghong

    2017-03-15

    The structural and electrochemical properties of the layered perovskite oxides LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo{sub 1−x}Sb{sub x}O{sub 4} to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (R{sub p}) values is observed from the Sb-doped sample with respect to the undoped samples. For example, R{sub p} of LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} on LSGM was observed to be 0.16 Ω cm{sup 2} at 800 °C in air. The main rate-limiting step for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo{sub 1−x}Sb{sub x}O{sub 4} based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs. - Graphical abstract: The oxygen partial pressure dependence of polarization resistances for a new layered perovskite cathode LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at various temperatures was measured. - Highlights: • The maximum content of Sb was 0.05 mol in LaSrCo{sub 1−x}Sb{sub x}O{sub 4}. • The maximum electrical conductivity is 194 S cm{sup −1}for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at 800 °C. • A rate-limiting process of charge transfer presented.