WorldWideScience

Sample records for repairs damage caused

  1. Repair of radiation damage caused by cyclotron-produced neutrons

    International Nuclear Information System (INIS)

    Martins, B.I.

    1979-01-01

    Hall et al. present experimental data on repair of sublethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 60 Co γ rays. Hall and Kraljevic present experimental data on repair of potentially lethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 210 kVp x rays. These results of Hall et al. are very difficult to explain from basic concepts in radiobiology. Contrary to Rossi, these data do not support his thesis that repair of radiation damage is dose-dependent and linear energy transfer independent. Nor do these results meet the expectations of multitarget-single hit theory which would require dose-independent repair equal to n. The observation of the same extrapolation number for neutrons and for x rays is also surprising. From the point of view of radiotherapy, the doses of interest are about 140 rad for neutrons and about 300 rad for x rays. There are no data for repair of potentially lethal damage below 800 rad for x rays and 400 rad for neutrons. The difference in survival between single and split dose is negligible up to a total of about 600 rad of x rays or of neutrons. These data of Hall et al. therefore have little significance to radiotherapists and are an enigma to radiobiologists

  2. Threats to repair injury caused by judicial errors and criminal damage

    Directory of Open Access Journals (Sweden)

    Muntean Vasilisa

    2017-12-01

    Full Text Available The grounds for the occurrence of punitive damages are related to the illicit actions of the persons with responsibilities in the courts and the criminal prosecution bodies. In order to provide protection against such unfair situations, there are a number of legal guarantees. The legislator has highlighted both the specific circle of reasons (illegal detention, unlawful criminal prosecution, unlawful sentencing, etc. necessary to ensure that the damage caused to the person can be repaired, as well as the circle of conditions for the right to reparation (the acquittal, the order for termination of the criminal proceedings or for the prosecution, etc.. The reparation of the damage caused by judicial and criminal prosecution errors arises at the time when the act whereby the person was convicted or illegally arrested, ie at the time when the rehabilitation act became irrevocable, was found to be illegal.

  3. Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D.

    2012-01-01

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial ...

  4. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2012-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial fo...

  5. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  6. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  7. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage

    International Nuclear Information System (INIS)

    Park, Jung Wook; Nickel, Kwangok P.; Torres, Alexandra D.; Lee, Denis; Lambert, Paul F.; Kimple, Randall J.

    2014-01-01

    Background and purpose: Patients with human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV−) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV− HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. Material and methods: Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. Results: HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. Conclusions: Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV− HNC

  8. Structures of masonry walls in buildings of permanent ruin – causes of damage and methods of repairs

    OpenAIRE

    Bartosz Szostak

    2017-01-01

    Currently there is a lot of castles classified as objects of the permanent ruin. In according to conservation doctrine, it is needed to protect this objects and prevent further degradation. Usually one of the most destructed element in this type of object is masonry wall. In this article has been described selected types of the masonry walls of the permanent ruin, causes of their damages and repairs methods.

  9. Structures of masonry walls in buildings of permanent ruin – causes of damage and methods of repairs

    Directory of Open Access Journals (Sweden)

    Bartosz Szostak

    2017-12-01

    Full Text Available Currently there is a lot of castles classified as objects of the permanent ruin. In according to conservation doctrine, it is needed to protect this objects and prevent further degradation. Usually one of the most destructed element in this type of object is masonry wall. In this article has been described selected types of the masonry walls of the permanent ruin, causes of their damages and repairs methods.

  10. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair

    International Nuclear Information System (INIS)

    Stapleton, A.E.; Thornber, C.S.; Walbot, V.

    1997-01-01

    Ultraviolet radiation has diverse morphogenetic and damaging effects on plants. The end point of damage is reduced plant growth, but in the short term UV radiation damages specific cellular components. We measured cyclobutane pyrimidine dimers in maize DNA from plants grown in natural solar radiation. Green maize tissues had detectable DNA damage, roots had less damage, and anthers had much more damage than green leaves. This heterogeneity in damage levels may reflect differences in dose received or in damage repair. The architecture of green tissues had no measurable effects on DNA damage levels, as leaf sheath and leaf blade were equivalent. We observed a slight increase in damage levels in plants sampled at the end of the day, but there was no accumulation of damage over the growing season. We measured photoreactivation, and found substantial levels of this light-dependent repair in both the epidermis and inner cell layers of leaves, and in all organelles that contain DNA – the nucleus, chloroplasts and mitochondria. We conclude that maize has efficient mechanisms for photo repair of daily UV-induced DNA damage that prevent accumulation

  11. Polymorphisms in metabolism and repair genes affects DNA damage caused by open-cast coal mining exposure.

    Science.gov (United States)

    Espitia-Pérez, Lyda; Sosa, Milton Quintana; Salcedo-Arteaga, Shirley; León-Mejía, Grethel; Hoyos-Giraldo, Luz Stella; Brango, Hugo; Kvitko, Katia; da Silva, Juliana; Henriques, João A P

    2016-09-15

    Increasing evidence suggest that occupational exposure to open-cast coal mining residues like dust particles, heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) may cause a wide range of DNA damage and genomic instability that could be associated to initial steps in cancer development and other work-related diseases. The aim of our study was to evaluate if key polymorphisms in metabolism genes CYP1A1Msp1, GSTM1Null, GSTT1Null and DNA repair genes XRCC1Arg194Trp and hOGG1Ser326Cys could modify individual susceptibility to adverse coal exposure effects, considering the DNA damage (Comet assay) and micronucleus formation in lymphocytes (CBMN) and buccal mucosa cells (BMNCyt) as endpoints for genotoxicity. The study population is comprised of 200 healthy male subjects, 100 open-cast coal-mining workers from "El Cerrejón" (world's largest open-cast coal mine located in Guajira - Colombia) and 100 non-exposed referents from general population. The data revealed a significant increase of CBMN frequency in peripheral lymphocytes of occupationally exposed workers carrying the wild-type variant of GSTT1 (+) gene. Exposed subjects carrying GSTT1null polymorphism showed a lower micronucleus frequency compared with their positive counterparts (FR: 0.83; P=0.04), while BMNCyt, frequency and Comet assay parameters in lymphocytes: Damage Index (DI) and percentage of DNA in the tail (Tail % DNA) were significantly higher in exposed workers with the GSTM1Null polymorphism. Other exfoliated buccal mucosa abnormalities related to cell death (Karyorrhexis and Karyolysis) were increased in GSTT/M1Null carriers. Nuclear buds were significantly higher in workers carrying the CYP1A1Msp1 (m1/m2, m2/m2) allele. Moreover, BMNCyt frequency and Comet assay parameters were significantly lower in exposed carriers of XRCC1Arg194Trp (Arg/Trp, Trp/Trp) and hOGG1Ser326Cys (Ser/Cys, Cys/Cys), thereby providing new data to the increasing evidence about the protective role of these polymorphisms

  12. Innovative repair of subsidence damage

    International Nuclear Information System (INIS)

    Marino, G.G.

    1992-01-01

    In order to improve handling of subsidence damages the Illinois Mine Subsidence Insurance Fund supported the development of novel cost-effective methods of repair. The research in developing the repairs was directed towards the most common and costly damages that had been observed. As a result repair techniques were designed for structurally cracked foundations in the tension zone; structurally cracked foundations in the compression zone; and damaged or undamaged tilted foundations. When appropriate the postulated methods would result in: 1. significant cost savings (over conventional procedures); 2. a structural capacity greater than when the foundation was uncracked; and 3. an aesthetic appeal. All the postulated repair methodologies were laboratory and/or field tested. This paper will summarize the essentials of each technique developed and the test results

  13. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  14. Analysis of the Causes and Recommendations on Elimination of Biological Damage of Structures During the Repair and Reconstruction of the State Biological Museum in Moscow

    Directory of Open Access Journals (Sweden)

    Kamskov Viktor

    2017-01-01

    Full Text Available The article presents the results of mycological research on buildings of the State Biological Museum located in Moscow. Over time, the building maintenance conditions have worsened, in particular because of construction of high-rise buildings in the immediate vicinity of the museum, as well as construction of a greenhouse above the underground passage tunnel between buildings 1 and 2. Over the years, the temperature gradients, high humidity, wear and damage of wall waterproofing and foundations have caused leaks in the underpass tunnel and the biological corrosion of stone, wood and metal structures in indoor exhibition halls. In this connection, part of the survey was to determine the types and size of biological lesions in structures, determination of the causes of biological damage, and the development of measures to eliminate the mycological problems during repair and reconstruction works in the museum.

  15. Damage of the Unit 1 reactor building overhead bridge crane at Onagawa Nuclear Power Station caused by the Great East Japan Earthquake and its repair works

    International Nuclear Information System (INIS)

    Sugamata, Norihiko

    2014-01-01

    The driving shaft bearings of the Unit 1 overhead bridge crane were damaged by the Great East Japan Earthquake at Onagawa Nuclear Power Station. The situation, investigation and repair works of the bearing failure are introduced in this paper. (author)

  16. DNA damage repair and radiosensitivity

    International Nuclear Information System (INIS)

    Suzuki, Norio

    2003-01-01

    Tailored treatment is not new in radiotherapy; it has been the major subject for the last 20-30 years. Radiation responses and RBE (relative biological effectiveness) depend on assay systems, endpoints, type of tissues and tumors, radiation quality, dose rate, dose fractionation, physiological and environmental factors etc, Latent times to develop damages also differ among tissues and endpoints depending on doses and radiation quality. Recent progress in clarification of radiation induced cell death, especially of apoptotic cell death, is quite important for understanding radiosensitivity of tumor cure process as well as of tumorigenesis. Apoptotic cell death as well as dormant cells had been unaccounted and missed into a part of reproductive cell death. Another area of major progress has been made in clarifying repair mechanisms of radiation damage, i.e., non-homologous end joining (NHEJ) and homologous recombinational repair (HRR). New approaches and developments such as cDNA or protein micro arrays and so called informatics in addition to basic molecular biological analysis are expected to aid identifying molecules and their roles in signal transduction pathways, which are multi-factorial and interactive each other being involved in radiation responses. (authors)

  17. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    Britt, A.B.

    1996-01-01

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  18. Potentially lethal damage and its repair

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1989-01-01

    Two forms termed fast-and slow-potentially lethal lethal damage (PLD) are introduced and discussed. The effect on the survival of x-irradiated Chinese hamster cells (V79) of two different post-treatments is examined in plateau- and in log-phases of growth. The postirradiation treatments used : a) incubation in hypertonic solution, and b) incubation in conditioned medium obtained from plateau-phase. Similar reduction in survival was caused by postirradiation treatment with hypertonic phosphate buffered saline, and similar increased in survival was effected by treatment in conditioned medium in plateau- and in log-phases cells. However, repair of PLD sensitive to hypertonic treatment was faster (half time, 5-10 min)(f-PLD repair) and independent from the repair of PLD (half time, 1-2 hour)(s-PLD repair) observed in conditioned medium. The results indicate the induction of two forms of PLD by radiation. Induction of both PLD was found to decrease with increasing LET of the radiation used. Identification of the molecular processes underlying repair and fixation of PLD is a task of particular interest, since it may allow replacement of a phenomenological definition with a molecular definition. Evidence is reviewed indicating the DNA double strand breaks (directly or indirectly induced) may be the DNA lesions underlying PLD. (author)

  19. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia.

    Directory of Open Access Journals (Sweden)

    Yanhao Lai

    Full Text Available Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA, an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER. We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.

  20. Analysis of the causes and recommendations on elimination of biological damage of structures during the repair and reconstruction of the State Biological Museum in Moscow.

    Directory of Open Access Journals (Sweden)

    Kamskov Victor

    2017-01-01

    Full Text Available The article presents the results of mycological research on buildings of the State Biological Museum located in Moscow. The problems have been considered as for a complex of buildings of the State Biological Museum built in the late nineteenth century which, to the present time, has been operated almost in its original form. Over time, the building maintenance conditions have worsened, in particular because of construction of high-rise buildings in the immediate vicinity of the museum, as well as construction of a greenhouse above the underground passage tunnel between buildings 1 and 2. Over the years, the temperature gradients, high humidity, wear and damage of wall waterproofing and foundations have caused leaks in the underpass tunnel and the biological corrosion of stone, wood and metal structures in indoor exhibition halls. In this connection, part of the survey was to determine the types and size of biological lesions in structures, determination of the causes of biological damage, and the development of measures to eliminate the mycological problems during repair and reconstruction works in the museum.

  1. Oxidative DNA damage & repair: An introduction.

    Science.gov (United States)

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. DNA Damage, Repair, and Cancer Metabolism

    Science.gov (United States)

    Turgeon, Marc-Olivier; Perry, Nicholas J. S.; Poulogiannis, George

    2018-01-01

    Although there has been a renewed interest in the field of cancer metabolism in the last decade, the link between metabolism and DNA damage/DNA repair in cancer has yet to be appreciably explored. In this review, we examine the evidence connecting DNA damage and repair mechanisms with cell metabolism through three principal links. (1) Regulation of methyl- and acetyl-group donors through different metabolic pathways can impact DNA folding and remodeling, an essential part of accurate double strand break repair. (2) Glutamine, aspartate, and other nutrients are essential for de novo nucleotide synthesis, which dictates the availability of the nucleotide pool, and thereby influences DNA repair and replication. (3) Reactive oxygen species, which can increase oxidative DNA damage and hence the load of the DNA-repair machinery, are regulated through different metabolic pathways. Interestingly, while metabolism affects DNA repair, DNA damage can also induce metabolic rewiring. Activation of the DNA damage response (DDR) triggers an increase in nucleotide synthesis and anabolic glucose metabolism, while also reducing glutamine anaplerosis. Furthermore, mutations in genes involved in the DDR and DNA repair also lead to metabolic rewiring. Links between cancer metabolism and DNA damage/DNA repair are increasingly apparent, yielding opportunities to investigate the mechanistic basis behind potential metabolic vulnerabilities of a substantial fraction of tumors. PMID:29459886

  3. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  4. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  5. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  6. Repair of DNA damage in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Evans, D.M.

    1984-01-01

    The repair of DNA lesions in Deinococcus radiodurans was examined with particular reference to DNA excision repair of ultraviolet light (UV) induced pyrimidine dimers. The characteristics of excision repair via UV endonucleases α and β in vivo varied with respect to (a) the substrate range of the enzymes, (b) the rate of repair of DNA damage (c) the requirement for a protein synthesised in response to DNA damage to attenuate exonuclease action at repairing regions. UV endonuclease α is postulated to incise DNA in a different manner from UV endonuclease β thus defining the method of subsequent repair. Several DNA damage specific endonuclease activities independent of α and β are described. Mutations of the uvsA, uvsF and uvsG genes resulted in an increase in single-strand breaks in response to DNA damage producing uncontrolled DNA degradation. Evidence is presented that these genes have a role in limiting the access of UV endonuclease β to DNA lesions. uvsF and uvsG are also shown to be linked to the mtoA gene. Mutation of uvsH and reo-1 produces further distinct phenotypes which are discussed. An overall model of excision repair of DNA damage in Deinococcus radiodurans is presented. (author)

  7. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  8. DNA Damage Induced by Alkylating Agents and Repair Pathways

    Science.gov (United States)

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  9. 49 CFR 1242.42 - Administration, repair and maintenance, machinery repair, equipment damaged, dismantling retired...

    Science.gov (United States)

    2010-10-01

    ... repair, equipment damaged, dismantling retired property, fringe benefits, other casualties and insurance, lease rentals, joint facility rents, other rents, depreciation, joint facility, repairs billed to others... maintenance, machinery repair, equipment damaged, dismantling retired property, fringe benefits, other...

  10. DNA polymerase I is crucial for the repair of potentially lethal damage caused by the indirect effects of X irradiation in Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1985-01-01

    The radiosensitivity of an Escherichia coli mutant deficient in DNA polymerase I was measured in the presence of OH radical scavengers. The extreme X-ray sensitivity of the mutant could be abolished by OH radical scavengers if a sufficiently high level of radioprotector was present. There was a direct correlation between the OH radical scavenging activity of the chemicals tested (NO 2 - , n-butanol, glycerol, t-amyl alcohol, and t-butanol) and their protective ability. The author interprets the data as showing that the indirect actions of X rays (primarily OH radicals) result in major damage to the bacterial DNA which in large part consists of potentially lethal lesions. This potentially lethal damage is repaired through an enzymatic pathway requiring DNA polymerase I. I. In the mutant lacking DNA polymerase I, these potentially lethal lesions are expressed as cell lethality

  11. Biomarkers of oxidative damage to DNA and repair

    DEFF Research Database (Denmark)

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone

    2008-01-01

    environmental factors, including particulate air pollution, cause oxidative damage to DNA, whereas diets rich in fruit and vegetables or antioxidant supplements may reduce the levels and enhance repair. Urinary excretion of 8-oxodG, genotype and expression of OGG1 have been associated with risk of cancer...

  12. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  13. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  14. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    Science.gov (United States)

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  15. Radiation damage and its repair in non-sporulating bacteria

    International Nuclear Information System (INIS)

    Moseley, B.E.B.

    1984-01-01

    A review is given of radiation damage and its repair in non-sporulating bacteria. The identification and measurement of radiation damage in the DNA of the bacteria after exposure to ultraviolet radiation and ionizing radiation is described. Measuring the extent of DNA repair and ways of isolating repair mutants are also described. The DNA repair mechanisms for UV-induced damage are discussed including photoreactivation repair, excision repair, post-replication recombination repair and induced error-prone repair. The DNA repair mechanisms for ionizing radiation damage are also discussed including the repair of both single and double-strand breaks. Other aspects discussed include the effects of growth, irradiation medium and recovery medium on survival, DNA repair in humans, the commercial use of UV and ionizing radiations and the future of ionizing irradiation as a food treatment process. (U.K.)

  16. Sublethal damages: their nature and repair

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, A.S.; Synzynys, B.I.; Trofimova, S.F. (Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii, Obninsk (USSR)); Gotlib, V.Ya.; Pelevina, I.I. (AN SSSR, Moscow. Inst. Khimicheskoj Fiziki)

    1983-05-12

    The molecular nature of sublethal damage (SLD) arising after ionizing irradiation of cultured mammalian cells was considered on the basis of data on DNA repair and cell recovery after SLD observed in lymphosarcoma cells as well as of literature data. The rate of SLD recovery and that of restoration of the cell's ability to initiate DNA synthesis were shown to be similar in new replicons. These data along with knowledge about the role of exchange type chromosomal aberrations in reproductive death permitted us to propose the hypothesis that conformational changes of chromatine - most probably, relaxation of condensed chromosomal material - are damage registered as SLD at the cellular level. Double-strand breaks and a slowly repaired part of DNA single-strand breaks are candidates for SLD.

  17. DNA damage and repair in age-related macular degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Szaflik, Jacek P. [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Janik-Papis, Katarzyna; Synowiec, Ewelina; Ksiazek, Dominika [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Zaras, Magdalena [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Wozniak, Katarzyna [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Szaflik, Jerzy [Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw (Poland); Blasiak, Janusz, E-mail: januszb@biol.uni.lodz.pl [Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2009-10-02

    Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was grater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.

  18. DNA damage and repair in age-related macular degeneration

    International Nuclear Information System (INIS)

    Szaflik, Jacek P.; Janik-Papis, Katarzyna; Synowiec, Ewelina; Ksiazek, Dominika; Zaras, Magdalena; Wozniak, Katarzyna; Szaflik, Jerzy; Blasiak, Janusz

    2009-01-01

    Age-related macular degeneration (AMD) is a retinal degenerative disease that is the main cause of vision loss in individuals over the age of 55 in the Western world. Clinically relevant AMD results from damage to the retinal pigment epithelial (RPE) cells thought to be mainly caused by oxidative stress. The stress also affects the DNA of RPE cells, which promotes genome instability in these cells. These effects may coincide with the decrease in the efficacy of DNA repair with age. Therefore individuals with DNA repair impaired more than average for a given age may be more susceptible to AMD if oxidative stress affects their RPE cells. This may be helpful in AMD risk assessment. In the present work we determined the level of basal (measured in the alkaline comet assay) endogenous and endogenous oxidative DNA damage, the susceptibility to exogenous mutagens and the efficacy of DNA repair in lymphocytes of 100 AMD patients and 110 age-matched individuals without visual disturbances. The cells taken from AMD patients displayed a higher extent of basal endogenous DNA damage without differences between patients of dry and wet forms of the disease. DNA double-strand breaks did not contribute to the observed DNA damage as checked by the neutral comet assay and pulsed field gel electrophoresis. The extent of oxidative modification to DNA bases was grater in AMD patients than in the controls, as probed by DNA repair enzymes NTH1 and Fpg. Lymphocytes from AMD patients displayed a higher sensitivity to hydrogen peroxide and UV radiation and repaired lesions induced by these factors less effectively than the cells from the control individuals. We postulate that the impaired efficacy of DNA repair may combine with enhanced sensitivity of RPE cells to blue and UV lights, contributing to the pathogenesis of AMD.

  19. Probable causes of damage of heat-exchange tubes of low-pressure-exchanges of PND-3 type and repair methods

    Science.gov (United States)

    Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.

    2017-08-01

    The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.

  20. Strengthening and repairing of damaged concrete beams

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Ebrahiem, G.T.A.; Hassanein, S.A.

    2005-01-01

    The main part in this investigation is concerned with the advanced techniques of retrofitting damaged reinforced concrete (RC) beams. Glass fiber reinforced plastics (GFRP) were employed for this purpose. The aim of this paper is to investigate the advantage of using glass fiber .reinforced plastics (GFRP) to retrofit and repair damaged reinforced concrete beams. In this investigation, concrete beam specimens were preloaded up to the 60%, 70% arid 80% of their ultimate load capacity. The damaged beams were then repaired with one layer of FRP composite wraps and re-tested. Plastic reinforced by glass fibers 20% fiber volume fractions and with various fiber arrangement unidirectional, bi-directional and chopped were also considered. Four points bending test was adopted. The bending tests were performed on fourteen RC beams in addition to a two control, all of them were (225 30 15) cm in dimensions, and with a typical reinforcement details. Test results were indicative of the merit of using GFRP, as the ultimate loads were almost restored and the modes of failure were of ductile nature. Even more an increase in the ultimate bearing capacity was recorded for some of the retrofitted beams. The effects of the previously mentioned parameters on the cracking pattern and failure mode were reported and thoroughly discussed

  1. Situation-dependent repair of DNA damage in yeast

    International Nuclear Information System (INIS)

    von Borstel, R.C.; Hastings, P.J.

    1985-01-01

    The concept of channelling of lesions in DNA into defined repair systems has been used to explain many aspects of induced and spontaneous mutation. The channelling hypothesis states that lesions excluded from one repair process will be taken up by another repair process. This is a simplification. The three known modes of repair of damage induced by radiation are not equivalent modes of repair; they are, instead, different solutions to the problem of replacement of damaged molecules with new molecules which have the same informational content as those that were damaged. The mode of repair that is used is the result of the response to the situation in which the damage takes place. Thus, when the most likely mode of repair does not take place, then the situation changes with respect to the repair of the lesion; the lesion may enter the replication fork and be reparable by another route

  2. Xeroderma Pigmentosum: defective DNA repair causes skin cancer and neurodegeneration

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1988-01-01

    Xeroderma pigmentosum is a rare autosomal recessive disease with numerous malignancies on sun-exposed areas of the skin and eye because of an inability to repair DNA damage inflicted by harmful ultraviolet (UV) radiation of the sun. Because it is the only disease in which cancer is known to result from defective DNA repair, XP has received intense clinical and biochemical study during the last two decades. Furthermore, some patients with XP develop a primary neuronal degeneration, probably due to the inability of nerve cells to repair damage to their DNA caused by intraneuronal metabolites and physicochemical events that mimic the effects of UV radiation. Studies of XP neurodegeneration and DNA-repair defects have led to the conclusion that efficient DNA repair is required to prevent premature death of human nerve cells. Since XP neurodegeneration has similarities to premature death of nerve cells that occurs in such neurodegenerative disorders, XP may be the prototype for these more common neurodegenerations. Recent studies indicate that these degenerations also may have DNA-repair defects

  3. Metabolite damage and repair in metabolic engineering design.

    Science.gov (United States)

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  4. Metabolite damage and repair in metabolic engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  5. Restoration of the façade of the Pirelli skyscraper in Milan and the repair of damage to reinforced concrete structures caused by a plane crash: An example of critic conservation

    Directory of Open Access Journals (Sweden)

    Alessandro Pergoli Campanelli

    2014-06-01

    The main intervention concerns the recovery of the structure with over 10,000 m2 of continuous aluminum and glass façade in a skyscraper designed by Italian master Gio Ponti and the repair of the damage to the reinforced concrete (RC structures (designed by another Italian master, Pier Luigi Nervi caused by a plane crash. The straightening and repair of the RC using entirely innovative methods and the conservation of the structures of the whole façade also translates into financial savings. Approximately 20% of the savings is derived from the complete substitution of the curtain wall. This idea of authenticity results in a method of restoration in which all single parts may not always be replaced for every functional upgrade. This scenario is important news, especially for modern architecture that usually prefers the value of what appears to be new, showing parts that are always perfect since the time they were built. People also consider the conservation of items that were considered as merely industrial products a few years ago.

  6. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  7. DNA damage and repair in Stylonychia lemnae (Ciliata, Protozoa)

    International Nuclear Information System (INIS)

    Ammermann, D.

    1988-01-01

    Irradiation with X rays, UV irradiation after incorporation of bromodeoxyuridine (BU) into the DNA, and cis-platinum (cis-Pt) treatment each cause the loss of micronuclei of Stylonychia lemnae while the macronuclei are not severely affected. The abilities of both nuclei to repair DNA were investigated. Unscheduled DNA synthesis could not be demonstrated after X-ray irradiation, but it was found after treatment with BU/UV and cis-Pt in macro- and micronuclei. The extent of the repair process in the micro- and macronuclei was alike, as indicated by grain counts of [6- 3 H]thymidine-treated cells. One reason for the different sensitivity of both nuclei to DNA-damaging treatment may be the different number of gene copies in the macro- and micronuclei

  8. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma.

    Science.gov (United States)

    Annovazzi, Laura; Mellai, Marta; Schiffer, Davide

    2017-05-26

    Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.

  9. Repair methods for damaged pipeline beyond diving depth

    OpenAIRE

    Mohammadi, Keramat

    2011-01-01

    Master's thesis in Offshore Technology Mechanical damage of a subsea pipeline is found as one of the most severe concern in management of pipeline integrity. The need to reach and bring the hydrocarbons from the fields located in deep and ultra-deep waters, imposes the need to improve the technologies and techniques in order to repair any unacceptable damage in pipeline. The main objective of this work is to investigate various methods for repairing a subsea pipeline that has been damaged ...

  10. Investigation of DNA damage and repair mechanism using deinococcus radiodurans

    International Nuclear Information System (INIS)

    Lau How Mooi; Kikuchi, M.; Kobayashi, Y.; Narumi, I.; Watanabe, H.

    1997-01-01

    Deninococcus Radiodurans, formerly known as Micrococcus Radiodurans, is a popular bacterium because of its high resistance to damage by carcinogens such as ionizing radiation (Dean et. al. 1966; Kitayama and Matsuyama 1968) and UV radiation (Gasvon et. al., 1995; Arrange et. al. 1993). In this report, we investigated the high resistance to ionizing radiation by this bacterium. The bacteria had been exposed from I to 5 kGy of gamma radiation and then incubated in TGY medium to study their ability to repair the broken DNA. The repair time was measured by Pulse Field Gel Electrophoresis (PFGE) method. The repair time for each dose was determined. Also in order to ensure that the repair was perfect, the bacterium was subjected to a second exposure of ionizing radiation after it has fully repaired. It was found that the 'second' repair characteristic was similar to the first repair. This confirmed that the repair after the exposure to the ionizing radiation was perfect

  11. Repair of damaged DNA in vivo: Final technical report

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1987-09-01

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs

  12. Repair of damaged supraglottic airway devices: A novel method

    Directory of Open Access Journals (Sweden)

    Kapoor Dheeraj

    2010-06-01

    Full Text Available Abstract Damage of laryngeal mask airway and other supraglottic airway devices has always been a matter of concern. Although manufacturer recommends maximum 40 uses of LMA (and its congeners but damage before 40 uses needs to be evaluated. We hereby, describe a novel method of repair of supraglottic devices when damage occurs at mask inflation line or pilot balloon valve assembly.

  13. Endogenous DNA Damage and Repair Enzymes

    Directory of Open Access Journals (Sweden)

    Arne Klungland

    2016-06-01

    Full Text Available Tomas Lindahl completed his medical studies at Karolinska Institute in 1970. Yet, his work has always been dedicated to unraveling fundamental mechanisms of DNA decay and DNA repair. His research is characterized with groundbreaking discoveries on the instability of our genome, the identification of novel DNA repair activities, the characterization of DNA repair pathways, and the association to diseases, throughout his 40 years of scientific career.

  14. Un-repairable DNA damage in cell due to irradiation

    International Nuclear Information System (INIS)

    Yoshii, Giichi

    1992-01-01

    Radiation-induced cell reproductive deactivation is caused by damage to DNA. In a cell, cellular DNA radical reacts with diffusion controlled rate and generates DNA peroxide radical. The chemical repair of DNA radical with hydrogen donation by thiol competes with the reaction of oxygen with same radicals in the DNA molecules. From the point reaction rates, the prolongation of radical life time is not as great as expected from the reduction in the glutathione content of the cell. This indicates that further reducting compounds (protein bound thiol) are present in the cell. The residual radicals are altered to strand breaks, base damages and so on. The effective lesions for a number of endpoints is un-repaired double strand break, which has been discovered in a cluster. This event gives risk to high LET radiation or to a track end of X-rays. For X- or electron irradiations the strand breaks are frequently induced by the interactions between sublesions on two strands in DNA. A single strand break followed by radical action may be unstable excited state, because of remaining sugar radical action and of having negative charged phosphates, in which strands breaks will be rejoined in a short time to stable state. On the same time, a break in the double helix will be immediately produced if two breaks are on either or approximately opposite locations. The formation of a double strand break in the helix depends on the ion strength of the cell. The potassium ions are largely released from polyanionic strand during irradiation, which results in the induction of denatured region. Double strand break with the denatured region seems to be un-repairable DNA damage. (author)

  15. Repair processes for photochemical damage in mammalian cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1974-01-01

    Repair processes for photochemical damage in cells following uv irradiation are reviewed. Cultured fibroblast cells from human patients with xeroderma pigmentosum were used as an example to illustrate aspects of repair of injuries to DNA and proteins. (250 references) (U.S.)

  16. DNA damage and repair in human skin in situ

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  17. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  18. Immunocosmeceuticals: An emerging trend in repairing human hair damage

    Directory of Open Access Journals (Sweden)

    Karthika Selvan

    2013-01-01

    Full Text Available Hair is one of the most important portions for beauty care and in recent years grooming and cosmetic treatment of hair has drastically risen. Substantially, it may deteriorate and weaken the hair by modification of keratin protein. This makes the hair dry, brittle and split vend occurs due to loss of hair strength and the damage further increases with cosmetic treatments. The various poor ingredients are being used for repairing which have extremely poor compatibility with hair. Now the hair care products can be introduced with an active ingredient comprising a yolk derived anti-hair antibody immunoglobin obtained from egg of chickens immunized with damaged hair as antigen. This immuno-cosmeceuticals can repair the hair damage and imparts flexibility and smoothness to the hair. These effects are not lost by the ordinary shampooing. This article focuses on the characteristic of human hair, its damaging processes and the effects of immuno-cosmeceuticals for repairing the hair damage.

  19. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... in genotyping procedures and investigated SNPs, potentially inducing differences in the coverage of gene regions. Specifically, five genes were not covered at all in the German data. Therefore, investigations in additional study populations are needed before final conclusion can be drawn....

  20. Repair of DNA damage in light sensitive human skin diseases

    Energy Technology Data Exchange (ETDEWEB)

    Horkay, I.; Varga, L.; Tam' asi P., Gundy, S.

    1978-12-01

    Repair of uv-light induced DNA damage and changes in the semiconservative DNA synthesis were studied by in vitro autoradiography in the skin of patients with lightdermatoses (polymorphous light eruption, porphyria cutanea tarda, erythropoietic protoporphyria) and xeroderma pigmentosum as well as in that of healthy controls. In polymorphous light eruption the semiconservative DNA replication rate was more intensive in the area of the skin lesions and in the repeated phototest site, the excision repair synthesis appeared to be unaltered. In cutaneous prophyrias a decreased rate of the repair incorporation could be detected. Xeroderma pigmentosum was characterized by a strongly reduced repair synthesis.

  1. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  2. Weld repair of creep damaged steels

    International Nuclear Information System (INIS)

    Croker, A.B.L.; Harrison, R.P.; Moss, C.J.

    1995-01-01

    A cooperative research centre project 'Welding of Thermally Modified Structures' was commenced in June 1993 with support from ANSTO, CSIRO, BHP, University of Wollongong and the CRC for Materials, Welding and Joining. The main aims of the project are to quantify the effects of performing repair welds on materials which have operated for extended periods at elevated temperature. Welding is an increasingly used method for performing repairs, replacements, retrofits and modifications to elevated temperature plant, however, the effects of these repairs on the ultimate life of a component are poorly understood. This paper presents details of the three ex-service materials chosen for the project, a carbon steel and two alloy steels. Work is also presented on development of new methods of assessing materials and components both destructively, along with new methods of modelling welded components in high temperature service. 6 figs, 3 tabs

  3. Effect of Mercuric Nitrate on Repair of Radiation-induced DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Paneka, Agnieszka; Antonina, Cebulska Wasilewska [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-10-15

    High concentrations of mercury can cause serious damage to the nervous system, immune system, kidneys and liver in humans. And mercury is toxic to developing embryos because mercury ions can penetrate the blood.placenta barrier to reach the embryo. Studies from human monitoring of occupational exposure to mercury vapours have shown that mercury can alter the ability of lymphocytes to repair radiation-induced DNA damage. The aim of this in vitro study was to investigate, on the molecular and cytogenetic levels, the effect of exposure to mercury ions on the kinetics of the repair process of DNA damage induced by ionising radiation.

  4. DNA methylation in human fibroblasts following DNA damage and repair

    International Nuclear Information System (INIS)

    Kastan, M.B.

    1984-01-01

    Methylation of deoxycytidine (dCyd) incorporated by DNA excision repair synthesis in human diploid fibroblasts following damage with ultraviolet radiation (UV), N-methyl-N-nitrosourea, or N-acetoxy-2-acetylaminofluorene was studied utilizing [6- 3 H]dCyd to label repaired DNA specifically and high performance liquid chromatographic analysis to quantify the percentage of deoxycytidine converted to 5-methyldeoxycytidine (m 5 dCyd). In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication a level of 3.4% m 5 dCyd is reached in less than 2 hours, following UV-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of approx.2.0% m 5 dCyd in the repair patch. This undermethylation of repair patches occurs throughout the genome. In cells from cultures in logarithmic-phase growth, m 5 dCyd formation in UV-induced repair patches occurs faster and to a greater extent, reaching a level of approx.2.7% in 10-20 hours. Pre-existing hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites. The distribution within chromatin of m 5 dCyd in repair patches was also investigated. Over a wide range of extents of digestion by staphylococcal nuclease or deoxyribonuclease I, the level of hypomethylation in repaired DNA in nuclease sensitive and resistant regions of chromatin was constant relative to the genomic level of methylation in these regions. Similar conclusions were reached in experiments with isolated mononucleosomes

  5. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  6. uv photobiology: DNA damage and repair

    International Nuclear Information System (INIS)

    Sutherland, B.M.

    1978-01-01

    The following topics are discussed: targets that determine the fate of the cell when uv light interacts with a cell; comparison of action spectrum for a given biological effect with the absorption spectrum of different biological macromolecules; biological effects of damage to DNA; measurement of mutations; chemical damage to DNA; photoreactivation; role of pyrimidine dimers in induction of skin cancer by uv

  7. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems

    Directory of Open Access Journals (Sweden)

    Mladena Luković

    2016-07-01

    Full Text Available Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC, for controlling the damage development due to drying shrinkage in concrete repairs was also examined.

  8. Repair of radiation damage of Micrococcus radioproteolyticus due to gamma and UV irradiation

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1982-01-01

    Cells were irradiated in dry state with gamma radiation and UV radiation. The post-irradiation warming of freeze dried cells (2 hours to 60deg or to 80deg) influenced the ability to repair sublethal damage. Heating to 80deg caused a mild reduction in survival. The repair of irradiated and heated cells required more time than that of cells which had only been irradiated. (M.D.)

  9. DNA damage caused by UV- and near UV-irradiation

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1986-01-01

    Much work with mutants deficient in DNA repair has been performed concerning UV-induced DNA damage under the condition where there is no artificial stimulation. In an attempt to infer the effects of solar wavelengths, the outcome of the work is discussed in terms of cellular radiation sensitivity, unscheduled DNA synthesis, and mutation induction, leading to the conclusion that some DNA damage occurs even by irradiation of the shorter wavelength light (270 - 315 nm) and is repaired by excision repair. It has been thought to date that pyrimidine dimer (PD) plays the most important role in UV-induced DNA damage, followed by (6 - 4) photoproducts. As for DNA damage induced by near UV irradiation, the yield of DNA single-strand breaks and of DNA-protein crosslinking, other than PD, is considered. The DNA-protein crosslinking has proved to be induced by irradiation at any wavelength of UV ranging from 260 to 425 nm. Near UV irradiation causes the inhibition of cell proliferation to take place. (Namekawa, K.)

  10. The current state of eukaryotic DNA base damage and repair.

    Science.gov (United States)

    Bauer, Nicholas C; Corbett, Anita H; Doetsch, Paul W

    2015-12-02

    DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. DNA damage, repair and tanning acceleration

    NARCIS (Netherlands)

    Vink, A.A.; Berg, P.T.M. van den; Roza, L.

    1999-01-01

    Exposure of the skin to solar ultraviolet radiation (UV) leads to various adverse effects, such as the induction of cellular damage and mutations, suppression of the skin's immune system, and the induction of skin cancer. These effects are the consequence of various molecular alterations in the skin

  12. Radiation damage repair-preliminary studies

    International Nuclear Information System (INIS)

    Bird, R.P.

    1985-01-01

    An experiment was done with Cs-137 gamma rays to determine the effect of temperature on repair processes and cell-cycle progression. Chinese hamster V79 cells were synchronized with hydroxyurea to be at the G 1 /S transition at time T = O. Starting then at room temperature and either holding at room temperature of incubating at 37 0 C, the responses to a single dose at time T were compared, split doses separated by time T, were comparaed at different temperature, and delayed removal of hydroxyurea at the time T after a single dose at T = O was compared for the two temperatures. Reduced temperature was of minimal influence on the surviving fractions in all three cases. 9 refs., 1 fig

  13. Irreversible brain damage caused by methamphetamine

    Directory of Open Access Journals (Sweden)

    Sebastian Moeller

    2016-03-01

    Full Text Available Methamphetamine is an addictive scene substance usage of which is increasing rapidly. While methamphetamine often causes neuropsychiatric symptoms like anxiety, psychosis and hallucinations, reports of structural ongoing cerebral alterations are rare. We here report a case of this kind of damage caused through methamphetamine use.

  14. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities.

    Science.gov (United States)

    Soll, Jennifer M; Sobol, Robert W; Mosammaparast, Nima

    2017-03-01

    Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so-called 'epigenetic' adducts. Here, we discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Repair of Clustered Damage and DNA Polymerase Iota.

    Science.gov (United States)

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  16. Fission yeast mating-type switching: programmed damage and repair

    DEFF Research Database (Denmark)

    Egel, Richard

    2005-01-01

    Mating-type switching in fission yeast follows similar rules as in budding yeast, but the underlying mechanisms are entirely different. Whilst the initiating double-strand cut in Saccharomyces cerevisiae requires recombinational repair for survival, the initial damage in Schizosaccharomyces pombe...

  17. Repair of DNA damage in the human metallothionein gene family

    International Nuclear Information System (INIS)

    Leadon, S.A.; Snowden, M.M.

    1987-01-01

    In order to distinguish enhanced repair of a sequence due to its transcriptional activity from enhanced repair due to chromatin alterations brought about by integration of a sequence into the genome, we have investigated the repair of damage both in endogenous genes and in cell lines that contain an integrated gene with an inducible promoter. The endogenous genes we are studying are the metallothioneins (MTs), a multigene family in man consisting of about 10-12 members. Cultured cells were exposed to 10-J/m 2 uv light and allowed to repair in the presence of bromodeoxyuridine. The DNA was then isolated, digested with Eco RI, and fully hybrid density DNA made by semiconservative synthesis was separated from unreplicated DNA by centrifugation in CsCl density gradients. Unreplicated, parental-density DNA was then reacted with a monoclonal antibody against bromouracil. 1 ref., 1 fig., 1 tab

  18. Liability for damage caused by medical X-ray treatment

    International Nuclear Information System (INIS)

    1977-01-01

    A case of liability for damage caused by X-ray medical treatment was recently brought before the courts in Norway. Following a mistake by the physician handling the X-ray apparatus the plaintiff had received an overdose of radiation on her nose and a lengthy and expensive plastic surgery treatment had been required to repair the damage. The local court of Aalesund ruled in April 1975 that the physician concerned had committed a fault but could not be accused of gross negligence or gross fault in view of Norwegian case law on medical liability. Therefore the plaintiff obtained compensation for her medical expenses but was refused compensation for non-material damage (disfigurement and pretium doloris). (NEA) [fr

  19. Damage and repair of ancient DNA

    DEFF Research Database (Denmark)

    Mitchell, David; Willerslev, Eske; Hansen, Anders

    2005-01-01

    degradation, these studies are limited to species that lived within the past 10(4)-10(5) years (Late Pleistocene), although DNA sequences from 10(6) years have been reported. Ancient DNA (aDNA) has been used to study phylogenetic relationships of protists, fungi, algae, plants, and higher eukaryotes...... such as extinct horses, cave bears, the marsupial wolf, the moa, and Neanderthal. In the past few years, this technology has been extended to the study of infectious disease in ancient Egyptian and South American mummies, the dietary habits of ancient animals, and agricultural practices and population dynamics......, and extensive degradation. In the course of this review, we will discuss the current aDNA literature describing the importance of aDNA studies as they relate to important biological questions and the difficulties associated with extracting useful information from highly degraded and damaged substrates derived...

  20. Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E. Cleaver.

    Science.gov (United States)

    Karentz, Deneb

    2015-01-01

    The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion. © 2014 The American Society of Photobiology.

  1. The time course of repair of ultraviolet-induced DNA damage; implications for the structural organization of repair

    International Nuclear Information System (INIS)

    Collins, A.; Squires, S.

    1986-01-01

    Alternative molecular mechanisms can be envisaged for the cellular repair of UV-damaged DNA. In the 'random collision' model, DNA damage distributed throughout the genome is recognised and repaired by a process of random collision between DNA damage and repair enzymes. The other model assumes a 'processive' mechanism, whereby DNA is scanned for damage by a repair complex moving steadily along its length. Random collision should result in a declining rate of repair with time as the concentration of lesions in the DNA falls; but the processive model predicts a constant rate until scanning is complete. The authors have examined the time course of DNA repair in human fibroblasts given low doses of UV light. Using 3 distinct assays, the authors find no sign of a constant repair rate after 4 J/m 2 or less, even when the first few hours after irradiation are examined. Thus DNA repair is likely to depend on random collision. (Auth.)

  2. Protein damage and repair controlling seed vigor and longevity.

    Science.gov (United States)

    Ogé, Laurent; Broyart, Caroline; Collet, Boris; Godin, Béatrice; Jallet, Denis; Bourdais, Gildas; Job, Dominique; Grappin, Philippe

    2011-01-01

    The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein L: -isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.

  3. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    Science.gov (United States)

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  4. DNA damage caused by ionizing radiation

    International Nuclear Information System (INIS)

    Sachs, R.K.; Peili Chen; Hahnfeldt, P.J.; Klatky, L.R.

    1992-01-01

    A survey is given of continuous-time Markov chain models for ionizing radiation damage to the genome of mammalian cells. In such models, immediate damage induced by the radiation is regarded as a batch-Poisson arrival process of DNA double-strand breaks (DSBs). Enzymatic modification of the immediate damage is modeled as a Markov process similar to those described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete-exchange model. The model postulates that, after being induced by radiation, DSBs subsequently either undergo enzymatically mediated restitution (repair) or participate pairwise in chromosome exchanges. Some of the exchanges make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. Methods for analyzing the Markov chains include using an approximate model for expected values, the discrete-time Markov chain embedded at transitions, partial differential equations for generating functions, normal perturbation theory, singular perturbation theory with scaling, numerical computations, and certain matrix methods that combine Perron-Frobenius theory with variational estimates. Applications to experimental results on expected values, variances, and statistical distributions of DNA lesions are briefly outlined. Continuous-time Markov chains are the most systematic of those radiation damage models that treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g., ignore diffusion limitations). They contain virtually all other relevant homogeneous models and semiempirical summaries as special cases, limiting cases, or approximations. However, the Markov models do not seem to be well suited for studying spatial dependence of DSB interactions. 51 refs., 5 figs

  5. Repair of uv damaged DNA in systemic lupus erythematosus. [Mice

    Energy Technology Data Exchange (ETDEWEB)

    Beighlie, D J; Teplitz, R L

    1975-06-01

    The NZB NZW hybrid mouse is an animal model of human systemic lupus erythematosus (SLE). Two breeding schemes were devised using NZB, NZW, B/W, and CBA mice, which permit definitive decisions regarding genetic and/or viral origin of the disease. It is proposed that at least two factors must be involved: a genetic abnormality producing hyper-responsiveness to nucleic acid antigens, and a DNA repair defect which results in liberation of DNA and RNA when cells are lethally injured. Evidence is presented for a DNA repair deficit in human SLE lymphocytes following in vitro irradiation with ultraviolet (uv) light. Lymphocytes from adult New Zealand and control mice were found to lack normal amounts of endonuclease necessary for repairing uv damage.

  6. DNA Damage Repair System in Plants: A Worldwide Research Update.

    Science.gov (United States)

    Gimenez, Estela; Manzano-Agugliaro, Francisco

    2017-10-30

    Living organisms are usually exposed to various DNA damaging agents so the mechanisms to detect and repair diverse DNA lesions have developed in all organisms with the result of maintaining genome integrity. Defects in DNA repair machinery contribute to cancer, certain diseases, and aging. Therefore, conserving the genomic sequence in organisms is key for the perpetuation of life. The machinery of DNA damage repair (DDR) in prokaryotes and eukaryotes is similar. Plants also share mechanisms for DNA repair with animals, although they differ in other important details. Plants have, surprisingly, been less investigated than other living organisms in this context, despite the fact that numerous lethal mutations in animals are viable in plants. In this manuscript, a worldwide bibliometric analysis of DDR systems and DDR research in plants was made. A comparison between both subjects was accomplished. The bibliometric analyses prove that the first study about DDR systems in plants (1987) was published thirteen years later than that for other living organisms (1975). Despite the increase in the number of papers about DDR mechanisms in plants in recent decades, nowadays the number of articles published each year about DDR systems in plants only represents 10% of the total number of articles about DDR. The DDR research field was done by 74 countries while the number of countries involved in the DDR & Plant field is 44. This indicates the great influence that DDR research in the plant field currently has, worldwide. As expected, the percentage of studies published about DDR systems in plants has increased in the subject area of agricultural and biological sciences and has diminished in medicine with respect to DDR studies in other living organisms. In short, bibliometric results highlight the current interest in DDR research in plants among DDR studies and can open new perspectives in the research field of DNA damage repair.

  7. Cause of Damage. Hot cracking; Schadensursache Heissrissigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Wader, Therese [BENTELER Steel/Tube GmbH, Paderborn (Germany). Vorentwicklung Werkstoffe

    2016-10-15

    Under certain conditions, Nb-containing stainless steels are susceptible to hot cracking. Such conditions include low melting phases on the grain boundaries, a coarse-grained microstructure such as cast structures, microstructure orientations towards the main tensile direction and high processing temperatures. The case of damage was characterized using metallographic and microanalytical methods. In the laboratory, the critical temperature range for the formation of hot cracks could furthermore specifically be localized under mechanical stresses by means of a dilatometer aiming at clearly verifying the cause of the damage, namely ''hot cracks''.

  8. The repair of damage to DNA in different cell types

    International Nuclear Information System (INIS)

    Karran, P.

    1974-01-01

    DNA single strand breaks induced by either X-ray irradiation or by methyl methanesulphonate (MMS) were studied in different lymphoid cell populations directly taken from the animal and maintained in tissue culture merely for the duration of the experiment. The results obtained from these cell populations were compared with those obtained with L5178Y cells maintained in tissue culture. All cell types studied were found to possess at least one class of enzymes required for repair of DNA damage, namely those enzymes involved in the rejoining of X-ray induced by MMS is different in each cell type. Repair replication was at much reduced levels and the endonucleolytic degradation was at much reduced levels and the endonucleolytic degradation was initiated at lower MMS concentration in the lymphoid cells as compared to L5178Y cells. It is suggested that the overall ''repair capacity'' of a population may be related to the number of cells in a cycle which, moreover, might be the only ones to have the ability to repair damage to DNA induced by MMS (G.G.)

  9. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  10. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer.

    Science.gov (United States)

    Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Muñoz, Jenifer; Ocaña, Teresa; Carballal, Sabela; López-Cerón, Maria; Cuatrecasas, Miriam; Vila-Casadesús, Maria; Lozano, Juan José; Serra, Enric; Beltran, Sergi; Brea-Fernández, Alejandro; Ruiz-Ponte, Clara; Castells, Antoni; Bujanda, Luis; Garre, Pilar; Caldés, Trinidad; Cubiella, Joaquín; Balaguer, Francesc; Castellví-Bel, Sergi

    2016-10-01

    Colorectal cancer (CRC) is one of the most common neoplasms in the world. Fanconi anemia (FA) is a very rare genetic disease causing bone marrow failure, congenital growth abnormalities and cancer predisposition. The comprehensive FA DNA damage repair pathway requires the collaboration of 53 proteins and it is necessary to restore genome integrity by efficiently repairing damaged DNA. A link between FA genes in breast and ovarian cancer germline predisposition has been previously suggested. We selected 74 CRC patients from 40 unrelated Spanish families with strong CRC aggregation compatible with an autosomal dominant pattern of inheritance and without mutations in known hereditary CRC genes and performed germline DNA whole-exome sequencing with the aim of finding new candidate germline predisposition variants. After sequencing and data analysis, variant prioritization selected only those very rare alterations, producing a putative loss of function and located in genes with a role compatible with cancer. We detected an enrichment for variants in FA DNA damage repair pathway genes in our familial CRC cohort as 6 families carried heterozygous, rare, potentially pathogenic variants located in BRCA2/FANCD1, BRIP1/FANCJ, FANCC, FANCE and REV3L/POLZ. In conclusion, the FA DNA damage repair pathway may play an important role in the inherited predisposition to CRC.

  11. Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research

    Science.gov (United States)

    Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with XP. As more abnormalities form in DNA, cells malfunction and eventually become cancerous or die. XP patients have more than a 10,000-fold increased risk of developing skin cancer. Kenneth Kraemer, M.D., in CCR’s Dermatology Branch, has been studying XP patients at the Clinical Center for more than 40 years.

  12. Damage induced by continued corrosion in concrete repair systems

    NARCIS (Netherlands)

    Luckovic, M.; Savija, B.; Schlangen, E.

    2014-01-01

    Corrosion of steel reinforcement is the main cause of deterioration in reinforced concrete structures. After the repair, corrosion of the steel might continue and even accelerate. While the development of the corrosion cell depends on many parameters and is difficult to control, the occurrence of

  13. Repair of Impact-Damaged Prestressed Bridge Girders Using Strand Splices and Fabric Reinforced Cementitious Matrix

    OpenAIRE

    Jones, Mark Stevens

    2017-01-01

    This thesis investigates the repair of impact-damaged prestressed concrete bridge girders with strand splices and fabric-reinforced cementitious matrix systems, specifically for repair of structural damage to the underside of an overpass bridge girder due to an overheight vehicle collision. Collision damage to bridges can range from minor to catastrophic, potentially requiring repair or replacement of a bridge girder. This thesis investigates the performance of two different types of repair...

  14. Causes and Implications of Readmission after Abdominal Aortic Aneurysm Repair

    Science.gov (United States)

    Greenblatt, David Yu; Greenberg, Caprice C.; Kind, Amy J.H.; Havlena, Jeffrey A.; Mell, Matthew W.; Nelson, Matthew T.; Smith, Maureen A.; Kent, K. Craig

    2012-01-01

    Objective To determine the frequency, causes, predictors, and consequences of 30-day readmission after abdominal aortic aneurysm (AAA) repair. Summary Background Data CMS will soon reduce total Medicare reimbursements for hospitals with higher-than-predicted 30-day readmission rates after vascular surgical procedures including AAA repair. However, causes and factors leading to readmission in this population have never before been systematically analyzed. Methods We analyzed elective AAA repairs over a two-year period from the CMS Chronic Conditions Warehouse, a 5% national sample of Medicare beneficiaries. Results 2481 patients underwent AAA repair – 1502 endovascular (EVAR) and 979 open. 30-day readmission rates were equivalent for EVAR (13.3%) and open repair (12.8%). While wound complication was the most common reason for readmission after both procedures, the relative frequency of other causes differed – e.g., bowel obstruction was common following open repair and graft complication after EVAR. In multivariate analyses, preoperative comorbidities had a modest effect on readmission; however, postoperative factors including serious complications leading to prolonged length of stay and discharge destination other than home had a profound influence on the probability of readmission. The one-year mortality in readmitted patients was 23.4% versus 4.5% in those not readmitted (preadmission is common after AAA repair. Adjusting for comorbidities, postoperative events predict readmission, suggesting that proactively preventing, detecting, and managing postoperative complications may provide an approach to decreasing readmissions, with the potential to reduce cost and possibly enhance long-term survival. PMID:22964736

  15. Increasing Melanoma—Too Many Skin Cell Damages or Too Few Repairs?

    Directory of Open Access Journals (Sweden)

    Örjan Hallberg

    2013-02-01

    Full Text Available Skin melanoma rates have been increasing for a long time in many Western countries. The object of this study was to apply modern problem-solving theory normally used to clear industrial problems to search for roots and causes of this medical question. Increasing cancer rates can be due to too many cell damage incidents or to too few repairs. So far, it has been assumed that the melanoma epidemic mainly is caused by increasing sun tanning habits. In order to explore this problem in more detail, we used cancer statistics from several countries over time and space. Detailed analysis of data obtained and a model study to evaluate the effects from increased damages or decreased repairs clearly indicate that the main reason behind the melanoma problem is a disturbed immune system. The possibility to introduce efficient corrective actions is apparent.

  16. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    Science.gov (United States)

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  17. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; van de Geijn, J.; Goffman, T. (ROB, DCT, NCI, NIH, Bethesda, Maryland 20892 (US))

    1991-05-01

    In the conventional linear--quadratic model of single-dose response, the {alpha} and {beta} terms reflect lethal damage created {ital during} the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD.

  18. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    International Nuclear Information System (INIS)

    Chen, J.; van de Geijn, J.; Goffman, T.

    1991-01-01

    In the conventional linear--quadratic model of single-dose response, the α and β terms reflect lethal damage created during the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with ''unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD

  19. MD study of pyrimidine base damage on DNA and its recognition by repair enzyme

    International Nuclear Information System (INIS)

    Pinak, M.

    2000-01-01

    The molecular dynamics (MD) simulation was used on the study of two specific damages of pyrimidine bases of DNA. Pyrimidine bases are major targets either of free radicals induced by ionizing radiation in DNA surrounding environment or UV radiation. Thymine dimer (TD) is UV induced damage, in which two neighboring thymines in one strand are joined by covalent bonds of C(5)-C(5) and C(6)-C(6) atoms of thymines. Thymine glycol (TG) is ionizing radiation induced damage in which the free water radical adds to unsaturated bond C(5)-C(6) of thymine. Both damages are experimentally suggested to be mutagenetic and carcinogenic unless properly repaired by repair enzymes. In the case of MD of TD, there is detected strong kink around the TD site that is not observed in native DNA. In addition there is observed the different value of electrostatic energy at the TD site - negative '-10 kcal/mol', in contrary to nearly neutral value of native thymine site. Structural changes and specific electrostatic energy - seems to be important for proper recognition of TD damaged site, formation of DNA-enzyme complex and thus for subsequent repair of DNA. In the case of TG damaged DNA there is major structural distortion at the TG site, mainly the increased distance between TG and the C5' of adjacent nucleotide. This enlarged gap between the neighboring nucleotides may prevent the insertion of complementary base during replication causing the replication process to stop. In which extend this structural feature together with energy properties of TG contributes to the proper recognition of TG by repair enzyme Endonuclease III is subject of further computational MD study. (author)

  20. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  1. Radiation induced DNA damage and repair in mutagenesis

    International Nuclear Information System (INIS)

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  2. Repair of impact damaged utility poles with fiber reinforced polymers (FRP), phase II.

    Science.gov (United States)

    2015-06-01

    Vehicle collisions with steel or aluminum utility poles are common occurrences that yield substantial but often repairable : damage. This project investigates the use of a fiber-reinforced polymer (FRP) composite system for in situ repair that : mini...

  3. Telomeres and genomic damage repair. Their implication in human pathology

    International Nuclear Information System (INIS)

    Perez, Maria del R.; Dubner, Diana; Michelin, Severino; Gisone, Pablo; Carosella, Edgardo D.

    2002-01-01

    Telomeres, functional complexed that protect eukaryotic chromosome ends, participate in the regulation of cell proliferation and could play a role in the stabilization of genomic regions in response to genotoxic stress. Their significance in human pathology becomes evident in several diseases sharing genomic instability as a common trait, in which alterations of the telomere metabolism have been demonstrated. Many of them are also associated with hypersensitivity to ionizing radiation and cancer susceptibility. Besides the specific proteins belonging to the telomeric complex, other proteins involved in the DNA repair machinery, such as ATM, BRCA1, BRCA2, PARP/tankyrase system, DNA-PK and RAD50-MRE11-NBS1 complexes, are closely related with the telomere. This suggests that the telomere sequesters DNA repair proteins for its own structure maintenance, with could also be released toward damaged sites in the genomic DNA. This communication describes essential aspects of telomere structure and function and their links with homologous recombination, non-homologous end-joining (NHEJ), V(D)J system and mismatch-repair (MMR). Several pathological conditions exhibiting alterations in some of these mechanisms are also considered. The cell response to ionizing radiation and its relationship with the telomeric metabolism is particularly taken into account as a model for studying genotoxicity. (author)

  4. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  5. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    Science.gov (United States)

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  6. Free radical scavenging and the expression of potentially lethal damage in X-irradiated repair-deficient Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1987-01-01

    When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed

  7. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    Science.gov (United States)

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  8. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    International Nuclear Information System (INIS)

    Eccles, Laura J.; O'Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a 'friend', leading to cell killing in tumour cells or as a 'foe', resulting in the formation of mutations and genetic instability in normal tissue.

  9. Incident laser modulation of a repaired damage site with a rim in fused silica rear subsurface

    Institute of Scientific and Technical Information of China (English)

    Li Li; Xiang Xia; Zu Xiao-Tao; Yuan Xiao-Dong; He Shao-Bo; Jiang Xiao-Dong; Zheng Wan-Guo

    2012-01-01

    Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sitesin a fused silica surface from exponentially growing,which is responsible for limiting the lifetime of optics in high fluence laser systems.However,the CO2 laser induced ablation crater is often surrounded by a raised rim at the edge,which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics.In this work,the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO2 laser mitigated damage site located in the exit subsurface of fused silica.The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims.Specifically,we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics.The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail.

  10. Activation of DNA damage repair pathways by murine polyomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert L., E-mail: Robert.Garcea@Colorado.edu

    2016-10-15

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. -- Highlights: •Murine polyomavirus activates and recruits DNA damage repair (DDR) proteins to replication centers. •Large T-antigen mediates recruitment of DDR proteins to viral replication centers. •Inhibition or knockout of CHK1, CHK2, DNA-PK or H2AX do not affect viral titers. •Inhibition of ATR activity reduces viral titers, but not viral DNA accumulation.

  11. Analysis of a damaged and repaired pre-stressed concrete bridge girder by vehicle impact and effectiveness of repair procedure

    OpenAIRE

    Domínguez Mayans, Félix

    2014-01-01

    This thesis aims to study the structural consequences of the damages produced by vehicle impact in a pres-stressed concrete bridge girder and the repair procedure in a real case-study damaged after the bridge was opened to service. From the analysis of the situation of the beam and its damage state, a study of the repair actions carried out on this beam has been analyzed in order to determine the efficiency of the repair and if other alternatives are possible or more efficient. A stat...

  12. Is eye damage caused by stereoscopic displays?

    Science.gov (United States)

    Mayer, Udo; Neumann, Markus D.; Kubbat, Wolfgang; Landau, Kurt

    2000-05-01

    A normal developing child will achieve emmetropia in youth and maintain it. Thereby cornea, lens and axial length of the eye grow astonishingly coordinated. In the last years research has evidenced that this coordinated growing process is a visually controlled closed loop. The mechanism has been studied particularly in animals. It was found that the growth of the axial length of the eyeball is controlled by image focus information from the retina. It was shown that maladjustment can occur by this visually-guided growth control mechanism that result in ametropia. Thereby it has been proven that e.g. short-sightedness is not only caused by heredity, but is acquired under certain visual conditions. It is shown that these conditions are similar to the conditions of viewing stereoscopic displays where the normal accommodation convergence coupling is disjoint. An evaluation is given of the potential of damaging the eyes by viewing stereoscopic displays. Concerning this, different viewing methods for stereoscopic displays are evaluated. Moreover, clues are given how the environment and display conditions shall be set and what users shall be chosen to minimize the risk of eye damages.

  13. Repair of UV-damaged incoming plasmid DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Keszenman-Pereyra, David

    1990-01-01

    A whole-cell transformation assay was used for the repair of UV-damaged plasma DNA in highly-transformable haploid strains of Saccharomyces cerevisiae having different repair capabilities. The experiments described demonstrate that three epistasis groups (Friedberg 1988) are involved in the repair of UV-incoming DNA and that the repair processes act less efficiently on incoming DNA than they do on chromosomal DNA. The implications of these findings for UV repair in Saccharomyces cerevisiae are discussed. (author)

  14. International congress on DNA damage and repair: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  15. International congress on DNA damage and repair: Book of abstracts

    International Nuclear Information System (INIS)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation

  16. Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells.

    Science.gov (United States)

    Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter

    2015-11-01

    Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.

  17. Evaluation of radioinduced damage and repair capacity in blood lymphocytes of breast cancer patients

    Directory of Open Access Journals (Sweden)

    P.A. Nascimento

    2001-02-01

    Full Text Available Genetic damage caused by ionizing radiation and repair capacity of blood lymphocytes from 3 breast cancer patients and 3 healthy donors were investigated using the comet assay. The comets were analyzed by two parameters: comet tail length and visual classification. Blood samples from the donors were irradiated in vitro with a 60Co source at a dose rate of 0.722 Gy/min, with a dose range of 0.2 to 4.0 Gy and analyzed immediately after the procedure and 3 and 24 h later. The basal level of damage and the radioinduced damage were higher in lymphocytes from breast cancer patients than in lymphocytes from healthy donors. The radioinduced damage showed that the two groups had a similar response when analyzed immediately after the irradiations. Therefore, while the healthy donors presented a considerable reduction of damage after 3 h, the patients had a higher residual damage even 24 h after exposure. The repair capacity of blood lymphocytes from the patients was slower than that of lymphocytes from healthy donors. The possible influence of age, disease stage and mutations in the BRCA1 and BRCA2 genes are discussed. Both parameters adopted proved to be sensitive and reproducible: the dose-response curves for DNA migration can be used not only for the analysis of cellular response but also for monitoring therapeutic interventions. Lymphocytes from the breast cancer patients presented an initial radiosensitivity similar to that of healthy subjects but a deficient repair mechanism made them more vulnerable to the genotoxic action of ionizing radiation. However, since lymphocytes from only 3 patients and 3 normal subjects were analyzed in the present paper, additional donors will be necessary for a more accurate evaluation.

  18. Influence of LET on repair of DNA damages in Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y; Tanaka, A; Kikuchi, M; Shimizu, T; Watanabe, H [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Cao, J P; Taucher-Scholz, G

    1997-03-01

    Inactivation caused by heavy ions was studied in dry cells of radioresistant bacterium Deinococcus radiodurans. All survival curves were characterized by a large shoulder of the curves. No final slopes of the exponential part of survival curves for heavy ion irradiation were steeper than that for 2.0 MeV electron irradiation. The plots of RBE versus LET showed no obvious peaks, suggesting that this bacterium can repair not only DNA double strand breaks (DSBs) but also clustered damage in DNA which may be induced by heavy ions. The genomic DNA of D. radiodurans was cleaved into large fragments with restriction enzyme Not I after post-irradiation incubation and the fragments were separated using pulsed-field gel electrophoresis (PFGE). DSBs induction and rejoining process were analyzed by detection of the reappearance of ladder pattern of DNA fragments. The required repair time after heavy ions irradiation was longer than the repair time for electrons at the same dose of irradiation, however, the rate of repair enzyme induction was almost similar to each other between electrons and heavy ions, suggesting that the same repair system is likely to be used after both low and high LET irradiations. (author)

  19. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  20. Repair of oxidative DNA damage by amino acids.

    Science.gov (United States)

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  1. Repair of postirradiation damage to colorectum: a progress report

    International Nuclear Information System (INIS)

    Bricker, E.M.; Johnston, W.D.; Patwardhan, R.V.

    1981-01-01

    The results of 21 operations for repair of rectovaginal fistula and/or stricture secondary to irradiation for pelvic cancer are presented. The operations rely on the use of proximal nonirradiated colon with normal blood supply for effecting the repair. In patients having had a previous colostomy, it is possible to use the proximal end of the bypassed colon for this purpose. There is minimal dissection of the rectal ampulla and the presacral space is never entered. Continuity is established by anastomosis to the anterior rectal wall via an abdominal approach alone, or by a combined abdominovaginal or abdominoperineal approach. It has been found that nonirradiated colon of normal vascularity can be expected to heal to irradiated colon or rectum, thus making the extensive resections associated with correction of these abnormalities unnecessary. The functional result in 18 of 19 patients who underwent this procedure was satisfactory to excellent. One patient had a poor result because of partial rectal incontinence. Two operations out of the 21 were total failures and one of these patients died of complications secondary to irradiation damage to the small intestine. One patient has not yet had final colostomy closure. The results are considered promising enough to warrant continued trial

  2. Dynamic maps of UV damage formation and repair for the human genome.

    Science.gov (United States)

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-06-27

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.

  3. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Praticò Andrea D

    2010-09-01

    Full Text Available Abstract Hypoxic-ischemic encephalopathy (HIE is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage.

  4. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Sykora, Peter; Bohr, Vilhelm A

    2015-01-01

    deficient cells. Moreover, the removal of 5'-AMP from DNA was significantly slower in the mitochondrial extracts from human cell lines and mouse tissues compared with their corresponding nuclear extracts. These results suggest that, contrary to nuclear DNA repair, mitochondrial DNA repair is not able...... elucidated. Here, we monitored the repair of 5'-AMP DNA damage in nuclear and mitochondrial extracts from human APTX(+/+) and APTX(-/-) cells. The efficiency of repair of 5'-AMP DNA was much lower in mitochondrial than in nuclear protein extracts, and resulted in persistent DNA repair intermediates in APTX......Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX...

  5. DNA Damage Induced by Alkylating Agents and Repair Pathways

    OpenAIRE

    Natsuko Kondo; Akihisa Takahashi; Koji Ono; Takeo Ohnishi

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O 6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O 6-methylguanine-DNA methyltransferase, and O 6MeG:T mispairs are recognized...

  6. The relationship of transcription and repair of radioinduced DNA damage

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Igusheva, O.A.

    1997-01-01

    The data are discussed which has become a basement of such important findings as involvement of transcription into repair or existence of transcription-coupling repair factors. Thymine glycols which are appear under ionizing radiation exposure, are repaired preferentially in transcribed DNA. In present review the preferential repair of ionizing radiation-induced singlestrand breaks (SSBa) in transcribed DNA of human cells. Discontinuous distribution of DNA repair along hole genome has a grate role in biological processes

  7. Injection technologies for the repair of damaged concrete structures

    CERN Document Server

    Panasyuk, V V; Sylovanyuk, V P

    2014-01-01

    This book analyzes the most important achievements in science and engineering practice concerning operational factors that cause damage to concrete and reinforced concrete structures. It includes methods for assessing their strength and service life, especially those that are based on modern concepts of the fracture mechanics of materials. It also includes basic approaches to the prediction of the remaining service life for long-term operational structures. Much attention is paid to injection technologies for restoring the serviceability of damaged concrete and reinforced concrete structures. In particular, technologies for remedying holes, cracks, corrosion damages etc. The books contains sample cases in which the above technologies have been used to restore structural integrity and extend the reliable service life of concrete and reinforced concrete constructions, especially NPPs, underground railways, bridges, seaports and historical relics.

  8. Role of Rad54, Rad54b and Snm1 in DNA damage repair

    NARCIS (Netherlands)

    J. Wesoly (Joanna)

    2003-01-01

    textabstractThe aim of this thesis is to investigate the function of a number of genes involved in mammalian DNA damage repair, in particular in repair of DNA double-strand breaks (DSBs). Among a large number of different damages that can be introduced to DNA, DSBs are especially toxic. If

  9. Radiation-induced DNA damage and repair: Argonne National Laboratory symposium, Argonne, Illinois 60439, 15 April, 1988. Symposium report

    Energy Technology Data Exchange (ETDEWEB)

    Peak, M J; Peak, J G; Blazek, E R

    1988-10-01

    The Argonne National Laboratory Symposium brought together 109 scientists from five countries to discuss the molecular effects of radiation on DNA and the responses of cells to radiation exposure. Six speakers covered three general areas: (1) DNA damages caused by radiations; (2) repair of these damages in prokaryotes and eukaryotes; and (3) aminothiols as radioprotectors. In addition, a round table discussion chaired by J. Ward dealt with alkaline and neutral elution methodology.

  10. NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis

    Directory of Open Access Journals (Sweden)

    Jia Zhou

    2017-08-01

    Full Text Available Oxidative damage to telomere DNA compromises telomere integrity. We recently reported that the DNA glycosylase NEIL3 preferentially repairs oxidative lesions in telomere sequences in vitro. Here, we show that loss of NEIL3 causes anaphase DNA bridging because of telomere dysfunction. NEIL3 expression increases during S phase and reaches maximal levels in late S/G2. NEIL3 co-localizes with TRF2 and associates with telomeres during S phase, and this association increases upon oxidative stress. Mechanistic studies reveal that NEIL3 binds to single-stranded DNA via its intrinsically disordered C terminus in a telomere-sequence-independent manner. Moreover, NEIL3 is recruited to telomeres through its interaction with TRF1, and this interaction enhances the enzymatic activity of purified NEIL3. Finally, we show that NEIL3 interacts with AP Endonuclease 1 (APE1 and the long-patch base excision repair proteins PCNA and FEN1. Taken together, we propose that NEIL3 protects genome stability through targeted repair of oxidative damage in telomeres during S/G2 phase.

  11. Repair of membrane damage in X-irradiated E. coli

    International Nuclear Information System (INIS)

    Gillies, N.E.; Ratnajothi, N.H.; Hewamanna, R.; Obioha, F.I.

    1984-01-01

    When E. coli B/r or E. coli K12 AB1157 were X-irradiated in the presence of oxygen and incubated immediately after irradiation in broth containing penicillin in concentration that on its own was not lethal to unirradiated bacteria, substantial additional killing was caused. When treatment with penicillin was delayed for increasing times after irradiation the additional killing became progressively less. These results were interpreted as demonstrating the repair or removal of oxygen-dependent radiation-induced lesions in the bacterial membranes. Removal of these lesions was inhibited by incubation of the irradiated bacteria at low temperature before treatment with penicillin or by exposing the cells to a non-lethal concentration of toluene before irradiation. These observations suggest that an enzymatic repair process may be involved in the removal of the membrane lesions. The fatty acid mutant E. coli K 1060 proved exceptional in that some additional killing by penicillin was detectable after anaerobic as well as aerobic irradiation. This points to the importance of membrane composition in the development of those radiation lesions that are brought to light by penicillin treatment. (author)

  12. Landslide Caused Damages in a Gallery

    Science.gov (United States)

    Poisel, R.; Mair am Tinkhof, K.; Preh, A.

    2016-06-01

    On October 5th, 2010, cracks were found in a gallery 1.8 m high and 1.4 m wide. The gallery is 100 years old, runs parallel to a valley flank and was excavated in a tectonically strongly stressed, weathered and slightly dipping sandwich of clayey shales, sandstones and marls. The cracks in the roof as well as in the invert ran parallel to the axis of the gallery. Monitoring showed that crack widths were increasing 1.5 mm per year, sidewall distances were increasing 3.5 mm per year, whereas the height of the gallery was decreasing 2.5 mm per year. After eliminating several possible causes of cracking, a landslide producing the damages had to be taken into consideration. Monitoring of the valley flank surface as well as inclinometer readings revealed that a landslide was occurring, loading the gallery lining. Most probably the landslide had been reactivated by excessive rainfall in 2009 as well as by works for the renewal of a weir in the valley bottom. As stabilization of the slope was not an option for several reasons, it was decided to replace the gallery by a new one deeper inside the slope, which will be ready for operation in 2017. Thus the old gallery has to be kept in operation till then and it was decided to reinforce the old gallery by a heavily reinforced shotcrete lining 10 cm thick. As slope displacements went on, cracks in the shotcrete lining developed with a completely different pattern: in the section where the gallery lies completely in the landslide shear zone no cracks formed until now due to heavy reinforcement, whereas in the transition sections stable ground-landslide and landslide-stable ground diagonal tension cracks in the roof due to shear by the landslide developed. Numerical models showed that cracking and spalling of the shotcrete lining would occur only after some centimetres of additional displacements of the slope, which hopefully will not occur before 2017.

  13. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Kalpana Mujoo

    2017-11-01

    Full Text Available The nitric oxide (NO-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1. Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18, which causes stem cell differentiation has no effect on double-strand break (DSB repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells.

  14. Repair rather than segregation of damage is the optimal unicellular aging strategy.

    Science.gov (United States)

    Clegg, Robert J; Dyson, Rosemary J; Kreft, Jan-Ulrich

    2014-08-16

    How aging, being unfavourable for the individual, can evolve is one of the fundamental problems of biology. Evidence for aging in unicellular organisms is far from conclusive. Some studies found aging even in symmetrically dividing unicellular species; others did not find aging in the same, or in different, unicellular species, or only under stress. Mathematical models suggested that segregation of non-genetic damage, as an aging strategy, would increase fitness. However, these models failed to consider repair as an alternative strategy or did not properly account for the benefits of repair. We used a new and improved individual-based model to examine rigorously the effect of a range of aging strategies on fitness in various environments. Repair of damage emerges as the best strategy despite its fitness costs, since it immediately increases growth rate. There is an optimal investment in repair that outperforms damage segregation in well-mixed, lasting and benign environments over a wide range of parameter values. Damage segregation becomes beneficial, and only in combination with repair, when three factors are combined: (i) the rate of damage accumulation is high, (ii) damage is toxic and (iii) efficiency of repair is low. In contrast to previous models, our model predicts that unicellular organisms should have active mechanisms to repair damage rather than age by segregating damage. Indeed, as predicted, all organisms have evolved active mechanisms of repair whilst aging in unicellular organisms is absent or minimal under benign conditions, apart from microorganisms with a different ecology, inhabiting short-lived environments strongly favouring early reproduction rather than longevity. Aging confers no fitness advantage for unicellular organisms in lasting environments under benign conditions, since repair of non-genetic damage is better than damage segregation.

  15. Cell-cycle-dependent repair of heavy-ion damage

    International Nuclear Information System (INIS)

    Blakely, E.A.; Chang, P.Y.; Lommel, L.; Tobias, C.A.

    1985-01-01

    Synchronized human T-1 cells have been used to investigate the G1-phase age dependence of repair of potentially lethal damage (PLDR). The cells were irradiated with single doses of either 225 kVp X rays or Bragg-peak 425 MeV/μ neon ions at ages between 1.5 and 6.0 hrs after mitotic selection, and then either trypsinized and plated immediately, or held at 37 0 C for 6 hrs in PBS, or PBS containing 60μM of the DNA-polymerase-inhibitor 1-β-D-arabinofurano-syladenine (β-araA) before trypsinization and plating. Delayed plating showed significant PLDR at all ages irradiated with X rays, with the increase of survival varying between 2- to 8-fold. At equivalent survival levels, there was a reduced capacity for PLDT at each cell age irradiated with neon ions. In early G1 after neon-ion exposures, delayed plating actually enhanced cell killing; whereas, in late G1 the survival increased about 2-fold. β-araA almost completely eliminated the PLDR after X rays, reducing the survival to that measured with immediate plating. β-araA slightly enhanced neon-ion cell killing at all cell ages

  16. Protein synthesis and sublethal damage repair in synchronized CHO cells

    International Nuclear Information System (INIS)

    Yezzi, M.J.; Tobias, C.A.; Blakely, E.A.

    1984-01-01

    The authors have previously reported that the split dose survival response to x-rays of asynchronous CHO-TSH1 cells is reduced if the cells are held at 40 0 C,a temperature that inhibits protein synthesis, for 2 hours before the first dose and during a 2-hour interval between doses. In conjunction with the survival experiments on asynchronous cells, the authors also examined the DNA rejoining ability in split dose studies with and without inhibition of protein synthesis. The results of these experiments suggest that inhibition of protein synthesis affects a pool of proteins that are necessary for the correct expression of the DNA, although they do not appear to be involved in rejoining DNA breaks. They have extended this work to the study of cells synchronized in G1 phase (2 hour post-mitosis) and S phase (10 hour post-mitosis). Autoradiographic analyses, using 3H-TdR pulse labeling, demonstrated that a delay in the progression of each synchronized cell population occurs after inhibition of protein synthesis. Data are reported on the effects of inhibition of protein synthesis on the ability of G1 and S phase cells to repair sublethal damage

  17. Loss of heterozygosity and DNA damage repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Daigaku, Yasukazu [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Endo, Kingo [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Watanabe, Eri [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Ono, Tetsuya [Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan); Yamamoto, Kazuo [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan)]. E-mail: yamamot@mail.tains.tohoku.ac.jp

    2004-11-22

    Loss of heterozygosity (LOH) of tumor suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Understanding how LOH events arise may provide an opportunity for the prevention or early intervention of cancer development. In an effort to investigate the source of LOH events, we constructed MAT{alpha} can1{delta}::LEU2 and MATa CAN1 haploid yeast strains and examined canavanine-resistance mutations in a MATa CAN1/MAT{alpha} can1{delta}::LEU2 heterozygote formed by mating UV-irradiated and nonirradiated haploids. An increase in LOH was observed when the irradiated CAN1 haploid was mated with nonirradiated can1{delta}::LEU2, while reversed irradiation only marginally increased LOH. In the rad51{delta} background, allelic crossover type LOH increased following UV irradiation but not gene conversion. In the rad52{delta} background, neither type of LOH increased. The chromosome structure following LOH and the requirement for Rad51 and Rad52 proteins indicated the involvement of gene conversion, allelic crossover and break-induced replication. We argued that LOH events could have occurred during the repair of double-strand breaks on a functional (damaged) but not nonfunctional (undamaged) chromosome through recombination.

  18. The effect of higher order chromatin structure on DNA damage and repair

    International Nuclear Information System (INIS)

    Yasui, L.S.; Warters, R.L.; Higashikubo, R.

    1985-01-01

    Alterations in chromatin structure are thought to play an important role in various radiobiological end points, i.e., DNA damage, DNA damage repair and cell survival. The authors use here the isoleucine deprivation technique to decondense higher order chromatin structure and asses X-ray induced DNA damage, DNA damage repair and cell survival on cells with decondensed chromatin as compared to controls. This chromatin decondensation manifests itself as a 30 fold decrease in nuclear area occupied by heterochromatin, an increased rate of Micrococcal nuclease digestion, 15% increased ethidium bromide intercalation and an altered binding capacity of Hl histone. These chromatin/nuclear changes do not affect X-ray induced DNA damage as measured by the alkaline elution technique or cell survival but slows DNA damage repair by 2 fold. Therefore, even though the chromatin appears more accessible to DNA damage and repair processes, these particular nuclear changes do not affect the DNA damaging effects of X-rays and in addition, repair is not enhanced by the ''relaxed'' state of chromatin. It is proposed that the altered metabolic state of isoleucine deprived cells provides a less efficient system for the repair of X-ray induced DNA damage

  19. The Role of Altered Nucleotide Excision Repair and UVB-Induced DNA Damage in Melanomagenesis

    Directory of Open Access Journals (Sweden)

    Timothy Budden

    2013-01-01

    Full Text Available UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth’s surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V. XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.

  20. Wooden beverage cases cause little damage to bottle caps

    Science.gov (United States)

    R. Bruce Anderson; William C. Miller

    1973-01-01

    Wooden beverage cases cause little damage to aluminum resealable caps during distribution. A study at bottling plants and distribution warehouses showed that an average of 1 bottle out of 4,000 has cap damage. Most of the damage was attributed to handling at the warehouse and in transit. Some recommendations are given for improvement of wooden beverage cases to prevent...

  1. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Radioimmunoassay studies on repair of ultraviolet damaged DNA in cultured animal cells

    International Nuclear Information System (INIS)

    Yatani, Ryuichi; Tohgo, Yukihiro; Kunishima, Nobuyoshi.

    1975-01-01

    UV (ultraviolet) damaged DNA and its repair of various cultured animal cells were observed by radioimmunoassay using anti-serum against the UV irradiation induced heat-degenerated DNA. There is some difference among the cells of used animals according to their DNA repairabilities. The cells were divided into four groups according to the existence or strength of their repairabilities. 1) excision repair type: cells of men and chimpanzees. 2) photoreactivation type: cells derived from Tachydromus tachydromoides and chicks. 3) photoreactivation with excision repair: cells of rats, kangaroos and mosquitos. 4) non-excision repair type: cells of mice, Meriones and rats. Animal cells have plural types of repair. Main types of repair will differ according to the kind of animals. (Ichikawa, K.)

  3. Role of the immune system in cardiac tissue damage and repair following myocardial infarction.

    Science.gov (United States)

    Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya

    2017-09-01

    The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.

  4. A new incomplete-repair model based on a ''reciprocal-time'' pattern of sublethal damage repair

    International Nuclear Information System (INIS)

    Dale, R.G.; Fowler, J.F.

    1999-01-01

    A radiobiological model for closely spaced non-instantaneous radiation fractions is presented, based on the premise that the time process of sublethal damage (SLD) repair is 'reciprocal-time' (second order), rather than exponential (first order), in form. The initial clinical implications of such an incomplete-repair model are assessed. A previously derived linear-quadratic-based model was revised to take account of the possibility that SLD may repair with time such that the fraction of an element of initial damage remaining at time t is given as 1/(1+zt), where z is an appropriate rate constant; z is the reciprocal of the first half-time (τ) of repair. The general equation so derived for incomplete repair is applicable to all types of radiotherapy delivered at high, low and medium dose-rate in fractions delivered at regular time intervals. The model allows both the fraction duration and interfraction intervals to vary between zero and infinity. For any given value of z, reciprocal repair is associated with an apparent 'slowing-down' in the SLD repair rate as treatment proceeds. The instantaneous repair rates are not directly governed by total dose or dose per fraction, but are influenced by the treatment duration and individual fraction duration. Instantaneous repair rates of SLD appear to be slower towards the end of a continuous treatment, and are also slower following 'long' fractions than they are following 'short' fractions. The new model, with its single repair-rate parameter, is shown to be capable of providing a degree of quantitative explanation for some enigmas that have been encountered in clinical studies. A single-component reciprocal repair process provides an alternative explanation for the apparent existence of a range of repair rates in human tissues, and which have hitherto been explained by postulating the existence of a multi-exponential repair process. The build-up of SLD over extended treatments is greater than would be inferred using a

  5. Environmental damage caused by fossil fuels consumption

    International Nuclear Information System (INIS)

    Barbir, F.; Veziroglu, T.N.

    1991-01-01

    This paper reports that the objectives of this study is to identify the negative effects of the fossil fuels use and to evaluate their economic significance. An economic value of the damage for each of the analyzed effects has been estimated in US dollars per unit energy of the fuel used ($/GJ). This external costs of fossil fuel use should be added to their existing market price, and such real costs should be compared with the real costs of other, environmentally acceptable, energy alternatives, such as hydrogen

  6. Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA

    International Nuclear Information System (INIS)

    Bodell, W.J.; Cleaver, J.E.; Roti Roti, J.L.

    1984-01-01

    The authors have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 0 C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 0 C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus, the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating steps(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 0 C with[ 3 H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 0 C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures. 23 references, 3 figures, 2 tables

  7. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.

    Science.gov (United States)

    Dutta, Arijit; Yang, Chunying; Sengupta, Shiladitya; Mitra, Sankar; Hegde, Muralidhar L

    2015-05-01

    Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory

  8. Self-repairing of material damage. Sonsho wo jiko shufuku yokushisuru zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, S [National Research Inst. for Metals, Tsukuba (Japan)

    1994-07-01

    In order to control the damage like crack or void formed during the use of structural material by the material itself, it is required to self-detect the damage, to self-judge the state of damage, and to self-control or self-repair the damage finally. Based on the parameter of length, the repair and control is classified into the 1mm-scale functional fine wire and thin film utilization type, 1[mu]m-scale microcapsule type, and 1nm-scale trace element utilization type. For the damage repair and control of functional fine wire and thin film utilization type, the damage is repaired and controlled by pasting thin film or by embedding fine wire of functional material, such as shape memory alloy, Ti-Ni, and piezoelectric ceramics PZT (lead zirconate titanate), on the material surface or inside the material. For the damage repair and control of microcapsule type, is illustrated the control mechanism of high temperature fatigue crack propagation by Y2O3 particles dispersed in the Fe-20Cr alloy. Furthermore, the formation mechanism of self-repairing film by the trace element is also illustrated. 13 refs., 5 figs.

  9. REPAIR TECHNOLOGY OF THE COMPOSITE WING OF A LIGHT PLANE DAMAGED DURING AN AIRCRAFT CRASH

    Directory of Open Access Journals (Sweden)

    Andrzej ŚWIĄTONIOWSKI

    2016-09-01

    Full Text Available The increasing use of composite structures in aircraft constructions has made it necessary to develop repair methods that will restore the component’s original design strength without compromising its structural integrity. In this paper, the complex repair technology of the composite wing of a light plane, which was damaged during an aircraft crash, is described. The applied repair scheme should meet all the original design requirements for the plane structure.

  10. Repair of skin damage during fractionated irradiation with gamma rays and low-LET carbon ions

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Uzawa, Akiko; Takai, Nobuhiko; Fukawa, Takeshi; Furusawa, Yoshiya; Aoki, Mizuho; Hirayama, Ryoichi

    2006-01-01

    In clinical use of carbon-ion beams, a deep-seated tumor is irradiated with a Spread-Out Bragg peak (SOBP) with a high-linear energy transfer (LET) feature, whereas surface skin is irradiated with an entrance plateau, the LET of which is lower than that of the peak. The repair kinetics of murine skin damage caused by an entrance plateau of carbon ions was compared with that caused by photons using a scheme of daily fractionated doses followed by a top-up dose. Right hind legs received local irradiations with either 20 keV/μm carbon ions or γ rays. The skin reaction of the irradiated legs was scored every other day up to Day 35 using a scoring scale that consisted of 10 steps, ranging from 0.5 to 5.0. An isoeffect dose to produce a skin reaction score of 3.0 was used to obtain a total dose and a top-up dose for each fractionation. Dependence on a preceding dose and on the time interval of a top-up dose was examined using γ rays. For fractionated γ rays, the total dose linearly increased while the top-up dose linearly decreased with an increase in the number of fractions. The magnitude of damage repair depended on the size of dose per fraction, and was larger for 5.2 Gy than 12.5 Gy. The total dose of carbon ions with 5.2 Gy per fraction did not change till 2 fractions, but abruptly increased at the 3rd fraction. Factors such as rapid repopulation, induced repair and cell cycle synchronization are possible explanations for the abrupt increase. As an abrupt increase/decrease of normal tissue damage could be caused by changing the number of fractions in carbon-ion radiotherapy, we conclude that, unlike photon therapy, skin damage should be carefully studied when the number of fractions is changed in new clinical trials. (author)

  11. Stalled repair of lesions when present within a clustered DNA damage site

    International Nuclear Information System (INIS)

    Lomax, M.E.; Cunniffe, S.; O'Neill, P.

    2003-01-01

    Ionising radiation produces clustered DNA damages (two or more lesions within one or two helical turns of the DNA) which could challenge the repair mechanism(s) of the cell. Using purified base excision repair (BER) enzymes and synthetic oligonucleotides a number of recent studies have established the excision of a lesion within clustered damage sites is compromised. Evidence will be presented that the efficiency of repair of lesions within a clustered DNA damage site is reduced, relative to that of the isolated lesions, since the lifetime of both lesions is extended by up to four fold. Simple clustered damage sites, comprised of single-strand breaks, abasic sites and base damages, one or five bases 3' or 5' to each other, were synthesised in oligonucleotides and repair carried out in mammalian cell nuclear extracts. The rate of repair of the single-strand break/abasic site within these clustered damage sites is reduced, mainly due to inhibition of the DNA ligase. The mechanism of repair of the single-strand break/abasic site shows some asymmetry. Repair appears to be by the short-patch BER pathway when the lesions are 5' to each other. In contrast, when the lesions are 3' to each other repair appears to proceed along the long-patch BER pathway. The lesions within the cluster are processed sequentially, the single-strand break/abasic site being repaired before excision of 8-oxoG, limiting the formation of double-strand breaks to <2%. Stalled processing of clustered DNA damage extends the lifetime of the lesions to an extent that could have biological consequences, e.g. if the lesions are still present during transcription and/or at replication mutations could arise

  12. Study on Repaired Earthquake-Damaged Bridge Piers under Seismic Load

    Directory of Open Access Journals (Sweden)

    Jun Deng

    2015-01-01

    Full Text Available The concrete bridge pier damaged during earthquakes need be repaired to meet the design standards. Steel tube as a traditional material or FRP as a novel material has become popular to repair the damaged reinforced concrete (RC bridge piers. In this paper, experimental and finite element (FE studies are employed to analyze the confinement effectiveness of the different repair materials. The FE method was used to calculate the hysteretic behavior of three predamaged circle RC bridge piers repaired with steel tube, basalt fiber reinforced polymer (BFRP, and carbon fiber reinforced polymer (CFRP, respectively. Meanwhile, the repaired predamaged circle concrete bridge piers were tested by pseudo-static cyclic loading to study the seismic behavior and evaluate the confinement effectiveness of the different repair materials and techniques. The FE analysis and experimental results showed that the repaired piers had similar hysteretic curves with the original specimens and all the three repair techniques can restore the seismic performance of the earthquake-damaged piers. Steel tube jacketing can significantly improve the lateral stiffness and peak load of the damaged pier, while the BFRP and CFRP sheets cannot improve these properties due to their thin thickness.

  13. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    Science.gov (United States)

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  14. Evidence for three types of x-ray damage repair in yeast and sensitivity of totally repair deficient strains to sunlight

    International Nuclear Information System (INIS)

    Game, J.C.; Schild, D.; Mortimer, R.K.

    1987-01-01

    Mutants of yeast that confer sensitivity to x-rays are known to fall into two epistasis groups, called here the RAD51 and RAD18 groups, which are each thought to control a different type of x-ray repair. They examine here the role of genes in a third repair pathways in x-ray repair. RAD1 and RAD3 are known to be important in the repair of pyrimidine dimers after uv-irradiation. They find that these genes can also play an important role in x-ray repair, but that this role is only exposed when both the other pathways of x-ray repair are blocked. Double mutants blocked in the RAD51 and RAD18 pathways are significantly less x-ray sensitive than triple mutants blocked in these pathways but also mutant in either the RAD1 or RAD3 genes. In a related experiment, they tested the importance of DNA repair in nature by determining the sensitivity to natural unfiltered sunlight of a strain lacking all known DNA repair pathways. They constructed a quadruple mutant strain containing RAD1-1, RAD18-2, RAD51-1 and PHR1-1. The latter mutation blocks the cell's ability to photoreactivate uv damage. They found that this strain was so sensitive to sunlight that less than three seconds' exposure would cause an average of one lethal hit per cell, and survival was less than 2% after ten seconds' exposure. Wild type yeast at sea level showed no killing after thirty minutes. the quadruple mutant is approximately one thousand times more sensitive to sunlight than the related wild type

  15. The Fanconi anemia pathway: Repairing the link between DNA damage and squamous cell carcinoma

    International Nuclear Information System (INIS)

    Romick-Rosendale, Lindsey E.; Lui, Vivian W.Y.; Grandis, Jennifer R.; Wells, Susanne I.

    2013-01-01

    Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility

  16. Real-time fluorescence imaging of the DNA damage repair response during mitosis.

    Science.gov (United States)

    Miwa, Shinji; Yano, Shuya; Yamamoto, Mako; Matsumoto, Yasunori; Uehara, Fuminari; Hiroshima, Yukihiko; Toneri, Makoto; Murakami, Takashi; Kimura, Hiroaki; Hayashi, Katsuhiro; Yamamoto, Norio; Efimova, Elena V; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2015-04-01

    The response to DNA damage during mitosis was visualized using real-time fluorescence imaging of focus formation by the DNA-damage repair (DDR) response protein 53BP1 linked to green fluorescent protein (GFP) (53BP1-GFP) in the MiaPaCa-2(Tet-On) pancreatic cancer cell line. To observe 53BP1-GFP foci during mitosis, MiaPaCa-2(Tet-On) 53BP1-GFP cells were imaged every 30 min by confocal microscopy. Time-lapse imaging demonstrated that 11.4 ± 2.1% of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells had increased focus formation over time. Non-mitotic cells did not have an increase in 53BP1-GFP focus formation over time. Some of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells with focus formation became apoptotic. The results of the present report suggest that DNA strand breaks occur during mitosis and undergo repair, which may cause some of the mitotic cells to enter apoptosis in a phenomenon possibly related to mitotic catastrophe. © 2014 Wiley Periodicals, Inc.

  17. Emergency repair of severely damaged reinforced concrete columns using active confinement with shape memory alloys

    International Nuclear Information System (INIS)

    Shin, Moochul; Andrawes, Bassem

    2011-01-01

    This experimental study focuses on investigating the feasibility of utilizing spirals made of shape memory alloys (SMAs) to conduct emergency repair on severely damaged reinforced concrete (RC) columns. The thermally triggered shape memory feature of SMAs is sought in this study, to apply active confinement pressure on the column's damaged region. Two severely damaged 1/3-scale RC columns are repaired using the proposed technique and tested under a quasi-static lateral cyclic load. The repair of each column is conducted in less than 15 h, and the columns are tested 24 h after the starting of the repair process. The experimental results show that the new repair technique is successful in either fully restoring the as-built lateral strength, stiffness, and flexural ductility of the columns or making them even better. The efficacy of the proposed repair technique is mainly attributed to the ability of the SMA spirals to apply and maintain active confining pressure on the damaged region of the columns, which increases the strength of the already damaged concrete and delays its damage

  18. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    International Nuclear Information System (INIS)

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-01-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ∼ 1.3 fold in the nuclear protein extracts (NE) and ∼ 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ∼ 1.5 fold higher, whereas in the MEs it was ∼ 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative

  19. Tissue repair in myxobacteria: A cooperative strategy to heal cellular damage.

    Science.gov (United States)

    Vassallo, Christopher N; Wall, Daniel

    2016-04-01

    Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle. © 2016 WILEY Periodicals, Inc.

  20. Indentation Damage and Crack Repair in Human Enamel*

    OpenAIRE

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced ...

  1. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles’ Heel of Cancer

    Directory of Open Access Journals (Sweden)

    Denis Velic

    2015-11-01

    Full Text Available For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use.

  2. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18-83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet...... assay. There was an inverse association between age and DNA repair activity with a 0.65% decline in activity per year from age 18 to 83 (95% confidence interval: 0.16-1.14% per year). Univariate regression analysis also indicated inverse associations between DNA repair activity and waist-hip ratio (P...

  3. Repair of potentially lethal and sublethal radiation damage in x-irradiated ascites tumor cells

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Okamoto, Mieko; Tsuchiya, Takehiko.

    1985-01-01

    The ability of cells to repair cellular radiation damage during the growth of TMT-3 ascites tumor and the effect of host reaction on the repair ability were examined by using an in vitro assay of cell clonogenicity after in situ irradiation of tumor cells. In single-dose experiments, the repair of potentially lethal radiation damage (PLD) was observed in stationary phase cells (12-day tumor) of the unirradiated host, but not in exponential phase cells (3-day tumor) of the unirradiated host animals. However, if previously irradiated host animals were used, even the exponentially growing tumor cells showed repair of PLD. In two-dose experiments, the ability to repair sublethal radiation damage (SLD) in exponential phase tumor cells was less than that of stationary phase cells in the unirradiated host. In the pre-irradiated host, the extent of the repair in exponential phase cells was somewhat enhanced. These results suggest that irradiation of host animals might suppress a factor that inhibits repair, resulting in enhancement of the repair capability of tumor cells. (author)

  4. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    International Nuclear Information System (INIS)

    Swindall, Amanda F.; Stanley, Jennifer A.; Yang, Eddy S.

    2013-01-01

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation

  5. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  6. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    Science.gov (United States)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  7. Repair of ultraviolet-light-induced DNA damage in Vibrio cholerae

    International Nuclear Information System (INIS)

    Das, G.; Sil, K.; Das, J.

    1981-01-01

    Repair of ultraviolet-light-induced DNA damage in a highly pathogenic Gram-negative bacterium, Vibrio cholerae, has been examined. All three strains of V. cholerae belonging to two serotypes, Inaba and Ogawa, are very sensitive to ultraviolet irradiation, having inactivation cross-sections ranging from 0.18 to 0.24 m 2 /J. Although these cells are proficient in repairing the DNA damage by a photoreactivation mechanism, they do not possess efficient dark repair systems. The mild toxinogenic strain 154 of classical Vibrios presumably lacks any excision repair mechanism and studies of irradiated cell DNA indicate that the ultraviolet-induced pyrimidine dimers may not be excised. Ultraviolet-irradiated cells after saturation of dark repair can be further photoreactivated. (Auth.)

  8. KEKB facility damage caused by the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Ono, Masaaki

    2011-01-01

    As shown in photos, severe damages were observed at several facilities in Tsukuba campus, including the infrastructure, especially at the ground - weakened area. KEKB also damaged facility has been under the upgrade stage to SuperKEKB. So works for disassembling of KEKB machine and for remodeling of the equipment were undertaken. Fortunately no one was injured but the situations were quite hazardous. KEKB ring set ∼13m below the ground also experienced the severe tremors. All expansion points were injured and the cracks on the ceiling/wall/floor were created around the ring, but significant damage such as the tunnel destruction was not observed. Repairs were started, and resumed possible SuperKEKB construction though it will delay 2-3 months. (author)

  9. Age associated alteration in DNA damage and repair capacity in Turbatrix aceti exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Targovnik, H.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    Excision repair capacity was measured in young and old Turbatrix aceti (phylum Nematoda) following exposure to ionizing radiation. Both repair synthesis and removal of 5,6-dihydroxydihydrothymine type (glycol) base damage were quantitated. At least two-fold higher glycol levels were produced in the DNA of young than of old nematodes for the same radiation dose. Young worms also excised glycol damage more rapidly and completely than old worms. Both peak repair synthesis activity and completion of repair synthesis occurred at earlier times during post-irradiation incubation in young nematodes. The data indicate there is a significant age-associated difference in both the incidence and removal of ionizing radiation damage in T. aceti which is used as a model of the ageing process. (author)

  10. Comparison of initial DNA (Chromosome) damage/repair in cells exposed to heavy ion particles and X-rays

    International Nuclear Information System (INIS)

    Okayasu, Ryuichi; Okada, Maki; Noguchi, Mitsuho; Saito, Shiori; Okabe, Atsushi; Takakura, Kahoru

    2005-01-01

    We have studied cell survival and chromosome damage/repair in normal and non homologous end-joining (NHEJ) deficient human cells exposed to carbon ions (290 MeV/u, ∼70 keV/um), iron ions (500 MeV/u, ∼200 keV/um) and X-rays. In order to examine the effect of heavy ion on double strand break (DSB) repair machinery, the auto-phosphorylation of DNA-PKcs was also investigated. The important discoveries made during this period are: 200 keV/um iron irradiation induced additional molecular damage beyond that 70 keV/um carbon did. Iron irradiation not only caused an inefficient G1 chromosome repair, but also induced non-repairable DSB/chromosome damage. The auto-phosphorylation of DNA-PKcs was significantly affected by high linear energy transfer (LET) irradiation when compared to X-rays. These results indicate NHEJ machinery was markedly disturbed by high LET radiation when compared to low LET radiation. (author)

  11. The Perception of Small Scale Damage and Repairs of Natural Stone

    NARCIS (Netherlands)

    Quist, W.; Van Hees, R.; Naldin, S.; Nijland, T.

    2008-01-01

    By means of a questionnaire a study was carried out to investigate the perception of small scale damage and repairs of natural stone used in buildings. Participants were asked to evaluate damage to natural stone shown on pictures. They were also asked to give their opinion on interventions needed to

  12. DNA damage and repair in mouse embryos following treatment transplacentally with methylnitrosourea and methylmethanesulfonate

    International Nuclear Information System (INIS)

    Jirakulsomchok, S.; Yielding, K.L.

    1984-01-01

    Mouse embryos were labeled in vivo at 10 1/2-12 1/2 days of gestation with [ 3 H]-thymidine and subjected to DNA damage using x-ray, methylmethanesulfonate, or methylnitrosourea. DNA damage and its repair were assessed in specific cell preparations from embryos isolated at intervals thereafter using the highly sensitive method of nucleoid sedimentation, which evaluates the supercoiled state of the DNA. Repair of x-ray damage was demonstrated using trypsin-dispersed cells from whole embryos and from homogenized embryonic liver to show the validity of the analytical approach. The effects of the highly teratogenic methylnitrosourea and the much less teratogenic methylmethanesulfonate were compared in the targeted limb buds using equitoxic doses of the two alkylating agents. DNA supercoiling was fully restored after 24 hr in limb bud cells damaged with methylmethanesulfonate, while as much as 48 hr were required for full repair of methylnitrosourea damage. These results demonstrated the feasibility of studying DNA repair in embryonic tissues after damage in vivo and suggest that the potency of methylnitrosourea as a teratogen may be correlated with a prolonged period required for complete repair of DNA

  13. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems

    NARCIS (Netherlands)

    Lukovic, M.; Savija, B.; Schlangen, H.E.J.G.; Ye, G.; van Breugel, K.

    2016-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions,

  14. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  15. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  16. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  17. Damage to haemopoiesis, therapeutic strategies and repair mechanisms

    International Nuclear Information System (INIS)

    Wangenheim, K.H. von; Peterson, H.P.; Feinendegen, L.E.

    1993-01-01

    Investigations were carried out into the question as to whether stem cells surviving irradiation remain intact, which is suggested by radiobiological experience to date, or have suffered permanent lesions. The development of a test system gauging the quality of stem cells and their progeny on the basis of their proliferation ability led to the conclusion that radiation caused long-term injuries that permanently compromised the entire haemopoietic system. Observations of the regeneration of normal and irradiated bone marrow under homogeneous conditions in animal donors subjected to high-dose radiation as well as determinations of spleen colony size, proliferation factor and number of stem cells pointed to the fact that the vast majority of stem cells were permanently damaged. It could be shown that unspecific genetic lesions remained unchanged in surviving stem cells and were passed on to their progeny. Refinements to the original proliferation test and the in vitro determination of the proliferation ability of stem cells and various blood cell lines permitted to differentiate between several causative factors. Studies on ways to diminish stem cell injuries either by influencing humoral proliferation stimuli during the regenerative phase or by the use of radiation protection substances are already in progress. In addition to the primary studies, tests were performed to examine the effects of low dose irradiation, vitamin E deficiency and a static magnetic field. (orig./MG) [de

  18. Determination of damage and In vivo DNA repairing through the unicellular in gel electrophoresis technique

    International Nuclear Information System (INIS)

    Mendiola C, M.T.; Morales R, P.

    1997-01-01

    The experimental conditions were standardized for the unicellular in gel electrophoresis technique setting up (EUG) at the Cellular Radiobiology laboratory. Preliminary experiments were realized with human cells and mouse which were exposed to ionizing radiation or hydroxide peroxide (H 2 O 2 ) to induce DNA damage and to verify the technique performance. It was analysed the In vivo repairing kinetics of induced damage by gamma radiation in mouse leukocytes which were exposed to 137 Cs source and taking samples of peripheric blood of the tail of each mouse at different exposure times and processing them for EUG. In function of the cells proportion with damage in each time it was determined the existence of fast repairing mechanism at the first 15 minutes followed by a slight increase in the damage and a late repairing stage between 30 and 90 minutes. It was analysed this behavior and the potentiality of this In vivo system. (Author)

  19. Repair of potentially lethal damage by introduction of T4 DNA ligase in eucaryotic cells

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Napolitano, M.; Gialanella, G.

    1991-01-01

    The bacterial enzyme PvuII, which generates blunt-ended DNA double-strand breaks, and T4 DNA ligase, which seals adjacent DNA fragments in coupling to ATP cleavage, were introduced in mouse C3H10T1/2 fibroblasts using osmolytic shock of pinocytic vesicles. Cells were then assayed for their clonogenic ability. In agreement with previous studies by others, the authors found that PvuII restriction endonuclease simulates ionizing radiation effects by causing a dose-dependent loss of reproductive capacity. They show that concomitant treatment with DNA ligase considerably increases cell survival. Survival curves were shown to be dependent on ligase enzyme dose and on ATP concentration in the hypertonic medium. They conclude that T4 DNA ligase is able to repair some potentially lethal damage produced by restriction endonucleases in eucaryotic cells. (author)

  20. Development of a Remote External Repair Tool for Damaged or Defective Polyethylene Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth H. Green; Willie E. Rochefort; Nick Wannenmacher; John A. Clark; Kevin Harris

    2006-06-30

    Current procedures for repairing polyethylene (PE) gas pipe require excavation, isolation, and removal of the damaged section of pipe followed by fusing a new section of pipe into place. These techniques are costly and very disruptive. An alternative repair method was developed at Timberline Tool with support from Oregon State University (OSU) and funding by the U. S. Department of Energy National Energy Technology Laboratory (DOE/NETL). This project was undertaken to design, develop and test a tool and method for repairing damaged PE pipe remotely and externally in situ without squeezing off the flow of gas, eliminating the need for large-scale excavations. Through an iterative design and development approach, a final engineered prototype was developed that utilizes a unique thermo-chemical and mechanical process to apply a permanent external patch to repair small nicks, gouges and punctures under line pressure. The project identified several technical challenges during the design and development process. The repair tool must be capable of being installed under live conditions and operate in an 18-inch keyhole. This would eliminate the need for extensive excavations thus reducing the cost of the repair. Initially, the tool must be able to control the leak by encapsulating the pipe and apply slight pressure at the site of damage. Finally, the repair method must be permanent at typical operating pressures. The overall results of the project have established a permanent external repair method for use on damaged PE gas pipe in a safe and cost-effective manner. The engineered prototype was subjected to comprehensive testing and evaluation to validate the performance. Using the new repair tool, samples of 4-inch PE pipe with simulated damage were successfully repaired under line pressure to the satisfaction of DOE/NETL and the following natural gas companies: Northwest Natural; Sempra Energy, Southwest Gas Corporation, Questar, and Nicor. However, initial results of

  1. Damage caused to houses and equipment by underground nuclear explosions

    International Nuclear Information System (INIS)

    Delort, F.; Guerrini, C.

    1969-01-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [fr

  2. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  3. Indentation damage and crack repair in human enamel.

    Science.gov (United States)

    Rivera, C; Arola, D; Ossa, A

    2013-05-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 h. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Indentation Damage and Crack Repair in Human Enamel*

    Science.gov (United States)

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701

  5. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage.

    Science.gov (United States)

    Liu, Ying; Wu, Xiaohua; Hu, Xiaoqing; Chen, Ziyuan; Liu, Hao; Takeda, Shunichi; Qing, Yong

    2017-08-01

    Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1 -/- , base excision repair (BER) deficient cell lines of Polβ -/- , homologous recombination (HR) mutants of Brca1 -/- and Brca2 -/- and translesion DNA synthesis (TLS) mutants of Rev3 -/- and Rad18 -/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  6. Coordinating repair of oxidative DNA damage with transcription and replication

    International Nuclear Information System (INIS)

    Cooper, P.K.

    2003-01-01

    Transcription-coupled repair (TCR) preferentially removes DNA lesions from template strands of active genes. Defects in TCR, which acts both on lesions removed by nucleotide excision repair (NER) and on oxidative lesions removed by base excision repair (BER), underlie the fatal developmental disorder Cockayne syndrome. Although its detailed mechanism remains unknown, TCR involves recognition of a stalled RNA polymerase (RNAP), removal or remodeling of RNAP to allow access to the lesion, and recruitment of repair enzymes. At a minimum, these early steps require a non-enzymatic function of the multifunctional repair protein XPG, the CSB protein with ATP-dependent chromatin remodeling activity, and the TFIIH complex (including the XPB and XPD helicases) that is also required for basal transcription initiation and NER. XPG exists in the cell in a complex with TFIIH, and in vitro evidence has suggested that it interacts with CSB. To address the mechanism of TCR, we are characterizing protein-DNA and protein-protein interactions of XPG. We show that XPG preferentially binds to double-stranded DNA containing bubbles resembling in size the unpaired regions associated with transcription. Two distinct domains of XPG are required for the observed strong binding specificity and stability. XPG both interacts directly with CSB and synergistically binds with it to bubble DNA, and it strongly stimulates the bubble DNA-dependent ATPase activity of CSB. Significantly for TCR, XPG also interacts directly with RNAP II, binds both the protein and nucleic acid components (the R-loop) of a stalled RNA polymerase, and forms a ternary complex with CSB and the stalled RNAP. These results are consistent with the model that XPG and CSB jointly interact with the DNA/chromatin structure in the vicinity of the stalled transcriptional apparatus and with the transcriptional machinery itself to remodel the chromatin and either move or remodel the blocked RNA polymerase to expose the lesion

  7. Critical and subcritical damage monitoring of bonded composite repairs using innovative non-destructive techniques

    Science.gov (United States)

    Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.

    2012-04-01

    Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.

  8. Repair of radiation damage in mammalian cells: its relevance to environmental effects

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.

    1979-01-01

    Assessment of the potential biological hazards associated with energy production technologies involves the quantitation of risk on the basis of dose-effect dependencies, from which, it is hoped, some safety guidelines can be developed. Our current knowledge of the biological importance of damage/repair processes stems by and large from radiation studies which clearly demonstrate that cellular response to radiation depends upon the ability of cells to repair the damage. Apparently, the same is true for cellular response to different chemical agents. Drawing upon our experiences from radiation studies, we demonstrate the relevance of ongoing repair processes, as evident in the studies of radiation induced cell killing and neoplastic transformation, to the type of risk estimates that might be associated with the hazards from energy production technologies. The effect of repair on cell survival is considered. It is evident from our studies that in the region of small doses, repair of damage relative to cell lethality is of importance in estimating the magnitude of effect. Aside from the cytotoxic effects in terms of cell killing, one of the greatest concerns associated with energy production is the potential of a given technology, or its effluents, to produce cancer. It is therefore of importance to quantify the risk in this context of damage registration and possible effect of repair on damage expression. It has been generally established that exposure of normal cells in culture to a variety of known carcinogens results in neoplastic transformation. Our observations with C3H/10T1/2 cells in culture lend direct evidence for the hypothesis that reduced tumor incidences at low dose rates of radiation could be due to the repair of induced damage

  9. Cultured cells from a severe combined immunodeficient mouse have a slower than normal rate of repair of potentially lethal damage sensitive to hypertonic treatment

    International Nuclear Information System (INIS)

    Kimura, H.; Terado, T.; Ikebuchi, M.; Aoyama, T.; Komatsu, K.; Nozawa, A.

    1995-01-01

    The effects of hypertonic 0.5 M NaCl treatment after irradiation on the repair of DNA damage were examined in fibroblasts of the severe combined immunodeficient (scid) mouse. These cells are hypersensitive to ionizing radiation because of a deficiency in the repair of double-strand breaks. Hypertonic treatment caused radiosensitization due to a fixation of potentially lethal damage (PLD) in scid cells, demonstrating that scid cells normally repair PLD. To assess the kinetics of the repair of PLD, hypertonic treatment was delayed for various times after irradiation. Potentially lethal damage was repaired during these times in isotonic medium at 37 degrees C. It was found that the rate of repair of PLD was much slower in scid cells than in BALB/c 3T3 cells, which have a open-quotes wild-typeclose quotes level of radiosensitivity. This fact indicates that the scid mutation affects the type of repair of PLD that is sensitive to 0.5 M NaCl treatment. In scid hybrid cells containing fragments of human chromosome 8, which complements the radiosensitivity of the scid cells, the rate of repair was restored to a normal level. An enzyme encoded by a gene on chromosome 8 may also be connected with PLD which is sensitive to hypertonic treatment. 29 refs., 3 figs

  10. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.

    Science.gov (United States)

    Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira

    2007-07-01

    Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.

  11. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  12. Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA.

    Science.gov (United States)

    Ogara, María F; Sirkin, Pablo F; Carcagno, Abel L; Marazita, Mariela C; Sonzogni, Silvina V; Ceruti, Julieta M; Cánepa, Eduardo T

    2013-01-01

    The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.

  13. Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA.

    Directory of Open Access Journals (Sweden)

    María F Ogara

    Full Text Available The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.

  14. UV-sensitivity and repair of UV-damage in Salmonella of wild type

    International Nuclear Information System (INIS)

    Kondratiev, Y.S.; Brukhansky, G.V.; Andreeva, I.V.; Skavronskaya, A.G.

    1977-01-01

    The UV-sensitivity of wild type Salmonella strains has been compared to that of wild type E.coli and its UV-sensitive mutants. Many wild type Salmonella strains are 4-5 times more sensitive than wild type E.coli and their inactivation curve is similar to that for E.coli with a mutation in the polA gene. Alkaline sucrose gradient centrifugation has shown a deficiency of these strains in normal excision repair of UV-damaged DNA. This deficiency is not a Salmonella genus feature because one strain as resistant as wild type E.coli was found. This resistant strain showed normal excision repair in alkaline sucrose gradient centrifugation experiments. The possible influence of plasmids and mutations in repair genes on the ability of Salmonella to repair UV-damaged DNA is discussed. (orig.) [de

  15. UV-sensitivity and repair of UV-damage in Salmonella of wild type

    Energy Technology Data Exchange (ETDEWEB)

    Kondratiev, Y S; Brukhansky, G V; Andreeva, I V; Skavronskaya, A G [Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Ehpidemiologii i Mikrobiologii

    1977-12-01

    The UV-sensitivity of wild type Salmonella strains has been compared to that of wild type E.coli and its UV-sensitive mutants. Many wild type Salmonella strains are 4-5 times more sensitive than wild type E.coli and their inactivation curve is similar to that for E.coli with a mutation in the polA gene. Alkaline sucrose gradient centrifugation has shown a deficiency of these strains in normal excision repair of UV-damaged DNA. This deficiency is not a Salmonella genus feature because one strain as resistant as wild type E.coli was found. This resistant strain showed normal excision repair in alkaline sucrose gradient centrifugation experiments. The possible influence of plasmids and mutations in repair genes on the ability of Salmonella to repair UV-damaged DNA is discussed.

  16. A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair

    International Nuclear Information System (INIS)

    Huang, Zhibin; Mayr, Nina A.; Lo, Simon S.; Wang, Jian Z.; Jia Guang; Yuh, William T. C.; Johnke, Roberta

    2012-01-01

    Purpose: It has been conventionally assumed that the repair rate for sublethal damage (SLD) remains constant during the entire radiation course. However, increasing evidence from animal studies suggest that this may not the case. Rather, it appears that the repair rate for radiation-induced SLD slows down with increasing time. Such a slowdown in repair would suggest that the exponential repair pattern would not necessarily accurately predict repair process. As a result, the purpose of this study was to investigate a new generalized linear-quadratic (LQ) model incorporating a repair pattern with reciprocal time. The new formulas were tested with published experimental data. Methods: The LQ model has been widely used in radiation therapy, and the parameter G in the surviving fraction represents the repair process of sublethal damage with T r as the repair half-time. When a reciprocal pattern of repair process was adopted, a closed form of G was derived analytically for arbitrary radiation schemes. The published animal data adopted to test the reciprocal formulas. Results: A generalized LQ model to describe the repair process in a reciprocal pattern was obtained. Subsequently, formulas for special cases were derived from this general form. The reciprocal model showed a better fit to the animal data than the exponential model, particularly for the ED50 data (reduced χ 2 min of 2.0 vs 4.3, p = 0.11 vs 0.006), with the following gLQ parameters: α/β = 2.6-4.8 Gy, T r = 3.2-3.9 h for rat feet skin, and α/β = 0.9 Gy, T r = 1.1 h for rat spinal cord. Conclusions: These results of repair process following a reciprocal time suggest that the generalized LQ model incorporating the reciprocal time of sublethal damage repair shows a better fit than the exponential repair model. These formulas can be used to analyze the experimental and clinical data, where a slowing-down repair process appears during the course of radiation therapy.

  17. DNA damage and nucleotide excision repair capacity in healthy individuals

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Naccarati, Alessio; Poláková, Veronika; Pardini, Barbara; Vodičková, Ludmila; Štětina, R.; Schmuczerová, Jana; Šmerhovský, Z.; Lipská, L.; Vodička, Pavel

    2011-01-01

    Roč. 25, č. 7 (2011), s. 511-517 ISSN 0893-6692 R&D Projects: GA ČR GAP304/10/1286; GA MŠk 7F10069 Grant - others:GA MŠk(CZ) GAUK124710 Institutional research plan: CEZ:AV0Z50390512 Keywords : BPDE-induced DNA repair capacity * comet assay * interindividual variability Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.709, year: 2011

  18. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    Science.gov (United States)

    1994-01-01

    RepoW Techniques for Prwurized Aircraft AXWdOg 4.9 Summary and Conclusions The basics of adhesive bonded repairs for aluminum aircraft fuselages have... of cruise altitude and bending stresses in the plate at the tip of one-sided reinforcements (chapter 5). The expanded Rose model was transformed into a...DEPARTMEN1 OF THE AIR FORCE AGENCY REPORT NUMBER AFIT/CI 2950 P STREET WRIGHT-PATTERSON AFB OH 45433-7765 11. SUPPLEMENTARY NOTES Usa. DISTRUISUIOII

  19. Kinetics and capacity of repair of sublethal damage in mouse lip mucosa during fractionated irradiations

    International Nuclear Information System (INIS)

    Ang, K.K.; Xu, F.X.; Landuyt, W.; van der Schueren, E.

    1985-01-01

    The kinetics and capacity of repair of sublethal damage in mouse lip mucosa have been investigated. To assess the rate of repair 2 and 5 irradiations have been given with intervals ranging from 1 to 24 hours. It was found that the sublethal damage induced by a dose of approximately 10 Gy was fully recovered in approximately 4 hr. After a dose of 5-6 Gy, cellular repair was completed within 3 hr. The half time of repair (T1/2) was estimated to be approximately 72 min for 10 Gy and approximately 54 min for 5-6 Gy. Although these results suggest that the rate of repair is dependent on the fraction size, the possible influence of the amount of repair of sublethal radiation damage with the various fraction sizes used can not be ruled out. To evaluate the capacity of repair, a single dose, 2, 4 and 10 fractions have been given in a maximal overall time of 3 days in order to minimize the influence of repopulation. The slope of the isoeffective curve was 0.32 and the alpha/beta ratio was 8.5 Gy. This indicates that the capacity of cellular repair of lip mucosa is similar to those of other rapidly proliferating tissues but smaller than those of late responding tissues. The results of the present and other studies demonstrate that there are considerable differences in the repair characteristics between acutely and late responding tissues. These features have to be dealt with when fractionation schedules are markedly altered

  20. Lattice damage caused by the irradiation of diamond

    CERN Document Server

    Campbell, B; Mainwood, A; Newton, M; Davies, G

    2002-01-01

    Diamond is perceived to be radiation-hard, but the damage caused to the diamond is not well understood. The intrinsic defects (vacancies and interstitials) which are created by radiation damage are immobile at room temperature in diamond, unlike in silicon. Therefore, once the mechanisms of damage are understood for one type and energy of the particle, the dose and energy dependence of irradiation by other particles at a range of energies can be extrapolated. When a crystal is irradiated, the generation rates of vacancies and self-interstitials are generally determined by optical or electron paramagnetic resonance (EPR) spectroscopy experiments carried out after the irradiation has stopped. However, as the irradiation proceeds some of the carbon atoms displaced from their lattice sites may relax back into the vacant site, and the damage event will not be observed in the later measurement. In this paper, the mechanisms for radiation damage by charged particles in particular electrons and photons are investigat...

  1. Secondary damages to forests caused by industrial exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Donaubauer, E

    1966-01-01

    Acute and chronic damages of diverse origins modify the susceptibility of trees to certain insects and infectious diseases. Especially in connection with air pollution damages, it must be pointed out that such predisposition may occur long before any symptoms become visible or before any growth losses can be measured. In many instances, it is very difficult to evaluate these secondary damages. Very extensive regional comparisons are necessary in order to obtain evidence of damage. Increased occurrence of parasites and/or disease within the emission area must be compared with the frequency and intensity of occurrence outside of said area; this may then serve as circumstantial proof of a demonstrated secondary damage. Examples of these kinds of effects caused by parasitic fungi and insects are discussed in detail. 27 references.

  2. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    Science.gov (United States)

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

  3. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  4. In vitro Repair of Oxidative DNA Damage by Human Nucleotide Excision Repair System: Possible Explanation for Neurodegeneration in Xeroderma Pigmentosum Patients

    Science.gov (United States)

    Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz

    1997-08-01

    Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

  5. The Fanconi Anemia Pathway: Repairing the Link Between DNA Damage and Squamous Cell Carcinoma

    Science.gov (United States)

    Romick-Rosendale, Lindsey E.; Lui, Vivian W. Y.; Grandis, Jennifer R.; Wells, Susanne I.

    2013-01-01

    Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today’s bone marrow failure treatments on tomorrow’s solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility. PMID:23333482

  6. The Fanconi anemia pathway: Repairing the link between DNA damage and squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Romick-Rosendale, Lindsey E. [Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children' s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 (United States); Lui, Vivian W.Y.; Grandis, Jennifer R. [Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Wells, Susanne I., E-mail: Susanne.Wells@cchmc.org [Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children' s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 (United States)

    2013-03-15

    Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.

  7. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells

    International Nuclear Information System (INIS)

    Gedik, C.M.; Collins, A.R.; Ewen, S.W.B.

    1992-01-01

    The authors have adapted procedure of single cell gel electrophoresis (SCGE) for studying DNA damage and repair induced by UV-C-radiation, using HeLa cells. UV-C itself does not induce DNA breakage, and though cellular repair of UV-C damage produces DNA breaks as intermediates, these are too short-lived to be detected by SCGE. Incubation of UV-C-irradiated cells with the DNA synthesis inhibitor aphidicolin causes accumulation of incomplete repair sites to a level readily detected by SCGE even after doses as low as 0.5 J m -2 and incubation for as little as 5 min. The authors also studied UV-C-dependent incision, repair synthesis and ligation in permeable cells. Finally, key incubated permeable cells, after UV-C-irradiation, with exogenous UV endonuclease, examined consequent breaks both by SCGE and by alkaline unwinding to express results of the electrophoretic method in terms of DNA break frequencies. The sensitivity of the SCGE technique can thus be estimated; as few as 0.1 DNA breaks per 10 9 daltons are detected. (Author)

  8. Severe hepatic trauma: nonoperative management, definitive repair, or damage control surgery?

    Science.gov (United States)

    Leppäniemi, Ari K; Mentula, Panu J; Streng, Mari H; Koivikko, Mika P; Handolin, Lauri E

    2011-12-01

    Management of severe liver injuries has evolved to include the options for nonoperative management and damage control surgery. The present study analyzes the criteria for choosing between nonoperative management and early surgery, and definitive repair versus damage control strategy during early surgery. In a retrospective analysis of 144 patients with severe (AAST grade III-V) liver injuries (94% blunt trauma), early laparotomy was performed in 50 patients. Initial management was nonoperative in 94 blunt trauma patients with 8 failures. Uni- and multivariate analyses were used to calculate predictor odds ratios (OR) with 95% confidence intervals (CI). Factors associated with early laparotomy in blunt trauma included shock on admission, associated grade IV-V splenic injury, grade IV-V head injury, and grade V liver injury. Only shock was an independent predictor (OR, 26.1; 95% CI, 8.9-77.1; P < 0.001). The presence of a grade IV-V splenic injury predicted damage control strategy (OR infinite; P = 0.021). Failed nonoperative management was associated with grade IV-V splenic injury (OR, 14.00; 95% CI, 1.67-117.55), and shock (OR, 6.82; 95% CI, 1.49-31.29). The hospital mortality rate was 15%; 8 of 21 deaths were liver-related. Shock (OR, 9.3; 95% CI, 2.4-35.8; P = 0.001) and severe head injury (OR, 9.25; 95% CI, 3.0-28.9; P = 0.000) were independent predictors for mortality. In patients with severe liver injury, associated severe splenic injury favors early laparotomy and damage control strategy. Patients who arrive in shock or have an associated severe splenic injury should not be managed nonoperatively. In addition to severe head injury, uncontrollable bleeding from the liver injury is still a major cause of early death.

  9. A modelling study of drying shrinkage damage in concrete repair systems

    NARCIS (Netherlands)

    Lukovic, M.; Savija, B.; Schlangen, E.; Ye, G.; van Breugel, K.

    2014-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems (Martinola, Sadouki et al. 2001, Beushausen and Alexander 2007). Magnitude of induced stresses depends on many factors, for example the amount of restraint,

  10. [Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems]: Final report

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-08-01

    This study sought to exploit the use of uv radiation as a source of genomic damage. We explored the molecular mechanism of the repair of DNA damage at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian cells. Not only have observations obtained in one biological system suggested specific experimental approaches in others, but we have also learned that some biochemical pathways for DNA repair are unique to specific organisms. Our studies are summarized in terms of 4 major areas of research activity that span the past 16 years. 86 refs

  11. Higher plants and UV-B radiation: balancing damage, repair and acclimation

    International Nuclear Information System (INIS)

    Jansen, M.A.K.; Gaba, V.; Greenberg, B.M.

    1998-01-01

    Although UV-B is a minor component of sunlight, it has a disproportionately damaging effect on higher plants. Ultraviolet-sensitive targets include DNA, proteins and membranes, and these must be protected for normal growth and development. DNA repair and secondary metabolite accumulation during exposure to UV-B have been characterized in considerable detail, but little is known about the recovery of photosynthesis, induction of free-radical scavenging and morphogenic changes. A future challenge is to elucidate how UV-B-exposed plants balance damage, repair, acclimation and adaptation responses in a photobiologically dynamic environment. (author)

  12. Life forms employ different repair strategies of repair single- and double strand DNA breaks caused by different qualities of radiation: criticality of RecA mediated repair system

    International Nuclear Information System (INIS)

    Sharan, R.N.

    2013-01-01

    Different qualities of radiation, either through direct or indirect pathway, induce qualitative different spectrum of damages in DNA, which are also different in in vitro and in vivo systems. The single- and double strand breaks of DNA are of special interest as they lead to serious biological consequences. The implications of such damage to DNA and their processing by various inherent repair pathways together decide the fate of the living form

  13. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    Science.gov (United States)

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  14. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  15. Mechanical damage in cotton buds caused by the boll weevil

    Directory of Open Access Journals (Sweden)

    Santos Roseane Cavalcanti

    2003-01-01

    Full Text Available The boll weevil (Anthonomus grandis Boheman causes high levels of bud abscission in cotton plants due to feeding or oviposition punctures. It has been reported that abscission is mainly due to enzymes present in the insect's saliva, but mechanical damage could also contribute to square abscission. The objective of this paper was to undertake an analysis of the morphological damages caused by the insect in cotton squares using microscopy. Anthers and ovules are the main target of boll weevil feeding. The process initiates by perforation of young sepal and petal tissues and proceeds with subsequent alimentation on stamen and ovary leading to abscission of floral structures.

  16. The effect of repair inhibitor on radiation damages of pleurotus ostreatus

    International Nuclear Information System (INIS)

    Yang Zongqu; Wang Bonan; Li Xuzhao

    1996-01-01

    The growth rate and enzyme activities significantly decreased when dikaryotic hypha of Pleurotus ostreatus were irradiated with γ-rays and subsequently treated with either caffeine or Na 2 -EDTA in comparison with γ-rays treatment alone. The inhibition effect of treatment with either caffeine or Na 2 -EDTA before irradiation was more obvious than that after irradiation. Treatment with either caffeine or Na 2 -EDTA could cause biological damages on hypha when the concentrations of caffeine and Na 2 -EDTA were up to 0.5 and 1.0 mg/ml respectively. It is suggested that either caffeine or Na 2 -EDTA be used to suppress the repair of radiation damage in order to increase mutation efficiency of Pleurotus ostreatus and that 0.2 mg/ml caffeine and 0.5 mg/ml Na 2 -EDTA might be the proper concentrations of treatment both before and after irradiation. The effect of caffeine is better than that of Na 2 -EDTA

  17. Damage and repair in mammalian cells after ultraviolet and/or visible light treatment

    International Nuclear Information System (INIS)

    Harm, H.

    1976-01-01

    Ultraviolet (uv) light (254 nm or 302 nm) was used to induce lesions in DNA of cultured mammalian cells in vivo, particularly in fibroblasts from potoroo cornea, mouse skin (3T3), cat cornea, human skin (healthy and diseased), and in freshly obtained ox cornea tissue. In addition, white light (WL) from daylight fluorescent lamps, filtered through a plexiglass plate cutting off virtually all photons less than 380 nm and being fully transparent for greater than 400 nm, was applied in vivo either as photoreactivating light after uv irradiation, or as damaging radiation by itself. Completely unirradiated samples under otherwise identical conditions served as controls. DNA from cells exposed to these different radiations was extracted and tested for its capability of competitively inhibiting photoenzymatic repair of uv-irradiated Haemophilus influenzae transforming DNA in vitro in the presence of yeast photoreactivating enzyme (PRE) and photoreactivating light. In several (but not all) of the cases, DNA from cells treated with uv + WL displayed considerably less competitive inhibition than DNA from cells treated with uv alone, even though under certain conditions WL itself caused damage serving as substrate from the PRE in vitro. Cell cultures differing in their origin or in their number of passages varied substantially in this respect

  18. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... crosslinks can also affect the structure of DNA significantly. ... H2O2 by converting it into water, reaction of H2O2 with ..... Damaged nucleotide flipping by (a) AGT due to intercalation of an amino acid (Arg128) (pdb 1t38) and ...

  19. Reducing environmental damages caused by transportation: towards an heterodox approach

    International Nuclear Information System (INIS)

    Marletto, Gerardo

    2006-01-01

    According to orthodox economics, monetary incentives are the best way to reduce environmental damages caused by transportation. This approach is consistent with the consideration of environmental damages as a market failure and with the use of pigouvian taxes to re-establish market equilibrium. Using heterodox economics both the theoretical and the policy approach will change radically. Indeed, market is just one of the structural components of the existing transport system; others being: institutions, technologies, values. Then, a shift in policy approaches is needed: from the orthodox efficient allocation of existing resources, to the heterodox promotion of new development patterns, needed to alter the given structural situation. Consistently with this paradigmatic shift, environmental damages caused by transportation can be reduced only by making the transition to a new transport system viable. Moreover, an heterodox approach to the reduction of environmental damages caused by transportation gives rise to a sound revision of policy tools; among these must be considered: selective industrial policies to foster the ecological reconversion of transport supply (instead of a non-discriminatory support to ecological innovations); participatory decision procedures to evaluate and select transport policies (instead of neutral technical tools - such as Cba or Eia); information campaigns based on ethical considerations (instead of economic incentives to transport demand); attribution of the status of commons to environmental resources, in order to protect them from the free riding of transport activities (instead of the attribution to them of private property rights). This essay is composed of four parts. In the first one, some data on environmental damages caused by transportation in Italy are shown. In the second one, orthodox and heterodox paradigms of public interventions in the economy are compared, with a specific attention to environmental applications. In the

  20. Repair of radiation-induced DNA damage in rat epidermis as a function of age

    International Nuclear Information System (INIS)

    Sargent, E.V.; Burns, F.J.

    1985-01-01

    The rate of repair of radiation-induced DNA damage in proliferating rat epidermal cells diminished progressively with increasing age of the animal. The dorsal skin was irradiated with 1200 rad of 0.8 MeV electrons at various ages, and the amount of DNA damage was determined as a function of time after irradiation by the method of alkaline unwinding followed by S 1 nuclease digestion. The amount of DNA damage immediately after irradiation was not age dependent, while the rate of damage removal from the DNA decreased with increasing age. By fitting an exponential function to the relative amount of undamaged DNA as a function of time after irradiation, DNA repair halftimes of 20, 27, 69, and 107 min were obtained for 28, 100-, 200-, and 400-day-old animals, respectively

  1. Relation between four types of radiation damage and induced repair

    International Nuclear Information System (INIS)

    Radar, M.L.

    1977-08-01

    Four strains of Escherichia coli were exposed to uv and gamma radiation. Procedures are described for mutational studies, classification of revertants, inhibition of postirradiation DNA degradation and radioresistance. Comparisons were made of induction of the error-prone repair (epr) system with four mutagens; uv radiation, near uv radiation, gamma radiation, and DNA-protein crosslinks. An increase in the number of mutations was shown in every case. The observation that induction of mutagenesis, induction of inhibition of post-irradiation DNA degradation, and induction of radioresistance are closely parallel phenomena led to the investigation of the possibility that DNA-protein crosslinks which were known mutagens were also inducers of the epr system. The significance of the results is discussed

  2. Computational studies of radiation and oxidative damage to DNA and its recognition by repair enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, M. [Center for Promotion of Computational Science and Engineering, Tokai Research Establishment, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-03-01

    Molecular dynamics (MD) simulation is used to study the time evolution of the recognition processes and to construct a model of the specific DNA-repair enzyme' complexes. MD simulations of the following molecules were performed: DNA dodecamer with thymine dimer (TD), DNA 30-mer with thymine glycol (TG), and respective specific repair enzymes T4 Endonuclease V and Endonuclease III. Both DNA lesions are experimentally suggested to be mutagenic and carcinogenic unless properly recognized and repaired by repair enzymes. In the case of TD, there is detected a strong kink around the TD site, that is not observed in native DNA. In addition there is observed a different value of electrostatic energy at the TD site - negative '-9 kcal/mol', in contrast to the nearly neutral value of the native thymine site. These two factors - structural changes and specific electrostatic energy - seem to be important for proper recognition of a TD damaged site and for formation of DNA-enzyme complex. Formation of this complex is the onset of the repair of DNA. In the case of TG damaged DNA the structural characteristics of the TG were calculated (charges, bond lengths, bond angles, etc.). The formed TG was used to replace the native thymine and then submitted to the simulation in the system with a repair enzyme with Endonuclease III for the purpose of the study of the formation of the DNA-enzyme complex. (author)

  3. DNA turnover in buffer-held Escherichia coli and its effect on repair of UV damage

    International Nuclear Information System (INIS)

    Tang, M.S.; Wang, T.C.V.; Patrick, M.H.

    1979-01-01

    Continuous DNA degradation and resynthesis, without a net change in cellular DNA content, were observed in buffer-held, non-irradiated E. coli B/r. This constant DNA turnover probably involves most of the genome and reflects random sites of DNA repair due to the polA-dependent excision-resynthesis repair pathway. Under these non-growth conditions it appears that at any given time there is a minimum of one repair site per 6.5 x 10 6 daltons DNA, each of which is at least 160 nucleotides long. While the amount of DNA degradation is not influenced by prior exposure to UV radiation, the synthetic activity decreases with increasing UV fluence. It is suggested that when sites of DNA turnover occur opposite to cyclobutyl dipyrimidines in UV-irradiated cells, repair of the latter damage can be prevented. This implies that both beneficial and deleterious processes take place in irradiated buffer-held cells, and that cell survival depends on the delicate balance between DNA turnover and repair of UV-damage. Based on these findings, a model is proposed to explain the limit repair observed during post-irradiation liquid-holding and to account for the large difference in cell survival between irradiation at low fluence rates (fluence-rate dependent recovery) and at high fluence rates followed by liquid-holding (liquid-holding recovery). (author)

  4. Self-repairing control for damaged robotic manipulators

    International Nuclear Information System (INIS)

    Eisler, G.R.; Robinett, R.D.; Dohrmann, C.R.; Driessen, B.J.

    1997-03-01

    Algorithms have been developed allowing operation of robotic systems under damaged conditions. Specific areas addressed were optimal sensor location, adaptive nonlinear control, fault-tolerant robot design, and dynamic path-planning. A seven-degree-of-freedom, hydraulic manipulator, with fault-tolerant joint design was also constructed and tested. This report completes this project which was funded under the Laboratory Directed Research and Development program

  5. Quantitative aspects of repair of potentially lethal damage in mammalian cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Pohlit, W.

    1979-01-01

    Stationary cultures of Ehrlich ascites tumour cells were irradiated with X-rays and then immediately or after a time interval tsub(rep) plated to measure the survival. The increase in survival observed after delayed plating was interpreted as repair of potentially lethal damage. A cybernetic model was used to analyse these data. Three states of damage were assumed for the cells. In state A the cells could grow to macrocolonies, in state B the cells suffered potentially lethal damage and could grow to macrocolonies only if they were allowed to repair the damage and in state C the cells were lethally damaged. A method of deriving the values of the parameters of the model from the experimental data was given. The dependence of the reaction rate constant of the repair potentially lethal damage on the dose D was used to derive a possible mechanism for the production of the shoulder in the dose effect curve. Finally this model was compared with other models of radiation action in living cells. (author)

  6. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    Science.gov (United States)

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  7. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    Science.gov (United States)

    ... Pain Relievers and Fever Reducers Careful: Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin it More sharing options Linkedin Pin ... ingredient in many over-the-counter and prescription medicines that help relieve pain and reduce fever. More than 600 over-the- ...

  8. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Lorenzo, Y.; Karlsen, A.; Carlsen, M. H.; Novosadová, Vendula; Blomhoff, R.; Vodička, Pavel; Collins, A. R.

    2014-01-01

    Roč. 16, APR 2014 (2014), s. 66-73 ISSN 1568-7864 R&D Projects: GA ČR(CZ) GAP304/12/1585 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : DNA damage * DNA repair capacity * diet Subject RIV: EB - Genetics ; Molecular Biology; EI - Biotechnology ; Bionics (BTO-N) Impact factor: 3.111, year: 2014

  9. 46 CFR Sec. 17 - Performance of work resulting from damage sustained while undergoing repairs.

    Science.gov (United States)

    2010-10-01

    ... made a part of and place on each job order issued for the performance of work discussed in this section... 46 Shipping 8 2010-10-01 2010-10-01 false Performance of work resulting from damage sustained... SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 17 Performance of work resulting...

  10. New discoveries linking transcription to DNA repair and damage tolerance pathways.

    Science.gov (United States)

    Cohen, Susan E; Walker, Graham C

    2011-01-01

    In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.

  11. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary...

  12. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  13. Arrest of irradiated G1, S, or G2 cells at mitosis using nocodazole promotes repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Iliakis, G.; Nuesse, M.

    1984-01-01

    The ability of synchronized Ehrlich ascites tumor cells, irradiated in G1, S, and G2 phases, to repair potentially lethal damage when arrested at mitosis by using 0.4 μg/ml nocodazole, a specific inhibitor of microtubule polymerization, has been studied. Cells irradiated in these phases were found to repair potentially lethal damage at mitosis. The extent of this repair was similar to that observed for cells irradiated at the same stages in the cell cycle but allowed to repair potentially lethal damage by incubating in balanced salt solution for 6 hr after X irradiation

  14. Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance.

    Science.gov (United States)

    Gibson, Shannon L; Narayanan, Latha; Hegan, Denise Campisi; Buermeyer, Andrew B; Liskay, R Michael; Glazer, Peter M

    2006-12-08

    Inherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1. Here, we report that overexpression of the MutL homolog, human PMS2, can also cause a disruption of the MMR pathway in mammalian cells, resulting in hypermutability and DNA damage tolerance. A mouse fibroblast cell line carrying a recoverable lambda phage shuttle vector for mutation detection was transfected with either a vector designed to express hPMS2 or with an empty vector control. Cells overexpressing hPMS2 were found to have elevated spontaneous mutation frequencies at the cII reporter gene locus. They also showed an increase in the level of mutations induced by the alkylating agent, methynitrosourea (MNU). Clonogenic survival assays demonstrated increased survival of the PMS2-overexpressing cells following exposure to MNU, consistent with the induction of a damage tolerance phenotype. Similar results were seen in cells expressing a mutant PMS2 gene, containing a premature stop codon at position 134 and representing a variant found in an individual with familial colon cancer. These results show that dysregulation of PMS2 gene expression can disrupt MMR function in mammalian cells and establish an additional carcinogenic mechanism by which cells can develop genetic instability and acquire resistance to cytotoxic cancer therapies.

  15. Biomechanical evaluation of potential damage to hernia repair materials due to fixation with helical titanium tacks.

    Science.gov (United States)

    Lerdsirisopon, Sopon; Frisella, Margaret M; Matthews, Brent D; Deeken, Corey R

    2011-12-01

    This study aimed to determine whether the strength and extensibility of hernia repair materials are negatively influenced by the application of helical titanium tacks. This study evaluated 14 meshes including bare polypropylene, macroporous polytetrafluoroethylene, absorbable barrier, partially absorbable mesh, and expanded polytetrafluoroethylene materials. Each mesh provided 15 specimens, which were prepared in 7.5 × 7.5-cm squares. Of these, 5 "undamaged" specimens were subjected to ball-burst testing to determine their biomechanical properties before application of helical titanium tacks (ProTack). To 10 "damaged" specimens 7 tacks were applied 1 cm apart in a 3.5-cm-diameter circle using a tacking force of 25 to 28 N. The tacks were removed from five of the specimens before ball-burst testing and left intact in the remaining five specimens. The application of tacks had no effect on the tensile strength of Dualmesh, ProLite Ultra, Infinit, Ultrapro, C-QUR Lite (6 in.). Most of the meshes did not exhibit significantly different tensile strengths between removal of tacks and tacks left intact. Exceptions included C-QUR, Prolene, Ultrapro, and Bard Soft Mesh, which were weaker with removal of tacks than with tacks left intact during the test. Damage due to the application of helical titanium tacks also caused increased strain at a stress of 16 N/cm for all the meshes except C-QUR Lite (>6 in.) and Physiomesh. Many of the meshes evaluated in this study exhibited damage in the form of reduced tensile strength and increased extensibility after the application of tacks compared with the corresponding "undamaged" meshes. Meshes with smaller interstices and larger filaments were influenced negatively by the application of helical titanium tacks, whereas mesh designs with larger interstices and smaller filaments tended to maintain their baseline mechanical properties.

  16. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  17. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    Science.gov (United States)

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.

  18. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  19. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  20. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  1. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    International Nuclear Information System (INIS)

    Dusinska, Maria; Staruchova, Marta; Horska, Alexandra; Smolkova, Bozena; Collins, Andrew; Bonassi, Stefano; Volkovova, Katarina

    2012-01-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  2. DNA Damage Induction and Repair Evaluated in Human Lymphocytes Irradiated with X-Rays an Neutrons

    International Nuclear Information System (INIS)

    Niedzwiedz, W.; Cebulska-Wasilewska, A.

    2000-12-01

    The objective of this study was to evaluate the kinetic of the DNA damage induction and their subsequent repair in human lymphocytes exposed to various types of radiation. PBLs cells were isolated from the whole blood of two young healthy male subjects and one skin cancer patient, and than exposed to various doses of low LET X-rays and high LET neutrons from 252 Cf source. To evaluate the DNA damage we have applied the single cell get electrophoresis technique (SCGE) also known as the comet assay. In order to estimate the repair efficiency, cells, which had been irradiated with a certain dose, were incubated at 37 o C for various periods of time (0 to 60 min). The kinetic of DNA damage recovery was investigated by an estimation of residual DNA damage persisted at cells after various times of post-irradiation incubation (5, 10, 15, 30 and 60 min). We observed an increase of the DNA damage (reported as a Tail DNA and Tail moment parameters) in linear and linear-quadratic manner, with increasing doses of X-rays and 252 Cf neutrons, respectively. Moreover, for skin cancer patient (Code 3) at whole studied dose ranges the higher level of the DNA damage was observed comparing to health subjects (Code 1 and 2), however statistically insignificant (for Tail DNA p=0.056; for Tail moment p=0.065). In case of the efficiency of the DNA damage repair it was observed that after 1 h of post-irradiation incubation the DNA damage induced with both, neutrons and X-rays had been significantly reduced (from 65% to 100 %). Furthermore, in case of skin cancer patient we observed lover repair efficiency of X-rays induced DNA damage. After irradiation with neutrons within first 30 min, the Tail DNA and Tail moment decreased of about 50%. One hour after irradiation, almost 70% of residual and new formed DNA damage was still observed. In this case, the level of unrepaired DNA damage may represent the fraction of the double strand breaks as well as more complex DNA damage (i.e.-DNA or DNA

  3. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-08

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Modulation of DNA-induced damage and repair capacity in humans after dietary intervention with lutein-enriched fermented milk.

    Science.gov (United States)

    Herrero-Barbudo, Carmen; Soldevilla, Beatriz; Pérez-Sacristán, Belén; Blanco-Navarro, Inmaculada; Herrera, Mercedes; Granado-Lorencio, Fernando; Domínguez, Gemma

    2013-01-01

    Dietary factors provide protection against several forms of DNA damage. Additionally, consumer demand for natural products favours the development of bioactive food ingredients with health benefits. Lutein is a promising biologically active component in the food industry. The EFSA Panel on Dietetic Products, Nutrition and Allergies considers that protection from oxidative damage may be a beneficial physiological effect but that a cause and effect relationship has not been established. Thus, our aim was to evaluate the safety and potential functional effect of a lutein-enriched milk product using the Comet Assay in order to analyze the baseline, the induced DNA-damage and the repair capacity in the lymphocytes of 10 healthy donors before and after the intake of the mentioned product. Our data suggest that the regular consumption of lutein-enriched fermented milk results in a significant increase in serum lutein levels and this change is associated with an improvement in the resistance of DNA to damage and the capacity of DNA repair in lymphocytes. Our results also support the lack of a genotoxic effect at the doses supplied as well as the absence of interactions and side effects on other nutritional and biochemicals markers.

  5. Modulation of DNA-induced damage and repair capacity in humans after dietary intervention with lutein-enriched fermented milk.

    Directory of Open Access Journals (Sweden)

    Carmen Herrero-Barbudo

    Full Text Available Dietary factors provide protection against several forms of DNA damage. Additionally, consumer demand for natural products favours the development of bioactive food ingredients with health benefits. Lutein is a promising biologically active component in the food industry. The EFSA Panel on Dietetic Products, Nutrition and Allergies considers that protection from oxidative damage may be a beneficial physiological effect but that a cause and effect relationship has not been established. Thus, our aim was to evaluate the safety and potential functional effect of a lutein-enriched milk product using the Comet Assay in order to analyze the baseline, the induced DNA-damage and the repair capacity in the lymphocytes of 10 healthy donors before and after the intake of the mentioned product. Our data suggest that the regular consumption of lutein-enriched fermented milk results in a significant increase in serum lutein levels and this change is associated with an improvement in the resistance of DNA to damage and the capacity of DNA repair in lymphocytes. Our results also support the lack of a genotoxic effect at the doses supplied as well as the absence of interactions and side effects on other nutritional and biochemicals markers.

  6. Mitochondrial and Nuclear DNA Damage and Repair in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-01-01

    Full Text Available Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD, a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis.

  7. Alkylation damage in DNA and RNA--repair mechanisms and medical significance

    DEFF Research Database (Denmark)

    Drabløs, Finn; Feyzi, Emadoldin; Aas, Per Arne

    2004-01-01

    Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions...... are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase......, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents...

  8. ROCK MASS DAMAGED ZONE CAUSED BY BLASTING DURING TUNNEL EXCAVATION

    Directory of Open Access Journals (Sweden)

    Hrvoje Antičević

    2012-07-01

    Full Text Available Design of underground spaces, including tunnels, and repositories for radioactive waste include the application of the same or similar technologies. Tunnel excavation by blasting inevitably results in the damage in the rock mass around the excavation profile. The damage in the rock mass immediately next to the tunnel profile emerges as the expanding of the existing cracks and the appearance of new cracks, i.e. as the change of the physical and-mechanical properties of the rock mass. Concerning the design of deep geological repositories, requirements in terms of damaged rock are the same or more rigorous than for the design of tunnel. The aforementioned research is directed towards determining the depth of damage zone caused by blasting. The depth of the damage zone is determined by measuring the changes of physical and-mechanical properties of the rock mass around the tunnel excavation profile. By this research the drilling and blasting parameters were correlated with the depth and size of the damage zone (the paper is published in Croatian.

  9. Assessment of DNA damage and repair in Mycobacterium terrae after exposure to UV irradiation.

    Science.gov (United States)

    Bohrerova, Z; Linden, K G

    2006-11-01

    Ultraviolet (UV) irradiation for drinking water treatment was examined for inactivation and subsequent dark and photo-repair of Mycobacterium terrae. UV sources tested were low pressure (monochromatic, 254 nm) and medium pressure (polychromatic UV output) Hg lamps. UV exposure resulted in inactivation, and was followed by dark or photo-repair experiments. Inactivation and repair were quantified utilizing a molecular-based endonuclease sensitive site (ESS) assay and conventional colony forming unit (CFU) viability assay. Mycobacterium terrae was more resistant to UV disinfection compared to many other bacteria, with approximately 2-log reduction at a UV fluence of 10 mJ cm(-2) ; similar to UV inactivation of M. tuberculosis. There was no difference in inactivation between monochromatic or polychromatic UV lamps. Mycobacterium terrae did not undergo detectable dark repair. Photo-repair resulted in recovery from inactivation by approximately 0.5-log in less than 30 min for both UV lamp systems. Mycobacterium terrae is able to photo-repair DNA damage within a short timeframe. The number of pyrimidine dimers induced by UV light were similar for Escherichia coli and M. terrae, however, this similarity did not hold true for viability results. There is no practical difference between UV sources for disinfection or prevention of DNA repair for M. terrae. The capability of M. terrae to photo-repair UV damage fairly quickly is important for wastewater treatment applications where disinfected effluent is exposed to sunlight. Finally, molecular based assay results should be evaluated with respect to differences in the nucleic acid content of the test micro-organism.

  10. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  11. ANALYTICAL MODEL OF DAMAGED AIRCRAFT SKIN BONDED REPAIRS ASSUMING THE MATERIAL PROPERTIES DEGRADATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The search of optimal variants for composite repair patches allows to increase the service life of a damaged air- plane structure. To sensibly choose the way of repair, it is necessary to have a computational complex to predict the stress- strain condition of "structure-adhesive-patch" system and to take into account the damage growth considering the material properties change. The variant of the computational complex based on inclusion method is proposed.For calculation purposes the repair bonded joint is divided into two areas: a metal plate with patch-shaped hole and a "patch-adhesive layer-skin" composite plate (inclusion.Calculation stages:Evaluation of the patch influence to the skin stress-strain condition, stress distribution between skin and patch in the case of no damage. Calculation of the stress-strain condition is performed separately for the skin with hole and for the inclusion; solutions are coupled based on strain compatibility.Definition of the damage growth parameters at new stress-strain condition due to bonded patch existence. Skincrack stress intensity factors are found to identify the crack growth velocity. Patch is modelled as a set of "springs" bridging the crack.Degradation analysis of elasticity properties for the patch material.Repair effectiveness is evaluated with respect to crack growth velocity reduction in the initial material in compari- son with the case of the patch absence.Calculation example for the crack repair effectiveness depending on number of loading cycles for the 7075-T6 aluminum skin is given. Repair patches are carbon-epoxy, glass-epoxy and boron-epoxy material systems with quasi- isotropic layup and GLARE hybrid metal-polymeric material.The analysis shows the high effectiveness of the carbon-epoxy patch. Due to low stiffness, the glass-epoxy patchdemonstrates the least effectiveness. GLARE patch containing the fiberglass plies oriented across the crack has the same effectiveness as the carbon and

  12. Damage to underground coal mines caused by surface blasting

    International Nuclear Information System (INIS)

    Fourie, A.B.; Green, R.W.

    1993-01-01

    An investigation of the potential damage to underground coal workings as a result of surface blasting at an opencast coal mine is described. Seismometers were installed in a worked out area of an underground mine, in the eastern Transvaal region of South Africa, and the vibration caused by nearby surface blasting recorded. These measurements were used to derive peak particle velocities. These velocities were correlated with observed damage underground in order to establish the allowable combination of the two blasting parameters of charge mass per relay, and blast-to-gage point distance. An upper limit of 110mm/sec peak particle velocity was found to be sufficient to ensure that the damage to the particular workings under consideration was minimal. It was further found that a cube-root scaling law provided a better fit to the field data than the common square-root law. 11 refs., 6 figs., 5 tabs

  13. Role of DNA damage repair capacity in radiation induced adaptive response

    International Nuclear Information System (INIS)

    Yuan Dexiao; Pan Yan; Zhao Meijia; Chen Honghong; Shao Cunlin

    2009-01-01

    This work was to explore γ-ray induced radioadaptive response (RAR) in Chinese hamster ovary(CHO) cell lines of different DNA damage repair capacities. CHO-9 cells and the two repair-deficient strains, EM-C11(DNA single strand break repair deficient) and XR-C1(DNA double strand break repair deficient), were irradiated with a priming dose of 0.08 Gy or 0.016 Gy. After 4 or 7 hours, they were irradiated again with a challenging dose of 1 Gy. The micronucleus induction and plating efficiency of the cells were assayed. Under 0.08 Gy priming dose and 4-h interval, just the CHO-9 cells showed RAR, while with the 7-h interval the CHO-9 and EM-C11 showed RAR, but XR-C1 did not. When the cells were pretreated with a lower priming dose of 0.016 Gy in a 4-h time interval, all the three cell lines showed RAR to subsequent 1 Gy irradiation. It can be concluded that RAR is not only related to the priming dose and time interval, but also has close dependence on the ability of DNA damage repair. (authors)

  14. Cellular and molecular repair of X-ray-induced damage: dependence on oxygen tension and nutritional status

    International Nuclear Information System (INIS)

    Spiro, I.J.; Kennedy, K.A.; Stickler, R.; Ling, C.C.

    1985-01-01

    Cellular and molecular repair was studied at 23 0 C using split-dose recovery and alkaline elution techniques, respectively, as a function of cellular oxygen and nutrient conditions. Hypoxic cells in full medium showed a partial reduction in the level of sublethal damage (SLD) repair relative to aerated cells; the respective repair kinetics were similar with a common repair half-time of 30 min. Similarly, hypoxic cells showed a slight reduction in strand break rejoining capacity compared to aerated cells. Under nutrient deprivation, anoxic cells displayed no SLD repair or strand break repair, while aerated cells exhibited the same level of SLD and strand break repair as for well-fed cells. In addition, nutrient deprived cells at low O 2 levels displayed normal SLD and strand break repair capability. These results indicate that both nutrient and O 2 deprivation are necessary for complete inhibition of cellular and molecular repair, and low levels of O 2 can effectively reverse this inhibition

  15. The studies of effects of 60Co γ-rays on DNA damage and repair in tumor cells

    International Nuclear Information System (INIS)

    Su Liaoyuan; Huang Hanxian; Cen Jiannong

    1997-06-01

    The effects of 60 Co γ-rays and its combination with hyperthermia on DNA strand breaks and their repair in L 5178y cells were studied using alkaline elution technique. When the cells were heated at 43 degree C for 30 min, there was obvious inhibition of repair of DNA damage caused by γ-irradiation. The hyperthermia before irradiation produced better inhibiting effect than that after irradiation. The effects of radiation on DNA strand breaks and its repair in HL-60 cells and HL-60 (VCR) cells were analyzed using technique of hydroxyapatite chromatography and the results sowed that the extent of DNA strand breaks in HL-60 cells and HL-60 (VCR) cells induced by irradiation was not markedly different, but the power of repair of strand breaks and the radioresistance of function of DNA synthesis in HL-60 (VCR) cells were higher than those in HL-60 cells. The difference was obvious. The results suggest that the heterogeneity of radiosensitivity of leukemia cells is correlated with its drug resistance. (10 refs., 3 tabs.)

  16. Inhibitors of acid secretion can benefit gastric wound repair independent of luminal pH effects on the site of damage

    Science.gov (United States)

    Demitrack, Elise S; Aihara, Eitaro; Kenny, Susan; Varro, Andrea; Montrose, Marshall H

    2012-01-01

    Background and aims The authors’ goal was to measure pH at the gastric surface (pHo) to understand how acid secretion affects the repair of microscopic injury to the gastric epithelium. Methods Microscopic gastric damage was induced by laser light, during confocal/two-photon imaging of pH-sensitive dyes (Cl-NERF, BCECF) that were superfused over the mucosal surface of the exposed gastric corpus of anaesthetised mice. The progression of repair was measured in parallel with pHo. Experimental conditions included varying pH of luminal superfusates, and using omeprazole (60 mg/kg ip) or famotidine (30 mg/kg ip) to inhibit acid secretion. Results Similar rates of epithelial repair and resting pHo values (~pH 4) were reported in the presence of luminal pH 3 or pH 5. Epithelial repair was unreliable at luminal pH 2 and pHo was lower (2.5±0.2, P pH 3). Epithelial repair was slower at luminal pH 7 and pHo was higher (6.4±0.1, PpH 3 or pH 7, omeprazole reduced maximal damage size and accelerated epithelial repair, although only at pH 3 did omeprazole further increase surface pH above the level caused by imposed damage. At luminal pH 7, famotidine also reduced maximal damage size and accelerated epithelial repair. Neither famotidine nor omeprazole raised plasma gastrin levels during the time course of the experiments. Conclusions Epithelial repair in vivo is affected by luminal pH variation, but the beneficial effects of acutely blocking acid secretion extend beyond simply raising luminal and/or surface pH. PMID:21997560

  17. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  18. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility

    Science.gov (United States)

    Bai, Yuhong; Zhang, Yi; Zhang, Jingping; Mu, Qingxin; Zhang, Weidong; Butch, Elizabeth R.; Snyder, Scott E.; Yan, Bing

    2010-09-01

    Soluble carbon nanotubes show promise as materials for in vivo delivery and imaging applications. Several reports have described the in vivo toxicity of carbon nanotubes, but their effects on male reproduction have not been examined. Here, we show that repeated intravenous injections of water-soluble multiwalled carbon nanotubes into male mice can cause reversible testis damage without affecting fertility. Nanotubes accumulated in the testes, generated oxidative stress and decreased the thickness of the seminiferous epithelium in the testis at day 15, but the damage was repaired at 60 and 90 days. The quantity, quality and integrity of the sperm and the levels of three major sex hormones were not significantly affected throughout the 90-day period. The fertility of treated male mice was unaffected; the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those that mated with untreated male mice.

  19. Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair.

    Directory of Open Access Journals (Sweden)

    Patrick J Rochette

    2010-04-01

    Full Text Available Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere's own integrity should be of paramount importance to the cell. Ultraviolet light (UV, the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD which are both mutagenic and lethal. The human telomeric repeat unit (5'TTAGGG/CCCTAA3' is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP-based technique, immunoprecipitation of DNA damage (IPoD, to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat.

  20. DNA single-strand breaks during repair of uv damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Kohn, K.W.; Kann, H.E. Jr.

    1976-01-01

    The method of DNA alkaline elution was applied to a study of the formation and resealing of DNA single-strand breaks after irradiation of human fibroblasts with ultraviolet light (UV). The general features of the results were consistent with current concepts of DNA excision repair, in that breaks appeared rapidly after uv, and resealed slowly in normal fibroblasts, whereas breaks did not appear in those cells of patients with xeroderma pigmentosum (XP) that are known to have defects in DNA repair synthesis. The appearance of breaks required a short post-uv incubation, consistent with the expected action of an endonuclease. Cells of the variant form of XP characterized by normal DNA repair synthesis exhibited normal production of breaks after uv, but were slower than normal cells in resealing these breaks. This difference was enhanced by caffeine. A model is proposed to relate this finding with a previously described defect in post-replication repair in these XP variant cells. DNA crosslinking appears to cause an underestimate in the measurement of DNA breakage after uv

  1. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    Science.gov (United States)

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine

    International Nuclear Information System (INIS)

    Cooke, Marcus S.; Evans, Mark D.; Dove, Rosamund; Rozalski, Rafal; Gackowski, Daniel; Siomek, Agnieszka; Lunec, Joseph; Olinski, Ryszard

    2005-01-01

    The repair of oxidatively damaged DNA is integral to the maintenance of genomic stability, and hence prevention of a wide variety of pathological conditions, such as aging, cancer and cardiovascular disease. The ability to non-invasively assess DNA repair may provide information regarding repair pathways, variability in repair capacity, and susceptibility to disease. The development of assays to measure urinary DNA lesions offered this potential, although it rapidly became clear that possible contribution from diet and cell turnover may influence urinary lesion levels. Whilst early studies attempted to address these issues, up until now, much of the data appears conflicting. However, recent work from our laboratories, in which human volunteers were fed highly oxidatively modified 15 N-labelled DNA demonstrates that diet does not appear to contribute to urinary levels of 8-hydroxyguanine and 7,8-dihydro-8-oxo-2'-deoxyguanosine. Furthermore, we propose that a number of literature reports form an argument against a contribution from cell death. Indeed we, and others, have presented evidence, which strongly suggests the involvement of cell death to be minimal. Taken together, these data would appear to rule out various confounding factors, leaving DNA repair pathways as the principal source of urinary purine, if not DNA, lesions enabling such measurements to be used as indicators of repair

  3. From repairing the damaged landscape to restoration project

    Directory of Open Access Journals (Sweden)

    Céline Granjou

    2010-10-01

    Full Text Available The study adopts an empirical sociological approach to analyse how the objectives behind the revegetation of ski trails and runs in the French alpine resort of Alpe d’Huez have evolved since the 1970s. A revegetation programme was first introduced to repair the scars left by the works conducted to equip the resort with infrastructures, and then, over time, it became a more complex restoration project. At first, revegetation techniques were developed to fight soil erosion, but soon also became associated with the idea of “turning the mountain green again”. Now, 40 years later, revegetation is aimed at restoring both a natural ecosystem and a cultural landscape. The ski resort’s managers, local farmers, technicians, and those conducting research in the area share a common desire to promote autochthony, which in some cases runs the risk of reproducing folklore. Far from adopting an overriding ethical perspective, the study suggests that the area’s physical characteristics, specific history and configuration of local actors have shaped and continue to shape both the manner in which ecological restoration is implemented, through political choices and technical decisions, and the debates it gives rise to. The study concludes by examining the specificity of the findings for Alpe d’Huez and discussing their validity for other alpine ski resorts.A partir d’une approche sociologique empirique, ce texte propose une analyse de la mise en œuvre de la revégétalisation sur la station de l’Alpe d’Huez depuis les années 1970. Il montre comment la revégétalisation est passée d’un objectif de réparation des cicatrices provoquées par les aménagements à une entreprise plus complexe de restauration. S’il s’agissait au départ de répondre à un objectif technique de lutte contre l’érosion, la revégétalisation a pris rapidement une tournure paysagère (reverdissement ; elle a ensuite été pensée dans une perspective de

  4. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  5. Life prediction of repaired welds in a pressurised CrMoV pipe with incorporation of initial damage

    International Nuclear Information System (INIS)

    Hyde, T.H.; Sun, W.; Becker, A.A.; Williams, J.A.

    2004-01-01

    Creep damage FE modelling was performed for fully and partially repaired, thick-walled, circumferential pipe weldments, in which initial damage was incorporated into the calculations to take account of the material degradation of the aged materials. The pipe welds were subjected to a realistic internal pressure and axial loading, the latter of which is allowed to vary within the range allowed by design codes. The material properties used are related to a CrMoV weldment at 640 deg. C. The initial damage distribution was numerically determined using an established procedure. A full post weld heat treatment is assumed to be carried out and the effects of welding induced residual stresses were neglected. The results obtained cover a number of initial damage levels, magnitudes of axial load, and repair excavation depth. On this basis, the sensitivities of the failure life of the repaired welds to these important factors can be evaluated. It was found that both the peak initial damage and the total life are very sensitive to the repair time, particularly when system load is high. The effect of the repair depth for depth: thickness ratios ≥0.5 is generally small for these loadings. There could be a significant benefit if the initial damage in the HAZ of the repair weld, which could be relatively high when the repair time is relatively large, could be reduced by repair welding or by post weld heat treatment

  6. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang, E-mail: songyangwenrong@hotmail.com

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  7. Repair response for DNA double-strand damage through ubiquitylation of chromatin

    International Nuclear Information System (INIS)

    Nakada, Shinichiro

    2011-01-01

    The chromatin modulation (remodeling) via lysine63 (K63)-linked ubiquitin (U) has been found important in the repair response for DNA double-strand damage, and the sequential signaling events at the damage site are explained. As the first step of the repair, MRN (MRE11, RAD50 and nibrin) complex recognizes the damage site and binds to it followed by many linked reactions by recruited and activated enzymes of various protein kinases and phosphatases, which resulting in the enhanced early signaling. As well, gamma-H2AX (phosphorylated histone H2AX) is yielded by the process, to which phosphorylated MDC1 (mediator of DNA-damage checkpoint 1) binds to produce their complex. Then further binding of RNF8-HERC2-UBC13 (ring finger protein 8, hect domain and RCC1 (CHC1)-like domain, and U conjugating enzyme E2N, respectively) occurs for starting the cumulative ubiquitylation of H2AX via K63 as the middle phase response. Signaling in the late phase occurs on the U chain formed at the damage site by binding of RAP (receptor-associated protein) 80 and other recruited 5 proteins like BRCA1 (breast cancer 1, early onset) to repair DNA by the homologous recombination after 53BP1 (tumor protein p53 binding protein) binding followed by methylation of histone H4. In a case of human compound heterozygous RNF168 defect, RIDDLE syndrome (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties), cells have no and slight abnormality of G2/M and intra-S checkpoint, respectively. Another defecting case with homozygous nonsense mutation has high radiosensitivity, intra-S checkpoint abnormality and others. Abnormality of immuno-globulins observed in both cases is similar to that in the RNF8-knockout mouse. Many tasks in chromatin ubiquitylation in the repair are still remained to be solved for protection and treatment of related diseases. (T.T.)

  8. DNA repair and the evolution of transformation in Bacillus subtilis. 3. Sex with damaged DNA

    International Nuclear Information System (INIS)

    Hoelzer, M.A.; Michod, R.E.

    1991-01-01

    Natural genetic transformation in the bacterium Bacillus subtilis provides an experimental system for studying the evolutionary function of sexual recombination. The repair hypothesis proposes that during transformation the exogenous DNA taken up by cells is used as template for recombinational repair of damages in the recipient cell's genome. Earlier results demonstrated that the population density of transformed cells (i.e., sexual cells) increases, relative to nontransformed cells (primarily asexual cells), with increasing dosage of ultraviolet irradiation, provided that the cells are transformed with undamaged homologous DNA after they have become damaged. In nature, however, donor DNA for transformation is likely to come from cells that are as damaged as the recipient cells. In order to better simulate the effects of transformation in natural populations we conducted similar experiments as those just described using damaged donor DNA. The authors document in this report that transformants continue to increase in relative density even if they are transformed with damaged donor DNA. These results suggest that sites of transformation are often damaged sites in the recipient cell's genome

  9. PPARγ in emphysema: blunts the damage and triggers repair?

    Science.gov (United States)

    Kelly, Neil J.; Shapiro, Steven D.

    2014-01-01

    Cigarette smoke is the most common cause of pulmonary emphysema, which results in an irreversible loss of lung structure and function. Th1 and Th17 immune responses have been implicated in emphysema pathogenesis; however, the drivers of emphysema-associated immune dysfunction are not fully understood. In this issue of the JCI, Shan and colleagues found that peroxisome proliferator–activated receptor γ (PPARγ) is downregulated in APCs isolated from the lungs of emphysematous chronic smokers and mice exposed to cigarette smoke. Furthermore, treatment with a PPARγ agonist prevented emphysema development and appeared to reduce emphysema-associated lung volume expansion in mice exposed to cigarette smoke. Further work will need to be done to evaluate the potential of PPARγ agonists to restore lung capacity in emphysematous patients. PMID:24569365

  10. A miR-590/Acvr2a/Rad51b Axis Regulates DNA Damage Repair during mESC Proliferation

    Directory of Open Access Journals (Sweden)

    Qidong Liu

    2014-12-01

    Full Text Available Embryonic stem cells (ESCs enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF, which maintains the self-renewal capability of mouse ESCs (mESCs, significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB and double-strand break (DSB damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal.

  11. Neocarzinostatin-mediated DNA damage and repair in wild-type and repair-deficient Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Kuo, W.L.; Meyn, R.E.; Haidle, C.W.

    1984-01-01

    The formation and repair of neocarzinostatin (NCS)-mediated DNA damage were examined in two strains of Chinese hamster ovary cells. The response in strain EM9, a mutant line selected for its sensitivity to ethyl methanesulfonate and shown to have a defect in the repair of X-ray-induced DNA breaks, was compared with that observed in the parental strain (AA8). The DNA strand breaks and their subsequent rejoining were measured using the method of elution of DNA from filters under either alkaline (for single-strand breaks), or nondenaturing conditions (for double-strand breaks). Colony survival assays showed that the mutant was more sensitive to the action of NCS than was the parental strain by a factor of approximately 1.5. Elution analyses showed that the DNA from both strains was damaged by NCS; the mutant displayed more damage than the parent under the same treatment conditions. Single-strand breaks were produced with a frequency of about 10 to 15 times the frequency of double-strand breaks. Both strains were able to rejoin both single-strand breaks and double-strand breaks induced by NCS treatment. The strand break data suggest that the difference in NCS-mediated cytotoxicity between EM9 and AA8 cells may be directly related to the enhanced production of DNA strand breaks in EM9. However, the fact that much higher doses of NCS were required in the DNA studies compared to the colony survival assays implies that either a small number of DNA breaks occur in a critical region of the genome, or that lesions other than DNA strand breaks are partly responsible for the observed cytotoxicity

  12. Real-Time Vehicle Routing for Repairing Damaged Infrastructures Due to Natural Disasters

    Directory of Open Access Journals (Sweden)

    Huey-Kuo Chen

    2011-01-01

    Full Text Available We address the task of repairing damaged infrastructures as a series of multidepot vehicle-routing problems with time windows in a time-rolling frame. The network size of the tackled problems changes from time to time, as new disaster nodes will be added to and serviced disaster nodes will be deleted from the current network. In addition, an inaccessible disaster node would become accessible when one of its adjacent disaster nodes has been repaired. By the “take-and-conquer” strategy, the repair sequence of the disaster nodes in the affected area can be suitably scheduled. Thirteen instances were tested with our proposed heuristic, that is, Chen et al.'s approach. For comparison, Hsueh et al.'s approach (2008 with necessary modification was also tested. The results show that Chen et al.'s approach performs slightly better for larger size networks in terms of objective value.

  13. DNA damage and repair activity after broccoli intake in young healthy smokers

    DEFF Research Database (Denmark)

    Riso, Patrizia; Martini, Daniela; Møller, Peter

    2010-01-01

    compounds, including smokers. The aim of the study was to evaluate the effect of broccoli intake on biomarkers of DNA damage and repair. Twenty-seven young healthy smokers consumed a portion of steamed broccoli (250 g/day) or a control diet for 10 days each within a crossover design with a washout period...... mRNA expression levels of repair and defence enzymes: 8-oxoguanine DNA glycosylase (OGG1), nucleoside diphosphate linked moiety X-type motif 1 (NUDT1) and heme oxygenase 1 (HO-1). After broccoli consumption, the level of oxidised DNA lesions decreased by 41% (95% confidence interval: 10%, 72......%) and the resistance to H(2)O(2)-induced DNA strand breaks increased by 23% (95% CI: 13%, 34%). Following broccoli intake, a higher protection was observed in subjects with glutathione S-transferase (GST) M1-null genotype. The expression level and activity of repair enzymes was unaltered. In conclusion, broccoli...

  14. Refinement of Foam Backfill Technology for Expedient Airfield Damage Repair; Phase 2: Development of Prototype Foam Dispensing Equipment and Improved Tactics, Techniques and Procedures

    Science.gov (United States)

    2017-12-01

    ER D C TR -1 7- 14 U.S. Air Force Rapid Airfield Damage Repair Modernization Program Refinement of Foam Backfill Technology for...Backfill Technology for Expedient Airfield Damage Repair Phase II: Development of Prototype Foam Dispensing Equipment and Improved Tactics...procedures (TTPs) for rapid airfield damage repair (RADR) using foam backfill technology . Three different prototype foam dispensing systems were

  15. Modification of the repair of potentially lethal damage in plateau-phase Chinese hamster cells by 2-chlorodeoxyadenosine

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Kiyoshi; Hiraoka, Wakako; Kuwabara, Mikinori; Matsuda, Akira; Ueda, Tohru; Sato, Fumiaki.

    1988-09-01

    The ability of 2-chlorodeoxyadenosine, a ribonucleotide reductase inhibitor, to inhibit the repair of potentially lethal damage was demonstrated in Chinese hamster V79 cells after X irradiation in plateau-phase cultures. This ability of the drug was completely diminished when deoxycytidine was added at the same time, though this was slightly affected by the addition of adenosine, suggesting that this drug was phosphorylated by deoxycytidine kinase to serve as an inhibitor of the repair of potentially lethal damage. Compared with hydroxyurea, another ribonucleotide reductase inhibitor, this drug appeared to contain its own activity which suppressed the repair of potentially lethal damage. A combined study of post-irradiation treatment with hypertonic salt solution and with this drug on the fixation of potentially lethal damage revealed that this drug inhibited the repair of hypertonic-insensitive potentially lethal damage.

  16. Modification of the repair of potentially lethal damage in plateau-phase Chinese hamster cells by 2-chlorodeoxyadenosine

    International Nuclear Information System (INIS)

    Tanabe, Kiyoshi; Hiraoka, Wakako; Kuwabara, Mikinori; Matsuda, Akira; Ueda, Tohru; Sato, Fumiaki.

    1988-01-01

    The ability of 2-chlorodeoxyadenosine, a ribonucleotide reductase inhibitor, to inhibit the repair of potentially lethal damage was demonstrated in Chinese hamster V79 cells after X irradiation in plateau-phase cultures. This ability of the drug was completely diminished when deoxycytidine was added at the same time, though this was slightly affected by the addition of adenosine, suggesting that this drug was phosphorylated by deoxycytidine kinase to serve as an inhibitor of the repair of potentially lethal damage. Compared with hydroxyurea, another ribonucleotide reductase inhibitor, this drug appeared to contain its own activity which suppressed the repair of potentially lethal damage. A combined study of post-irradiation treatment with hypertonic salt solution and with this drug on the fixation of potentially lethal damage revealed that this drug inhibited the repair of hypertonic-insensitive potentially lethal damage. (author)

  17. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    Directory of Open Access Journals (Sweden)

    Annemarie Grindel

    Full Text Available Diabetes mellitus type 2 (T2DM is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration.Female T2DM patients (n = 146 were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72. In addition, tertiles according to diabetes duration (DD were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49. Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals.No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group.BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical

  18. DNA Damage and Base Excision Repair in Mitochondria and Their Role in Aging

    Directory of Open Access Journals (Sweden)

    Ricardo Gredilla

    2011-01-01

    Full Text Available During the last decades, our knowledge about the processes involved in the aging process has exponentially increased. However, further investigation will be still required to globally understand the complexity of aging. Aging is a multifactorial phenomenon characterized by increased susceptibility to cellular loss and functional decline, where mitochondrial DNA mutations and mitochondrial DNA damage response are thought to play important roles. Due to the proximity of mitochondrial DNA to the main sites of mitochondrial-free radical generation, oxidative stress is a major source of mitochondrial DNA mutations. Mitochondrial DNA repair mechanisms, in particular the base excision repair pathway, constitute an important mechanism for maintenance of mitochondrial DNA integrity. The results reviewed here support that mitochondrial DNA damage plays an important role in aging.

  19. Inhibiting the repair of DNA damage induced by gamma irradiation in rat thymocytes

    International Nuclear Information System (INIS)

    Smit, J.A.; Stark, J.H.

    1994-01-01

    This study assessed the ability of 11 established and potential radiosensitizing agents to retard the repair of radiation-induced DNA damage with a view to enhancing the immunosuppressive effects of in vivo lymphoid irradiation. The capability of irradiated rat thymocytes to repair DNA damage was assessed by an adaptation of the fluorimetric unwinding method. Three compounds, 3-aminobenzamide (3-AB), novobiocin and flavone-8-acetic acid (FAA), inhibited repair significantly. We also report the effect of low-dose irradiation combined with repair inhibitors on the relationship between DNA strand breaks, fragmentation, cell viability and use of nicotinamide adenine dinucleotide (NAD). DNA fragmentation was increased by 1 mM/l FAA, 1 mM/l novobiocin and 50 μM/l RS-61443 within 3 h of incubation. The latter two compounds also proved cytotoxic. All three drugs augmented the effect of ionizing radiation on the use of NAD. Of the agents investigated, FAA showed the most promise for augmenting the immunosuppressive action of irradiation at nontoxic, pharmacokinetically achievable concentrations. 33 refs., 1 fig., 2 tabs

  20. Rotator Interval Lesion and Damaged Subscapularis Tendon Repair in a High School Baseball Player

    Directory of Open Access Journals (Sweden)

    Tomoyuki Muto

    2015-01-01

    Full Text Available In 2013, a 16-year-old baseball pitcher visited Nobuhara Hospital complaining of shoulder pain and limited range of motion in his throwing shoulder. High signal intensity in the rotator interval (RI area (ball sign, injured subscapularis tendon, and damage to both the superior and middle glenohumeral ligaments were identified using magnetic resonance imaging (MRI. Repair of the RI lesion and partially damaged subscapularis tendon was performed in this pitcher. During surgery, an opened RI and dropping of the subscapularis tendon were observed. The RI was closed in a 90° externally rotated and abducted position. To reconfirm the exact repaired state of the patient, arthroscopic examination was performed from behind. However, suture points were not visible in the >30° externally rotated position, which indicates that the RI could not be correctly repaired with the arthroscopic procedure. One year after surgery, the patient obtained full function of the shoulder and returned to play at a national convention. Surgical repair of the RI lesion should be performed in exactly the correct position of the upper extremity.

  1. Radiation-induced thymine base damage and its excision repair in active and inactive chromatin of HeLa cells

    International Nuclear Information System (INIS)

    Patil, M.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    The extent of production and excision repair of 5,6-dihydroxydihydrothymine type base (t') damage was determined in transcriptionally active and inactive chromatin of HeLa cells after exposure to 6.8 MeV electrons. It was observed that not only the yield but also rate of repair of t' products was greater in the active chromatin compared to the inactive chromatin of HeLa cells. The results strongly indicate that the conformation of chromatin is an important factor in determining the sensitivity to radiation damage and accessibility to enzymes required for repair of such damage. (author)

  2. Essential and distinct roles of the F-box and helicase domains of Fbh1 in DNA damage repair

    Directory of Open Access Journals (Sweden)

    Shinagawa Hideo

    2008-03-01

    Full Text Available Abstract Background DNA double-strand breaks (DSBs are induced by exogenous insults such as ionizing radiation and chemical exposure, and they can also arise as a consequence of stalled or collapsed DNA replication forks. Failure to repair DSBs can lead to genomic instability or cell death and cancer in higher eukaryotes. The Schizosaccharomyces pombe fbh1 gene encodes an F-box DNA helicase previously described to play a role in the Rhp51 (an orthologue of S. cerevisiae RAD51-dependent recombinational repair of DSBs. Fbh1 fused to GFP localizes to discrete nuclear foci following DNA damage. Results To determine the functional roles of the highly conserved F-box and helicase domains, we have characterized fbh1 mutants carrying specific mutations in these domains. We show that the F-box mutation fbh1-fb disturbs the nuclear localization of Fbh1, conferring an fbh1 null-like phenotype. Moreover, nuclear foci do not form in fbh1-fb cells with DNA damage even if Fbh1-fb is targeted to the nucleus by fusion to a nuclear localization signal sequence. In contrast, the helicase mutation fbh1-hl causes the accumulation of Fbh1 foci irrespective of the presence of DNA damage and confers damage sensitivity greater than that conferred by the null allele. Additional mutation of the F-box alleviates the hypermorphic phenotype of the fbh1-hl mutant. Conclusion These results suggest that the F-box and DNA helicase domains play indispensable but distinct roles in Fbh1 function. Assembly of the SCFFbh1 complex is required for both the nuclear localization and DNA damage-induced focus formation of Fbh1 and is therefore prerequisite for the Fbh1 recombination function.

  3. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    OpenAIRE

    Sterpone, Silvia; Cozzi, Renata

    2010-01-01

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to de...

  4. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Theo A. Knijnenburg

    2018-04-01

    Full Text Available Summary: DNA damage repair (DDR pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. : Knijnenburg et al. present The Cancer Genome Atlas (TCGA Pan-Cancer analysis of DNA damage repair (DDR deficiency in cancer. They use integrative genomic and molecular analyses to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level alterations with genome-wide measures of genome instability and impaired function, and demonstrate the prognostic utility of DDR deficiency scores. Keywords: The Cancer Genome Atlas PanCanAtlas project, DNA damage repair, somatic mutations, somatic copy-number alterations, epigenetic silencing, DNA damage footprints, mutational signatures, integrative statistical analysis, protein structure analysis

  5. Novel Combinatory Approaches to Repair Visual System after Optic Nerve Damage

    Science.gov (United States)

    2014-09-01

    Novel Combinatory Approaches to Repair Visual System After Optic Nerve Damage 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...biological functions such as metabolism, growth, cell cycle, and survival ( Cardone et al., 1998; Diehl, Cheng, Roussel, & Sherr, 1998; Hers, Vincent...of injured adult sensory neurons. The Journal of Neuroscience, 21, 7161–7170. Cardone , M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F

  6. Fluorescence in situ hybridization: an improved method of quantitating chromosome damage and repair

    International Nuclear Information System (INIS)

    Brown, J.M.; Evans, J.W.

    1993-01-01

    The authors combined fluorescence in situ hybridization (FISH) with specific full-length chromosome probes using the premature chromosome condensation (PCC) technique chromosome condensation (PCC) technique to simplify scoring chromosome damage and its repair. They have shown the technique works well and enables breaks and exchanges to be readily detected and scored in individual chromosomes. A chromosome 4 full-length specific library has been used in initial studies. (UK)

  7. Aircraft Battle Damage Repair for the 90’s and Beyond

    Science.gov (United States)

    1994-03-01

    far greater than was the US system during the Viet - nam Conflict. In fact, the United States mounted a large-scale resupply effort to assirt the...8217,luded. The procedures restore suffi. ciezu strength to accomplish the required mnission while avoidilig unnecessar-y or cosmetic repairs. The ABDR...from a mission with structural damage. 4 As the war escalated in 1964, the Viet Cong began their attack on US Air Force bases and during the course of

  8. Immunologic proof of DNS irradiation damages and their repair in stationary yeast cells

    International Nuclear Information System (INIS)

    Waller, H.

    1980-08-01

    In rabbits an antiserum was produced by injecting UV-irradiated denaturated calf-thymus DNS; after inhibiting unspecific bindings, a specific serological reaction with UV-induced irradiation damages could be taken as present in this antiserum. By the ammonium sulphate precipitation as immunologic method of detection, after UV-irradiation the genesis of damages at certain sites in the DNS of different yeast lineages and their repair was observed. The elemination of UV-induced DNS damages was observed after an incubation in a nutrien medium, after photo-reactivation and after combining both therapeutic treatments. The following results were obtained: the detected DNS damage (number of induced dimeres/yeast genomes) had the same degree in the four yeast lineages. Apart from the excision-negative mutante 2094 for all yeast lineages a repair efficiency of 60% could be detected. All yeast lineages presented themselves as photographically to be reactivated; however, in all cases a DNS damage of 40 to 50% remained. The examinations for the specificity of antiserum against roentgenologically irradiated DNS led to the conclusion that the antibody population of the serum consisted mainly of immunoglobulines against unchanged DNS areas. A specific immunological reaction of only about 10% could be achieved. (orig./MG) [de

  9. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.

    Science.gov (United States)

    Zhang, Yaru; O'Brien, Patrick J

    2015-11-20

    Human alkyladenine DNA glycosylase (AAG) initiates the base excision repair pathway by excising alkylated and deaminated purine lesions. In vitro biochemical experiments demonstrate that AAG uses facilitated diffusion to efficiently search DNA to find rare sites of damage and suggest that electrostatic interactions are critical to the searching process. However, it remains an open question whether DNA searching limits the rate of DNA repair in vivo. We constructed AAG mutants with altered searching ability and measured their ability to protect yeast from alkylation damage in order to address this question. Each of the conserved arginine and lysine residues that are near the DNA binding interface were mutated, and the functional impacts were evaluated using kinetic and thermodynamic analysis. These mutations do not perturb catalysis of N-glycosidic bond cleavage, but they decrease the ability to capture rare lesion sites. Nonspecific and specific DNA binding properties are closely correlated, suggesting that the electrostatic interactions observed in the specific recognition complex are similarly important for DNA searching complexes. The ability of the mutant proteins to complement repair-deficient yeast cells is positively correlated with the ability of the proteins to search DNA in vitro, suggesting that cellular resistance to DNA alkylation is governed by the ability to find and efficiently capture cytotoxic lesions. It appears that chromosomal access is not restricted and toxic sites of alkylation damage are readily accessible to a searching protein.

  10. Compensation of damage to the environment caused by industrial catastrophes

    International Nuclear Information System (INIS)

    Smets, H.

    1986-01-01

    Industrial accidents have caused considerable damage to the environment and the author reviews third party liability systems and insurance in the different countries concerned. He considers that indemnification of major accidents costing between 50 millions and several billions French francs requires the setting up of an elaborate system which makes provision for high amounts. The most dangerous activities in the oil and chemical sectors should be subject to special requirements regarding insurance or financial security patterned on the system for nuclear installations. (NEA) [fr

  11. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand.

    Science.gov (United States)

    Reis, António M C; Mills, Wilbur K; Ramachandran, Ilangovan; Friedberg, Errol C; Thompson, David; Queimado, Lurdes

    2012-01-01

    Endogenous DNA damage is removed mainly via base excision repair (BER), however, whether there is preferential strand repair of endogenous DNA damage is still under intense debate. We developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to map and quantify in vivo endogenous DNA damage. Using PADDA, we documented significantly higher levels of endogenous damage in Saccharomyces cerevisiae cells in stationary phase than in exponential phase. We also documented that yeast BER-defective cells have significantly higher levels of endogenous DNA damage than isogenic wild-type cells at any phase of growth. PADDA provided detailed fingerprint analysis at the single-nucleotide level, documenting for the first time that persistent endogenous nucleotide damage in CAN1 co-localizes with previously reported spontaneous CAN1 mutations. To quickly and reliably quantify endogenous strand-specific DNA damage in the constitutively expressed CAN1 gene, we used PADDA on a real-time PCR setting. We demonstrate that wild-type cells repair endogenous damage preferentially on the CAN1 transcribed strand. In contrast, yeast BER-defective cells accumulate endogenous damage preferentially on the CAN1 transcribed strand. These data provide the first direct evidence for preferential strand repair of endogenous DNA damage and documents the major role of BER in this process.

  12. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    Science.gov (United States)

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  13. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  14. Similar distributions of repaired sites in chromatin of normal and xeroderma pigmentosum variant cells damaged by ultraviolet light

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1979-01-01

    Excision repair of damage from ultraviolet light in both normal and xeroderma pigmentosum variant fibroblasts at early times after irradiation occurred preferentially in regions of DNA accessible to micrococcal nuclease digestion. These regions are predominantly the linker regions between nucleosomes in chromatin. The alterations reported at polymerization and ligation steps of excision repair in the variant are therefore not associated with changes in the relative distributions of repair sites in linker and core particle regions of DNA. (Auth.)

  15. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    Science.gov (United States)

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. [Causes and management of severe acute liver damage during pregnancy].

    Science.gov (United States)

    Sepulveda-Martinez, Alvaro; Romero, Carlos; Juarez, Guido; Hasbun, Jorge; Parra-Cordero, Mauro

    2015-05-01

    Abnormalities in liver function tests appear in 3% of pregnancies. Severe acute liver damage can be an exclusive condition of pregnancy (dependent or independent of pre-eclampsia) or a concomitant disease. HELLP syndrome and acute fatty liver of pregnancy are the most severe liver diseases associated with pregnancy. Both appear during the third trimester and have a similar clinical presentation. Acute fatty liver may be associated with hypoglycemia and HELLP syndrome is closely linked with pre-eclampsia. Among concomitant conditions, fulminant acute hepatitis caused by medications or virus is the most severe disease. Its clinical presentation may be hyper-acute with neurological involvement and severe coagulation disorders. It has a high mortality and patients should be transplanted. Fulminant hepatic failure caused by acetaminophen overdose can be managed with n-acetyl cysteine. Because of the high fetal mortality rate, the gestational age at diagnosis is crucial.

  17. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage binding protein.

    NARCIS (Netherlands)

    S. Keeney; A.P.M. Eker (André); T. Brody; W. Vermeulen (Wim); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan); S. Linn

    1994-01-01

    textabstractCells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells

  18. Repair of damage by ultraviolet radiation in xeroderma pigmentosum cell strains of complementation groups E and F

    NARCIS (Netherlands)

    Zelle, B.; Berends, F.; Lohman, P.H.M.

    1980-01-01

    The xeroderma pignemtosum fibroblast strains XP2RO, complementation group E, and XP23OS, group F were compared with normal human primary fibroblasts UV. regard to repair of damage induced by 254-nn UV> In XP2RO cells, repair DNA synthesis, measured by autoradiography (unscheduled DNA synthesis =

  19. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    Science.gov (United States)

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  20. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    International Nuclear Information System (INIS)

    Cadet, J.; Ravanat, J.L.; Carell, T.; Cellai, L.; Chatgilialoglu, Ch.; Gimisis, Th.; Miranda, M.; O'Neill, P.; Robert, M.

    2008-01-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH) · radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  1. An immunochemical approach to the study of DNA damage and repair

    International Nuclear Information System (INIS)

    Wallace, S.S.; Erlanger, B.F.

    1992-05-01

    The overall objective of this project has been to develop immunochemical methods to quantitate unique DNA base damages in order to facilitate studies on radiation-induced damage production and repair. Specifically, we have been using antibodies raised to damaged bases to quantitate unique lesions in model systems in order to evaluate their potential biological consequences. Our approach has been to synthesize modified nucleotides or nucleosides, conjugate them to protein carriers, and use the conjugates as immunogens in rabbits or to prepare monoclonal antibodies. We have been studying damages that are stable radiolysis products found in X-irradiated DNA and thus of potential biological consequence. Our aim is to build an in vitro and in vivo data base on the interactions between model DNA lesions and such cellular enzymes as DNA polymerases and repair endonucleases. Initial studies have focused on pyrimidine ring saturation products (thymine glycol.and dihydrothymine), products resulting from ring fragmentation or base loss (urea, Β-ureidoisobutyric acid, abasic sites), 7-hydro-8-oxopurines, and more recently, cytosine radiolysis products. These modified bases serve as useful models for examining the potential lethal and/or mutagenic (carcinogenic) effects of the products of DNA radiolysis

  2. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  3. Poly(ADP-ribose) metabolism in X-irradiated Chinese hamster cells: its relation to repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Ben-Hur, E.; Elkind, M.M.

    1984-01-01

    Nicotinamide-adenine dinucleotide (NAD + ) is the substrate used by cells in poly(ADP-ribose) synthesis. X-irradiation of log-phase Chinese hamster cells caused a rapid decrease in NAD + levels which was linearly dependent on radiation dose. The activity of ADP-ribosyl transferase (ADPRT) also increased linearly with radiation dose. The decrease of NAD + was slower, and the increase in ADPRT activity was less pronounced, in a radiation sensitive line, V79-AL162/S-10. An inhibitor of ADPRT, m-aminobenzamide, largely prevented the depletion of cellular NAD + and reduced the rate at which ADPRT activity disappeared during post-irradiation incubation. Post-irradiation treatment with hypertonic buffer or with medium containing D 2 O-which inhibit repair of radiation-induced potentially lethal damage-enhanced the depletion of NAD + and prevented the reduction in ADPRT activity following irradiation. The characteristics of the effects of treatment with hypertonic buffer on NAD + metabolism were qualitatively similar to the effects that such treatment has on radiation-induced cell killing. These results suggest that poly(ADP-ribose) synthesis after irradiation plays a role in the repair of potentially lethal damage. (author)

  4. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    Science.gov (United States)

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.

  5. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  6. RNA damage in biological conflicts and the diversity of responding RNA repair systems

    Science.gov (United States)

    Burroughs, A. Maxwell; Aravind, L.

    2016-01-01

    RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins. PMID:27536007

  7. Repair of DNA damage induced by ionizing radiation and benzo[a]pyrene in mammalian cells

    International Nuclear Information System (INIS)

    Cerutti, P.; Shinohara, K.; Remsen, J.

    1977-01-01

    The biological effects of DNA-damaging agents are codetermined by the structural characteristics of the lesions, the quality and extent of the local distortion of DNA and chromatin structure, and the mode(s) of damage processing used by a given type of cell. Persistent damage (i.e., damage that is not removed before it is reached by DNA replication) may be mostly responsible for mutagenesis and carcinogenesis. To understand the effects of environmental physical and chemical DNA-damaging agents on human health, the mechanisms of damage processing used by human cells have to be elucidated. We report our studies of the excision of gamma-ray products of the 5,6-dihydroxydihydrothymine type (t 0 /sub 2//sup γ/) in normal human fibroblasts and in fibroblasts from patients with the hereditary diseases Fanconi's anemia (FA) and ataxia telangiectasia (AT). Both diseases are characterized by chromosomal instability and increased susceptibility for the development of cancer. Formation and repair of DNA-benzo[a]pyrene adducts were studied in baby hamster kidney cells, secondary mouse embryo cells, and human lymphoma. The relative persistence of DNA-B[a]P may explain the high mutagenicity of the 7,8-dihydroxy-9,10-epoxy-tetrahydrobenzo[a]pyrene metabolites in rodent cells that has been observed by several investigators

  8. Inhibition of potential lethal damage repair and related gene expression after carbon-ion beam irradiation to human lung cancer grown in nude mice

    International Nuclear Information System (INIS)

    Yashiro, Tomoyasu; Fujisawa, Takehiko; Koyama-Saegusa, Kumiko; Imai, Takashi; Miyamoto, Tadaaki

    2007-01-01

    Using cultured and nude mouse tumor cells (IA) derived from a human lung cancer, we previously demonstrated their radiosensitivity by focusing attention on the dynamics of tumor clonogens and the early and rapid survival recovery (potential lethal damage repair: PLD repair) occurring after X-ray irradiation. To the authors' knowledge, this is the first study demonstrating gene expression in association with PLD repair after carbon-ion beam or X-ray irradiation to cancer cells. In this study we tried to detect the mechanism of DNA damage and repair of the clonogens after X-ray or carbon-ion beam irradiation. At first, colony assay method was performed after irradiation of 12 Gy of X-ray or 5 Gy of carbon-ion beam to compare the time dependent cell survival of the IA cells after each irradiation pass. Second, to search the genes causing PLD repair after irradiation of X-ray or carbon-ion beam, we evaluated gene expressions by using semi-quantitative RT-PCR with the selected 34 genes reportedly related to DNA repair. The intervals from the irradiation were 0, 6, 12 and 24 hr for colony assay method, and 0, 3, 18 hr for RT-PCR method. From the result of survival assays, significant PLD repair was not observed in carbon-ion beam as compared to X-ray irradiation. The results of RT-PCR were as follows. The gene showing significantly higher expressions after X-ray irradiation than after carbon-ion beam irradiation was PCNA. The genes showing significantly lower expressions after X-ray irradiation rather than after carbon-ion beam irradiation were RAD50, BRCA1, MRE11A, XRCC3, CHEK1, MLH1, CCNB1, CCNB2 and LIG4. We conclude that PCNA could be a likely candidate gene for PLD repair. (author)

  9. Climatology of damage-causing hailstorms over Germany

    Science.gov (United States)

    Kunz, M.; Puskeiler, M.; Schmidberger, M.

    2012-04-01

    In several regions of Central Europe, such as southern Germany, Austria, Switzerland, and northern Italy, hailstorms often cause substantial damage to buildings, crops, or automobiles on the order of several million EUR. In the federal state of Baden-Württemberg, for example, most of the insured damage to buildings is caused by large hailstones. Due to both their local-scale extent and insufficient direct monitoring systems, hail swaths are not captured accurately and uniquely by a single observation system. Remote-sensing systems such as radars are able to detect convection signals in a basic way, but they lack the ability to discern a clear relation between measured intensity and hail on the ground. These shortcomings hamper statistical analysis on the hail probability and intensity. Hail modelling thus is a big challenge for the insurance industry. Within the project HARIS-CC (Hail Risk and Climate Change), different meteorological observations are combined (3D / 2D radar, lightning, satellite and radiosounding data) to obtain a comprehensive picture of the hail climatology over Germany. The various approaches were tested and calibrated with loss data from different insurance companies between 2005 and 2011. Best results are obtained by considering the vertical distance between the 0°C level of the atmosphere and the echo top height estimated from 3D reflectivity data from the radar network of German Weather Service (DWD). Additionally, frequency, intensity, width, and length of hail swaths are determined by applying a cell tracking algorithm to the 3D radar data (TRACE3D; Handwerker, 2002). The hailstorm tracks identified are merged with loss data using a geographical information system (GIS) to verify damage-causing hail on the ground. Evaluating the hailstorm climatology revealed that hail probability exhibits high spatial variability even over short distances. An important issue is the spatial pattern of hail occurrence that is considered to be due to

  10. Repair of ultraviolet light-induced damage in Micrococcus radiophilus, and extremely resistant microorganism

    International Nuclear Information System (INIS)

    Lavin, M.F.; Jenkins, A.; Kidson, C.

    1976-01-01

    Repair of ultraviolet radiation damage was examined in an extremely radioresistant organism, Micrococcus radiophilus. Measurement of the number of thymine-containing dimers formed as a function of ultraviolet dose suggests that the ability of this organism to withstand high doses of ultraviolet radiation (20,000 ergs/mm 2 ) is not related to protective screening by pigments. M. radiophilus carries out a rapid excision of thymine dimers at doses of ultraviolet light up to 10,000 ergs/mm 2 . Synthesis of deoxyribonucleic acid is reduced after irradiation, but after removal of photodamage the rate approaches that in unirradiated cells. A comparison is drawn with Micrococcus luteus and M. radiodurans. We conclude that the extremely high resistance to ultraviolet irradiation in M. radiophilus is at least partly due to the presence of an efficient excision repair system

  11. Flexural repair/strengthening of pre-damaged R.C. beams using embedded CFRP rods

    Directory of Open Access Journals (Sweden)

    Alaa M. Morsy

    2015-12-01

    Full Text Available Many reinforced concrete R.C. elements need either strengthening due to the need of increasing the service loads or repair due to overloading stress or environmental deterioration affecting these elements. In this paper an experimental program is presented to investigate the effect of using embedded CFRP rod as NSM reinforcement for strengthening/repairing R.C. beams pre-damaged by loading to different loading levels and comparing the results to those of non-preloaded beams. A total of five beams were cast and six beams were tested under four point loading. The main objective of this paper was to investigate the effect of providing one 12 mm diameter CFRP rod in addition to the existing steel reinforcement. Three beams were tested to failure directly without any preloading, whereas the other three beams were firstly subjected to preloading to different load levels. Following that these three beams were strengthened and were tested up to failure.

  12. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.; Sunkara, P.S.

    1990-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggest that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair. (author)

  13. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.; Sunkara, P.S. (Merrell Dow Research Inst., Cincinnati, OH (USA))

    1990-09-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggest that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair. (author).

  14. Bone marrow scintigraphy: evaluation of damage caused by cancer chemotherapy

    International Nuclear Information System (INIS)

    Ciambellotti, E.; Cartia, G.L.; Coda, C.

    1988-01-01

    For various reasons the well-known myelopoietic damage caused by cancer chemotherapy is not easy to quantify by means of usual diagnostic procedures. The bone marrow scan with 99m Tc-nanocolloid rapidly cleared by the phagocitic action of the RES, which has a topographic extension similar to red marrow, has been used for many years to evaluate the inflammatory and neoplastic diseases, both localized and diffuse. Such examination was thus performed in patients undergoing cytostatic therapy, either to follow-up metastatic lesions or to evaluate a tissue damage due to different drugs. The BMS is easily performed and has no side-effects. It consists of a dinamic and a static part. Moreover, it helped pointing out important diagnostic data, such as the reduction of the sacroiliac uptake index below the normal values (3.7) in 33 out of 57 cases, and an abnormal distribution of nanocolloid in the skeleton (Munz's classification, 1983) in 37 out of 69 cases, higher in more myelotoxic cytostatic, which could be detected even after a few months

  15. Electron beam deposition system causing little damage to organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Minoru [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Business Incubation Department, Hitachi Zosen Corporation, 2-11 Funamachi 2-Chome, Taisho-ku, Osaka 551-0022 (Japan); Matsumura, Michio, E-mail: matsu@chem.es.osaka-u.ac.jp [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Maeda, Yasuhiro [Business Incubation Department, Hitachi Zosen Corporation, 2-11 Funamachi 2-Chome, Taisho-ku, Osaka 551-0022 (Japan)

    2011-07-29

    Conditions for deposition of an aluminum (Al) layer on an organic light-emitting layer with an electron beam (EB) deposition system were optimized with respect to deposition rate and damage to organic layers. The damage to the organic layers was found to be mostly caused by X-rays emitted from a target bombarded with accelerated electrons. In order to decrease the X-ray intensity while maintaining a high deposition rate, we used an EB source which emits high-density EB at low acceleration voltage. In addition, we inserted a heat reflector and a sintered-carbon liner between the Al target and copper crucible to improve heat insulation. As a result, the voltage needed for the deposition of Al electrodes at a rate of about 8 nm/s was lowered from normal voltages of 2.0 kV or higher to as low as 1.5 kV. To reduce the number of electrons hitting the substrate, we set pole pieces near the target and an electron trap in the chamber. The devices on which Al electrodes were deposited with the EB system showed almost the same properties as those of devices on which the Al electrodes were deposited by a resistive-heating method.

  16. Characterization of non-dimer DNA lesions and cellular damages caused by ultraviolet light

    International Nuclear Information System (INIS)

    Nakao, Kumi

    1989-01-01

    To understand the mechanisms of carcinogenicity and cytotoxicity induced by ultraviolet (UV) light, non-dimer DNA damages produced by near UV light (wave-length: 290∼320 nm) were examined by alkaline elution using Chinese hamster V-79 cells. UV exposure produced a dose-dependent induction of DNA single strand breaks and DNA-protein crosslinks. However, neither of these DNA lesions were repaired within a 24 hr incubation of the cells following UV exposure. Rather the number of these lesions increased. Also, UV exposure inhibited DNA and RNA synthesis. In addition, UV induced both cytotoxicity and chromosomal aberration. Electron spin resornance (ESR) studies showed that the exposure of cells to UV light resulted in the appearance of an ESR signal at -120degC. The roles of glutathione, vitamin E and vitamin B 2 , which were celluar antioxidant, on the induction of cytotoxicity by UV exposure were also examined. Pretreatment with vitamin E reduced the cytotoxicty caused by UV, whereas neither preteatment with vitamin B 2 nor the alteration of cellular gluthaione content affected the cytotoxicity. These results suggest that non-dimer DNA damages, such as DNA single strand breaks and DNA-protein crosslinks play an important role in inducing UV-carcinogenicity and UV-cytotoxicity, and that the mechanisms of these damages may be associated with the generation of free radicals. (author)

  17. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity.

    Science.gov (United States)

    Mao, Peng; Brown, Alexander J; Malc, Ewa P; Mieczkowski, Piotr A; Smerdon, Michael J; Roberts, Steven A; Wyrick, John J

    2017-10-01

    DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers. © 2017 Mao et al.; Published by Cold Spring Harbor Laboratory Press.

  18. [Study on sperm damage caused by trichloroethylene in male rats].

    Science.gov (United States)

    Wu, De-sheng; Yang, Lin-qing; Huang, Sui; Liu, Jian-jun; Xu, Xin-yun; Huang, Hai-yan; Gong, Chun-mei; Hu, Gong-hua; Liu, Qing-cheng; Yang, Xi-fei; Hong, Wen-xu; Zhou, Li; Huang, Xin-feng; Yuan, Jian-hui; Zhuang, Zhi-xiong

    2013-11-01

    To study in vitro sperm damage caused by trichloroethylene in male rats. Sperms of Sprague-Dawley (SD) rats were collected 4 hours after being contaminated by trichloroethylene of 0, 2, 4, 6, 8, and 10 mmol/L in vitro. Giemsa staining was performed to observe the morphological changes of sperms, and flow cytometer was used to detect the changes in mitochondrial membrane potential. The sperm motilities in 6, 8, and 10 mmol/L trichloroethylene groups decreased significantly compared with that in control group (P trichloroethylene groups were significantly higher than that in control group (Ptrichloroethylene groups and control group (Ptrichloroethylene can reduce sperm motility and increase the aberration rate and apoptosis rate of sperms in male SD rats.

  19. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells

    OpenAIRE

    Lee, Hyun-Wook; Park, Sung-Hyun; Weng, Mao-wen; Wang, Hsiang-Tsui; Huang, William C.; Lepor, Herbert; Wu, Xue-Ru; Chen, Lung-Chi; Tang, Moon-shong

    2018-01-01

    Significance E-cigarette smoke (ECS) delivers nicotine through aerosols without burning tobacco. ECS is promoted as noncarcinogenic. We found that ECS induces DNA damage in mouse lung, bladder, and heart and reduces DNA-repair functions and proteins in lung. Nicotine and its nitrosation product 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone can cause the same effects as ECS and enhance mutations and tumorigenic cell transformation in cultured human lung and bladder cells. These results indica...

  20. Involvement of recQ in the ultraviolet damage repair pathway in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Hua Xiaoting; Huang Lifen; Tian Bing; Hua Yuejin

    2008-01-01

    Deinococcus radiodurans is a bacterium which can survive extremely DNA damage. To investigate the relationship between recQ and the ultraviolet radiation (UV) damage repair pathway, we created a four mutant strain by constructing recQ knockout mutants in uvrA1, uvrA2, and uvsE backgrounds. Using the rpoB/Rif r system, we measured the mutation frequencies and rates in wild type, recQ (MQ), uvsE uvrA1 uvrA2 (TNK006), and uvsE uvrA1 uvrA2 recQ (TQ). We then isolated Rif r mutants of these strains and sequenced the rpoB gene. The mutation frequency of TQ was 6.4, 10.1, and 2.43 times that of wild type, MQ, and TNK006, respectively, and resulted in rates of 4.7, 6.71, and 2.15 folds higher than that of wild type, MQ, and TNK006, respectively. All the strains demonstrated specific mutational hotspots. Furthermore, the TQ strain showed a transversion bias that was different from the other three strains. The results indicate that recQ is involved in the ultraviolet damage repair pathway via the interaction between recQ and uvrA1, uvrA2, and uvsE in D. radiodurans

  1. Dissecting the hematopoietic microenvironment. V: Limitations of repair following damage to the hematopoietic support stroma

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, N.S.

    1982-01-01

    Damage and repair of the hematopoietic microenvironment of the spleen was studied using X-irradiation, anoxic necrosis induced by splenic ligation, or a combination of the two, as the destructive agents. Spleen colony number, size and type, /sup 59/Fe uptake, and microscopic study of splenic structure were used as means of assessment. The most severe or least repaired damage was induced by high dose irradiation (4000 r), by 1000 r followed immediately by splenic ligation, and by two successive splenic ligations separated by a 30 day recovery period. It was seen that reduction of CFUlt. slashsub slt. slash lodgment, as measured by f factor, played a very major role in the lesser number of spleen colonies formed after either kind of damage. Following the several treatments, the numbers of spleen colonies formed, their size and their typing as erythrocytic or granulocytic varied independently of each other, suggesting that these functions of the microenvironment, and the cell types responsible for them, are independent of each other. The exhaustion of regenerative capacity displayed by repeatedly ligated spleens suggested a maximal limit for stromal cell replications commensurate with Hayflick's hypothesis.

  2. Space Transportation System (STS)-117 External Tank (ET)-124 Hail Damage Repair Assessment

    Science.gov (United States)

    Wilson, Timmy R.; Gentz, Steven J.; Barth, Timothy S.; Minute, Stephen A.; Flowers, Cody P.; Hamilton, David A.; Null, Cynthia H.; Schafer, Charles F.

    2009-01-01

    Severe thunderstorms with associated hail and high winds struck the STS-117 stack on February 26, 2007. Peak winds were recorded at 62 knots with hail sizes ranging from 0.3 inch to 0.8 inch in diameter. As a result of the storm, the North Carolina Foam Institute (NCFI) type 24-124 Thermal Protection System (TPS) foam on the liquid oxygen (LO2) ogive acreage incurred significant impact damage. The NCFI on the ET intertank and the liquid hydrogen (LH2) acreage sustained hail damage. The Polymer Development Laboratory (PDL)-1034 foam of the LO2 ice frost ramps (IFRs) and the Super-Lightweight Ablator (SLA) of the LO2 cable tray also suffered minor damage. NASA Engineering and Safety Center (NESC) was asked to assess the technical feasibility of repairing the ET TPS, the reasonableness of conducting those repairs with the vehicle in a vertical, integrated configuration at the Kennedy Space Center (KSC) Vehicle Assemble Building (VAB), and to address attendant human factors considerations including worker fatigue and the potential for error. The outcome of the assessment is recorded in this document.

  3. Molecular dynamics simulation studies of radiation damaged DNA. Molecules and repair enzymes

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2004-12-01

    Molecular dynamics (MD) studies on several radiation damages to DNA and their recognition by repair enzymes are introduced in order to describe the stepwise description of molecular process observed at radiation lesion sites. MD studies were performed on pyrimidine (thymine dimer, thymine glycol) and purine (8-oxoguanine) lesions using an MD simulation code AMBER 5.0. The force field was modified for each lesion. In all cases the significant structural changes in the DNA double helical structure were observed; a) the breaking of hydrogen bond network between complementary bases and resulting opening of the double helix (8-oxoguanine); b) the sharp bending of the DNA helix centered at the lesion site (thymine dimer, thymine glycol); and c) the flipping-out base on the strand complementary to the lesion (8-oxoguanine). These changes were related to the overall collapsing double helical structure around the lesion and might facilitate the docking of the repair enzyme into the DNA and formation of DNA-enzyme complex. In addition to the structural changes, at lesion sites there were found electrostatic interaction energy values different from those at native sites (thymine dimer -10 kcal/mol, thymine glycol -26 kcal/mol, 8-oxoguanine -48 kcal/mol). These values of electrostatic energy may discriminate lesion from values at native sites (thymine 0 kcal/mol, guanine -37 kcal/mol) and enable a repair enzyme to recognize a lesion during scanning DNA surface. The observed specific structural conformation and energetic properties at the lesions sites are factors that guide a repair enzyme to discriminate lesions from non-damaged native DNA segments. (author)

  4. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  5. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  6. DNA damage and repair in oncogenic transformation by heavy ion radiation

    Science.gov (United States)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  7. Effects of β-arabinofuranosyladenine on the growth and repair of potentially lethal damage in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Iliakis, G.

    1980-01-01

    β-D-Arabinofuranosyladenine (β-araA) inhibit the growth of Ehrlich ascites tumor cells by selective inhibition of DNA polymerases. RNA and protein synthesis are not significantly affected. Addition of β-araA to the cells after irradiation resulted in a concentration-dependent decrease in survival, presumably due to the inhibition of the repair of potentially lethal damage. Since β-araA selectively inhibits DNA polymerases it is suggested that repair of potentially lethal damage involves steps at the DNA level which require some polymerization. These repair steps take place in the DNA with a velocity comparable to that of the repair of potentially lethal damage. The inhibition of the repair of potentially lethal damage by β-araA was modified by the addition of deoxyadenosine; this supports the finding that β-araA acts competitively against dATP at the molecular level. The inhibition of the repair of potentially lethal damage by β-araA, which is partly reversible, resulted in a concentration-dependent modification of the survival curve. At low concentrations of β-araA a dose-modifying decrease in survival was observed. At higher concentrations (more than 12 μM) the decrease in survival resulted in a decrease of the shoulder width of the survival curve. Eventually an exponential curve was obtained. We suggest therefore that the shoulder of the survival curve results from some repair or potentially lethal damage. Preliminary information has been obtained on the time course of this repair

  8. Digital Restoration from Start to Finish How to repair old and damaged photographs

    CERN Document Server

    Ctein,

    2010-01-01

    Digital Restoration: Start to Finish 2nd edition guides you step-by-step through the entire process of restoring old photographs and repairing new ones using Adobe Photoshop, Picture Window, and now Elements. Nothing is left out, from choosing the right hardware and software and getting the photographs into the computer, to getting the finished photo out of the computer and preserving it for posterity.  LEARN HOW TO: Scan faded and damaged prints or films Improve snapshots with Shadow/Highlight adjustment Correct uneven exposure Fix color and skin tones quickly with Curves, plug-ins, a

  9. Finite-Element Modeling of a Damaged Pipeline Repaired Using the Wrap of a Composite Material

    Science.gov (United States)

    Lyapin, A. A.; Chebakov, M. I.; Dumitrescu, A.; Zecheru, G.

    2015-07-01

    The nonlinear static problem of FEM modeling of a damaged pipeline repaired by a composite material and subjected to internal pressure is considered. The calculation is carried out using plasticity theory for the pipeline material and considering the polymeric filler and the composite wrap. The level of stresses in various zones of the structure is analyzed. The most widespread alloy used for oil pipelines is selected as pipe material. The contribution of each component of the pipeline-filler-wrap system to the level of stresses is investigated. The effect of the number of composite wrap layers is estimated. The results obtained allow one to decrease the costs needed for producing test specimens.

  10. Repair of 8-methoxypsoralen + UVA-induced damage in specific sequences in chromosomal and episomal DNA in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Dean, S.W.

    1989-07-01

    A study of the repair of DNA damage in the dihydrofolate reductase (dhfr) gene of SV40-transformed human fibroblasts after treatment with 8-methoxypsoralen (8MOP) and UVA is described. 8MOP+UVA-induced cross-links in the dhfr gene were completely repaired by 12 h in one normal and one Fanconi's anaemia (FA) group A cell line. In contrast, approximately 35% of cross-links in an episomally maintained Epstein--Barr virus derived plasmid remained unrepaired even after 48 h. Cross-linkable monoadducts in the dhfr gene were repaired more slowly than cross-links, and there was no detectable repair of cross-linkable monoadducts in the plasmid. Thus the ability of a cell to repair 8MOP+UVA-induced cross-links or cross-linkable monoadducts in an episome does not reflect its capacity to repair such lesions in genomic DNA.

  11. Repair of 8-methoxypsoralen + UVA-induced damage in specific sequences in chromosomal and episomal DNA in human cells

    International Nuclear Information System (INIS)

    Dean, S.W.

    1989-01-01

    A study of the repair of DNA damage in the dihydrofolate reductase (dhfr) gene of SV40-transformed human fibroblasts after treatment with 8-methoxypsoralen (8MOP) and UVA is described. 8MOP+UVA-induced cross-links in the dhfr gene were completely repaired by 12 h in one normal and one Fanconi's anaemia (FA) group A cell line. In contrast, ∼35% of cross-links in an episomally maintained Epstein-Barr virus derived plasmid remained unrepaired even after 48 h. Cross-linkable monoadducts in the dhfr gene were repaired more slowly than cross-links, and there was no detectable repair of cross-linkable monoadducts in the plasmid. Thus the ability of a cell to repair 8MOP+UVA-induced cross-links or cross-linkable monoadducts in an episome does not reflect its capacity to repair such lesions in genomic DNA. (author)

  12. Primary repair of civilian colon injuries is safe in the damage control scenario.

    Science.gov (United States)

    Kashuk, Jeffry L; Cothren, C Clay; Moore, Ernest E; Johnson, Jeffrey L; Biffl, Walter L; Barnett, Carlton C

    2009-10-01

    Although the safety of primary repair/anastomosis for civilian colon injuries after standard laparotomy (SL) has been established, recent civilian and military reports have questioned the advisability of this technique in the patient requiring damage control laparotomy (DL). We hypothesized that, even in the high-risk DL group, primary repair could be safely used after patient stabilization and that the open abdomen would facilitate the safety of this procedure. All patients admitted to our level 1 trauma center with a colon injury over a 7-year period were reviewed from a prospectively collected database. Patients were categorized as having undergone either SL or DL at initial operation. Primary variables of interest were as follows: injury patterns; method of primary repair (suture repair, resection and primary anastomosis, resection and delayed anastomosis); diversion techniques (planned diversion or diversion for anastomotic dehiscence); and colon-related morbidity and mortality. High-risk status in the DL group was identified by the following physiologic variables: mean injury severity score (ISS), red blood cell (RBC) transfusions, ventilator days, and intensive care unit (ICU) duration of stay. During the study period, 309 patients had colonic wounds identified at laparotomy. Of these 309 patients, 280 (91%) underwent SL, of which 277 (98.9%) had primary colonic repair/anastomosis. In the SL group, 1 (0.3%) patient required diversion for subsequent leak and 2 (0.6%) patients had planned diversion The remaining 29 hemodynamically unstable patients required DL. Mean +/- standard deviation indices of injury severity in this group included: ISS = 36.2 +/- 15.8, RBC = 28.7 +/- 25.4 units, ventilator days = 20.1 +/- 16.3, ICU duration of stay = 29.5 +/- 21.6 days. Of the 29 patients in the DL group, 21 (72%) had bowel continuity successfully reestablished in 2.6 +/- 2 days after initial attempts at primary suture repair or resection/anastomosis. A total of 4 (16

  13. A new model describing the curves for repair of both DNA double-strand breaks and chromosome damage

    International Nuclear Information System (INIS)

    Foray, N.; Badie, C.; Alsbeih, G.; Malaise, E.P.; Fertil, B.

    1996-01-01

    A review of reports dealing with fittings of the data for repair of DNA double-strand breaks (DSBs) and excess chromosome fragments (ECFs) shows that several models are used to fit the repair curves. Since DSBs and ECFs are correleated, it is worth developing a model describing both phenomena. The curve-fitting models used most extensively, the two repair half-times model for DSBs and the monoexponential plus residual model for ECFs, appear to be too inflexible to describe the repair curves for both DSBs and ECFs. We have therefore developed a new concept based on a variable repair half-time. According to this concept, the repair curve is continuously bending and dependent on time and probably reflects a continuous spectrum of damage repairability. The fits of the curves for DSB repair to the variable repair half-time and the variable repair half-time plus residual models were compared to those obtained with the two half-times plus residual and two half-times models. Similarly, the fits of the curves for ECF repair to the variable repair half-time and variable half-time plus residual models were compared to that obtained with the monoexponential plus residual model. The quality of fit and the dependence of adjustable parameters on the portion of the curve fitted were used as comparison criteria. We found that: (a) It is useful to postulate the existence of a residual term for unrepairable lesions, regardless of the model adopted. (b) With the two cell lines tested (a normal and a hypersensitive one), data for both DSBs and ECTs are best fitted to the variable repair half-time plus residual model, whatever the repair time range. 47 refs., 3 figs., 3 tabs

  14. Damage and repair in mammalian cells after exposure to non-ionizing radiations. 1

    International Nuclear Information System (INIS)

    Harm, H.

    1978-01-01

    Cornea cells of the rat kangaroo or 'potoroo' (Potorous tridactylus) were exposed to far-UV (254 or 302 nm) radiation, with or without subsequent illumination by near-UV or visible light. The DNA of these cells was extracted and tested for the presence of photoproducts binding yeast photoreactivating enzyme (PRE). The effects on repair kinetics of the transforming DNA indicate that in UV-irradiated potoroo cornea cells up to approximately 90% of photorepairable DNA damage can be photorepaired within 15 min. However, the extent of cellular photorepair depends appreciably on experimental parameters during photoreactivating treatment, including the spectral composition of photoreactivating light. Apparently superposition of damage by the photoreactivating treatment itself is the critical factor. This may explain experimental discrepancies existing in different laboratories studying photorepair in UV-irradiated cells of placental mammals. (Auth.)

  15. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest.

    Science.gov (United States)

    Pelegrini, Alessandra Luíza; Moura, Dinara Jaqueline; Brenner, Bethânia Luise; Ledur, Pitia Flores; Maques, Gabriela Porto; Henriques, João Antônio Pegas; Saffi, Jenifer; Lenz, Guido

    2010-09-01

    Never in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation. In this report, we show that cells with Nek1 knockdown (KD) through stable RNA interference present a delay in DNA repair when treated with methyl-methanesulfonate (MMS), hydrogen peroxide (H(2)O(2)) and cisplatin (CPT). In particular, interstrand cross links induced by CPT take much longer to be resolved in Nek1 KD cells when compared to wild-type (WT) cells. In KD cells, phosphorylation of Chk1 in response to CPT was strongly reduced. While WT cells accumulate in G(2)/M after DNA damage with MMS and H(2)O(2), Nek1 KD cells do not arrest, suggesting that G(2)/M arrest induced by the DNA damage requires Nek1. Surprisingly, CPT-treated Nek1 KD cells arrest with a 4N DNA content similar to WT cells. This deregulation in cell cycle control in Nek1 KD cells leads to an increased sensitivity to genotoxic agents when compared to WT cells. These results suggest that Nek1 is involved in the beginning of the cellular response to genotoxic stress and plays an important role in preventing cell death induced by DNA damage.

  16. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue.

    Science.gov (United States)

    Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas

    2017-11-01

    The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.

  17. Repair of x-ray induced chromosomal damage in trisomy 2- and normal diploid lymphocytes

    International Nuclear Information System (INIS)

    Countryman, P.I.; Heddle, J.A.; Crawford, E.

    1977-01-01

    The frequency of chromosomal aberrations produced by x-rays is greater in lymphocytes cultured from trisomy 21 patients (Down's syndrome) than from normal diploid donors. This increase, which can be detected by a micronucleus assay for chromosomal damage, was postulated by us to result from a defect in the rejoining system which repairs chromosomal breaks. The postulated defect would result in a longer rejoining time, therapy permitting more movement of broken ends and thus enhancing the frequency of exchanges. To test this possibility, the time required for the rejoining (repair) of chromosome breaks was measured in lymphocytes from five Down's syndrome (four trisomy 21 and one D/G translocation partial trisomy 21) donors, from a monosomy 21 donor, and from five diploid donors. The rejoining time was reduced in the Down's syndrome lymphocytes in comparison to the normal diploid and monosomy 21 lymphocytes. Thus the repair of chromosome breaks, far from being defective as evidenced by a longer rejoining time in Down's syndrome cells, occurred more rapidly than in normal cells

  18. Repair of damage induced by ultraviolet radiation in mutator T-1 Escherichia coli transductants

    International Nuclear Information System (INIS)

    Sideropoulos, A.S.; Greenberg, J.; Warren, G.

    1975-01-01

    To ascertain whether a relationship commonly exists between azide resistance, ultraviolet (uv) resistance, and the mutator property (mut T-1), we performed uv survival and mutation frequency determinations with and without caffeine (2.571 mM) in nonmutator azide resistant (azi/sup r/) and phage mediated mut T-1 transductants of Escherichia coli K-12, B/r, B/r T-, Bs-1, and Bs-8. The strains constructed were assumed to be ''co-isogenic'' except for the mutator factor. The frequency of mutation to streptomycin resistance (str/sup r/) was relatively constant and approximated 2 x 10- 7 . Transductants carrying the azide marker with or without the mut T-1 gene had the same level of uv survival as the parent with the same mutator phenotype. Dark repair of the prelethal uv lesion is equally caffeine sensitive in the nonmutator and mutator HCR+ strains. Our results indicated that the mut T-1 strains possess an efficient dark repair system for uv damage and that the mechanism of mut T-1 action is independent of uv dark repair processes. (auth)

  19. Inhibitors of poly (ADP-ribose) synthesis inhibit the two types of repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi; Elkind, M.M.

    1994-01-01

    The purpose of this study was to examine whether 3-amino-benzamide (3ABA), an inhibitor of poly (ADP-ribose) synthesis, inhibits the two types of potentially lethal damage (PLD) repair, termed slow and fast. The fast-type PLD repair was measured by the decrease in survival of V79 Chinese hamster cells by postirradiation treatment with 3ABA. The slow-type PLD repair was measured by the increase in survival by posttreatment with conditioned medium (CM), which became conditioned by growing a crowed culture of cells and supports the slow-type PLD repair. Up to 1 mM 3-ABA inhibited the slow type repair; at doses of 2 mM and above, it inhibited the fast type of PLD repair. There are quantitative differences in cellular effects of 3ABA dependent on concentration. Poly (ADP-ribose) appears to play an important role in the PLD repairs and has little effect on the repair of sublethal damage. 10 refs., 2 figs

  20. Duplex Interrogation by a Direct DNA Repair Protein in Search of Base Damage

    Science.gov (United States)

    Yi, Chengqi; Chen, Baoen; Qi, Bo; Zhang, Wen; Jia, Guifang; Zhang, Liang; Li, Charles J.; Dinner, Aaron R.; Yang, Cai-Guang; He, Chuan

    2012-01-01

    ALKBH2 is a direct DNA repair dioxygenase guarding mammalian genome against N1-methyladenine, N3-methylcytosine, and 1,N6-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 displays two novel features: i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability; ii) ALKBH2 does not have nor need a “damage-checking site”, which is critical for preventing spurious base-cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly. PMID:22659876

  1. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling.

    Science.gov (United States)

    Nikolova, Teodora; Roos, Wynand P; Krämer, Oliver H; Strik, Herwig M; Kaina, Bernd

    2017-08-01

    Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O 6 -methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O 6 -chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dynamic In Vivo Profiling of DNA Damage and Repair after Radiotherapy Using Canine Patients as a Model

    Directory of Open Access Journals (Sweden)

    Nadine Schulz

    2017-06-01

    Full Text Available Time resolved data of DNA damage and repair after radiotherapy elucidates the relation between damage, repair, and cell survival. While well characterized in vitro, little is known about the time-course of DNA damage response in tumors sampled from individual patients. Kinetics of DNA damage after radiotherapy was assessed in eight dogs using repeated in vivo samples of tumor and co-irradiated normal tissue analyzed with comet assay and phosphorylated H2AX (γH2AX immunohistochemistry. In vivo results were then compared (in silico with a dynamic mathematical model for DNA damage formation and repair. Maximum %DNA in tail was observed at 15–60 min after irradiation, with a rapid decrease. Time-courses of γH2AX-foci paralleled these findings with a small time delay and were not influenced by covariates. The evolutionary parameter search based on %DNA in tail revealed a good fit of the DNA repair model to in vivo data for pooled sarcoma time-courses, but fits for individual sarcoma time-courses suffer from the heterogeneous nature of the in vivo data. It was possible to follow dynamics of comet tail intensity and γH2AX-foci during a course of radiation using a minimally invasive approach. DNA repair can be quantitatively investigated as time-courses of individual patients by integrating this resulting data into a dynamic mathematical model.

  3. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  4. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    International Nuclear Information System (INIS)

    Dupuy, Aurélie; Sarasin, Alain

    2015-01-01

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients

  5. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  6. Hardness and microstructure analysis of damaged gear caused by adhesive wear

    Science.gov (United States)

    Mahendra, Rizky Budi; Nugroho, Sri; Ismail, Rifky

    2018-03-01

    This study was a result from research on repairing project of damaged elevator gear box. The objective of this research is to analyze the failure part on elevator gearbox at flourmill factory. The equipment was damaged after one year installed and running on factory. Severe wear was occurred on high speed helical gear. These helical gear was one of main part of elevator gearbox in flour mill manufacture. Visually, plastic deformation didn't occurred and not visible on the failure helical gear shaft. Some test would be performed to check the chemical composition, microstructure and hardness of failure helical gear. The material of failure helical gear shaft was a medium carbon steel alloy. The microstructure was showed a martensitic phase formed on the surface to the center area of gear shaft. Otherwise, the depth of hardness layer slight formed on surface and lack depth of hardness layer was a main trigger of severe wear. It was not enough to resist wear due to friction caused by rolling and sliding on surface between high speed gear and low speed gear. Enhancement of hardness layer on surface and depth of hardness layer will make the component has more long life time. Furthermore, to perform next research is needed to analyze the reliability of enhanced hardness on layer and depth of hardness layer on helical gear shaft.

  7. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Shikazono, Naoya, E-mail: shikazono.naoya@jaea.go.jp [Japan Atomic Energy Agency, Advanced Research Science Center, 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); O' Neill, Peter [Gray Institute for Radiation Oncology and Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom)

    2009-10-02

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  8. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    International Nuclear Information System (INIS)

    Shikazono, Naoya; O'Neill, Peter

    2009-01-01

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  9. Statin use is associated with reduced all-cause mortality after endovascular abdominal aortic aneurysm repair.

    NARCIS (Netherlands)

    Leurs, L.J.; Visser, P.; Laheij, R.J.F.; Buth, J.; Harris, P.L.; Blankensteijn, J.D.

    2006-01-01

    It has been shown that preoperative statin therapy reduces all-cause and cardiovascular mortality in patients undergoing major noncardiac vascular surgery. In this report, we investigated the influence of statin use on early and late outcome following endovascular abdominal aortic aneurysm repair

  10. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  11. Synergistic Roles of Helicobacter pylori Methionine Sulfoxide Reductase and GroEL in Repairing Oxidant-damaged Catalase*

    Science.gov (United States)

    Mahawar, Manish; Tran, ViLinh; Sharp, Joshua S.; Maier, Robert J.

    2011-01-01

    Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4–5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant. PMID:21460217

  12. Fundamental study on repairing technique for cracked or damaged parts of structures by cold gas dynamic spray technique

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Ichikawa, Yuji; Shoji, Tetsuo

    2008-01-01

    This study proposes an innovative technique for repairing of cracked or damaged parts of structures, such as nuclear or thermal power plants, by means of cold gas dynamic spray (CS) technique. In the case of generation of cracks etc. in the structure, the cracks can be repaired by welding. However, the welding spends considerable time on repair, and also needs special skills. The CS technique is known as a new technique not only for coatings but also for thick depositions. It has many advantages, i.e. dense deposition, high deposition rate and low oxidation. Therefore, it has a possibility to apply the CS technique instead of welding to repair the cracks etc. In this study, the cold gas dynamic spray technique as a new repairing technique for some structures is introduced. (author)

  13. Characterization of genetic miscoding lesions caused by postmortem damage

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Hansen, Anders J; Willerslev, Eske

    2002-01-01

    The spectrum of postmortem damage in mitochondrial DNA was analyzed in a large data set of cloned sequences from ancient human specimens. The most common forms of damage observed are two complementary groups of transitions, termed "type 1" (adenine-->guanine/thymine-->cytosine) and "type 2...

  14. Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Johannessen, Christian; Rasmussen, Lene Juel

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, formed during incomplete burning of coal, oil and gas. Several PAHs have carcinogenic and mutagenic potencies, but these compounds must be activated in order to exert their mutagenic effects. One of the principal pathways...... proposed for metabolic activation of PAHs involves the cytochrome P450 enzymes. The DNA damaging potential of cytochrome P450-activated PAHs is generally associated with their bay and fjord regions, and the DNA repair response of PAHs containing such regions has been thoroughly studied. However, little...... in response to DNA damage induced by cytochrome P450-activated anthanthrene. In cell extracts, functional nucleotide excision repair (NER) and mismatch repair (MMR) activities were necessary to trigger a response to anthanthrene metabolite-induced DNA damage. In cell cultures, NER was responsible...

  15. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Begg, A.C.

    1993-01-01

    Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitivities. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis. (author)

  16. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Sundheim, Ottar

    2011-01-01

    . We demonstrate that the laser dose used for introducing DNA damage determines the repertoire of DNA repair proteins recruited. Furthermore, we demonstrate that recruitment of POLß and PNK to regions irradiated with low laser dose requires XRCC1 and that inhibition of PARylation by PARP......-inhibitors only slightly reduces the recruitment of XRCC1, PNK, or POLß to sites of DNA damage. Recruitment of PCNA and FEN-1 requires higher doses of irradiation and is enhanced by XRCC1, as well as by accumulation of PARP-1 at the site of DNA damage. These data improve our understanding of recruitment of BER......XRCC1 is a scaffold protein capable of interacting with several DNA repair proteins. Here we provide evidence for the presence of XRCC1 in different complexes of sizes from 200 to 1500 kDa, and we show that immunoprecipitates using XRCC1 as bait are capable of complete repair of AP sites via both...

  17. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  18. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    International Nuclear Information System (INIS)

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  19. Reduced repair of potentially lethal radiation damage in glutathione synthetase-deficient human fibroblasts after X-irradiation

    International Nuclear Information System (INIS)

    Midander, J.; Revesz, L.; Deschavanne, P.J.; Debieu, D.; Malaise, E.P.

    1986-01-01

    Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions. (author)

  20. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Studies of DNA repair in Saccharomyces cerevisiae. I. Characterization of a new allele of RAD6. II. Investigation of events in the first cell cycle after DNA damage

    International Nuclear Information System (INIS)

    Dolthwright-Fasse, J.A.

    1980-01-01

    Studies in two independent, but related, areas of DNA repair have been carried out in the eucaryotic yeast, Saccharomyces cerevisiae. The first is the characterization of a new allele in the RAD6 gene suggesting that the gene is multifunctional. The second is the utilization of photoreactivation as a probe of events occurring during the first cell cycle after DNA damage. Strains carrying the new allele, designated rad6-4, of the RAD6 locus are about as sensitive to uv and ionizing radiation as those carrying rad6-1 or rad6-3. Although rad6-4 may well be a missense mutation, the data suggest that the RAD6 gene is multifunctional. One function is necessary to recover from DNA damage in an error-free manner, and the other is concerned with mutagenic processes and sporulation. The loss of photoreversibility (LOP) of ultraviolet induced mutations to arginine independence in an excision defective strain carrying arg4-17 examines the events occurring in the first cell cycle. The post uv protein synthesis causes pyrimidine dimmers to become inaccessible to the photoreactivating enzyme in some unknown manner. There is no evidence indicating whether the normal function of the protein is involved in excision repair, or in one of the two repair processes believed to be inducible; induced mutagenesis or recombinational repair

  2. Repair of gamma radiation damage in wild type and a radiation sensitive mutant of Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Mizuma, Nagayo

    1989-01-01

    In an effort to examine production and repair of radiation-induced single and double strand breaks in the DNA, a repair-deficient wild type and a repair-deficient mutant, UV17, of Deinococcus radiodurans were subjected to Co-60 gamma irradiation at a dose rate of 6.3 kGy/hr for wild type and 3.9 kGy/hr for UV17 mutant. The shoulder of the curve of UV17 mutant was narrow but existed with the intercept of 0.7 kGy and the corresponding value of the wild type was 4.2 kGy. Mutant cells exhibited about 6 fold increases in sensitivity for the shoulder relative to the wild type. The D 37 doses in the wild type and the mutant were 0.57 kGy and 0.25 kGy, respectively. From the survival curves, difference in the sensitivity between two strains was mainly due to difference of repair capacity than the number of radiation sensitive target. Sedimentation rate of the main component in the irradiated cells of UV17 mutant increased almost to the level of unirradiated control by the postincubation at 30deg C for 3 hrs. The results indicated that this sensitive mutant also exhibited an ability to restore single strand breaks after exposure to a sublethal dose of 0.6 kGy. When restitution of double strand breaks was analyzed by sedimentation in a neutral sucrose gradient, the wild type showed restitution to DNA-membrane complex from large part of the breaks. For UV17 mutant, the apparent increase in DNA-membrane complex formation was seen after 3 hours incubation. Large part of the decrease in the activities of peak 2 was recovered in the peak 1 for the wild type. For the mutant, there was little restitution to peak 1. Almost free DNA component in UV17 mutant, therefore, was merely degraded into shorter pieces. Restoration of DNA-membrane complex from free DNA derived from gamma-ray induced double strand scission involved closely in the repair of gamma-induced damage and survival. (N.K.)

  3. Molecular mechanism of short-patch repair of radiation-damaged DNA by in vitro reconstituted systems

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kim, K.; Biade, S.

    1995-01-01

    Objective: Short-patch excision repair is the major pathway to correct DNA damage such as modified bases, apurinic/apyrimidinic (AP) sites and single-strand breaks. Recently this repair reaction was demonstrated to proceed by two alternative pathways: DNA polymerase β (pol β)-dependent pathway and proliferating cell nuclear antigen (PCNA)-dependent pathway. In this work, we focused to compare substrate specificity of these two repair pathways and elucidate their roles in cellular responses to radiation damage. Materials and Methods: Three protein fractions, AP endonuclease, pol β, and BE-1B, which are required for the pol β-dependent pathway, and five protein fractions, AP endonuclease, BE-1B (these two are common to the pol β-dependent pathway), PCNA, pol δ, and BE-2, which are essential for the PCNA-dependent pathway were obtained from Xenopus laevis ovaries through column chromatography. The circular DNA containing either one of the following three lesions: a natural AP site, its synthetic analog, 3-hydroxy-2-hydroxymethyltetrahydrofuran (tetrahydrofuran), and 5-iododeoxyuridine (IdU), was prepared by in vitro ligation of oligonucleotides to a gapped circular DNA. The IdU-containing DNA was irradiated with 312 nm UV light prior to repair reaction. In addition, DNA carrying a single-strand break was obtained by Cs-137 irradiation. Repair reactions of these substrate DNAs were conducted with either the reconstituted system for the pol β-dependent pathway or the one for the PCNA-dependent pathway. After the reaction, repaired and unrepaired DNAs were separated by gel electrophoresis and quantitated. Results: The pol β-dependent reconstituted system was able to repair natural AP sites but not tetrahydrofuran sites or UV-irradiated IdU. The single-strand breaks generated by γ-irradiation were partially repaired by thepol β-dependent pathway. The PCNA-dependent system was able to repair natural AP sites, tetrahydrofuran sites, and most of the single

  4. G9a coordinates with the RPA complex to promote DNA damage repair and cell survival.

    Science.gov (United States)

    Yang, Qiaoyan; Zhu, Qian; Lu, Xiaopeng; Du, Yipeng; Cao, Linlin; Shen, Changchun; Hou, Tianyun; Li, Meiting; Li, Zhiming; Liu, Chaohua; Wu, Di; Xu, Xingzhi; Wang, Lina; Wang, Haiying; Zhao, Ying; Yang, Yang; Zhu, Wei-Guo

    2017-07-25

    Histone methyltransferase G9a has critical roles in promoting cancer-cell growth and gene suppression, but whether it is also associated with the DNA damage response is rarely studied. Here, we report that loss of G9a impairs DNA damage repair and enhances the sensitivity of cancer cells to radiation and chemotherapeutics. In response to DNA double-strand breaks (DSBs), G9a is phosphorylated at serine 211 by casein kinase 2 (CK2) and recruited to chromatin. The chromatin-enriched G9a can then directly interact with replication protein A (RPA) and promote loading of the RPA and Rad51 recombinase to DSBs. This mechanism facilitates homologous recombination (HR) and cell survival. We confirmed the interaction between RPA and G9a to be critical for RPA foci formation and HR upon DNA damage. Collectively, our findings demonstrate a regulatory pathway based on CK2-G9a-RPA that permits HR in cancer cells and provide further rationale for the use of G9a inhibitors as a cancer therapeutic.

  5. Proceedings of the workshop. Recognition of DNA damage as onset of successful repair. Computational and experimental approaches

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2002-03-01

    This was held at The Tokai Research Establishment, Japan Atomic Energy Research Institute, on the 18th and 19th of December 2001. The Laboratory of Radiation Risk Analysis of JAERI organized the workshop. The main subject of the workshop was the DNA damage and its repair. Presented works described the leading experimental as well computational approaches, focusing mainly on the formation of DNA damage, its proliferation, enzymatic recognition and repair, and finally imaging and detection of lesions on a DNA molecule. The 19 of the presented papers are indexed individually. (J.P.N.)

  6. Differences in the stimulation of repair replication by 3-aminobenzamide in lymphoblastoid cells damaged by methylmethanesulfonate or ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.; Morgan, W.F.

    1987-09-01

    Human lymphoblastoid cells damaged by u.v. light accumulated DNA breaks in the presence of cytosine arabinoside and hydroxyurea at a frequency similar to that of cells damaged by methylmethanesulfonate. 3-Aminobenzamide (1 mM) reduced the net strand-break frequency detected after either kind of damage. Repair replication, however, was stimulated only in methylmethanesulfonate-damaged cells. This stimulation is therefore not related directly to the DNA strand-break frequencies and concomitant poly(ADP-ribose) synthesis, but depends on some other cellular response specific to alkylating agents.

  7. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  8. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.

  9. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    NARCIS (Netherlands)

    Broek, R.P.G ten; Wilbers, J.; Goor, H. van

    2011-01-01

    BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms

  10. Economic damage caused by a nuclear reactor accident

    International Nuclear Information System (INIS)

    Goemans, T.; Schwarz, J.J.

    1988-01-01

    This study is directed towards the estimation of the economic damage which arises from a severe possible accident with a newly built 1000 MWE nuclear power plant in the Netherlands. A number of cases have been considered which are specified by the weather conditions during and the severity of the accident and the location of the nuclear power plant. For each accident case the economic damage has been estimated for the following impact categories: loss of the power plant, public health, evacuation and relocation of population, export of agricultural products, working and living in contaminated regions, decontamination, costs of transportation and incoming foreign tourism. The consequences for drinking water could not be quantified adequately. The total economic damage could reach 30 billion guilders. Besides the power plant itself, loss of export and decreasing incoming foreign tourism determine an important part of the total damage. 12 figs.; 52 tabs

  11. Direct detection and quantification of abasic sites for in vivo studies of DNA damage and repair

    International Nuclear Information System (INIS)

    Wang Yanming; Liu Lili; Wu Chunying; Bulgar, Alina; Somoza, Eduardo; Zhu Wenxia; Gerson, Stanton L.

    2009-01-01

    Use of chemotherapeutic agents to induce cytotoxic DNA damage and programmed cell death is a key strategy in cancer treatments. However, the efficacy of DNA-targeted agents such as temozolomide is often compromised by intrinsic cellular responses such as DNA base excision repair (BER). Previous studies have shown that BER pathway resulted in formation of abasic or apurinic/apyrimidinic (AP) sites, and blockage of AP sites led to a significant enhancement of drug sensitivity due to reduction of DNA base excision repair. Since a number of chemotherapeutic agents also induce formation of AP sites, monitoring of these sites as a clinical correlate of drug effect will provide a useful tool in the development of DNA-targeted chemotherapies aimed at blocking abasic sites from repair. Here we report an imaging technique based on positron emission tomography (PET) that allows for direct quantification of AP sites in vivo. For this purpose, positron-emitting carbon-11 has been incorporated into methoxyamine ([ 11 C]MX) that binds covalently to AP sites with high specificity. The binding specificity of [ 11 C]MX for AP sites was demonstrated by in vivo blocking experiments. Using [ 11 C]MX as a radiotracer, animal PET studies have been conducted in melanoma and glioma xenografts for quantification of AP sites. Following induction of AP sites by temozolomide, both tumor models showed significant increase of [ 11 C]MX uptake in tumor regions in terms of radioactivity concentration as a function of time, which correlates well with conventional aldehyde reactive probe (ARP)-based bioassays for AP sites.

  12. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2017-06-01

    Full Text Available Aim: This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Materials and Methods: Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1 expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. Results: There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Conclusion: Honey can improve the liver tissue based on: (1 Mobilization of endogenous stem cells (CD34 and CD45; (2 Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3 regeneration histologically of liver tissue.

  13. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells.

    Science.gov (United States)

    Prasetyo, R Heru; Hestianah, Eka Pramyrtha

    2017-06-01

    This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v) honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1) expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Honey can improve the liver tissue based on: (1) Mobilization of endogenous stem cells (CD34 and CD45); (2) Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3) regeneration histologically of liver tissue.

  14. Repair of ultraviolet light-induced DNA damage in cholera bacteriophages

    International Nuclear Information System (INIS)

    Palit, B.N.; Das, G.; Das, J.

    1983-01-01

    DNA repair-proficient and -deficient strains of Vibrio cholerae were used to examine host cell reactivation, Weigle reactivation and photoreactivation of u.v.-irradiated cholera bacteriophages. U.v. light-induced DNA damage in phages of different morphological and serological groups could be efficiently photoreactivated. Host cell reactivation of irradiated phages of different groups was different on the same indicator host. Phage phi149 was the most sensitive, and phi138 the most resistant to u.v. irradiation. While phi138 showed appreciable host cell reactivation, this was minimal for phi149. Attempts to demonstrate Weigle reactivation of u.v.-irradiated cholera phages were not successful, although u.v.-induced filamentation of host cells was observed. (author)

  15. What role for DNA damage and repair in the bystander response?

    International Nuclear Information System (INIS)

    Prise, Kevin M.; Folkard, Melvyn; Kuosaite, Virginija; Tartier, Laurence; Zyuzikov, Nikolai; Shao, Chunlin

    2006-01-01

    The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated

  16. DNA damage, repair monitoring and epigenetic DNA methylation changes in seedlings of Chernobyl soybeans.

    Science.gov (United States)

    Georgieva, Mariyana; Rashydov, Namik M; Hajduch, Martin

    2017-02-01

    This pilot study was carried out to assess the effect of radio-contaminated Chernobyl environment on plant genome integrity 27 years after the accident. For this purpose, nuclei were isolated from root tips of the soybean seedlings harvested from plants grown in the Chernobyl area for seven generations. Neutral, neutral-alkaline, and methylation-sensitive comet assays were performed to evaluate the induction and repair of primary DNA damage and the epigenetic contribution to stress adaptation mechanisms. An increased level of single and double strand breaks in the radio-contaminated Chernobyl seedlings at the stage of primary root development was detected in comparison to the controls. However, the kinetics of the recovery of DNA breaks of radio-contaminated Chernobyl samples revealed that lesions were efficiently repaired at the stage of cotyledon. Methylation-sensitive comet assay revealed comparable levels in the CCGG methylation pattern between control and radio-contaminated samples with a slight increase of approximately 10% in the latter ones. The obtained preliminary data allow us to speculate about the onset of mechanisms providing an adaptation potential to the accumulated internal irradiation after the Chernobyl accident. Despite the limitations of this study, we showed that comet assay is a sensitive and flexible technique which can be efficiently used for genotoxic screening of plant specimens in natural and human-made radio-contaminated areas, as well as for safety monitoring of agricultural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An aromatic sensor with aversion to damaged strands confers versatility to DNA repair.

    Directory of Open Access Journals (Sweden)

    Olivier Maillard

    2007-04-01

    Full Text Available It was not known how xeroderma pigmentosum group C (XPC protein, the primary initiator of global nucleotide excision repair, achieves its outstanding substrate versatility. Here, we analyzed the molecular pathology of a unique Trp690Ser substitution, which is the only reported missense mutation in xeroderma patients mapping to the evolutionary conserved region of XPC protein. The function of this critical residue and neighboring conserved aromatics was tested by site-directed mutagenesis followed by screening for excision activity and DNA binding. This comparison demonstrated that Trp690 and Phe733 drive the preferential recruitment of XPC protein to repair substrates by mediating an exquisite affinity for single-stranded sites. Such a dual deployment of aromatic side chains is the distinctive feature of functional oligonucleotide/oligosaccharide-binding folds and, indeed, sequence homologies with replication protein A and breast cancer susceptibility 2 protein indicate that XPC displays a monomeric variant of this recurrent interaction motif. An aversion to associate with damaged oligonucleotides implies that XPC protein avoids direct contacts with base adducts. These results reveal for the first time, to our knowledge, an entirely inverted mechanism of substrate recognition that relies on the detection of single-stranded configurations in the undamaged complementary sequence of the double helix.

  18. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Methotrexate induces DNA damage and inhibits homologous recombination repair in choriocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Xie L

    2016-11-01

    Full Text Available Lisha Xie,1,* Tiancen Zhao,1,2,* Jing Cai,1 You Su,1 Zehua Wang,1 Weihong Dong1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 2Department of Obstetrics and Gynecology, Central Hospital of Wuhan, Wuhan, China *These authors contributed equally to this work Objective: The objective of this study was to investigate the mechanism of sensitivity to methotrexate (MTX in human choriocarcinoma cells regarding DNA damage response. Methods: Two choriocarcinoma cancer cell lines, JAR and JEG-3, were utilized in this study. An MTX-sensitive osteosarcoma cell line MG63, an MTX-resistant epithelial ovarian cancer cell line A2780 and an MTX-resistant cervical adenocarcinoma cell line Hela served as controls. Cell viability assay was carried out to assess MTX sensitivity of cell lines. MTX-induced DNA damage was evaluated by comet assay. Quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of BRCA1, BRCA2, RAD51 and RAD52. The protein levels of γH2AX, RAD 51 and p53 were analyzed by Western blot. Results: Remarkable DNA strand breaks were observed in MTX-sensitive cell lines (JAR, JEG-3 and MG63 but not in MTX-resistant cancer cells (A2780 and Hela after 48 h of MTX treatment. Only in the choriocarcinoma cells, the expression of homologous recombination (HR repair gene RAD51 was dramatically suppressed by MTX in a dose- and time-dependent manner, accompanied with the increase in p53. Conclusion: The MTX-induced DNA strand breaks accompanied by deficiencies in HR repair may contribute to the hypersensitivity to chemotherapy in choriocarcinoma. Keywords: choriocarcinoma, chemotherapy hypersensitivity, DNA double-strand break, RAD51, p53

  20. Radiation and non-radiation damage to DNA. Onset of molecular instability and carcinogenesis. Theoretical explorations on DNA damage and repair

    International Nuclear Information System (INIS)

    Pinak, Miroslay; Bunta, J.K.

    2006-01-01

    The current work is focused on results of molecular dynamics simulations performed on two DNA damages: 8-oxoguanine as the most significant oxidative damage leading to transversion mutation cytosine-guanine→adenine-thymine', which is common mutation found in human cancer cells; and on the DNA strand break, the type of damage that is considered to be one of the most significant damage leading to genetic instability that may result in enhanced cell proliferation or carcinogenesis. Except the structural changes induced by these two lesions the role and importance of electrostatic energy in recognition process in which a respective repair enzyme recognizes damaged DNA site is also described. Among the significant results can be included the fact, that most of the damages on DNA alternate locally electronic state by modifying chemical and electron orbital configuration. This modified configuration may be represented outside DNA molecule as an enhanced electrostatic interaction with surrounding environment, that may signal the presence of the damaged site toward the repair enzyme. Work on the DNA strand break shows that open valences at broken strand ends are quickly filled by the electrons generated during radiolysis. Results of simulation indicate a local instability of hydrogen bonds between complementary bases. (author)

  1. The inadequate liability and compensation regime for damage caused by nuclear activities

    International Nuclear Information System (INIS)

    Dyke, Jon M. Van

    2010-09-01

    The specific obligation to provide restitution and compensation when nuclear activities cause injuries has been recognized repeatedly and is now certainly part of customary international law. But problems remain regarding how to measure damages, how to implement the duty to repair the injuries, and what specific obligations exist to protect neighboring states from transboundary pollution. Although some treaties exist governing liability for harm resulting from nuclear accidents, they are not adequate to protect victims and have not been widely ratified. The failure to require nuclear operators to prepare for damage that may result from accidents constitutes a subsidy to the nuclear industry and makes it difficult to compare the real costs of nuclear energy with the costs of other energy sources. This survey of settled norms and unresolved issues demonstrates that further work is needed to develop a comprehensive and authoritative regime to govern harm from nuclear activities. Although it is clear that both the operators of nuclear facilities and the states that have jurisdiction over them would be responsible to provide restitution and compensation for such harm under a strict liability regime, the types of injuries that must be compensated and the range of damages that must be covered remain subjects of controversy. Although the underlying customary international law principles (the no-harm principle and the polluter-pays principle) are clear, the actual treaties that have been drafted are inadequate and they have not been widely ratified. Victims of damage from nuclear activities would have difficulty finding a neutral tribunal in which to bring their claims and would face procedural obstacles including caps on liabilities and inappropriately short statutes of limitations as well as difficulties regarding proof of damages. The failure to develop a proper regime that would ensure full restitution and compensation for harm resulting from nuclear facilities

  2. An initial DNA damage and the repair efficiency of UV induces damages estimated by SCGE assay in lymphocytes from occupationally exposed to pesticides and reference group from Greece

    International Nuclear Information System (INIS)

    Niedzwiedz, W.; Cebulska-Wasilewska, A.; Piperakis, S.M.

    2000-01-01

    The purpose of this study was to examine the individual susceptibility to UV-C induced DNA damage in lymphocytes of Greece people occupationally exposed to pesticides and from reference group with reported no occupational exposure. We also analyzed if there are any differences in the cellular repair capacity between both groups. Lymphocytes were isolated from fresh blood samples collected in Greece from 50 persons recognized as non-exposed to pesticides and from 50 farmers at the end of the spraying season. The average age in exposed to pesticide and reference group was 42.08 and 42.19, respectively. Frozen lymphocytes were transported in a dry ice into DREB laboratory for DNA damage analysis. The DNA damage was measured with the application of single cell gel electrophoresis method (SCGE technique). Our results show that there was not any statistically significant difference concerning the level of the DNA damage detected in defrosted lymphocytes between exposed and non-exposed group. The photoproducts excision efficiency after exposure to UV-C (6 Jm 2 ) and difference in repair capacity by incubation in present and absent of PHA were also studied. There were no statistically significant differences detected directly after UV irradiation between both investigated groups (p >0.1). However, for group exposed to pesticide the ratio of DNA damage measured right after exposition and two hours later was higher (32.19) comparing to reference group (28.60). It may suggest that in exposed group photoproducts excision efficiency was higher or the rejoining rates of the breaks was lower. The differences between repair efficiency observed in lymphocytes from group exposed and non-exposed to pesticides (with or without stimulation to division) were also statistically insignificant (for Tail Length, Tail DNA and Tail moment parameters - p >0.1). Statistically significant differences in DNA damage repair capacities were observed (for all analyzed parameters) between lymphocytes

  3. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes

    Directory of Open Access Journals (Sweden)

    Jolene Michelle Helena

    2018-04-01

    Full Text Available Deoxyribonucleic acid (DNA is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.

  4. Compensation for the damage caused by the Chernobyl disaster

    International Nuclear Information System (INIS)

    Joirysch, A.; Supataeva, O.

    1993-01-01

    The teachings of the accident at the nuclear power plant of Chernobyl clearly showed that the existing rules of Russian legislation cannot handle the problems in respect of civil liability for nuclear damage. This paper describes how the Soviet State and Soviet law tried to cope with the question of compensation for damage to human health and property in a special legal situation, due to the lack of any particular legislation covering this area and to the fact that the USSR is a Party neither to the Vienna nor the Paris Convention. In 1991 a law of the Russian Federation 'On the social protection of citizens who suffered as a consequence of the Chernobyl disaster' established a State system of services and compensation for such damage and the procedure for financing was laid down by a ministerial letter. 4 refs

  5. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    Energy Technology Data Exchange (ETDEWEB)

    Lyckesvärd, Madeleine Nordén, E-mail: madeleine.lyckesvard@oncology.gu.se [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Delle, Ulla; Kahu, Helena [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden); Lindegren, Sture [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Jensen, Holger [The PET and Cyclotron Unit Copenhagen University Hospital, Rigshospitalet (Denmark); Bäck, Tom [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg (Sweden); Swanpalmer, John [Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Elmroth, Kecke [Department of Oncology, Sahlgrenska Academy, University of Gothenburg (Sweden)

    2014-07-15

    Highlights: • We study DNA damage response to low-LET photons and high-LET alpha particles. • Cycling primary thyrocytes are more sensitive to radiation than stationary cells. • Influence of radiation quality varies due to cell cycle status of normal cells. • High-LET radiation gives rise to a sustained DNA damage response. - Abstract: Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ({sup 211}At), concentrated in the thyroid by the same mechanism as {sup 131}I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ({sup 60}Co) and alpha particles from {sup 211}At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24 h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to {sup 211}At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1 Gy {sup 211}At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative

  6. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  7. The Milieu of Damaged Alveolar Epithelial Type 2 Cells Stimulates Alveolar Wound Repair by Endogenous and Exogenous Progenitors

    Science.gov (United States)

    Buckley, Susan; Shi, Wei; Carraro, Gianni; Sedrakyan, Sargis; Da Sacco, Stefano; Driscoll, Barbara A.; Perin, Laura; De Filippo, Roger E.

    2011-01-01

    Alveolar epithelial integrity is dependent upon the alveolar milieu, yet the milieu of the damaged alveolar epithelial cell type 2 (AEC2) has been little studied. Characterization of its components may offer the potential for ex vivo manipulation of stem cells to optimize their therapeutic potential. We examined the cytokine profile of AEC2 damage milieu, hypothesizing that it would promote endogenous epithelial repair while recruiting cells from other locations and instructing their engraftment and differentiation. Bronchoalveolar lavage and lung extract from hyperoxic rats represented AEC2 in vivo damage milieu, and medium from a scratch-damaged AEC2 monolayer represented in vitro damage. CINC-2 and ICAM, the major cytokines detected by proteomic cytokine array in AEC2 damage milieu, were chemoattractive to normoxic AECs and expedited in vitro wound healing, which was blocked by their respective neutralizing antibodies. The AEC2 damage milieu was also chemotactic for exogenous uncommitted human amniotic fluid stem cells (hAFSCs), increasing migration greater than 20-fold. hAFSCs attached within an in vitro AEC2 wound and expedited wound repair by contributing cytokines migration inhibitory factor and plasminogen activator inhibitor 1 to the AEC2 damage milieu, which promoted wound healing. The AEC2 damage milieu also promoted differentiation of a subpopulation of hAFSCs to express SPC, TTF-1, and ABCA3, phenotypic markers of distal alveolar epithelium. Thus, the microenvironment created by AEC2 damage not only promotes autocrine repair but also can attract uncommitted stem cells, which further augment healing through cytokine secretion and differentiation. PMID:21700959

  8. Modification of the sensitivity and repair of potentially lethal damage by diethyldithiocarbamate during and following exposure of plateau-phase cultures of mammalian cells to radiation and cis-diamminedichloroplatinum(II)

    International Nuclear Information System (INIS)

    Evans, R.G.; Engel, C.; Wheatley, C.; Nielsen, J.

    1982-01-01

    Diethyldithiocarbamate (DDC), a chelating agent known to reduce levels of superoxide dismutase and glutathione peroxidase, appears to protect irradiated monolayers of mammalian cells when present for 1 hr before and during irradiation. To examine a possible cause of this modification, the repair of potentially lethal X-ray damage was examined with and without the presence of DDC in the medium overlying the cells postirradiation. Although little repair was seen in full medium alone when DDC was added to the full medium, the amount of repair was comparable to that seen under optimum repair conditions, that is, in Hanks' balanced salt solution. The t 1/2 of the repair process in Hanks' balanced salt solution or in full medium with DDC added was comparable and of the order of 1 to 1.5 hr. The cis-platinum sensitivity of the monolayers is significantly modified by the addition of DDC, and the nature of the modification is dependent upon the time at which the DDC is added to the cells following initiation of cis-platinum exposure. To investigate a possible reason for this protection by DDC, we examined the repair of potentially lethal cis-platinum damage in the cell monolayers. Minimal repair was noted in the presence of either Hanks' balanced salt solution or full medium, but when DDC was added to the full medium, the repair was tripled, and the t 1/2 of the repair process was approximately 2 hr. The ability of DDC to protect cells from exposure to both X-rays and cis-platinum, together with its augmentation of repair of potentially lethal damage following exposure to each, has broad clinical application and is being actively explored in tumor-bearing mice

  9. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 1

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Ohnuma, H.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Structural damage induced by an aircraft crashing into a reinforced concrete structure includes local damage caused by the deformable engines, and global damage caused by the entire aircraft. Local damage to the target may consist of spalling of concrete from its front face together with missile penetration into it, scabbing of concrete from its rear face, and perforation of missile through it. Until now, local damage to concrete structures has been mainly evaluated by rigid missile impact tests. Past research work regarding local damage caused by impact of deformable missiles has been limited. This paper presents the results of a series of impact tests of small-, intermediate-, and full-scale engine models into reinforced concrete panels. The purpose of the tests was to determine the local damage to a reinforced concrete structure caused by the impact of a deformable aircraft engine. (orig.)

  10. The alteration of chromatin domains during damage repair induced by ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Olson, K.M.; Olson, G.B.

    1995-01-01

    Several groups previously have reported the ability of chromatin structure to influence the production of damage induced by ionizing radiation. The authors' interest has been to determine whether chromatin structural alterations exist after ionizing radiation during a repair interval. The earlier work investigated this question using biochemical techniques. The crosslinking of nuclear structural proteins to DNA after ionizing radiation was observed. In addition, they found that the chromatin structure in vitro as measured by sucrose density gradient sedimentation, was altered after ionizing radiation. These observations added to earlier studies in which digital imaging techniques showed an alteration in feulgen-positive DNA after irradiation prompted the present study. The object of this study was to detect whether the higher order structure of DNA into chromatin domains within interphase human cells was altered in interphase cells in response to a radiation induced damage. The present study takes advantage of the advances in the detection of chromatin domains in situ using DNA specific dyes and digital image processing of established human T and B cell lines

  11. Application of a clay-slag geopolymer matrix for repairing damaged concrete: Laboratory and industrial-scale experiments

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš; Boura, P.; Lučaník, A.

    2017-01-01

    Roč. 59, č. 10 (2017), s. 929-937 ISSN 0025-5300 Institutional support: RVO:67985891 Keywords : blast-furnace slag * geopolymer * scanning electron microscopy (SEM) * damaged concrete repair * long-term monitoring Subject RIV: JJ - Other Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 0.418, year: 2016

  12. Cytomegalovirus-Induced Effector T Cells Cause Endothelial Cell Damage

    NARCIS (Netherlands)

    van de Berg, Pablo J. E. J.; Yong, Si-La; Remmerswaal, Ester B. M.; van Lier, René A. W.; ten Berge, Ineke J. M.

    2012-01-01

    Human cytomegalovirus (CMV) infection has been linked to inflammatory diseases that involve vascular endothelial cell damage, but definitive proof for a direct cytopathic effect of CMV in these diseases is lacking. CMV infection is associated with a strong increase in both CD4(+) and CD8(+) T cells

  13. Why shorter half-times of repair lead to greater damage in pulsed brachytherapy

    International Nuclear Information System (INIS)

    Fowler, J.F.

    1993-01-01

    Pulsed brachytherapy consists of replacing continuous irradiation at low dose-rate with a series of medium dose-rate fractions in the same overall time and to the same total dose. For example, pulses of 1 Gy given every 2 hr or 2 Gy given every 4 hr would deliver the same 70 Gy in 140 hr as continuous irradiation at 0.5 Gy/hr. If higher dose-rates are used, even with gaps between the pulses, the biological effects are always greater. Provided that dose rates in the pulse do not exceed 3 Gy/hr, and provided that pulses are given as often as every 2 hr, the inevitable increases of biological effect are no larger than a few percent (of biologically effective dose or extrapolated response dose). However, these increases are more likely to exceed 10% (and thus become clinically significant) if the half-time of repair of sublethal damage is short (less than 1 hr) rather than long. This somewhat unexpected finding is explained in detail here. The rise and fall of Biologically Effective Dose (and hence of Relative Effectiveness, for a constant dose in each pulse) is calculated during and after single pulses, assuming a range of values of T 1/2 , the half-time of sublethal damage repair. The area under each curve is proportional to Biologically Effective Dose and therefore to log cell kill. Pulses at 3 Gy/hr do yield greater biological effect (dose x integrated Relative Effectiveness) than lower dose-rate pulses or continuous irradiation at 0.5 Gy/hr. The contrast is greater for the short T 1/2 of 0.5 hr than for the longer T 1/2 of 1.5 hr. More biological damage will be done (compared with traditional low dose rate brachytherapy) in tissues with short T 1/2 (0.1-1 hr) than in tissues with longer T 1/2 values. 8 refs., 3 figs

  14. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference.

    Directory of Open Access Journals (Sweden)

    Geoffrey R Bennett

    Full Text Available Host base excision repair (BER proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1 and mutY homolog (MYH as well as DNA polymerase beta (Polβ. While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polβ null cell lines complemented with active site point mutants of Polβ. A DNA synthesis defective mutant, but not a 5'dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggested Polβ DNA synthesis activity is not necessary while 5'dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.

  15. Protein energy-malnutrition: does the in vitro zinc sulfate supplementation improve chromosomal damage repair?

    Science.gov (United States)

    Padula, Gisel; González, Horacio F; Varea, Ana; Seoane, Analía I

    2014-12-01

    Protein-energy malnutrition (PEM) is originated by a cellular imbalance between nutrient/energy supply and body's demand. Induction of genetic damage by PEM was reported. The purpose of this study was to determine the genetic effect of the in vitro zinc sulfate (ZnSO4) supplementation of cultured peripheral blood lymphocytes from children with PEM. Twenty-four samples from 12 children were analyzed. Anthropometric and biochemical diagnosis was made. For the anthropometric assessment, height-for-age index, weight-for-age index, and weight-for-height index were calculated (WHO, 2005). Micronutrient status was evaluated. A survey for assessed previous exposure to potentially genotoxic agents was applied. Results were statistically evaluated using paired sample t test and χ (2) test. Each sample was fractionated and cultured in two separate flasks to performed two treatments. One was added with 180 μg/dl of ZnSO4 (PEMs/ZnSO4) and the other remains non-supplemented (PEMs). Cytotoxic effects and chromosomal damage were assessed using the cytokinesis-block micronucleus assay (CBMN). All participants have at least one type of malnutrition and none have anemia, nor iron, folate, vitamin A, and zinc deficiency. All PEMs/ZnSO4 samples have a significant reduction in the micronucleus (MNi) frequency compared with PEMs (t = 6.25685; p < 0.001). Nuclear division index (NDI) increase in PEMs/ZnSO4 (t = -17.4226; p < 0.001). Nucleoplasmic bridge (NPBs) frequency was four times smaller in PEMs/ZnSO4 (χ (2) = 40.82; p < 0.001). No nuclear buds (NBuds) were observed. Cytotoxic effects and chromosomal damage observed in children suffering from PEM can be repaired in vitro with zinc sulfate supplementation.

  16. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    Science.gov (United States)

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  17. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  18. Damages to gladiolu corm caused by fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Zhang Dongxue; Zheng Chun

    2007-01-01

    Gladiolus corms were irradiated to 100-500kGy by fast neutrons in the CFBR-II pulsed reactor, Scanning electron microscope images of the irradiated samples revealed significant radiation damages to the gladiolus corms, and the mutagenic effects were studied by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Within the dose range, radiation damage to the corm increased with the dose, with corm epidermis of the samples irradiated in vertical incidence being more serious than those irradiated in side-incidence to the same dose. Biological characters were investigated via field experiments, and the bands of protein subunit were analyzed by SDS-PAGE. The results showed that the fast neutrons irradiation inhibited growth of M1 generation seedling significantly. Protein expression was obviously inhibited by the irradiation. The study indicates that fast neutron induction is an effective way for gladiolus breeding. And the results may lay a foundation for studies on fast neutron mutation breeding. (authors)

  19. Microdosimetric constraints on specific adaptation mechanisms to reduce DNA damage caused by ionising radiation

    International Nuclear Information System (INIS)

    Burkart, W.; Heusser, P.; Vijayalaxmi

    1990-01-01

    The protective effect of pre-exposure of lymphocytes to ionising radiation indicates the presence of 'adaptive repair' in mammalian cells. Microdosimetric considerations, however, raise some doubts on the advantage of such a cellular mechanism for specifically reducing the radiation damage caused by environmental exposures. Contrary to most chemicals which endanger the integrity of the mammalian genome, the local dose and dose rate from ionising radiation at the cellular level remain quite high, even at lowest exposures. A single electron or alpha particle passing through a cell nucleus already yields nuclear doses of up to about 3 mGy and 400 mGy, respectively. Macroscopic doses below these nuclear doses from a single event will only reduce the fraction of cell nuclei encountering the passage of a particle but not the dose or dose rate in the affected volume. At environmental doses in the range of 1 to 5 mGy per annum, the time between two consecutive hits in a specific cell nucleus is in the range of months to years. Very low concentrations of bleomycin, a drug with high affinity to DNA, also triggers an adaptive response. This points to a more general stress response mechanism which may benefit the cell even at environmental levels of radioactivity, e.g. by protecting the integrity of DNA from attacks by chemicals, by endogenous radicals, by acids from anoxia, etc. (author)

  20. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Guzder, S.N.; Sung, P.; Prakash, S.; Prakash, L.

    1993-01-01

    Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A--G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. The authors have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. They also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair. 37 refs., 4 figs

  1. Ionizing radiation-induced DNA damage and its repair in human cells. Final performance report, July 1992 - June 1995

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1995-01-01

    The studies of DNA damage in living cells in vitro and in vivo were continued. A variety of systems including cultured mammalian cells, animals, and human tissues were used to conduct these studies. In addition, enzymatic repair of DNA base damage was studied using several DNA glycosylases. To this end, substrate specificities of these enzymes were examined in terms of a large number of base lesions in DNA. In the first phase of the studies, the author sought to introduce improvements to his methodologies for measurement of DNA damage using the technique of gas chromatography/mass spectrometry (GC/MS). In particular, the quantitative measurement of DNA base damage and DNA-protein crosslinks was improved by incorporation of isotope-dilution mass spectrometry into the methodologies. This is one of the most accurate techniques for quantification of organic compounds. Having improved the measurement technique, studies of DNA damage in living cells and DNA repair by repair enzymes were pursued. This report provides a summary of these studies with references to the original work

  2. Interventions for skin changes caused by nerve damage in leprosy

    Directory of Open Access Journals (Sweden)

    Liv Merete Reinar

    Full Text Available BACKGROUND More than three million persons are disabled by leprosy worldwide. The main complication of sensory nerve damage is neuropathic ulceration, particularly of the feet. In this review we explored interventions that can prevent and treat secondary damage to skin and limbs. OBJECTIVE To assess the effects of self-care, dressings and footwear in preventing and healing secondary damage to the skin in persons affected by leprosy. METHODS Search methods: We searched the Cochrane Skin Group Specialised Register (April 2008, the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 1, 2008, MEDLINE (from 2003 to April 2008, EMBASE (from 2005 to April 2008, CINAHL (1982-2006 and LILACS (1982- April 2008 as well as online registers of ongoing trials (April 2008. Selection criteria: Randomised controlled trials involving anyone with leprosy and damage to peripheral nerves treated with any measures designed to prevent damage with the aim of healing existing ulcers and preventing development of new ulcers. Data collection and analysis: Two authors assessed trial quality and extracted data. MAIN RESULTS Eight trials with a total of 557 participants were included. The quality of the trials was generally poor. The interventions and outcome measures were diverse. Although three studies that compared zinc tape to more traditional dressings found some benefit, none of these showed a statistically significant effect. One trial indicated that topical ketanserin had a better effect on wound healing than clioquinol cream or zinc paste, RR was 6.00 (95% CI 1.45 to 24.75. We did not combine the results of the two studies that compared topical phenytoin to saline dressing, but both studies found statistically significant effects in favour of phenytoin for healing of ulcer (SMD -2.34; 95% CI -3.30 to -1.39; and SMD -0.79; 95% CI -1.20 to 0.39. Canvas shoes were not much better than PVC-boots, and double rocker shoes did not promote healing

  3. Interventions for skin changes caused by nerve damage in leprosy.

    Science.gov (United States)

    Reinar, Liv Merete; Forsetlund, Louise; Bjørndal, Arild; Lockwood, Diana

    2008-07-16

    More than three million persons are disabled by leprosy worldwide. The main complication of sensory nerve damage is neuropathic ulceration, particularly of the feet. In this review we explored interventions that can prevent and treat secondary damage to skin and limbs. To assess the effects of self-care, dressings and footwear in preventing and healing secondary damage to the skin in persons affected by leprosy. We searched the Cochrane Skin Group Specialised Register (April 2008), the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 1, 2008), MEDLINE (from 2003 to April 2008), EMBASE (from 2005 to April 2008), CINAHL (1982-2006) and LILACS (1982- April 2008 ) as well as online registers of ongoing trials (April 2008). Randomised controlled trials involving anyone with leprosy and damage to peripheral nerves treated with any measures designed to prevent damage with the aim of healing existing ulcers and preventing development of new ulcers. Two authors assessed trial quality and extracted data. Eight trials with a total of 557 participants were included. The quality of the trials was generally poor. The interventions and outcome measures were diverse. Although three studies that compared zinc tape to more traditional dressings found some benefit, none of these showed a statistically significant effect. One trial indicated that topical ketanserin had a better effect on wound healing than clioquinol cream or zinc paste, RR was 6.00 (95% CI 1.45 to 24.75). We did not combine the results of the two studies that compared topical phenytoin to saline dressing, but both studies found statistically significant effects in favour of phenytoin for healing of ulcer (SMD -2.34; 95% CI -3.30 to -1.39; and SMD -0.79; 95% CI -1.20 to 0.39). Canvas shoes were not much better than PVC-boots, and double rocker shoes did not promote healing much more than below-knee plasters. One study suggested that topical ketanserin is more effective than clioquinol cream

  4. Spectroscopic approaches to study DNA damage induced in genome exposed to ionizing radiation and its enzymatic repair

    International Nuclear Information System (INIS)

    Yokoya, Akinari; Fujii, Kentaro; Oka, Toshitaka; Watanabe, Ritsuko

    2012-01-01

    Recent progress on spectroscopic study on physicochemical process of DNA damage induction will be reported. It has been predicted by computer track simulation studies that complex DNA damage, so called clustered DNA damage sites, is produced along the tack particularly of high Linear Energy Transfer (LET) ions. The clustered DNA damage, consisting of two or more isolated lesions such as single strand breaks or nucleobase lesions, is thought to compromise DNA repair enzymes. We have revealed that the nucleobase lesions produced by He 2+ ion impact to simple model DNA (plasmid) are hardly processed by base excision repair enzymes (E. coli DNA glycosylases). Using the third generation synchrotron radiation facility (SPring-8), we have studied unpaired electron species or desorbed ions as intermediates of DNA damage using an EPR apparatus or mass spectrometer installed in the soft X-ray beamline in SPring-8. These aspects are compared with the yields of final products of single- and double-strand breaks and base lesions revealed biochemical techniques. Models of complex DNA damage induction will be proposed considering various modification factors of the damage induction, ionization of valence and inner-shell electrons, OH radicals, hydration layer and the impact of secondary electrons. (author)

  5. Three model systems measure oxidation/nitration damage caused ...

    Indian Academy of Sciences (India)

    Unknown

    caused by peroxynitrite ... (OONO–) or its carbon dioxide derivatives cause oxidation/nitration and hence mutation to various body poly- mers e.g. .... The work described in this paper is quite brief due to ex- ... exact way to balance the dose of antioxidants in mixtures ... tralizing conditions the half-life of OONO– is less than.

  6. Effects of motexafin gadolinium on DNA damage and X-ray-induced DNA damage repair, as assessed by the Comet assay

    International Nuclear Information System (INIS)

    Donnelly, Erling T.; Liu Yanfeng; Paul, Tracy K.; Rockwell, Sara

    2005-01-01

    Purpose: To investigate the effects of motexafin gadolinium (MGd) on the levels of reactive oxygen species (ROS), glutathione (GSH), and DNA damage in EMT6 mouse mammary carcinoma cells. The ability of MGd to alter radiosensitivity and to inhibit DNA damage repair after X-ray irradiation was also evaluated. Methods and Materials: Reactive oxygen species and GSH levels were assessed by 2,7-dichlorofluorescein fluorescence flow cytometry and the Tietze method, respectively. Cellular radiosensitivity was assessed by clonogenic assays. Deoxyribonucleic acid damage and DNA damage repair were assessed in plateau-phase EMT6 cells by the Comet assay and clonogenic assays. Results: Cells treated with 100 μmol/L MGd plus equimolar ascorbic acid (AA) had significantly increased levels of ROS and a 58.9% ± 3.4% decrease in GSH levels, relative to controls. Motexafin gadolinium plus AA treatment increased the hypoxic, but not the aerobic, radiosensitivity of EMT6 cells. There were increased levels of single-strand breaks in cells treated with 100 μmol/L MGd plus equimolar AA, as evidenced by changes in the alkaline tail moment (MGd + AA, 6 h: 14.7 ± 1.8; control: 2.8 ± 0.9). The level of single-strand breaks was dependent on the length of treatment. Motexafin gadolinium plus AA did not increase double-strand breaks. The repair of single-strand breaks at 2 h, but not at 4 h and 6 h, after irradiation was altered significantly in cells treated with MGd plus AA (MGd + AA, 2 h: 15.8 ± 3.4; control: 5.8 ± 0.6). Motexafin gadolinium did not alter the repair of double-strand breaks at any time after irradiation with 10 Gy. Conclusions: Motexafin gadolinium plus AA generated ROS, which in turn altered GSH homeostasis and induced DNA strand breaks. The MGd plus AA-mediated alteration of GSH levels increased the hypoxic, but not aerobic, radiosensitivity of EMT6 cells. Motexafin gadolinium altered the kinetics of single-strand break repair soon after irradiation but did not

  7. Compensation of damage caused by diverted nuclear substances

    International Nuclear Information System (INIS)

    Deprimoz, J.

    1981-10-01

    This paper provides a comprehensive analysis of the insurance system for nuclear liability. As a rule, if nuclear fuel, radioactive products or waste are governed by nuclear energy law providing for strict and channelled liability, their legal holder will pay for damage arising from them anywhere within 20 years after theft or diversion and 10 years after the nuclear incident. In most countries, atomic liability insurers will implicitly grant their cover through policies underwritten by legal holders. If diverted substances have a low specific radioactivity, their legal holder remains liable according to common law and insurance policies cover this conventional liability. (NEA) [fr

  8. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  9. Induction and repair of DNA base damage studied in X-irradiated CHO cells using the M. luteus extract

    International Nuclear Information System (INIS)

    Foehe, C.; Dikomey, E.

    1994-01-01

    DNA base damage was measured in Chinese hamster ovary cells X-irradiated under aerobic conditions using an extract of the bacterium Micrococcus luteus. The glycosylases and endonucleases present in this extract recognize damaged bases and convert them into strand breaks (termed endonuclease-sensitive sites, enss). Strand breaks were detected by the alkaline unwinding technique. The induction of enss was measured for X-ray doses ranging up to 45 Gy. The relative frequency of all enss related to all radiation induced strand breaks was 1.7 ± 0.4. Repair of enss was studied for a radiation dose of 45 Gy. The number of enss was found to decrease exponentially with time after irradiation with a half-time of τ enss = 37 ± 8 min. The repair kinetics that were also measured for all X-ray-induced DNA strand breaks were found to consist of three phases: fast, intermediate and slow. The intermediate phase was fitted under the assumption that this phase results from the information and repair of secondary single-strand breaks generated by enzymatic incision at the sites of base damage repair. (author)

  10. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention?

    Science.gov (United States)

    Diamond, Alan M.

    2013-01-01

    The trace element selenium is an essential micronutrient that has received considerable attention for its potential use in the prevention of cancer. In spite of this interest, the mechanism(s) by which selenium might function as a chemopreventive remain to be determined. Considerable experimental evidence indicates that one possible mechanism by which selenium supplementation may exert its benefits is by enhancing the DNA damage repair response, and this includes data obtained using cultured cells, animal models as well as in human clinical studies. In these studies, selenium supplementation has been shown to be beneficial in reducing the frequency of DNA adducts and chromosome breaks, consequentially reducing the likelihood of detrimental mutations that ultimately contribute to carcinogenesis. The benefits of selenium can be envisioned as being due, at least in part, to it being a critical constituent of selenoproteins such as glutathione peroxidases and thioredoxin reductases, proteins that play important roles in antioxidant defence and maintaining the cellular reducing environment. Selenium, therefore, may be protective by preventing DNA damage from occurring as well as by increasing the activity of repair enzymes such as DNA glycosylases and DNA damage repair pathways that involve p53, BRCA1 and Gadd45. An improved understanding of the mechanism of selenium’s impact on DNA repair processes may help to resolve the apparently contradicting data obtained from decades of animal work, human epidemiology and more recently, clinical supplementation studies. PMID:23204505

  11. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Min; Choi, Ji Ye [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Yi, Joo Mi [Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan (Korea, Republic of); Chung, Jin Woong; Leem, Sun-Hee; Koh, Sang Seok [Department of Biological Science, Dong-A University, Busan (Korea, Republic of); Kang, Tae-Hong, E-mail: thkang@dau.ac.kr [Department of Biological Science, Dong-A University, Busan (Korea, Republic of)

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated in the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.

  12. Generation of spectra and stress histories for fatigue and damage tolerance analysis of fuselage repairs

    Science.gov (United States)

    1991-10-01

    This report describes a simplified procedure for the development of stress histories : for use in the analysis of aircraft repairs.- Although repairs of all components of : the airframe are of interest, this report concentrates on stress histories fo...

  13. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2011-07-27

    .... PHMSA-2011-0177] Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding AGENCY... liquid pipelines to communicate the potential for damage to pipeline facilities caused by severe flooding... pipelines in case of flooding. ADDRESSES: This document can be viewed on the Office of Pipeline Safety home...

  14. Radiation-induced cross-link DNA damages: synthesis, measurement and insertion into oligonucleotides for replication and enzymatic repair studies

    International Nuclear Information System (INIS)

    Bellon, Sophie

    2003-01-01

    This research thesis addresses the synthesis, measurement and study of the biological impact of radio-induced DNA double damages. In the first part, the author reports the study of the reactivity and fate of the 5-(2'-desoxy-uridilyl)methyl radical which is one of the intermediates formed by oxidizing photo-sensitisation of thymine. The next part reports results of the formation and measurement of double damages of isolated and cellular DNA, notably in the case of γ irradiation. The third part reports the study of in vitro replication of one of the double damages. The behaviour of different polymerases with respect to the damage is reported. Finally, the modified oligonucleotide has been used as a substrate to highlight possible activities of enzymatic repair for this type of cross-link damages by purified proteins or proteins present within cellular extracts [fr

  15. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage

    International Nuclear Information System (INIS)

    Goricar, Katja; Erculj, Nina; Zadel, Maja; Dolzan, Vita

    2012-01-01

    Homologous recombination (HR) repair is an important mechanism involved in repairing double-strand breaks in DNA and for maintaining genomic stability. Polymorphisms in genes coding for enzymes involved in this pathway may influence the capacity for DNA repair. The aim of this study was to select tag single nucleotide polymorphisms (SNPs) in specific genes involved in HR repair, to determine their allele frequencies in a healthy Slovenian population and their influence on DNA damage detected with comet assay. In total 373 individuals were genotyped for nine tag SNPs in three genes: XRCC3 722C>T, XRCC3 -316A>G, RAD51 -98G>C, RAD51 -61G>T, RAD51 1522T>G, NBS1 553G>C, NBS1 1197A>G, NBS1 37117C>T and NBS1 3474A>C using competitive allele-specific amplification (KASPar assay). Comet assay was performed in a subgroup of 26 individuals to determine the influence of selected SNPs on DNA damage. We observed that age significantly affected genotype frequencies distribution of XRCC3 -316A>G (P = 0.039) in healthy male blood donors. XRCC3 722C>T (P = 0.005), RAD51 -61G>T (P = 0.023) and NBS1 553G>C (P = 0.008) had a statistically significant influence on DNA damage. XRCC3 722C>T, RAD51 -61G>T and NBS1 553G>C polymorphisms significantly affect the repair of damaged DNA and may be of clinical importance as they are common in Slovenian population

  16. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair

    Science.gov (United States)

    Chapman, J. Ross; Sossick, Alex J.; Boulton, Simon J.; Jackson, Stephen P.

    2012-01-01

    Summary Following irradiation, numerous DNA-damage-responsive proteins rapidly redistribute into microscopically visible subnuclear aggregates, termed ionising-radiation-induced foci (IRIF). How the enrichment of proteins on damaged chromatin actually relates to DNA repair remains unclear. Here, we use super-resolution microscopy to examine the spatial distribution of BRCA1 and 53BP1 proteins within single IRIF at subdiffraction-limit resolution, yielding an unprecedented increase in detail that was not previously apparent by conventional microscopy. Consistent with a role for 53BP1 in promoting DNA double-strand break repair by non-homologous end joining, 53BP1 enrichment in IRIF is most prominent in the G0/G1 cell cycle phases, where it is enriched in dense globular structures. By contrast, as cells transition through S phase, the recruitment of BRCA1 into the core of IRIF is associated with an exclusion of 53BP1 to the focal periphery, leading to an overall reduction of 53BP1 occupancy at DNA damage sites. Our data suggest that the BRCA1-associated IRIF core corresponds to chromatin regions associated with repair by homologous recombination, and the enrichment of BRCA1 in IRIF represents a temporal switch in the DNA repair program. We propose that BRCA1 antagonises 53BP1-dependent DNA repair in S phase by inhibiting its interaction with chromatin proximal to damage sites. Furthermore, the genomic instability exhibited by BRCA1-deficient cells might result from a failure to efficiently exclude 53BP1 from such regions during S phase. PMID:22553214

  17. Investigations of the effect of exogenous gibberellin on the electrophoretic repair of plant DNA damaged by the gamma radiation

    International Nuclear Information System (INIS)

    Kryukova, L.M.; Medvedkova, V.V.

    1981-01-01

    Effect of the exogenous gibberellin on the DNA of plants irradiated with high doses of γ-radiation is studied. Repair of the molecular weight of DNA can be judged on according to electrophoretic mobility in 1% agar sludge of DNA samples denaturated in alkaline. Investigation results reaffirm that exogenous gibberellin promotes to the repair of the DNA of plants damaged with high doses of radiation. The mechanism of the effect of the hormone is not yet studied, but it is supposed that physiological action of the phytohormone is realized through the ferment systems of plants [ru

  18. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    DEFF Research Database (Denmark)

    Mund, Andreas; Schubert, Tobias; Staege, Hannah

    2012-01-01

    -dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non...

  19. Radiation induced bystander signals are independent of DNA damage and DNA repair capacity of the irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, Genro [Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom); Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Suzuki, Keiji [Division of Radiation Biology, Department of Radiology and Radiation Biology, Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan); Matsuda, Naoki [Division of Radiation Biology and Protection, Center for Frontier Life Sciences, Nagasaki University, Nagasaki 852-8102 (Japan); Kodama, Seiji [Radiation Biology Laboratory, Radiation Research Center, Frontier Science Innovation Center, Organization for University-Industry-Government Cooperation, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570 (Japan); Ono, Koji [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Watanabe, Masami [Laboratory of Radiation Biology, Division of Radiation Life Science, Department of Radiation Life Science and Radiation Medical Science, Kyoto University Research Reactor Institute, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Prise, Kevin M [Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom) and Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Lisburn Road, Belfast BT9 7AB (United Kingdom)]. E-mail: prise@gci.ac.uk

    2007-06-01

    Evidence is accumulating that irradiated cells produce signals, which interact with non-exposed cells in the same population. Here, we analysed the mechanism for bystander signal arising in wild-type CHO cells and repair deficient varients, focussing on the relationship between DNA repair capacity and bystander signal arising in irradiated cells. In order to investigate the bystander effect, we carried out medium transfer experiments after X-irradiation where micronuclei were scored in non-targeted DSB repair deficient xrs5 cells. When conditioned medium from irradiated cells was transferred to unirradiated xrs5 cells, the level of induction was independent of whether the medium came from irradiated wild-type, ssb or dsb repair deficient cells. This result suggests that the activation of a bystander signal is independent of the DNA repair capacity of the irradiated cells. Also, pre-treatment of the irradiated cells with 0.5% DMSO, which suppresses micronuclei induction in CHO but not in xrs5 cells, suppressed bystander effects completely in both conditioned media, suggesting that DMSO is effective for suppression of bystander signal arising independently of DNA damage in irradiated cells. Overall the work presented here adds to the understanding that it is the repair phenotype of the cells receiving bystander signals, which determines overall response rather than that of the cell producing the bystander signal.

  20. Mechanical injuries, burns and combination damage caused by reactor accidents

    International Nuclear Information System (INIS)

    Koslowski, L.

    1981-01-01

    In cases of combination damage the initial treatment of wounds is the same as with injuries without accompanying radiation exposure. In the beginning the general principles of surgical treatment apply. In case of a mass accident, the examination of the injured to decide on the necessary kind of treatment has priority. A common problem to all the decisions is that the extent of a radiation exposure that may have been sustained cannot be established at once. Whether the radiation exposure has been so heavy as to require the modification of the surgical measures can be seen only from the blood count, the bone marrow biopsy, the reticulocyte count or from a chromosome analysis. (DG) [de

  1. Neuronal Rat Brain Damage Caused by Endogenous and Exogenous Hyperthermia

    Directory of Open Access Journals (Sweden)

    Mustafa Aydın

    2012-03-01

    Full Text Available OBJECTIVE: Hyperthermia may induce pathologic alterations within body systems and organs including brain. In this study, neuronal effects of endogenous and exogenous hyperthermia (41°C were studied in rats. METHODS: The endogenous hyperthermia (41°C was induced by lipopolysaccharide and the exogenous by an (electric heater. Possible neuronal damage was evaluated by examining healthy, apoptotic and necrotic cells, and heat shock proteins (HSP 27, HSP 70 in the cerebral cortex, cerebellum and hypothalamus RESULTS: At cellular level, when all neuronal tissues are taken into account; (i a significant increase in the necrotic cells was observed in the both groups (p0.05. CONCLUSION: The neural tissue of brain can show different degree of response to hyperthermia. But we can conclude that endogenous hyperthermia is more harmful to central nervous system than exogenous hyperthermia

  2. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    Science.gov (United States)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  3. Potentially lethal damage repair in cell lines of radioresistant human tumours and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Marchese, M.J.; Minarik, L.; Hall, E.J.; Zaider, M.

    1985-01-01

    Radiation cell survival data were obtained in vitro for three cell lines isolated from human tumours traditionally considered to be radioresistant-two melanomas and one osteosarcoma-as well as from a diploid skin fibroblast cell line. One melanoma cell line was much more radioresistant than the other, while the osteosarcoma and fibroblast cell lines were more radiosensitive than either. For cells growing exponentially, little potentially lethal damage repair (PLDR) could be demonstrated by comparing survival data for cells in which subculture was delayed by 6 h with those sub-cultured immediately after treatment. For the malignant cells in plateau phase, which in these cells might be better termed 'slowed growth phase', since an appreciable fraction of the cells are still cycling, a small amount of PLDR was observed, but not as much as reported by other investigators in the literature. The normal fibroblasts, which achieved a truer plateau phase in terms of noncycling cells, showed a significantly larger amount of PLDR than the tumour cells. (author)

  4. Measuring oxidative damage to DNA and its repair with the comet assay.

    Science.gov (United States)

    Collins, Andrew R

    2014-02-01

    Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases. With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells. There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay. In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Repair of potentially lethal damage in unfed plateau phase cultures of Ehrlich ascited tumour cells

    International Nuclear Information System (INIS)

    Illiakis, G.

    1980-01-01

    Plateau phase EAT-cells have been irradiated at different times in the plateau phase and their ability to repair PLD has been measured. A large capacity to repair PLD has been observed if the cultures were kept in the plateau phase for some hours after irradiation before diluting and plating to measure the survival. In combination with theoretical considerations it is concluded that almost all the PLD produced under these conditions can be repaired. The reaction rate of this repair was independent of the dose and the age of the culture. The results also indicate that PLD repair is independent of the intercellular contact of EAT-cells. (author)

  6. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  7. Damage on sliding bearings of internal combustion engines. Damage patterns, causes, prevention; Schaeden an Gleitlagern von Verbrennungsmotoren. Erscheinungsbilder, Ursachen, Vermeidung

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, U.G. [Miba Gleitlager GmbH, Laakrichen (Austria)

    2005-07-01

    Bearing failures are consequences of system deficiencies which cause an inadequate function of the hydrodynamic action and, thereby, too high a friction, at least locally. The bearing overheats, what ultimately leads to its destruction and that of adjacent components. These 'consequential damages' are frequently severe. We identify, therefore, early stages of malfunction, already as 'bearing damage'. In this condition, a diagnosis and remedial measures to avoid total destruction are possible. Typical bearing conditions, possible causes and remedies are described herein. (orig.)

  8. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 2

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Itoh, C.; Shirai, K.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Three sets of impact tests, small-, intermediate-, and full-scale tests, have been executed to determine local damage to reinforced concrete structures caused by the impact of aircraft engine missiles. The results of the test program showed that (1) the use of the similarity law is appropriate, (2) suitable empirical formulas exist for predicting the local damage caused by rigid missiles, (3) reduction factors may be used for evaluating the reduction in local damage due to the deformability of the engines, (4) the reinforcement ratio has no effect on local damage, and (5) the test results could be adequately predicted using nonlinear response analysis. (orig.)

  9. Differential response of human and rodent cell lines to chemical inhibition of the repair of potentially lethal damage

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B.; Ueno, A.M.; Dahlberg, W.K.

    1989-07-01

    We have examined the effects of several classes of metabolic inhibitors on the repair of potentially lethal damage in density-inhibited cultures of two rodent and two human cell systems which differ in their growth characteristics. Aphidicolin, 1-..beta..-D-arabinofuranosylcytosine (ara-C) and hydroxyurea showed no effect on PLD repair, whereas the effects of 9-..beta..-D-arabinofuranosyladenine (ara-A) and 3-aminobenzamide (3-AB) were cell line dependent. For example, 3-AB suppressed PLD repair almost completely in CHO cells, but showed no inhibitory effects in human diploid fibroblasts. These results indicate that inhibitors of DNA replication and poly(ADP-ribose) synthesis are not efficient inhibitors of cellular recovery in irradiated cells and, moreover, that such effects may be cell line dependent.

  10. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond.

    Science.gov (United States)

    Fedeles, Bogdan I; Singh, Vipender; Delaney, James C; Li, Deyu; Essigmann, John M

    2015-08-21

    The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage.

    Science.gov (United States)

    Potter, M; Sanford, K K; Parshad, R; Tarone, R E; Price, F M; Mock, B; Huppi, K

    1988-04-01

    Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and the other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.

  12. Repair Effect of Seaweed Polysaccharides with Different Contents of Sulfate Group and Molecular Weights on Damaged HK-2 Cells

    Directory of Open Access Journals (Sweden)

    Poonam Bhadja

    2016-05-01

    Full Text Available The structure–activity relationships and repair mechanism of six low-molecular-weight seaweed polysaccharides (SPSs on oxalate-induced damaged human kidney proximal tubular epithelial cells (HK-2 were investigated. These SPSs included Laminaria japonica polysaccharide, degraded Porphyra yezoensis polysaccharide, degraded Gracilaria lemaneiformis polysaccharide, degraded Sargassum fusiforme polysaccharide, Eucheuma gelatinae polysaccharide, and degraded Undaria pinnatifida polysaccharide. These SPSs have a narrow difference of molecular weight (from 1968 to 4020 Da after degradation by controlling H2O2 concentration. The sulfate group (–SO3H content of the six SPSs was 21.7%, 17.9%, 13.3%, 8.2%, 7.0%, and 5.5%, respectively, and the –COOH contents varied between 1.0% to 1.7%. After degradation, no significant difference was observed in the contents of characteristic –SO3H and –COOH groups of polysaccharides. The repair effect of polysaccharides was determined using cell-viability test by CCK-8 assay and cell-morphology test by hematoxylin-eosin staining. The results revealed that these SPSs within 0.1–100 μg/mL did not express cytotoxicity in HK-2 cells, and each polysaccharide had a repair effect on oxalate-induced damaged HK-2 cells. Simultaneously, the content of polysaccharide –SO3H was positively correlated with repair ability. Furthermore, the low-molecular-weight degraded polysaccharides showed better repair activity on damaged HK-2 cells than their undegraded counterpart. Our results can provide reference for inhibiting the formation of kidney stones and for developing original anti-stone polysaccharide drugs.

  13. Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanism

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Tatsumi, M.

    1976-01-01

    Replicative bypass repair of UV damage to DNA was studied in a wide variaty of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthesized after irradiation with 10 J/m 2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionally, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimodine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative bypassing became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability

  14. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  15. Plasmid DNA damage caused by stibine and trimethylstibine

    International Nuclear Information System (INIS)

    Andrewes, Paul; Kitchin, Kirk T.; Wallace, Kathleen

    2004-01-01

    Antimony is classified as 'possibly carcinogenic to humans' and there is also sufficient evidence for antimony carcinogenicity in experimental animals. Stibine is a volatile inorganic antimony compound to which humans can be exposed in occupational settings (e.g., lead-acid battery charging). Because it is highly toxic, stibine is considered a significant health risk; however, its genotoxicity has received little attention. For the work reported here, stibine was generated by sodium borohydride reduction of potassium antimony tartrate. Trimethylstibine is a volatile organometallic antimony compound found commonly in landfill and sewage fermentation gases at concentrations ranging between 0.1 and 100 μg/m 3 . Trimethylstibine is generally considered to pose little environmental or health risk. In the work reported here, trimethylstibine was generated by reduction of trimethylantimony dichloride using either sodium borohydride or the thiol compounds, dithioerythritol (DTE), L-cysteine, and glutathione. Here we report the evaluation of the in vitro genotoxicities of five antimony compounds--potassium antimony tartrate, stibine, potassium hexahydroxyantimonate, trimethylantimony dichloride, and trimethylstibine--using a plasmid DNA-nicking assay. Of these five antimony compounds, only stibine and trimethylstibine were genotoxic (significant nicking to pBR 322 plasmid DNA). We found stibine and trimethylstibine to be about equipotent with trimethylarsine using this plasmid DNA-nicking assay. Reaction of trimethylantimony dichloride with either glutathione or L-cysteine to produce DNA-damaging trimethylstibine was observed with a trimethylantimony dichloride concentration as low as 50 μM and L-cysteine or glutathione concentrations as low as 500 and 200 μM, respectively, for a 24 h incubation

  16. Mouse skin damages caused by fractionated irradiation with carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K; Chen, Y J; Ohira, C; Nojima, K; Ando, S; Kobayashi, N; Ohbuchi, T; Shimizu, W [Space and Particle Radiation Science Research Group, Chiba (Japan); Koike, S; Kanai, T [National Inst. of Radiological Sciences, Chiba (Japan). Div. of Accelerator Physics

    1997-09-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/{mu}m also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/{mu}m in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/{mu}m were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/{mu} steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  17. Mouse skin damages caused by fractionated irradiation with carbon ions

    International Nuclear Information System (INIS)

    Ando, K.; Chen, Y.J.; Ohira, C.; Nojima, K.; Ando, S.; Kobayashi, N.; Ohbuchi, T.; Shimizu, W.; Koike, S.; Kanai, T.

    1997-01-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/μm also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/μm in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/μm were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/μ steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  18. Evidence for repair of ultraviolet light-damaged herpes virus in human fibroblasts by a recombination mechanism

    International Nuclear Information System (INIS)

    Hall, J.D.; Featherston, J.D.; Almy, R.E.

    1980-01-01

    Human cells were either singly or multiply infected with herpes simplex virus (HSV-1) damaged by ultraviolet (uv) light, and the fraction of cells able to produce infectious virus was measured. The fraction of virus-producing cells was considerably greater for multiply infected cells than for singly infected cells at each uv dose examined. These high survival levels of uv-irradiated virus in multiply infected cells demonstrated that multiplicity-dependent repair, possibly due to genetic exchanges between damaged HSV-1 genomes, was occurring in these cells. To test whether uv light is recombinogenic for HSV-1, the effect of uv irradiation on the yield of temperature-resistant viral recombinants in cells infected with pairs of temperature-sensitive mutants was also investigated. The results of these experiments showed that the defective functions in these mutant host cells are not required for multiplicity-dependent repair or uv-stimulated viral recombination in herpes-infected cells

  19. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Rongxin; Mullins, Elwood A.; Shen, Xing; #8208; Xing; Lay, Kori T.; Yuen, Philip K.; David, Sheila S.; Rokas, Antonis; Eichman, Brandt F. (UCD); (Vanderbilt)

    2017-10-20

    DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.

  20. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway

    Science.gov (United States)

    Weeden, Clare E.; Chen, Yunshun; Ma, Stephen B.; Hu, Yifang; Ramm, Georg; Sutherland, Kate D.; Smyth, Gordon K.

    2017-01-01

    Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC. PMID:28125611

  1. DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters

    International Nuclear Information System (INIS)

    Qiao Min; Chen Ying; Wang Chunxia; Wang Zijian; Zhu Yongguan

    2007-01-01

    In this study, DNA damage to earthworms (Eisenia fetida) after in vivo exposure to contaminated soils was measured by detecting DNA strand breakages (DSBs) and causality was analyzed through fractionation based bioassays. A non-linear dose-response relationship existed between DNA damage and total soil PAHs levels. DNA damage, measured with the comet assay, and its repair process, were observed. To identify the chemical causality, an in vitro comet assay using coelomocytes was subsequently performed on the fractionated organic extracts from soils. The results showed that the PAHs in the soils were responsible for the exerting genotoxic effects on earthworms. When normalized to benzo(a)pyrene toxic equivalent (TEQ BaP ), the saturation dose in the dose-response curve was about 10 ng TEQ BaP g -1 soil (dw). - A non-linear dose-response relationship exists between earthworm DNA damage, measured with comet assay, and total PAHs levels in soils irrigated by wastewaters

  2. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1

    International Nuclear Information System (INIS)

    Sebastian, J.; Sancar, G.B.

    1991-01-01

    The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. The authors here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5' flanking sequence beginning 40 base pairs upstream from the coding sequence. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription

  3. Understanding transportation-caused rangeland damage in Mongolia.

    Science.gov (United States)

    Keshkamat, S S; Tsendbazar, N E; Zuidgeest, M H P; Shiirev-Adiya, S; van der Veen, A; van Maarseveen, M F A M

    2013-01-15

    Mongolia, a vast and sparsely populated semi-arid country, has very little formal road infrastructure. Since the 1990s, private ownership and usage of vehicles has been increasing, which has created a web of dirt track corridors due to the communal land tenure and unobstructed terrain, with some of these corridors reaching over 4 km in width. This practice aids wind- and water-aided erosion and desertification, causing enormous negative environmental effects. Little is being done to counter the phenomenon, mainly because the logic of the driving behaviour that causes this dirt road widening is not fully understood. The research in this article postulates that this driving behaviour has rational foundations and is linked to various geographical factors (natural and man-made geographical features). We analysed 11,000 km of arterial routes in the country using spatial statistics and determined that geographically weighted regression (GWR) analysis offers a good explanation for whether, and by how much, the selected geographical factors affect the creation of corridor widths and how their effect varies across the landscape. We determined that corridor widths are correlated to factors such as proximity to river crossings, traffic intensity, and vegetation abundance. Knowing these factors can help local planners and engineers design counter-measures that could help to control and reduce the widths of these corridors, until paved roads can replace the dirt track corridors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Repair of soft X-ray damage to mammalian cell DNA

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, R.A.; Wharton, C.W. (Birmingham Univ. (UK). Dept. of Biochemistry)

    1990-10-01

    Inhibitors of polymerase {alpha} (hydroxyurea and cytosine arabinoside) and an inhibitor of polymerase {beta} and ''delta (di-deoxythymidine) had equal inhibitory effects on repair synthesis in the first 15 min after irradiation of Chinese hamster ovary cells with soft x-rays produced from a laser plasma. Polymerase {alpha} inhibitors had considerably more effect after 15 min following irradiation. This implies that polymerase {alpha}, {beta}, and/or {delta} are all equally active in the initial stages of repair synthesis after soft X-radiation, but {alpha}-activity is more prominent in later stages of repair synthesis. Polymerase {alpha} is thought to catalyse long-patch repair synthesis, while polymerase {beta} is thought to catalyse short-patch repair. Polymerase {delta} has been shown to be active in DNA repair synthesis, but its precise function is as yet uncertain. (author).

  5. Determination of the adaptive response induced In vivo by gamma radiation and its relation with the sensibility to the damage induction in the DNA and with the repairing capacity

    International Nuclear Information System (INIS)

    Mendiola C, M.T.

    2002-01-01

    The kinetics of damage induction and repair at different doses as well as the adaptive response induced by gamma ray exposure were determined in murine leukocytes in vivo. The damage-repair kinetics were established after the exposure to 0.5, 1.0 or 2.0 Gy in a 137 Cs source. Peripheral blood samples were obtained from the tails of mice, the percentage of damaged cells and the DNA migration in each one were analyzed by the single cell gel electrophoresis (SCG) technique or comet assay. Results indicated that there was an induction of approximately 75% comets with the doses of 1.0 and 2.0 Gy, which was considerably reduced to 22% and 42% respectively during the first 15 minutes. This evidences the presence of a rapid repair process and suggests that leucocytes are genetically well prepared to repair this kind of damage. After 15 minutes, a second increase in the percentage of damaged cells that was proportional to dose occurred, which seems to represent the breaks produced during the repair of other kind of lesions. After that a second reduction was observed, reaching values near to the basal ones, except with the dose of 2.0 Gy. The kinetics obtained with the dose of 0.5 Gy was similar to that established with 1.0 Gy, but in this case the initial damage was 50 % lower. Besides, the adaptive response was observed after the exposure of the mice to an adaptive dose of 0.01 Gy and to a challenge dose of 1.0 Gy 60 minutes later. The pretreatment reduced the percentage of damaged cells caused by the challenge dose to one third approximately, and also diminished this parameter produced during the late repair process. This indicates that the early adaptive response is caused, instead of by an increment in repair, by the induction of a process that protects DNA from damage induction by radiation, i.e synthesis of substances that increase the scavenging of free radicals. (Author)

  6. Repair of ultraviolet light damage to the DNA of cultured human epidermal keratinocytes and fibroblasts

    International Nuclear Information System (INIS)

    Taichman, L.B.; Setlow, R.B.

    1979-01-01

    Pure cultures of dermal fibroblasts and epidermal keroatinocytes have been obtained from a single biopsy of newborn foreskin. The cells were labeled, exposed to several doses of uv light, and allowed to repair in the dark for 16 h. The number of pyrimidine dimers before and after repair was assessed by measuring the numbers of sites in the DNA sensitive to a specific uv endonuclease. At all doses used, the extent of repair was similar in the cultured keratinocytes and cultured fibroblasts

  7. The effect of recovery from potentially lethal damage on the determination of repair and repopulation in a murine tumour

    International Nuclear Information System (INIS)

    Sheldon, P.W.; Fowler, J.F.

    1985-01-01

    Repair and repopulation following X irradiation of clamped-off murine anaplastic MT tumours was investigated using the established method of (Dsub(n)-D 1 )/(n-1). Repair was complete in 4 h, similar in extent to that reported in other tumours, and within the range of that reported for normal tissues. Subsequent repopulation commenced after 4 days and was equivalent to 1.8 Gy/day recovered dose, corresponding to a clonogenic cell number doubling time of 1.8 days. However, estimates of repair and repopulation may have been in error because the chronically hypoxic cells in this tumour alone have the ability to recover from potentially lethal damage (PLD) and so are more radioresistant than cells rendered acutely hypoxic by clamping. Because of this, even clamping off tumours at irradiation does not render all cell populations equally radioresistant, and so reoxygenation between fractions could result in an underestimate of repair and repopulation. Further, the differing sensitivity between acutely and chronically hypoxic cells renders the apparent OER a function of dose (i.e., oxygen not truly dose-modifying to chronically hypoxic cells). Consequently it is incorrect to assume a constant OER in order to compare repair in tumours irradiated under hypoxic conditions with that in normal tissues irradiated under aerobic conditions. (author)

  8. Base excision repair of both uracil and oxidatively damaged bases contribute to thymidine deprivation-induced radiosensitization

    International Nuclear Information System (INIS)

    Allen, Bryan G.; Johnson, Monika; Marsh, Anne E.; Dornfeld, Kenneth J.

    2006-01-01

    Purpose: Increased cellular sensitivity to ionizing radiation due to thymidine depletion is the basis of radiosensitization with fluoropyrimidine and methotrexate. The mechanism responsible for cytotoxicity has not been fully elucidated but appears to involve both the introduction of uracil into, and its removal from, DNA. The role of base excision repair of uracil and oxidatively damaged bases in creating the increased radiosensitization during thymidine depletion is examined. Methods and Materials: Isogenic strains of S. cerevisiae differing only at loci involved in DNA repair functions were exposed to aminopterin and sulfanilamide to induce thymidine deprivation. Cultures were irradiated and survival determined by clonogenic survival assay. Results: Strains lacking uracil base excision repair (BER) activities demonstrated less radiosensitization than the parental strain. Mutant strains continued to show partial radiosensitization with aminopterin treatment. Mutants deficient in BER of both uracil and oxidatively damaged bases did not demonstrate radiosensitization. A recombination deficient rad52 mutant strain was markedly sensitive to radiation; addition of aminopterin increased radiosensitivity only slightly. Radiosensitization observed in rad52 mutants was also abolished by deletion of the APN1, NTG1, and NTG2 genes. Conclusion: These data suggest radiosensitization during thymidine depletion is the result of BER activities directed at both uracil and oxidatively damaged bases

  9. E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents.

    Science.gov (United States)

    Nakano, Kota; Yamada, Yoko; Takahashi, Eizo; Arimoto, Sakae; Okamoto, Keinosuke; Negishi, Kazuo; Negishi, Tomoe

    2017-03-01

    Alkylating agents are known to induce the formation of O 6 -alkylguanine (O 6 -alkG) and O 4 -alkylthymine (O 4 -alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O 6 -methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O 6 -ethylguanine. However, the manner by which O 4 -alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O 4 -alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O 4 -alkT at AT base pairs. As expected, an O 6 -alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O 6 -alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O 4 -alkylthymine. We hypothesize that the MutS protein recognizes the O 4 -alkT:A base pair more efficiently than O 4 -alkT:G. Such a distinction would result in misincorporation of G at the O 4 -alkT site, followed by higher mutation frequencies in wild

  10. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells

    Directory of Open Access Journals (Sweden)

    Max Koeppel

    2015-06-01

    Full Text Available Infection with the human pathogen Helicobacter pylori (H. pylori is a major risk factor for gastric cancer. Since the bacterium exerts multiple genotoxic effects, we examined the circumstances of DNA damage accumulation and identified regions within the host genome with high susceptibility to H. pylori-induced damage. Infection impaired several DNA repair factors, the extent of which depends on a functional cagPAI. This leads to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlates with focal amplifications in adenocarcinomas of the stomach and partly overlaps with known cancer genes. We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation.

  11. Repair of traumatic plasmalemmal damage to neurons and other eukar yotic cells

    Institute of Scientific and Technical Information of China (English)

    George D. Bittner; Christopher S. Spaeth§; Andrew D. Poon; Zachary S. Burgess; Christopher H. McGill

    2016-01-01

    The repair (sealing) of plasmalemmal damage, consisting of small holes to complete transections, is criti-cal for cell survival, especially for neurons that rarely regenerate cell bodies. We ifrst describe and evaluate different measures of cell sealing. Some measures, including morphological/ultra-structural observations, membrane potential, and input resistance, provide very ambiguous assessments of plasmalemmal sealing. In contrast, measures of ionic current lfow and dye barriers can, if appropriately used, provide more ac-curate assessments. We describe the effects of various substances (calcium, calpains, cytoskeletal proteins, ESCRT proteins, mUNC-13, NSF, PEG) and biochemical pathways (PKA, PKC, PLC, Epac, cytosolic ox-idation) on plasmalemmal sealing probability, and suggest that substances, pathways, and cellular events associated with plasmalemmal sealing have undergone a very conservative evolution. During sealing, calcium ion inlfux mobilizes vesicles and other membranous structures (lysosomes, mitochondria, etc.) in a continuous fashion to form a vesicular plug that gradually restricts diffusion of increasingly smaller molecules and ions over a period of seconds to minutes. Furthermore, we find no direct evidence that sealing occurs through the collapse and fusion of severed plasmalemmal lealfets, or in a single step involv-ing the fusion of one large wound vesicle with the nearby, undamaged plasmalemma. We describe how increases in perikaryal calcium levels following axonal transection account for observations that cell body survival decreases the closer an axon is transected to the perikaryon. Finally, we speculate on relationships between plasmalemmal sealing, Wallerian degeneration, and the ability of polyethylene glycol (PEG) to seal cell membranes and rejoin severed axonal ends–an important consideration for the future treatment of trauma to peripheral nerves. A better knowledge of biochemical pathways and cytoplasmic structures in-volved in

  12. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chongjie [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Ma, Li [Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Mou, Shanli [Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao (China); Wang, Yibin, E-mail: wangyibin@fio.org.cn [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Miao, Jinlai, E-mail: miaojinlai@163.com [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); State Key Laboratory of Biological Fermentation Engineering of Beer (In Preparation), Qingdao (China)

    2015-03-15

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm{sup 2} UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field.

  13. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    International Nuclear Information System (INIS)

    Li, Chongjie; Ma, Li; Mou, Shanli; Wang, Yibin; Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao; Miao, Jinlai

    2015-01-01

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm 2 UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field

  14. Evaluation of the damages in rocks caused by the construction of a repository

    International Nuclear Information System (INIS)

    Devillers, C.; Escalier des Orres, P.

    1988-12-01

    The Commissariat a l'Energie Atomique (French Atomic Energy Commission) has conducted a bibliographic study of the damages in the rock caused by the construction of a repository, and several hydraulic simulations, to appreciate the influence of these damages on the safety of the repository. These studies have led to the proposal of construction techniques in accordance safety requirements and industrial feasibility [fr

  15. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  17. Evaluation and Repair of War-Damaged Port Facilities. Report 3. Concepts for Expedient War-Damage Repair of Pier and Wharf Decking

    Science.gov (United States)

    1987-06-01

    td I CM e «) I <!• I O IS to SB 00 u 0...lööw^^^^^^WC^^I«^,^^^^ rr a-. iT. •’_ ^, rL ••_ »^^ ^’_ ■■_ iT^ . TD $ ii O H m oc so v/ O x O & L < •< 7 li . CM ^ §Q ^ x Z t...INNOVATION SESSION EXPEDIENT PORT REPAIR NAVAL CIVIL ENGINEERING LABORATORY 25 June 1985 ATTENDEES: Duane Davis, NAVCIVENGRLAB L53 Cliff

  18. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Science.gov (United States)

    2013-07-12

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of Advisory... Gas and Hazardous Liquid Pipeline Systems. Subject: Potential for Damage to Pipeline Facilities Caused...

  19. On the role of baculovirus photolyases in DNA repair upon UV damage of occlusion bodies

    NARCIS (Netherlands)

    Biernat, M.A.; Caballero, P.; Vlak, J.M.; Oers, van M.M.

    2013-01-01

    The use of baculoviruses in insect biocontrol is hampered by their sensitivity to ultraviolet (UV) light. This irradiation induces cyclobutane pyrimidine dimers (CPDs) in DNA. CPD-photolyases repair CPDs using visible light. Plusiine baculoviruses encode photolyases, which could potentially repair

  20. The classification, recording, databasing and use of information about building damage caused by subsidence and landslides

    OpenAIRE

    Cooper, Anthony

    2008-01-01

    Building damage as a result of subsidence and lateral movement can be caused by numerous mechanisms including mining, dissolution of soluble rocks, shrink–swell of clays and landslides. In many instances, the distribution and severity of the damage caused can be diagnostic of the underlying geological condition and can be used as an aid to geological and geomorphological mapping. Many rigid buildings are sensitive to movement, meaning that careful surveys can delineate fine details that can b...

  1. Repair of accurate radiation damage and development and consequence of chronic radiation damage of the gastrointestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Oehlert, W; Brendlein, F [Freiburg Univ. (Germany, F.R.). Abt. Experimentelle Pathologie

    1976-01-01

    The first part of the essay deals with structural, proliferation kinetic, and functional considerations important for the understanding of the pathogenesis of radiolesions and their repair. Then acute radiolesions of the vesophagus, the gastric mucosa and the mucosa of the small intestine and the colon as well as its repair are discussed with reference to experiments on rats. Another chapter deals with the histo- and pathogenesis of chronic radiolesions and the development of radiolesions in the capillary system. Late radiolesions in the vesophagus and phrenic ampulla, in the glandular stomach, duodenum and jejunum, colon and capillary and vessel system in the gastro-intestinal tract of rats are discussed in detail. Finally the importance of chronic radiolesions in the gastro-intestinal tract for civil protection is shown. It is required to protect persons with primary radiolesions from infections during the following time and to assure cell regeneration by suitable nutrition.

  2. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    Directory of Open Access Journals (Sweden)

    Santosh K Katiyar

    Full Text Available Solar ultraviolet (UV radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum, inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

  3. G2 repair and chromosomal damage in lymphocytes from workers occupationally exposed to low-level ionizing radiation

    Directory of Open Access Journals (Sweden)

    J PINCHEIRA

    1999-01-01

    Full Text Available The effect of the G2 repair of chromosomal damage in lymphocytes from workers exposed to low levels of X- or g-rays was evaluated. Samples of peripheral blood were collected from 15 radiation workers, 20 subjects working in radiodiagnostics, and 30 healthy control donors. Chromosomal aberrations (CA were evaluated by scoring the presence of chromatid and isochromatid breaks, dicentric and ring chromosomes in lymphocytes with/without 5mM caffeine plus 3mM-aminobenzamide (3-AB treatment during G2. Our results showed that the mean value of basal aberrations in lymphocytes from exposed workers was higher than in control cells (p< 0.001. The chromosomal damage in G2, detected with caffeine plus 3-AB treatment was higher than the basal damage (untreated conditions, both in control and exposed populations (p< 0.05. In the exposed workers group, the mean value of chromosomal abnormalities in G2 was higher than in the control (p< 0.0001. No correlation was found between the frequency of chromosome type of aberrations (basal or in G2, and the absorbed dose. Nevertheless, significant correlation coefficients (p< 0.05 between absorbed dose and basal aberrations yield (r = 0.430 or in G2 (r = 0.448 were detected when chromatid breaks were included in the total aberrations yield. Under this latter condition no significant effect of age, years of employment or smoking habit on the chromosomal aberrations yield was detected. However, analysis of the relationship between basal aberrations yield and the efficiency of G2 repair mechanisms, defined as the percentage of chromosomal lesions repaired in G2, showed a significant correlation coefficient (r = -0.802; p< 0.001. These results suggest that in addition to the absorbed dose, the individual G2 repair efficiency may be another important factor affecting the chromosomal aberrations yield detected in workers exposed to low-level ionizing radiation

  4. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  5. Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals.

    Science.gov (United States)

    Spampinato, Claudia P

    2017-05-01

    The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.

  6. Effect of low dose pre-irradiation on DNA damage and genetic material damage caused by high dosage of cyclophosphamide

    International Nuclear Information System (INIS)

    Yu Hongsheng; Zhu Jingjuan; Shang Qingjun; Wang Zhuomin; Cui Fuxian

    2007-01-01

    Objective: To study the effect of low dose γ-rays pre-irradiation on the induction of DNA damage and genetic material damage in peripheral lymphocytes by high dosage of cyclophosphamide (CTX). Methods: Male Kunming strain mice were randomly divided into five groups: control group, sham-irradiated group, low dose irradiated group(LDR group), cyclophosphamide chemotherapy group(CTX group) and low dose irradiation combined with chemotherapy group(LDR + CTX group). After being feeded for one week, all the mice were implanted subcutaneously with S180 cells in the left groin (control group excluded). On days 8 and 11, groups of LDR and LDR + CTX were administered with 75 mGy of whole-body irradiation, 30 h later groups CTX and LDR + CTX were injected intraperitoneally 3.0 mg cyclophosphamide. All the mice were sacrificed on day 13. DNA damage of the peripheral lymphocytes was analyzed using single cell gel electrophoresis (SCGE). Genetic material damage was analyzed using micronucleus frequency(MNF) of polychromatoerythrocytes(PCE) in bone marrow. Results: (1) Compared with control group and sham-irradiated group, the DNA damage of peripheral lymphocytes in CTX group were increased significantly (P 0.05). Conclusions: (1) High- dosage of CTX chemotherapy can cause DNA damage in peripheral lymphocytes. 75 mGy y-irradiation before chemotherapy may have certain protective effect on DNA damage. (2) CTX has potent mutagenic effect, giving remarkable rise to MNF of PCE. 75 mGy γ-ray pre-irradiation has not obvious protection against genetic toxicity of high-dose CTX chemotherapy. (authors)

  7. Sensitization of Tumor to {sup 212}Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Brechbiel, Martin W., E-mail: martinwb@mail.nih.gov [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-03-15

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using {sup 212}Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by {sup 212}Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with {sup 212}Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. {sup 212}Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling.

  8. Sensitization of Tumor to 212Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    International Nuclear Information System (INIS)

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2013-01-01

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using 212 Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by 212 Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with 212 Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). 212 Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. 212 Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of 212 Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling

  9. Research for organism functions by analysis of radiation damage-repair process. Analysis of high order structure in radiosensitive parts

    International Nuclear Information System (INIS)

    Maekawa, Hideaki; Tsuchida, Kozo; Hashido, Kazuo; Takada, Naoko; Kameoka, Yosuke; Hirata, Makoto

    2004-01-01

    Centromere of human chromosome was recognized easily and certainly by fluorescence in situ hybridization (FISH) process. The DNA in plasmid were extracted right after irradiation of 137 Cs before repairs of the damaged DNA. Genes of the damaged DNA were detected by polymerase cycle restoration (PCR) process. Cut off frequency for two chains in the DNA were detected in real time. The cut off frequency in the damaged plasmid DNA detected by the PCR process was compared with simulation calculation. The difference between these cut off frequency values was within the value expected by electrophoretic mobility. It was cleared that the PCR amplification was difficult for the close structure of plasmid, but carried immediately on the nicked plasmid. (M. Suetake)

  10. Analysis of DNA vulnerability to damage, repair and degradation in tissues of irradiated animals

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Ivannik, B.P.

    1982-01-01

    Single-strand and paired ruptures of DNA were found to result in appearance of locally denaturated areas in its secondary structure and to disordered protein-DNA interaction. It was shown with the use of the viscosimeter method of measuring the molecular mass of single stranded high-polymeric DNA that cells of various tissues by the intensity of DNA repair can be divided into two groups, rapid- and slow-repair ones. Tissue specificity of enzyme function of the repair systems and systems responsible for post-irradiation DNA degradation depends on the activity of endonucleases synthesized by the cells both in health and in their irradiation-induced synthesis

  11. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Takaji Ikushima

    1997-01-01

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  12. Repair capacity of fertilized mouse eggs for X-ray damage induced in sperm and mature oocytes

    International Nuclear Information System (INIS)

    Matsuda, Yoichi; Tobari, Izuo

    1989-01-01

    To study the repair capacity of fertilized mouse eggs for X-ray damage induced in sperm and mature oocytes, the potentiating effects of 3 well-known repair inhibitors, arabinofuranosyl cytosine (ara-C), 3-aminobenzamide (3AB) and caffeine, on the frequency of induced chromosome aberrations were examined in eggs fertilized with X-irradiated sperm or in eggs irradiated with X-rays at the mature oocyte stage immediately before fertilization. Gametic treatment, fertilization and embryo culture wer carried out in vitro. Ara-C treatment was done only in the pre-DNA replication period, while treatment with 3AB and caffeine was continuous from fertilization to the first-cleavage metaphase. The induction of chromosome aberrations by exposing sperm or oocytes to X-rays was remarkably potentiated by post-treatment incubation in the presence of each of the 3 inhibitors. This result indicates the possibility that X-ray damage induced in sperm or oocytes is reparable in the fertilized eggs and that various types of repair processes are involved. (author). 39 refs.; 3 figs.; 5 tabs

  13. Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: implications of the DNA repair deficiencies in attenuation of mycobacteria.

    Science.gov (United States)

    Rex, Kervin; Kurthkoti, Krishna; Varshney, Umesh

    2013-10-01

    Mycobacteria are an important group of pathogenic bacteria. We generated a series of DNA repair deficient strains of Mycobacterium smegmatis, a model organism, to understand the importance of various DNA repair proteins (UvrB, Ung, UdgB, MutY and Fpg) in survival of the pathogenic strains. Here, we compared tolerance of the M. smegmatis strains to genotoxic stress (ROS and RNI) under aerobic, hypoxic and recovery conditions of growth by monitoring their survival. We show an increased susceptibility of mycobacteria to genotoxic stress under hypoxia. UvrB deficiency led to high susceptibility of M. smegmatis to the DNA damaging agents. Ung was second in importance in strains with single deficiencies. Interestingly, we observed that while deficiency of UdgB had only a minor impact on the strain's susceptibility, its combination with Ung deficiency resulted in severe consequences on the strain's survival under genotoxic stress suggesting a strong interdependence of different DNA repair pathways in safeguarding genomic integrity. Our observations reinforce the possibility of targeting DNA repair processes in mycobacteria for therapeutic intervention during active growth and latency phase of the pathogen. High susceptibility of the UvrB, or the Ung/UdgB deficient strains to genotoxic stress may be exploited in generation of attenuated strains of mycobacteria. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Causes of Early Age Cracking on Concrete Bridge Deck Expansion Joint Repair Sections

    Directory of Open Access Journals (Sweden)

    Jared R. Wright

    2014-01-01

    Full Text Available Cracking of newly placed binary Portland cement-slag concrete adjacent to bridge deck expansion dam replacements has been observed on several newly rehabilitated sections of bridge decks. This paper investigates the causes of cracking by assessing the concrete mixtures specified for bridge deck rehabilitation projects, as well as reviewing the structural design of decks and the construction and curing methods implemented by the contractors. The work consists of (1 a comprehensive literature review of the causes of cracking on bridge decks, (2 a review of previous bridge deck rehabilitation projects that experienced early-age cracking along with construction observations of active deck rehabilitation projects, and (3 an experimental evaluation of the two most commonly used bridge deck concrete mixtures. Based on the literature review, the causes of concrete bridge deck cracking can be classified into three categories: concrete material properties, construction practices, and structural design factors. The most likely causes of the observed early-age cracking were found to be inadequate curing and failure to properly eliminate the risk of plastic shrinkage cracking. These results underscore the significance of proper moist curing methods for concrete bridge decks, including repair sections. This document also provides a blueprint for future researchers to investigate early-age cracking of concrete structures.

  15. Recovering full repair costs of INDOT infrastructure damaged by motor vehicle crashes.

    Science.gov (United States)

    2011-01-01

    There are approximately 4,000 instances per year where state property located along Indiana Department of Transportation : (INDOT) maintained right-of-way needs to be replaced or repaired due to motor vehicle crashes. INDOT incurs significant financi...

  16. Recovering full repair costs of INDOT infrastructure damaged by motor vehicle crashes : [technical summary].

    Science.gov (United States)

    2011-09-01

    There are approximately 4,000 instances per year that require infrastructure located along right-of-way maintained by the Indiana Department of Transportation (INDOT) to be replaced or repaired due to motor vehicle crashes. This infrastructure includ...

  17. Radiation damage and repair in cells and cell components. Final report. Part 1

    International Nuclear Information System (INIS)

    Fluke, D.J.

    1984-01-01

    An overview of research into the direct action of ionizing radiation, especially the effect of radiation temperature, primarily upon enzymes, into induced repair, and into S.O.S.-related phenomena, is presented

  18. Repair & Strengthening of Distressed/Damaged Ends of Prestressed Beams with FRP Composites

    Science.gov (United States)

    2018-02-01

    Over the past few decades, fiber reinforced polymer (FRP) composites have emerged as a lightweight and efficient material used for the repair and retrofit of concrete infrastructures. FRP can be applied to concrete as either externally bonded laminat...

  19. Radiation damage and repair in cells and cell components. Progress report: third new contract year

    International Nuclear Information System (INIS)

    Fluke, D.J.; Pollard, E.C.

    1980-01-01

    Research progress for 1979-1980 is reported. Projects discussed include the process of radiation-induced repair, Weigle-reactivation, induced radioresistance, the induction of the recA gene product, uv mutagenesis, and the induction of lambda

  20. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  1. Storm damage in the Black Forest caused by the winter storm "Lothar" – Part 1: Airborne damage assessment

    Directory of Open Access Journals (Sweden)

    J. Schmoeckel

    2008-08-01

    Full Text Available An airborne survey of the Black Forest as affected by the winter storm "Lothar" in 1999 is performed by means of a color line scanner (CLS with a CCD sensor, whose data in a visible and a near-infrared channel provide the Normalized Difference Vegetation Index (NDVI as a measure of the damage in previously intact forest areas. The camera data, height data from a digital evelation model (DEM, land use information, and soil data are georeferenced and processed in a geographic information system (GIS to derive relationship of the damage pattern to the characteristics of the local orography and soil types. The data cover an area of 4900 km2, 2767 km2 of which were forested. The 363 detected storm damage areas with a minimum detection size of 1.5 ha amount to 0.8% of the total forest area. Visual inspections at certain sites prove that none of the larger damage areas are missed, but areas smaller than 1.5 ha cause the total damage area to be up to twice our result, i.e. ≈1.6% of the forest area. More than 50% of the detected damaged areas are smaller than 5 ha and most of them have a size ranging from 1.5 to 3.5 ha. Forests on slopes with an inclination angle between 10 and 15 degrees show the highest fraction of damaged forest, doubling those on plains and below 5 degrees inclination angle. Forests on northwestern slopes are more affected than those on southwestern and western slopes, which faced the wind during highest wind speed occurrence. In contrast to other studies, this paper shows, that in steep areas, lee slopes are more damaged than the luv slopes. As expected, wet to moist soils represent an unstable location for the trees. But also medium-dry to dry locations that were considered to be relatively stable exhibited a highly damaged forest fraction. This can be attributed to mostly saturated soil from previous rain.

  2. Vascular Rupture Caused by a Molding Balloon during Endovascular Aneurysm Repair: Case Report

    International Nuclear Information System (INIS)

    Lee, Hee Young; Do, Young Soo; Park, Hong Suk; Park, Kwang Bo; Kim, Young Wook; Kim, Dong Ik

    2011-01-01

    Endovascular aneurysm repair (EVAR) has been accepted as an alternative to traditional open surgery in selected patients. Despite the minimally invasiveness of this treatment, several complications may occur during or after EVAR. Complications include endoleak, aortic dissection, distal embolism, or iatrogenic injury to the access artery. However, there are few reports on the vascular rupture caused by a molding balloon during EVAR. We report two cases of infrarenal abdominal aortic aneurysms complicated by procedure-related aortic or iliac artery rupture by the molding balloon during EVAR. In our cases, we observed suddenly abrupt increase of the diameter of the endograft during balloon inflation, because we inflated the balloon rapidly. In conclusion, careful attention must be paid during inflation of the molding balloon to prevent vascular rupture.

  3. Manual on the Fatigue of Structures. II. Causes and Prevention of Damage. 7. Mechanical Surface Damage,

    Science.gov (United States)

    1981-06-01

    AO-A103 «29 ADVISORY 6R0UP FOR AEROSPACE RESEARCH AND DEVELOPMENT—ETC F/O 20/11 MANUAL ON THE FATIfUE OF STRUCTURES. IX. CAUSES AND PREVENTION —ETC... stresses . In the case of 99.999% pure aluminium Vyas and Preece240 investigated the changes in the surface finish of the metal under the electron...during the erosion process. In the case of annealed nickel and of electrolytically polished test specimens cavitation- stressed in distilled water at 25°C

  4. Repair of potentially lethal radiation damage: comparison of neutron and x-ray RBE and implications for radiation therapy

    International Nuclear Information System (INIS)

    Hall, E.J.; Kraljevic, U.

    1976-01-01

    Experiments with Chinese hamster cells have shown that neutron irradiation does not result in repair of potentially lethal damage (PLD), i.e., that which can be influenced by changes in environmental conditions following irradiation. Since PLD is presumed to be repaired in tumors but not in normal tissues, this absence of differential sparing of tumor cells relative to normal tissues--a feature characteristic of irradiation with x rays--represents an advantage of neutrons in addition to their reduced oxygen effect. At a given dose, the difference in relative biological effectiveness (RBE) between tumors and normal tissues corresponds to a 5 percent increase in tumor dose with no concomitant increase in dose to normal tissues, which could be significant in cancer therapy

  5. Repair of UV-induced DNA damage and its inhibition by etoposide in Sf9 insect cells: comparison with human cells

    International Nuclear Information System (INIS)

    Chandna, Sudhir; Dwarakanath, B.S.; Moorthy, Ganesh; Jain, Charu

    2004-01-01

    In the present investigation, the kinetics of DNA repair in a lepidopteran cell line Sf9 (derived from the ovaries of Spodoptera frugiperda) following UV-irradiation was compared with the responses in a human embryonic kidney cell. DNA repair was studied by analyzing the kinetics of induction and removal of repair related strand breaks using the alkaline single cell gel electrophoresis and Halo assays. Since topoisomerases play important roles in the cellular responses to UV-induced damage, the effects of etoposideon DNA repair kinetics was also studied

  6. Radiation and chemical interactions producing cellular and subcellular damage and their repair. Coordinated programme on improvement in radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Kada, T.

    1982-01-01