WorldWideScience

Sample records for repair underlies enhanced

  1. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  2. Mini Review: Biomaterials for Enhancing Neuronal Repair

    Science.gov (United States)

    Cangellaris, Olivia V.; Gillette, Martha U.

    2018-04-01

    As they differentiate from neuroblasts, nascent neurons become highly polarized and elongate. Neurons extend and elaborate fine and fragile cellular extensions that form circuits enabling long-distance communication and signal integration within the body. While other organ systems are developing, projections of differentiating neurons find paths to distant targets. Subsequent post-developmental neuronal damage is catastrophic because the cues for reinnervation are no longer active. Advances in biomaterials are enabling fabrication of micro-environments that encourage neuronal regrowth and restoration of function by recreating these developmental cues. This mini-review considers new materials that employ topographical, chemical, electrical, and/or mechanical cues for use in neuronal repair. Manipulating and integrating these elements in different combinations will generate new technologies to enhance neural repair.

  3. Apparatus for enhancing tissue repair in mammals

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2007-01-01

    An apparatus is disclosed for enhancing tissue repair in mammals, with the apparatus comprising: a sleeve for encircling a portion of a mammalian body part, said sleeve comprising an electrically conductive coil capable of generating an electromagnetic field when an electrical current is applied thereto, means for supporting the sleeve on the mammalian body part; and means for supplying the electrically conductive coil with a square wave time varying electrical current sufficient to create a time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss within the interior of the coil in order that when the sleeve is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss is generated on the mammalian body part for an extended period of time, tissue regeneration within the mammalian body part is increased to a rate in excess of the normal tissue regeneration rate that would occur without application of the time varying electromagnetic force.

  4. Value maximizing maintenance policies under general repair

    International Nuclear Information System (INIS)

    Marais, Karen B.

    2013-01-01

    One class of maintenance optimization problems considers the notion of general repair maintenance policies where systems are repaired or replaced on failure. In each case the optimality is based on minimizing the total maintenance cost of the system. These cost-centric optimizations ignore the value dimension of maintenance and can lead to maintenance strategies that do not maximize system value. This paper applies these ideas to the general repair optimization problem using a semi-Markov decision process, discounted cash flow techniques, and dynamic programming to identify the value-optimal actions for any given time and system condition. The impact of several parameters on maintenance strategy, such as operating cost and revenue, system failure characteristics, repair and replacement costs, and the planning time horizon, is explored. This approach provides a quantitative basis on which to base maintenance strategy decisions that contribute to system value. These decisions are different from those suggested by traditional cost-based approaches. The results show (1) how the optimal action for a given time and condition changes as replacement and repair costs change, and identifies the point at which these costs become too high for profitable system operation; (2) that for shorter planning horizons it is better to repair, since there is no time to reap the benefits of increased operating profit and reliability; (3) how the value-optimal maintenance policy is affected by the system's failure characteristics, and hence whether it is worthwhile to invest in higher reliability; and (4) the impact of the repair level on the optimal maintenance policy. -- Highlights: •Provides a quantitative basis for maintenance strategy decisions that contribute to system value. •Shows how the optimal action for a given condition changes as replacement and repair costs change. •Shows how the optimal policy is affected by the system's failure characteristics. •Shows when it is

  5. Advanced repair methods for enhanced reactor safety

    International Nuclear Information System (INIS)

    Kornfeldt, H.

    1993-01-01

    A few innovative concepts are described of the ABB Atom Service Division for repair and mitigation techniques for primary systems in nuclear power plants. The concepts are based on Shape Memory Alloy (SMA) technology. A basic feature of all methods is that welding and component replacement is being avoided and the radiation dose imposed on maintenance personnel reduced. The SMA-based repair methods give plant operators new ways to meet increased safety standards and rising maintenance costs. (Z.S.) 4 figs

  6. Performance of patch repaired composite panels under fatigue loads

    International Nuclear Information System (INIS)

    Darwish, Feras H.; Hamoush, S.; Shivakumar, K.

    2006-01-01

    This paper evaluates the performance of bonded patch-scarf repairs of full scale laminated composite panels under cyclic load conditions. Nondestructive testing to characterize the quality of repairs and destructive testing to evaluate the performance of repaired panels were used in this study. Carbon/Epoxy prepreg material used was used to lay up six-ply (12 in. x 27 in. /305x686mm) (-60/60/0) s quasi-isotropic laminates. 7-ply scarf repair with a gradient of 0.5 inch (12.7mm) per layer was used to perform the repair of a damaged zone. The patch consisted of 7.5 inches (190mm) diameter adhesive film, 1 inch (25.4mm) diameter filler ply at 90fiber orientation, and six plies (2-7 inches (51-178mm) diameter) to match the lay-up of the parent material. The study was extended to include defective repairs. The defect was engineered by inserting a 1 inch (25.4 mm) circular Teflon flaw between the fifth and sixth layers of the patch. A total of 28 panels were prepared and divided into five categories: (1) three pristine panels (undamaged parental materials); (2) three damaged panels (1-inch-centered-hole); (3) two repaired panels with wrong fiber orientation; (4) nine good repaired panels, and (5) eleven defective repair panels (1 inch flaw). A nondestructive evaluation to check the conditions of the repairs was performed on most of the tested panels that include the pulse-echo C-scan and pseudo through transmission air coupled and water coupled C-scan. Based on the results of the experimental evaluation of this study, good repair restored 95% of the tensile strength while defective repair restored 90% of the tensile strength of the pristine panels. Under fatigue loading, panels repaired with a 1 inch delamination flaw within the patch layers showed a major reduction in fatigue life compared to the good repair panels under similar loading conditions. (author)

  7. Hematopoietic tissue repair under chronic low daily dose irradiation

    International Nuclear Information System (INIS)

    Seed, T.M.

    1994-01-01

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3-26.3 cGy d -1 ). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 ampersand 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity

  8. Enhanced radiosensitivity and defective DNA repair in cultured fibroblasts derived from Rothmund Thomson syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P J; Paterson, M C [Atomic Energy of Canada Ltd., Chalk River, Ontario. Radiation Biology Branch

    1982-01-01

    Rothmund Thomson syndrome (RTS) is an oculocutaneous and cancer-prone disorder in which enhanced carcinogen sensitivity, mediated through abnormal DNA metabolism, may be an associated factor. Cultured fibroblasts from 4 RTS patients have been examined for their colony-forming abilities and DNA repair capacities following ..gamma..-irradiation. 2 of the 4 RTS strains showed enhanced sensitivity following hypoxic ..gamma..-irradiation, and 1 of these 2 strains also showed enhanced sensitivity under oxic conditions. Defective DNA repair was implicated in the above abnormal responses to ..gamma..-radiation since both strains displayed reduced levels of repair synthesis and slow removal of radiogenic DNA lesions (assayed by their sensitivity to strand-incising activities present in protein extracts of Micrococcus luteus cells). A hypothesis is presented to rationalize the origin and heterogeneity of these laboratory phenotypes of RTS.

  9. Repair in schizosaccharomyces pombe as measured by recovery from caffeine enhancement of radiation-induced lethality

    International Nuclear Information System (INIS)

    Gentner, N.E.; Werner, M.M.

    1975-01-01

    Inhibition of DNA repair by caffeine is manifested in Schizosaccharomyces pombe wild-type cells as an enhancement of UV- or γ-irradiation-induced lethality. The progress of DNA repair processes involving one or more caffeine-sensitive steps may be conveniently followed by measuring the concomitant decrease of this lethal enhancement effect. By measuring, during post-irradiation incubation, the ability of cells to overcome susceptibility to repair inhibition by caffeine, we have determined the time course and requirements for repair in S. pombe. Recovery began immediately and took 150-200 min after γ-irradiation and more than 500 min after UV-irradiation, for exposures which gave about 10% survival in the absence of caffeine. An incubation medium capable of supporting growth was required for caffeine-sensitive repair; no recovery occurred under liquid holding conditions. Survival curves after various recovery times indicated that a logarithmic phase cell population was homogeneous with respect to caffeine-sensitive repair of both UV- and γ-ray-induced damage. Recovery from caffeine inhibition was compared for cells of different physiological states (logarithmic and stationary phase); although the importance of the physiological state was not the same for the two types of radiation, recovery was found to occur more rapidly in the more radiation-resistant state, in each case. (orig.) [de

  10. Resident enhanced repair: novel repair process action on plasmid DNA transformed into Escherichia coli K-12

    International Nuclear Information System (INIS)

    Strike, P.; Roberts, R.J.

    1982-01-01

    The survival of UV-irradiated DNA of plasmid NTP16 was monitored after its transformation into recipient cells containing an essentially homologous undamaged plasmid, pLV9. The presence of pLV9 resulted in a substantial increase in the fraction of damaged NTP16 molecules which survived in the recipient cells. This enhanced survival requires the host uvrA + and uvrB + gene products, but not the host recA + gene product. The requirement for both homologous DNA and the uvrA + gene products suggests that a novel repair process may act on plasmid DNA. Possible mechanisms for this process are considered

  11. Preoperative methylprednisolone enhances recovery after endovascular aortic repair

    DEFF Research Database (Denmark)

    de la Motte, Louise; Kehlet, Henrik; Vogt, Katja

    2014-01-01

    OBJECTIVE: To evaluate effects of preoperative high-dose glucocorticoid on the inflammatory response and recovery after endovascular aortic aneurysm repair (EVAR). BACKGROUND: The postimplantation syndrome after EVAR may delay recovery due to the release of proinflammatory mediators....... Glucocorticoids may reduce postoperative inflammatory responses and enhance recovery, but with limited information on EVAR. METHODS: A single-center, randomized, double-blind, placebo-controlled trial of 153 patients undergoing elective EVAR between November 2009 and January 2013. Patients received 30 mg.......001) and fulfillment of discharge criteria was shorter [2 days (IQR = 2-4 days) vs 3 days (IQR = 3-4 days)] (P factor receptor were also reduced (P

  12. Enhancement of postreplication repair in Chinese hamster cells

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Setlow, R.B.

    1976-01-01

    Alkaline sedimentation profiles of pulse-labeled DNA from Chinese hamster cells showed that DNA from cells treated with N-acetoxy-acetylaminofluorene or ultraviolet radiation was made in segments smaller than those from untreated cells. Cells treated with a small dose (2.5 μM) of N-acetoxy-acetylaminofluorene or(2.5 J . m -2 ) 254-nm radiation, several hours before a larger dose (7 to 10 μM) of N-acetoxy-acetylaminofluorene or 5.0 J . m -2 of 254-nm radiation, also synthesized small DNA after the second dose. However, the rate at which this small DNA was joined together into parental size was appreciably greater than in absence of the small dose. This enhancement of postreplication repair (as a result of the initial small dose) was not observed when cells were incubated with cycloheximide between the two treatments. The results suggest that N-acetoxy-acetylaminofluorene and ultraviolet-damaged DNA from Chinese hamster cells are repaired by similar postreplicative mechanisms that require de novo protein synthesis for enhancement

  13. Apparatus and method for enhancing tissue repair in mammals

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)

    2009-01-01

    An apparatus is introduced for the use of enhancing tissue repair in mammals. The apparatus includes a sleeve; an electrically conductive coil; a sleeve support; an electrical circuit configured to supply the coil with a square wave time varying electrical current sufficient to create approximately 0.05 gauss to 0.5 gauss. When in use, the sleeve of the apparatus is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.5 gauss is generated on the mammalian body for an extended period of time so that the tissue is encouraged to be regenerated in the mammalian body part at a rate in excess of the normal tissue regeneration rate relative to regeneration without application of the time varying electromagnetic force.

  14. Repair in unicellular green algae under the chronic action of mutagenic factors

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    Repair of single-standed DNA breaks in different strains of unicellular green Chlamidomonas reinhardii algae under the chronic action of mutagenic factors after γ-radiation was studied. It is shown, that the highest DNA break repair efficiency is observed in M γ mt++ strain, resistant to radiation. Strains, sensitive to UV-rays, possess the same repair efficiency as a wild type strain. UVS-1 strain demonstrated a higher repair efficiency, than a wild type strain. All that gives evidence of the difference in Chlamidomonas reinhardii of repair ways, leading to repair of damages, induced by γ-radiation and UV-rays

  15. Placental Growth Factor Promotes Cardiac Muscle Repair via Enhanced Neovascularization

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2015-06-01

    Full Text Available Background/Aims: Transplantation of mesenchymal stem cells (MSCs improves post-injury cardiac muscle repair using ill-defined mechanisms. Recently, we have shown that production and secretion of placental growth factor (PLGF by MSCs play a critical role in the MSCs-mediated post-injury cardiac muscle repair. In this study, we addressed the underlying molecular mechanisms, focusing specifically on the interactions between MSCs, macrophages and endothelial cells. Methods: We isolated macrophages (BM-MΦ from mouse bone-marrow derived cells based on F4/80 expression by flow cytometry. BM-MΦ were treated with different doses of PLGF. Cell number was analyzed by a MTT assay. Macrophage polarization was examined based on CD206 expression by flow cytometry. PLGF levels in macrophage subpopulations were analyzed by RT-qPCR and ELISA. Effects of macrophages on vascularization were evaluated by a collagen gel assay using Human umbilical vein endothelial cells (HUVECs co-cultured with PLGF-treated macrophages. Results: PLGF did not increase macrophage number, but dose-dependently polarized macrophages into a M2 subpopulation. M2 macrophages expressed high levels of PLGF. PLGF-polarized M2 macrophages significantly increased tubular structures in the collagen gel assay. Conclusion: Our data suggest that MSCs-derived PLGF may induce macrophage polarization into a M2 subpopulation, which in turn releases more PLGF to promote local neovascularization for augmenting post-injury cardiac muscle repair. This study thus sheds novel light on the role of PLGF in cardiac muscle regeneration.

  16. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    Science.gov (United States)

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  17. Transformation of ultraviolet-irradiated human fibroblasts by simian virus 40 is enhanced by cellular DNA repair functions

    International Nuclear Information System (INIS)

    Hall, J.D.

    1981-01-01

    Human fibroblasts irradiated with ultraviolet light were either tested for survival (colony formation) or infected with simian virus 40 and examined for transformation (foci formation). For normal cell cultures, the fractions of surviving colonies which were also transformed increased with increasing irradiation dose. In contrast, little increase in the transformation of ultraviolet-irradiated repair-deficient (xeroderma pigmentosum and xeroderma pigmentosum variant) cells was observed. Similar experiments with xeroderma pigmentosum variant cells treated with caffeine following irradiation indicated that, under these conditions, the deficient cells produced more transformants among the survivors of ultraviolet irradiation than did unirradiated cells. These results suggest (1) that DNA repair functions, not DNA damage per se, are required for enhanced viral transformation in normal cells; (2) that functions involved in excision repair and functions needed for replication of ultraviolet-damaged DNA appear necessary for this stimulation; and (3) that blocking DNA replication in ultraviolet-irradiated xeroderma pigmentosum variant cells by caffeine enhances viral transformation. (Auth.)

  18. A new dimension in improved radiation protection by enhanced DNA repair

    International Nuclear Information System (INIS)

    Riklis, E.

    1997-01-01

    Radioprotection and photo protection were dependent until now on measures to reduce the amount of damage formed by ionizing and ultraviolet radiations. In both cases the measures are not completely satisfactory: the classical radioprotectors are toxic arid exert serious side effects, and afford a protection factor not higher than around 2. The sunscreens filters are effective for certain wavelength ranges only, and not enough is known about the possible effects of the filters when they absorb light and turn into other chemical entities. Both approaches do not give an answer to damages which are formed in spite of the partial reduction of damage. A new approach offered here is dealing with the damage on a cellular / molecular level, by enhancing the activity of the natural repair enzymes whose task is to remove radiation and photoproducts, rejoin DNA strand breaks and repair the DNA. A combination of vitamins and antioxidants is fulfilling these tasks and provides protection from both ionizing and ultraviolet radiations by enhancing several folds the repair of DNA in living cells. Such a combination which contains the repair enhancers niacinamide and nordihydroguaiaretic acid is employed in preparations named EDNAR ( Enhanced DNA Repair, Patent pending) which demonstrate excellent results of enhancing DNA repair as measured by repair synthesis, and protecting the skin from sunburns as well as skin burns following radiotherapy. These lotions and creams, when not containing any chemical filters yet demonstrating a protective effect, may be called 'the sunscreens without sunscreens'. (author)

  19. Enhanced DNA repair of cyclobutane pyrimidine dimers changes the biological response to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yarosh, Daniel B

    2002-11-30

    The goal of DNA repair enzyme therapy is the same as that for gene therapy: to rescue a defective proteome/genome by introducing a substitute protein/DNA. The danger of inadequate DNA repair is highlighted in the genetic disease xeroderma pigmentosum. These patients are hypersensitive to sunlight and develop multiple cutaneous neoplasms very early in life. The bacterial DNA repair enzyme T4 endonuclease V was shown over 25 years ago to be capable of reversing the defective repair in xeroderma pigmentosum cells. This enzyme, packaged in an engineered delivery vehicle, has been shown to traverse the stratum corneum, reach the nuclei of living cells of the skin, and enhance the repair of UV-induced cyclobutane pyrimidine dimers (CPD). In such a system, changes in DNA repair, mutagenesis, and cell signaling can be studied without manipulation of the genome.

  20. Video repairing under variable illumination using cyclic motions.

    Science.gov (United States)

    Jia, Jiaya; Tai, Yu-Wing; Wu, Tai-Pang; Tang, Chi-Keung

    2006-05-01

    This paper presents a complete system capable of synthesizing a large number of pixels that are missing due to occlusion or damage in an uncalibrated input video. These missing pixels may correspond to the static background or cyclic motions of the captured scene. Our system employs user-assisted video layer segmentation, while the main processing in video repair is fully automatic. The input video is first decomposed into the color and illumination videos. The necessary temporal consistency is maintained by tensor voting in the spatio-temporal domain. Missing colors and illumination of the background are synthesized by applying image repairing. Finally, the occluded motions are inferred by spatio-temporal alignment of collected samples at multiple scales. We experimented on our system with some difficult examples with variable illumination, where the capturing camera can be stationary or in motion.

  1. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target.

    Science.gov (United States)

    Hiu, Takeshi; Farzampour, Zoya; Paz, Jeanne T; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D; Wang, Gordon; Lemmens, Robin; Tran, Kevin V; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A; O'Rourke, Nancy; Smith, Stephen J; Huguenard, John R; Bliss, Tonya M; Steinberg, Gary K

    2016-02-01

    Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem's potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  2. Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients

    International Nuclear Information System (INIS)

    Kibitel, J.T.; Yee, V.; Yarosh, D.B.

    1991-01-01

    The phage T4 denV gene, coding for the pyrimidine-dimer specific T4 endonuclease V, was transfected into human repair-proficient fibroblasts, repair-deficient xeroderma pigmentosum fibroblasts, and wild type CHO hamster cells. Transfectants maintained denV DNA and expressed denV mRNA. Purified T4 endonuclease V encapsulated in liposomes was also used to treat repair-proficient and -deficient human cells. The denV transfected clones and liposome-treated cells showed increased unscheduled DNA synthesis and enhanced removal of pyrimidine dimers compared to controls. Both denV gene transfection and endonuclease V liposome treatment enhanced post-UV survival in xeroderma pigmentosum cells but had no effect on survival in repair-proficient human or hamster cells. The results demonstrate that an exogenous DNA repair enzyme can correct the DNA repair defect in xeroderma pigmentosum cells and enhance DNA repair in normal cells. (author)

  3. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  4. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Science.gov (United States)

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  5. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    Science.gov (United States)

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  6. Generation IV SFR Nuclear Reactors: Under-Sodium Repair for ASTRID

    International Nuclear Information System (INIS)

    Baque, F.; Chagnot, C.; Bruguiere, L.; Augem, J.M.; Delalande, V.; Sibilo, J.

    2013-06-01

    For non-removable components of the future ASTRID prototype, repair operations will be performed in a gas environment. If the faulty area is located under the sodium free level, the gas-tight system will have to contain the inspection and repair tools and to protect them from the surrounding liquid sodium. Concerning repair tools, the unique laser tool has been selected for future SFRs: the repair scenario for in-sodium structures will first involve removing the sodium (after bulk draining), then machining and finally welding. Concerning conventional tools (brush or gas blower for sodium removal, milling machine for machining and TIG for welding for which its feasibility was demonstrated in the 1990's) are still considered as a back-up solution. In-pile examination or repair requires robotic carriers. These carriers have to be compatible with the sodium environment: either in the cover-gas plenum or in gas after sodium draining, or even under liquid sodium. This R and D programme has been divided into nine parts in order to provide an overall design of the required robotic carriers and to develop technological solutions for their components: detailed definition for SFR carrier needs (access to internal structures, possible defects to be detected/repaired), definition and specifications of carrier architecture (depending on inspection and repair scenarios), in-sodium leak-tightness of carrier components, carrier material compatibility with sodium, temperature resistance (200 deg. C), irradiation resistance (depending on the location of the main vessel), gas-tight bell for operations under liquid sodium, carrier positioning control in liquid sodium, development, validation and qualification of technological solutions, for future SFRs, and worldwide benchmark regarding the previous areas of investigation. (authors)

  7. Enhanced capacity of DNA repair in human cytomegalovirus-infected cells

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Plaque formation in Vero cells by UV-irradiated herpes simplex virus was enhanced by infection with human cytomegalovirus (HCMV), UV irradiation, or treatment with methylmethanesulfonate. Preinfection of Vero cells with HCMV enhanced reactivation of UV-irradiated herpes simplex virus more significantly than did treatment with UV or methylmethanesulfonate alone. A similar enhancement by HCMV was observed in human embryonic fibroblasts, but not in xeroderma pigmentosum (XP12BE) cells. It was also found that HCMV infection enhanced hydroxyurea-resistant DNA synthesis induced by UV light or methylmethanesulfonate. Alkaline sucrose gradient sedimentation analysis revealed an enhanced rate of synthesis of all size classes of DNA in UV-irradiated HCMV-infected Vero cells. However, HCMV infection did not induce repairable lesions in cellular DNA and did not significantly inhibit host cell DNA synthesis, unlike UV or methylmethanesulfonate. These results indicate that HCMV enhanced DNA repair capacity in the host cells without producing detectable lesions in cellular DNA and without inhibiting DNA synthesis. This repair appeared to be error proof for UV-damaged herpes simplex virus DNA when tested with herpes simplex virus thymidine kinase-negative mutants

  8. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    Science.gov (United States)

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  9. Inguinal hernia repair with tension-free hernioplasty under local anesthesia

    International Nuclear Information System (INIS)

    Gao, Jia-Sen; Wang, Zhen-Jun; Zhao, Bo; Ma Song Zhang; Pang, Guo-Yi; Na, Dong-Ming; Zhang Yu-Dong

    2009-01-01

    To evaluate the use of local anesthesia in tension-free hernioplasty in a local hospital. The study took place at Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China during the period from January 2007 to May 2008. All 110 patients who had undergone inguinal hernia repair with mesh under local anesthesia were included in the study. To increase the homogeneity of the sample, we excluded umbilical hernia repairs, parastomal hernia repairs, non-elective procedures, procedures not involving mesh, and repairs performed concurrently with another surgical procedure. We performed a retrospective review of all 110 patients' data. The average operating time was 45 minutes (30-70 minutes), and the average hospital stay was 3-4 days. There was no postoperative mortality in this study. No surgical site infection occurred. Two patients (18%) that suffered from a moderate scrotal hematoma had recovered after extract injection therapy was applied. The duration of incisional pain was 2-3 days, and no patient required post-operative analgesia. During the follow-up, no recurrence occurred. The use of local anesthesia in inguinal hernia repair with tension-free hernioplasty is a safe and effective alternative for inpatient treatment. (aothor)

  10. * Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair.

    Science.gov (United States)

    Drager, Justin; Ramirez-GarciaLuna, Jose Luis; Kumar, Abhishek; Gbureck, Uwe; Harvey, Edward J; Barralet, Jake E

    2017-12-01

    Tissue hypoxia is a critical driving force for angiogenic and osteogenic responses in bone regeneration and is, at least partly, under the control of the Hypoxia Inducible Factor-1α (HIF-1α) pathway. Recently, the widely used iron chelator deferoxamine (DFO) has been found to elevate HIF-1α levels independent of oxygen concentrations, thereby, creating an otherwise normal environment that mimics the hypoxic state. This has the potential to augment the biological properties of inorganic scaffolds without the need of recombinant growth factors. This pilot study investigates the effect of local delivery of DFO on bone formation and osseointegration of an anatomically matched bone graft substitute, in the treatment of segmental bone defects. Three-dimensional printing was used to create monetite grafts, which were implanted into 10 mm midshaft ulnar defects in eight rabbits. Starting postoperative day 4, one graft site in each animal was injected with 600 μL (200 μM) of DFO every 48 h for six doses. Saline was injected in the contralateral limb as a control. At 8 weeks, micro-CT and histology were used to determine new bone growth, vascularity, and assess osseointegration. Six animals completed the protocol. Bone metric analysis using micro-CT showed a significantly greater amount of new bone formed (19.5% vs. 13.65% p = 0.042) and an increase in bone-implant contact area (63.1 mm 2 vs. 33.2 mm 2 p = 0.03) in the DFO group compared with control. Vascular channel volume was significantly greater in the DFO group (20.9% vs. 16.2% p = 0.004). Histology showed increased bone formation within the osteotomy gap, more bone integrated with the graft surface as well as more matured soft tissue callus in the DFO group. This study demonstrates a significant increase in new bone formation after delivery of DFO in a rabbit long bone defect bridged by a 3D-printed bioresorbable bone graft substitute. Given the safety, ease of handling, and low expense of

  11. Identification of Drugs that Regulate Dermal Stem Cells and Enhance Skin Repair

    Directory of Open Access Journals (Sweden)

    Sibel Naska

    2016-01-01

    Full Text Available Here, we asked whether we could identify pharmacological agents that enhance endogenous stem cell function to promote skin repair, focusing on skin-derived precursors (SKPs, a dermal precursor cell population. Libraries of compounds already used in humans were screened for their ability to enhance the self-renewal of human and rodent SKPs. We identified and validated five such compounds, and showed that two of them, alprostadil and trimebutine maleate, enhanced the repair of full thickness skin wounds in middle-aged mice. Moreover, SKPs isolated from drug-treated skin displayed long-term increases in self-renewal when cultured in basal growth medium without drugs. Both alprostadil and trimebutine maleate likely mediated increases in SKP self-renewal by moderate hyperactivation of the MEK-ERK pathway. These findings identify candidates for potential clinical use in human skin repair, and provide support for the idea that pharmacological activation of endogenous tissue precursors represents a viable therapeutic strategy.

  12. Electrical stimulation enhances cell migration and integrative repair in the meniscus

    Science.gov (United States)

    Yuan, Xiaoning; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been applied towards the repair of articular tissues in the laboratory and clinical settings for over seventy years. We focus on healing of the meniscus, a tissue essential to knee function with limited innate repair potential, which has been largely unexplored in the context of electrical stimulation. Here we demonstrate for the first time that electrical stimulation enhances meniscus cell migration and integrative tissue repair. We optimize pulsatile direct current electrical stimulation parameters on cells at the micro-scale, and apply these to healing of full-thickness defects in explants at the macro-scale. We report increased expression of the adenosine A2b receptor in meniscus cells after stimulation at the micro- and macro-scale, and propose a role for A2bR in meniscus electrotransduction. Taken together, these findings advance our understanding of the effects of electrical signals and their mechanisms of action, and contribute to developing electrotherapeutic strategies for meniscus repair. PMID:24419206

  13. Enhancing repair of radiation-induced strand breaks in cellular DNA as a radiotherapeutic potential

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2014-01-01

    Protection of mammalian organisms including man from deleterious effects of ionizing radiation is of paramount importance and development of effective approaches to combat radiation damages using non-toxic radioprotectors is of considerable interest for defence, nuclear industries, radiation accidents, space travels, etc., besides the protection of normal tissues during radiotherapy of tumours. Many synthetic as well as natural compounds have been investigated in the recent past for their efficacy to protect the biological systems from radiation induced damages. They include sulfhydryl compounds, antioxidants, plant extracts, immune-modulators, and other agents. However, the inherent toxicity of many of the synthetic agents at the effective radio-protective concentration warranted further search for safer and more effective radio-protectors. In this context, therapeutic radioprotectors which are effective on post irradiation administration are of special relevance. One of the property that can be applied while screening for such radiation protective therapeutics is their ability to enhance repair of radiation-induced lesions in cellular DNA in terms of cellular repair index based on the parameters of the DNA following comet assay. Post irradiation administration of some natural and synthetic agents have shown their potential to enhance repair of radiation-induced strand breaks in cellular DNA in mice. These include phytoceuticals such as gallic acid, sesamol etc., extracts of medicinal plants such as Andrographis panniculata, and a few synthetic compounds such as tocopherol-mono-glucoside. The talk will give an overview of the work on DNA repair enhancement by a few natural and synthetic agents. (author)

  14. Mesenchymal stem cells and their conditioned medium can enhance the repair of uterine defects in a rat model

    Directory of Open Access Journals (Sweden)

    Chi-Hong Ho

    2018-03-01

    Conclusion: This study demonstrated that transplantation of MSCs could enhance uterine defect repair by paracrine effects involving IL-6, which are findings that may be applied to facilitate uterine wound healing in the removal of huge intramural masses.

  15. A cost effective degradation-based maintenance strategy under imperfect repair

    International Nuclear Information System (INIS)

    Wu, Fan; Niknam, Seyed A.; Kobza, John E.

    2015-01-01

    An optimization model is developed to minimize the total cost of imperfect degradation-based maintenance by determining an optimal interval of condition monitoring and the degradation level after imperfect preventive repairs. The decision model is based on a novel cost model that considers functional relationship between the expected degradation reduction and the cost of preventive repairs. The decision model is applied to simulated vibration signals with a variety of specifications of cost values and degradation model parameters. This study has initiated a new area for the research of cost effective maintenance strategies. The results clearly indicate the significance of the proposed model and the decision variables under the objective of minimal cost. For instance, the results indicate direct relationship between the optimal length of monitoring interval and the monitoring cost. However, longer monitoring interval increases the risk of failure, and therefore, more degradation reduction is needed. By increasing the slope of cumulative degradation, the cost effective strategy advocates taking more frequent monitoring. The optimal degradation level after each preventive repair is not so sensitive to the change in the degradation slope due to the uncertainty associated with degradation patterns. - Highlights: • Discuss the relationship of degradation reduction and maintenance cost. • Determine the optimal interval of condition monitoring with minimal cost. • Identify the optimal degradation level after imperfect preventive repairs. • Discuss the effects of change in the slope of cumulative degradation.

  16. Biochemical evidence for deficient DNA repair leading to enhanced G2 chromatid radiosensitivity and susceptibility to cancer

    International Nuclear Information System (INIS)

    Gantt, R.; Parshad, R.; Price, F.M.; Sanford, K.K.

    1986-01-01

    Human tumor cells and cells from cancer-prone individuals, compared with those from normal individuals, show a significantly higher incidence of chromatid breaks and gaps seen in metaphase cells immediately after G2 X irradiation. Previous studies with DNA repair-deficient mutants and DNA repair inhibitors strongly indicate that the enhancement results from a G2 deficiency(ies) in DNA repair. We report here biochemical evidence for a DNA repair deficiency that correlates with the cytogenetic studies. In the alkaline elution technique, after a pulse label with radioactive thymidine in the presence of 3-acetylaminobenzamide (a G2-phase blocker) and X irradiation, DNA from tumor or cancer-prone cells elutes more rapidly during the postirradiation period than that from normal cells. These results indicate that the DNA of tumor and cancer-prone cells either repairs more slowly or acquires more breaks than that of normal cells; breaks can accumulate during incomplete or deficient repair processes. The kinetic difference between normal and tumor or cancer-prone cells in DNA strand-break repair reaches a maximum within 2 h, and this maximum corresponds to the kinetic difference in chromatid aberration incidence following X irradiation reported previously. These findings support the concept that cells showing enhanced G2 chromatid radiosensitivity are deficient in DNA repair. The findings could also lead to a biochemical assay for cancer susceptibility

  17. A shock and wear system under environmental conditions subject to internal failures, repair, and replacement

    International Nuclear Information System (INIS)

    Montoro-Cazorla, Delia; Pérez-Ocón, Rafael

    2012-01-01

    A system in a random environment is considered. The influence of the external conditions is governed by a Markovian arrival process. The internal structure of failure and repair are governed by phase-type distributions. The maintenance is performed by policy N. Under these assumptions, the Markov process governing the system is constructed, and it is studied in transient and stationary regime, calculating the availability and the rate of occurrence of failures. The renewal process due to the replacements of the system is studied, and expressions for the number of replacements and for the number of repairs between replacements are calculated. This paper extends other previously published since it incorporates a shock arrival process with dependence among the interarrival times and the renewal process associated to the replacements. A numerical application illustrates the calculations.

  18. One-thousand consecutive inguinal hernia repairs under unmonitored local anesthesia

    DEFF Research Database (Denmark)

    Callesen, T; Bech, K; Kehlet, H

    2001-01-01

    To evaluate the feasibility and safety of unmonitored local anesthesia (ULA) for elective open inguinal hernia repair, we made a prospective, consecutive data collection from 1000 operations on primary and recurrent hernias. Follow-up consisted of a questionnaire 1 mo after surgery and retrieval...... from the electronic patient data management system. In 921 ASA Group I and II and 79 ASA Group III and IV patients, the median age was 60 yr (range, 18-95 yr). ULA was converted to general anesthesia in 5 of 1000 cases, and 961 patients were discharged on the day of surgery after 95 min (median...... anesthesia, day-case setup, or both, primarily because of intraoperative pain (n = 74; 7.8%). We conclude that open inguinal hernia repair can be conducted under ULA, regardless of comorbidity, with a small rate of deviation from day-case setup and minimal morbidity. It provides a safe alternative to other...

  19. Post radiation protection and enhancement of DNA repair of beta glucan isolated from Ganoderma lucidum

    International Nuclear Information System (INIS)

    Pillai, Thulasi G.; Nair, C.K.K.; Uma Devi, P.

    2013-01-01

    Ganoderma lucidum (Fr) P. Karst, commonly known as Reishi in Japan and Ling Zhi in China, is well known for its medicinal properties. G. lucidum contains a number of components among which the polysaccharides, particularly beta-glucan, and triterpenoids are the major active components. Radioprotective effect of a beta glucan (BG) isolated from the mushroom G. lucidum against radiation induced damage was investigated taking mouse survival and chromosomal aberrations as end points. DNA repair enhancing property of BG was determined by comet assay in human peripheral blood leucocytes. Young Swiss albino mice were exposed to whole body γ-irradiation. For mouse survival study, BG was administered orally 5 min after 8 Gy radiation exposures and at 4 Gy exposure for chromosomal aberrations. BG at 500 ug/kg body wt produced 66% mouse survival at 30 days given post irradiation. In chromosomal aberrations significant reduction in number of aberrant cells and different types of aberrations was observed in BG administered group compared to RT along treated group. For DNA repair, the comet parameters were studied at 2 Gy γ-irradiation with 15 min intervals. The comet parameters were reduced to normal levels after 120 min of exposure. The DNA repairing ability of BG contributes to the post radio protective effect of BG. (author)

  20. Metformin enhances radiosensitivity via inhibition of DNA repair pathway in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youn Kyoung; Kim, Mi Sook; Lee, Ji Young; Song, Kyung Hee; Choi, Kyul; Kim, Eun Ho; Ha, Hun Joo [Ewha Womans University, Seoul (Korea, Republic of)

    2014-04-15

    In this study, we provide a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer. Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. Currently, it is one of the commonest chemoradiotherapy worked better than the radiotherapy or chemotherapy in colorectal cancer. To enhance radiosensitivity of tumor cells for chemoradiotherapy, it is to use potential anticancer agents that act as radiosensitizers. Metformin, one of the most widely used antidiabetic drugs, has recently been associated with potential antitumorigenic effects. Our data shows that metformin combined with radiation enhances the efficacy of radiotherapy and down-regulates DNA repair proteins. Therefore, we provides a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer.

  1. Metformin enhances radiosensitivity via inhibition of DNA repair pathway in colorectal cancer

    International Nuclear Information System (INIS)

    Jeong, Youn Kyoung; Kim, Mi Sook; Lee, Ji Young; Song, Kyung Hee; Choi, Kyul; Kim, Eun Ho; Ha, Hun Joo

    2014-01-01

    In this study, we provide a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer. Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. Currently, it is one of the commonest chemoradiotherapy worked better than the radiotherapy or chemotherapy in colorectal cancer. To enhance radiosensitivity of tumor cells for chemoradiotherapy, it is to use potential anticancer agents that act as radiosensitizers. Metformin, one of the most widely used antidiabetic drugs, has recently been associated with potential antitumorigenic effects. Our data shows that metformin combined with radiation enhances the efficacy of radiotherapy and down-regulates DNA repair proteins. Therefore, we provides a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer

  2. COMPONENT SUPPLY MODEL FOR REPAIR ACTIVITIES NETWORK UNDER CONDITIONS OF PROBABILISTIC INDEFINITENESS.

    Directory of Open Access Journals (Sweden)

    Victor Yurievich Stroganov

    2017-02-01

    Full Text Available This article contains the systematization of the major production functions of repair activities network and the list of planning and control functions, which are described in the form of business processes (BP. Simulation model for analysis of the delivery effectiveness of components under conditions of probabilistic uncertainty was proposed. It has been shown that a significant portion of the total number of business processes is represented by the management and planning of the parts and components movement. Questions of construction of experimental design techniques on the simulation model in the conditions of non-stationarity were considered.

  3. Enhanced Cooperation under the Lisbon Treaty

    NARCIS (Netherlands)

    Groenendijk, Nico

    2011-01-01

    Enhanced cooperation is often regarded as being a way out of EU decision-making deadlock and as a major possibility of proceeding with European integration in selected areas. Although the mechanism has been in place since the Treaty of Amsterdam, enhanced cooperation has only recently become a

  4. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    International Nuclear Information System (INIS)

    Utsumi, H.; Elkind, M.M.

    1983-01-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of these cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal

  5. Optimal repairable spare-parts procurement policy under total business volume discount environment

    International Nuclear Information System (INIS)

    Pascual, Rodrigo; Santelices, Gabriel; Lüer-Villagra, Armin; Vera, Jorge; Cawley, Alejandro Mac

    2017-01-01

    In asset intensive fields, where components are expensive and high system availability is required, spare parts procurement is often a critical issue. To gain competitiveness and market share is common for vendors to offer Total Business Volume Discounts (TBVD). Accordingly, companies must define the procurement and stocking policy of their spare parts in order to reduce procurement costs and increase asset availability. In response to those needs, this work presents an optimization model that maximizes the availability of the equipment under a TBVD environment, subject to a budget constraint. The model uses a single-echelon structure where parts can be repaired. It determines the optimal number of repairable spare parts to be stocked, giving emphasis on asset availability, procurement costs and service levels as the main decision criteria. A heuristic procedure that achieves high quality solutions in a fast and time-consistent way was implemented to improve the time required to obtain the model solution. Results show that using an optimal procurement policy of spare parts and accounting for TBVD produces better overall results and yields a better availability performance. - Highlights: • We propose a model for procurement of repairable components in single-echelon and business volume discount environments. • We used a mathematical model to develop a competitive heuristic that provides high quality solutions in very short times. • Our model places emphasis on using system availability, procurement costs and service levels as leading decision criteria. • The model can be used as an engine for a multi-criteria Decision Support System.

  6. E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents.

    Science.gov (United States)

    Nakano, Kota; Yamada, Yoko; Takahashi, Eizo; Arimoto, Sakae; Okamoto, Keinosuke; Negishi, Kazuo; Negishi, Tomoe

    2017-03-01

    Alkylating agents are known to induce the formation of O 6 -alkylguanine (O 6 -alkG) and O 4 -alkylthymine (O 4 -alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O 6 -methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O 6 -ethylguanine. However, the manner by which O 4 -alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O 4 -alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O 4 -alkT at AT base pairs. As expected, an O 6 -alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O 6 -alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O 4 -alkylthymine. We hypothesize that the MutS protein recognizes the O 4 -alkT:A base pair more efficiently than O 4 -alkT:G. Such a distinction would result in misincorporation of G at the O 4 -alkT site, followed by higher mutation frequencies in wild

  7. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    Science.gov (United States)

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  8. Homeostatic maintenance via degradation and repair of elastic fibers under tension

    Science.gov (United States)

    Alves, Calebe; Araújo, Ascanio D.; Oliveira, Cláudio L. N.; Imsirovic, Jasmin; Bartolák-Suki, Erzsébet; Andrade, José S.; Suki, Béla

    2016-06-01

    Cellular maintenance of the extracellular matrix requires an effective regulation that balances enzymatic degradation with the repair of collagen fibrils and fibers. Here, we investigate the long-term maintenance of elastic fibers under tension combined with diffusion of general degradative and regenerative particles associated with digestion and repair processes. Computational results show that homeostatic fiber stiffness can be achieved by assuming that cells periodically probe fiber stiffness to adjust the production and release of degradative and regenerative particles. However, this mechanism is unable to maintain a homogeneous fiber. To account for axial homogeneity, we introduce a robust control mechanism that is locally governed by how the binding affinity of particles is modulated by mechanical forces applied to the ends of the fiber. This model predicts diameter variations along the fiber that are in agreement with the axial distribution of collagen fibril diameters obtained from scanning electron microscopic images of normal rat thoracic aorta. The model predictions match the experiments only when the applied force on the fiber is in the range where the variance of local stiffness along the fiber takes a minimum value. Our model thus predicts that the biophysical properties of the fibers play an important role in the long-term regulatory maintenance of these fibers.

  9. Adaptive response to ionizing radiation in normal human skin fibroblasts. Enhancement of DNA repair rate and modulation of gene expression

    International Nuclear Information System (INIS)

    Toledo, S.M. de; Mitchel, R.E.J.; Azzam, E.; Ottawa Univ., ON; Raaphorst, G.P.

    1994-01-01

    Low doses and dose rates of ionizing radiation enhance the rate of DNA repair in human fibroblasts and protect the cells against radiation-induced micronucleus formation. Chronic exposures reduce the mRNA levels of the genes topoisomerase II and FACC-1 (Fanconi's anemia, group C). (authors). 11 refs., 1 tab., 2 figs

  10. Genetic defects in DNA repair system and enhancement of intergenote transformation efficiency in Bacillus subtilis Marburg

    International Nuclear Information System (INIS)

    Matsumoto, K.; Takahashi, H.; Saito, H.; Ikeda, Y.

    1978-01-01

    Mechanisms of inefficiency in heterospecies transformation were studied with a transformation system consisting of Bacillus subtilis 168TI (trpC2thy) as recipient and of DNA prepared from partially hybrid strains of B. subtilis which had incorporated trp + DNA of B. amyloliquefaciens 203 (formerly, B. megaterium 203) in the chromosome (termed intergenote). The intergenote transformation was not so efficient as the corresponding homospecies transformation and the efficiency appeared to relate inversely with the length of heterologous portion in the intergenote. When a variety of ultraviolet light (UV) sensitive mutants, deficient in host-cell reactivation capacity, were used as recipients for the intergenote transformation, 2 out of 16 mutants exhibited significantly enhanced transformation efficiency of the trpC marker. Genetic studies by transformation showed that the trait relating to the enhancement of intergenote-transformation efficiency was always associated with the UV sensitivity, suggesting that these two traits are determined by a single gene. The efficiency of intergenote transformation was highly affected also by DNA concentration; the lower the concentration, the less the efficiency. When, however, the UV sensitive mutant was used as recipient, the effect of DNA concentration was largely diminished, suggesting the reduction of DNA-inactivating activity in the UV sensitive recipient. These results were discussed in relation to a possible excision-repair system selectively correcting the mismatched DNA in the course of intergenote transformation. (orig.) [de

  11. Performance Enhancements Under Dual-task Conditions

    Science.gov (United States)

    Kramer, A. F.; Wickens, C. D.; Donchin, E.

    1984-01-01

    Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.

  12. Quantum prisoners' dilemma under enhanced interrogation

    Science.gov (United States)

    Siopsis, George; Balu, Radhakrishnan; Solmeyer, Neal

    2018-06-01

    In the quantum version of prisoners' dilemma, each prisoner is equipped with a single qubit that the interrogator can entangle. We enlarge the available Hilbert space by introducing a third qubit that the interrogator can entangle with the other two. We discuss an enhanced interrogation technique based on tripartite entanglement and analyze Nash equilibria. We show that for tripartite entanglement approaching a W-state, we calculate the Nash equilibria numerically and show that they coincide with the Pareto-optimal choice where both prisoners cooperate. Upon continuous variation between a W-state and a pure bipartite entangled state, the game is shown to have a surprisingly rich structure. The role of bipartite and tripartite entanglement is explored to explain that structure. As an application, we consider an evolutionary game based on our quantum game with a network of agents on a square lattice with periodic boundary conditions and show that the strategy corresponding to Nash equilibrium completely dominates without placing any restrictions on the initial set of strategies.

  13. Configuration model of partial repairable spares under batch ordering policy based on inventory state

    Institute of Scientific and Technical Information of China (English)

    Ruan Minzhi; Luo Yi; Li Hua

    2014-01-01

    Rational planning of spares configuration project is an effective approach to improve equipment availability as well as reduce life cycle cost (LCC). With an analysis of various impacts on support system, the spares demand rate forecast model is constructed. According to systemic analysis method, spares support effectiveness evaluation indicators system is built, and then, initial spares configuration and optimization method is researched. To the issue of discarding and con-sumption for incomplete repairable items, its expected backorders function is approximated by Laplace demand distribution. Combining the (s-1, s) and (R, Q) inventory policy, the spares resup-ply model is established under the batch ordering policy based on inventory state, and the optimi-zation analysis flow for spares configuration is proposed. Through application on shipborne equipment spares configuration, the given scenarios are analyzed under two constraint targets:one is the support effectiveness, and the other is the spares cost. Analysis reveals that the result is consistent with practical regulation;therefore, the model’s correctness, method’s validity as well as optimization project’s rationality are proved to a certain extent.

  14. Development of biodegradable polycaprolactone film as an internal fixation material to enhance tendon repair: an in vitro study.

    Science.gov (United States)

    Hu, Jian-Zhong; Zhou, Yong-Chun; Huang, Li-Hua; Lu, Hong-Bin

    2013-08-19

    Current tendon repair techniques do not provide sufficient tensile strength at the repair site, and thus early active motion rehabilitation after tendon repair is discouraged. To enhance the post-operative tensile strength, we proposed and tested an internal fixation technique using a polycaprolactone (PCL) biofilm. PCL was chosen for its good biocompatibility, excellent mechanical strength, and an appropriate degradation time scale. PCL biofilms were prepared by a modified melt-molding/leaching technique, and the physical and mechanical properties and in vitro degradation rate were assessed. The pore size distribution of the biofilm and the paratenon of native tendons were observed using scanning electron microscopy. Next, we determined whether this biofilm could enhance the tensile strength of repaired tendons. We performed tensile tests on rabbit Achilles tendons that were first lacerated and then repaired: 1) using modified Kessler suture combined with running peripheral suture ('control' group), or 2) using biofilm to wrap the tendon and then fixation with sutures ('biofilm' group). The influence of different repair techniques on tendon tensile strength was evaluated by mechanical testing. The novel biofilm had supple texture and a smooth surface. The mean thickness of the biofilm was 0.25 mm. The mean porosity of the biofilm was 45.3%. The paratenon of the rabbit Achilles tendon had pores with diameters ranging from 1 to 9 μm, which were similar to the 4-12 μm diameter pores in the biofilm cross-section. The weight loss of the biofilms at 4 weeks was only 0.07%. The molecular weight of PCL biofilms did not change after immersion in phosphate buffered saline for 4 weeks. The failure loads of the biofilm were similar before (48 ± 9 N) and after immersion (47 ± 7 N, P > 0.1). The biofilm group had ~70% higher mean failure loads and 93% higher stiffness compared with the control group. We proposed and tested an internal fixation technique

  15. Study on Repaired Earthquake-Damaged Bridge Piers under Seismic Load

    Directory of Open Access Journals (Sweden)

    Jun Deng

    2015-01-01

    Full Text Available The concrete bridge pier damaged during earthquakes need be repaired to meet the design standards. Steel tube as a traditional material or FRP as a novel material has become popular to repair the damaged reinforced concrete (RC bridge piers. In this paper, experimental and finite element (FE studies are employed to analyze the confinement effectiveness of the different repair materials. The FE method was used to calculate the hysteretic behavior of three predamaged circle RC bridge piers repaired with steel tube, basalt fiber reinforced polymer (BFRP, and carbon fiber reinforced polymer (CFRP, respectively. Meanwhile, the repaired predamaged circle concrete bridge piers were tested by pseudo-static cyclic loading to study the seismic behavior and evaluate the confinement effectiveness of the different repair materials and techniques. The FE analysis and experimental results showed that the repaired piers had similar hysteretic curves with the original specimens and all the three repair techniques can restore the seismic performance of the earthquake-damaged piers. Steel tube jacketing can significantly improve the lateral stiffness and peak load of the damaged pier, while the BFRP and CFRP sheets cannot improve these properties due to their thin thickness.

  16. Inhibition of oncostatin M in osteoarthritic synovial fluid enhances GAG production in osteoarthritic cartilage repair

    Directory of Open Access Journals (Sweden)

    M Beekhuizen

    2013-09-01

    Full Text Available Mediators in the synovial fluid are thought to play a major role in osteoarthritic cartilage turnover. The purpose of the current study was to investigate the role of oncostatin M (OSM in osteoarthritis (OA by evaluating the presence of the cytokine and its receptors in the OA joint and interfering with its activity in synovial fluid co-cultured with cartilage explants. OSM levels were increased in the synovial fluid of osteoarthritic patients compared to healthy donors. Immunohistochemistry confirmed the presence of both the leukaemia inhibitory factor (LIF and OSM receptors for OSM throughout the whole depth of osteoarthritic cartilage and synovial tissue, whereas in healthy cartilage their presence seemed more restricted to the superficial zone. Blocking OSM activity, using an activity inhibiting antibody, in 25 % osteoarthritic synovial fluid added to OA cartilage explant cultures increased glycosaminoglycan (GAG content from 18.6 mg/g to 24.3 mg/g (P < 0.03 and total production from 7.0 mg/g to 11.9 mg/g (P < 0.003. However, OSM exogenously added to cartilage explant cultures reflecting low and high concentrations in the synovial fluid (5 and 50 pg/mL did not affect cartilage matrix turnover, suggesting that factors present in the synovial fluid act in concert with OSM to inhibit GAG production. The current study indicates the potential to enhance cartilage repair in osteoarthritis by modulating the joint environment by interfering with OSM activity.

  17. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    Science.gov (United States)

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best in group A. Both bone marrow-derived mesenchymal stem cells and platelet

  18. Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair.

    Science.gov (United States)

    Scassa, María E; Marazita, Mariela C; Ceruti, Julieta M; Carcagno, Abel L; Sirkin, Pablo F; González-Cid, Marcela; Pignataro, Omar P; Cánepa, Eduardo T

    2007-05-01

    Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.

  19. DNA-repair, chromosome alterations and chromatin structure under environmental pollutions

    International Nuclear Information System (INIS)

    Altmann, H.

    1988-06-01

    54 abstracts, 20 of which are within the INIS scope, are presented. The papers are dealing with the influence of some chemicals, environmental pollutants as well as drugs, on the process of DNA repair after ionizing irradiation. Some advanced techniques of detecting genotoxic properties and some papers on the influence of DNA repair on cell differentiation were presented. Genetic changes in man, animals and plants as a consequence of the Chernobylsk accident were described

  20. Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: dependence on chromosomal genes in 'Escherichia coli' K-12

    International Nuclear Information System (INIS)

    Walker, G.C.

    1977-01-01

    The drug resistance plasmid pKM101 plays a major role in the Ames Salmonella/microsome carcinogen detecting system by enhancing chemical mutagenesis. It is shown that in Escherichia coli K-12 the plasmid pKM101 enhances both spontaneous and methyl methanesulfonate-caused reversion of an ochre mutation, bacterial survival after ultaviolet irradiation, and reactivation of ultraviolet-irradiated lambda in unirradiated cells. All these effects are shown to be dependent on the recA + lexA + genotype but not on the recB + recC + or recF + genotypes. The recA lexA-dependence of the plasmid-mediated repair and mutagenesis suggests an interaction with the cell's inducible error-prone repair system. The presence of pKM101 is shown to cause an additional increase in methyl methanesulfonate mutagenesis in a tif mutant beyond that caused by growth at 42 0 . The presence of the plasmid raises the level of the Weigle-reactivation curve for the reactivation of ultraviolet-irradiated lambda in E. coli and causes a shift of the maximum to a higher UV fluence. These observations suggest that pKM101 does not exert its effects by altering the regulation of the cell's error-prone repair system but rather by supplying a mechanistic component or components. (orig.) [de

  1. TLR9 agonists oppositely modulate DNA repair genes in tumor versus immune cells and enhance chemotherapy effects.

    Science.gov (United States)

    Sommariva, Michele; De Cecco, Loris; De Cesare, Michelandrea; Sfondrini, Lucia; Ménard, Sylvie; Melani, Cecilia; Delia, Domenico; Zaffaroni, Nadia; Pratesi, Graziella; Uva, Valentina; Tagliabue, Elda; Balsari, Andrea

    2011-10-15

    Synthetic oligodeoxynucleotides expressing CpG motifs (CpG-ODN) are a Toll-like receptor 9 (TLR9) agonist that can enhance the antitumor activity of DNA-damaging chemotherapy and radiation therapy in preclinical mouse models. We hypothesized that the success of these combinations is related to the ability of CpG-ODN to modulate genes involved in DNA repair. We conducted an in silico analysis of genes implicated in DNA repair in data sets obtained from murine colon carcinoma cells in mice injected intratumorally with CpG-ODN and from splenocytes in mice treated intraperitoneally with CpG-ODN. CpG-ODN treatment caused downregulation of DNA repair genes in tumors. Microarray analyses of human IGROV-1 ovarian carcinoma xenografts in mice treated intraperitoneally with CpG-ODN confirmed in silico findings. When combined with the DNA-damaging drug cisplatin, CpG-ODN significantly increased the life span of mice compared with individual treatments. In contrast, CpG-ODN led to an upregulation of genes involved in DNA repair in immune cells. Cisplatin-treated patients with ovarian carcinoma as well as anthracycline-treated patients with breast cancer who are classified as "CpG-like" for the level of expression of CpG-ODN modulated DNA repair genes have a better outcome than patients classified as "CpG-untreated-like," indicating the relevance of these genes in the tumor cell response to DNA-damaging drugs. Taken together, the findings provide evidence that the tumor microenvironment can sensitize cancer cells to DNA-damaging chemotherapy, thereby expanding the benefits of CpG-ODN therapy beyond induction of a strong immune response.

  2. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits.

    Science.gov (United States)

    Gupta, Ankur; Bhat, Sumrita; Chaudhari, Bhushan P; Gupta, Kailash C; Tägil, Magnus; Zheng, Ming Hao; Kumar, Ashok; Lidgren, Lars

    2017-06-01

    We have explored the potential of cell factory-derived bioactive molecules, isolated from conditioned media of primary goat chondrocytes, for the repair of subchondral cartilage defects. Enzyme-linked immunosorbent assay (ELISA) confirms the presence of transforming growth factor-β1 in an isolated protein fraction (12.56 ± 1.15 ng/mg protein fraction). These bioactive molecules were used alone or with chitosan-agarose-gelatin cryogel scaffolds, with and without chondrocytes, to check whether combined approaches further enhance cartilage repair. To evaluate this, an in vivo study was conducted on New Zealand rabbits in which a subchondral defect (4.5 mm wide × 4.5 mm deep) was surgically created. Starting after the operation, bioactive molecules were injected at the defect site at regular intervals of 14 days. Histopathological analysis showed that rabbits treated with bioactive molecules alone had cartilage regeneration after 4 weeks. However, rabbits treated with bioactive molecules along with scaffolds, with or without cells, showed cartilage formation after 3 weeks; 6 weeks after surgery, the cartilage regenerated in rabbits treated with either bioactive molecules alone or in combinations showed morphological similarities to native cartilage. No systemic cytotoxicity or inflammatory response was induced by any of the treatments. Further, ELISA was done to determine systemic toxicity, which showed no difference in concentration of tumour necrosis factor-α in blood serum, before or after surgery. In conclusion, intra-articular injection with bioactive molecules alone may be used for the repair of subchondral cartilage defects, and bioactive molecules along with chondrocyte-seeded scaffolds further enhance the repair. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair.

    Science.gov (United States)

    Guan, Xingmin; Xiong, Meiping; Zeng, Feiyue; Xu, Bin; Yang, Lingdi; Guo, Han; Niu, Jialin; Zhang, Jian; Chen, Chenxin; Pei, Jia; Huang, Hua; Yuan, Guangyin

    2014-12-10

    To diminish incongruity between bone regeneration and biodegradation of implant magnesium alloy applied for mandibular bone repair, a brushite coating was deposited on a matrix of a Mg-Nd-Zn-Zr (hereafter, denoted as JDBM) alloy to control the degradation rate of the implant and enhance osteogenesis of the mandible bone. Both in vitro and in vivo evaluations were carried out in the present work. Viability and adhesion assays of rabbit bone marrow mesenchyal stem cells (rBM-MSCs) were applied to determine the biocompatibility of a brushite-coated JDBM alloy. Osteogenic gene expression was characterized by quantitative real-time polymerase chain reaction (RT-PCR). Brushite-coated JDBM screws were implanted into mandible bones of rabbits for 1, 4, and 7 months, respectively, using 316L stainless steel screws as a control group. In vivo biodegradation rate was determined by synchrotron radiation X-ray microtomography, and osteogenesis was observed and evaluated using Van Gieson's picric acid-fuchsin. Both the naked JDBM and brushite-coated JDBM samples revealed adequate biosafety and biocompatibility as bone repair substitutes. In vitro results showed that brushite-coated JDBM considerably induced osteogenic differentiation of rBM-MSCs. And in vivo experiments indicated that brushite-coated JDBM screws presented advantages in osteoconductivity and osteogenesis of mandible bone of rabbits. Degradation rate was suppressed at a lower level at the initial stage of implantation when new bone tissue formed. Brushite, which can enhance oeteogenesis and partly control the degradation rate of an implant, is an appropriate coating for JDBM alloys used for mandibular repair. The Mg-Nd-Zn-Zr alloy with brushite coating possesses great potential for clinical applications for mandibular repair.

  4. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment.

    Science.gov (United States)

    van Oorschot, Bregje; Granata, Giovanna; Di Franco, Simone; Ten Cate, Rosemarie; Rodermond, Hans M; Todaro, Matilde; Medema, Jan Paul; Franken, Nicolaas A P

    2016-10-04

    Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation.The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found.In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.

  5. Repair of fractured abutment teeth under pre-existing crowns: An alternative approach

    Directory of Open Access Journals (Sweden)

    Kennedy Mascarenhas

    2013-01-01

    Full Text Available This article describes a technique for repair of abutment tooth which fractured during removal of a provisional restoration before bisque trial. The technique uses plastic templates to fabricate new composite core foundation for the existing crowns. This technique helps the dentist to rebuild the core in a single appointment.

  6. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    Science.gov (United States)

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  7. The application of viral vectors to enhance regeneration after peripheral nerve repair

    NARCIS (Netherlands)

    Tannemaat, Martijn R; Verhaagen, J.; Malessy, Martijn J A

    2008-01-01

    OBJECTIVE: Despite great advancements in surgical repair techniques, a considerable degree of functional impairment remains in the majority of patients after peripheral nerve reconstruction. New concepts to promote regeneration of the peripheral nerve are needed since it is generally held that

  8. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona

    2016-01-01

    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...

  9. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    NARCIS (Netherlands)

    Feitsma, H.; de Bruijn, E.; van de Belt, J.; Nijman, I.J.; Cuppen, E.

    2008-01-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are

  10. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary...

  11. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    Science.gov (United States)

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  12. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Takaji Ikushima

    1997-01-01

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  13. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Janet L Gibson

    Full Text Available Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR. We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.

  14. Fetal blood gas values during fetoscopic myelomeningocele repair performed under carbon dioxide insufflation.

    Science.gov (United States)

    Baschat, Ahmet A; Ahn, Edward S; Murphy, Jamie; Miller, Jena L

    2018-05-10

    Fetoscopic myelomeningocele (MMC) repair is performed with intrauterine carbon dioxide (CO 2 ) insufflation. While lamb experiments have shown significant fetal acidemia following CO 2 insufflation corresponding information for human pregnancies is not available. We performed umbilical venous cord blood sampling in three patients during fetoscopic MMC repair at 25+1, 25+3 and 24+1 weeks gestation. Fetal venous pH at the beginning of CO 2 insufflation were 7.36, 7.46 and 7.37; repeat values were 7.28, 7.35, 7.36 after 181, 159 and 149 minutes respectively. The partial pressure of oxygen and carbon dioxide was maintained in the normal range at these times and pH decrease was less in patient 3 receiving humidified CO2 insufflation. Our observations suggest that in contrast to sheep experiments, CO2 insufflation during fetoscopic myelomeningocele repair does not cause fetal acidemia. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  16. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kounavis, P., E-mail: pkounavis@upatras.gr [Department of Electrical and Computer Engineering, School of Engineering, University of Patras, 26504 Patras (Greece)

    2016-06-28

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominant extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.

  17. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    International Nuclear Information System (INIS)

    Kounavis, P.

    2016-01-01

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominant extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.

  18. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness

    DEFF Research Database (Denmark)

    Kari, Vijayalakshmi; Mansour, Wael Yassin; Raul, Sanjay Kumar

    2016-01-01

    The CHD1 gene, encoding the chromo-domain helicase DNA-binding protein-1, is one of the most frequently deleted genes in prostate cancer. Here, we examined the role of CHD1 in DNA double-strand break (DSB) repair in prostate cancer cells. We show that CHD1 is required for the recruitment of Ct......-homologous end joining. Together, we provide evidence for a previously unknown role of CHD1 in DNA DSB repair via HR and show that CHD1 depletion sensitizes cells to PARP inhibitors, which has potential therapeutic relevance. Our findings suggest that CHD1 deletion, like BRCA1/2 mutation in ovarian cancer, may...... serve as a marker for prostate cancer patient stratification and the utilization of targeted therapies such as PARP inhibitors, which specifically target tumors with HR defects....

  19. An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites

    Science.gov (United States)

    Rider, Andrew N.; Baker, Alan A.; Wang, Chun H.; Smith, Graeme

    2011-06-01

    Carbon/bismaleimide (BMI) composite is increasingly employed in critical load carrying aircraft structures designed to operate at temperatures approaching 180°C. The high post-cure temperature (above 220°C) required to fully react the BMI resin, however, renders existing on-aircraft prepreg or wet layup repair methods invalid. This paper presents a new on-aircraft repair technique for carbon/BMI composites. The composite prepregs are first warm-staged to improve the ability to evacuate entrapped air. Then the patch is cured in the scarf cavity using the vacuum bag technique, followed by off-aircraft post-cure. The fully cured patch then can be bonded using a structural adhesive.

  20. Endogenous repair mechanisms enhanced in Parkinson's disease following stem cell therapy

    Directory of Open Access Journals (Sweden)

    Eleonora Napoli

    2017-01-01

    Full Text Available This mini-review highlights the innovative observation that transplanted human neural stem cells can bring about endogenous brain repair through the stimulation of multiple regenerative processes in the neurogenic area (i.e., subventricular zone [SVZ] in an animal model of Parkinson's disease (PD. In addition, we convey that identifying anti-inflammatory cytokines, therapeutic proteomes, and neurotrophic factors within the SVZ may be essential to induce brain repair and behavioral recovery. This work opens up a new area of research for further understanding the pathology and treatment of PD. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

  1. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair

    Science.gov (United States)

    Agarwal, Rachit; García, Andrés J.

    2015-01-01

    Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724

  2. Adult Stem Cell Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2016-10-01

    accompanied by injuries to peripheral nerves; if not repaired, the trauma can lead to significant dysfunction and disability . While nerves have the ability to...recovery, minimized disability , and increased quality of life for our wounded warriors. 2. KEYWORDS: Stem Cell, Nerve Conduit, Peripheral Nerve...would be a paradigm shift away from ordering X-rays at 10-12 weeks and only ordering a CT scan. It has the potential to change the standard of care

  3. Chronic Prosopis Glandulosa Treatment Blunts Neutrophil Infiltration and Enhances Muscle Repair after Contusion Injury

    Directory of Open Access Journals (Sweden)

    Cindy George

    2015-01-01

    Full Text Available The current treatment options for soft tissue injuries remain suboptimal and often result in delayed/incomplete recovery of damaged muscle. The current study aimed to evaluate the effects of oral Prosopis glandulosa treatment on inflammation and regeneration in skeletal muscle after contusion injury, in comparison to a conventional treatment. The gastrocnemius muscle of rats was subjected to mass-drop injury and muscle samples collected after 1-, 3 h, 1- and 7 days post-injury. Rats were treated with P. glandulosa (100 mg/kg/day either for 8 weeks prior to injury (up until day 7 post-injury, only post-injury, or with topically applied diclofenac post-injury (0.57 mg/kg. Neutrophil (His48-positive and macrophage (F4/80-positive infiltration was assessed by means of immunohistochemistry. Indicators of muscle satellite cell proliferation (ADAM12 and regeneration (desmin were used to evaluate muscle repair. Chronic P. glandulosa and diclofenac treatment (p < 0.0001 was associated with suppression of the neutrophil response to contusion injury, however only chronic P. glandulosa treatment facilitated more effective muscle recovery (increased ADAM12 (p < 0.05 and desmin (p < 0.001 expression, while diclofenac treatment had inhibitory effects on repair, despite effective inhibition of neutrophil response. Data indicates that P. glandulosa treatment results in more effective muscle repair after contusion.

  4. Investigation of sequential growth factor delivery during cuprizone challenge in mice aimed to enhance oligodendrogliogenesis and myelin repair.

    Directory of Open Access Journals (Sweden)

    Jennifer K Sabo

    Full Text Available Repair in multiple sclerosis involves remyelination, a process in which axons are provided with a new myelin sheath by new oligodendrocytes. Bone morphogenic proteins (BMPs are a family of growth factors that have been shown to influence the response of oligodendrocyte progenitor cells (OPCs in vivo during demyelination and remyelination in the adult brain. We have previously shown that BMP4 infusion increases numbers of OPCs during cuprizone-induced demyelination, while infusion of Noggin, an endogenous antagonist of BMP4 increases numbers of mature oligodendrocytes and remyelinated axons following recovery. Additional studies have shown that insulin-like growth factor-1 (IGF-1 promotes the survival of OPCs during cuprizone-induced demyelination. Based on these data, we investigated whether myelin repair could be further enhanced by sequential infusion of these agents firstly, BMP4 to increase OPC numbers, followed by either Noggin or IGF-1 to increase the differentiation and survival of the newly generated OPCs. We identified that sequential delivery of BMP4 and IGF-1 during cuprizone challenge increased the number of mature oligodendrocytes and decreased astrocyte numbers following recovery compared with vehicle infused mice, but did not alter remyelination. However, sequential delivery of BMP4 and Noggin during cuprizone challenge did not alter numbers of oligodendrocytes or astrocytes in the corpus callosum compared with vehicle infused mice. Furthermore, electron microscopy analysis revealed no change in average myelin thickness in the corpus callosum between vehicle infused and BMP4-Noggin infused mice. Our results suggest that while single delivery of Noggin or IGF-1 increased the production of mature oligodendrocytes in vivo in the context of demyelination, only Noggin infusion promoted remyelination. Thus, sequential delivery of BMP4 and Noggin or IGF-1 does not further enhance myelin repair above what occurs with delivery of Noggin

  5. Deterministic Encapsulation of Human Cardiac Stem Cells in Variable Composition Nanoporous Gel Cocoons To Enhance Therapeutic Repair of Injured Myocardium.

    Science.gov (United States)

    Kanda, Pushpinder; Alarcon, Emilio I; Yeuchyk, Tanya; Parent, Sandrine; de Kemp, Robert A; Variola, Fabio; Courtman, David; Stewart, Duncan J; Davis, Darryl R

    2018-04-20

    Although cocooning explant-derived cardiac stem cells (EDCs) in protective nanoporous gels (NPGs) prior to intramyocardial injection boosts long-term cell retention, the number of EDCs that finally engraft is trivial and unlikely to account for salutary effects on myocardial function and scar size. As such, we investigated the effect of varying the NPG content within capsules to alter the physical properties of cocoons without influencing cocoon dimensions. Increasing NPG concentration enhanced cell migration and viability while improving cell-mediated repair of injured myocardium. Given that the latter occurred with NPG content having no detectable effect on the long-term engraftment of transplanted cells, we found that changing the physical properties of cocoons prompted explant-derived cardiac stem cells to produce greater amounts of cytokines, nanovesicles, and microRNAs that boosted the generation of new blood vessels and new cardiomyocytes. Thus, by altering the physical properties of cocoons by varying NPG content, the paracrine signature of encapsulated cells can be enhanced to promote greater endogenous repair of injured myocardium.

  6. DNA double strand break repair is enhanced by P53 following induction by DNA damage and is dependent on the C-terminal domain of P53

    International Nuclear Information System (INIS)

    Wei Tang; Powell, Simon N.

    1996-01-01

    Purpose: The tumor suppressor gene p53 can mediate cell cycle arrest or apoptosis in response to DNA damage. Accumulating evidence suggests that it may also directly or indirectly influence the DNA repair machinery. In the present study, we investigated whether p53, induced by DNA damage, could enhance the rejoining of double-strand DNA breaks. Materials and Methods: DNA double-strand breaks (dsb) were made by restriction enzyme digestion of a plasmid, between a promoter and a 'reporter' gene: luciferase (LUC) or chloramphenicol acetyl-transferase (CAT). Linear or circular plasmid DNA (LUC or CAT) was co-transfected with circular β-Gal plasmid (to normalize for uptake) into mouse embryonic fibroblasts genetically matched to be (+/+) or (-/-) for p53. Their ability to rejoin linearized plasmid was measured by the luciferase or CAT activity detected in rescued plasmids. The activity detected in cells transfected with linear plasmid was scored relative to the activity detected in cells transfected with circular plasmid. Results: Ionizing radiation (IR, 2 Gy) enhanced the dsb repair activity in wild type p53 cells; however, p53 null cells lose this effect, indicating that the enhancement of dsb repair was p53-dependent. REF cells with dominant-negative mutant p53 showed a similar induction compared with the parental REF cells with wild-type p53. This ala-143 mutant p53 prevents cell cycle arrest and transactivation of p21 WAF1/cip1) following IR, indicating that the p53-dependent enhancement of DNA repair is distinct from transactivation. Immortalized murine embryonic fibroblasts, 10(1)VasK1 cells, which express p53 cDNA encoding a temperature-sensitive mutant in the DNA sequence specific binding domain (ala135 to val135) with an alternatively spliced C-terminal domain (ASp53: amino-acids 360-381) and, 10(1)Val5 cells, which express the normal spliced p53 (NSp53) with the same temperature-sensitive mutant were compared. It was found that 10(1)VasK1 cells showed no DNA

  7. Incorrect modeling of the failure process of minimally repaired systems under random conditions: The effect on the maintenance costs

    International Nuclear Information System (INIS)

    Pulcini, Gianpaolo

    2015-01-01

    This note investigates the effect of the incorrect modeling of the failure process of minimally repaired systems that operates under random environmental conditions on the costs of a periodic replacement maintenance. The motivation of this paper is given by a recently published paper, where a wrong formulation of the expected cost for unit time under a periodic replacement policy is obtained. This wrong formulation is due to the incorrect assumption that the intensity function of minimally repaired systems that operate under random conditions has the same functional form as the failure rate of the first failure time. This produced an incorrect optimization of the replacement maintenance. Thus, in this note the conceptual differences between the intensity function and the failure rate of the first failure time are first highlighted. Then, the correct expressions of the expected cost and of the optimal replacement period are provided. Finally, a real application is used to measure how severe can be the economical consequences caused by the incorrect modeling of the failure process.

  8. Enhanced low-temperature oxidation of zirconium alloys under irradiation

    International Nuclear Information System (INIS)

    Cox, B.; Fidleris, V.

    1989-01-01

    The linear growth of relatively thick (>300 nm) interference-colored oxide films on zirconium alloy specimens exposed in the Advanced Test Reactor (ATR) coolant at ≤55 o C was unexpected. Initial ideas were that this was a photoconduction effect. Experiments to study photoconduction in thin anodic zirconium oxide (ZrO 2 ) films in the laboratory were initiated to provide background data. It was found that, in the laboratory, provided a high electric field was maintained across the oxide during ultraviolet (UV) irradiation, enhanced growth of oxide occurred in the irradiated area. Similarly enhanced growth could be obtained on thin thermally formed oxide films that were immersed in an electrolyte with a high electric field superimposed. This enhanced growth was found to be caused by the development of porosity in the barrier oxide layer by an enhanced local dissolution and reprecipitation process during UV irradiation. Similar porosity was observed in the oxide films on the ATR specimens. Since it is not thought that a high electric field could have been present in this instance, localized dissolution of fast-neutron primary recoil tracks may be the operative mechanism. In all instances, the specimens attempt to maintain the normal barrier-layer oxide thickness, which causes the additional oxide growth. Similar mechanisms may have operated during the formation of thick loosely adherent, porous oxides in homogeneous reactor solutions under irradiation, and may be the cause of enhanced oxidation of zirconium alloys in high-temperature water-cooled reactors in some water chemistries. (author)

  9. Repair of UV damage in Escherichia coli under non-growth conditions

    International Nuclear Information System (INIS)

    Tang, M.-S.; Patrick, M.H.

    1977-01-01

    A large difference in survival occurred between buffered suspensions of E.coli irradiated with UV radiation at a low fluence rate and those irradiated at a high fluence rate. For sufficiently large fluences, the extent of this fluence rate dependent recovery (FRR) was about two orders of magnitude greater than that which could be brought about by liquid holding recovery (LHR) following high fluence rate irradiation in most of the E.coli strains studied. LHR and FRR occurred in excision resynthesis repair proficient (ERR + ) but not ERR - strains of E.coli, although its observation could be masked in strains with complete repair potential upon subsequent growth on nutrient plates. Accumulation of DNA strand interruptions and excision of cyclobutyl dipyrimidine occurred during LHR and FRR but were more extensive for the latter. The data suggest that events beyond incision and excision occurred during LHR and FRR, but differences in the extent of ERR during LHR and FRR could not account for the difference in cell survival between these two phenomena. (author)

  10. Disturbances in carbohydrate metabolism in radiation sickness and its repair under the effect of therapeutic preparations

    International Nuclear Information System (INIS)

    Dokshina, G.A.; Silaeva, T.Yu.; Yartsev, E.I.; Yakovlev, V.G.

    1975-01-01

    The effect of taurin (200mg/kg) in combination with insulin (0.2 IU/kg) on the repair of hormonal activity and of carbohydrate metabolism in an experimentally released radiation sickness was examined. White rats of both sexes weighting 180-200 g were irradiated with a gamma-unit GUM-Co-50 with 700 rad, that corresponds to LDsub(70/30). The preparations were simultaneously administered intraperitoneally every other day altogether 8 times from the 5th day after irradiation. Survival rate in the groups of treated animals was by about 27% higher than in the control. With the administration of therapeutic preparations a repair of the insulin-like plasma activity to the normal levels and a considerable inhibition of liver phosphorylase activity could be observed. Different from insulin action alone a combined use of insulin and taurin led to decrease in blood level of 11-oxycorticosteroids the metabolism of which being essentially impaired by irradiation to the normal value. The restoration of correlation between hormonal activity of adrenal cortex and of the insular apparatus favoured glycogen reproduction in the liver and the decrease in blood-sugar level. Experiments with intact animals as well as in vitro experiments reveal that taurin acts insulin-like

  11. Repair of uv damage in Escherichia coli under non-growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M S; Patrick, M H [Texas Univ., Dallas (USA)

    1977-09-01

    A large difference in survival occurred between buffered suspensions of E.coli irradiated with uv radiation at a low fluence rate and those irradiated at a high fluence rate. For sufficiently large fluences, the extent of this fluence rate dependent recovery (FRR) was about two orders of magnitude greater than that which could be brought about by liquid holding recovery (LHR) following high fluence rate irradiation in most of the E.coli strains studied. LHR and FRR occurred in excision resynthesis repair proficient (ERR/sup +/) but not ERR/sup -/ strains of E.coli, although its observation could be masked in strains with complete repair potential upon subsequent growth on nutrient plates. Accumulation of DNA strand interruptions and excision of cyclobutyl dipyrimidine occurred during LHR and FRR but were more extensive for the latter. The data suggest that events beyond incision and excision occurred during LHR and FRR, but differences in the extent of ERR during LHR and FRR could not account for the difference in cell survival between these two phenomena.

  12. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    Science.gov (United States)

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  13. Enhancement of postreplication repair in ultraviolet-light-irradiated Chinese hamster cells by irradiation in G2 or s-phase

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Aebersold, P.M.; Setlow, R.B.

    1978-01-01

    Postreplication repair in synchronous Chinese hamster cells was determined after split doses of ultraviolet (uv) radiation. Repair was enhanced by irradiation of cells in G 2 or S-phase with a small dose of uv radiation at least 1.5 h before a three-fold larger dose of uv. There was significantly greater enhancement when the first dose was given in G 2 than when it was given in the S-phase 0.5 to 1.5 h before the test dose. These data indicate that enhancement of postreplication repair does not require active DNA replication and qualitatively is independent of when in the cell cycle the cells are irradiated

  14. Analysing the bioactive makeup of demineralised dentine matrix on bone marrow mesenchymal stem cells for enhanced bone repair.

    Science.gov (United States)

    Avery, S J; Sadaghiani, L; Sloan, A J; Waddington, R J

    2017-07-10

    Dentine matrix has proposed roles for directing mineralised tissue repair in dentine and bone; however, the range of bioactive components in dentine and specific biological effects on bone-derived mesenchymal stem cells (MSCs) in humans are less well understood. The aims of this study were to further elucidate the biological response of MSCs to demineralised dentine matrix (DDM) in enhancing wound repair responses and ascertain key contributing components. Dentine was obtained from human teeth and DDM proteins solubilised with ethylenediaminetetraacetic acid (EDTA). Bone marrow derived MSCs were commercially obtained. Cells with a more immature phenotype were then selected by preferential fibronectin adhesion (FN-BMMSCs) for use in subsequent in vitro assays. DDM at 10 µg/mL reduced cell expansion, attenuated apoptosis and was the minimal concentration capable of inducing osteoblastic differentiation. Enzyme-linked immunosorbent assay (ELISA) quantification of growth factors indicated physiological levels produced the above responses; transforming growth factor β (TGF-β1) was predominant (15.6 ng/mg DDM), with relatively lower concentrations of BMP-2, FGF, VEGF and PDGF (6.2-4.7 ng/mg DDM). Fractionation of growth factors from other DDM components by heparin affinity chromatography diminished osteogenic responses. Depletion of biglycan from DDM also attenuated osteogenic potency, which was partially rescued by the isolated biglycan. Decorin depletion from DDM had no influence on osteogenic potency. Collectively, these results demonstrate the potential of DDM for the delivery of physiological levels of growth factors for bone repair processes, and substantiate a role for biglycan as an additional adjuvant for driving osteogenic pathways.

  15. A Novel Repair Method for Radial Tears of the Medial Meniscus: Biomechanical Comparison of Transtibial 2-Tunnel and Double Horizontal Mattress Suture Techniques Under Cyclic Loading.

    Science.gov (United States)

    Bhatia, Sanjeev; Civitarese, David M; Turnbull, Travis Lee; LaPrade, Christopher M; Nitri, Marco; Wijdicks, Coen A; LaPrade, Robert F

    2016-03-01

    Complete radial tears of the medial meniscus have been reported to be functionally similar to a total meniscectomy. At present, there is no consensus on an ideal technique for repair of radial midbody tears of the medial meniscus. Prior attempts at repair with double horizontal mattress suture techniques have led to a reportedly high rate of incomplete healing or healing in a nonanatomic (gapped) position, which compromises the ability of the meniscus to withstand hoop stresses. A newly proposed 2-tunnel radial meniscal repair method will result in decreased gapping and increased ultimate failure loads compared with the double horizontal mattress suture repair technique under cyclic loading. Controlled laboratory study. Ten matched pairs of male human cadaveric knees (average age, 58.6 years; range, 48-66 years) were used. A complete radial medial meniscal tear was made at the junction of the posterior one-third and middle third of the meniscus. One knee underwent a horizontal mattress inside-out repair, while the contralateral knee underwent a radial meniscal repair entailing the same technique with a concurrent novel 2-tunnel repair. Specimens were potted and mounted on a universal testing machine. Each specimen was cyclically loaded 1000 times with loads between 5 and 20 N before experiencing a load to failure. Gap distances at the tear site and failure load were measured. The 2-tunnel repairs exhibited a significantly stronger ultimate failure load (median, 196 N; range, 163-212 N) than did the double horizontal mattress suture repairs (median, 106 N; range, 63-229 N) (P = .004). In addition, the 2-tunnel repairs demonstrated decreased gapping at all testing states (P meniscus significantly decrease the ability of the meniscus to dissipate tibiofemoral loads, predisposing patients to early osteoarthritis. Improving the ability to repair medial meniscal radial tears in a way that withstands cyclic loads and heals in an anatomic position could significantly

  16. Enhanced diffusion of Zn in Al under Ne irradiation

    International Nuclear Information System (INIS)

    Myers, S.M.

    1975-01-01

    The diffusion rate of Zn in Al has been enhanced by factors approximately 10 2 --10 4 under 80 keV Ne irradiation at 130 0 C. Diffusion couples were formed by ion implantation of Zn, and the concentration profiles were determined by ion backscattering. The data are analyzed by numerically solving the coupled diffusion equations for vacancies, interstitials and atoms, and by scaling the profiles of vacancy and interstitial production rates from the theoretical profile of Ne energy into atomic processes. The enhanced diffusion rate is linear in flux, indicating that the mobile point defects annihilate predominantly at fixed sinks. The average distance to annihilation is approximately 700 A, except for the first approximately 500 A of the solid where it is much less. Free vacancies and interstitials are found to be created by the Ne at a smaller rate than the atomic displacement rate, suggesting a high annihilation probability within the parent damage cascade

  17. Enhanced Critical Size Defect Repair in Rabbit Mandible by Electrospun Gelatin/β-TCP Composite Nanofibrous Membranes

    Directory of Open Access Journals (Sweden)

    Mingming Xu

    2015-01-01

    Full Text Available The design and fabrication of biodegradable barrier membranes with satisfactory structure and composition remain a considerable challenge for periodontal tissue regeneration. We have developed a biomimetic nanofibrous membrane made from a composite of gelatin and β-tricalcium phosphate (β-TCP. We previously confirmed the in vitro biological performance of the membrane material, but the efficacy of the membranes in promoting bone repair in situ has not yet been examined. Gelatin/β-TCP composite nanofibers were fabricated by incorporation of 20 wt.% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite membranes presented a nonwoven structure with an interconnected porous network and had a rough surface due to the β-TCP nanoparticles, which were distributed widely and uniformly throughout the gelatin-fiber matrix. The repair efficacy of rabbit mandible defects implanted with bone substitute (Bio-Oss and covered with the gelatin/β-TCP composite nanofibrous membrane was evaluated in comparison with pure gelatin nanofibrous membrane. Gross observation, histological examination, and immunohistochemical analysis showed that new bone formation and defect closure were significantly enhanced by the composite membranes compared to the pure gelatin ones. From these results, we conclude that nanofibrous gelatin/β-TCP composite membranes could serve as effective barrier membranes for guided tissue regeneration.

  18. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    Science.gov (United States)

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  19. Conditions for enhanced performance of segmented thermoelectrics under load

    Science.gov (United States)

    Angst, Sebastian; Wolf, Dietrich E.

    2017-08-01

    The Onsager-de Groot-Callen transport theory is used to investigate the performance of double segmented thermoelectrics as generators. We show that such an inhomogeneous device usually performs worse than predicted by the effective transport coefficients. This is caused by the difference of the open circuit Seebeck voltage and the Seebeck voltage under operating conditions. The electrical current and the related interface Peltier effect cause a self-organization of the temperature profile such that the temperature drop across the material with the higher absolute Seebeck coefficient is reduced. However, including Joule heating we derive conditions for the opposite effect resulting in an enhanced power.

  20. Enhanced Sorbitol Production under Submerged Fermentation using Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Khan Nadiya Jan

    2017-04-01

    Full Text Available Background and Objective: Sorbitol is a non-toxic and slightly hygroscopic compound with different applications. Zymomonas mobiles produces sorbitol from sucrose or mixtures of glucose and fructose (formation is coupled with the dehydrogenation of glucose to glucono-δ- lactone. Recombinant Zymomonas mobilis may produce sorbitol and gluconic acid from glucose and fructose using different divalent metal ions with reduced the ethanol yield andsignificantly increased yield of sorbitol. Current study envisaged to alter the media components, physical process parameters and supplementation of amino acids for enhanced sorbitol production.Material and Methods: Several process variables were evaluated on sorbitol production including carbon sources (glucose, fructose, maltose, sucrose, carbon concentrations (5, 10, 20 and 25 g l-1, nitrogen sources (peptone, tryptone, yeast extract, beef extract and organic nitrogen mix, temperatures (25, 29, 33, 37, 41°C, pH (6, 6.5, 7 , 7.5 ,8, agitation rate (50, 100, 150, 200 rpm and amino acids (cysteine, cystine, tryptophanin batch cultivation ofLactobacillus plantarum NCIM 2912. Shake flask cultivation performed under optimum conditions like temperature 37°C, pH 7.0 and agitation rate of 150 rpm, resulted in enhanced sorbitol production. Comparative study of sorbitol production in solid state fermentation and submerged fermentation was also evaluated.Results and Conclusion: Batch cultivation under submerged conditions further performed in 7.5-l lab scale bioreactor (working volume 3.0-l under optimized conditions resulted in maximum cell biomass of 8.95±0.03 g g-1 and a sorbitol content of 9.78±0.04 g l-1 after 42.0 h of fermentation. Scale up study on bioreactor resulted in maximum sorbitol yield (Yp/x and productivity of 1.11 g g-1 and 0.50 g l-1 h under submerged fermentation, respectively.Conflict of interest: The authors declare no conflict of interest.

  1. Mechanisms underlying the social enhancement of vocal learning in songbirds.

    Science.gov (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T

    2016-06-14

    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  2. Reliability Analysis of a Cold Standby System with Imperfect Repair and under Poisson Shocks

    Directory of Open Access Journals (Sweden)

    Yutian Chen

    2014-01-01

    Full Text Available This paper considers the reliability analysis of a two-component cold standby system with a repairman who may have vacation. The system may fail due to intrinsic factors like aging or deteriorating, or external factors such as Poisson shocks. The arrival time of the shocks follows a Poisson process with the intensity λ>0. Whenever the magnitude of a shock is larger than the prespecified threshold of the operating component, the operating component will fail. The paper assumes that the intrinsic lifetime and the repair time on the component are an extended Poisson process, the magnitude of the shock and the threshold of the operating component are nonnegative random variables, and the vacation time of the repairman obeys the general continuous probability distribution. By using the vector Markov process theory, the supplementary variable method, Laplace transform, and Tauberian theory, the paper derives a number of reliability indices: system availability, system reliability, the rate of occurrence of the system failure, and the mean time to the first failure of the system. Finally, a numerical example is given to validate the derived indices.

  3. Arthroscopic medial meniscus trimming or repair under nerve blocks: Which nerves should be blocked?

    Science.gov (United States)

    Taha, AM; Abd-Elmaksoud, AM

    2016-01-01

    Background: This study aimed to determine the role of the sciatic and obturator nerve blocks (in addition to femoral block) in providing painless arthroscopic medial meniscus trimming/repair. Materials and Methods: One hundred and twenty patients with medial meniscus tear, who had been scheduled to knee arthroscopy, were planned to be included in this controlled prospective double-blind study. The patients were randomly allocated into three equal groups; FSO, FS, and FO. The femoral, sciatic, and obturator nerves were blocked in FSO groups. The femoral and sciatic nerves were blocked in FS group, while the femoral and obturator nerves were blocked in FO group. Intraoperative pain and its causative surgical maneuver were recorded. Results: All the patients (n = 7, 100%) in FO group had intraoperative pain. The research was terminated in this group but completed in FS and FSO groups (40 patients each). During valgus positioning of the knee for surgical management of the medial meniscus tear, the patients in FS group experienced pain more frequently than those in FSO group (P = 0.005). Conclusion: Adding a sciatic nerve block to the femoral nerve block is important for painless knee arthroscopy. Further adding of an obturator nerve block may be needed when a valgus knee position is required to manage the medial meniscus tear. PMID:27375382

  4. Enhancement and suppression in the visual field under perceptual load.

    Science.gov (United States)

    Parks, Nathan A; Beck, Diane M; Kramer, Arthur F

    2013-01-01

    The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  5. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    Science.gov (United States)

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  6. Biochar enhances yield and quality of tomato under reduced irrigation

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Li, Guitong; Andersen, Mathias Neumann

    2014-01-01

    tBiochar is an amendment that can be used for enhancing soil water storage which may increase cropproductivity. The objective of this study was to investigate the effects of biochar on physiology, yield andquality of tomato under different irrigation regimes. From early flowering to fruit maturity...... stages, theplants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation(PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot waterholding capacity while in DI and PRD, 70% of FI was irrigated on either...... the whole or one side of the pots,respectively. In PRD, irrigation was switched between sides when the soil water content of the dry sidedecreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DIand PRD, which consequently improved physiology, yield, and quality...

  7. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.

    Science.gov (United States)

    Wong, J M; Ingles, C J

    2001-02-01

    Nucleotide excision repair is the major pathway responsible for removing UV-induced DNA damage, and is therefore essential for cell survival following exposure to UV radiation. In this report, we have assessed the contributions of some components of the RNA polymerase II (Pol II) transcription machinery to UV resistance in Saccharomyces cerevisiae. Deletion of the gene encoding the Pol II elongation factor TFIIS (SII) resulted in enhanced UV sensitivity, but only in the absence of global genome repair dependent on the RAD7 and RAD16 genes, a result seen previously with deletions of RAD26 and RAD28, yeast homologs of the human Cockayne syndrome genes CSB and CSA, respectively. A RAD7/16-dependent reduction in survival after UV irradiation was also seen in the presence of mutations in RNA Pol II that confer a defect in its response to SII, as well as with other mutations which reside in regions of the largest subunit of Pol II not involved in SII interactions. Indeed, an increase in UV sensitivity was achieved by simply decreasing the steadystate level of RNA Pol II. Truncation of the C-terminal domain and other RNA Pol II mutations conferred sensitivity to the ribonucleotide reductase inhibitor hydroxyurea and induction of RNR1 and RNR2 mRNAs after UV irradiation was attenuated in these mutant cells. That UV sensitivity can be a consequence of mutations in the RNA Pol II machinery in yeast cells suggests that alterations in transcriptional programs could underlie some of the pathophysiological defects seen in the human disease Cockayne syndrome.

  8. Enhanced performance of ferroelectric materials under hydrostatic pressure

    Science.gov (United States)

    Chauhan, Aditya; Patel, Satyanarayan; Wang, Shuai; Novak, Nikola; Xu, Bai-Xiang; Lv, Peng; Vaish, Rahul; Lynch, Christopher S.

    2017-12-01

    Mechanical confinement or restricted degrees of freedom have been explored for its potential to enhance the performance of ferroelectric devices. It presents an easy and reversible method to tune the response for specific applications. However, such studies have been mainly limited to uni- or bi-axial stress. This study investigates the effect of hydrostatic pressure on the ferroelectric behavior of bulk polycrystalline Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3. Polarization versus electric field hysteresis plots were generated as a function of hydrostatic pressure for a range of operating temperatures (298-398 K). The application of hydrostatic pressure was observed to induce anti-ferroelectric like double hysteresis loops. This in turn enhances the piezoelectric, energy storage, energy harvesting, and electrocaloric effects. The hydrostatic piezoelectric coefficient (dh) was increased from 50 pCN-1 (0 MPa) to ˜900 pC N-1 (265 MPa) and ˜3200 pCN-1 (330 MPa) at 298 K. Energy storage density was observed to improve by more than 4 times under pressure, in the whole temperature range. The relative change in entropy was also observed to shift from ˜0 to 4.8 J kg-1 K-1 under an applied pressure of 325 MPa. This behavior can be attributed to the evolution of pinched hysteresis loops that have been explained using a phenomenological model. All values represent an improvement of several hundred percent compared to unbiased performance, indicating the potential benefits of the proposed methodology.

  9. Enhancement and Suppression in the Visual Field under Perceptual Load

    Directory of Open Access Journals (Sweden)

    Nathan A Parks

    2013-05-01

    Full Text Available The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task – greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs in conjunction with time-domain event-related potentials (ERPs to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2°, 6°, or 11° during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3Hz was attenuated under high perceptual load (relative to low load at the most proximal (2° eccentricity but not at more eccentric locations (6˚ or 11˚. Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  10. Magnetic Criticality Enhanced Hybrid Nanodiamond Thermometer under Ambient Conditions

    Science.gov (United States)

    Wang, Ning; Liu, Gang-Qin; Leong, Weng-Hang; Zeng, Hualing; Feng, Xi; Li, Si-Hong; Dolde, Florian; Fedder, Helmut; Wrachtrup, Jörg; Cui, Xiao-Dong; Yang, Sen; Li, Quan; Liu, Ren-Bao

    2018-01-01

    Nitrogen-vacancy (NV) centers in diamond are attractive as quantum sensors owing to their superb coherence under ambient conditions. However, the NV center spin resonances are relatively insensitive to some important parameters such as temperature and pressure. Here we design and experimentally demonstrate a hybrid nanothermometer composed of NV centers and a magnetic nanoparticle (MNP), in which the temperature sensitivity is enhanced by the critical magnetization of the MNP near the ferromagnetic-paramagnetic transition temperature. The temperature susceptibility of the NV center spin resonance reaches 14 MHz /K , nearly 200 times larger than that of bare NV centers. The sensitivity of a hybrid nanothermometer composed of a Cu1 -xNix MNP and a nanodiamond is measured to be 11 mK /√{Hz } under ambient conditions. The working range of the hybrid thermometer can be designed from cryogenic temperature to about 600 K by tuning the chemical composition of the Cu1 -xNix MNP. We demonstrate in situ detection of the magnetic phase transition of a single magnetic nanoparticle using the hybrid nanothermometer. This hybrid nanothermometer provides a novel approach to studying a broad range of thermal processes at nanoscales such as nanoplasmonics, heat-stimulated subcellular processes, and thermodynamics of nanosystems.

  11. Magnetic Criticality Enhanced Hybrid Nanodiamond Thermometer under Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-03-01

    Full Text Available Nitrogen-vacancy (NV centers in diamond are attractive as quantum sensors owing to their superb coherence under ambient conditions. However, the NV center spin resonances are relatively insensitive to some important parameters such as temperature and pressure. Here we design and experimentally demonstrate a hybrid nanothermometer composed of NV centers and a magnetic nanoparticle (MNP, in which the temperature sensitivity is enhanced by the critical magnetization of the MNP near the ferromagnetic-paramagnetic transition temperature. The temperature susceptibility of the NV center spin resonance reaches 14  MHz/K, nearly 200 times larger than that of bare NV centers. The sensitivity of a hybrid nanothermometer composed of a Cu_{1-x}Ni_{x} MNP and a nanodiamond is measured to be 11  mK/sqrt[Hz] under ambient conditions. The working range of the hybrid thermometer can be designed from cryogenic temperature to about 600 K by tuning the chemical composition of the Cu_{1-x}Ni_{x} MNP. We demonstrate in situ detection of the magnetic phase transition of a single magnetic nanoparticle using the hybrid nanothermometer. This hybrid nanothermometer provides a novel approach to studying a broad range of thermal processes at nanoscales such as nanoplasmonics, heat-stimulated subcellular processes, and thermodynamics of nanosystems.

  12. Non‐diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle

    2016-01-01

    Background The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non‐diluted seawater and diluted seawater, on nasal mucosa functional parameters. Methods For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non‐diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Results Non‐diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Conclusion Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non‐diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. PMID:27101776

  13. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline.

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle; de Gabory, Ludovic

    2016-10-01

    The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non-diluted seawater and diluted seawater, on nasal mucosa functional parameters. For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non-diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Non-diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non-diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. © 2016 The Authors International Forum of Allergy & Rhinology, published by ARSAAOA, LLC.

  14. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  15. Thromboxane A{sub 2} receptor signaling promotes liver tissue repair after toxic injury through the enhancement of macrophage recruitment

    Energy Technology Data Exchange (ETDEWEB)

    Minamino, Tsutomu [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ito, Yoshiya [Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ohkubo, Hirotoki [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Hosono, Kanako; Suzuki, Tatsunori [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sato, Takehito [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ae, Takako; Shibuya, Akitaka [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sakagami, Hiroyuki [Departments of Anatomy, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Narumiya, Shuh [Department of Pharmacology, Kyoto University School of Medicine, Kyoto, 606-8315 (Japan); Koizumi, Wasaburo [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Majima, Masataka, E-mail: mmajima@med.kitasato-u.ac.jp [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan)

    2012-02-15

    It is thought that thromboxane A{sub 2} (TxA{sub 2}) contributes to the progression of inflammation during acute hepatic injury; however, it is still unknown whether TxA{sub 2} is involved in liver repair. The objective of the present study was to examine the role of TxA{sub 2} receptor (TP) signaling in liver injury and repair in response to toxic injury. Carbon tetrachloride (CCl{sub 4}) was used to induce liver injury in TP knockout (TP{sup −/−}) mice and wild-type (WT) mice. In WT mice, serum levels of alanine aminotransferase (ALT) and the size of the necrotic area peaked at 24 and 48 h, respectively, and then declined. In TP{sup −/−} mice, the changes in ALT levels were similar to WT mice, but liver regeneration was impaired as evidenced by remained elevated levels of hepatic necrosis and by delayed hepatocyte proliferation, which was associated with the reduced expression of growth factors including interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and hepatocyte growth factor (HGF). In TP{sup −/−} mice, the accumulation of hepatic CD11b{sup +}/F4/80{sup +} macrophages in injured livers was attenuated, and the hepatic expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor, the C―C chemokine receptor (CCR2), was reduced compared to WT. Additionally, the application of the TP receptor agonist, U-46619, enhanced the expression of MCP-1/CCL2 and CCR2 in peritoneal macrophages, which was associated with increased levels of IL-6, TNFα and HGF. These results suggested that TP receptor signaling facilitates liver recovery following CCl{sub 4}-induced hepatotoxicity by affecting the expression of hepatotrophic growth factors, and through the recruitment of macrophages mediated by MCP-1/CCL2-CCR2 expression. -- Highlights: ► TP enhances liver regeneration by CCl{sub 4}. ► TP accumulates macrophages. ► TP up-regulates MCP-1.

  16. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin C Thompson

    Full Text Available Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV radiation and affects DNA damage and repair. Nicotinamide (vitamin B3 reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2 solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  17. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe 2 by Hydrohalic Acid Treatment

    KAUST Repository

    Han, Hau-Vei

    2015-12-30

    Atomically thin two-dimensional transition-metal dichalcogenides (TMDCs) have attracted much attention recently due to their unique electronic and optical properties for future optoelectronic devices. The chemical vapor deposition (CVD) method is able to generate TMDCs layers with a scalable size and a controllable thickness. However, the TMDC monolayers grown by CVD may incorporate structural defects, and it is fundamentally important to understand the relation between photoluminescence and structural defects. In this report, point defects (Se vacancies) and oxidized Se defects in CVD-grown MoSe2 monolayers are identified by transmission electron microscopy and X-ray photoelectron spectroscopy. These defects can significantly trap free charge carriers and localize excitons, leading to the smearing of free band-to-band exciton emission. Here, we report that the simple hydrohalic acid treatment (such as HBr) is able to efficiently suppress the trap-state emission and promote the neutral exciton and trion emission in defective MoSe2 monolayers through the p-doping process, where the overall photoluminescence intensity at room temperature can be enhanced by a factor of 30. We show that HBr treatment is able to activate distinctive trion and free exciton emissions even from highly defective MoSe2 layers. Our results suggest that the HBr treatment not only reduces the n-doping in MoSe2 but also reduces the structural defects. The results provide further insights of the control and tailoring the exciton emission from CVD-grown monolayer TMDCs.

  18. Extracorporeal shockwave enhanced regeneration of fibrocartilage in a delayed tendon-bone insertion repair model.

    Science.gov (United States)

    Chow, Dick Ho Kiu; Suen, Pui Kit; Huang, Le; Cheung, Wing-Hoi; Leung, Kwok-Sui; Ng, Chun; Shi, San Qiang; Wong, Margaret Wan Nar; Qin, Ling

    2014-04-01

    Fibrous tissue is often formed in delayed healing of tendon bone insertion (TBI) instead of fibrocartilage. Extracorporeal shockwave (ESW) provides mechanical cues and upregulates expression of fibrocartilage-related makers and cytokines. We hypothesized that ESW would accelerate fibrocartilage regeneration at the healing interface in a delayed TBI healing model. Partial patellectomy with shielding at the TBI interface was performed on 32 female New Zealand White Rabbits for establishing this delayed TBI healing model. The rabbits were separated into the control and ESW group for evaluations at postoperative week 8 and 12. Shielding was removed at week 4 and a single ESW treatment was applied at week 6. Fibrocartilage regeneration was evaluated histomorphologically and immunohistochemically. Vickers hardness of the TBI matrix was measured by micro-indentation. ESW group showed higher fibrocartilage area, thickness, and proteoglycan deposition than the control in week 8 and 12. ESW increased expression of SOX9 and collagen II significantly in week 8 and 12, respectively. ESW group showed a gradual transition of hardness from bone to fibrocartilage to tendon, and had a higher Vickers hardness than the control group at week 12. In conclusion, ESW enhanced fibrocartilage regeneration at the healing interface in a delayed TBI healing model. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. The role of the DNA repair system in increasing the viability of E.coli cells under the action of small UV doses

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Vilenchik, M.M.; Isakov, B.K.; AN Kazakhskoj SSR, Alma-Ata. Inst. Botaniki)

    1976-01-01

    The authors studied the action of the ultraviolet light (UV) on the colony-forming ability of E.coli K12-HCR + cultured in a meat infusion broth in the presence of glucose. An unusual shape of the curve indicates that the number of viable cells increases under the action of low UV doses. The experiment was repeated seven times, and each time the phenomenon was fully asserted (p 0.01). So it was suggested that low UV doses (about 140 erg/mm 2 ) activate the system of dark DNA repair (induction of the synthesis of repair enzymes) which repairs 'spontaneous' DNA defects and increases the number of colony-forming cells. (orig.) [de

  20. Role of the DNA repair system in increasing the viability of E. coli cells under the action of small UV doses

    Energy Technology Data Exchange (ETDEWEB)

    Kuzin, A M; Vilenchik, M M; Isakov, B K [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki; AN Kazakhskoj SSR, Alma-Ata. Inst. Botaniki)

    1976-12-01

    The authors studied the action of the ultraviolet light (UV) on the colony-forming ability of E.coli K12-HCR/sup +/ cultured in a meat infusion broth in the presence of glucose. An unusual shape of the curve indicates that the number of viable cells increases under the action of low UV doses. The experiment was repeated seven times, and each time the phenomenon was fully asserted (p 0.01). So it was suggested that low UV doses (about 140 erg/mm/sup 2/) activate the system of dark DNA repair (induction of the synthesis of repair enzymes) which repairs 'spontaneous' DNA defects and increases the number of colony-forming cells.

  1. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    Science.gov (United States)

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  2. Role of oxygen in enhancement in repair of radiation injuries in Tribolium

    International Nuclear Information System (INIS)

    Ng, M.C.

    1977-01-01

    The oxygen enhancement ratio (OER) was determined for various biological responses in Tribolium confusum McGill Black. The biological responses included acute lethality of the adults and larvae; sexual sterilization of the male and female adults; fecundity of the females and hatchability of their eggs as well as the competitiveness of the males. The OER for acute lethality for the male and female adults was found to be 2.25-2.38, regardless of the type of inert gas used to achieve anaerobiosis. Acute lethality for the larvae showed an OER of 2.79. The OER for male and female sexual sterilization was 2.35 and 3.37 respectively. With irradiation carried out in oxygen, the results suggested that at the tissue level of the adults and the male reproductive organ, there is a certain degree of hypoxia. Sexual sterilization of the males by radiation is attributed to the induction of dominant lethal mutation in the sperms, and that of the females involves a combination of dominant lethals and decreased egg production. The OER for egg hatchability at a hatchability level of 50% of the control for irradiated females was 4.0, a surprisingly higher value than that of any other biological responses studied. The OER for fecundity of irradiated females and for male competitiveness were roughly estimated to be 2.8 and 2.3-2.7 respectively. Since the OER for male sexual sterilization is basically the same as that for acute lethality for adults, it is expected that the competitiveness, which depends on the amount of somatic damage by radiation, will not be protected to a much greater extent by anaerobic irradiation than sterilization. It is clearly demonstrated that OER values are specific for the particular end point scored. Even within the same organism, different OER can be obtained with different biological responses

  3. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    Energy Technology Data Exchange (ETDEWEB)

    Fan Jinshui; Robert, Carine [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States); Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce [Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD 21231-1000 (United States); Rassool, Feyruz Virgilia, E-mail: frassool@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States)

    2011-08-01

    Highlights: {yields} iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. {yields} iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. {yields} iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. {yields} iPSC however show a partial apoptotic response to DNA damage, compared to hESC. {yields} DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived

  4. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    International Nuclear Information System (INIS)

    Fan Jinshui; Robert, Carine; Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce; Rassool, Feyruz Virgilia

    2011-01-01

    Highlights: → iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. → iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. → iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. → iPSC however show a partial apoptotic response to DNA damage, compared to hESC. → DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived from, mimic hESC in their ROS levels

  5. On Birnbaum importance assessment for aging multi-state system under minimal repair by using the Lz-transform method

    International Nuclear Information System (INIS)

    Lisnianski, Anatoly; Frenkel, Ilia; Khvatskin, Lev

    2015-01-01

    This paper considers a reliability importance evaluation for components in an aging multi-state system. In practical reliability engineering a “curse of dimensionality” (the large number of states that should be analyzed for a multi-state system model) is a main obstacle for importance assessment. In order to challenge the problem, this paper proposes a new method that is based on an L Z -transform of the discrete-state continuous-time Markov process and on Ushakov's Universal Generating Operator. The paper shows that the proposed method can drastically reduce a computational burden. In order to illustrate the method, a solution of a real world problem is presented as a numerical example. - Highlights: • Aging multi-state system under minimal repair is studied. • A new method for Birnbaum importance assessment is developed. • The method is based on the L Z -transform. • The proposed method provides a drastic reduction of computation burden. • Numerical example is presented in order to illustrate the method

  6. Repair of aortic arch aneurysm under cardiopulmonary bypass and deep hypothermia with low flow: A case report

    Directory of Open Access Journals (Sweden)

    Md. Rezwanul Hoque

    2016-07-01

    Full Text Available Aortic arch surgery is the challenging and most difficult surgery among the cardiovascular operations. Cerebral and spinal complications are the most feared and common complications of aortic arch surgery. With best available techniques for cerebral and spinal protection, anesthetic management and good post-operative care; aortic arch surgery is considerably safer nowadays and satisfactory results can be achieved in most patients. Also, selecting the sites for arterial cannulation to maintain whole body circulation, during isolation of the aortic arch to operate on it, need proper anatomical description of the extent of the aneurysm. This is also achievable by the availability of the imaging techniques like Computed Tomog­raphy (CT with or without contrast, CT Angiography (CTA and Magnetic Resonance Imaging (MRI. We are reporting a case of aneurysm of aortic arch in a young adult, who had undergone repair under cardiopulmonary bypass and deep hypothermia with low flow and had normal convalescence without any cerebral or spinal complications.

  7. Postradiation DNA repair in mammalian cells under the combined effect of hyperthermia and 8-bromocaffeine and actinomycin D

    International Nuclear Information System (INIS)

    Rezvaya, S.P.; Khanson, K.P.

    1981-01-01

    A study was made of the influence of postirradiation hyperthermia combined with chemical inhibitirors of DNA repa on rejoining the singlestranded DNA breaks induced by X-irradiation (50 Gy) of LL, cells. Separation of single- and double-stranded DNA fragments on a column with hydroxyapatite has revealed that elevation of the postradiation incubation temperature up to 41 deg C does not influence the degree of repair of single-stranded breaks. No repair is detected at 43 deg C. 8-Bromocaffeine and actinomycin combined with the elevated temperature (41 deg C) remove the inhibitory effect of the preparations on the postradiation repair of DNA [ru

  8. Down-regulation of DNA mismatch repair enhances initiation and growth of neuroblastoma and brain tumour multicellular spheroids.

    Directory of Open Access Journals (Sweden)

    Samuel L Collins

    Full Text Available Multicellular tumour spheroid (MCTS cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR. This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci.

  9. 1,4 Naphthoquinone protects radiation induced cell death and DNA damage in lymphocytes by activation Nrf2/are pathway and enhancing DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazir M; Sandur, Santosh K; Checker, Rahul; Sharma, Deepak; Poduval, T.B., E-mail: nazirbiotech@rediffmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai (India)

    2012-07-01

    enhanced DNA repair in NQ treated lymphocytes. Furthermore, microarray analysis indicated that treatment of lymphocytes with NQ induces upregulation of several DNA repair genes including mismatch repair (Msh6, Pms2, and Rfc1), nucleotide and base excision repair pathways like pole4, parp1, parp4. Induction of these genes in NQ treated lymphocytes were confirmed by quantitative real time PCR. Further, treatment of lymphocytes with NQ resulted in increased expression of proteins as revealed by 2D protein blot analysis. Proteomic analysis of these spots corresponds to RIKEN protein which is known to exhibits as radio-resistance in the cells. Thus in addition to anti-cancer and anti-parasitic activity, NQ offered protection against a-radiation-induced cell death in lymphocytes via activation of Nrf-2/ARE and DNA repair pathways. (author)

  10. In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Shuaijun Jia

    Full Text Available Tissue engineering (TE has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS technology, we have fabricated an oriented cartilage extracellular matrix (ECM-derived scaffold with a Young's modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC-scaffold constructs (cell-oriented and random in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.

  11. [The quality of patient care under the German DRG system using as example the inguinal hernia repair].

    Science.gov (United States)

    Rudroff, C; Schweins, M; Heiss, M M

    2008-02-01

    The DRG system in Germany was introduced to improve and at the same time simplify the reimbursement of costs in German hospitals. Cost effectiveness and economic efficiency were the declared goals. Structural changes and increased competition among different hospitals were the consequences. The effect on the qualitiy of patient care has been discussed with some concern. Furthermore, doubts have been expressed about the correct representation of the various diagnoses and treatments in the coding system and the financial revenue. Inguinal hernia repair serves as an example to illustrate some common problems with the reimbursement in the DRG system. Virtual patients were grouped using a "Web Grouper" and analysed using the cost accounting from the G-DRG-Browser of the InEK. Additionally, the reimbursement for ambulant hernia repair was estimated. The DRG coding did not differentiate the various operative procedures for inguinal hernia repair. They all generated the same revenues. For example, the increased costs for bilateral inguinal hernia repair are not represented in the payment. Furthermore, no difference is made between primary and recurrent inguinal hernia. In the case of a short-term hospital stay, part of the revenue is retained. In the case of ambulatory treatment of inguinal hernia, the reimbursement is by far not a real compensation for the actual costs. The ideal patient in the DRG system suffers from a primary inguinal hernia, undergoes an open hernia repair without mesh, and remains for 2-3 days in hospital. Minimally invasive procedures, repair of bilateral inguinal hernia and ambulant operation are by far less profitable--if at all. The current revenues for inguinal hernia repair require improvement and adjustment to reality in order to accomplish the goals which the DRG system in Germany aims at.

  12. Evaluation of Underwater Image Enhancement Algorithms under Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Marino Mangeruga

    2018-01-01

    Full Text Available Underwater images usually suffer from poor visibility, lack of contrast and colour casting, mainly due to light absorption and scattering. In literature, there are many algorithms aimed to enhance the quality of underwater images through different approaches. Our purpose was to identify an algorithm that performs well in different environmental conditions. We have selected some algorithms from the state of the art and we have employed them to enhance a dataset of images produced in various underwater sites, representing different environmental and illumination conditions. These enhanced images have been evaluated through some quantitative metrics. By analysing the results of these metrics, we tried to understand which of the selected algorithms performed better than the others. Another purpose of our research was to establish if a quantitative metric was enough to judge the behaviour of an underwater image enhancement algorithm. We aim to demonstrate that, even if the metrics can provide an indicative estimation of image quality, they could lead to inconsistent or erroneous evaluations.

  13. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  14. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway

    Directory of Open Access Journals (Sweden)

    Gong C

    2017-12-01

    Full Text Available Cheng Gong,1 Zongyuan Yang,1 Lingyun Zhang,2 Yuehua Wang,2 Wei Gong,2 Yi Liu3 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, 3Department of Medicinal Chemistry, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China Abstract: Quercetin is proven to have anticancer effects for many cancers. However, the role of tumor suppressor p53 on quercetin’s radiosensitization and regulation of endoplasmic reticulum (ER stress response in this process remains obscure. Here, quercetin exposure resulted in ER stress, prolonged DNA repair, and the expression of p53 protein; phosphorylation on serine 15 and 20 increased in combination with X-irradiation. Quercetin pretreatment could potentiate radiation-induced cell death. The combination of irradiation and quercetin treatment aggravated DNA damages and caused typical apoptotic cell death; as well the expression of Bax and p21 elevated and the expression of Bcl-2 decreased. Knocking down of p53 could reverse all the above effects under quercetin in combination with radiation. In addition, quercetin-induced radiosensitization was through stimulation of ATM phosphorylation. In human ovarian cancer xenograft model, combined treatment of quercetin and radiation significantly restrained the growth of tumors, accompanied with the activation of p53, CCAAT/enhancer-binding protein homologous protein, and γ-H2AX. Overall, these results indicated that quercetin acted as a promising radiosensitizer through p53-dependent ER stress signals. Keywords: quercetin, p53, endoplasmic reticulum stress, DNA double-strand breaks, eIF-2α (eukaryotic initiation factor 2α, ATM kinase

  15. Enhancement of excision-repair efficiency by conditioned medium from density-inhibited cultures in V79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Nakano, S.

    1979-01-01

    Conditioned medium from density-inhibited V79 Chinese hamster cell cultures, given as a post-treatment to UV-irradiated homologous cells, was demonstrated to reduce the lethal action of ultraviolet light by temporarily blocking DNA replication. Since the increased survival was not affected by various nontoxic concentrations of caffeine, such protective effect would be attributable to the prolonged intervention of excision repair before DNA replication during the post-treatment period. The influence of conditioned medium on the UV-induced mutation at the ouabain-resistance locus was also examined and a significant decrease in mutation frequecy was noted. The observed reduction in killing and mutation as a result of post-incubation in conditioned medium, which delays DNA replication, would be interpreted as evidence that conditioned medium provides a longer period of time for an error-free excision-repair process, leaving lesion in DNA available for error-prone post-replication repair. (Auth.)

  16. Structure and morphology of mythimna pupa under diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Huang Wanxia; Yuan Qingxi; Zhu Peiping; Wang Junyue; Liu Yijin; Chen Bo; Shu Hang; Hu Tiandou; Wu Ziyu; Ge Siqin

    2007-01-01

    As a technique of X-ray phase contrast imaging, the diffraction enhanced imaging (DEI) attracts much interest due to its high resolution and contrast. The top images of DEI were used to study the growth of a complete metamorphic mythimna in the period of pupa. Clear images about the pupa structure were obtained. The entire growth process of the pupa was observed, including the evolvement of part of organs and tissues from larva to imago. (authors)

  17. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.

    Science.gov (United States)

    Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-02-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.

  18. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  19. Erythropoietin and a nonerythropoietic peptide analog promote aortic endothelial cell repair under hypoxic conditions: role of nitric oxide

    Directory of Open Access Journals (Sweden)

    Heikal L

    2016-08-01

    Full Text Available Lamia Heikal,1 Pietro Ghezzi,1 Manuela Mengozzi,1 Blanka Stelmaszczuk,2 Martin Feelisch,2 Gordon AA Ferns1 1Brighton and Sussex Medical School, Falmer, Brighton, 2Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital and Institute for Life Sciences, Southampton, UK Abstract: The cytoprotective effects of erythropoietin (EPO and an EPO-related nonerythropoietic analog, pyroglutamate helix B surface peptide (pHBSP, were investigated in an in vitro model of bovine aortic endothelial cell injury under normoxic (21% O2 and hypoxic (1% O2 conditions. The potential molecular mechanisms of these effects were also explored. Using a model of endothelial injury (the scratch assay, we found that, under hypoxic conditions, EPO and pHBSP enhanced scratch closure by promoting cell migration and proliferation, but did not show any effect under normoxic conditions. Furthermore, EPO protected bovine aortic endothelial cells from staurosporine-induced apoptosis under hypoxic conditions. The priming effect of hypoxia was associated with stabilization of hypoxia inducible factor-1α, EPO receptor upregulation, and decreased Ser-1177 phosphorylation of endothelial nitric oxide synthase (NOS; the effect of hypoxia on the latter was rescued by EPO. Hypoxia was associated with a reduction in nitric oxide (NO production as assessed by its oxidation products, nitrite and nitrate, consistent with the oxygen requirement for endogenous production of NO by endothelial NOS. However, while EPO did not affect NO formation in normoxia, it markedly increased NO production, in a manner sensitive to NOS inhibition, under hypoxic conditions. These data are consistent with the notion that the tissue-protective actions of EPO-related cytokines in pathophysiological settings associated with poor oxygenation are mediated by NO. These findings may be particularly relevant to atherogenesis and postangioplasty restenosis. Keywords

  20. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair

    Science.gov (United States)

    Chapman, J. Ross; Sossick, Alex J.; Boulton, Simon J.; Jackson, Stephen P.

    2012-01-01

    Summary Following irradiation, numerous DNA-damage-responsive proteins rapidly redistribute into microscopically visible subnuclear aggregates, termed ionising-radiation-induced foci (IRIF). How the enrichment of proteins on damaged chromatin actually relates to DNA repair remains unclear. Here, we use super-resolution microscopy to examine the spatial distribution of BRCA1 and 53BP1 proteins within single IRIF at subdiffraction-limit resolution, yielding an unprecedented increase in detail that was not previously apparent by conventional microscopy. Consistent with a role for 53BP1 in promoting DNA double-strand break repair by non-homologous end joining, 53BP1 enrichment in IRIF is most prominent in the G0/G1 cell cycle phases, where it is enriched in dense globular structures. By contrast, as cells transition through S phase, the recruitment of BRCA1 into the core of IRIF is associated with an exclusion of 53BP1 to the focal periphery, leading to an overall reduction of 53BP1 occupancy at DNA damage sites. Our data suggest that the BRCA1-associated IRIF core corresponds to chromatin regions associated with repair by homologous recombination, and the enrichment of BRCA1 in IRIF represents a temporal switch in the DNA repair program. We propose that BRCA1 antagonises 53BP1-dependent DNA repair in S phase by inhibiting its interaction with chromatin proximal to damage sites. Furthermore, the genomic instability exhibited by BRCA1-deficient cells might result from a failure to efficiently exclude 53BP1 from such regions during S phase. PMID:22553214

  1. NRU vessel repair and return to service: enhancing a Canadian R and D asset for the future

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.S.; Arnold, J.B.; Lee, J.K., E-mail: coxd@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    The National Research Universal (NRU) reactor was successfully returned to high power operation in 2010 August, after completing extensive inspections and repairs of the calandria vessel, in response to a small leak of heavy water that was discovered in 2009 May. The aluminum alloy vessel material had corroded from the outside surface over many years, and required application of weld build-up and plated weld repair at ten locations, executed by remote tooling deployed from inside the reactor vessel. Many specialized remotely operated tools were developed for inspection, sampling and repair operations. In parallel with the repair efforts, important maintenance activities were performed, enabled by the de-fuelled state with the heavy water drained from the vessel. Two annual inspection cycles have now been completed since the reactor was returned to high power operation, confirming the fitness of the vessel for continued operation. The NRU reactor is now entering its 56th year of operation and the current operating licence extends to 2016. Based on the outcome of a comprehensive Integrated Safety Review, AECL is continuing to implement major equipment upgrades and process improvements to support safe and reliable operation through 2021, for the benefit of Canadians and the world. (author)

  2. Enhanced fodder yield of maize genotypes under saline irrigation is ...

    African Journals Online (AJOL)

    Poor quality irrigation water adversely affects the growth and yield of crops. This study was designed to evaluate the growth, fodder yield and ionic concentration of three promising maize (Zea mays L.) genotypes under the influence of varying quality irrigation water, with different salinity levels. The genotypes, such as ...

  3. Advectional enhancement of eddy diffusivity under parametric disorder

    International Nuclear Information System (INIS)

    Goldobin, Denis S

    2010-01-01

    Frozen parametric disorder can lead to the appearance of sets of localized convective currents in an otherwise stable (quiescent) fluid layer heated from below. These currents significantly influence the transport of an admixture (or any other passive scalar) along the layer. When the molecular diffusivity of the admixture is small in comparison to the thermal one, which is quite typical in nature, disorder can enhance the effective (eddy) diffusivity by several orders of magnitude in comparison to the molecular diffusivity. In this paper, we study the effect of an imposed longitudinal advection on the delocalization of convective currents, both numerically and analytically, and report a subsequent drastic boost of the effective diffusivity for weak advection.

  4. Enhancement of wind stress evaluation method under storm conditions

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  5. Enhanced poleward propagation of storms under climate change

    Science.gov (United States)

    Tamarin-Brodsky, Talia; Kaspi, Yohai

    2017-12-01

    Earth's midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is achieved by applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.

  6. Biomechanical comparison of four double-row speed-bridging rotator cuff repair techniques with or without medial or lateral row enhancement.

    Science.gov (United States)

    Pauly, Stephan; Fiebig, David; Kieser, Bettina; Albrecht, Bjoern; Schill, Alexander; Scheibel, Markus

    2011-12-01

    Biomechanical comparison of four different Speed-Bridge configurations with or without medial or lateral row reinforcement. Reinforcement of the knotless Speed-Bridge double-row repair technique with additional medial mattress- or lateral single-stitches was hypothesized to improve biomechanical repair stability at time zero. Controlled laboratory study: In 36 porcine fresh-frozen shoulders, the infraspinatus tendons were dissected and shoulders were randomized to four groups: (1) Speed-Bridge technique with single tendon perforation per anchor (STP); (2) Speed-Bridge technique with double tendon perforation per anchor (DTP); (3) Speed-Bridge technique with medial mattress-stitch reinforcement (MMS); (4) Speed-Bridge technique with lateral single-stitch reinforcement (LSS). All repairs were cyclically loaded from 10-60 N up to 10-200 N (20 N stepwise increase) using a material testing device. Forces at 3 and 5 mm gap formation, mode of failure and maximum load to failure were recorded. The MMS-technique with double tendon perforation showed significantly higher ultimate tensile strength (338.9 ± 90.0 N) than DTP (228.3 ± 99.9 N), LSS (188.9 ± 62.5 N) and STP-technique (122.2 ± 33.8 N). Furthermore, the MMS-technique provided increased maximal force resistance until 3 and 5 mm gap formation (3 mm: 77.8 ± 18.6 N; 5 mm: 113.3 ± 36.1 N) compared with LSS, DTP and STP (P row defect by tendon sawing first, then laterally. No anchor pullout occurred. Double tendon perforation per anchor and additional medial mattress stitches significantly enhance biomechanical construct stability at time zero in this ex vivo model when compared with the all-knotless Speed-Bridge rotator cuff repair.

  7. Differential expression of SOS genes in an E. coli mutant producing unstable lexA protein enhances excision repair but inhibits mutagenesis

    International Nuclear Information System (INIS)

    Peterson, K.R.; Ganesan, A.K.; Mount, D.W.; Stanford Univ., CA)

    1986-01-01

    The SOS response is displayed following treatments which damage DNA or inhibit DNA replication. Two associated activities include enhanced capacity for DNA repair resulting from derepression of the recA, uvrA, uvrB and uvrD genes and increased mutagenesis due to derepression of recA, umuC and umuD. These changes are the consequence of the derepression of at least seventeen unlinked operons negatively regulated by LexA repressor. Following treatments that induce the SOS response, a signal molecule interacts with RecA protein, converting it to an activated form. Activated RecA protein facilitates the proteolytic cleavage of LexA repressor, which results in derepression of the regulon. The cell then enters a new physiological state during which time DNA repair processes are augmented. The lexA41 mutant of E. coli is a uv-resistant derivative of another mutant, lexA3, which produces a repressor that is not cleaved following inducing treatments. The resultant protein is unstable. Lac operon fusions to most of the genes in the SOS regulon were used to show that the various damage-inducible genes were derepressed to different extents. uvrA, B, and D were almost fully derepressed. Consistent with this finding, the rate of removal of T4 endonuclease V-sensitive sites was more rapid in the uv-irradiated lexA41 mutant than in normal cells, suggesting a more active excision repair system. We propose that the instability of the LexA41 protein reduces the intracellular concentration of repressor to a level that allows a high level of excision repair. The additional observation that SOS mutagenesis was only weakly induced in a lexA41 uvrA - mutant implies that the mutant protein partially represses one or more genes whose products promote SOS mutagenesis. 17 refs., 4 figs., 1 tab

  8. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses.

    Science.gov (United States)

    Raikwar, Shailendra; Srivastava, Vineet K; Gill, Sarvajeet S; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression.

  9. Influence of thymogene on the repair of lymphocyte DNA in the spleen of minks under the influence of chronic irradiation.; Vpliv timogehu na reparatsyiyu DNK lyimfotsityiv selezyinki norok za umov khronyichnogo opromyinennya.

    Energy Technology Data Exchange (ETDEWEB)

    Tkhorzhevs` kij, B M; Demidov, S V; Ryasenko, V Yi; Khrapunov, S M [Kievskij Gosudarstvennyj Univ., Kiev (Ukraine); [Nauchno-Proizvodstvennoe Ob` ` edinenie Pripyat` , Chernobyl (Ukraine)

    1994-12-31

    Results of own investigations of the authors as to the thymogene influence on correction of the repair system under the effect of chronic irradiation are discussed in the article. The influence of thymogene on the repair of DNA in lymphocytes of the spleen of minks has been investigated. Changes in the correlation between single- and double stranded DNA forms in a cell were determinated. It has been found that the quantity of DNA with single stranded breaks has considerably increased in animals under conditions of chronic irradiation. The use of thymogene promotes activation of repair processes in a cell.

  10. Optimizing pressurized contact area in rotator cuff repair: the diamondback repair.

    Science.gov (United States)

    Burkhart, Stephen S; Denard, Patrick J; Obopilwe, Elifho; Mazzocca, Augustus D

    2012-02-01

    The purpose of this study was to compare tendon-bone footprint contact area over time under physiologic loads for 4 different rotator cuff repair techniques: single row (SR), triangle double row (DR), chain-link double row (CL), and diamondback double row (DBK). A supraspinatus tear was created in 28 human cadavers. Tears were fixed with 1 of 4 constructs: SR, DR, CL, or DBK. Immediate post-repair measurements of pressurized contact area were taken in neutral rotation and 0° of abduction. After a static tensile load, pressurized contact area was observed over a 160-minute period after repair. Cyclic loading was then performed. The DBK repair had the highest pressurized contact area initially, as well as the highest pressurized contact area and lowest percentage decrease in pressurized contact area after 160 minutes of testing. The DBK repair had significantly larger initial pressurized contact than CL (P = .003) and SR (P = .004) but not DR (P = .06). The DBK technique was the only technique that produced a pressurized contact area that exceeded the native footprint both at initial repair (P = .01) and after 160 minutes of testing (P = .01). DBK had a significantly larger mean pressurized contact area than all the repairs after 160 minutes of testing (P = .01). DBK had a significantly larger post-cyclic loading pressurized contact area than CL (P = .01) and SR (P = .004) but not DR (P = .07). This study showed that a diamondback repair (a modification of the transosseous repair) can significantly increase the rotator cuff pressurized contact area in comparison with other standard rotator cuff repair constructs when there is sufficient tendon mobility to perform a double-row repair without excessive tension on the repair site. The persistent pressurized contact area of a DBK repair may be desirable to enhance healing potential when there is sufficient tendon mobility to perform a double-row repair, particularly for large or massive rotator cuff tears where it is

  11. Application of Tunnel Repair Technology under the Influence of Frequent Mining%频繁采动影响下巷道修复技术的应用

    Institute of Scientific and Technical Information of China (English)

    姚绍强; 郝立东

    2011-01-01

    Under the influence of frequent mining, the roadway and cavern are damaged often in construction repair and use process because of the unreasonable support method and parameter selection. In recent years, the anchors, nets, spray, beam, cable, note supporting technology are promoted to repair roadway, which has opened up a new way to support and repair the roadway and cavern. Its application effectively controls the rock deformation and ensures the stability of the roadway and cavern supporting.%介绍频繁采动影响下巷道和硐室,因支护方式和参数选择不尽合理,在施工修复和使用过程中时有破坏.采用近年来推广的锚、网、喷、梁,索、注支护技术进行修复巷道,在巷道、硐室的支护与修复开辟了一条新的途径.它的推广应用,有效地控制了围岩变形,保证了巷道、硐室支护的稳定.

  12. Effects of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites on DNA damage and repair under in vitro conditions.

    Science.gov (United States)

    Ozcagli, Eren; Alpertunga, Buket; Fenga, Concettina; Berktas, Mehmet; Tsitsimpikou, Christina; Wilks, Martin F; Tsatsakis, Αristidis M

    2016-03-01

    3-monochloropropane-1,2-diol (3-MCPD) is a food contaminant that occurs during industrial production processes and can be found mainly in fat and salt containing products. 3-MCPD has exhibited mutagenic activity in vitro but not in vivo, however, a genotoxic mechanism for the occurrence of kidney tumors has not so far been excluded. The main pathway of mammalian 3-MCPD metabolism is via the formation of β--chlorolactatic acid and formation of glycidol has been demonstrated in bacterial metabolism. The aim of this study was to investigate genotoxic and oxidative DNA damaging effects of 3-MCPD and its metabolites, and to provide a better understanding of their roles in DNA repair processes. DNA damage was assessed by alkaline comet assay in target rat kidney epithelial cell lines (NRK-52E) and human embryonic kidney cells (HEK-293). Purine and pyrimidine base damage, H2O2 sensitivity and DNA repair capacity were assessed via modified comet assay. The results revealed in vitro evidence for increased genotoxicity and H2O2 sensitivity. No association was found between oxidative DNA damage and DNA repair capacity with the exception of glycidol treatment at 20 μg/mL. These findings provide further insights into the mechanisms underlying the in vitro genotoxic potential of 3-MCPD and metabolites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An ImageJ-based algorithm for a semi-automated method for microscopic image enhancement and DNA repair foci counting

    International Nuclear Information System (INIS)

    Klokov, D.; Suppiah, R.

    2015-01-01

    Proper evaluation of the health risks of low-dose ionizing radiation exposure heavily relies on the ability to accurately measure very low levels of DNA damage in cells. One of the most sensitive methods for measuring DNA damage levels is the quantification of DNA repair foci that consist of macromolecular aggregates of DNA repair proteins, such as γH2AX and 53BP1, forming around individual DNA double-strand breaks. They can be quantified using immunofluorescence microscopy and are widely used as markers of DNA double-strand breaks. However this quantification, if performed manually, may be very tedious and prone to inter-individual bias. Low-dose radiation studies are especially sensitive to this potential bias due to a very low magnitude of the effects anticipated. Therefore, we designed and validated an algorithm for the semi-automated processing of microscopic images and quantification of DNA repair foci. The algorithm uses ImageJ, a freely available image analysis software that is customizable to individual cellular properties or experimental conditions. We validated the algorithm using immunolabeled 53BP1 and γH2AX in normal human fibroblast AG01522 cells under both normal and irradiated conditions. This method is easy to learn, can be used by nontrained personnel, and can help avoiding discrepancies in inter-laboratory comparison studies examining the effects of low-dose radiation. (author)

  14. An ImageJ-based algorithm for a semi-automated method for microscopic image enhancement and DNA repair foci counting

    Energy Technology Data Exchange (ETDEWEB)

    Klokov, D., E-mail: dmitry.klokov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Suppiah, R. [Queen' s Univ., Dept. of Biomedical and Molecular Sciences, Kingston, Ontario (Canada)

    2015-06-15

    Proper evaluation of the health risks of low-dose ionizing radiation exposure heavily relies on the ability to accurately measure very low levels of DNA damage in cells. One of the most sensitive methods for measuring DNA damage levels is the quantification of DNA repair foci that consist of macromolecular aggregates of DNA repair proteins, such as γH2AX and 53BP1, forming around individual DNA double-strand breaks. They can be quantified using immunofluorescence microscopy and are widely used as markers of DNA double-strand breaks. However this quantification, if performed manually, may be very tedious and prone to inter-individual bias. Low-dose radiation studies are especially sensitive to this potential bias due to a very low magnitude of the effects anticipated. Therefore, we designed and validated an algorithm for the semi-automated processing of microscopic images and quantification of DNA repair foci. The algorithm uses ImageJ, a freely available image analysis software that is customizable to individual cellular properties or experimental conditions. We validated the algorithm using immunolabeled 53BP1 and γH2AX in normal human fibroblast AG01522 cells under both normal and irradiated conditions. This method is easy to learn, can be used by nontrained personnel, and can help avoiding discrepancies in inter-laboratory comparison studies examining the effects of low-dose radiation. (author)

  15. Radiosensitization of tumour cell lines by the polyphenol Gossypol results from depressed double-strand break repair and not from enhanced apoptosis.

    Science.gov (United States)

    Kasten-Pisula, Ulla; Windhorst, Sabine; Dahm-Daphi, Jochen; Mayr, Georg; Dikomey, Ekkehard

    2007-06-01

    New drugs are needed to increase the efficiency of radiotherapy in order to improve the therapeutic outcome of tumour patients. In this respect, the polyphenol Gossypol might be of interest, because of its effect on apoptosis and DNA repair, which is either mediated directly or indirectly via the inositol phosphate metabolism. It was investigated, whether these effects result in enhanced radiosensitivity of tumour cells. Tumour cell lines investigated: A549, FaDu, H1299, MCF7 and Du145. Cell cycle distribution was determined by FACS analysis, apoptosis was measured by DAPI staining and caspase3/7 activity. Double-strand breaks (DSB) were investigated via gammaH2AX-foci and cell survival by colony formation assay. The level of inositol phosphates was determined by HPLC, protein expression by Western blot. In A549 cells, Gossypol at concentrations 1microM strongly affects proliferation with only a modest arrest in the G1-phase, but with no increase in the fraction of apoptotic cells or the number of additional DSB. Additional DSB were only seen in FaDu cells, where Gossypol (2microM) was extremely toxic with a plating efficiency even found to be enhanced by Gossypol. For some tumour cell lines treatment with low concentrations of Gossypol can be used to inhibit DSB repair capacity and with that to increase the cellular radiosensitivity.

  16. Acetabular labral tears: contrast-enhanced MR imaging under continuous leg traction

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, T. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Nakanishi, K. [Dept. of Radiology, Osaka Univ. Medical School, Suita (Japan); Sugano, N. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan); Naito, H. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Tamura, S. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Ochi, T. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan)

    1996-05-01

    The objective of this study was to evaluate the effects of continuous leg traction on contrast-enhanced MR imaging of the hip joint and to determine whether MR imaging under these conditions is useful for demonstrating acetabular labral tears. Nineteen hips underwent MR imaging with a T1-weighted spin-echo sequence, followed by MR imaging under continuous leg traction after intravenous injection of gadolinium-DTPA. Joint fluid enhancement and labral contour detection were evaluated. Eleven hips had labral tears shown by conventional arthrography, arthroscopy and macroscopic surgical findings. Assessment of labral tears by MR imaging was correlated with the diagnosis based on these standard techniques. Joint fluid enhancement was obtained in all hips at 30 min after injection. Superior and inferior labral surfaces were completely delineated in 1 hip on the unenhanced MR images, and in 7 and 13 hips, respectively, on the enhanced images under traction. The enhanced images under traction depicted 9 of the 11 labral tears. Comparison between the unenhanced image and the enhanced image under traction avoided mistaking undercutting of the labrum for a tear in 4 hips. Contrast-enhanced MR imaging under traction was valuable for detecting labral tears non-invasively and without radiation. Follow-up examinations using this method in patients with acetabular dysplasia can help to clarify the natural course of labral disorders and enable better treatment planning. (orig./MG)

  17. Repair of potentially lethal damage following irradiation with x rays or cyclotron neutrons: response of the EMT-6/UW tumor system treated under various growth conditions in vitro and in vivo

    International Nuclear Information System (INIS)

    Rasey, J.S.; Nelson, N.J.

    1981-01-01

    Postirradiation potentially lethal damage (PLD) repair was examined in the EMT-6/UW tumor system under a variety of in vitro and in vivo growth conditions. Following x irradiation, surviving fraction increased in fed and unfed plateau cultures if subculture and plating were delayed; in exponentially growing cultures if they were covered with depleted medium for the first 6 h postirradiation; and in tumors in vivo if excision for preparation of a cell suspension was delayed. Following irradiation with 21.5 meV (d + → Be) neutrons, PLD repair was measurable only in unfed plateau cultures when subculture was delayed and in exponentially growing cells exposed to depleted culture medium immediately after irradiation. In x-irradiated EMT-6/UW cells, the greatest repair capacity and the highest surviving fraction ratios were measured in unfed plateau cultures; the least repair was observed in exponentially growing cells exposed to depleted medium. Thus post-neutron repair was not limited to situations where the amount of repair of photon PLD is large. The demonstration of PLD repair in tumors irradiated in vivo with X rays and the absence of such repair after neutrons could have important implications in radiotherapy if this is a general phenomenon

  18. 77 FR 25188 - Extension of Agency Information Collection Activity Under OMB Review: Enhanced Security...

    Science.gov (United States)

    2012-04-27

    ... general aviation (GA) aircraft operators who wish to fly into and/or out of Ronald Reagan Washington.... Information Collection Requirement Title: Enhanced Security Procedures at Ronald Reagan Washington National...] Extension of Agency Information Collection Activity Under OMB Review: Enhanced Security Procedures at Ronald...

  19. Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity.

    Science.gov (United States)

    Hannan, A J

    2014-02-01

    Environmental enrichment (EE) increases levels of novelty and complexity, inducing enhanced sensory, cognitive and motor stimulation. In wild-type rodents, EE has been found to have a range of effects, such as enhancing experience-dependent cellular plasticity and cognitive performance, relative to standard-housed controls. Whilst environmental enrichment is of course a relative term, dependent on the nature of control environmental conditions, epidemiological studies suggest that EE has direct clinical relevance to a range of neurological and psychiatric disorders. EE has been demonstrated to induce beneficial effects in animal models of a wide variety of brain disorders. The first evidence of beneficial effects of EE in a genetically targeted animal model was generated using Huntington's disease transgenic mice. Subsequent studies found that EE was also therapeutic in mouse models of Alzheimer's disease, consistent with epidemiological studies of relevant environmental modifiers. EE has also been found to ameliorate behavioural, cellular and molecular deficits in animal models of various neurological and psychiatric disorders, including Parkinson's disease, stroke, traumatic brain injury, epilepsy, multiple sclerosis, depression, schizophrenia and autism spectrum disorders. This review will focus on the effects of EE observed in animal models of neurodegenerative brain diseases, at molecular, cellular and behavioural levels. The proposal that EE may act synergistically with other approaches, such as drug and cell therapies, to facilitate brain repair will be discussed. I will also discuss the therapeutic potential of 'enviromimetics', drugs which mimic or enhance the therapeutic effects of cognitive activity and physical exercise, for both neuroprotection and brain repair. © 2013 British Neuropathological Society.

  20. Enhancement of abdominal wall defect repair using allogenic platelet-rich plasma with commercial polyester/cotton fabric (Damour) in a canine model

    Science.gov (United States)

    ABOUELNASR, Khaled; HAMED, Mohamed; LASHEN, Samah; EL-ADL, Mohamed; ELTAYSH, Rasha; TAGAWA, Michihito

    2017-01-01

    Platelet-rich plasma (PRP) has an important role in musculoskeletal surgery; however, it has been underutilized for accelerating the healing of abdominal wall defects in veterinary practice. Therefore, the aim of this study was to evaluate the use of commercial polyester/cotton fabric (Damour) as a new composite mesh for the repair of experimentally induced abdominal wall defects in canine models, and to investigate the possible role of PRP for improving such repair and reducing allied complications. For this purpose, abdominal wall defects were created in 24 healthy mongrel dogs and then repaired with mesh alone (control group) or mesh and allogenic PRP (PRP group). Dogs were euthanized after 2 or 4 months for gross examination of implantation site, detection of adhesion score and hernia recurrence. Moreover, tissue samples were collected for histological and gene expression analyses for neovascularization, collagen formation and tissue incorporation. Hernia recurrence was not recorded in PRP-treated dogs that also displayed significantly more neovascularization and less severe adhesion to the underlings (1.08 ± 0.51) in comparison to control group (2.08 ± 0.99). Histological and molecular evaluation confirmed the gross findings that collagen deposition, new vessel formation, and overexpression of angiogenic and myofibroplastic genes (COL1α1, COL3α1, VEGF and TGFβ1) were observed more frequently in the PRP group, at both time points. In conclusion, we found that addition of allogenic PRP to Damour mesh enhanced neovessel formation, and increased tissue deposition and incorporation, with subsequent reduction of peritoneal adhesion and recurrence rate. PMID:28603214

  1. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  2. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    Directory of Open Access Journals (Sweden)

    Shailendra eRaikwar

    2015-12-01

    Full Text Available Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress The analysis of promoter sequence from plant genome is important in understanding the gene regulation. Hereconditions. Here, we report the in silico analysis of novel stress inducible promoter of rice Oryza sativa OsXPB2 (OsXPB2. gene is reported. The in vivo validation of functionality/activity of novel stress inducible promoter of rice OsXPB2 gene promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. Our resultsThe present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration or cold and hormone (Auxin, ABA or MeJA induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA or ABA responsive, respectively. Functional analysis was done by Agrobacterium-transient assays using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present

  3. [Ru(bipy)3]2+ nanoparticle-incorporate dental light cure resin to promote photobiomodulation therapy for enhanced vital pulp tissue repair

    Science.gov (United States)

    Mosca, Rodrigo C.; Young, Nicholas; Zeituni, Carlos A.; Arany, Praveen R.

    2018-02-01

    The use of nanoparticle on dental light cure resin is not new, currently several compounds (nanoadditives) are used to promote better communication between the restorative material and biological tissues. The interest for this application is growing up to enhance mechanical proprieties to dental tissue cells regeneration. Bioactive nanoparticles and complex compounds with multiple functions are the major target for optimizing the restorative materials. In this work, we incorporate [Ru(bipy)3]2+ nanoparticles, that absorbs energy at 450 nm (blue-light) and emits strongly at 620 nm (red-light), in PLGA Microspheres and insert it in Dental Light Cure Resin to promote the Photobiomodulation Therapy (PBM) effects to accelerate dental pulp repair by in vitro using cytotoxicity and proliferation assay.

  4. Transplantation of Allogeneic PW1pos/Pax7neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fiona C. Lewis, BSc, PhD

    2017-12-01

    Full Text Available Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.

  5. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  6. Enhanced diffusion under alpha self-irradiation in spent nuclear fuel: Theoretical approaches

    International Nuclear Information System (INIS)

    Ferry, Cecile; Lovera, Patrick; Poinssot, Christophe; Garcia, Philippe

    2005-01-01

    Various theoretical approaches have been developed in order to estimate the enhanced diffusion coefficient of fission products under alpha self-irradiation in spent nuclear fuel. These simplified models calculate the effects of alpha particles and recoil atoms on mobility of uranium atoms in UO 2 . They lead to a diffusion coefficient which is proportional to the volume alpha activity with a proportionality factor of about 10 -44 (m 5 ). However, the same models applied for fission lead to a radiation-enhanced diffusion coefficient which is approximately two orders of magnitude lower than values reported in literature for U and Pu. Other models are based on an extrapolation of radiation-enhanced diffusion measured either in reactors or under heavy ion bombardment. These models lead to a proportionality factor between the alpha self-irradiation enhanced diffusion coefficient and the volume alpha activity of 2 x 10 -41 (m 5 )

  7. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.

    Science.gov (United States)

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Enhancement of grain size and crystallinity of thin layers of pentacene grown under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Kenichi [Division of Materials Science, Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamamoto, Yohei, E-mail: yamamoto@ims.tsukuba.ac.jp [Division of Materials Science, Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Faculty of pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Center for Integrated Research in Fundamental Science and Technology (CiRfSE), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2016-03-31

    Field-effect mobilities (μ) of pentacene films, prepared by a thermal deposition under a magnetic field (H-field), were largely enhanced, in comparison with that prepared without an H-field. Under a perpendicular H-field with respect to the substrate surface, the crystallinity of the edge-on pentacene orientation is enhanced, resulting in the 9-fold enhancement of μ. Furthermore, under parallel H-field with respect to the substrate surface, μ of the pentacene films were 23-fold greater than that prepared without the H-field. The surface morphology studies by atomic force microscopy of the ultra thin films of pentacene clarified that the grain size of the pentacene at the interface with the substrate is larger for films under parallel H-field than that prepared without an H-field. The simple and effective method for enhancing the semiconducting properties of the organic thin films gives high technological impact in its application to organic electronics. - Highlights: • Magnetic-field effect on the crystallinity of pentacene thin films • Magnetic-field effect on the morphology of pentacene thin films • Enhanced field-effect charge carrier mobility of pentacene thin films.

  9. Enhancement of grain size and crystallinity of thin layers of pentacene grown under magnetic field

    International Nuclear Information System (INIS)

    Tabata, Kenichi; Yamamoto, Yohei

    2016-01-01

    Field-effect mobilities (μ) of pentacene films, prepared by a thermal deposition under a magnetic field (H-field), were largely enhanced, in comparison with that prepared without an H-field. Under a perpendicular H-field with respect to the substrate surface, the crystallinity of the edge-on pentacene orientation is enhanced, resulting in the 9-fold enhancement of μ. Furthermore, under parallel H-field with respect to the substrate surface, μ of the pentacene films were 23-fold greater than that prepared without the H-field. The surface morphology studies by atomic force microscopy of the ultra thin films of pentacene clarified that the grain size of the pentacene at the interface with the substrate is larger for films under parallel H-field than that prepared without an H-field. The simple and effective method for enhancing the semiconducting properties of the organic thin films gives high technological impact in its application to organic electronics. - Highlights: • Magnetic-field effect on the crystallinity of pentacene thin films • Magnetic-field effect on the morphology of pentacene thin films • Enhanced field-effect charge carrier mobility of pentacene thin films

  10. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  11. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair.

    Science.gov (United States)

    Kato-Inui, Tomoko; Takahashi, Gou; Hsu, Szuyin; Miyaoka, Yuichiro

    2018-05-18

    Genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) predominantly induces non-homologous end joining (NHEJ), which generates random insertions or deletions, whereas homology-directed repair (HDR), which generates precise recombination products, is useful for wider applications. However, the factors that determine the ratio of HDR to NHEJ products after CRISPR/Cas9 editing remain unclear, and methods by which the proportion of HDR products can be increased have not yet been fully established. We systematically analyzed the HDR and NHEJ products after genome editing using various modified guide RNAs (gRNAs) and Cas9 variants with an enhanced conformational checkpoint to improve the fidelity at endogenous gene loci in HEK293T cells and HeLa cells. We found that these modified gRNAs and Cas9 variants were able to enhance HDR in both single-nucleotide substitutions and a multi-kb DNA fragment insertion. Our results suggest that the original CRISPR/Cas9 system from the bacterial immune system is not necessarily the best option for the induction of HDR in genome editing and indicate that the modulation of the kinetics of conformational checkpoints of Cas9 can optimize the HDR/NHEJ ratio.

  12. TOB1 Deficiency Enhances the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Tendon-Bone Healing in a Rat Rotator Cuff Repair Model

    Directory of Open Access Journals (Sweden)

    Yulei Gao

    2016-01-01

    Full Text Available Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1 expression in bone marrow-derived mesenchymal stem cells (MSCs on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218 of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.

  13. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  14. Radiation after-effects in daughter generations of barley grown under conditions of enhanced radioactive background

    International Nuclear Information System (INIS)

    Popova, O.N.; Shershunova, V.I.; Taskaev, A.I.

    1978-01-01

    Stimulation of growth and development was observed in the first daughter generation of barley plants grown under conditions simulating an enhanced radioactive background. The stimulatory effect was partially reproduced in the second generation, and signs of depression of initial growth of plants were found in the third generation. A great number of alterations and their regular occurrence allow to refer them to lingering modifications originating under the effect of a radiation factor on vegetating plants

  15. Material flow enhancement in production assembly lines under application of zoned order picking systems

    Directory of Open Access Journals (Sweden)

    D. Živanić

    2014-10-01

    Full Text Available Introduced research work relates to the possibility of material flow enhancement in production systems, with the apostrophe on material order picking in production assembly lines. The paper presents basic rules and the results related to formed computer models of zoned order picking systems under the application of developed bound cavities method.

  16. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses

    OpenAIRE

    Raikwar, Shailendra; Srivastava, Vineet K.; Gill, Sarvajeet S.; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including pl...

  17. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    OpenAIRE

    Shailendra eRaikwar; Vineet Kumar Shrivastava; Sarvajeet Singh Gill; Renu eTuteja; Narendra eTuteja; Narendra eTuteja

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved pr...

  18. Research trends in radiobiology since 40 years. a new approach: the enzymatic repair function of DNA, internal factor in evolution of biological systems under irradiation

    International Nuclear Information System (INIS)

    Mouton, R.

    1968-01-01

    In the first part of the report, the author attempts to draw an historical scheme of successive research working hypotheses in radiobiology since 1924. Less than a generation ago the effect of radiation exposure were viewed as being direct, immediate, irreparable and unmodifiable. Now it is generally accepted that radiation lesion can also be indirect, delayed, reparable and often modified with appropriate chemical or biochemical treatment. It was however in 1962-1964 that came the decisive breakthrough in radiobiology with the discovery that the cell possesses a natural active self-defense mechanism against whatever stress would affect the integrity of the genetic message contained in the DNA structure itself. The existence of what could be considered as a fourth DNA function i.e. self-repair by enzymatic action under genetic control-brings at least to radiobiology the missing molecular biology basis it needed to get out of its 'phenomenological night' after abandon of the generalization of Lea's theory through lack of experimental evidence. In the second part, which is a prospective one, the author tries to set an enlarged synthesis considering the possible role of DNA repair system not only in cell survival - in presence or absence of dose modifiers or mutagens - but also in the artificial and natural evolution of biological system exposed to sub-lethal doses of radiation. Most recent data from the literature fit well with what must be still considered as a general working hypothesis. Studies dealing with phenotypic and genotypic characters linked with the acquisition of gamma and UV radiation resistance in 'Escherichia coli K12' has been started by the author, in collaboration with O. Tremeau, in order to bring a new experimental contribution in this respect. (author) [fr

  19. Meningocele repair

    Science.gov (United States)

    ... is surgery to repair birth defects of the spine and spinal membranes. Meningocele and myelomeningocele ... is covered by a sterile dressing. Your child may then be transferred to a neonatal intensive ...

  20. Detoxification of wood preserving waste under ambient, enhanced and chemical pretreatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, M.S.; Brown, K.W.; Dale, B.E.; Donnelly, K.C.; He, L.Y.; Markiewicz, K.V. [Texas A and M Univ., College Station, TX (United States)

    1994-12-31

    Detoxification of pentachlorophenol-containing wood preserving waste was monitored under ambient, enhanced and chemical pretreatment conditions for genotoxicity and parent compound removal. Samples were collected throughout the treatment periods and sequentially extracted with dichloromethane and methanol with the Tecator Soxtec apparatus. The organic extracts were analyzed on GC/ECD and GC/MS. The extract mutagenic and genotoxic potentials were evaluated with and without metabolic activation with the Salmonella Microsomal and E. coli Prophage Induction assays. The Salmonella mutagenic responses of extracts from Weswood soil amended with wood preserving waste and treated under ambient conditions were 2.0, 34.6 and 2.4 times greater than the solvent control on days 0, 540 and 1,200 respectively. Organic extracts of soil amended with wood preserving waste and treated under enhanced conditions in a solid-phase rotating drum bioreactor had mutagenic potentials of 3.4, 4.9 and 3.5 on days 0, 14 and 30, respectively. Extracts from wood preserving waste sludge treated with potassium polyethylene glycol were shown to have mutagenic potentials of 2.8, 6.1 and 3.8 at 0, 10 and 30 minutes. The results indicate that the initial products of the wood preserving waste detoxification under all treatment conditions appear to have greater genotoxic potentials than the starting material. The results also suggest that a more rapid detoxification occurs under enhanced and chemical pretreatment conditions.

  1. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    Science.gov (United States)

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  2. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra

    2017-03-01

    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  3. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    International Nuclear Information System (INIS)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo

    2016-01-01

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  4. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2016-02-12

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  5. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Science.gov (United States)

    Das, Anusuya; Barker, Daniel A; Wang, Tiffany; Lau, Cheryl M; Lin, Yong; Botchwey, Edward A

    2014-01-01

    In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  6. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Directory of Open Access Journals (Sweden)

    Anusuya Das

    Full Text Available In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid (PLAGA microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2 improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3 via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1 mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  7. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Directory of Open Access Journals (Sweden)

    Klaudia Borysiuk

    2018-05-01

    Full Text Available Nitrate (NO3– and ammonium (NH4+ are prevalent nitrogen (N sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG, which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins in the contribution to NH4+ toxicity symptoms in Arabidopsis.

  8. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Science.gov (United States)

    Borysiuk, Klaudia; Ostaszewska-Bugajska, Monika; Vaultier, Marie-Noëlle; Hasenfratz-Sauder, Marie-Paule; Szal, Bożena

    2018-01-01

    Nitrate (NO3–) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis. PMID:29881392

  9. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    Science.gov (United States)

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  10. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation.

    Science.gov (United States)

    Ponder, Rebecca G; Fonville, Natalie C; Rosenberg, Susan M

    2005-09-16

    Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.

  11. Inhibition of DNA repair by Pentoxifylline and related methylxanthine derivatives

    International Nuclear Information System (INIS)

    Boehm, Lothar; Roos, Wynand Paul; Serafin, Antonio Mendes

    2003-01-01

    The methylxanthine drug Pentoxifylline is reviewed for new properties which have emerged only relatively recently and for which clinical applications can be expected. After a summary on the established systemic effects of Pentoxifylline on the microcirculation and reduction of tumour anoxia, the role of the drug in the treatment of vasoocclusive disorders, cerebral ischemia, infectious diseases, septic shock and acute respiratory distress, the review focuses on another level of drug action which is based on in vitro observations in a variety of cell lines. Pentoxifylline and the related drug Caffeine are known radiosensitizers especially in p53 mutant cells. The explanation that the drug abrogates the G2 block and shortens repair in G2 by promoting early entry into mitosis is not anymore tenable because enhancement of radiotoxicity requires presence of the drug during irradiation and fails when the drug is added after irradiation at the G2 maximum. Repair assays by measurement of recovery ratios and by delayed plating experiments indeed strongly suggested a role in repair which is now confirmed for Pentoxifylline by constant field gel electrophoresis (CFGE) measurements and for Pentoxifylline and for Caffeine by use of a variety of repair mutants. The picture now emerging shows that Caffeine and Pentoxifylline inhibit homologous recombination by targeting members of the PIK kinase family (ATM and ATR) which facilitate repair in G2. Pentoxifylline induced repair inhibition between irradiation dose fractions to counter interfraction repair has been successfully applied in a model for stereotactic surgery. Another realistic avenue of application of Pentoxifylline in tumour therapy comes from experiments which show that repair events in G2 can be targeted directly by addition of cytotoxic drugs and Pentoxifylline at the G2 maximum. Under these conditions massive dose enhancement factors of up to 80 have been observed suggesting that it may be possible to realise

  12. Fluorescence enhancing under UV-NIR simultaneous-excitation in ZnS:Cu,Mn phosphors

    Directory of Open Access Journals (Sweden)

    L. J. Xie

    2012-12-01

    Full Text Available The fluorescence properties of a long-lasting phosphor, ZnS:Cu,Mn was studied for the first time under simultaneously excitation of both UV and NIR light. Up to 20% fluorescence enhancement of the phosphor was observed. In the present simultaneously-excitation process, broad-band NIR light was absorbed and converted to visible photons via a single-photon upconversion path. We propose that a novel kind of spectral-conversion material with the unique ability to simultaneously convert both UV and NIR photons can be developed and is promising in the application of enhancing the EQE of solar cells.

  13. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-07-15

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. 2010 Elsevier B.V. All rights reserved.

  14. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    Chen Chuan; Ren Nanqi; Wang Aijie; Liu Lihong; Lee, Duu-Jong

    2010-01-01

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  15. SIGNIFICANT ENHANCEMENT OF H{sub 2} FORMATION IN DISK GALAXIES UNDER STRONG RAM PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Benjamin; Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2016-05-10

    We show for the first time that H{sub 2} formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H{sub 2} components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H{sub 2} formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H{sub 2} density. We also find that the level of this H{sub 2} formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H{sub 2} mass in disk galaxies under strong RP. We discuss how the correlation between H{sub 2} fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H{sub 2} densities.

  16. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  17. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hyung Chul; Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Manogaran, Dhivya [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho [Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-11-28

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd{sub 3}Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd{sub 3}Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  18. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    International Nuclear Information System (INIS)

    Ham, Hyung Chul; Hwang, Gyeong S.; Manogaran, Dhivya; Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Kwon, Kyungjung

    2013-01-01

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd 3 Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd 3 Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts

  19. Purified Human Skeletal Muscle-Derived Stem Cells Enhance the Repair and Regeneration in the Damaged Urethra.

    Science.gov (United States)

    Nakajima, Nobuyuki; Tamaki, Tetsuro; Hirata, Maki; Soeda, Shuichi; Nitta, Masahiro; Hoshi, Akio; Terachi, Toshiro

    2017-10-01

    Postoperative damage of the urethral rhabdosphincter and nerve-vascular networks is a major complication of radical prostatectomy and generally causes incontinence and/or erectile dysfunction. The human skeletal muscle-derived stem cells, which have a synchronized reconstitution capacity of muscle-nerve-blood vessel units, were applied to this damage. Cells were enzymatically extracted from the human skeletal muscle, sorted using flow cytometry as CD34/45 (Sk-34) and CD29/34/45 (Sk-DN/29) fractions, and separately cultured/expanded in appropriate conditions within 2 weeks. Urethral damage was induced by manually removing one third of the wall of the muscle layer in nude rats. A mixture of expanded Sk-34 and Sk-DN/29 cells was applied on the damaged portion for the cell transplantation (CT) group. The same amount of media was used for the non-CT (NT) group. Urethral pressure profile was evaluated via electrical stimulation to assess functional recovery. Cell engraftments and differentiations were detected using immunohistochemistry and immunoelectron microscopy. Expression of angiogenic cytokines was also analyzed using reverse transcriptase-polymerase chain reaction and protein array. At 6 weeks after transplantation, the CT group showed a significantly higher functional recovery than the NT group (70.2% and 39.1%, respectively; P cells differentiated into skeletal muscle fibers, nerve-related Schwann cells, perineuriums, and vascular pericytes. Active paracrine angiogenic cytokines in the mixed cells were also detected with enhanced vascular formation in vivo. The transplantation of Sk-34 and Sk-DN/29 cells is potentially useful for the reconstitution of postoperative damage of the urethral rhabdosphincter and nerve-vascular networks.

  20. Feeding enhances skeletal growth and energetic stores of an Atlantic coral under significantly elevated CO2

    Science.gov (United States)

    Drenkard, L.; Cohen, A. L.; McCorkle, D. C.; dePutron, S.; Zicht, A.

    2011-12-01

    Many corals living under the relatively acidic conditions of naturally high-CO2 reefs are calcifying as fast or faster than their conspecifics on naturally low CO2 reefs. These observations are inconsistent with most experimental work that shows a negative impact of ocean acidification on coral calcification. We investigated the link between coral nutritional (energetic) status and the calcification response to significantly elevated CO2. Juveniles of the Atlantic brooding coral, Favia fragum were reared for three weeks under fully crossed CO2 and feeding conditions: ambient (μar =1.6+-0.2) and high CO2 (μar =3.7+-0.3); fed and unfed. In most measured parameters, the effect of feeding is much stronger than the effect of CO2. Nutritionally enhanced (fed) corals, regardless of CO2 condition, have higher concentrations of total lipid and their skeletons are both significantly larger and more developmentally advanced than those of corals relying solely on autotrophy. In measurements of corallite weight, where the impact of CO2 is most apparent, no statistical difference is observed between unfed corals under ambient CO2 conditions and fed corals reared under 1600 ppm CO2. Our results suggest that coral energetic status, which can be enhanced by heterotrophic feeding but depleted by stressors such as bleaching, will play a key role in the coral response to ocean acidification and thus, in the resilience of reef ecosystems under climate change.

  1. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  2. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    OpenAIRE

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-01-01

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to wea...

  3. Soybean growth responses to enhanced levels of ultraviolet-B radiation under greenhouse conditions

    International Nuclear Information System (INIS)

    Teramura, A.H.; Sullivan, J.H.

    1987-01-01

    Soybean (Glycine max [L.] Merr. cv. Essex) was grown in an unshaded greenhouse under three levels of biologically effective ultraviolet-B (UV-BBE) radiation (effective daily dose: 0, 11.5 and 13.6 kJ m -2 ) for 91 days. Plants were harvested at regular intervals beginning 10 days after germination until reproductive maturity. Mathematical growth analysis revealed that the effects of UV-B radiation varied with plant growth stage. The transition period between vegetative and reproductive growth was the most sensitive to UV-B radiation. Intermediate levels of UV-B had deleterious effects on plant height, leaf area, and total plant dry weight at late vegetative and reproductive stages of development. Specific leaf weight increased during vegetative growth but was unaffected by UV-B during reproductive growth stages. Relative growth, net assimilation, and stem elongation rates were decreased by UV-B radiation during vegetative and early reproductive growth stages. Variation in plant responses may be due in part to changes in microclimate within the plant canopy or to differences in repair or protection mechanisms at differing developmental stages. (author)

  4. Protracted radiation-induced alterations in hematopoietic repair and recovery

    International Nuclear Information System (INIS)

    Seed, T.M.; Fritz, T.E.

    1997-01-01

    Pathologic predisposition of beagle dogs under chronic, low daily dose (7.5 cGy day -1 ) whole-body gamma irradiation has been studied relative to molecular repair and hematopoietic competency. Molecular repair, assessed by a microscopy-based unscheduled DNA synthesis (UDS) response, was measured within proliferative and nonproliferative marrow myeloid elements of dogs with markedly different hematopoietic capacities (low capacity, aplasia-prone [AA + ] versus high capacity, myeloproliferative disease-prone [MPD + ]) under protracted radiation stress. Results indicated that protracted exposure elicited a net increase in UDS-repair capacity that was largely independent of exposure duration. This enhanced capacity resulted from the increased strength of the UDS signal together with an expanded number of positively responding cells. The combined response was strong in primitive blasts and weak in more differentiated myelocytic cells. The UDS repair response of the MPD + dogs was significantly greater than that of the AA + animals and was clearly modified relative to the controls. These results suggest that both resiliency and pathologic potential of the hematopoietic system under protracted radiation stress is, in part, associated with an augmentable DNA repair within the more primitive myeloid marrow elements. (author)

  5. Improvement of adhesion performance of mortar-repair interface with inducing crack path into repair

    Directory of Open Access Journals (Sweden)

    A. Satoh

    2015-10-01

    Full Text Available The most important performance for repair materials is adhesion to the substrate. The authors experimentally find out that high modulus fine aggregates in repair material enhance strength of it as well as the strength of the interface repaired with it, compared to the ordinary repair without fine aggregates. This paper elaborates the mechanisms for that with fractographic observation and FEM analysis based on the results of experiment. Also the authors discuss the ways for enhancing the strength and ductility of the repaired mortar

  6. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  7. Umbilical hernia repair - series (image)

    Science.gov (United States)

    ... treatment. The indications for umbilical hernia repair include: incarcerated (strangulated) umbilical hernia defects not spontaneously closed by 4 to 5 years of age children under 2 with very large defects unacceptable to ...

  8. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  9. Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging

    International Nuclear Information System (INIS)

    Joybari, Mahmood Mastani; Haghighat, Fariborz; Seddegh, Saeid; Al-Abidi, Abduljalil A.

    2017-01-01

    Highlights: • CFD simulation of a finned triplex tube heat exchanger with PCM under simultaneous charging and discharging. • Developed fin configurations for SCD, compatible with natural convection. • More fins enhanced the heat transfer as long as natural convection was not suppressed. • Longer fins enhanced the heat transfer as long as natural convection was not suppressed. • The effect of fin thickness was negligible, similar to non-SCD conditions. - Abstract: Due to the inherent intermittency of renewable energy sources such as solar, latent heat thermal energy storage in phase change materials (PCMs) has received considerable attention. Among several techniques to enhance PCMs’ thermal conductivity, the majority of studies have focused on fin integration due to its simplicity, ease of manufacturing, and low cost. In this study, utilization of extended surfaces (by longitudinal fins) was investigated by development of a numerical model to study the performance of a triplex tube heat exchanger (TTHX) equipped with a PCM under simultaneous charging and discharging (SCD). Governing equations were developed and numerically solved using ANSYS Fluent v16.2. Three conventional fin geometries and six developed fin configurations were compared based on the temperature, liquid fraction, and natural convection behavior under both SCD and non-SCD conditions. The intensity of natural convection was investigated for different fins for the inside heating/outside cooling scenario based on the solid–liquid interface evolution over time. The results indicated that since the buoyancy forces induce upward melted PCM motion, the inner hot tube requires fins on its lower half, while the outer cold one should be extended from its upper half. It was concluded that the case with 3 hot tube fins and 1 cold tube fin is most compatible with natural convection and provides the best performance under SCD conditions.

  10. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.

    Science.gov (United States)

    Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel

    2017-05-12

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.

  11. Background noise can enhance cortical auditory evoked potentials under certain conditions.

    Science.gov (United States)

    Papesh, Melissa A; Billings, Curtis J; Baltzell, Lucas S

    2015-07-01

    To use cortical auditory evoked potentials (CAEPs) to understand neural encoding in background noise and the conditions under which noise enhances CAEP responses. CAEPs from 16 normal-hearing listeners were recorded using the speech syllable/ba/presented in quiet and speech-shaped noise at signal-to-noise ratios of 10 and 30dB. The syllable was presented binaurally and monaurally at two presentation rates. The amplitudes of N1 and N2 peaks were often significantly enhanced in the presence of low-level background noise relative to quiet conditions, while P1 and P2 amplitudes were consistently reduced in noise. P1 and P2 amplitudes were significantly larger during binaural compared to monaural presentations, while N1 and N2 peaks were similar between binaural and monaural conditions. Methodological choices impact CAEP peaks in very different ways. Negative peaks can be enhanced by background noise in certain conditions, while positive peaks are generally enhanced by binaural presentations. Methodological choices significantly impact CAEPs acquired in quiet and in noise. If CAEPs are to be used as a tool to explore signal encoding in noise, scientists must be cognizant of how differences in acquisition and processing protocols selectively shape CAEP responses. Published by Elsevier Ireland Ltd.

  12. Enhancement of low energy particle flux around plasmapause under quiet geomagnetic condition

    Science.gov (United States)

    Lee, J.

    2016-12-01

    Plasmapause is the boundary of the plasmaspheric region where cold plasma is dominant. In this boundary, the plasma density shows depletion to 1 10 on direction from the plasmasphere to magnetosphere and changes composition of energy distribution of particle. Some previous study provides that the location of the plasmapause expand beyond geosynchronous orbit under the quiet geomagnetic conditions. In this work, we study the changed characteristic of particle flux around the plasmapause using measurement from Van Allen Probes. On 23 April 2013, the satellites observed simultaneously proton and electron fluxes enhancement with E > 100 eV. During 12 hours prior to this event, the geomagnetic conditions were very quiet, Kp < 1, and geomagnetic storm did not occur. This event maintain for 15 minutes and only proton flux decrease rapidly in the magnetosphere. In this period SYM-H index enhanced abruptly in response to the impact of the dynamic pressure enhancement and AE index increased gradually up to about 200 nT. Electric field started to perturb in coincidence with enhancement of particle flux from the plasmapause. To explain the variation of low energy particle flux we will compare kinetic property of low energy particle by using velocity space distribution function at region of inner and outer boundary of the plasmapause.

  13. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  14. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA

    International Nuclear Information System (INIS)

    Hastings, P.J.; Quah, S.-K.; Borstel, R.C. von

    1976-01-01

    It is stated that strains of yeast carrying mutations in many of the steps in pathways repairing radiation-induced damage to DNA have enhanced spontaneous mutation rates. Most strains isolated because they have enhanced spontaneous mutation carry mutations in DNA repair systems. This suggests that much spontaneous mutation arises by mutagenic repair of spontaneous lesions. (author)

  15. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  16. Privacy-Enhanced and Multifunctional Health Data Aggregation under Differential Privacy Guarantees.

    Science.gov (United States)

    Ren, Hao; Li, Hongwei; Liang, Xiaohui; He, Shibo; Dai, Yuanshun; Zhao, Lian

    2016-09-10

    With the rapid growth of the health data scale, the limited storage and computation resources of wireless body area sensor networks (WBANs) is becoming a barrier to their development. Therefore, outsourcing the encrypted health data to the cloud has been an appealing strategy. However, date aggregation will become difficult. Some recently-proposed schemes try to address this problem. However, there are still some functions and privacy issues that are not discussed. In this paper, we propose a privacy-enhanced and multifunctional health data aggregation scheme (PMHA-DP) under differential privacy. Specifically, we achieve a new aggregation function, weighted average (WAAS), and design a privacy-enhanced aggregation scheme (PAAS) to protect the aggregated data from cloud servers. Besides, a histogram aggregation scheme with high accuracy is proposed. PMHA-DP supports fault tolerance while preserving data privacy. The performance evaluation shows that the proposal leads to less communication overhead than the existing one.

  17. Privacy-Enhanced and Multifunctional Health Data Aggregation under Differential Privacy Guarantees

    Science.gov (United States)

    Ren, Hao; Li, Hongwei; Liang, Xiaohui; He, Shibo; Dai, Yuanshun; Zhao, Lian

    2016-01-01

    With the rapid growth of the health data scale, the limited storage and computation resources of wireless body area sensor networks (WBANs) is becoming a barrier to their development. Therefore, outsourcing the encrypted health data to the cloud has been an appealing strategy. However, date aggregation will become difficult. Some recently-proposed schemes try to address this problem. However, there are still some functions and privacy issues that are not discussed. In this paper, we propose a privacy-enhanced and multifunctional health data aggregation scheme (PMHA-DP) under differential privacy. Specifically, we achieve a new aggregation function, weighted average (WAAS), and design a privacy-enhanced aggregation scheme (PAAS) to protect the aggregated data from cloud servers. Besides, a histogram aggregation scheme with high accuracy is proposed. PMHA-DP supports fault tolerance while preserving data privacy. The performance evaluation shows that the proposal leads to less communication overhead than the existing one. PMID:27626417

  18. Induced repair and mutagenesis in animal cells

    International Nuclear Information System (INIS)

    Takimoto, Koichi

    1981-01-01

    Induced repair and mutagenesis of animal cells against UV were studied in contrast with SOS repair of E. coli primarily by the use of viruses. Since UV-enhanced reactivation is a phenomenon similar to UV-reactivation (mutagenesis) and the presence of lesion bypass synthsis has been suggested, UV-enhanced reactivation has several common aspects with SOS reactivation of E. coli. However, correlation is not necessarily noted between increase in the viral survival rate and mutagenesis, nor do protease blockers exert any effect. Therefore, SOS repair of E. coli may have different mechansms from induced repair and mutagenesis in animal cells. (Ueda, J.)

  19. Enhancing network performance under single link failure with AS-disjoint BGP extension

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Romeral, S.; Ruepp, Sarah Renée

    2009-01-01

    In this paper we propose an enhancement of the BGP protocol for obtaining AS-disjoint paths in GMPLS multi-domain networks. We evaluate the benefits of having AS-disjoint paths under single inter-domain link failure for two main applications: routing of future connection requests during routing...... protocol re-convergence and applying multi-domain restoration as survivability mechanism in case of a single link failure. The proposed BGP modification is a simple and effective solution for disjoint path selection in connection-oriented multi-domain networks. Our results show that applying the proper...

  20. Enhancement of ionic conductivity in stabilized zirconia ceramics under millimeter-wave irradiation heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Hayashi, Hidetaka

    2011-01-01

    Ionic conductivity in yttria-stabilized zirconia ceramics under millimeter-wave irradiation heating was compared with that obtained using conventional heating. The former was found to result in higher conductivity than the latter. Enhancement of the ionic conductivity and the reduction in activation energy seemed to depend on self-heating resulting from the millimeter-wave irradiation. Millimeter-wave irradiation heating restricted the degradation in conductivity accompanying over-substitution, suggesting the optimum structure that provided the maximum conductivity could be different between the two heating methods.

  1. Conductivity enhancement induced by casting of polymer electrolytes under a magnetic field

    International Nuclear Information System (INIS)

    Kovarsky, R.; Golodnitsky, D.; Peled, E.; Khatun, S.; Stallworth, P.E.; Greenbaum, S.; Greenbaum, A.

    2011-01-01

    Highlights: ► Ordering of polymer electrolytes under applied magnetic field. ► Positive effect of nanosize ferromagnetic filler. ► Structure-ion conductivity interrelationship. - Abstract: We recently presented a procedure for orienting the polyethylene-oxide (PEO) helices in a direction perpendicular to the film plane by casting the polymer electrolytes (PE) under a magnetic field (MF). Here we study the influence of magnetic fields of different strengths and configurations on the structural properties and ionic conductivity of concentrated LiCF 3 SO 3 (LiTf) and LiAsF 6 :P(EO) pristine and composite polymer electrolytes containing γ-Fe 2 O 3 nanoparticles. Some data of LiI:P(EO) system are shown for comparison. We suggest that the effect of type of salt (LiI, LiTf and LiAsF 6 ) on the structure–conductivity relationship of the polymer electrolytes cast under magnetic field is closely connected to the crystallinity of the PEO–LiX system. It was found that the higher the content of the crystalline phase and the size of spherulites in the typically cast salt-polymer system, the stronger the influence of the magnetic field on the conductivity enhancement when the electrolyte is cast and dried under MF. Casting of the PE from a high-dielectric-constant solvent results in disentanglement of the PEO chains, which facilitates even more the perpendicular orientation of helices under applied MF. The enhancement of ionic conductivity was appreciably higher in the PEs cast under strong NdFeB magnets than under SmCo. Both bulk (intrachain) and grain-boundary conductivities increase when a MF is applied, but the improvement in the grain-boundary conductivity – associated with ion-hopping between polymer chains – is more pronounced. For LiAsF 6 :(PEO) 3 at 65 °C, the interchain conductivity increased by a factor of 75, while the intrachain conductivity increased by a factor of 11–14. At room temperature, the SEI resistance of these PEs, cast under NdFeB HMF

  2. Enhanced photoactivity of CuPp-TiO{sub 2} photocatalysts under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiangfei, Lue [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Li Jun, E-mail: junli@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Chen, Wang; Mingyue, Duan; Yun, Luo; Guiping, Yao [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Junlong, Wang [Wei Nan Teachers University, Wei Nan, Shaanxi, 714000 (China)

    2010-11-15

    Three novel porphyrins, 5,10,15-tri-phenyl-20-[4-(3-phenoxy)-propoxy]phenyl porphyrin, 5,15-di-phenyl-10,20-di-[4-(3-phenoxy)-propoxy]phenyl porphyrin and 5-phenyl-10,15,20-tri- [4-(3-phenoxy)-propoxy]phenyl porphyrin, and their corresponding copper(II) complexes were synthesized and characterized spectroscopically. The photocatalytic effects of TiO{sub 2} samples impregnated with copper(II) porphyrins was investigated by photodegradation of 4-nitrophenol (4-NP) in aqueous solution under visible light. The photocatalysts were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectra and FT-IR spectra. The results indicated that CuPps were successfully loaded and interacted with the surface of TiO{sub 2} microsphere, which is crucial to enhance the activity of the catalytic composite under visible light.

  3. Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought.

    Science.gov (United States)

    Gimeno, Teresa E; Camarero, J Julio; Granda, Elena; Pías, Beatriz; Valladares, Fernando

    2012-03-01

    Juniperus thurifera L. is an endemic conifer of the western Mediterranean Basin where it is subjected to a severe climatic stress characterized by low winter temperatures and summer drought. Given the trend of increased warming-induced drought stress in this area and the climatic sensitivity of this species, we expect a negative impact of climate change on growth and ecophysiological performance of J. thurifera in the harsh environments where it dominates. To evaluate this, we measured long- and short-term radial growth using dendrochronology, photosynthesis and water-use efficiency in males, females and juveniles in three sites in Central Spain. Climate was monitored and completed with historical records. Mean annual temperature has increased +0.2 °C per decade in the study area, and the main warming trends corresponded to spring (+0.2 °C per decade) and summer (+0.3 °C per decade). Radial growth and maximum photosynthesis peaked in spring and autumn. Positive photosynthetic rates were maintained all year long, albeit at reduced rates in winter and summer. Radial growth was enhanced by wet conditions in the previous autumn and by warm springs and high precipitation in summer of the year of tree-ring formation. Cloud cover during the summer increased growth, while cloudy winters led to impaired carbon gain and reduced growth in the long term. We argue that maintenance of carbon gain under harsh conditions (low winter temperatures and dry summer months) and plastic xylogenesis underlie J. thurifera's ability to profit from changing climatic conditions such as earlier spring onset and erratic summer rainfall. Our results highlight that not only the magnitude but also the sign of the impact of climate change on growth and persistence of Mediterranean trees is species specific.

  4. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    Science.gov (United States)

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  5. Increased stability of thylakoid components in Vigna sinensis seedlings grown under ultraviolet-B enhanced radiation

    International Nuclear Information System (INIS)

    Nedunchezhian, N.; Kulandaivelu, G.

    1994-01-01

    Chloroplasts isolated from Vigna sinensis L. seedlings grown under cool fluorescent (control chloroplasts) and ultraviolet-B (UV-B)-enhanced fluorescent (UV chloroplasts) radiation, when incubated at 10, 20, 30 and 40-degrees-C, showed large variations in the photosynthetic electron transport reactions. The overall electron transport activity in both control and UV chloroplasts incubated at 40-degrees-C decreased rapidly. In contrast to this, at 30-degrees-C the control chloroplasts got inactivated very rapidly during the 30 min of incubation while the UV chloroplasts showed high stability. A similar trend was also noticed at 20-degrees-C. At 10-degrees-C, although the rate of inactivation was slow, UV chloroplasts were more stable than control chloroplasts. A similar trend was noticed in photosystem (PS) 2 activity. In contrast to overall electron transport and PS2 reactions, PS1 activity showedonly marginal changes at all temperatures. The polypeptide profiles of chloroplasts exposed to UV-B irradiation for 60 min at different temperatures revealed marked decreases in the level of the 23 and 33 kDa polypeptides in control chloroplasts while in UV chloroplasts these polypeptides were highly stable. In addition, UV chloroplasts contained several new polypeptides of both high and low molecular masses. The polypeptide pattern indicated that higher photochemical activity of UV chloroplasts over the control chloroplasts could be due to stabilization of PS2 core complexes by the new polypeptides induced under UV-B enhanced radiation

  6. Utilisation of podiatry services in Australia under the Medicare Enhanced Primary Care program, 2004-2008

    Directory of Open Access Journals (Sweden)

    Menz Hylton B

    2009-10-01

    Full Text Available Abstract Background In 2004, as an extension of the Enhanced Primary Care (EPC program, the Australian Government introduced a policy of providing Medicare rebates for allied health services provided to patients with chronic or complex health conditions. The objective of this study was to evaluate the utilisation of podiatry services provided under this scheme between 2004 and 2008. Methods Data pertaining to the Medicare item 10962 for the calendar years 2004-2008 were extracted from the Australian Medicare Benefits Schedule (MBS database and cross-tabulated by sex and age. Descriptive analyses were undertaken to assess sex and age differences in the number of consultations provided and to assess for temporal trends over the five-year assessment period. The total cost to Medicare over this period was also determined. Results During the 2004-2008 period, a total of 1,338,044 EPC consultations were provided by podiatrists in Australia. Females exhibited higher utilisation than males (63 versus 37%, and those aged over 65 years accounted for 75% of consultations. There was a marked increase in the number of consultations provided from 2004 to 2008, and the total cost of providing EPC podiatry services during this period was $62.9 M. Conclusion Podiatry services have been extensively utilised under the EPC program by primary care patients, particularly older women, and the number of services provided has increased dramatically between 2004 and 2008. Further research is required to determine whether the EPC program enhances clinical outcomes compared to standard practice.

  7. Utilisation of podiatry services in Australia under the Medicare Enhanced Primary Care program, 2004-2008.

    Science.gov (United States)

    Menz, Hylton B

    2009-10-30

    In 2004, as an extension of the Enhanced Primary Care (EPC) program, the Australian Government introduced a policy of providing Medicare rebates for allied health services provided to patients with chronic or complex health conditions. The objective of this study was to evaluate the utilisation of podiatry services provided under this scheme between 2004 and 2008. Data pertaining to the Medicare item 10962 for the calendar years 2004-2008 were extracted from the Australian Medicare Benefits Schedule (MBS) database and cross-tabulated by sex and age. Descriptive analyses were undertaken to assess sex and age differences in the number of consultations provided and to assess for temporal trends over the five-year assessment period. The total cost to Medicare over this period was also determined. During the 2004-2008 period, a total of 1,338,044 EPC consultations were provided by podiatrists in Australia. Females exhibited higher utilisation than males (63 versus 37%), and those aged over 65 years accounted for 75% of consultations. There was a marked increase in the number of consultations provided from 2004 to 2008, and the total cost of providing EPC podiatry services during this period was $62.9 M. Podiatry services have been extensively utilised under the EPC program by primary care patients, particularly older women, and the number of services provided has increased dramatically between 2004 and 2008. Further research is required to determine whether the EPC program enhances clinical outcomes compared to standard practice.

  8. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments.

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R; Collins, Donald R; Molina, Mario J; Zhang, Renyi

    2016-04-19

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  9. Validation of newly developed physical laparoscopy simulator in transabdominal preperitoneal (TAPP) inguinal hernia repair.

    Science.gov (United States)

    Nishihara, Yuichi; Isobe, Yoh; Kitagawa, Yuko

    2017-12-01

    A realistic simulator for transabdominal preperitoneal (TAPP) inguinal hernia repair would enhance surgeons' training experience before they enter the operating theater. The purpose of this study was to create a novel physical simulator for TAPP inguinal hernia repair and obtain surgeons' opinions regarding its efficacy. Our novel TAPP inguinal hernia repair simulator consists of a physical laparoscopy simulator and a handmade organ replica model. The physical laparoscopy simulator was created by three-dimensional (3D) printing technology, and it represents the trunk of the human body and the bendability of the abdominal wall under pneumoperitoneal pressure. The organ replica model was manually created by assembling materials. The TAPP inguinal hernia repair simulator allows for the performance of all procedures required in TAPP inguinal hernia repair. Fifteen general surgeons performed TAPP inguinal hernia repair using our simulator. Their opinions were scored on a 5-point Likert scale. All participants strongly agreed that the 3D-printed physical simulator and organ replica model were highly useful for TAPP inguinal hernia repair training (median, 5 points) and TAPP inguinal hernia repair education (median, 5 points). They felt that the simulator would be effective for TAPP inguinal hernia repair training before entering the operating theater. All surgeons considered that this simulator should be introduced in the residency curriculum. We successfully created a physical simulator for TAPP inguinal hernia repair training using 3D printing technology and a handmade organ replica model created with inexpensive, readily accessible materials. Preoperative TAPP inguinal hernia repair training using this simulator and organ replica model may be of benefit in the training of all surgeons. All general surgeons involved in the present study felt that this simulator and organ replica model should be used in their residency curriculum.

  10. Should performance-enhancing drugs in sport be legalized under medical supervision?

    Science.gov (United States)

    Wiesing, Urban

    2011-02-01

    This review examines the question of whether performance-enhancing drugs should be permitted in sport under the control of physicians, and evaluates the expected outcomes of such a scenario. Such a change in regulation would need to be tightly controlled because of the risks involved. The results of legalizing performance-enhancing drugs in competitive sport would be either unhelpful or negative, and the unwanted aspects of doping control would not disappear. Athletes, including children and adolescents who wanted to pursue competitive sports, would be forced to take additional, avoidable health risks. The 'natural lottery' of athletic talents would be compensated for only partially by use of performance-enhancing agents. It would also be complemented by another 'natural lottery' of variable responses to doping measures, combined with the inventiveness of doping doctors. There would be no gain in 'justice' (i.e. fairer results that reflected efforts made) for athletes as a result of legalizing doping. Legalization would not reduce restrictions on athletes' freedom; the control effort would remain the same, if not increased. Extremely complicated international regulations would have to be adopted. The game of the 'tortoise and the hare' between doping athletes and inspectors would remain because prohibited but not identifiable practices could still provide additional benefits from use of permissible drugs. Audience mistrust, particularly toward athletes who achieved outstanding feats, would remain because it would still be possible that these athletes were reliant on illegal doping practices. Doping entails exposing the athletes to avoidable risks that do not need to be taken to increase the appeal of a sport. Most importantly, the function of sport as a role model would definitely be damaged. It is not necessary to clarify the question of what constitutes the 'spirit of sport' and whether this may be changed. From a practical point of view, a legalization of

  11. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light

    Directory of Open Access Journals (Sweden)

    Allahverdiyev AM

    2011-11-01

    Full Text Available Adil M Allahverdiyev1, Emrah Sefik Abamor1, Malahat Bagirova1, Cem B Ustundag2, Cengiz Kaya2, Figen Kaya2, Miriam Rafailovich3 1Department of Bioengineering; 2Department of Metallurgical and Materials Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey; 3Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA Abstract: Leishmaniasis is a protozoan vector-borne disease and is one of the biggest health problems of the world. Antileishmanial drugs have disadvantages such as toxicity and the recent development of resistance. One of the best-known mechanisms of the antibacterial effects of silver nanoparticles (Ag-NPs is the production of reactive oxygen species to which Leishmania parasites are very sensitive. So far no information about the effects of Ag-NPs on Leishmania tropica parasites, the causative agent of leishmaniasis, exists in the literature. The aim of this study was to investigate the effects of Ag-NPs on biological parameters of L. tropica such as morphology, metabolic activity, proliferation, infectivity, and survival in host cells, in vitro. Consequently, parasite morphology and infectivity were impaired in comparison with the control. Also, enhanced effects of Ag-NPs were demonstrated on the morphology and infectivity of parasites under ultraviolet (UV light. Ag-NPs demonstrated significant antileishmanial effects by inhibiting the proliferation and metabolic activity of promastigotes by 1.5- to threefold, respectively, in the dark, and 2- to 6.5-fold, respectively, under UV light. Of note, Ag-NPs inhibited the survival of amastigotes in host cells, and this effect was more significant in the presence of UV light. Thus, for the first time the antileishmanial effects of Ag-NPs on L. tropica parasites were demonstrated along with the enhanced antimicrobial activity of Ag-NPs under UV light. Determination of the antileishmanial effects of Ag-NPs is very important for the further

  12. Enhancement of Orthodontic Anchor Screw Stability Under Immediate Loading by Ultraviolet Photofunctionalization Technology.

    Science.gov (United States)

    Takahashi, Maiko; Motoyoshi, Mitsuru; Inaba, Mizuki; Hagiwara, Yoshiyuki; Shimizu, Noriyoshi

    Ultraviolet (UV)-mediated photofunctionalization technology is intended to enhance the osseointegration capability of titanium implants. There are concerns about orthodontic anchor screws loosening under immediate loading protocols in adolescent orthodontic treatment. The purpose of this in vivo study was to evaluate the effects of photofunctionalization on the intrabony stability of orthodontic titanium anchor screws and bone-anchor screw contact under immediate loading in growing rats. Custom-made titanium anchor screws (1.4 mm in diameter and 4.0 mm in length) with or without photofunctionalization pretreatment were placed on the proximal epiphysis of the tibial bone in 6-week-old male Sprague-Dawley rats and were loaded immediately after placement. After 2 weeks of loading, the stability of the anchor screws was evaluated using a Periotest device, and the bone-anchor screw contact ratio (BSC) was assessed by a histomorphometric analysis using field-emission scanning electron microscopy. In the unloaded group, Periotest values (PTVs) were ~25 for UV-untreated screws and 13 for UVtreated screws (P < .01), while in the immediate-loading group, PTVs were 28 for UV-untreated screws and 16 for UV-treated screws (P < .05). Significantly less screw mobility was observed in both UV-treated groups regardless of the loading protocol. The BSC was increased ~1.8 fold for UV-treated screws, compared with UV-untreated screws, regardless of the loading protocol. Photofunctionalization enhanced the intrabony stability of orthodontic anchor screws under immediate loading in growing rats by increasing bone-anchor screw contact.

  13. Metabolic modulation of mammalian DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, T.J.

    1988-01-01

    First, ultraviolet light (UVL)- and dimethylsulfate (DMS)-induced excision repair was examined in quiescent and lectin-stimulated bovine lymphocytes. Upon mitogenic stimulation, UVL-induced repair increased by a factor of 2 to 3, and reached this maximum 2 days before the onset of DNA replication. However, DMS-induced repair increased sevenfold in parallel with DNA replication. Repair patch sizes were smaller for DMS-induced damage reflecting patches of 7 nucleotides in quiescent lymphocytes compared to 20 nucleotides induced by UVL. The patch size increased during lymphocyte stimulation until one day prior to the peak of DNA replication when patch sizes of 45 and 35 nucleotides were produced in response to UVL- and DMS-induced damage, respectively. At the peak of DNA replication, the patch sizes were equal for both damaging agents at 34 nucleotides. In the second study, a small amount of repair replication was observed in undamaged quiescent and concanavalin A-stimulated bovine lymphocytes as well as in human T98G glioblastoma cells. Repair incorporation doubled in the presence of hydroxyurea. Thirdly, the enhanced repair replication induced by the poly (ADP-ribose) polymerase inhibitor, 3-aminobenzamide, (3-AB), could not be correlated either with an increased rate of repair in the presence of 3-AB or with the use of hydroxyurea in the repair protocol. Finally, treatment of unstimulated lymphocytes with hyperthermia was accompanied by decreased repair replication while the repair patches remained constant at 20 nucleotides.

  14. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoliang; Chen, Min; Liu, Yaling; Miralles, Diego G.; Wang, Faming

    2017-05-01

    Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosol loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R2=0.84 and RMSE=0.01gC (kg H2O)-1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.

  15. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, F; Shi, R; Zhao, J; Li, G; Bai, X; Han, S; Zhang, Y

    2015-02-01

    The ex situ application of rhamnolipid to enhance oil recovery is costly and complex in terms of rhamnolipid production and transportation, while in situ production of rhamnolipid is restricted by the oxygen-deficient environments of oil reservoirs. To overcome the oxygen-limiting conditions and to circumvent the complex regulation of rhamnolipid biosynthesis in Pseudomonas aeruginosa, an engineered strain Pseudomonas stutzeri Rhl was constructed for heterologous production of rhamnolipid under anaerobic conditions. The rhlABRI genes for rhamnolipid biosynthesis were cloned into a facultative anaerobic strain Ps. stutzeri DQ1 to construct the engineered strain Rhl. Anaerobic production of rhamnolipid was confirmed by thin layer chromatography and Fourier transform infrared analysis. Rhamnolipid product reduced the air-water surface tension to 30.3 mN m(-1) and the oil-water interfacial tension to 0.169 mN m(-1). Rhl produced rhamnolipid of 1.61 g l(-1) using glycerol as the carbon source. Rhl anaerobic culture emulsified crude oil up to EI24 ≈ 74. An extra 9.8% of original crude oil was displaced by Rhl in the core flooding test. Strain Rhl achieved anaerobic production of rhamnolipid and worked well for enhanced oil recovery in the core flooding model. The rhamnolipid produced by Rhl was similar to that of the donor strain SQ6. This is the first study to achieve anaerobic and heterologous production of rhamnolipid. Results demonstrated the potential feasibility of Rhl as a promising strain to enhance oil recovery through anaerobic production of rhamnolipid. © 2014 The Society for Applied Microbiology.

  16. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang; Li, Benxia; Gu, Ting; Ming, Tian; Wang, Junxin; Wang, Peng; Yu, Jimmy C.

    2014-01-01

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  17. Enhancement of J estimation for typical nuclear pipes with a circumferential surface crack under tensile load

    International Nuclear Information System (INIS)

    Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin; Chang, Yoon Suk; Jhung, Myung Jo; Choi, Young Hwan

    2010-01-01

    This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H 1 values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading

  18. Enhancement of J estimation for typical nuclear pipes with a circumferential surface crack under tensile load

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of); Chang, Yoon Suk [Kyung Hee University, Yongin (Korea, Republic of); Jhung, Myung Jo; Choi, Young Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-03-15

    This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H{sub 1} values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading

  19. Measurement of grid spacer's enhanced droplet cooling under reflood condition in a PWR by LDA

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.; Hua, S.Q.

    1984-01-01

    Reported is an experiment designed for the measurements of grid spacer's enhanced droplet cooling under reflood condition at elevated temperatures in a steam environment. The flow channel consists of a simulated 1.60m-long pressurized water reactor (PWR) fuel rod bundle of 2 x 2 electrically heated rods. Embedded thermocouples are used to measure the rod cladding temperature at various axial levels and an unshielded Chromel-Alumel thermocouple sheathed by a small Inconel tube is traversed in the center of the subchannel to measure the temperatures of the water and steam coolant phases at various levels. The droplet dynamics across the grid spacer is directly obtained by a special laser-Doppler anemometry technique for the in situ simultaneous measurement of velocity and size of droplets through two observation windows on the test channel, one immediately before and one immediately after the grid spacer. Some results are presented and analyzed

  20. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  1. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  2. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    Science.gov (United States)

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cortical mechanisms underlying sensorimotor enhancement promoted by walking with haptic inputs in a virtual environment.

    Science.gov (United States)

    Sangani, Samir; Lamontagne, Anouk; Fung, Joyce

    2015-01-01

    Sensorimotor integration is a complex process in the central nervous system that produces task-specific motor output based on selective and rapid integration of sensory information from multiple sources. This chapter reviews briefly the role of haptic cues in postural control during tandem stance and locomotion, focusing on sensorimotor enhancement of locomotion post stroke. The use of mixed-reality systems incorporating both haptic cues and virtual reality technology in gait rehabilitation post stroke is discussed. Over the last decade, researchers and clinicians have shown evidence of cerebral reorganization that underlies functional recovery after stroke based on results from neuroimaging techniques such as positron emission tomography and functional magnetic resonance imaging. These imaging modalities are however limited in their capacity to measure cortical changes during extensive body motions in upright stance. Functional near-infrared spectroscopy (fNIRS) on the other hand provides a unique opportunity to measure cortical activity associated with postural control during locomotion. Evidence of cortical changes associated with sensorimotor enhancement induced by haptic touch during locomotion is revealed through fNIRS in a pilot study involving healthy individuals and a case study involving a chronic stroke patient. © 2015 Elsevier B.V. All rights reserved.

  4. Daidzein enhances immune function in late lactation cows under heat stress.

    Science.gov (United States)

    Liu, De-Yi; He, Shao-Jun; Liu, Shi-Qing; Tang, Yi-Guo; Jin, Er-Hui; Chen, Hui-Liang; Li, Sheng-He; Zhong, Liang-Ting

    2014-01-01

    Heat stress decreases natural immunity making cows more vulnerable to diseases. A previous study reported that daidzein can enhance animal resistance to heat stress and regulate animal immunocompetence. However, it is unclear whether daidzein regulates the immune performance of late lactation cows under heat stress. In this study, late lactation cows in four groups were raised in hot weather and fed with basic diet, basic diet plus 200, 300, 400 mg/day daidzein, respectively, and the experimental period was 60 days. Blood was collected to examine the changes of serum total protein (TP), albumin (ALB), immunoglobulin G (IgG), interferon alpha (IFN-α), and interleukin-2 (IL-2). We found the levels of serum IgG and INF-α were significantly higher in late lactation cows after 300 and 400 mg/day daidzein treatment compared to those in the control group and 200 mg/day daidzein treatment (P 0.05). Daidzein can enhance the immunocompetence of late lactation cows and strengthen cow resistance to heat stress. © 2013 Japanese Society of Animal Science.

  5. The relationship of transcription and repair of radioinduced DNA damage

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Igusheva, O.A.

    1997-01-01

    The data are discussed which has become a basement of such important findings as involvement of transcription into repair or existence of transcription-coupling repair factors. Thymine glycols which are appear under ionizing radiation exposure, are repaired preferentially in transcribed DNA. In present review the preferential repair of ionizing radiation-induced singlestrand breaks (SSBa) in transcribed DNA of human cells. Discontinuous distribution of DNA repair along hole genome has a grate role in biological processes

  6. Angular (Gothic) aortic arch leads to enhanced systolic wave reflection, central aortic stiffness, and increased left ventricular mass late after aortic coarctation repair: evaluation with magnetic resonance flow mapping.

    Science.gov (United States)

    Ou, Phalla; Celermajer, David S; Raisky, Olivier; Jolivet, Odile; Buyens, Fanny; Herment, Alain; Sidi, Daniel; Bonnet, Damien; Mousseaux, Elie

    2008-01-01

    We sought to investigate the mechanism whereby a particular deformity of the aortic arch, an angulated Gothic shape, might lead to hypertension late after anatomically successful repair of aortic coarctation. Fifty-five normotensive patients with anatomically successful repair of aortic coarctation and either a Gothic (angulated) or a Romanesque (smooth and rounded) arch were studied with magnetic resonance angiography and flow mapping in both the ascending and descending aortas. Systolic waveforms, central aortic stiffness, and pulse velocity were measured. We hypothesized that arch angulation would result in enhanced systolic wave reflection with loss of energy across the aortic arch, as well as increased central aortic stiffness. Twenty patients were found to have a Gothic, and 35 a Romanesque, arch. Patients with a Gothic arch showed markedly augmented systolic wave reflection (12 +/- 6 vs 5 +/- 0.3 mL, P Gothic arch (5.6 +/- 1.1 vs 4.1 +/- 1 m/s, P Gothic aortic arch is associated with increased systolic wave reflection, as well as increased central aortic stiffness and left ventricular mass index. These findings explain (at least in part) the association between this pattern of arch geometry and late hypertension at rest and on exercise in subjects after coarctation repair.

  7. Enhancement of radiation effect using beta-lapachone and underlying mechanism

    International Nuclear Information System (INIS)

    Ahn, Ki Jung; Lee, Hyung Sik; Bai, Se Kyung; Song, Chang Won

    2013-01-01

    Beta-lapachone (β-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. (β-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the (β-Lap toxicity against cancer cells has been controversial. The most recent view is that (β-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of (β-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of (β-Lap then spontaneously oxidizes back to the original oxidized (β-Lap, creating futile cycling between the oxidized and reduced forms of (β-Lap. It is proposed that the futile recycling between oxidized and reduced forms of (β-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced (β-Lap is converted first to one-electron reduced (β-Lap, i.e., semiquinone (β-Lap (SQ)- causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of β- p causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that β-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated

  8. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  9. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight

    KAUST Repository

    Caupos, Emilie

    2011-05-01

    In the present work the degradation of estrone (E1) a natural estrogenic hormone has been studied under simulated solar irradiation. The photodegradation of E1 has been investigated in the absence and in the presence of 7.7-8.9 mg L-1 of dissolved organic carbon (DOC), under solar light simulation with irradiance approximating that of the sun. DOC extracts from different origins have been used. Half-lives ranging between 3.9 h and 7.9 h were observed. Results indicated that E1 was photodegraded even in the absence of DOC. The presence of DOC was found to enhance the degradation of E1. Experiments performed with the addition of reactive species scavengers (azide ions and 2-propanol) have shown that these two species play a significant role in the photodegradation. Some experiments have been performed with a DOC previously submitted to solar irradiation. Changes in optical and physico-chemical properties of DOC strongly affect its photoinductive properties, and hence its efficiency on E1 degradation. A part of the study consisted in the investigation of photoproducts structures. Five photoproducts were shown by chromatographic analysis: one arising from direct photolysis and the four others from DOC photoinduced degradation. © 2011 Elsevier Ltd.

  10. Photodegradation of estrone enhanced by dissolved organic matter under simulated sunlight

    KAUST Repository

    Caupos, Emilie; Mazellier, Patrick; Croue, Jean-Philippe

    2011-01-01

    In the present work the degradation of estrone (E1) a natural estrogenic hormone has been studied under simulated solar irradiation. The photodegradation of E1 has been investigated in the absence and in the presence of 7.7-8.9 mg L-1 of dissolved organic carbon (DOC), under solar light simulation with irradiance approximating that of the sun. DOC extracts from different origins have been used. Half-lives ranging between 3.9 h and 7.9 h were observed. Results indicated that E1 was photodegraded even in the absence of DOC. The presence of DOC was found to enhance the degradation of E1. Experiments performed with the addition of reactive species scavengers (azide ions and 2-propanol) have shown that these two species play a significant role in the photodegradation. Some experiments have been performed with a DOC previously submitted to solar irradiation. Changes in optical and physico-chemical properties of DOC strongly affect its photoinductive properties, and hence its efficiency on E1 degradation. A part of the study consisted in the investigation of photoproducts structures. Five photoproducts were shown by chromatographic analysis: one arising from direct photolysis and the four others from DOC photoinduced degradation. © 2011 Elsevier Ltd.

  11. Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency.

    Science.gov (United States)

    Adenan, Nurul Salma; Yusoff, Fatimah Md; Medipally, Srikanth Reddy; Shariff, M

    2016-07-01

    Microalgae are important food sources for aquaculture animals. Among the different factors which influence the biochemical composition of microalgae, nitrogen and phosphorus are two of the most important nutrient sources for growth and development. The present study aimed to assess the effects of nitrogen and phosphorus deficiency on lipid production of Chlorella sp. and Chaetoceros calcitrans. Early stationary phase culture of these species were exposed to different stress levels of nitrogen and phosphorus (25%, 50% and 75% of the full NO(3)-N and PO(4)-P concentration in the Conway media), and solvent extraction and gas-liquid chromatography methods were performed for analysis of lipid and fatty acid composition. The results revealed that lipid production in these two species significantly increased (Pnitrogen and phosphorus decreased. The fatty acid proportion remained unaffected under nitrogen deficiency, while phosphorus limitation resulted in a decrease of saturated fatty acids and promoted a higher content of omega-3 fatty acids in these species. The protein and carbohydrate levels were also altered under limited nutrients. Therefore, these conditions could be used for enhanced lipid production in microalgae for aquaculture and other industrial applications.

  12. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    Science.gov (United States)

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Canadian company innovates dam repair

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Successful repair without any downtime, of the Sabana Yegua power and irrigation structure in the western Dominican Republic by Aquatic Sciences Ltd., a St. Catherine, Ontario-based underwater specialist company, is discussed. The structure was damaged by Hurricane George last when when rising water levels damaged a major valve in the control gate chamber. The repair strategy designed by Aquatic Sciences used a remotely operated vehicle with a mechanical arm for minor tasks which placed a specially-made plug into the inlet pipe. The work was completed in one week, saving the utility company a great deal of money by making it possible to make the repairs remotely in the gate chamber without having to drain the tunnel, as would have been necessary had the repair been completed manually. The remotely operated vehicles use a scanning sonar as well as light to find their way. They are particularly well adapted to work underwater under low-visibility conditions

  14. Study of bioleaching under different hydraulic retention time for enhancing the dewaterability of digestate.

    Science.gov (United States)

    Li, Linshuai; Gao, Jingqing; Zhu, Songfeng; Li, Yonghong; Zhang, Ruiqin

    2015-12-01

    Dewatering of kitchen waste digestate is a key problem to solve so as to increase the application of kitchen waste after anaerobic digestion. In this study, the effects of bioleaching under different hydraulic retention time (HRT = 2, 2.5, and 3 days) on dewaterability of kitchen waste digestate were evaluated. A 12-stage plug flow bioreactor with 180 L working volume was used for digestate bioleaching. The bioleached digestate under different HRTs were collected and dewatered by plate-and-frame filter press. The results showed that the moisture contents of digestate cakes were 67.87 % at 2 days of HRT, 58.06 % at 2.5 days of HRT, and 54.45 % at 3 days of HRT, respectively, indicating the longer the HRT, the lower the moisture content of filter cake. Balanced between the cost and practical need, 2.5 days can be used as the HRT in engineering application. Under the condition of HRT of 2.5 days, the pH, specific resistance to filtration (SRF), capillary suction time (CST), and sedimentation rate of digestate changed from the initial values of 8.08, 210.6 s, 23.4 × 10(12) m kg(-1) and 10 % to 3.21, 32.7 s, 2.44 × 10(12) m kg(-1) and 76.8 %, respectively. Based on the observations above, the authors conclude that bioleaching technology is an effective method to enhance digestate dewaterability and reduce the cost of subsequent reutilization.

  15. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions.

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated "cocktail-party" listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the "cocktail-party" listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process.

  16. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  17. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation

    International Nuclear Information System (INIS)

    Liao, Gaozu; Zhu, Dongyun; Li, Laisheng; Lan, Bingyan

    2014-01-01

    Highlights: • g-C 3 N 4 is employed as active catalyst in the photocatalytic ozonation system. • The more negative conduction band of g-C 3 N 4 benefits the transfer of electrons. • The synergistic effect between photocatalysis and ozonation is promoted by g-C 3 N 4 . • Enhanced degradation of oxalic acid and biphenol A is achieved via g-C 3 N 4 /Vis/O 3 . - Abstract: Graphitic carbon nitride (g-C 3 N 4 ) was employed as the active photocatalyst in the photocatalytic ozonation coupling system in the present study. g-C 3 N 4 was prepared by directly heating thiourea in air at 550 °C. XRD, FT-IR, UV–vis was used to characterize the structure and optical property. Oxalic acid and bisphenol A were selected as model substances for photocatalytic ozonation reactions to evaluate the catalytic ability of g-C 3 N 4 (g-C 3 N 4 /Vis/O 3 ). The results showed that the degradation ratio of oxalic acid with g-C 3 N 4 /Vis/O 3 was 65.2% higher than the sum of ratio when it was individually decomposed by g-C 3 N 4 /Vis and O 3 . The TOC removal of biphenol A with g-C 3 N 4 /Vis/O 3 was 2.17 times as great as the sum of the ratio when using g-C 3 N 4 /Vis and O 3 . This improvement was attributed to the enhanced synergistic effect between photocatalysis and ozonation by g-C 3 N 4 . Under visible light irradiation, the photo-generated electrons produced on g-C 3 N 4 facilitated the electrons transfer owing to the more negative conduction band potential (−1.3 V versus NHE). It meant that the photo-generated electrons could be trapped by ozone and reaction with it more easily. Subsequently, the yield of hydroxyl radicals was improved so as to enhance the organics degradation efficiency. This work indicated that metal-free g-C 3 N 4 could be an excellent catalyst for mineralization of organic compounds in waste control

  18. Additivity versus repair inhibition in fractionated treatments combining drugs and X rays: a theoretical analysis

    International Nuclear Information System (INIS)

    Begg, A.C.

    1987-01-01

    Drugs which inhibit the repair of radiation damage could potentially be useful for enhancing the effects of radiotherapy. In pre-clinical combined modality studies, however, it is often difficult to state with certainty whether or not a drug has inhibited radiation damage repair. This paper shows that several commonly used parameters for assessing repair can give the wrong answer regarding the presence of drug-induced repair inhibition. These parameters are; the difference in radiation dose between 1 and n fractions to give the same effect, the fractional recovered dose per fraction interval, FR, and the related parameter FREC. A further parameter used for treatment comparisons is the enhancement ratio for the drug (D.E.R.; ratio of radiation doses, with and without drug, to cause a given effect). An increasing D.E.R. with increasing number of radiation fractions has been taken as an indication that the drug inhibited repair. The present report demonstrates that this, too, can be misleading. From an analysis based on a linear-quadratic survival curve for X rays, it is suggested that deriving and comparing alpha/beta ratios (ratio of the linea to quadratic coefficients) gives the best indication of drug-induced changes in survival curve shape which may reflect underlying changes in repair capacity

  19. Chelant-enhanced heavy metals uptake by Eucalyptus trees under controlled deficit irrigation

    Science.gov (United States)

    Fine, Pinchas; Rathod, Paresh; Beriozkin, Anna; Ein-Gal, Oz; Hass, Amir

    2014-05-01

    Enhancement of phytoremediation of heavy metal polluted soils employs organic ligands, aimed to solubilize, phytoextract and translocate metals into the canopy. The use of more persistent chelants (e.g. EDTA) is phasing out due to concerns over their role in the environment. We tested the hypothesis that controlled deficit irrigation (CDI) of the fast growing, salinity resistant Eucalyptus camaldulensis coupled with timely EDTA application enhances sediment phytoremediation while minimizing leaching of metal complexes below the root-zone. This was tested in 220-L lysimeters packed with sand mixed with metals polluted biosolids. One year old trees were brought under CDI with tap or RO water for two growing seasons. EDTA, EDDS and citric acid fertigation at 2 mM started in each May for 2.5-3.5 months, and prescribed soil leaching and sampling of tree leaves started thereafter. While all 3 chelants solubilized biosolids metal in batch extraction (EDDS often being the more efficient), EDTA was the only to increased metal concentrations both in the soil solution and in the Eucalyptus leaves. The average concentrations in the soil solution and in the leaves, in the EDTA vs. control (chelant-free) treatments, all respectively, were: Cd - 200 mg L-1 vs. 1.0, and 67 vs. 21 mg kg-1; Cu: 90 vs. 1.5 mg L-1, and 17 vs. 3.0 mg kg-1; Cr: 4.0 vs. 1.4 mg L-1, and 3.0 vs. 1.0 mg kg-1; Ni: 60 mg L-1 vs. 14, and 20 vs. 6.0 mg kg-1; Pb: >44 vs. 0.1 mg L-1, and 9.0 vs. 1.0 mg kg-1; and Zn: 650 vs. 4.0 mg L-1 and 200 vs. 70 mg kg-1. While EDDS was undetectable in all the leachates, EDTA concentrated to up to 100 mM. At 10 mM soil solution concentration, EDDS half-life in acclimated lysimeter media was 5-11 days and that of EDTA was ≥27-d. The study suggests that sustainable phytostabilization and phytoextraction of heavy metals are achievable under CDI with EDTA augmentation at low dose. This was yet futile with the biodegradable EDDS and citric acid. CDI with RO water further widened

  20. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime

    Energy Technology Data Exchange (ETDEWEB)

    Berna, C., E-mail: ceberes@iie.upv.es [Instituto de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera 14, 46022 Valencia (Spain); Escrivá, A.; Muñoz-Cobo, J.L. [Instituto de Ingeniería Energética, Universitat Politècnica de València (UPV), Camino de Vera 14, 46022 Valencia (Spain); Herranz, L.E., E-mail: luisen.herranz@ciemat.es [Unit of Nuclear Safety Research Division of Nuclear Fission, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

    2016-04-15

    Highlights: • Review of the most recent literature concerning submerged jets. • Emphasize all variables and processes occurring along the jet region. • Highlight the gaps of knowledge still existing related to submerged jets. • Enhancement of SPARC90-Jet to estimate aerosol removal under jet injection regime. • Validation of the SPARC90-Jet results against pool scrubbing experimental data. - Abstract: Submerged gaseous jets may have an outstanding relevance in many industrial processes and may be of particular significance in severe nuclear accident scenarios, like in the Fukushima accident. Even though pool scrubbing has been traditionally associated with low injection velocities, there are a number of potential scenarios in which fission product trapping in aqueous ponds might also occur under jet injection regime (like SGTR meltdown sequences in PWRs and SBO ones in BWRs). The SPARC90 code was developed to determine the fission product trapping in pools during severe accidents. The code assumes that carrier gas arrives at the water ponds at low or moderate velocities and it forms a big bubble that eventually detaches from the injection pipe. However, particle laden gases may enter the water at very high velocities resulting in a submerged gas jet instead. This work presents the fundamentals, major hypotheses and changes introduced into the code in order to estimate particle removal during gas injection in pools under the jet regime (SPARC90-Jet). A simplified and reliable approach to submerged jet hydrodynamics has been implemented on the basis of updated equations for jet hydrodynamics and aerosol removal, so that gas–liquid and droplet-particles interactions are described. The code modifications have been validated as far as possible. However, no suitable hydrodynamic tests have been found in the literature, so that an indirect validation has been conducted through comparisons against data from pool scrubbing experiments. Besides, this validation

  1. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime

    International Nuclear Information System (INIS)

    Berna, C.; Escrivá, A.; Muñoz-Cobo, J.L.; Herranz, L.E.

    2016-01-01

    Highlights: • Review of the most recent literature concerning submerged jets. • Emphasize all variables and processes occurring along the jet region. • Highlight the gaps of knowledge still existing related to submerged jets. • Enhancement of SPARC90-Jet to estimate aerosol removal under jet injection regime. • Validation of the SPARC90-Jet results against pool scrubbing experimental data. - Abstract: Submerged gaseous jets may have an outstanding relevance in many industrial processes and may be of particular significance in severe nuclear accident scenarios, like in the Fukushima accident. Even though pool scrubbing has been traditionally associated with low injection velocities, there are a number of potential scenarios in which fission product trapping in aqueous ponds might also occur under jet injection regime (like SGTR meltdown sequences in PWRs and SBO ones in BWRs). The SPARC90 code was developed to determine the fission product trapping in pools during severe accidents. The code assumes that carrier gas arrives at the water ponds at low or moderate velocities and it forms a big bubble that eventually detaches from the injection pipe. However, particle laden gases may enter the water at very high velocities resulting in a submerged gas jet instead. This work presents the fundamentals, major hypotheses and changes introduced into the code in order to estimate particle removal during gas injection in pools under the jet regime (SPARC90-Jet). A simplified and reliable approach to submerged jet hydrodynamics has been implemented on the basis of updated equations for jet hydrodynamics and aerosol removal, so that gas–liquid and droplet-particles interactions are described. The code modifications have been validated as far as possible. However, no suitable hydrodynamic tests have been found in the literature, so that an indirect validation has been conducted through comparisons against data from pool scrubbing experiments. Besides, this validation

  2. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases.

    Science.gov (United States)

    Yang, Diane; Scavuzzo, Marissa A; Chmielowiec, Jolanta; Sharp, Robert; Bajic, Aleksandar; Borowiak, Malgorzata

    2016-02-18

    Efficient gene editing is essential to fully utilize human pluripotent stem cells (hPSCs) in regenerative medicine. Custom endonuclease-based gene targeting involves two mechanisms of DNA repair: homology directed repair (HDR) and non-homologous end joining (NHEJ). HDR is the preferred mechanism for common applications such knock-in, knock-out or precise mutagenesis, but remains inefficient in hPSCs. Here, we demonstrate that synchronizing synchronizing hPSCs in G2/M with ABT phase increases on-target gene editing, defined as correct targeting cassette integration, 3 to 6 fold. We observed improved efficiency using ZFNs, TALENs, two CRISPR/Cas9, and CRISPR/Cas9 nickase to target five genes in three hPSC lines: three human embryonic stem cell lines, neural progenitors and diabetic iPSCs. neural progenitors and diabetic iPSCs. Reversible synchronization has no effect on pluripotency or differentiation. The increase in on-target gene editing is locus-independent and specific to the cell cycle phase as G2/M phase enriched cells show a 6-fold increase in targeting efficiency compared to cells in G1 phase. Concurrently inhibiting NHEJ with SCR7 does not increase HDR or improve gene targeting efficiency further, indicating that HR is the major DNA repair mechanism after G2/M phase arrest. The approach outlined here makes gene editing in hPSCs a more viable tool for disease modeling, regenerative medicine and cell-based therapies.

  3. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    Science.gov (United States)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  4. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study.

    Science.gov (United States)

    Li, Xianchun; Cheng, Xiaojun; Li, Jiaying; Pan, Yafeng; Hu, Yi; Ku, Yixuan

    2015-01-01

    Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1) or test array (Task 2), during the retention interval in a change detection task. In Task 1, action video game players demonstrated steady performance while non-action video game players showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the test array, but to the interactions between the two processes of protection from decay and resistance from interference, or from alternative hypotheses. Implications for future studies were discussed.

  6. Toward enhancing the distributed video coder under a multiview video codec framework

    Science.gov (United States)

    Lee, Shih-Chieh; Chen, Jiann-Jone; Tsai, Yao-Hong; Chen, Chin-Hua

    2016-11-01

    The advance of video coding technology enables multiview video (MVV) or three-dimensional television (3-D TV) display for users with or without glasses. For mobile devices or wireless applications, a distributed video coder (DVC) can be utilized to shift the encoder complexity to decoder under the MVV coding framework, denoted as multiview distributed video coding (MDVC). We proposed to exploit both inter- and intraview video correlations to enhance side information (SI) and improve the MDVC performance: (1) based on the multiview motion estimation (MVME) framework, a categorized block matching prediction with fidelity weights (COMPETE) was proposed to yield a high quality SI frame for better DVC reconstructed images. (2) The block transform coefficient properties, i.e., DCs and ACs, were exploited to design the priority rate control for the turbo code, such that the DVC decoding can be carried out with fewest parity bits. In comparison, the proposed COMPETE method demonstrated lower time complexity, while presenting better reconstructed video quality. Simulations show that the proposed COMPETE can reduce the time complexity of MVME to 1.29 to 2.56 times smaller, as compared to previous hybrid MVME methods, while the image peak signal to noise ratios (PSNRs) of a decoded video can be improved 0.2 to 3.5 dB, as compared to H.264/AVC intracoding.

  7. Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Bangkedphol, S.; Keenan, H.E.; Davidson, C.M.; Sakultantimetha, A.; Sirisaksoontorn, W.; Songsasen, A.

    2010-01-01

    Photo-degradation of tributyltin (TBT) has been enhanced by TiO 2 nanoparticles doped with nitrogen (N-doped TiO 2 ). The N-doped catalyst was prepared by a sol-gel reaction of titanium (IV) tetraisopropoxide with 25% ammonia solution and calcined at various temperatures from 300 to 600 deg. C. X-ray diffraction results showed that N-doped TiO 2 remained amorphous at 300 deg. C. At 400 deg. C the anatase phase occurred then transformed to the rutile phase at 600 deg. C. The crystallite size calculated from Scherrer's equation was in the range of 16-51 nm which depended on the calcination temperature. N-doped TiO 2 calcined at 400 deg. C which contained 0.054% nitrogen, demonstrated the highest photocatalytic degradation of TBT at 28% in 3 h under natural light when compared with undoped TiO 2 and commercial photocatalyst, P25-TiO 2 which gave 14.8 and 18% conversion, respectively.

  8. Enhancement of Quantum Correlations in Qubit-Qutrit Systems under the non-Markovian Environment

    Institute of Scientific and Technical Information of China (English)

    Abdul Basit; Hamad Ali; Fazal Badshah; Guo-Qin Ge

    2017-01-01

    We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck (OU) noise.Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs.A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters,the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations.In addition,it is observed that the non-Markovian strength (γ/F) has a positive impact on the correlations time.For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property.Moreover,its decay can be significantly delayed.

  9. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2].

    Directory of Open Access Journals (Sweden)

    José C Ramalho

    Full Text Available Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2 s(-1, RH (75% and 380 or 700 μL CO2 L(-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49% when measured at 700 than at 380 μL CO2 L(-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down

  10. Sustained Photosynthetic Performance of Coffea spp. under Long-Term Enhanced [CO2

    Science.gov (United States)

    Ramalho, José C.; Rodrigues, Ana P.; Semedo, José N.; Pais, Isabel P.; Martins, Lima D.; Simões-Costa, Maria C.; Leitão, António E.; Fortunato, Ana S.; Batista-Santos, Paula; Palos, Isabel M.; Tomaz, Marcelo A.; Scotti-Campos, Paula; Lidon, Fernando C.; DaMatta, Fábio M.

    2013-01-01

    Coffee is one of the world’s most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m-2 s-1), RH (75%) and 380 or 700 μL CO2 L-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data

  11. Reduced repair of potentially lethal radiation damage in glutathione synthetase-deficient human fibroblasts after X-irradiation

    International Nuclear Information System (INIS)

    Midander, J.; Revesz, L.; Deschavanne, P.J.; Debieu, D.; Malaise, E.P.

    1986-01-01

    Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions. (author)

  12. Six habits to enhance MET performance under stress: A discussion paper reviewing team mechanisms for improved patient outcomes.

    Science.gov (United States)

    Fein, Erich C; Mackie, Benjamin; Chernyak-Hai, Lily; O'Quinn, C Richard V; Ahmed, Ezaz

    2016-05-01

    Effective team decision making has the potential to improve the quality of health care outcomes. Medical Emergency Teams (METs), a specific type of team led by either critical care nurses or physicians, must respond to and improve the outcomes of deteriorating patients. METs routinely make decisions under conditions of uncertainty and suboptimal care outcomes still occur. In response, the development and use of Shared Mental Models (SMMs), which have been shown to promote higher team performance under stress, may enhance patient outcomes. This discussion paper specifically focuses on the development and use of SMMs in the context of METs. Within this process, the psychological mechanisms promoting enhanced team performance are examined and the utility of this model is discussed through the narrative of six habits applied to MET interactions. A two stage, reciprocal model of both nonanalytic decision making within the acute care environment and analytic decision making during reflective action learning was developed. These habits are explored within the context of a MET, illustrating how applying SMMs and action learning processes may enhance team-based problem solving under stress. Based on this model, we make recommendations to enhance MET decision making under stress. It is suggested that the corresponding habits embedded within this model could be imparted to MET members and tested by health care researchers to assess the efficacy of this integrated decision making approach in respect to enhanced team performance and patient outcomes. Copyright © 2015. Published by Elsevier Ltd.

  13. Engineered Heart Repair.

    Science.gov (United States)

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  14. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  15. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Trattnig, Siegfried; Pinker, Katja; Welsch, Goetz H. [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Mamisch, Tallal C. [Inselspital Bern, Orthopedic Surgery Department, Bern (Switzerland); Domayer, Stephan [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Medical University of Vienna, Department of Orthopaedics, Vienna (Austria); Szomolanyi, Pavol [Medical University of Vienna, MR Center-High field MR, Department of Radiology, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia); Marlovits, Stefan; Kutscha-Lissberg, Florian [Medical University of Vienna, Department of Traumatology, Center for Joints and Cartilage, Vienna (Austria)

    2008-06-15

    The purpose was to evaluate the relative glycosaminoglycan (GAG) content of repair tissue in patients after microfracturing (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint with a dGEMRIC technique based on a newly developed short 3D-GRE sequence with two flip angle excitation pulses. Twenty patients treated with MFX or MACT (ten in each group) were enrolled. For comparability, patients from each group were matched by age (MFX: 37.1 {+-} 16.3 years; MACT: 37.4 {+-} 8.2 years) and postoperative interval (MFX: 33.0 {+-} 17.3 months; MACT: 32.0 {+-} 17.2 months). The {delta} relaxation rate ({delta}R1) for repair tissue and normal hyaline cartilage and the relative {delta}R1 were calculated, and mean values were compared between both groups using an analysis of variance. The mean {delta}R1 for MFX was 1.07 {+-} 0.34 versus 0.32 {+-} 0.20 at the intact control site, and for MACT, 1.90 {+-} 0.49 compared to 0.87 {+-} 0.44, which resulted in a relative {delta}R1 of 3.39 for MFX and 2.18 for MACT. The difference between the cartilage repair groups was statistically significant. The new dGEMRIC technique based on dual flip angle excitation pulses showed higher GAG content in patients after MACT compared to MFX at the same postoperative interval and allowed reducing the data acquisition time to 4 min. (orig.)

  16. Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment

    International Nuclear Information System (INIS)

    Ranaweera, A L A K; Moscoso, Carlos Arriola; Lee, Jong-Wook

    2015-01-01

    In a wireless power transfer (WPT) system, misalignment between transmitter and receiver coils is one of the key factors affecting efficiency. Recently, metamaterials have shown great potential to enhance electromagnetic propagation in various environments. In this work, we apply a metamaterial to enhance the WPT in a more general environment where misalignment is considered. Using an anisotropic metamaterial, we obtain a significant efficiency enhancement. Therefore, we propose that the metamaterial is an effective means to mitigate the decreased efficiency caused by misalignment. In addition, we investigate the effect of coil misalignment on the threshold distance beyond which the metamaterial enhances the performance of WPT. (paper)

  17. Ergonomic assessment of enhanced protection under body armour combat shirt neck collars.

    Science.gov (United States)

    Breeze, John; Granger, C J; Pearkes, T D; Clasper, J C

    2014-03-01

    Combat neck injury due to explosively propelled fragments is a significant cause of mortality and long-term morbidity in UK soldiers deployed on current operations. Reinforcing the collar of the existing under body armour combat shirt (UBACS) has been suggested as a potential method for reducing the incidence of combat neck injury. 20 soldiers serving in Afghanistan objectively compared three designs of enhanced protection UBACS (EP-UBACS) using 10 representative military tasks against a baseline of a standard UBACS. Each EP-UBACS design was trialled using three constituent materials: two layers of para-aramid felt, one layer of ultra high molecule weight polyethylene (UHMWPE) felt or two layers of a silk fabric. Subjective assessment of these nine configurations in terms of comfort, heat dissipation and overall acceptability were compared with the standard UBACS using a χ² test. All military tasks could be performed with all nine configurations of EP-UBACS. Although silk was the most comfortable material, it was not functionally practical in any of the three designs. Crossover collars incorporating UHMWPE or para-aramid were the only two of the nine configurations to demonstrate similar user acceptability to a standard UBACS. The EP-UBACS has the potential to provide neck protection without reducing performance incorporating materials analogous to either of the felts assessed in this study. The collar should provide stand-off from the skin to improve heat dissipation and comfort, which can be maximised by changing the current UBACS collar shape to one that crosses over at the front. Should a zip be desired, it should be moved to one side of the midline to reduce rubbing on the chin and be covered with ballistic protective material. Additional semi-circles of silk beneath the collar at the front and back would improve protection without affecting comfort.

  18. Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes manifested by defective colony-forming ability and reduced DNA repair replication after hypoxic γ-irradiation

    International Nuclear Information System (INIS)

    Paterson, M.C.; Anderson, A.K.; Smith, B.P.; Smith, P.J.

    1979-01-01

    We have measured the sensitivity to γ-ray inactivation of diploid skin fibroblasts cultured from 10 persons in four families with ataxia telangiectasia (AT). Persons heterozygous for AT, including parents of afflicted patients, are not as yet detectable by any specific clinical or laboratory marker but are believed to constitute a substantial portion of the middle-aged cancer population. In one AT family, fibroblast strains from both parents exhibited a colony-forming ability after hypoxic irradiation which was intermediate between that displayed by five control strains from normal children and that from the affected child. In the remaining three families, cultures from only one parent were available; one parental strain displayed an intermediate survival capacity as above, whereas the other two responded normally. The homozygous recessive strains from the five afflicted children in the four families were all equally hypersensitive to hypoxic γ-ray inactivation. The three presumed AT heterozygous strains that displayed intermediate rayiosensitivity also carried out γ-rad-induced DNA repair replication to an extent intermediate between those in normals and AT homozygotes. These findings suggest that a numerically significant, cancer-prone subpopulation of humans carrying one normal and one abnormal AT gene may also be moderately sensitive to lethal effects of hypoxic γ-rays due to a defect in the enzymatic repair of DNA

  19. Cu-doped TiO2 nanoparticles enhance survival of Shewanella oneidensis MR-1 under Ultraviolet Light (UV) exposure

    International Nuclear Information System (INIS)

    Wu, Bing; Zhuang, Wei-Qin; Sahu, Manoranjan; Biswas, Pratim; Tang, Yinjie J.

    2011-01-01

    It has been shown that photocatalytic TiO 2 nanoparticles (NPs) can be used as an efficient anti-microbial agent under UV light due to generation of reactive oxygen species (ROS), while Shewanella oneidensis MR-1 is a metal-reducing bacterium highly susceptible to UV radiation. Interestingly, we found that the presence of Cu-doped TiO 2 NPs in the cultural medium dramatically increased the survival rates (based on colony-forming unit) of strain MR-1 by over 10,000-fold (incubation without shaking) and ∼ 200 fold (incubation with shaking) after a 2-h exposure to UV light. Gene expression results (via qPCR measurement) indicated that the DNA repair gene recA in MR-1 was significantly induced by UV exposure (indicating cellular damage under UV stress), but the influence of NPs on recA expression was not statistically evident. Plausible explanations to NP attenuation of UV stresses are: 1. TiO 2 based NPs are capable of scattering and absorbing UV light and thus create a shading effect to protect MR-1 from UV radiation; 2. more importantly, Cu-doped TiO 2 NPs can co-agglomerate with MR-1 to form large flocs that improves cells' survival against the environmental stresses. This study improves our understanding of NP ecological impacts under natural solar radiation and provides useful insights to application of photocatalytic-NPs for bacterial disinfection.

  20. A geometric process repair model for a repairable cold standby system with priority in use and repair

    International Nuclear Information System (INIS)

    Zhang Yuanlin; Wang Guanjun

    2009-01-01

    In this paper, a deteriorating cold standby repairable system consisting of two dissimilar components and one repairman is studied. For each component, assume that the successive working times form a decreasing geometric process while the consecutive repair times constitute an increasing geometric process, and component 1 has priority in use and repair. Under these assumptions, we consider a replacement policy N based on the number of repairs of component 1 under which the system is replaced when the number of repairs of component 1 reaches N. Our problem is to determine an optimal policy N* such that the average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit equation of the average cost rate of the system is derived and the corresponding optimal replacement policy N* can be determined analytically or numerically. Finally, a numerical example with Weibull distribution is given to illustrate some theoretical results in this paper.

  1. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  2. DNA repair in mutagen-injured higher plants

    International Nuclear Information System (INIS)

    Veleminsky, J.; Gichner, T.

    1978-01-01

    Data are summarized proving the occurrence of photoreactivation of UV-induced pyrimidine dimers in cells of Nicotiana tabucum, Gingko and carrot, the excision of dimers in cells of Nicotiana tabacum, Gingko and carrot, the excision of dimers in protoplasts of carrot and in embryos of Lathyrus sativus, and the repair of DNA single-strand breaks induced in carrot protoplasts and barley embryonic cells by ionizing radiation. In irradiated barley embryos the unscheduled DNA synthesis and higher accessibility of induced primers to DNA polymerase I of E. coli were observed preferentially in G 1 cells with diffused chromatin. These reactions were inhibited by caffeine and EDTA. Unscheduled DNA synthesis was also observed in synchronized irradiated root cuttings of Vicia faba and in barley embryos treated with 4-nitroquinoline oxide, the latter being inhibited by caffeine and hydroxyurea. Repair synthesis was also established in barley embryos treated with mutagenic N-methyl-N-nitrosourea under conditions that postponed the onset of germination after the treatment. The same conditions enhanced the repair of DNA single-strand breaks induced by this mutagen and several other monofunctional alkylating compounds. From tissues of barley and of Phaseolus multiflorus, endonucleases for apurinic sites were isolated and characterized. Some of them are located in chromatin, others in chloroplasts. The relation between DNA repair and genetic effects of mutagens in higher plants is also discussed. (Auth.)

  3. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  4. This mood is familiar and I don't deserve to feel better anyway: mechanisms underlying self-esteem differences in motivation to repair sad moods.

    Science.gov (United States)

    Wood, Joanne V; Heimpel, Sara A; Manwell, Laurie A; Whittington, Elizabeth J

    2009-02-01

    Why are people with low self-esteem (LSE) less motivated than people with high self-esteem (HSE) to improve sad moods? The present research examined whether feelings of personal deservingness contribute to this difference. Four experiments with undergraduate participants involved a sad mood induction, a manipulation of personal deservingness, or both. Results suggested that (a) LSEs feel less deserving of positive outcomes and of positive moods than do HSEs, (b) feelings of personal deservingness can vary with the situation, and be lowered through reminders of social rejection and personal flaws, and (c) feeling relatively undeserving dampens LSEs', but not HSEs', motivation to repair sad moods. These results have implications for the emotion regulation, self-esteem, and social justice literatures.

  5. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  6. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions

    NARCIS (Netherlands)

    Lévesque, M.; Siegwolf, R.; Saurer, M.; Eilmann, B.; Rigling, A.

    2014-01-01

    Higher atmospheric CO2 concentrations (ca ) can under certain conditions increase tree growth by enhancing photosynthesis, resulting in an increase of intrinsic water-use efficiency (i WUE) in trees. However, the magnitude of these effects and their interactions with changing climatic conditions are

  7. Analysis for a two-dissimilar-component cold standby repairable system with repair priority

    International Nuclear Information System (INIS)

    Leung, Kit Nam Francis; Zhang Yuanlin; Lai, Kin Keung

    2011-01-01

    In this paper, a cold standby repairable system consisting of two dissimilar components and one repairman is studied. Assume that working time distributions and repair time distributions of the two components are both exponential, and Component 1 has repair priority when both components are broken down. After repair, Component 1 follows a geometric process repair while Component 2 obeys a perfect repair. Under these assumptions, using the perfect repair model, the geometric process repair model and the supplementary variable technique, we not only study some important reliability indices, but also consider a replacement policy T, under which the system is replaced when the working age of Component 1 reaches T. Our problem is to determine an optimal policy T* such that the long-run average loss per unit time (i.e. average loss rate) of the system is minimized. The explicit expression for the average loss rate of the system is derived, and the corresponding optimal replacement policy T* can be found numerically. Finally, a numerical example for replacement policy T is given to illustrate some theoretical results and the model's applicability. - Highlights: → A two-dissimilar-component cold standby system with repair priority is formulated. → The successive up/repair times of Component 1 form a decreasing/increasing geometric process. → Not only some reliability indices but also a replacement policy are studied.

  8. Vaccination efficacy with marrow mesenchymal stem cell against cancer was enhanced under simulated microgravity

    International Nuclear Information System (INIS)

    Li, Jing; Chen, Jun; Li, Xiuyu; Qian, Yanfang

    2017-01-01

    Stem cell vaccination can induce consistent and strong anti-tumor immunity against cancer in mice model. The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine MSCs. Based on this conception, we first compared their tumor vaccines intervention effects of adult MSCs and MSCs under simulated microgravity (MSC/SMG). In this study, BALB/c mice were vaccinated with MSCs or MSC/SMG, compared with mice vaccinated with phosphate buffered saline (PBS) as negative controls. We then subcutaneously implanted the A549 human lung cancer cell line into vaccinated mice and monitored tumor growth potential in vivo. The smaller tumor size and less tumor weight were observed in mice vaccinated with MSCs or MSC/SMG, compared with that of the Control group. Particularly, it was much more significant in the group of MSC/SMG than that group of the MSCs. Vaccination with SMG treated MSCs inhibited proliferation and promoted apoptosis of tumor tissue. SMG/MSC vaccination induced bothTh1-mediated cytokine response; CD8-dependent cytotoxic response which reduced the proportion of Treg cells. Furthermore, SMG/MSC vaccination significantly increased MHC1 and HSPs proteins expression. In conclusion, we demonstrated the SMG could improve tumor-suppressive activity of MSC. The enhanced anti-tumor immune response of MSCs/SMG was strongly associated with the higher expression of MHC class I molecule on DCs, and the abundance of HSPs in the SMG treated MSCs may make antigens in the MSC more cross-presentable to the host DCs for generating protective antitumor activity. This study gains an insight into the mechanism of MSCs anti-tumor efficacy and gives a new strategy for cancer therapies in the future. - Highlights: • Vaccination with SMG

  9. 46 CFR 176.700 - Permission for repairs and alterations.

    Science.gov (United States)

    2010-10-01

    ... repair or replacement, other than replacement in kind, of electrical wiring, fuel lines, tanks, boilers... 46 Shipping 7 2010-10-01 2010-10-01 false Permission for repairs and alterations. 176.700 Section... (UNDER 100 GROSS TONS) INSPECTION AND CERTIFICATION Repairs and Alterations § 176.700 Permission for...

  10. Delay-enhanced stability and stochastic resonance in perception bistability under non-Gaussian noise

    International Nuclear Information System (INIS)

    Yang, Tao; Zeng, Chunhua; Liu, Ruifen; Wang, Hua; Mei, Dongcheng

    2015-01-01

    In this paper we investigate the effect of time delay in an attractor network model of perception bistability driven by non-Gaussian noise. Using delay Langevin and Fokker–Planck approaches, the theoretical analysis of the model is presented. It is found that the mean first-passage time (MFPT) as a function of the time delay exhibits a maximum, which is identified as the characteristic of the delay-enhanced stability of the system. This is different to the case of noise-enhanced stability. The non-Gaussian noise-enhanced stability of the system is also analyzed. The signal-to-noise ratio (SNR) as a function of the noise intensity exhibits a maximum. This maximum implies the identifying characteristic of stochastic resonance (SR), and the time delay and non-Gaussian noise can enhance the SR phenomenon. (paper)

  11. Enhanced Densification of White Cast Iron Powders by Cyclic Phase Transformations under Stress.

    Science.gov (United States)

    1981-08-01

    Little or no significant enhancement in densification was reported in these cases where no applied stresses were used. Kohara [9) extended this work...enhancement of densification observed by Kohara , although limited, was attributed to the occurrence of transformation superplasticity. As will be shown... Kohara : Metall. Trans., 1976, vol. 7, p. 1239. 10. Y. Oshida, J. Jpn. Soc, Powder and Powder Metall., 1975, vol. 22, p. 147. 11. M. de Jong and G. W

  12. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  13. Retinal detachment repair

    Science.gov (United States)

    ... medicines Problems breathing You may not recover full vision. ... detachments can be repaired. Failure to repair the retina always results in loss of vision to some degree. After surgery, the quality of ...

  14. Equipment for construction and repair of pipework

    International Nuclear Information System (INIS)

    Roehrich, H.

    1987-01-01

    More stringent requirements on the integrity of safety-related components in power plants with a view to ensuring the availability of these installations and to rationalizing in-service inspections and repairs have resulted in rapid enhancement of the inspection and repair methods used. Piping systems are increasingly being visually inspected, tested and possibly subjected to remote-control repair from the interior using remotely controlled inspection vehicles. This calls for machines with high levels of reliability which may be operated by means of remote control. Technical developments make it possible nowadays to perform operations that were largely out of the question a decade ago. (orig.) [de

  15. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.

    Science.gov (United States)

    Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira

    2007-07-01

    Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.

  16. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    Science.gov (United States)

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair.

  17. Quantitative analysis of contrast enhancement of transplanted kidneys under computed tomography

    International Nuclear Information System (INIS)

    Fujita, Tamio; Asano, Haruyoshi; Yanaoka, Masanori; Moriguchi, Ryuichiro; Okishio, Norihiko

    1981-01-01

    Using Hitachi CT-3, the changes in CT numbers of the kidney were calculated in 10 normal and 12 transplanted kidneys. Two mililiters per kg of meglumine diatrizoate (Angiografin) was given intravenously in bolus fashion. Kidneys were scanned before injection, at termination of injection and correctly 10 minutes after injection. In control group, the CT numbers of the cortex, the medulla and the aorta showed rapid increase after contrast administration. Ten minutes after administration of medium, the CT numbers of the medulla remained a little higher than the cortex, though that of the aorta showed rapid decrease. In contrast to control group, in transplanted kidneys the CT numbers of the cortex and medulla showed less increase than the control group just after contrast administration. Moreover, in the recipients who have had good graft function the CT numbers of the cortex and medulla showed gradual increase, in the recipients who have had poor graft function the CT numbers showed gradual decrease 10 minutes after injection. Enhancing indices calculated from the formula: CT numbers 10 minutes after contrast enhancement CT numbers before contrast enhancement were inversely proportional to the serum creatinine. These results lead to the conclusion that the CT scans employing contrast enhancement method after kidney transplantation has the diagnostic value of graft function in addition to diagnostic usefulness for post-transplantation complications such as hematoma, urinoma or lymphocele. (author)

  18. Unearthing Bacillus endophytes from desert plants that enhance growth of Arabidopsis thaliana under abiotic stress conditions

    KAUST Repository

    Bokhari, Ameerah

    2018-01-01

    that these bacteria can confer resilience to plants under salt stress conditions. B. circulans (PK3-15 and PK3-109), B. cereus (PK6-15) B. subtilis (PK3-9) and B. licheniformis (PK5-26) displayed the ability to increased the fresh weight of A. thaliana under salt

  19. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis

    International Nuclear Information System (INIS)

    Radman, M.

    1974-01-01

    A hypothesis is proposed according to which E. coli possesses an inducible DNA repair system. This hypothetical repair, which we call SOS repair, is manifested only following damage to DNA, and requires de novo protein synthesis. SOS repair in E. coli requires some known genetic elements: recA + , lex + and probably zab + . Mutagenesis by ultraviolet light is observed only under conditions of functional SOS repair: we therefore suspect that this is a mutation-prone repair. A number of phenomena and experiments is reviewed which at this point can best be interpreted in terms of an inducible mutagenic DNA repair system. Two recently discovered phenomena support the proposed hypothesis: existence of a mutant (tif) which, after a shift to elevated temperature, mimicks the effect of uv irradiation in regard to repair of phage lambda and uv mutagenesis, apparent activation of SOS repair by introduction into the recipient cell of damaged plasmid or Hfr DNA. Several specific predictions based on SOS repair hypothesis are presented in order to stimulate further experimental tests. (U.S.)

  20. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47

    DEFF Research Database (Denmark)

    Kamstra, Jorke H; Hruba, Eva; Blumberg, Bruce

    2014-01-01

    Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model. The mech......Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model....... The mechanisms by which EDCs direct preadipocytes to form adipocytes are poorly understood. Here, we examined transcriptional and epigenetic mechanisms underlying the induction of in vitro adipocyte differentiation by BDE-47. Quantitative high content microscopy revealed concentration-dependent enhanced...

  1. Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment

    International Nuclear Information System (INIS)

    Hashimoto, Masami; Takadama, Hiroaki; Mizuno, Mineo; Kokubo, Tadashi

    2006-01-01

    Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO 2 particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO 2 particles. The interfacial morphology and interaction between silanated TiO 2 and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO 2 was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO 2 particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure

  2. Pulmonary Embolism after Arthroscopic Rotator Cuff Repair: A Case Report

    Directory of Open Access Journals (Sweden)

    Tadashi Yamamoto

    2013-01-01

    Full Text Available Total hip/knee arthroplasty may cause venous thromboembolism (VTE as a postoperative complication. However, there are few reports on VTE after arthroscopic shoulder surgery. We report a patient who developed pulmonary embolism (PE 6 days after arthroscopic rotator cuff repair but recovered without sequelae. In this case, the possibility of DVT of the lower limbs was denied by contrast-enhanced CT. Most possibly, the source of PE was deep vein thrombosis (DVT of the upper limb under Desault fixation which showed arthroscopic surgery-related swelling postoperatively.

  3. Adaptive response to ionizing radiation in normal human skin fibroblasts. Enhancement of DNA repair rate and modulation of gene expression. Reponse adaptative au rayonnement ionisant des fibroblastes de peau humaine. Augmentation de la vitesse de reparation de l'ADN et variation de l'expression des genes

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, S.M. de; Mitchel, R.E.J. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.); Azzam, E. (Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs. Ottawa Univ., ON (Canada). Dept. of Biology); Raaphorst, G.P. (Ottawa Univ., ON (Canada). Dept. of Biology)

    Low doses and dose rates of ionizing radiation enhance the rate of DNA repair in human fibroblasts and protect the cells against radiation-induced micronucleus formation. Chronic exposures reduce the mRNA levels of the genes topoisomerase II and FACC-1 (Fanconi's anemia, group C). (authors). 11 refs., 1 tab., 2 figs.

  4. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    OpenAIRE

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational app...

  5. Imperfect repair and lifesaving in heterogeneous populations

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Maxim [Department of Mathematical Statistics, University of the Free State, PO Box 339, 9300 Bloemfontein (South Africa) and Max Planck Institute for Demographic Research, Rostock (Germany)]. E-mail: FinkelM.SCl@mail.uovs.ac.za

    2007-12-15

    In this theoretical paper we generalize the notion of minimal repair to the heterogeneous case, when the lifetime distribution function can be modeled by continuous or a discrete mixture of distributions. The statistical (black box) minimal repair and the minimal repair based on information just before the failure of an object are considered. The corresponding failure (intensity) rate processes are defined and analyzed. Demographic lifesaving model is also considered: each life is saved (cured) with some probability (or equivalently a proportion of individuals who would have died are now resuscitated and given another chance). Those who are saved experience the statistical minimal repair. Both of these models are based on the Poisson or non-homogeneous Poisson processes of underlying events, which allow for considering heterogeneity. We also consider the new model of imperfect repair in the homogeneous case and present generalizations to the heterogeneous setting.

  6. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  7. Enhanced photosensitized degradation of rhodamine B on CdS/TiO{sub 2} nanocomposites under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjuan [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Sciences and Engineering, Nanjing 210044 (China); Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165 (China); Cui, Xiaoli [Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165 (China); Wang, Peixian; Shao, Yu [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Li, Danzhen, E-mail: dzli@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Teng, Fei [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Sciences and Engineering, Nanjing 210044 (China)

    2013-09-01

    Graphical abstract: The photosensitized degradation of RhB was largely enhanced by the synergistic effect of the RhB and CdS/TiO{sub 2} nanocomposite. The composite of the two inorganic semiconductors with appropriate oxidation reduction energy levels enhanced the charge separation and extended the absorption response to visible region. - Highlights: • CdS/TiO{sub 2} nanocomposites were synthesized by a simple hydrothermal method. • Samples prepared at 200 °C, 12 h, CdS/TiO{sub 2} = 12% possessed the best activity. • The photosensitized degradation of RhB was largely enhanced by the composite. • The better activity was due to the synergistic effect of the RhB and CdS/TiO{sub 2}. - Abstract: Visible-light-driven photocatalysts, CdS/TiO{sub 2} nanocomposites were synthesized by a simple hydrothermal method. Their formation and structures were characterized by X-ray diffractometer, transmission electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Taking rhodamine B (RhB) as a model, their photocatalytic activities in aqueous phase under visible light irradiation (420 < λ < 800 nm) were tested. The results showed that the composite of CdS and TiO{sub 2} with appropriate oxidation reduction energy levels enhanced the charge separation and extended the absorption response into visible light region. Thus, the photosensitized degradation of RhB was largely enhanced. The degradation mechanism was explored concretely.

  8. Failure of supplementary ultraviolet radiation to enhance flower color under greenhouse conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R. M. [University of Vermont, Burlington, VT (United States)

    1990-03-15

    In order to determine whether the concentration of floral petal anthocyanin pigments could be increased, ultraviolet radiations in the UV-A and UV-B wavelength bands were presented to a variety of flowering plants to partly restore those wavelengths filtered out by greenhouse glass. In no tested plant did the supplementary ultraviolet radiation enhance floral anthocyanin content. Supplementary UV radiation has no economic value in greenhouse production of flowering plants. (author)

  9. Spatial memory enhances the evacuation efficiency of virtual pedestrians under poor visibility condition

    Science.gov (United States)

    Ma, Yi; Lee, Eric Wai Ming; Shi, Meng; Kwok Kit Yuen, Richard

    2018-03-01

    Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environmental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quantitatively represent the evacueeʼs spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacueeʼs spatial memory on the evacuation from theoretical and physical perspectives. The result shows that (i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold (\\varphi > 0.5); (ii) the effect of memory is superior to that of “follow-the-crowd” under the same environmental conditions; (iii) in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect (the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions. Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. 11203615).

  10. Co-inoculation of arbusculr mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions

    International Nuclear Information System (INIS)

    Zhu, R.; Tang, F.; Liu, F.; Chen, J.

    2016-01-01

    The study was to investigate the effects of combined inoculation of Glomus mosseae (arbusculr mycorrhizae fungi, AMF) and Sinorhizobium meliloti (nitrogen-fixing bacteria, i.e., an Rhizobium meliloti, RM) on yield, nutrient contents, nodulation and mycorrhizal colonization of different alfalfa cultivars under saline conditions. An experiment was conducted to test the efficacy of AMF and RM inoculation in development of salt tolerance in alfalfa cultivars (Zhaodong, Nongjing and Longmu) under different salinity levels (0, 60, 120 and 180 mM NaCl). We found that under non stress condition, double inoculation of alfalfa with rhizobium and AM increased the alfalfa yield, nodule weight and number, as well as shoot proline contents, the most when plants were double inoculated followed by AM and rhizobium inoculation, respectively. Whereas under salinity condition, double inoculation of alfalfa with rhizobium and AM increased alfalfa yield, mycorrhizal infection, nodule weight and number as well as increased in shoot proline content, the most followed by AM and rhizobium inoculation, respectively. The Results suggest that growth of alfalfa may be improved by combined inoculation of alfalfa with AM and rhizobium under salt and non-stress conditions. Alleviation of alfalfa growth under saline condition was perhaps due to an increase in mycorrhizal infection and nodule weight and number as well as an increased in shoot proline content by dual inoculation. (author)

  11. Systems Maintenance Automated Repair Tasks (SMART)

    Science.gov (United States)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  12. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fred J. Molz, III

    2010-05-28

    to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that

  13. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    International Nuclear Information System (INIS)

    Molz, Fred J. III

    2010-01-01

    to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that

  14. Enhancement of lipid accumulation by oleaginous yeast through phosphorus limitation under high content of ammonia.

    Science.gov (United States)

    Huang, Xiangfeng; Luo, Huijuan; Mu, Tianshuai; Shen, Yi; Yuan, Ming; Liu, Jia

    2018-04-18

    Low concentrations of acetic acid were used as carbon source to cultivate Cryptococcus curvatus MUCL 29819 for lipid production under high content of ammonia. Phosphorus limitation combined with initial pH regulation (pH = 6) weakened inhibition of free ammonia and promoted lipid accumulation. In batch cultivation, the produced lipid content and yield was 30.3% and 0.92 g/L, higher than those under unlimited condition (18.3% and 0.64 g/L). The content of monounsaturated fatty acid also increased from 37.3% (unlimited condition) to 45.8% (phosphorus-limited condition). During sequencing batch cultivation (SBC), the lipid content reached up to 51.02% under phosphorus-limited condition while only 31.88% under unlimited condition, which can be explained by the higher conversion efficiency of the carbon source to lipid. The total energy consumption including lipid extraction, transesterification and purification was 7.47 and 8.33 GJ under phosphorus-limited and unlimited condition, respectively. Copyright © 2018. Published by Elsevier Ltd.

  15. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Zepeda-Rodriguez, Armando [Facultad de Medicina, UNAM, Mexico City (Mexico); Moreno-Sánchez, Rafael; Saavedra, Emma [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Jasso-Chávez, Ricardo, E-mail: rjass_cardiol@yahoo.com.mx [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico)

    2015-05-15

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd{sup 2+} under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd{sup 2+} removal in anaerobiosis, whereas the Cd{sup 2+} intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd{sup 2+}) and biochemically characterized. High biomass (8.5 × 10{sup 6} cells mL{sup −1}) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O{sub 2}, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd{sup 2+} which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd{sup 2+} induced a higher MDA production. Cd{sup 2+} stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd{sup 2+} from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd{sup 2+} under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O{sub 2} concentration is particularly low.

  16. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    International Nuclear Information System (INIS)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-01-01

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd 2+ under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd 2+ removal in anaerobiosis, whereas the Cd 2+ intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd 2+ ) and biochemically characterized. High biomass (8.5 × 10 6 cells mL −1 ) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O 2 , which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd 2+ which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd 2+ induced a higher MDA production. Cd 2+ stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd 2+ from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd 2+ under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O 2 concentration is particularly low

  17. Enhancement of conductance of GaAs sub-microwires under external stimuli

    Science.gov (United States)

    Qu, Xianlin; Deng, Qingsong; Zheng, Kun

    2018-03-01

    Semiconductors with one dimension on the micro-nanometer scale have many unique physical properties that are remarkably different from those of their bulk counterparts. Moreover, changes in the external field will further modulate the properties of the semiconductor micro-nanomaterials. In this study, we used focused ion beam technology to prepare freestanding ⟨111⟩-oriented GaAs sub-microwires from a GaAs substrate. The effects of laser irradiation and bending or buckling deformation induced by compression on the electrical transport properties of an individual GaAs sub-microwire were studied. The experimental results indicate that both laser irradiation and bending deformation can enhance their electrical transport properties, the laser irradiation resulted in a conductance enhancement of ˜30% compared to the result with no irradiation, and in addition, bending deformation changed the conductance by as much as ˜180% when the average strain was approximately 1%. The corresponding mechanisms are also discussed. This study provides beneficial insight into the fabrication of electronic and optoelectronic devices based on GaAs micro/nano-wires.

  18. Inspired by Mary Jane? Mechanisms underlying enhanced creativity in cannabis users.

    Science.gov (United States)

    LaFrance, Emily M; Cuttler, Carrie

    2017-11-01

    Previous research suggests cannabis may enhance some aspects of creativity, although the results remain somewhat equivocal. Moreover, it is unclear whether differences in cannabis users' personalities may account for any potentially beneficial effects of cannabis on creativity. This study was designed to examine whether sober cannabis users demonstrate superior self-reported and objective creativity test performance relative to non-users, and to determine whether any of the Big 5 personality domains underlie these effects. A sample of sober cannabis users (n=412) and non-users (n=309) completed measures of cannabis consumption, personality, self-reported and objective creativity. Relative to non-users, sober cannabis users self-reported higher creativity, and performed significantly better on a measure of convergent thinking. Controlling for cannabis users' higher levels of openness to experience abolished these effects. Therefore, while cannabis users appear to demonstrate enhanced creativity, these effects are an artifact of their heightened levels of openness to experience. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions

    DEFF Research Database (Denmark)

    Pavlovic, Jelena; Samardzic, Jelena; Kostic, Ljiljana

    2016-01-01

    leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated. METHODS: Iron ((57)Fe or naturally occurring isotopes) was measured in leaves at different positions on plants hydroponically growing with or without...

  20. Online Counseling to Enhance Sexual Health of Young Adults under 25: Results Contextual Inquiry

    NARCIS (Netherlands)

    Kulyk, Olga Anatoliyivna; Roskam, V. R.; David, Silke; van Gemert-Pijnen, Julia E.W.C.

    2012-01-01

    The current approach for improving sexual health of young adults under 25 in the Netherlands is supported via the national website Sense.info, integrated with the face-to-face sexual counselling organized by designated regional Municipal Health Services (MHS). Evaluations among the target group of

  1. Enhanced abundance of tintinnids under elevated CO2 level from coastal Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Biswas, H.; Gadi, S.D.; Venkataramana, V.; Bharathi, M.D.; Priyan, R.K.; Manjari, D.T.; DileepKumar, M.

    of marine plankton to increasing CO2 concentrations. Natural water samples from the coastal Bay of Bengal were incubated under the ambient condition and high CO2 levels (703-711 latm) for 5 days in May and June 2010. A significant negative correlation...

  2. Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress.

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W; Zhu, Genhai

    2007-10-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Deltarca) line. In a long-term growth test at either constant 26 degrees C or daily 4-h 30 degrees C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions.

  3. High resolution model projections of tropical cyclone landfall over southern Africa under enhanced anthropogenic forcing

    CSIR Research Space (South Africa)

    Malherbe, J

    2011-09-01

    Full Text Available , no such change has been noted when all closed warm-core low pressure systems are considered. Several studies have through the use of coupled global circulation models globally reported a projected decrease in the number of tropical cyclones expected under...

  4. Rate enhancement in microfabricated chemical reactors under fast forced temperature oscillations

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Olsen, Jakob L.; Jensen, Søren

    2006-01-01

    Oxidation of CO under fast forced temperature oscillations shows increased reaction rate compared to steady state. A maximum increase of 40% is observed relative to steady state. The reaction rate is investigated for varying mean temperature, amplitude and frequency. As function of mean temperatu...

  5. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    Science.gov (United States)

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  6. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    Science.gov (United States)

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Wettability Improvement with Enzymes: Application to Enhanced Oil Recovery under Conditions of the North Sea Reservoirs

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Shapiro, Alexander; Stenby, Erling Halfdan

    2012-01-01

    (Nasiri et al., 2009), working mechanisms are poorly known and understood. The main goal of the present work is to establish possible mechanisms in which enzymes may enhance oil recovery. Improvement of the brine wettability of the rock and decrease of oil adhesion to it by addition of an enzyme is one...... of the possible mechanisms of enzymatic action. This mechanism has been investigated experimentally, by measurements of the contact angles between oil drops and enzyme solutions in brine on the mineral surfaces. Fifteen enzyme samples belonging to different enzyme classes, such as esterases/lipases, carbohydrases......, proteases and oxidoreductases, provided by Novozymes, have been investigated. Two commercial mixtures containing enzymes: Apollo-GreenZyme™ and EOR-ZYMAX™ have also been applied. The North Sea dead oil and the synthetic sea water were used as test fluids. Internal surface of a carbonate rock has been...

  8. EIT enhanced self-Kerr nonlinearity in the three-level lambda system under Doppler broadening

    International Nuclear Information System (INIS)

    Doai, Le Van; Khoa, Dinh Xuan; Bang, Nguyen Huy

    2015-01-01

    Using density-matrix theory, an analytical expression of the self-Kerr nonlinear coefficient of a three-level lambda EIT medium for a weak probe light is derived. Influences of the coupling light and Doppler broadening on the self-Kerr coefficient are investigated and compared to experimental observation with a good agreement. The self-Kerr nonlinearity of the medium is modified and greatly enhanced in the spectral region of EIT window. Furthermore, sign, slope, and magnitude of the self-Kerr coefficient can be controlled with frequency and intensity of the coupling light and temperature of the medium. In particular, for a given set of fixed values of the parameter coupling and probe lights, it is possible to choose an optimized temperature with which to obtain the largest magnitude of the self-Kerr coefficient. Such a controllable Kerr nonlinearity can find interesting applications in optoelectronic devices working with low-light intensity at various temperature conditions. (paper)

  9. EIT enhanced self-Kerr nonlinearity in the three-level lambda system under Doppler broadening

    International Nuclear Information System (INIS)

    Dinh Xuan Khoa; Le Van Doai; Pham Van Trong; Tran Manh Cuong; Vu Ngoc Sau; Nguyen Huy Bang; Le Nguyen Mai Anh

    2014-01-01

    Using density-matrix theory, an analytical expression of the self-Kerr nonlinear coefficient of a three-level lambda EIT medium for a weak probe light is derived. Influences of the coupling light and Doppler broadening on the self-Kerr coefficient are investigated and compared to experimental observation with a good agreement. The self-Kerr nonlinearity of the medium is modified and greatly enhanced in the spectral region of EIT window. Furthermore, sign, slope, and magnitude of the self-Kerr coefficient can be controlled with frequency and intensity of the coupling light and temperature of the medium. Specially, for a given set of fixed values of the parameters of coupling and probe lights, it could be able to choose an optimized temperature to have largest magnitude of the self-Kerr coefficient. Such controllable Kerr nonlinearity can find interesting applications in optoelectronic devices working with low-light intensity at various temperature conditions. (author)

  10. Facilitated orienting underlies fearful face-enhanced gaze cueing of spatial location

    Directory of Open Access Journals (Sweden)

    Joshua M. Carlson

    2016-12-01

    Full Text Available Faces provide a platform for non-verbal communication through emotional expression and eye gaze. Fearful facial expressions are salient indicators of potential threat within the environment, which automatically capture observers’ attention. However, the degree to which fearful facial expressions facilitate attention to others’ gaze is unresolved. Given that fearful gaze indicates the location of potential threat, it was hypothesized that fearful gaze facilitates location processing. To test this hypothesis, a gaze cueing study with fearful and neutral faces assessing target localization was conducted. The task consisted of leftward, rightward, and forward/straight gaze trials. The inclusion of forward gaze trials allowed for the isolation of orienting and disengagement components of gaze-directed attention. The results suggest that both neutral and fearful gaze modulates attention through orienting and disengagement components. Fearful gaze, however, resulted in quicker orienting than neutral gaze. Thus, fearful faces enhance gaze cueing of spatial location through facilitated orienting.

  11. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips

    International Nuclear Information System (INIS)

    Moll, Nikolaj; Gross, Leo; Mohn, Fabian; Curioni, Alessandro; Meyer, Gerhard

    2010-01-01

    By functionalizing the tip of an atomic force microscope (AFM) with a molecule or an atom that significantly contributes to the tip-sample interaction, the resolution can be dramatically enhanced. The interaction and therefore the resolution crucially depend on the chemical nature of the tip termination. Employing a tip functionalized with a CO molecule, atomic resolution of a pentacene molecule was recently demonstrated. In this work, the interaction between the CO tip and the pentacene imaged are studied with first principles calculations. The calculated frequency shifts compare very well with the experiment. The different energy contributions are analyzed and the Pauli energy is computed. We demonstrate that the source of the high resolution is Pauli repulsion, whereas van der Waals and electrostatic interactions only add a diffuse attractive background.

  12. Effects of enhanced UVB on growth and yield of alfalfa and soybean under field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydon, S.A.; Mohamad, A.

    1998-01-01

    The effects of 20% increase of UVB on growth and yield of alfalfa (Medicago Sativa L.) and two cultivars of soybean (Glycine Max (L.) Mer) under field conditions have been investigated. The increase of UVB dose ranged between 1.746 and 7.112 J/cm 2 during experiment. The results showed that soybean yield decrease by 16% and 31% in A. 3803 and A. 2522 cultivars respectively, under UVB exposure. The dry weight and leaf area were sensitive in the A. 3803 cultivar, while they were tolerant in the A. 2522 cultivar. Alfalfa response to UVB varied during the different stages of growth, whereas the yield was 12% less in the exposed plants. (author)

  13. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  14. Enhanced growth, yield and physiological characteristics of rice under elevated carbon dioxide

    Science.gov (United States)

    Abzar, A.; Ahmad, Wan Juliana Wan; Said, Mohd Nizam Mohd; Doni, Febri; Zaidan, Mohd Waznul Adly Mohd; Fathurahman, Zain, Che Radziah Che Mohd

    2018-04-01

    Carbon dioxide (CO2) is rapidly increasing in the atmosphere. It is an essential element for photosynthesis which attracts attention among scientists on how plants will perform in the rising CO2 level. Rice as one of the most important staple food in the world has been studied on the growth responses under elevated CO2. The present research was carried out to determine the growth and physiology of rice in elevated CO2 condition. This research was carried out using complete randomized design with elevated (800 ppm) and ambient CO2. Results showed that growth parameters such as plant height, tillers and number of leaves per plant were increased by elevated CO2. The positive changes in plant physiology when exposed to high CO2 concentration includes significant change (p<0.05) in yield parameters such as panicle number, grain number per panicle, biomass and 1000 grain weight under the elevated CO2 of 800 ppm.

  15. A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight

    Institute of Scientific and Technical Information of China (English)

    Xiang Lu; Yong-Cai Lai; Wei-Guang Du; Wei-Qun Man; Shou-Yi Chen; Jin-Song Zhang; Qing Xiong; Tong Cheng; Qing-Tian Li; Xin-Lei Liu; Ying-Dong Bi; Wei Li; Wan-Ke Zhang; Biao Ma

    2017-01-01

    Cultivated soybeans may lose some useful genetic loci during domestication.Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits.In this study,through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44,and mapping of quantitative trait loci for seed weight,we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size.PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes.We found that PP2C-1 is associated with GmBZR1,a soybean ortholog of Arabidopsis BZR1,one of key transcription factors in brassinosteroid (BR) signaling,and facilitate accumulation of dephosphorylated GmBZR1.In contrast,the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function.Moreover,we showed that GmBZR1 could promote seed weight/size in transgenic plants.Through analysis of cultivated soybean accessions,we found that 40% of the examined accessions do not have the PP2C-1 allele,suggesting that these accessions can be improved by introduction of this allele.Taken together,our study identifies an elite allele PP2C-1,which can enhance seed weight and/or size in soybean,and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops.

  16. The role of eye fixation in memory enhancement under stress - An eye tracking study.

    Science.gov (United States)

    Herten, Nadja; Otto, Tobias; Wolf, Oliver T

    2017-04-01

    In a stressful situation, attention is shifted to potentially relevant stimuli. Recent studies from our laboratory revealed that participants stressed perform superior in a recognition task involving objects of the stressful episode. In order to characterize the role of a stress induced alteration in visual exploration, the present study investigated whether participants experiencing a laboratory social stress situation differ in their fixation from participants of a control group. Further, we aimed at shedding light on the relation of fixation behaviour with obtained memory measures. We randomly assigned 32 male and 31 female participants to a control or a stress condition consisting of the Trier Social Stress Test (TSST), a public speaking paradigm causing social evaluative threat. In an established 'friendly' control condition (f-TSST) participants talk to a friendly committee. During both conditions, the committee members used ten office items (central objects) while another ten objects were present without being used (peripheral objects). Participants wore eye tracking glasses recording their fixations. On the next day, participants performed free recall and recognition tasks involving the objects present the day before. Stressed participants showed enhanced memory for central objects, accompanied by longer fixation times and larger fixation amounts on these objects. Contrasting this, fixation towards the committee faces showed the reversed pattern; here, control participants exhibited longer fixations. Fixation indices and memory measures were, however, not correlated with each other. Psychosocial stress is associated with altered fixation behaviour. Longer fixation on objects related to the stressful situation may reflect enhanced encoding, whereas diminished face fixation suggests gaze avoidance of aversive, socially threatening stimuli. Modified visual exploration should be considered in future stress research, in particular when focussing on memory for a

  17. Caffeine may enhance orthodontic tooth movement through increasing osteoclastogenesis induced by periodontal ligament cells under compression.

    Science.gov (United States)

    Yi, Jianru; Yan, Boxi; Li, Meile; Wang, Yu; Zheng, Wei; Li, Yu; Zhao, Zhihe

    2016-04-01

    Caffeine is the kernel component of coffee and has multiple effects on bone metabolism. Here we aimed to investigate the effects of caffeine intake on orthodontic tooth movement (OTM). (1) In the in vivo study, two groups comprising 15 randomly assigned rats each underwent orthodontic treatment. One group ingested caffeine at 25mg/kg body weight per day and the other, plain water. After 3 weeks, the degree of tooth movement and effect on the periodontium were assessed. (2) In the in vitro study, we established a model mimicking the essential bioprocess of OTM, which contained a periodontal ligament tissue model (PDLtm), and a co-culture system of osteoblasts (OBs) and osteoclast precursors (pre-OCs). After being subjected to static compressive force with or without caffeine administration, the conditioned media from the PDLtm were used for the OB/pre-OC co-cultures to induce osteoclastogenesis. (1) In vivo, the caffeine group displayed a significantly greater rate of tooth movement than the control. The alveolar bone mineral density and bone volume fraction were similar between the two groups; however, immunohistochemical staining showed that the caffeine group had significantly more TRAP(+) osteoclasts and higher RANKL expression in the compressed periodontium. (2) In vitro, caffeine at 0.01mM significantly enhanced the compression-induced expression of RANKL and COX-2, as well as prostaglandin E2 production in the PDLtm. Furthermore, the "caffeine+compression"-conditioned media induced significantly more TRAP(+) OC formation when compared with compression alone. Daily intake of caffeine, at least at some specific dosage, may enhance OTM through increasing osteoclastogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Understanding the Paris agreement: analysing the reporting requirements under the enhanced transparency framework

    DEFF Research Database (Denmark)

    Desgain, Denis DR; Sharma, Sudhir

    At the Paris climate conference (COP-21) in December 2015, the Conference of the Parties decided to adopt the Paris Agreement under the United Nations Framework Convention on Climate Change. This was the first time that 195 Parties had agreed on a universal, legally binding climate instrument......th October 2016, 74 Par¬ties had ratified the Agreement, accounting for 58.82% of global GHG emissions.1 The Paris Agreement will thus enter into force on 4th November 2016....

  19. Enhanced electron-lattice coupling under uniaxial stress in layered double hydroxides intercalated with samarium complexes

    International Nuclear Information System (INIS)

    Park, Ta-Ryeong

    2004-01-01

    We have applied uniaxial stress to samarium complexes by intercalating them into the gallery of a layered material and by using a diamond-anvil cell at 28 K. Although uniaxial stress reduces symmetry and removes degeneracy, the overall number of photoluminescence (PL) peaks evidently decreased with the application of uniaxial stress. This contradictory observation is explained by an increased electron-lattice coupling strength under uniaxial stress. This behavior is also confirmed by time-resolved PL data.

  20. Optimal maintenance policies in incomplete repair models

    International Nuclear Information System (INIS)

    Kahle, Waltraud

    2007-01-01

    We consider an incomplete repair model, that is, the impact of repair is not minimal as in the homogeneous Poisson process and not 'as good as new' as in renewal processes but lies between these boundary cases. The repairs are assumed to impact the failure intensity following a virtual age process of the general form proposed by Kijima. In previous works field data from an industrial setting were used to fit several models. In most cases the estimated rate of occurrence of failures was that of an underlying exponential distribution of the time between failures. In this paper, it is shown that there exist maintenance schedules under which the failure behavior of the failure-repair process becomes a homogeneous Poisson process

  1. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  2. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  3. Enhanced photocathodic protection performance of Ag/graphene/TiO2 composite for 304SS under visible light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Liu, Xueqing; Qian, Zhouhai; Hou, Baorong

    2017-06-01

    Ag and graphene co-sensitized TiO2 composites were successfully fabricated and used as photoanodes for photogenerated cathodic protection of 304 stainless steel (304SS) under visible light. Graphene films was firstly deposited onto the TiO2 nanotube (NT) films via cyclic voltammetric electrodeposition. Ag/graphene/TiO2 films were then fabricated via dipping and photoreduction method. The morphology, composition and optical response of the Ag/graphene/TiO2 NT composites were characterized by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV-vis diffusion reflectance spectroscopy, respectively. The photocathodic protection performance of the Ag/graphene/TiO2 composites were systematically studied through open-circuit potential and potentiodynamic polarization measurements in 3.5 wt% NaCl solution under visible light (λ > 400 nm). The composites exhibited enhanced photogenerated cathodic protection performance for 304SS under visible light irradiation compared to pure TiO2. Graphene and Ag have a synergistic effect on the enhancement of photocathodic protection performance of TiO2. The composites prepared with 30-cycle graphene film and 15 mM AgNO3 solution showed the optimal corrosion protection performance.

  4. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  5. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage

    Directory of Open Access Journals (Sweden)

    Thaura Ghneim-Herrera

    2017-06-01

    Full Text Available We evaluated the yields of Oryza sativa L. ‘Nipponbare’ rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT and wild-type (WT controls, providing 50–90% increases in grain yield (GY. Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.

  6. Evaluating Wharton’s Jelly-Derived Mesenchymal Stem Cell’s Survival, Migration, and Expression of Wound Repair Markers under Conditions of Ischemia-Like Stress

    Directory of Open Access Journals (Sweden)

    Iris Himal

    2017-01-01

    Full Text Available The efficacy of mesenchymal stem cell (MSC therapy is currently limited by low retention and poor survival of transplanted cells as demonstrated by clinical studies. This is mainly due to the harsh microenvironment created by oxygen and nutrient deprivation and inflammation at the injured sites. The choice of MSC source could be critical in determining fate and cellular function of MSCs under stress. Our objective here was to investigate the influence of ischemia-like stress on Wharton’s jelly MSCs (WJ-MSCs from human umbilical cord to assess their therapeutic relevance in ischemic diseases. We simulated conditions of ischemia in vitro by culturing WJ-MSCs in 2% oxygen in serum deprived and low glucose medium. Under these conditions, WJ-MSCs retained viable population of greater than 80%. They expressed the characteristic MSC surface antigens at levels comparable to the control WJ-MSCs and were negative for the expression of costimulatory molecules. An upregulation of many ECM and adhesion molecules and growth and angiogenic factors contributing to wound healing and regeneration was noted in the ischemic WJ-MSC population by a PCR array. Their migration ability, however, got impaired. Our findings provide evidence that WJ-MSCs might be therapeutically beneficial and potent in healing wounds under ischemic conditions.

  7. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  8. Enhanced photocatalytic performance of BiVO_4 in aqueous AgNO_3 solution under visible light irradiation

    International Nuclear Information System (INIS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-01-01

    Graphical abstract: Ag"+ ions enhanced photocatalytic activity of BiVO_4 under visible light irradiation. - Highlights: • The presence of Ag"+ ions enhanced the photodegradation activity of BiVO_4. • Photoreduction of Ag deposited on the BiVO_4 surface was obtained. • Luminescence and electrochemical results elucidated the photocatalytic mechanism. • Holes and oxygen radicals were the main reactive species generated by BiVO_4/Ag"+. • Used BiVO_4/Ag"+ exhibited photocatalytic antibacterial activity toward E. coli. - Abstract: Monoclinic-phase bismuth vanadate (BiVO_4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag"+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO_3 to BiVO_4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO_4/Ag"+. Superior photocatalytic performance was obtained when BiVO_4 was mixed with 0.01%(w/v) AgNO_3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO_4 or AgNO_3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron–hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag"+ and the formation of a BiVO_4/Ag heterojunction. The synergic effect between BiVO_4 and Ag"+ was discovered to be unique. BiVO_4/Ag"+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO_4 and a R6G solution to detect Ag"+ ions in water was discovered.

  9. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  10. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    DEFF Research Database (Denmark)

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translatio...... of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions....

  11. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    OpenAIRE

    Xueping Du; Dongtai Han; Qiangmin Zhu

    2018-01-01

    To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to e...

  12. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  13. Enhanced Photocatalytic Degradation of Methyl Orange Dye under the Daylight Irradiation over CN-TiO₂ Modified with OMS-2.

    Science.gov (United States)

    Hassan, Mohamed Elfatih; Chen, Jing; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo

    2014-12-12

    In this study, CN-TiO₂ was modified with cryptomelane octahedral molecular sieves (OMS-2) by the sol-gel method based on the self-assembly technique to enhance its photocatalytic activity under the daylight irradiation. The synthesized samples were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and porosimeter analysis. The results showed that the addition of OMS-2 in the sol lead to higher Brunauer-Emmett-Teller (BET) surface area, pore volume, porosity of particle after heat treatment and the specific surface area, porosity, crystallite size and pore size distribution could be controlled by adjusting the calcination temperature. Compared to the CN-TiO₂-400 sample, CN-TiO₂/OMS-2-400 exhibited greater red shift in absorption edge of samples in visible region due to the OMS-2 coated. The enhancement of photocatalytic activity of CN-TiO₂/OMS-2 composite photocatalyst was subsequently evaluated for the degradation of the methyl orange dye under the daylight irradiation in water. The results showed that the methyl orange dye degradation rate reach to 37.8% for the CN-TiO₂/OMS-2-400 sample under the daylight irradiation for 5 h, which was higher than that of reference sample. The enhancement in daylight photocatalytic activities of the CN-TiO₂/OMS samples could be attributed to the synergistic effects of OMS-2 coated, larger surface area and red shift in adsorption edge of the prepared sample.

  14. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  15. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin; Lei, Guanglun; Hou, Jian; Xu, Xiaohong; Wang, Dan; Steenhuis, Tammo S.

    2015-01-01

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  16. Heat transfer enhancement with elliptical tube under turbulent flow TiO2-water nanofluid

    Directory of Open Access Journals (Sweden)

    Hussein Adnan M.

    2016-01-01

    Full Text Available Heat transfer and friction characteristics were numerically investigated, employing elliptical tube to increase the heat transfer rate with a minimum increase of pressure drop. The flow rate of the tube was in a range of Reynolds number between 10000 and 100000. FLUENT software is used to solve the governing equation of CFD (continuity, momentum and energy by means of a finite volume method (FVM. The electrical heater is connected around the elliptical tube to apply uniform heat flux (3000 W/m2 as a boundary condition. Four different volume concentrations in the range of 0.25% to 1% and different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm, dispersed in water are utilized. The CFD numerical results indicate that the elliptical tube can enhance heat transfer and friction factor by approximately 9% and 6% than the circular tube respectively. The results show that the Nusselt number and friction factor increase with decreasing diameters but increasing volume concentrations of nanoparticles.

  17. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    Science.gov (United States)

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Suchi eSrivastava

    2016-05-01

    Full Text Available Rhizoctonia solani (RS is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13 is demonstrated to act as a biocontrol agent and enhance immune response against RS in rice by modulating various physiological, metabolic and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post RS infection may be attributed to several unconventional aspects of the plants’ physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a involvement of bacterial mycolytic enzymes, (b sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c a delicate balance of ROS and ROS scavengers through production of proline, mannitol and arabitol and rare sugars like fructopyranose, β-d glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d production of metabolites like quinozoline and expression of terpene synthase and (e hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in Bacillus amyloliquifaciens (SN13 mediated sustained biotic stress tolerance in rice.

  19. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Heran Ma

    Full Text Available Recent studies have indicated that protein hydrolysates have broad biological effects. In the current study we describe a novel antioxidative peptide, FDPAL, from soybean protein isolate (SPI. The aim of this study was to purify and characterize an antioxidative peptide from SPI and determine its antioxidative mechanism. LC-MS/MS was used to isolate and identify the peptide from SPI. The sequence of the peptide was determined to be Phe-Asp-Pro-Ala-Leu (FDPAL, 561 Da. FDPAL can cause significant enhancement of resistance to oxidative stress both in cells as well as simple organisms. In Caenorhabditis elegans (C. elegans, FDPAL can up-regulate the expression of certain genes associated with resistance. The antioxidant activity of this peptide can be attributed to the presence of a specific amino acid sequence. Results from our work suggest that FDPAL can facilitate potential applications of proteins carrying this sequence in the nutraceutical, bioactive material and clinical medicine areas, as well as in cosmetics and health care products.

  20. An enhanced decision support technique under uncertainty to power system design evaluation

    International Nuclear Information System (INIS)

    Eskandar, H.; Asgharpoor, M.J.

    2001-10-01

    Multiple attribute decision making (Madam) methods have been widely used in power systems decision problems. This paper presents an enhanced Madam method to help decision makers (DMS) study the influencing factors in the design of power systems. In many Madam problems, however, the information available to the Dm is often imprecise due to the inaccurate measurements and inconsistent priority judgments. The proposed Madam methodology is based on the analytical hierarchy process (Ah) incorporated into the construction procedure of linear additive utility models to quantify the various divergences of opinions, practices and events that lead to confusion and uncertainties in planning. Such practice could help the Dm gain insight into how the imprecise data may affect their choice toward the best solution and how a set of acceptable alternatives may be identified with certain confidence. Sample case study in the design of a hybrid solar-wind power system is provided to illustrate the concepts introduced in this paper. Factors in planning the design of a hybrid solar-wind power system relate mainly to political and social conditions, and to technical advances and economics

  1. Tuning to the significant: neural and genetic processes underlying affective enhancement of visual perception and memory.

    Science.gov (United States)

    Markovic, Jelena; Anderson, Adam K; Todd, Rebecca M

    2014-02-01

    Emotionally arousing events reach awareness more easily and evoke greater visual cortex activation than more mundane events. Recent studies have shown that they are also perceived more vividly and that emotionally enhanced perceptual vividness predicts memory vividness. We propose that affect-biased attention (ABA) - selective attention to emotionally salient events - is an endogenous attentional system tuned by an individual's history of reward and punishment. We present the Biased Attention via Norepinephrine (BANE) model, which unifies genetic, neuromodulatory, neural and behavioural evidence to account for ABA. We review evidence supporting BANE's proposal that a key mechanism of ABA is locus coeruleus-norepinephrine (LC-NE) activity, which interacts with activity in hubs of affective salience networks to modulate visual cortex activation and heighten the subjective vividness of emotionally salient stimuli. We further review literature on biased competition and look at initial evidence for its potential as a neural mechanism behind ABA. We also review evidence supporting the role of the LC-NE system as a driving force of ABA. Finally, we review individual differences in ABA and memory including differences in sensitivity to stimulus category and valence. We focus on differences arising from a variant of the ADRA2b gene, which codes for the alpha2b adrenoreceptor as a way of investigating influences of NE availability on ABA in humans. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    Science.gov (United States)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  3. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin

    2015-10-12

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  4. Helical Face Gear Development Under the Enhanced Rotorcraft Drive System Program

    Science.gov (United States)

    Heath, Gregory F.; Slaughter, Stephen C.; Fisher, David J.; Lewicki, David G.; Fetty, Jason

    2011-01-01

    U.S. Army goals for the Enhanced Rotorcraft Drive System Program are to achieve a 40 percent increase in horsepower to weight ratio, a 15 dB reduction in drive system generated noise, 30 percent reduction in drive system operating, support, and acquisition cost, and 75 percent automatic detection of critical mechanical component failures. Boeing s technology transition goals are that the operational endurance level of the helical face gearing and related split-torque designs be validated to a TRL 6, and that analytical and manufacturing tools be validated. Helical face gear technology is being developed in this project to augment, and transition into, a Boeing AH-64 Block III split-torque face gear main transmission stage, to yield increased power density and reduced noise. To date, helical face gear grinding development on Northstar s new face gear grinding machine and pattern-development tests at the NASA Glenn/U.S. Army Research Laboratory have been completed and are described.

  5. Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts.

    Science.gov (United States)

    Castillo Diaz, Jean Manuel; Delgado-Moreno, Laura; Núñez, Rafael; Nogales, Rogelio; Romero, Esperanza

    2016-08-01

    In biobed bioremediation systems (BBSs) with vermicomposts exposed to a high load of pesticides, 6 bacteria and 4 fungus strains were isolated, identified, and investigated to enhance the removal of pesticides. Three different mixtures of BBSs composed of vermicomposts made from greenhouse (GM), olive-mill (OM) and winery (WM) wastes were contaminated, inoculated, and incubated for one month (GMI, OMI and WMI). The inoculums maintenance was evaluated by DGGE and Q-PCR. Pesticides were monitored by HPLC-DAD. The highest bacterial and fungal abundance was observed in WMI and OMI respectively. In WMI, the consortia improved the removal of tebuconazole, metalaxyl, and oxyfluorfen by 1.6-, 3.8-, and 7.7-fold, respectively. The dissipation of oxyfluorfen was also accelerated in OMI, with less than 30% remaining after 30d. One metabolite for metalaxyl and 4 for oxyfluorfen were identified by GC-MS. The isolates could be suitable to improve the efficiency of bioremediation systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  7. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  8. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    International Nuclear Information System (INIS)

    Goodarzi, Mohsen; Amooie, Hossein

    2016-01-01

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  9. Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning.

    Science.gov (United States)

    Raya, J; Hirschinger, J

    2017-08-01

    Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and l-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation

    Directory of Open Access Journals (Sweden)

    Viviane Gomes Pereira Ribeiro

    2017-09-01

    Full Text Available This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL. The obtained nanomaterials were characterized by X-ray diffraction (XRD, UV-Vis diffuse reflectance spectroscopy (DRS, Fourier transform infrared spectroscopy (FT-IR, transmission electron microscopy (TEM, and steady-state photoluminescence spectra (PL. The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions.

  11. Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions

    Directory of Open Access Journals (Sweden)

    M.M. Azimatun Nur

    2015-10-01

    Full Text Available Microalgae cultivated in mixotrophic conditions have received significant attention as a suitable source of biofuel feedstock, based on their high biomass and lipid productivity. POME is one of the wastewaters generated from palm oil mills, containing important nutrients that could be suitable for mixotrophic microalgae growth. The aim of this research was to identify the growth of Chlorella vulgaris cultured in POME medium under mixotrophic conditions in relation to a variety of organic carbon sources added to the POME mixture. The research was conducted with 3 different carbon sources (D-glucose, crude glycerol and NaHCO3 in 40% POME, monitored over 6 days, under an illumination of 3000 lux, and with pH = 7. The biomass was harvested using an autoflocculation method and dry biomass was extracted using an ultrasound method in order to obtain the lipid content. The results show that C. vulgaris using D-glucose as carbon source gained a lipid productivity of 195 mg/l/d.

  12. New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation

    Science.gov (United States)

    Ribeiro, Viviane Gomes Pereira; Marcelo, Ana Maria Pereira; da Silva, Kássia Teixeira; da Silva, Fernando Luiz Firmino; Mota, João Paulo Ferreira; do Nascimento, João Paulo Costa; Sombra, Antonio Sérgio Bezerra; Clemente, Claudenilson da Silva; Mazzetto, Selma Elaine

    2017-01-01

    This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL). The obtained nanomaterials were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and steady-state photoluminescence spectra (PL). The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB) in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions. PMID:28934117

  13. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-04-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.

  14. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  15. Flexural Strength of Carbon Fiber Reinforced Polymer Repaired Cracked Rectangular Hollow Section Steel Beams

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-01-01

    Full Text Available The flexural behavior of rectangular hollow section (RHS steel beams with initial crack strengthened externally with carbon fiber reinforced polymer (CFRP plates was studied. Eight specimens were tested under three-point loading to failure. The experimental program included three beams as control specimens and five beams strengthened with CFRP plates with or without prestressing. The load deflection curves were graphed and failure patterns were observed. The yield loads and ultimate loads with or without repairing were compared together with the strain distributions of the CFRP plate. It was concluded that yield loads of cracked beams could be enhanced with repairing. Meanwhile, the ultimate loads were increased to some extent. The effect of repair became significant with the increase of the initial crack depth. The failure patterns of the repaired specimens were similar to those of the control ones. Mechanical clamping at the CFRP plate ends was necessary to avoid premature peeling between the CFRP plate and the steel beam. The stress levels in CFRP plates were relatively low during the tests. The use of prestressing could improve the utilization efficiency of CFRP plates. It could be concluded that the patching repair could be used to restore the load bearing capacity of the deficient steel beams.

  16. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.

    Science.gov (United States)

    Lee, Woo-Mi; An, Youn-Joo

    2013-04-01

    Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Unearthing Bacillus endophytes from desert plants that enhance growth of Arabidopsis thaliana under abiotic stress conditions

    KAUST Repository

    Bokhari, Ameerah M

    2018-04-01

    Here, we embarked a bioprospecting project that focuses on the isolation and characterization of plant root endophytes, collected from the Thar Desert. A total of 381 endophytes were isolated and based on their 16S rRNA gene sequences, genus Bacillus (58 strains) was identified as the major taxon and only endophytes from this genus were isolated from all plant types. Of the 58 Bacillus strains, only 16 strains were selected for screening of plant growth promotion traits such as P and Zn solubilization, indole-3-acetic acid and siderophore production, and antimicrobial activity. Based on the presence of specific plant growth promotion traits 10 strains were shortlisted for further in vitro screening with A. thaliana; to confirm that these bacteria can confer resilience to plants under salt stress conditions. B. circulans (PK3-15 and PK3-109), B. cereus (PK6-15) B. subtilis (PK3-9) and B. licheniformis (PK5-26) displayed the ability to increased the fresh weight of A. thaliana under salt stress conditions by more than 50 % compared to the uninoculated control. An interesting observation was that B. circulans (PK3-109) (shown to produce IAA exopolysaccharide) and B. circulans (PK3-138) (shown to produce IAA) in vitro results were substantially different as B. circulans (PK3-138) decreased the total fresh weight of A. thaliana by 47 %, whilst B. circulans (PK3-109) was one of the best performing strains. Thus, the genomes of these two strains were sequences to unravel the molecular versatility of B. circulans strains, specifically with respect to their interaction with plants. Most of the genome of these strains is identical but the most interesting feature was the presence of 1/ the DegS–DegU two-component system that is known to mediate the salt stress response and DegU also represses toxin wapA similar to antitoxin wapI, and 2/ YxiG, a gene in the unique orthogroup of PK3-109 was found to be linked to WapI. Thus, PK3-138 substantially decreasing the total fresh

  18. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    Science.gov (United States)

    Zhang, Nengli; Chai, An-Ti

    1999-01-01

    In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the

  19. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation.

    Science.gov (United States)

    Seo, Yeong Hwan; Cho, Changsoon; Lee, Jung-Yong; Han, Jong-In

    2014-12-01

    Solar radiation has intensity that is too high to inhibit microalgae activity and is composed of wide light spectrum including ultraviolet (UV) range which cannot be utilized for microalgae. For these reasons, the modification of solar radiation is required for effective microalgae cultivation, and to do that, fluorescent paint was used for not only blocking excessive solar energy but also converting UV to visible light. With fluorescent aqueous layer, microalgae was protected from photoinhibition and could grow well, but there was difference in growth and lipid accumulation efficiencies depending on the color; maximum dry weight of 1.7 g/L was achieved in red paint, whereas best lipid content of 30% was obtained in blue one. This phenomenon was due to the different light spectrum made by colors. With simple process using fluorescent paint, modification of light was successfully done and allowing microalgae to grow under strong radiation such as solar radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Riboflavin enhances photo-oxidation of amino acids under simulated clinical conditions

    International Nuclear Information System (INIS)

    Bhatia, J.; Stegink, L.D.; Ziegler, E.E.

    1983-01-01

    In neonatal nurseries, solutions of amino acids with added vitamins may be exposed to relatively intense light from phototherapy units. Light, especially in the presence of photosensitizers such as certain vitamins, is capable of destroying amino acids. In the present study, the effect of riboflavin on amino acid concentrations in solutions exposed to light was studied. Solutions of crystalline amino acids with and without added riboflavin were infused into shielded collecting vessels for 24 hr under conditions simulating those occurring during phototherapy. Decreases in concentrations of some amino acids were observed with light exposure alone. Decreases in concentrations of methionine, proline, tryptophan, and tyrosine were significantly greater in the presence of riboflavin that in its absence. Riboflavin concentrations were also significantly reduced after light exposure. Although the losses of amino acids are probably not nutritionally significant, the photo-oxidation products are largely unknown and may be toxic

  1. Enhancement of photocatalytic property on ZnS/MoS2 composite under visible light irradiation

    Directory of Open Access Journals (Sweden)

    Cheng Jiushan

    2017-01-01

    Full Text Available In this paper, the composite ZnS/MoS2 was obtained via two steps including solvothermal methods. The as-synthesized sample was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and UV-Vis. diffuse reflectance spectra (DRS. The photocatalytic activity of the product was evaluated through photocatalytic degradation of Rhodamine B (Rh B under UV-Vis. light irradiation; the electrical conductivity of ZnS/MoS2 composites was significantly improved compared to ZnS, MoS2, respectively. The results showed that the ZnS/MoS2 composite photocatalyst possesses better photocatalytic activity in degrading Rh B than the single ZnS or the single MoS2. The better photocatalytic properties may be due to the synergetic effect of two semiconductors, because of which electrons and holes were separated effectively. And its specific microstructure played an active role in evaluating photocatalytic performance.

  2. Enhancing informatics competency under uncertainty at the point of decision: a knowing about knowing vision

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer; Nielsen, Jesper Bo; Salkeld, Glenn

    2014-01-01

    , and ‘big data’, when rigorously analysed, as inputs into the probability judgements that need to be made in decision making under uncertainty. But these judgements are needed irrespective of the state of ‘the evidence’ and personalised evidence on person/patient-important criteria is very often poor...... that an appropriate balance of intuition and analysis is required, as in Hammond's Cognitive Continuum, and are made aware of the cognitive and motivated biases that can prevent us knowing ‘how much we know about how much we know’, with its deleterious effect on decision quality. Probability exercises......Most informatics activity is aimed at reducing unnecessary errors, mistakes and misjudgements at the point of decision, insofar as these arise from inappropriate accessing and processing of data and information. Healthcare professionals use the results of scientific research, when available...

  3. Enhanced Visualization of Fine Needles Under Sonographic Guidance Using a MEMS Actuator

    Directory of Open Access Journals (Sweden)

    Zhiyuan Shen

    2015-01-01

    Full Text Available Localization of a needle tip is important for biopsy examinations in clinics. However, the needle tip is sometimes difficult to discern under the guidance of sonography due to its poor visibility. A mini actuator that radiates a low-intensity ultrasound wave was manufactured using micro-electro-mechanical system (MEMS technology. Interference between the radiated and diagnostic ultrasound pulses was observed as bright lines in the B-mode ultrasound image, from which the mini actuator could be recognized with ease. Because the distance between the mini actuator and the needle tip is fixed, the needle tip can be determined despite its inconsistent appearance in the sonography. Both gel phantom and ex vivo tissue evaluation showed that the needle tip can be determined reliably utilizing the acoustic interference pattern.

  4. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination

    International Nuclear Information System (INIS)

    Mandal, Asit; Biswas, Bhabananda; Sarkar, Binoy; Patra, Ashok K.; Naidu, Ravi

    2016-01-01

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30 mg L"−"1 metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10 mg L"−"1), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72–78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP–bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil. - Highlights: • Surface tailored organobentonite synthesised and characterised • Modified clay adsorbs Cd and reduces toxicity to Mycobacterium gilvum. • It creates congenial microenvironment for bacterial survival. • It enhances phenanthrene biodegradation in metal co-contaminated condition.

  5. Surface tailored organobentonite enhances bacterial proliferation and phenanthrene biodegradation under cadmium co-contamination

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Asit [Future Industries Institute (formerly Centre for Environmental Risk Assessment and Remediation), University of South Australia, Mawson Lakes, SA 5095 (Australia); Indian Council of Agricultural Research (ICAR), Indian Institute of Soil Science, Bhopal (India); Biswas, Bhabananda [Future Industries Institute (formerly Centre for Environmental Risk Assessment and Remediation), University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT Building, University of Newcastle, Callaghan, NSW 2308 (Australia); Sarkar, Binoy, E-mail: binoy.sarkar@unisa.edu.au [Future Industries Institute (formerly Centre for Environmental Risk Assessment and Remediation), University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT Building, University of Newcastle, Callaghan, NSW 2308 (Australia); Patra, Ashok K. [Indian Council of Agricultural Research (ICAR), Indian Institute of Soil Science, Bhopal (India); Naidu, Ravi, E-mail: ravi.naidu@newcastle.edu.au [Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT Building, University of Newcastle, Callaghan, NSW 2308 (Australia); Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-04-15

    Co-contamination of soil and water with polycyclic aromatic hydrocarbon (PAH) and heavy metals makes biodegradation of the former extremely challenging. Modified clay-modulated microbial degradation provides a novel insight in addressing this issue. This study was conducted to evaluate the growth and phenanthrene degradation performance of Mycobacterium gilvum VF1 in the presence of a palmitic acid (PA)-grafted Arquad® 2HT-75-based organobentonite in cadmium (Cd)-phenanthrene co-contaminated water. The PA-grafted organobentonite (ABP) adsorbed a slightly greater quantity of Cd than bentonite at up to 30 mg L{sup −1} metal concentration, but its highly negative surface charge imparted by carboxylic groups indicated the potential of being a significantly superior adsorbent of Cd at higher metal concentrations. In systems co-contained with Cd (5 and 10 mg L{sup −1}), the Arquad® 2HT-75-modified bentonite (AB) and PA-grafted organobentonite (ABP) resulted in a significantly higher (72–78%) degradation of phenanthrene than bentonite (62%) by the bacterium. The growth and proliferation of bacteria were supported by ABP which not only eliminated Cd toxicity through adsorption but also created a congenial microenvironment for bacterial survival. The macromolecules produced during ABP–bacteria interaction could form a stable clay-bacterial cluster by overcoming the electrostatic repulsion among individual components. Findings of this study provide new insights for designing clay modulated PAH bioremediation technologies in mixed-contaminated water and soil. - Highlights: • Surface tailored organobentonite synthesised and characterised • Modified clay adsorbs Cd and reduces toxicity to Mycobacterium gilvum. • It creates congenial microenvironment for bacterial survival. • It enhances phenanthrene biodegradation in metal co-contaminated condition.

  6. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density.

    Science.gov (United States)

    Abad, Sònia; Fole, Alberto; del Olmo, Nuria; Pubill, David; Pallàs, Mercè; Junyent, Fèlix; Camarasa, Jorge; Camins, Antonio; Escubedo, Elena

    2014-03-01

    Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes. Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery. This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.

  7. Large Plankton Enhance Heterotrophy Under Experimental Warming in a Temperate Coastal Ecosystem

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2017-12-15

    Microbes are key players in oceanic carbon fluxes. Temperate ecosystems are seasonally variable and thus suitable for testing the effect of warming on microbial carbon fluxes at contrasting oceanographic conditions. In four experiments conducted in February, April, August and October 2013 in coastal NE Atlantic waters, we monitored microbial plankton stocks and daily rates of primary production, bacterial heterotrophic production and respiration at in situ temperature and at 2 and 4°C over ambient values during 4-day incubations. Ambient total primary production (TPP) exceeded total community respiration (< 200 µm, TR) in winter and fall but not in spring and summer. The bacterial contribution to ecosystem carbon fluxes was low, with bacterial production representing on average 6.9 ± 3.2% of TPP and bacterial respiration (between 0.8 and 0.2 µm) contributing on average 35 ± 7% to TR. Warming did not result in a uniform increase in the variables considered, and most significant effects were found only for the 4°C increase. In the summer and fall experiments, under warm and nutrient-deficient conditions, the net TPP/TR ratio decreased by 39 and 34% in the 4°C treatment, mainly due to the increase in respiration of large organisms rather than bacteria. Our results indicate that the interaction of temperature and substrate availability in determining microbial carbon fluxes has a strong seasonal component in temperate planktonic ecosystems, with temperature having a more pronounced effect and generating a shift toward net heterotrophy under more oligotrophic conditions as found in summer and early fall.

  8. Nod factor supply under water stress conditions modulates cytokinin biosynthesis and enhances nodule formation and N nutrition in soybean.

    Science.gov (United States)

    Prudent, Marion; Salon, Christophe; Smith, Donald L; Emery, R J Neil

    2016-09-01

    Nod factors (NF) are molecules produced by rhizobia which are involved in the N 2 -fixing symbiosis with legume plants, enabling the formation of specific organs called nodules. Under drought conditions, nitrogen acquisition by N 2 -fixation is depressed, resulting in low legume productivity. In this study, we evaluated the effects of NF supply on nitrogen acquisition and on cytokinin biosynthesis of soybean plants grown under drought. NF supply to water stressed soybeans increased the CK content of all organs. The profile of CK metabolites also shifted from t-Z to cis-Z and an accumulation of nucleotide and glucoside conjugates. The changes in CK coincided with enhanced nodule formation with sustained nodule specific activity, which ultimately increased the total nitrogen fixed by the plant.

  9. UV-inducible DNA repair in the cyanobacteria Anabaena spp

    International Nuclear Information System (INIS)

    Levine, E.; Thiel, T.

    1987-01-01

    Strains of the filamentous cyanobacteria Anabaena spp. were capable of very efficient photoreactivation of UV irradiation-induced damage to DNA. Cells were resistant to several hundred joules of UV irradiation per square meter under conditions that allowed photoreactivation, and they also photoreactivated UV-damaged cyanophage efficiently. Reactivation of UV-irradiated cyanophage (Weigle reactivation) also occurred; UV irradiation of host cells greatly enhanced the plaque-forming ability of irradiated phage under nonphotoreactivating conditions. Postirradiation incubation of the host cells under conditions that allowed photoreactivation abolished the ability of the cells to perform Weigle reactivation of cyanophage N-1. Mitomycin C also induced Weigle reactivation of cyanophage N-1, but nalidixic acid did not. The inducible repair system (defined as the ability to perform Weigle reactivation of cyanophages) was relatively slow and inefficient compared with photoreactivation

  10. Subchondral drilling for articular cartilage repair: a systematic review of translational research.

    Science.gov (United States)

    Gao, Liang; Goebel, Lars K H; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2018-05-03

    Articular cartilage defects may initiate osteoarthritis. Subchondral drilling, a widely applied clinical technique to treat small cartilage defects, does not yield cartilage regeneration. Various translational studies aiming to improve the outcome of drilling have been performed, however, a robust systematic analysis of its translational evidence has been still lacking. Here, we performed a systematic review of the outcome of subchondral drilling for knee cartilage repair in translational animal models. A total of 12 relevant publications studying 198 animals were identified, detailed study characteristics were extracted, and methodological quality and risk of bias were analyzed. Subchondral drilling was superior to defects untreated or treated with abrasion arthroplasty for cartilage repair in multiple translational models. Considerable subchondral bone changes were observed, including subchondral bone cysts and intralesional osteophytes. Furthermore, extensive alterations of the subchondral bone microarchitecture appeared in a temporal pattern in small and large animal models, together with specific topographic aspects of repair. Moreover, variable technical aspects directly affected the outcomes of osteochondral repair. The data from this systematic review indicate that subchondral drilling yields improved short-term structural articular cartilage repair compared with spontaneous repair in multiple small and large animal models. These results have important implications for future investigations aimed at an enhanced translation into clinical settings for the treatment of cartilage defects, highlighting the importance of considering specific aspects of modifiable variables such as improvements in the design and reporting of preclinical studies, together with the need to better understand the underlying mechanisms of cartilage repair following subchondral drilling. © 2018. Published by The Company of Biologists Ltd.

  11. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  12. Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin.

    Science.gov (United States)

    Song, Yue; Lin, Kaifeng; He, Shu; Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian

    2018-01-01

    As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects.

  13. Repair of double-chambered right ventricle using right ventricular outflow chamber ventriculotomy via left intercostal thoracotomy under beating heart in two dogs

    Directory of Open Access Journals (Sweden)

    Keiichi Sato

    2014-05-01

    Full Text Available Double-chambered right ventricle was diagnosed in two dogs, one of them a pup and the other full grown. Both dogs underwent surgery using the novel approach of right ventricular outflow chamber ventriculotomy via left intercostal thoracotomy with moderate hypothermia and moderate pump flow cardiopulmonary bypass under beating heart. No major complication occurred during and after the operation. On continuous wave Doppler echocardiography, the pressure gradient across the stenosis in the right ventricle decreased from 130 mmHg pre-operatively to 40 mmHg post-operatively at 1 year 5 months in the adult dog, and from 209 mmHg pre-operatively to 47 mmHg post-operatively at 1 year in the pup. Both dogs are active without clinical signs.

  14. Hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound in the treatment of a rabbit liver trauma model

    Science.gov (United States)

    Zhao, Da-wei; Tian, Meng; Yang, Jian-zheng; Du, Peng; Bi, Jie; Zhu, Xinjian

    2016-01-01

    The aim of our study was to investigate the hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound treatment of liver trauma. Thirty rabbits with liver trauma were randomly divided into three groups—the microbubble-enhanced ultrasound (MEUS; further subdivided based on exposure intensity into MEUS1 [0.11 W/cm2], MEUS2 [0.55 W/cm2], and MEUS3 [1.1 W/cm2]), ultrasound without microbubbles (US), and microbubbles without ultrasound (MB) groups. The pre- and post-treatment bleeding weight and visual bleeding scores were evaluated. The serum liver enzyme concentrations as well as the blood perfusion level represented by mean peak contrast intensity (PI) ratio in the treatment area were analyzed. The hemostatic mechanism was evaluated by histological and transmission electron microscopic examination of liver tissue samples. The MEUS subgroups 1–3 (grade 0–1, grade 0–2, and grade 1–2, respectively) exhibited significantly lower post-treatment visual bleeding scores than the US and MB groups (both, grade 3–4; all, P hepatic cells became edematous and compressed the hepatic sinus and associated blood vessels. However, the serum liver enzyme levels were not significantly altered. Microbubble-enhanced non-focused ultrasound does not significantly affect blood perfusion and liver function and can be used to induce rapid hemostasis in case of liver trauma. PMID:27633577

  15. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation

  16. Overexpression of PSP1 enhances growth of transgenic Arabidopsis plants under ambient air conditions.

    Science.gov (United States)

    Han, Xiaofang; Peng, Keli; Wu, Haixia; Song, Shanshan; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2017-07-01

    The importance of the phosphorylated pathway (PPSB) of L-serine (Ser) biosynthesis in plant growth and development has been demonstrated, but its specific role in leaves and interaction with photorespiration, the main leaf Ser biosynthetic pathway at daytime, are still unclear. To investigate whether changes in biosynthesis of Ser by the PPSB in leaves could have an impact on photorespiration and plant growth, we overexpressed PSP1, the last enzyme of this pathway, under control of the Cauliflower Mosaic Virus 35S promoter in Arabidopsis thaliana. Overexpressor plants grown in normal air displayed larger rosette diameter and leaf area as well as higher fresh and dry weight than the wild type. By contrast, no statistically significant differences to the wild type were observed when the overexpressor seedlings were transferred to elevated CO 2 , indicating a relationship between PSP1 overexpression and photorespiration. Additionally, the transgenic plants displayed higher photorespiration, an increase in CO 2 net-uptake and stronger expression in the light of genes encoding enzymes involved in photorespiration. We further demonstrated that expression of many genes involved in nitrogen assimilation was also promoted in leaves of transgenic plants and that leaf nitrate reductase activity increased in the light, too, although not in the dark. Our results suggest a close correlation between the function of PPSB and photorespiration, and also nitrogen metabolism in leaves.

  17. Enhancement of microelectronic device performances by photothermal annealing under SiCl4 ambient

    International Nuclear Information System (INIS)

    Hassen, M.; Ben Jaballah, A.; Hajji, M.; Ezzaouia, H.

    2006-01-01

    The use of low cost silicon wafers seems to be very attractive for photovoltaic and microelectronic devices. However, this material is widely contaminated by different impurities particularly transitions metals, which deteriorate the lifetimes and the bulk diffusion lengths of the minority charge carriers. One possible way to overcome this undesirable behavior is to include an efficient purification technique in the process of device fabrication. In this work, we present the effect of photothermal treatments of monocrystalline Czochralski silicon substrates under SiCl 4 /N 2 atmosphere using a thin sacrificial porous silicon layer. The main results show a decrease of the resistivity over 40 μm depth. The Hall mobility of the majority charge carriers is improved from 300 to 1417 cm 2 V -1 s -1 . The capacitance-voltage (C-V) characteristics of metal/SiO 2 /Si (MIS) structures indicate a decrease of carrier concentration which confirms the results obtained by Hall Effect and Van Der Pauw method. The reduction of boron concentration in Czochralski silicon may reduce boron- and oxygen related metastable defect centers

  18. Enhancing emotion-based learning in decision-making under uncertainty.

    Science.gov (United States)

    Alarcón, David; Amián, Josué G; Sánchez-Medina, José A

    2015-01-01

    The Iowa Gambling Task (IGT) is widely used to study decision-making differences between several clinical and healthy populations. Unlike the healthy participants, clinical participants have difficulty choosing between advantageous options, which yield long-term benefits, and disadvantageous options, which give high immediate rewards but lead to negative profits. However, recent studies have found that healthy participants avoid the options with a higher frequency of losses regardless of whether or not they are profitable in the long run. The aim of this study was to control for the confounding effect of the frequency of losses between options to improve the performance of healthy participants on the IGT. Eighty healthy participants were randomly assigned to the original IGT or a modified version of the IGT that diminished the gap in the frequency of losses between options. The participants who used the modified IGT version learned to make better decisions based on long-term profit, as indicated by an earlier ability to discriminate good from bad options, and took less time to make their choices. This research represents an advance in the study of decision making under uncertainty by showing that emotion-based learning is improved by controlling for the loss-frequency bias effect.

  19. Significant enhancement of thermoelectric properties and metallization of Al-doped Mg2Si under pressure

    International Nuclear Information System (INIS)

    Morozova, Natalia V.; Korobeinikov, Igor V.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.; Takarabe, Ken-ichi; Mori, Yoshihisa; Nakamura, Shigeyuki

    2014-01-01

    We report results of investigations of electronic transport properties and lattice dynamics of Al-doped magnesium silicide (Mg 2 Si) thermoelectrics at ambient and high pressures to and beyond 15 GPa. High-quality samples of Mg 2 Si doped with 1 at. % of Al were prepared by spark plasma sintering technique. The samples were extensively examined at ambient pressure conditions by X-ray diffraction studies, Raman spectroscopy, electrical resistivity, magnetoresistance, Hall effect, thermoelectric power (Seebeck effect), and thermal conductivity. A Kondo-like feature in the electrical resistivity curves at low temperatures indicates a possible magnetism in the samples. The absolute values of the thermopower and electrical resistivity, and Raman spectra intensity of Mg 2 Si:Al dramatically diminished upon room-temperature compression. The calculated thermoelectric power factor of Mg 2 Si:Al raised with pressure to 2–3 GPa peaking in the maximum the values as high as about 8 × 10 −3 W/(K 2 m) and then gradually decreased with further compression. Raman spectroscopy studies indicated the crossovers near ∼5–7 and ∼11–12 GPa that are likely related to phase transitions. The data gathered suggest that Mg 2 Si:Al is metallized under moderate pressures between ∼5 and 12 GPa.

  20. Choosing fitness-enhancing innovations can be detrimental under fluctuating environments.

    Directory of Open Access Journals (Sweden)

    Julian Z Xue

    Full Text Available The ability to predict the consequences of one's behavior in a particular environment is a mechanism for adaptation. In the absence of any cost to this activity, we might expect agents to choose behaviors that maximize their fitness, an example of directed innovation. This is in contrast to blind mutation, where the probability of becoming a new genotype is independent of the fitness of the new genotypes. Here, we show that under environments punctuated by rapid reversals, a system with both genetic and cultural inheritance should not always maximize fitness through directed innovation. This is because populations highly accurate at selecting the fittest innovations tend to over-fit the environment during its stable phase, to the point that a rapid environmental reversal can cause extinction. A less accurate population, on the other hand, can track long term trends in environmental change, keeping closer to the time-average of the environment. We use both analytical and agent-based models to explore when this mechanism is expected to occur.

  1. Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Monshupanee, T; Incharoensakdi, A

    2014-04-01

    Glycogen (GL) and lipids (LP) are efficient biofuel substrates, whereas polyhydroxybutyrate (PHB) is a potent biodegradable plastic. This study aimed to increase accumulation of these three compounds in Synechocystis sp. PCC 6803. Under autophototrophic growth, co-accumulation of the three compounds reached maximum level in a mid-stationary phase at 39·2% of dry weight (22·7% GL, 14·1% LP and 2·4% PHB). Nitrogen deprivation increased this to 61·5% (36·8% GL, 11·2% LP and 13·5% PHB), higher than that achieved by phosphorus, sulfur, iron or calcium deprivation. Combining nitrogen deprivation with 0·4% (w/v) glucose addition for heterophototrophic growth and optimizing the light intensity (200 μmol photons m(-2) s(-1) ) synergistically enhanced combined accumulation to 71·1% of biomass (41·3% GL, 16·7% LP and 13·1% PHB), a higher level than previously reported in Synechocystis. However, the maximum coproductivity of GL, LP and PHB (at 0·72 g l(-1) ) was obtained in the 12-day heterophototrophic culture without nitrogen deprivation. Accumulation of GL, LP and PHB was enhanced under both autophototrophic and heterophototrophic conditions by optimizations of nutrient and light supplies. This study provides a means for increasing co-production of potent bioenergy substrates and useful biomaterials in Synechocystis which may also be applicable to other cyanobacteria. © 2013 The Society for Applied Microbiology.

  2. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  3. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  4. Incorporation of N–ZnO/CdS/Graphene oxide composite photocatalyst for enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China); Zhou, Mingjun; Tang, Yanfeng [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Liu, Xinlin [School of Energy & Power Engineering Jiangsu University Zhenjiang, 212013 (China); Ma, Changchang; Yu, Longbao [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Yan, Yongsheng, E-mail: yys@mail.ujs.edu.cn [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China)

    2016-06-15

    N–ZnO/CdS/Graphene oxide (GO) composite photocatalysts have been successfully synthesized by hydrothermal method. The as-prepared composite photocatalysts were characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy(SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR) spectra, UV–vis diffuse reflectance spectra (UV–vis DRS), thermogravimetry (TG) and photoluminescence (PL). The as-prepared photocatalysts exhibited strong visible light photocatalytic activity toward to degradation of antibiotics under ambient conditions. Particularly, the N–ZnO/CdS/GO composite photocatalysts showed the higher photocatalytic degradation rate (86%) of ciprofloxacin CIP under visible light irradiation than the pure photocatalysts. Compared with degradation of different antibiotics (tetracycline (TC), oxytetracycline hydrochloride (OTC-HCl) and levofloxacin (LEV)), the N–ZnO/CdS/GO composite photocatalysts also exhibited high photocatalytic activities. According to the experiments, the role of GO in the composite photocatalysts acted as an electron conductor, and also enhanced the separation rate of electrons and holes which greatly improved the photocatalytic activity. Lastly, the mechanism of enhanced photocatalytic degradation of CIP was also discussed. - Highlights: • N–ZnO/CdS/GO composite was synthesized by the hydrothermal processes. • N–ZnO/CdS composites prevent pure CdS or ZnO from photocorrosion. • N–ZnO/CdS/GO shows the remarkable photocatalytic activity and stability.

  5. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells.

    Science.gov (United States)

    Choi, Young Eun; Battelli, Chiara; Watson, Jacqueline; Liu, Joyce; Curtis, Jennifer; Morse, Alexander N; Matulonis, Ursula A; Chowdhury, Dipanjan; Konstantinopoulos, Panagiotis A

    2014-05-15

    The promise of PARP-inhibitors(PARPis) in the management of epithelial ovarian cancer(EOC) is tempered by the fact that approximately 50% of patients with homologous recombination (HR)-proficient tumors do not respond well to these agents. Combination of PARPis with agents that inhibit HR may represent an effective strategy to enhance their activity in HR-proficient tumors. Using a bioinformatics approach, we identified that heat shock protein 90 inhibitors(HSP90i) may suppress HR and thus revert HR-proficient to HR-deficient tumors. Analysis of publicly available gene expression data showed that exposure of HR-proficient breast cancer cell lines to HSP90i 17-AAG(17-allylamino-17-demethoxygeldanamycin) downregulated HR, ATM and Fanconi Anemia pathways. In HR-proficient EOC cells, 17-AAG suppressed HR as assessed using the RAD51 foci formation assay and this was further confirmed using the Direct Repeat-GFP reporter assay. Furthermore, 17-AAG downregulated BRCA1 and/or RAD51 protein levels, and induced significantly more γH2AX activation in combination with olaparib compared to olaparib alone. Finally, sublethal concentrations of 17-AAG sensitized HR-proficient EOC lines to olaparib and carboplatin but did not affect sensitivity of the HR-deficient OVCAR8 line arguing that the 17-AAG mediated sensitization is dependent on suppression of HR. These results provide a preclinical rationale for using a combination of olaparib/17-AAG in HR-proficient EOC.

  6. Enhanced granulocyte growth on peritoneal cell-coated membranes following irradiation: a dual effect of humoral stimulation and repair of x ray-induced damage to the microenvironment

    International Nuclear Information System (INIS)

    Turner, A.R.; Pfrimmer, W.J.; Boggs, D.R.; Carpe, A.I.

    1978-01-01

    An experimental model of the hematopoietic microenvironment was created by allowing a peritoneal cell coating to form on a disk of cellulose acetate placed in the peritoneal cavity of mice. An effective microenvironment capable of supporting colony growth, primarily granulocytic, was established if the cellulose acetate disk was in the peritoneum for 3 to 5 days. Its effectiveness was hampered by transferring it to another mouse or by exposure to toxic agents such as a propylene glycol-ethanol mixture or irradiation. An exponential dose-related decrease in colony formation was seen with increasing doses or irradiation of the microenvironment before colonization. After a low dose of irradiation, recovery of colony support capacity occurred over a 6-day period. Enhancement of colony growth was seen when cell injection was delayed for 2 to 3 days after irradiation. The effects of irradiation on the cellular stroma were separated from the systemic changes in the host by transferring an established hematopoietic microenvironment to a secondary host. It was shown that there are two distinct effects of irradiation on granulocytic colony growth; one was a short-lived period, 2 to 3 days of stimulation, presumably humoral, and the other was dose-dependent reversible microenvironment damage

  7. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions.

    Science.gov (United States)

    Abdelaziz, Mohamed E; Kim, Dongjin; Ali, Shawkat; Fedoroff, Nina V; Al-Babili, Salim

    2017-10-01

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na + /K + ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K + channels KAT1 and KAT2, which play key roles in regulating Na + and K + homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na + /K + ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na + and K + ion channels, which allows establishing a balanced ion homeostasis of Na + /K + under salt stress conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na + /K + homeostasis under salt stress conditions

    KAUST Repository

    Abdelaziz, Mohamed Ewis

    2017-07-13

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na+/K+ ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na+/K+ ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na+ and K+ ion channels, which allows establishing a balanced ion homeostasis of Na+/K+ under salt stress conditions.

  9. Snowmobile Repair. Teacher Edition.

    Science.gov (United States)

    Hennessy, Stephen S.; Conrad, Rex

    This teacher's guide contains 14 units on snowmobile repair: (1) introduction to snowmobile repair; (2) skis, front suspension, and steering; (3) drive clutch; (4) drive belts; (5) driven clutch; (6) chain drives; (7) jackshafts and axles; (8) rear suspension; (9) tracks; (10) shock absorbers; (11) brakes; (12) engines; (13) ignition and…

  10. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  11. Cell sensitivity to irradiation and DNA repair processes

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.

    1984-01-01

    A new model of oxygen effect realisation is proposed for E.coli cells. The model explains differencies in oxygen enhancement ratio (OER) between wild type cells and repair deficient mutants. These differencies are logically linked to corresponding defects in repair systems. A quantitative analysis has been performed. The dependence of OER and cell sensitivity on the properties of cultivation medium is considered, too. Decreasing OER and increasing sensitivity in poor conditions are explained as the consequence of the shift of repair capacity from slow to fast repair system

  12. Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress.

    Science.gov (United States)

    Sallah-Ud-Din, Rasham; Farid, Mujahid; Saeed, Rashid; Ali, Shafaqat; Rizwan, Muhammad; Tauqeer, Hafiz Muhammad; Bukhari, Syed Asad Hussain

    2017-07-01

    Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 μM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.

  13. Altered patterns of gene expression underlying the enhanced immunogenicity of radiation-attenuated schistosomes.

    Directory of Open Access Journals (Sweden)

    Gary P Dillon

    2008-05-01

    Full Text Available Schistosome cercariae only elicit high levels of protective immunity against a challenge infection if they are optimally attenuated by exposure to ionising radiation that truncates their migration in the lungs. However, the underlying molecular mechanisms responsible for the altered phenotype of the irradiated parasite that primes for protection have yet to be identified.We have used a custom microarray comprising probes derived from lung-stage parasites to compare patterns of gene expression in schistosomula derived from normal and irradiated cercariae. These were transformed in vitro and cultured for four, seven, and ten days to correspond in development to the priming parasites, before RNA extraction. At these late times after the radiation insult, transcript suppression was the principal feature of the irradiated larvae. Individual gene analysis revealed that only seven were significantly down-regulated in the irradiated versus normal larvae at the three time-points; notably, four of the protein products are present in the tegument or associated with its membranes, perhaps indicating a perturbed function. Grouping of transcripts using Gene Ontology (GO and subsequent Gene Set Enrichment Analysis (GSEA proved more informative in teasing out subtle differences. Deficiencies in signalling pathways involving G-protein-coupled receptors suggest the parasite is less able to sense its environment. Reduction of cytoskeleton transcripts could indicate compromised structure which, coupled with a paucity of neuroreceptor transcripts, may mean the parasite is also unable to respond correctly to external stimuli.The transcriptional differences observed are concordant with the known extended transit of attenuated parasites through skin-draining lymph nodes and the lungs: prolonged priming of the immune system by the parasite, rather than over-expression of novel antigens, could thus explain the efficacy of the irradiated vaccine.

  14. Photoresponsive nanocapsulation of cobra neurotoxin and enhancement of its central analgesic effects under red light

    Directory of Open Access Journals (Sweden)

    Yang Q

    2017-05-01

    Full Text Available Qian Yang, Chuang Zhao, Jun Zhao, Yong Ye Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China Abstract: Cobra neurotoxin (CNT, a peptide isolated from snake venom of Naja naja atra, shows central analgesic effects in our previous research. In order to help CNT pass through blood–brain barrier (BBB and improve its central analgesic effects, a new kind of CNT nanocapsules were prepared by double emulsification with soybean lecithin and cholesterol as the shell, and pheophorbide as the photosensitizer added to make it photoresponsive. The analgesic effects were evaluated by hot plate test and acetic acid-induced writhing in mice. The CNT nanocapsules had an average particle size of 229.55 nm, zeta potential of -53.00 mV, encapsulation efficiency of 84.81% and drug loading of 2.98%, when the pheophorbide content was 1% of lecithin weight. Pheophorbide was mainly distributed in outer layer of the CNT nanocapsules and increased the release of the CNT nanocapsules after 650 nm illumination. The central analgesic effects were improved after intraperitoneal injection of CNT at 25 and 50 µg·kg-1 under 650 nm irradiation for 30 min in the nasal cavity. Activation of pheophorbide by red light generated reactive oxygen species which opened the nanocapsules and BBB and helped the CNT enter the brain. This research provides a new drug delivery for treatment of central pain. Keywords: cobra neurotoxin, nanocapsules, photoresponsive, central analgesic effects, red light, drug delivery, photosensitizer

  15. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  16. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  17. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    Science.gov (United States)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  18. Developing Guidelines to Enhance Students Desirable Characteristics for Schools under the Office of Udornthani Primary Education Service Area 1

    Directory of Open Access Journals (Sweden)

    Aroonsiri Janlon

    2017-09-01

    Full Text Available The purposes of this research were 1 to study the elements and indicators students desirable characteristics for schools ; 2 to study the present condition and the desirable of students desirable characteristics for schools ; and 3 to develop guidelines to enhance students desirable characteristics for schools under the office of Udornthani primary education service area 1. Research and development. Method was divided into three phases for the purposes of research. The samples were 296 teachers and school administrators, using stratified random sampling. Instruments used were questionnaire, assessment elements and indicators, interview form and assessment guidelines. Data were analyzed using mean, standard devitation and modified priority needs index. Research findings were as follows: 1. There were 3 elements of students desirable characteristics for schools consisted of discipline, learning and commitment to work. Discipline consisted of four indicators, learning consisted of indicators and commitment to work consisted of two indicators. 2. The current situation of students desirable characteristics for schools under the office of Udornthani primary education service area 1, overall at a high level, considering each element, discipline was the highest, followed by learning and the lowest was commitment to work as well. In desirable situation the same relults on the current situation. 3. Guidelines to enhance students desirable characteristics for schools under the office of Udornthani primary education service area 1 consisted of 7 guidelines: 1 the policy clearly ; 2 providing specialized committees ; 3 creating a common understanding ; 4 targeting clearly ; 5 the environmental moral ; 6 supervision, monitoring and evaluation ; and 7 creating a network of parents and the community.

  19. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Science.gov (United States)

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  1. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong

    2015-04-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  2. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    DEFF Research Database (Denmark)

    Mund, Andreas; Schubert, Tobias; Staege, Hannah

    2012-01-01

    -dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non...

  3. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    Science.gov (United States)

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  4. Feasibility of externally activated self-repairing concrete with epoxy injection network and Cu-Al-Mn superelastic alloy reinforcing bars

    International Nuclear Information System (INIS)

    Pareek, Sanjay; Shrestha, Kshitij C; Araki, Yoshikazu; Suzuki, Yusuke; Omori, Toshihiro; Kainuma, Ryosuke

    2014-01-01

    This paper studies the effectiveness of an externally activated self-repairing technique for concrete members with epoxy injection network and Cu-Al-Mn superelastic alloy (SEA) reinforcing bars (rebars). Compared to existing crack self-repairing and self-healing techniques, the epoxy injection network has the following strengths: (1) Different from the self-repairing methods using brittle containers or tubes for adhesives, the proposed self-repair process can be performed repeatedly and is feasible for onsite concrete casting. (2) Different from the autogenic self-healing techniques, full strength recovery can be achieved in a shorter time period without the necessity of water. This paper attempts to enhance the self-repairing capability of the epoxy injection network by reducing residual cracks by using cost-effective Cu-based SEA bars. The effectiveness of the present technique is examined using concrete beam specimens reinforced by 3 types of bars. The first specimen is reinforced by steel deformed bars, the second by steel threaded bars, and finally by SEA threaded rebars. The tests were performed with a 3 point cyclic loading with increasing amplitude. From the test results, effective self-repairing was confirmed for small deformation levels irrespective of the reinforcement types. Effective self-repairing was observed in the SEA reinforced specimen even under much larger deformations. Nonlinear finite element analysis was performed to confirm the experimental findings. (paper)

  5. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    International Nuclear Information System (INIS)

    Erdmann, Kati; Ringel, Jessica; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P; Fuessel, Susanne; Hampel, Silke

    2014-01-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  6. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  7. ENHANCING THE STABILITY OF UNMANNED GROUND SPORT UTILITY VEHICLES THROUGH COORDINATED CONTROL UNDER MU-SPLIT AND GUST OF WIND

    Directory of Open Access Journals (Sweden)

    FITRI YAKUB

    2016-10-01

    Full Text Available This study describes a comparative study of steering and yaw moment control manoeuvres in model predictive control (MPC and linear quadratic control approaches for path following unmanned vehicles for different control manoeuvres: two-wheel steering, four-wheel steering, and direct yaw moment control. We then propose MPC with a proportional-integral (PI controller for the coordination of active front steering (AFS and active braking system, which particularly highlights direct yaw moment control (DYC manoeuvres. Based on the known trajectory, we tested a vehicle at middle forward speed with the disturbance consideration of the road surface adhesion and the wind for a double lane change scenario in order to follow the desired trajectory as close as possible, minimizing tracking errors, and enhancing vehicle stability and drivability. We compared two different controllers; i MPC with PI of an AFS and, ii MPC with PI for coordination of AFS and DYC. The operation of the proposed integrated control is demonstrated in a Matlab simulation environment by manoeuvring the vehicle along the desired trajectory. Simulation results showed that the proposed method had yielded better tracking performances, and were able to enhance the vehicle’s stability at a given speed even under road surface coefficient and wind.

  8. Enhanced MEA Performance for PEMFCs under Low Relative Humidity and Low Oxygen Content Conditions via Catalyst Functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Le; Yang, Fan; Xie, Jian; Yang, Zhiwei; Kariuki, Nancy N.; Myers, Deborah J.; Peng, Jui-Kun; Wang, Xiaohua; Ahluwalia, Rajesh K.; Yu, Kang; Ferreira, Paulo J.; Bonastre, Alex Martinez; Fongalland, Dash; Sharman, Jonathan

    2017-01-01

    This work demonstrates that functionalizing annealed-Pt/Ketjen black EC300j (a-Pt/KB) and dealloyed-PtNi/Ketjen black EC300j (d-PtNi/KB) catalysts using p-phenyl sulfonic acid can effectively enhance performance in the membrane electrode assemblies (MEAs) of proton exchange membrane fuel cells (PEMFCs). The functionalization increased the size of both Pt and PtNi catalyst particles and resulted in the further leaching of Ni from the PtNi catalyst while promoting the formation of nanoporous PtNi nanoparticles. The size of the SO3H-Pt/KB and SO3H-PtNi/KB carbon-based aggregates decreased dramatically, leading to the formation of catalyst layers with narrower pore size distributions.MEA tests highlighted the benefits of the surface functionalization, in which the cells with SO3H-Pt/KB and SO3H-PtNi/KB cathode catalysts showed superior high current density performance under reduced RH conditions, in comparison with cells containing annealed Pt/KB (a-Pt/KB) and de-alloyed PtNi/KB (d-PtNi/KB) catalysts. The performance improvement was particularly evident when using reactant gases with low relative humidity, indicating that the hydrophilic functional groups on the carbon improved the water retention in the cathode catalyst layer. These results show a new avenue for enhancing catalyst performance for the next generation of catalytic materials for PEMFCs.

  9. Enhanced hydrological extremes in the western United States under global warming through the lens of water vapor wave activity

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Xue, Daokai; Gao, Yang; Chen, Gang; Leung, Lai-Yung; Staten, Paul W.

    2018-04-23

    Understanding how regional hydrological extremes would respond to warming is a grand challenge to the community of climate change research. To address this challenge, we construct an analysis framework based on column integrated water vapor (CWV) wave activity to diagnose the wave component of the hydrological cycle that contributes to hydrological extremes. By applying the analysis to the historical and future climate projections from the CMIP5 models, we found that the wet-versus-dry disparity of daily net precipitation along a zonal band can increase at a super Clausius-Clapeyron rate due to the enhanced stirring length of wave activity at the poleward flank of the mean storm track. The local variant of CWV wave activity reveals the unique characteristics of atmospheric rivers (ARs) in terms of their transport function, enhanced mixing and hydrological cycling rate (HC). Under RCP8.5, the local moist wave activity increases by ~40% over the northeastern Pacific by the end of the 21st century, indicating more ARs hitting the west coast, giving rise to a ~20% increase in the related hydrological extremes − $ despite a weakening of the local HC.

  10. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  11. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light

    Science.gov (United States)

    Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia

    2018-05-01

    Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.

  12. Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation

    International Nuclear Information System (INIS)

    Tang, Lin; Wang, Jiajia; Zeng, Guangming; Liu, Yani; Deng, Yaocheng; Zhou, Yaoyu; Tang, Jing; Wang, Jingjing; Guo, Zhi

    2016-01-01

    Highlights: • TX100 strongly enhanced the adsorption and photodegradation of NOF in Bi 2 WO 6 dispersions under visible light irradiation (400–750 nm). • Cu 2+ (10 mM) significantly suppressed the photocatalytic degradation of NOF. • FT-IR demonstrated that the NOF adsorbed on Bi 2 WO 6 was completely degraded. • Three possible photocatalytic degradation pathways of NOF were proposed, according to the HPLC/MS/MS analysis. - Abstract: Photocatalytic degradation is an alternative method to remove pharmaceutical compounds in water, however it is hard to achieve efficient rate because of the poor solubility of pharmaceutical compounds in water. This study investigated the photodegradation of norfloxacin in a nonionic surfactant Triton-X100 (TX100)/Bi 2 WO 6 dispersion under visible light irradiation (400–750 nm). It was found that the degradation of poorly soluble NOF can be strongly enhanced with the addition of TX100. TX100 was adsorbed strongly on Bi 2 WO 6 surface and accelerated NOF photodegradation at the critical micelle concentration (CMC = 0.25 mM). Higher TX100 concentration (>0.25 mM) lowered the degradation rate. In the presence of TX100, the degradation rate reached the maximum value when the pH value was 8.06. FTIR analyses demonstrated that the adsorbed NOF on the catalyst was completely degraded after 2 h irradiation. According to the intermediates identified by HPLC/MS/MS, three possible degradation pathways were proposed to include addition of hydroxyl radical to quinolone ring, elimination of piperazynilic ring in fluoroquinolone molecules, and replacement of F atoms on the aromatic ring by hydroxyl radicals.

  13. Aging of black carbon particles under polluted urban environments: timescale, hygroscopicity and enhanced absorption and direct radiative forcing

    Science.gov (United States)

    Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Levy Zamora, M.; Shao, M.; Wu, Y.; Zheng, J.; Wang, Y.; Zeng, L.; Collins, D. R.; Molina, M.; Zhang, R.

    2017-12-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the hygroscopic and optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using an outdoor environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. The κ (kappa) values of coating materials are calculated as 0.04 at both subsaturation and supersaturation conditions, respectively, indicating that the initial photochemical aging of BC particles does not appreciably alter the BC hygroscopicity. Our findings suggest that BC aging under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  14. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2016-08-01

    Full Text Available A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR on rice growth and yield attributes under high day (HDT and high night temperature (HNT. Two rice cultivars (IR-64 and Huanghuazhan were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  15. Mesenchymal stem cells overexpressing Ihh promote bone repair.

    Science.gov (United States)

    Zou, Shasha; Chen, Tingting; Wang, Yanan; Tian, Ruhui; Zhang, Lingling; Song, Pingping; Yang, Shi; Zhu, Yong; Guo, Xizhi; Huang, Yiran; Li, Zheng; Kan, Lixin; Hu, Hongliang

    2014-10-28

    Indian hedgehog (Ihh) signaling pathway is known to play key roles in various aspects of normal endochondral bone development. This study tested the potential roles of high Ihh signaling in the context of injury-induced bone regeneration. A rabbit tibia defect model was established to test the effects of the implant of Ihh/mesenchymal stem cells (MSCs)/scaffold complex. Computed tomography (CT), gross observation, and standard histological and immunohistological techniques were used to evaluate the effectiveness of the treatment. In vitro studies with MSCs and C3H10T1/2 cells were also employed to further understand the cellular and molecular mechanisms. We found that the implanted Ihh/MSCs/scaffold complex promoted bone repair. Consistently, in vitro study found that Ihh induced the upregulation of chondrocytic, osteogenic, and vascular cell markers, both in C3H10T1/2 cells and MSCs. Our study has demonstrated that high Ihh signaling in a complex with MSCs enhanced bone regeneration effectively in a clinically relevant acute injury model. Even though the exact underlying mechanisms are still far from clear, our primary data suggested that enhanced chondrogenesis, osteogenesis, and angiogenesis of MSCs at least partially contribute to the process. This study not only has implications for basic research of MSCs and Ihh signaling pathway but also points to the possibility of direct application of this specific paradigm to clinical bone repair.

  16. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions

    Science.gov (United States)

    Faseleh Jahromi, Mohammad; Wesam Altaher, Yassir; Shokryazdan, Parisa; Ebrahimi, Roohollah; Ebrahimi, Mahdi; Idrus, Zulkifli; Tufarelli, Vincenzo; Liang, Juan Boo

    2016-07-01

    High ambient temperature is a major problem in commercial broiler production in the humid tropics because high producing broiler birds consume more feed, have higher metabolic activity, and thus higher body heat production. To evaluate the effects of two previously isolated potential probiotic strains ( Lactobacillus pentosus ITA23 and Lactobacillus acidophilus ITA44) on broilers growing under heat stress condition, a total of 192 chicks were randomly allocated into four treatment groups of 48 chickens each as follows: CL, birds fed with basal diet raised in 24 °C; PL, birds fed with basal diet plus 0.1 % probiotic mixture raised in 24 °C; CH, birds fed with basal diet raised in 35 °C; and PH, birds fed with basal diet plus 0.1 % probiotic mixture raised in 35 °C. The effects of probiotic mixture on the performance, expression of nutrient absorption genes of the small intestine, volatile fatty acids (VFA) and microbial population of cecal contents, antioxidant capacity of liver, and fatty acid composition of breast muscle were investigated. Results showed that probiotic positively affected the final body weight under both temperature conditions (PL and PH groups) compared to their respective control groups (CL and CH). Probiotic supplementation numerically improved the average daily gain (ADG) under lower temperature, but significantly improved ADG under the higher temperature ( P < 0.05) by sustaining high feed intake. Under the lower temperature environment, supplementation of the two Lactobacillus strains significantly increased the expression of the four sugar transporter genes tested (GLUT2, GLUT5, SGLT1, and SGLT4) indicating probiotic enhances the absorption of this nutrient. Similar but less pronounced effect was also observed under higher temperature (35 °C) condition. In addition, the probiotic mixture improved bacterial population of the cecal contents, by increasing beneficial bacteria and decreasing Escherichia coli population, which could be

  17. Gadolinium-enhanced cardiac MR exams of human subjects are associated with significant increases in the DNA repair marker 53BP1, but not the damage marker γH2AX.

    Directory of Open Access Journals (Sweden)

    Jennifer S McDonald

    Full Text Available Magnetic resonance imaging is considered low risk, yet recent studies have raised a concern of potential damage to DNA in peripheral blood leukocytes. This prospective Institutional Review Board-approved study examined potential double-strand DNA damage by analyzing changes in the DNA damage and repair markers γH2AX and 53BP1 in patients who underwent a 1.5 T gadolinium-enhanced cardiac magnetic resonance (MR exam. Sixty patients were enrolled (median age 55 years, 39 males. Patients with history of malignancy or who were receiving chemotherapy, radiation therapy, or steroids were excluded. MR sequence data were recorded and blood samples obtained immediately before and after MR exposure. An automated immunofluorescence assay quantified γH2AX or 53BP1 foci number in isolated peripheral blood mononuclear cells. Changes in foci number were analyzed using the Wilcoxon signed-rank test. Clinical and MR procedural characteristics were compared between patients who had a >10% increase in γH2AX or 53BP1 foci numbers and patients who did not. The number of γH2AX foci did not significantly change following cardiac MR (median foci per cell pre-MR = 0.11, post-MR = 0.11, p = .90, but the number of 53BP1 foci significantly increased following MR (median foci per cell pre-MR = 0.46, post-MR = 0.54, p = .0140. Clinical and MR characteristics did not differ significantly between patients who had at least a 10% increase in foci per cell and those who did not. We conclude that MR exposure leads to a small (median 25% increase in 53BP1 foci, however the clinical relevance of this increase is unknown and may be attributable to normal variation instead of MR exposure.

  18. DNA Repair Systems

    Indian Academy of Sciences (India)

    DNA molecule which makes it ideal for storage and propagation of genetic information. ... of these errors are broadly referred to as DNA repair. DNA can ... changes occur in the human genome per day. ..... nails, frequent physical and mental.

  19. Brain aneurysm repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000123.htm Brain aneurysm repair - discharge To use the sharing features ... this page, please enable JavaScript. You had a brain aneurysm . An aneurysm is a weak area in ...

  20. Ventral hernia repair

    Science.gov (United States)

    ... incarcerated) in the hernia and become impossible to push back in. This is usually painful. The blood supply ... you are lying down or that you cannot push back in. Risks The risks of ventral hernia repair ...

  1. Omphalocele repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100033.htm Omphalocele repair - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Omphalocele is an abdominal wall defect at the base ...

  2. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangzhou 510663 (China); Cai, Xiaojiao [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jingwei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); The 718th Research Institute of CSIC, Handan 056027 (China); Zhou, Shimin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-01-01

    Graphical abstract: - Highlights: • An iron and titanium co-pillared montmorillonite (Fe-Ti/MMT) was synthesized for arsenite removal. • Variety of characterization results indicated that Fe and Ti species were pillared in MMT. • A possible mechanism of arsenite adsorption/oxidation with UV light was established. • The participation of Fe component can promote the process of photocatalytic oxidation in Fe-Ti/MMT + As(III) system. • Fe-Ti/MMT can function as both photocatalyst and adsorbent for arsenite removal. - Abstract: A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N{sub 2} adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO{sub 2} in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M–OH) played an important role in the adsorption of As(III)

  3. Enhancement of Operating Efficiency Of The Central Coal-Preparation Plant of "MMK - UGOL" Ltd. Under Current Conditions

    Science.gov (United States)

    Basarygin, Maksim

    2017-11-01

    In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.

  4. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  5. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under “Cocktail-Party” Listening Conditions

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated “cocktail-party” listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the “cocktail-party” listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process. PMID:28239344

  7. Design and Analysis of a Stiffened Composite Structure Repair Concept

    Science.gov (United States)

    Przekop, Adam

    2011-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.

  8. Heterogenous mismatch-repair status in colorectal cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Veurink, Nynke; Holck, Susanne

    2014-01-01

    BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative......, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms. METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative....... CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification. VIRTUAL SLIDES: The virtual slide(s) for this article...

  9. Remote repair of the dissolvers in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Otani, Yosikuni

    1985-01-01

    In the Tokai fuel reprocessing plant, there occurred failures (pinholes) in two dissolver tanks successively in 1982 and 1983. These dissolvers are set under high radiation field, not permitting access of the personnel. So, repair works were carried out after development of the remotely operated repair system. For repair of the failed dissolver tanks, after tests and studies, the means was employed of grinding off the wall surface to small depth and then forming over it a corrosion resistant sealing layer by padding welding. The repair system which enabled the repair and the inspection in the cell by remote operation consisted of six devices including polishing, welding, dye penetration test, etc. Repair works on the dissolvers took two months and a half from September 1983. (Mori, K.)

  10. DNA repair in cancer: emerging targets for personalized therapy

    International Nuclear Information System (INIS)

    Abbotts, Rachel; Thompson, Nicola; Madhusudan, Srinivasan

    2014-01-01

    Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, in established tumors, DNA repair activity is required to counteract oxidative DNA damage that is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence that overexpression of DNA repair factors may have prognostic and predictive significance in patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer therapy. Synthetic lethality exploits intergene relationships where the loss of function of either of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. In the current review, we focus on recent advances with a particular focus on synthetic lethality targeting in cancer

  11. Ternary reduced-graphene-oxide/Bi2MoO6/Au nanocomposites with enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Bi, Jinhong; Fang, Wei; Li, Li; Li, Xiaofen; Liu, Minghua; Liang, Shijing; Zhang, Zizhong; He, Yunhui; Lin, Huaxiang; Wu, Ling; Liu, Shengwei; Wong, Po Keung

    2015-01-01

    A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. RGO/Bi 2 MoO 6 /Au was characterized by X-ray powder diffraction patterns, transmission electron microscopy, UV–vis diffuse reflectance spectra, Raman spectroscopy and X-ray photoelectron spectroscopy. In comparison with Bi 2 MoO 6 , RGO/Bi 2 MoO 6 and Au/Bi 2 MoO 6 , RGO/Bi 2 MoO 6 /Au exhibits an enhanced photocatalytic activity for decomposition of Rhodamine B under visible light. The separation efficiency of the photogenerated holes and electrons on Bi 2 MoO 6 is promoted by the combined effect of both RGO and Au in the ternary composite, and thus enhances photocatalytic activity. The scavenger study revealed that both hole and superoxide are the major reactive species for the photocatalytic degradation of Rhodamine B using RGO/Bi 2 MoO 6 /Au photocatalyst. - Graphical abstract: A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. The resulted ternary nanocomposites greatly enhanced the visible light photocatalytic properties compared to Bi 2 MoO 6 , RGO/Bi 2 MoO 6 or Au/Bi 2 MoO 6 binary systems. The improved photocatalytic activity was mainly attributed to the synergistic effect of Au and RGO with better separation of the photogenerated holes and electrons, resulting from the surface plasmonic resonance and extra strong electron magnetic field of Au nanoparticles and the high electron conductivity of RGO. - Highlights: • The ternary nanocomposites RGO/Bi 2 MoO 6 /Au were constructed for the first time. • RGO/Bi 2 MoO 6 /Au showed much higher visible photoactivity than RGO (Au)/Bi 2 MoO 6 . • The improved

  12. Enhanced photocatalytic ozonation of organics by g-C{sub 3}N{sub 4} under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Gaozu, E-mail: liaogaozu@m.scnu.edu.cn; Zhu, Dongyun; Li, Laisheng, E-mail: llsh@scnu.edu.cn; Lan, Bingyan

    2014-09-15

    Highlights: • g-C{sub 3}N{sub 4} is employed as active catalyst in the photocatalytic ozonation system. • The more negative conduction band of g-C{sub 3}N{sub 4} benefits the transfer of electrons. • The synergistic effect between photocatalysis and ozonation is promoted by g-C{sub 3}N{sub 4}. • Enhanced degradation of oxalic acid and biphenol A is achieved via g-C{sub 3}N{sub 4}/Vis/O{sub 3}. - Abstract: Graphitic carbon nitride (g-C{sub 3}N{sub 4}) was employed as the active photocatalyst in the photocatalytic ozonation coupling system in the present study. g-C{sub 3}N{sub 4} was prepared by directly heating thiourea in air at 550 °C. XRD, FT-IR, UV–vis was used to characterize the structure and optical property. Oxalic acid and bisphenol A were selected as model substances for photocatalytic ozonation reactions to evaluate the catalytic ability of g-C{sub 3}N{sub 4} (g-C{sub 3}N{sub 4}/Vis/O{sub 3}). The results showed that the degradation ratio of oxalic acid with g-C{sub 3}N{sub 4}/Vis/O{sub 3} was 65.2% higher than the sum of ratio when it was individually decomposed by g-C{sub 3}N{sub 4}/Vis and O{sub 3}. The TOC removal of biphenol A with g-C{sub 3}N{sub 4}/Vis/O{sub 3} was 2.17 times as great as the sum of the ratio when using g-C{sub 3}N{sub 4}/Vis and O{sub 3}. This improvement was attributed to the enhanced synergistic effect between photocatalysis and ozonation by g-C{sub 3}N{sub 4}. Under visible light irradiation, the photo-generated electrons produced on g-C{sub 3}N{sub 4} facilitated the electrons transfer owing to the more negative conduction band potential (−1.3 V versus NHE). It meant that the photo-generated electrons could be trapped by ozone and reaction with it more easily. Subsequently, the yield of hydroxyl radicals was improved so as to enhance the organics degradation efficiency. This work indicated that metal-free g-C{sub 3}N{sub 4} could be an excellent catalyst for mineralization of organic compounds in waste control.

  13. Potentially lethal damage and its repair

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1989-01-01

    Two forms termed fast-and slow-potentially lethal lethal damage (PLD) are introduced and discussed. The effect on the survival of x-irradiated Chinese hamster cells (V79) of two different post-treatments is examined in plateau- and in log-phases of growth. The postirradiation treatments used : a) incubation in hypertonic solution, and b) incubation in conditioned medium obtained from plateau-phase. Similar reduction in survival was caused by postirradiation treatment with hypertonic phosphate buffered saline, and similar increased in survival was effected by treatment in conditioned medium in plateau- and in log-phases cells. However, repair of PLD sensitive to hypertonic treatment was faster (half time, 5-10 min)(f-PLD repair) and independent from the repair of PLD (half time, 1-2 hour)(s-PLD repair) observed in conditioned medium. The results indicate the induction of two forms of PLD by radiation. Induction of both PLD was found to decrease with increasing LET of the radiation used. Identification of the molecular processes underlying repair and fixation of PLD is a task of particular interest, since it may allow replacement of a phenomenological definition with a molecular definition. Evidence is reviewed indicating the DNA double strand breaks (directly or indirectly induced) may be the DNA lesions underlying PLD. (author)

  14. Enhancement of cell death by TNF α-related apoptosis-inducing ligand (TRAIL) in human lung carcinoma A549 cells exposed to X rays under hypoxia

    International Nuclear Information System (INIS)

    Takahashi, Momoko; Inanami, Osamu; Yasui, Hironobu; Ogura, Aki; Kuwabara, Mikinori; Kubota, Nobuo; Tsujitani, Michihiko

    2007-01-01

    Our previous study showed that ionizing radiation induced the expression of death receptor DR5 on the cell surface in tumor cell lines and that the death receptor of the TNF α-related apoptosis-inducing ligand TRAIL enhanced the apoptotic pathway (Hamasu et al., (2005) Journal of Radiation Research, 46:103-110). The present experiments were performed to examine whether treatment with TRAIL enhanced the cell killing in tumor cells exposed to ionizing radiation under hypoxia, since the presence of radioresistant cells in hypoxic regions of solid tumors is a serious problem in radiation therapy for tumors. When human lung carcinoma A549 cells were irradiated under normoxia and hypoxia, respectively, radiation-induced enhancement of expression of DR5 was observed under both conditions. Incubation in the presence of TRAIL enhanced the caspase-dependent and chymotrypsin-like-protease-dependent apoptotic cell death in A549 cells exposed to X rays. Furthermore, it was shown that treatment with TRAIL enhanced apoptotic cell death and loss of clonogenic ability in A549 cells exposed to X rays not only under normoxia but also under hypoxia, suggesting that combination treatment with TRAIL and X irradiation is effective for hypoxic tumor cells. (author)

  15. Emotionally conditioning the target-speech voice enhances recognition of the target speech under "cocktail-party" listening conditions.

    Science.gov (United States)

    Lu, Lingxi; Bao, Xiaohan; Chen, Jing; Qu, Tianshu; Wu, Xihong; Li, Liang

    2018-05-01

    Under a noisy "cocktail-party" listening condition with multiple people talking, listeners can use various perceptual/cognitive unmasking cues to improve recognition of the target speech against informational speech-on-speech masking. One potential unmasking cue is the emotion expressed in a speech voice, by means of certain acoustical features. However, it was unclear whether emotionally conditioning a target-speech voice that has none of the typical acoustical features of emotions (i.e., an emotionally neutral voice) can be used by listeners for enhancing target-speech recognition under speech-on-speech masking conditions. In this study we examined the recognition of target speech against a two-talker speech masker both before and after the emotionally neutral target voice was paired with a loud female screaming sound that has a marked negative emotional valence. The results showed that recognition of the target speech (especially the first keyword in a target sentence) was significantly improved by emotionally conditioning the target speaker's voice. Moreover, the emotional unmasking effect was independent of the unmasking effect of the perceived spatial separation between the target speech and the masker. Also, (skin conductance) electrodermal responses became stronger after emotional learning when the target speech and masker were perceptually co-located, suggesting an increase of listening efforts when the target speech was informationally masked. These results indicate that emotionally conditioning the target speaker's voice does not change the acoustical parameters of the target-speech stimuli, but the emotionally conditioned vocal features can be used as cues for unmasking target speech.

  16. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  17. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation

    International Nuclear Information System (INIS)

    Zhai, Chunyang; Zhu, Mingshan; Ren, Fangfang; Yao, Zhangquan; Du, Yukou; Yang, Ping

    2013-01-01

    Highlights: • Graphene modified well-define TiO 2 sphere on carbon cloth has been fabricated. • RGO/TiO 2 /CC exhibits efficient visible light photoelectrocatalytic activity. • RGO/TiO 2 /CC electrode shows enhanced PEC activity for degradation of MB pollutant. • A synergetic effect of photocatalysis and electrocatalysis in the PEC process. -- Abstract: Reduced graphene oxide nanosheets modified TiO 2 nanospheres on carbon cloth electrodes (RGO/TiO 2 /CC) have been fabricated and used for photoelectrocatalytic (PEC) degradation of organic pollutants under visible light irradiation. The fabricated RGO/TiO 2 /CC electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. Compared with TiO 2 /CC electrode, the RGO modified TiO 2 /CC electrode evidently shows improved visible light-driven PEC activity for degradation of an often used model pollutant, methylene blue (MB). Moreover, the efficiency of MB degradation by PEC process (0.0133 min −1 ) is about 13-fold and 7-fold faster than that of electrochemical process (0.001 min −1 ) and photocatalytic process (0.0018 min −1 ), respectively. The improved catalytic activity for PEC degradation of MB pollutants could be attributed to the existence of RGO, which extends the absorption onset of TiO 2 to longer wavelength direction and promotes the separation of electron–hole pairs generated under visible light irradiation. The promotion effect on the electron–hole separation is supported by photocurrent and electrochemical impedance measurements. In addition, a synergetic effect of photocatalysis and electrocatalysis is involved in the PEC process, by which the recombination of photogenerated electron–hole pairs is significantly suppressed

  18. The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions.

    Science.gov (United States)

    Song, Chieun; Kim, Taeyoon; Chung, Woo Sik; Lim, Chae Oh

    2017-08-01

    Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana , which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the β -glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis , which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout ( cys5 ) plants grown under HS conditions. The HS tolerance of At-CYS5 -overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5 . Although no HS elements were identified in the 5'-flanking region of AtCYS5 , canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

  19. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  20. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Regulation of poly(ADP-ribose (PAR synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose polymerase-1 (PARP-1 occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β. The extent and duration of PARP-1 activation was measured after exposure to either the DNA alkylating agent, methyl methanesulfonate (MMS, or to low energy laser-induced DNA damage. There was strong DNA damage-induced hyperactivation of PARP-1 in pol β nullcells, but not in wild-type cells. In the case of MMS treatment, PAR synthesis did not lead to cell death in the pol β null cells, but instead resulted in increased PARylation of the nonhomologous end-joining (NHEJ protein Ku70 and increased association of Ku70 with PARP-1. Inhibition of the NHEJ factor DNA-PK, under conditions of MMS-induced PARP-1 hyperactivation, enhanced necrotic cell death. These data suggest that PARP-1 hyperactivation is a protective mechanism triggering the classical-NHEJ DNA repair pathway when the primary alkylated base damage repair pathway is compromised.

  1. Learning-based diagnosis and repair

    NARCIS (Netherlands)

    Roos, Nico

    2017-01-01

    This paper proposes a new form of diagnosis and repair based on reinforcement learning. Self-interested agents learn locally which agents may provide a low quality of service for a task. The correctness of learned assessments of other agents is proved under conditions on exploration versus

  2. Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress.

    Science.gov (United States)

    Regier, Nicole; Beauvais-Flück, Rebecca; Slaveykova, Vera I; Cosio, Claudia

    2016-11-01

    The hypothesis that increased UV radiation result in co-tolerance to Hg toxicity in aquatic plants was studied at the physiological and transcriptomic level in Elodea nuttallii. At the transcriptomic level, combined exposure to UV+Hg enhanced the stress response in comparison with single treatments, affecting the expression level of transcripts involved in energy metabolism, lipid metabolism, nutrition, and redox homeostasis. Single and combined UV and Hg treatments dysregulated different genes but with similar functions, suggesting a fine regulation of the plant to stresses triggered by Hg, UV and their combination but lack of co-tolerance. At the physiological level, UV+Hg treatment reduced chlorophyll content and depleted antioxidative compounds such as anthocyanin and GSH/GSSG in E. nuttallii. Nonetheless, combined exposure to UV+Hg resulted in about 30% reduction of Hg accumulation into shoots vs exposure to Hg alone, which was congruent with the level of expression of several transporter genes, as well as the UV effect on Hg bioavailability in water. The findings of the present work underlined the importance of performing experimentation under environmentally realistic conditions and to consider the interplay between contaminants and environmental variables such as light that might have confounding effects to better understand and anticipate the effects of multiple stressors in aquatic environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enhancement of tributyltin degradation under natural light by N-doped TiO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bangkedphol, S., E-mail: sornnarin.bangkedphol@strath.ac.uk [David Livingstone Centre for Sustainability, Department of Civil Engineering, University of Strathclyde, Glasgow, Scotland G1 1XN (United Kingdom); Keenan, H.E. [David Livingstone Centre for Sustainability, Department of Civil Engineering, University of Strathclyde, Glasgow, Scotland G1 1XN (United Kingdom); Davidson, C.M. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, Scotland G1 1XL (United Kingdom); Sakultantimetha, A. [David Livingstone Centre for Sustainability, Department of Civil Engineering, University of Strathclyde, Glasgow, Scotland G1 1XN (United Kingdom); Sirisaksoontorn, W.; Songsasen, A. [Department of Chemistry and Centre for Innovation in chemistry, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2010-12-15

    Photo-degradation of tributyltin (TBT) has been enhanced by TiO{sub 2} nanoparticles doped with nitrogen (N-doped TiO{sub 2}). The N-doped catalyst was prepared by a sol-gel reaction of titanium (IV) tetraisopropoxide with 25% ammonia solution and calcined at various temperatures from 300 to 600 deg. C. X-ray diffraction results showed that N-doped TiO{sub 2} remained amorphous at 300 deg. C. At 400 deg. C the anatase phase occurred then transformed to the rutile phase at 600 deg. C. The crystallite size calculated from Scherrer's equation was in the range of 16-51 nm which depended on the calcination temperature. N-doped TiO{sub 2} calcined at 400 deg. C which contained 0.054% nitrogen, demonstrated the highest photocatalytic degradation of TBT at 28% in 3 h under natural light when compared with undoped TiO{sub 2} and commercial photocatalyst, P25-TiO{sub 2} which gave 14.8 and 18% conversion, respectively.

  4. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    Science.gov (United States)

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    Science.gov (United States)

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Enhanced selective photocatalytic CO{sub 2} reduction into CO over Ag/CdS nanocomposites under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zezhou; Qin, Jiani; Jiang, Min; Ding, Zhengxin; Hou, Yidong, E-mail: ydhou@fzu.edu.cn

    2017-01-01

    Highlights: • Ag/CdS nanocomposites were prepared by a facile photodeposition method. • Ag/CdS was more effective as a photocatalyst for CO{sub 2} reduction than CdS. • Ag as cocatalyst served as electron trap as well as active site for CO{sub 2} reduction reaction. - Abstract: Photocatalytic reduction of carbon dioxide can convert chemically inert carbon dioxide into useful chemical fuel in a mild manner. Herein, Ag-CdS nanocomposites were prepared by photodeposition method and examined for photocatalytic CO{sub 2} reduction under visible light. Meanwhile, the nanocomposites were characterized by XRD, SEM, TEM, XPS, DRS and PL in detail. The results show that, the deposition of Ag improves the photocatalytic performance of CdS, especially in the selectivity of CO{sub 2}-to-CO. The highest photocatalytic activity is achieved over 1.0 wt.% Ag/CdS, with an increase by 3 times in comparison to CdS. In this reaction system, Ag can serve as electron trap as well as active site for CO{sub 2} reduction, which is probably responsible for the enhanced activity and selectivity of CO{sub 2} to CO over Ag/CdS. The possible mechanism of CO{sub 2} photoreduction over Ag/CdS was proposed in view of the abovementioned analysis.

  7. Physical assessment of coastal vulnerability under enhanced land subsidence in Semarang, Indonesia, using multi-sensor satellite data

    Science.gov (United States)

    Husnayaen; Rimba, A. Besse; Osawa, Takahiro; Parwata, I. Nyoman Sudi; As-syakur, Abd. Rahman; Kasim, Faizal; Astarini, Ida Ayu

    2018-04-01

    Research has been conducted in Semarang, Indonesia, to assess coastal vulnerability under enhanced land subsidence using multi-sensor satellite data, including the Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR), Landsat TM, IKONOS, and TOPEX/Poseidon. A coastal vulnerability index (CVI) was constructed to estimate the level of vulnerability of a coastline approximately 48.68 km in length using seven physical variables, namely, land subsidence, relative sea level change, coastal geomorphology, coastal slope, shoreline change, mean tidal range, and significant wave height. A comparison was also performed between a CVI calculated using seven parameters and a CVI using six parameters, the latter of which excludes the land subsidence parameter, to determine the effects of land subsidence during the coastal vulnerability assessment. This study showed that the accuracy of coastal vulnerability was increased 40% by adding the land subsidence factor (i.e., CVI 6 parameters = 53%, CVI 7 parameters = 93%). Moreover, Kappa coefficient indicated very good agreement (0.90) for CVI 7 parameters and fair agreement (0.3) for CVI 6 parameters. The results indicate that the area of very high vulnerability increased by 7% when land subsidence was added. Hence, using the CVI calculation including land subsidence parameters, the very high vulnerability area is determined to be 20% of the total coastline or 9.7 km of the total 48.7 km of coastline. This study proved that land subsidence has significant influence on coastal vulnerability in Semarang.

  8. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress

    Directory of Open Access Journals (Sweden)

    Sujoy SEN

    2016-09-01

    Full Text Available The objective of present study was to evaluate the response of the mung bean seeds of ‘Sonali B1’ variety primed with chitosan in four different concentrations (0, 0.1%, 0.2% and 0.5% under salinity stress of five different concentrations (i.e., 0, 4, 6, 8 and 12 dS*mm-1 and halotolerance pattern by applying Celite as matrix at three different moisture levels (5%, 10% and 20%. Improved germination percentage, germination index, mean germination time, coefficient of velocity of germination along with root and shoot length was observed comparing with control. Germination stress tolerance index (GSI, plant height stress tolerance index (PHSI and root length stress tolerance index (RLSI were used to evaluate the tolerance of the mung bean seeds against salinity stress induced by chitosan. Results of GSI, PHSI, RLSI showing noteworthy inhibitory effect of salinity stress in control set was significantly less pronounced in chitosan treated seedlings. Chitosan can remarkably alleviate the detrimental effect of salinity up to the level of 6 dS*m-1, beyond which no improvement was noticed. In conclusion present investigation revealed that chitosan is an ideal elicitor for enhancing the speed of germination and seedling invigoration that synchronize with emergence of radicle and salinity stress tolerance.

  9. Photocatalytic activity enhancement by electron irradiation of fullerene derivative-TiO2 nanoparticles under visible light illumination

    International Nuclear Information System (INIS)

    Cho, Sung Oh; Yoo, Seung Hwa; Lee, Dong Hoon

    2011-01-01

    Photocatalytic decomposition of aqueous organic pollutant have attracted many interest due to its simple, low cost, and clean procedure. By only using the sun light and photocatalyst, especially TiO 2 nanoparticles based systems have been extensively studied and commercialized for real life application. However, TiO 2 has a critical disadvantage, which can only absorb the ultra-violet region of the solar spectrum, due to the large band-gap of 3.2 eV. Extensive studies have been preformed to expand the light absorption of TiO 2 to the visible light region of the solar spectrum, by doping metal or non-metal elements on TiO 2 or attaching small band-gap semiconductors on TiO 2 . In this study, a fullerene derivative 1-(3- carboxypropyl)-1-phenyl[6,6]C 61 (PCBA) was attached on the surface of TiO 2 nanoparticles, and its photocatalytic activity was evaluated by decomposition of methyl orange under visible light. Furthermore, enhancement in the photocatalytic activity of these nanoparticles by electron irradiation is discussed

  10. Predictable repair of provisional restorations.

    Science.gov (United States)

    Hammond, Barry D; Cooper, Jeril R; Lazarchik, David A

    2009-01-01

    The importance of provisional restorations is often downplayed, as they are thought of by some as only "temporaries." As a result, a less-than-ideal provisional is sometimes fabricated, in part because of the additional chair time required to make provisional modifications when using traditional techniques. Additionally, in many dental practices, these provisional restorations are often fabricated by auxillary personnel who may not be as well trained in the fabrication process. Because provisionals play an important role in achieving the desired final functional and esthetic result, a high-quality provisional restoration is essential to fabricating a successful definitive restoration. This article describes a method for efficiently and predictably repairing both methacrylate and bis-acryl provisional restorations using flowable composite resin. By use of this relatively simple technique, provisional restorations can now be modified or repaired in a timely and productive manner to yield an exceptional result. Successful execution of esthetic and restorative dentistry requires attention to detail in every aspect of the case. Fabrication of high-quality provisional restorations can, at times, be challenging and time consuming. The techniques for optimizing resin provisional restorations as described in this paper are pragmatic and will enhance the delivery of dental treatment.

  11. Change of mitotic cycle and DNA repair in embryonic cells of rat, immortalized by E1 A oncogene and transformated by E1 A and c-Ha-Ras oncogenes under ionizing radiation action

    International Nuclear Information System (INIS)

    Kirillova, T.V.

    1997-01-01

    Comparison investigation into the repair of mitotic cycle and the reunion of DN single- and double-strand breaks in gamma-ray irradiated initial E1 A oncogene immortalized and E1 A and c-Ha-Ras oncogene transformed (mutant form) lines of rat embryonic fibroblasts was carried out. Possible involvement of Ras gene product in DNA repair speed governing and absence of tumor suppression function of p 53 protein in the embryonic and E1 A oncogene immortalized cells of rat fibroblast, as well as, presence of the mentioned function of p 53 protein in E1 A and c-Ha-Ras oncogene transformed cells were studied [ru

  12. Radiobiological significance of DNA repair

    International Nuclear Information System (INIS)

    Kuzin, A.M.

    1978-01-01

    A short outline is given on the history of the problem relating to the repair of radiation injuries, specifically its molecular mechanisms. The most urgent problems which currently confront the researchers are noted. This is a further study on the role of DNA repair in post-radiation recovery, search for ways to activate and suppress DNA repair, investigations into the activity balance of various repair enzymes as well as the problem of errors in the structure of repairing DNA. An important role is attached to the investigations of DNA repair in solving a number of practical problems

  13. Flexor tendon repair with a knotless, bidirectional barbed suture: an in vivo biomechanical analysis.

    Science.gov (United States)

    Maddox, Grady E; Ludwig, Jonathan; Craig, Eric R; Woods, David; Joiner, Aaron; Chaudhari, Nilesh; Killingsworth, Cheryl; Siegal, Gene P; Eberhardt, Alan; Ponce, Brent

    2015-05-01

    To compare and analyze biomechanical properties and histological characteristics of flexor tendons either repaired by a 4-strand modified Kessler technique or using barbed suture with a knotless repair technique in an in vivo model. A total of 25 chickens underwent surgical transection of the flexor digitorum profundus tendon followed by either a 4-strand Kessler repair or a knotless repair with barbed suture. Chickens were randomly assigned to 1 of 3 groups with various postoperative times to death. Harvested tendons were subjected to biomechanical testing or histologic analysis. Harvested tendons revealed failures in 25% of knotless repairs (8 of 32) and 8% of 4-strand Kessler repairs (2 of 24). Biomechanical testing revealed no significant difference in tensile strength between 4-strand Kessler and barbed repairs; however, this lack of difference may be attributed to lower statistical power. We noted a trend toward a gradual decrease in strength over time for barbed repairs, whereas we noticed the opposite for the 4-strand Kessler repairs. Mode of failure during testing differed between repair types. The barbed repairs tended toward suture breakage as opposed to 4-strand Kessler repairs, which demonstrated suture pullout. Histological analysis identified no difference in the degree of inflammation or fibrosis; however, there was a vigorous foreign body reaction around the 4-strand Kessler repair and no such response around the barbed repairs. In this model, knotless barbed repairs trended toward higher in vivo failure rates and biomechanical inferiority under physiologic conditions, with each repair technique differing in mode of failure and respective histologic reaction. We are unable to recommend the use of knotless barbed repair over the 4-strand modified Kessler technique. For the repair techniques tested, surgeons should prefer standard Kessler repairs over the described knotless technique with barbed suture. Copyright © 2015 American Society for Surgery

  14. Ultrasound-guided compression repair of pseudoaneurysms of brachial and femoral arteries - 2 cases-

    International Nuclear Information System (INIS)

    Kim, Hak Soo; Choi, Yeon Hyeon; Kim, Ji Eun; Lee, Sang Hoon; Kim, Myung A; Kim, Tae Kyoung; Cho, Jae Min

    1994-01-01

    Ultrasound-guided compression repair of postcatherization pseudoaneurysm has been reported recently. We successfuly treated two cases of cardiac catherization-related pseudoaneurysms of brachial and femoral arteries with compression repair technique under color Doppler US-guidance. We regard US-guided compression repair as a saft and effective first-line treatment for catherization-related pseudoaneurysm

  15. 76 FR 9987 - Protection of Stratospheric Ozone: Amendments to the Section 608 Leak Repair Requirements

    Science.gov (United States)

    2011-02-23

    ... Stratospheric Ozone: Amendments to the Section 608 Leak Repair Requirements AGENCY: Environmental Protection... rule in the December 15, 2010, Federal Register proposing changes to the leak repair regulations...- mail address [email protected] . More information about EPA's leak repair requirements under Section...

  16. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  17. Meniscal repair devices.

    Science.gov (United States)

    Barber, F A; Herbert, M A

    2000-09-01

    Meniscal repair devices not requiring accessory incisions are attractive. Many factors contribute to their clinical effectiveness including their biomechanical characteristics. This study compared several new meniscal repair devices with standard meniscal suture techniques. Using a porcine model, axis-of-insertion loads were applied to various meniscal sutures and repair devices. A single device or stitch was placed in a created meniscal tear and a load applied. Both loads and modes of failure were recorded. The load-to-failure data show stratification into 4 distinct statistical groups. Group A, 113 N for a double vertical stitch; group B, 80 N for a single vertical stitch; group C, 57 N for the BioStinger, 56 N for a horizontal mattress stitch, and 50 N for the T-Fix stitch; and group D, 33 N for the Meniscus Arrow (inserted by hand or gun), 32 N for the Clearfix screw, 31 N for the SDsorb staple, 30 N for the Mitek meniscal repair system, and 27 N for the Biomet staple. The failure mechanism varied. Sutures broke away from the knot. The Meniscus Arrow and BioStinger pulled through the inner rim with the crossbar intact. The Clearfix screw failed by multiple mechanisms, whereas 1 leg of the SDsorb staple always pulled out of the outer rim. The Mitek device usually failed by pullout from the inner rim. The Biomet staple always broke at the crosshead or just below it. Although the surgeon should be aware of the material properties of the repair technique chosen for a meniscal repair, this information is only an indication of device performance and may not correlate with clinical heali