WorldWideScience

Sample records for repair transcription coupled

  1. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  2. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-08

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. ATP-dependent chromatin remodeling and histone binding by the Cockayne syndrome B DNA repair-transcription coupling factor.

    NARCIS (Netherlands)

    E. Citterio (Elisabetta); V. van den Boom (Vincent); G. Schnitzler; R. Kanaar (Roland); E. Bonte (Edgar); R.E. Kingston; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim)

    2000-01-01

    textabstractThe Cockayne syndrome B protein (CSB) is required for coupling DNA excision repair to transcription in a process known as transcription-coupled repair (TCR). Cockayne syndrome patients show UV sensitivity and severe neurodevelopmental abnormalities. CSB is a DNA-dependent ATPase of the

  4. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor.

    Science.gov (United States)

    Prabha, Swayam; Rao, Desirazu N; Nagaraja, Valakunja

    2011-04-29

    Transcription coupled nucleotide excision repair (TC-NER) is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd) is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd) is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd) deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD) comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD) containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC) increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair.

  5. Distinct properties of hexameric but functionally conserved Mycobacterium tuberculosis transcription-repair coupling factor.

    Directory of Open Access Journals (Sweden)

    Swayam Prabha

    Full Text Available Transcription coupled nucleotide excision repair (TC-NER is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair.

  6. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Jun-ichiro, E-mail: junkom@med.tohoku.ac.jp [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Ikehata, Hironobu [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Mori, Toshio [Radioisotope Research Center, Nara Medical University, Kashihara, Nara 634-8521 (Japan); Ono, Tetsuya [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan)

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  7. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    International Nuclear Information System (INIS)

    Komura, Jun-ichiro; Ikehata, Hironobu; Mori, Toshio; Ono, Tetsuya

    2012-01-01

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: ► Global genome repair of (6-4) photoproducts is fully active in mitotic cells. ► DNA in condensed mitotic chromatin does not seem inaccessible or inert. ► Mitotic transcriptional repression may impair transcription-coupled repair.

  8. Transcription-coupled repair of UV damage in the halophilic archaea.

    Science.gov (United States)

    Stantial, Nicole; Dumpe, Jarrod; Pietrosimone, Kathryn; Baltazar, Felicia; Crowley, David J

    2016-05-01

    Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) in which excision repair proteins are targeted to RNA polymerase-arresting lesions located in the transcribed strand of active genes. TCR has been documented in a variety of bacterial and eukaryotic organisms but has yet to be observed in the Archaea. We used Halobacterium sp. NRC-1 and Haloferax volcanii to determine if TCR occurs in the halophilic archaea. Following UV irradiation of exponentially growing cultures, we quantified the rate of repair of cyclobutane pyrimidine dimers in the two strands of the rpoB2B1A1A2 and the trpDFEG operons of Halobacterium sp. NRC-1 and the pts operon of H. volcanii through the use of a Southern blot assay and strand-specific probes. TCR was observed in all three operons and was dependent on the NER gene uvrA in Halobacterium sp. NRC-1, but not in H. volcanii. The halophilic archaea likely employ a novel mechanism for TCR in which an as yet unknown coupling factor recognizes the arrested archaeal RNA polymerase complex and recruits certain NER proteins to complete the process. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mfd translocase is necessary and sufficient for transcription-coupled repair in Escherichia coli.

    Science.gov (United States)

    Adebali, Ogun; Sancar, Aziz; Selby, Christopher P

    2017-11-10

    Nucleotide excision repair in Escherichia coli is stimulated by transcription, specifically in the transcribed strand. Previously, it was shown that this transcription-coupled repair (TCR) is mediated by the Mfd translocase. Recently, it was proposed that in fact the majority of TCR in E. coli is catalyzed by a second pathway ("backtracking-mediated TCR") that is dependent on the UvrD helicase and the guanosine pentaphosphate (ppGpp) alarmone/stringent response regulator. Recently, we reported that as measured by the excision repair-sequencing (XR-seq), UvrD plays no role in TCR genome-wide. Here, we tested the role of ppGpp and UvrD in TCR genome-wide and in the lacZ operon using the XR-seq method, which directly measures repair. We found that the mfd mutation abolishes TCR genome-wide and in the lacZ operon. In contrast, the relA - spoT - mutant deficient in ppGpp synthesis carries out normal TCR. We conclude that UvrD and ppGpp play no role in TCR in E. coli . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The relationship of transcription and repair of radioinduced DNA damage

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Igusheva, O.A.

    1997-01-01

    The data are discussed which has become a basement of such important findings as involvement of transcription into repair or existence of transcription-coupling repair factors. Thymine glycols which are appear under ionizing radiation exposure, are repaired preferentially in transcribed DNA. In present review the preferential repair of ionizing radiation-induced singlestrand breaks (SSBa) in transcribed DNA of human cells. Discontinuous distribution of DNA repair along hole genome has a grate role in biological processes

  11. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.

    Science.gov (United States)

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong

    2017-11-30

    Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.

  12. Transcription coupled repair deficiency protects against human mutagenesis and carcinogenesis: Personal Reflections on the 50th anniversary of the discovery of xeroderma pigmentosum.

    Science.gov (United States)

    Cleaver, James E

    2017-10-01

    Xeroderma pigmentosum (XP) patients who lack the main damage recognition protein for global genome repair (GGR), XPC, have greatly increased skin cancer rates and elevated mutation frequencies originating from unrepaired ultraviolet photoproducts in the nontranscribed regions of the genome and in nontranscribed strands of expressed genes. But they show no increased mutations in transcribed strands. In contrast, cancer is absent from Cockayne syndrome (CS) patients that have defective transcription coupled repair (TCR) despite severe photosensitivity, CS patients remarkably show no elevation of UV induced mutagenesis implying that defective TCR may be protective against mutagenesis and carcinogenesis. Mutation avoidance in CS is postulated to occur through arrested transcription that generates a tripled stranded R loop consisting of DNA double strands and a nascent mRNA strand. R loops result in S phase apoptosis or activation of ATM kinase that causes a delay in DNA replication until TCR, or transcript cleavage by TFIIS or RNAaseH, relieves the transcription block. Resumption of replication then occurs on repaired DNA without concomitant mutagenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  14. Interplay of DNA repair with transcription: from structures to mechanisms.

    Science.gov (United States)

    Deaconescu, Alexandra M; Artsimovitch, Irina; Grigorieff, Nikolaus

    2012-12-01

    Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Coordinating repair of oxidative DNA damage with transcription and replication

    International Nuclear Information System (INIS)

    Cooper, P.K.

    2003-01-01

    Transcription-coupled repair (TCR) preferentially removes DNA lesions from template strands of active genes. Defects in TCR, which acts both on lesions removed by nucleotide excision repair (NER) and on oxidative lesions removed by base excision repair (BER), underlie the fatal developmental disorder Cockayne syndrome. Although its detailed mechanism remains unknown, TCR involves recognition of a stalled RNA polymerase (RNAP), removal or remodeling of RNAP to allow access to the lesion, and recruitment of repair enzymes. At a minimum, these early steps require a non-enzymatic function of the multifunctional repair protein XPG, the CSB protein with ATP-dependent chromatin remodeling activity, and the TFIIH complex (including the XPB and XPD helicases) that is also required for basal transcription initiation and NER. XPG exists in the cell in a complex with TFIIH, and in vitro evidence has suggested that it interacts with CSB. To address the mechanism of TCR, we are characterizing protein-DNA and protein-protein interactions of XPG. We show that XPG preferentially binds to double-stranded DNA containing bubbles resembling in size the unpaired regions associated with transcription. Two distinct domains of XPG are required for the observed strong binding specificity and stability. XPG both interacts directly with CSB and synergistically binds with it to bubble DNA, and it strongly stimulates the bubble DNA-dependent ATPase activity of CSB. Significantly for TCR, XPG also interacts directly with RNAP II, binds both the protein and nucleic acid components (the R-loop) of a stalled RNA polymerase, and forms a ternary complex with CSB and the stalled RNAP. These results are consistent with the model that XPG and CSB jointly interact with the DNA/chromatin structure in the vicinity of the stalled transcriptional apparatus and with the transcriptional machinery itself to remodel the chromatin and either move or remodel the blocked RNA polymerase to expose the lesion

  16. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    International Nuclear Information System (INIS)

    Stubbert, Lawton J; Smith, Jennifer M; McKay, Bruce C

    2010-01-01

    One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic

  17. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    Directory of Open Access Journals (Sweden)

    Smith Jennifer M

    2010-05-01

    Full Text Available Abstract Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi was used to reduce the transcription-coupled nucleotide excision repair (TC-NER capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic.

  18. Contribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein.

    Science.gov (United States)

    Wrzesiński, Michał; Nieminuszczy, Jadwiga; Sikora, Anna; Mielecki, Damian; Chojnacka, Aleksandra; Kozłowski, Marek; Krwawicz, Joanna; Grzesiuk, Elzbieta

    2010-06-01

    In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), alpha-ketoglutarate-dependent dioxygenase that oxidatively demethylates 1meA and 3meC lesions in DNA, with recovery of A and C. Here, we studied the impact of transcription-coupled DNA repair (TCR) on MMS-induced mutagenesis in E. coli strain deficient in functional AlkB protein. Measuring the decline in the frequency of MMS-induced argE3-->Arg(+) revertants under transient amino acid starvation (conditions for TCR induction), we have found a less effective TCR in the BS87 (alkB(-)) strain in comparison with the AB1157 (alkB(+)) counterpart. Mutation in the mfd gene encoding the transcription-repair coupling factor Mfd, resulted in weaker TCR in MMS-treated and starved AB1157 mfd-1 cells in comparison to AB1157 mfd(+), and no repair in BS87 mfd(-) cells. Determination of specificity of Arg(+) revertants allowed to conclude that MMS-induced 1meA and 3meC lesions, unrepaired in bacteria deficient in AlkB, are the source of mutations. These include AT-->TA transversions by supL suppressor formation (1meA) and GC-->AT transitions by supB or supE(oc) formation (3meC). The repair of these lesions is partly Mfd-dependent in the AB1157 mfd-1 and totally Mfd-dependent in the BS87 mfd-1 strain. The nucleotide sequence of the mfd-1 allele shows that the mutated Mfd-1 protein, deprived of the C-terminal translocase domain, is unable to initiate TCR. It strongly enhances the SOS response in the alkB(-)mfd(-) bacteria but not in the alkB(+)mfd(-) counterpart. Copyright 2010 Elsevier B.V. All rights reserved.

  19. The transcription fidelity factor GreA impedes DNA break repair.

    Science.gov (United States)

    Sivaramakrishnan, Priya; Sepúlveda, Leonardo A; Halliday, Jennifer A; Liu, Jingjing; Núñez, María Angélica Bravo; Golding, Ido; Rosenberg, Susan M; Herman, Christophe

    2017-10-12

    Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.

  20. Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice

    International Nuclear Information System (INIS)

    Munson, G.P.; Woloschak, G.E.

    1990-01-01

    Experiments were designed to examine in vivo changes in total transcription and in the expression of the c-fos gene following whole-body exposure of mice to JANUS fission-spectrum neutrons. Radiation repair-deficient (wst/wst) and -proficient (wst/., C57BL/6 x C3H F1) mice were exposed to JANUS fission-spectrum neutrons calibrated to deliver a gut dose of 50 cGy. Animals were sacrificed less than 10 or at 60 min postirradiation, and gut tissues were removed for study. Our results revealed that, in repair-proficient mice, an immediate depression (relative to untreated control) in total transcription was evident that continued through 1 h postirradiation. Conversely, radiation-sensitive wst/wst mice displayed doubled transcription levels postirradiation. Expression of c-fos was consistently depressed following radiation exposure in control and wst/wst mice. However, the depression of c-fos mRNA was delayed in wst/wst mice relative to controls. These results demonstrate abnormal regulation of transcription and of c-fos mRNA accumulation in repair-deficient wasted mice following exposure to ionizing radiation. In addition, this work documents rapid total transcriptional depression in normal mice following radiation exposure

  1. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF.

    Science.gov (United States)

    Xia, Min; Chen, Kun; Yao, Xiao; Xu, Yichi; Yao, Jiaying; Yan, Jun; Shao, Zhen; Wang, Gang

    2017-08-22

    DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER) and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Genetic instability associated with loop or stem–loop structures within transcription units can be independent of nucleotide excision repair

    Science.gov (United States)

    Burns, John A; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Scicchitano, David A

    2018-01-01

    Abstract Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem–loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them. PMID:29474673

  3. New discoveries linking transcription to DNA repair and damage tolerance pathways.

    Science.gov (United States)

    Cohen, Susan E; Walker, Graham C

    2011-01-01

    In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.

  4. Transcription Restores DNA Repair to Heterochromatin, Determining Regional Mutation Rates in Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Christina L. Zheng

    2014-11-01

    Full Text Available Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs arising in an XPC−/− background. XPC−/− cells lack global genome nucleotide excision repair (GG-NER, thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk.

  5. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  6. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment.

    Science.gov (United States)

    Eyboulet, Fanny; Cibot, Camille; Eychenne, Thomas; Neil, Helen; Alibert, Olivier; Werner, Michel; Soutourina, Julie

    2013-12-01

    Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3' endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.

  7. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    Science.gov (United States)

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  8. Cloning and characterization of p52, the fifth subunit of the core of transcription/repair factor TFIIH.

    NARCIS (Netherlands)

    J.C. Marinoni; R. Roy (Richard); W. Vermeulen (Wim); P. Miniou; Y. Lutz; G. Weeda (Geert); T. Seroz; D.M. Gomez (Denise Molina); J.H.J. Hoeijmakers (Jan); J-M. Egly (Jean-Marc)

    1997-01-01

    textabstractTFIIH is a multiprotein factor involved in transcription and DNA repair and is implicated in DNA repair/transcription deficiency disorders such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Eight out of the nine genes encoding the subunits forming TFIIH have

  9. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    Science.gov (United States)

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.

  10. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Directory of Open Access Journals (Sweden)

    Stromberg Arnold J

    2009-09-01

    Full Text Available Abstract Background Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. Methods Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR. Results Statistical analyses revealed 3,327 (35.3% differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. Conclusion The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to

  11. At the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence

    Directory of Open Access Journals (Sweden)

    Ryosuke eOhsawa

    2013-07-01

    Full Text Available It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships among non-coding RNA transcription, maintenance of genomic stability, chromatin structure and adult stem cell senescence. DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will discuss the correlation between non-coding RNAs and DNA damage repair efficiency and the potential role of changing chromatin structures around double-strand break sites. On the other hand, induction of non-coding RNA transcription from the repetitive Alu elements occurs during human stem cell aging and hinders efficient DNA repair causing entry into senescence. We will discuss how this fine balance between transcription and genomic instability may be regulated by the dramatic changes to chromatin structure that accompany cellular senescence.

  12. Two sides of the same coin: TFIIH complexes in transcription and DNA repair.

    Science.gov (United States)

    Zhovmer, Alexander; Oksenych, Valentyn; Coin, Frédéric

    2010-04-13

    TFIIH is organized into a seven-subunit core associated with a three-subunit Cdk-activating kinase (CAK) module. TFIIH has roles in both transcription initiation and DNA repair. During the last 15 years, several studies have been conducted to identify the composition of the TFIIH complex involved in DNA repair. Recently, a new technique combining chromatin immunoprecipitation and western blotting resolved the hidden nature of the TFIIH complex participating in DNA repair. Following the recruitment of TFIIH to the damaged site, the CAK module is released from the core TFIIH, and the core subsequently associates with DNA repair factors. The release of the CAK is specifically driven by the recruitment of the DNA repair factor XPA and is required to promote the incision/excision of the damaged DNA. Once the DNA lesions have been repaired, the CAK module returns to the core TFIIH on the chromatin, together with the release of the repair factors. These data highlight the dynamic composition of a fundamental cellular factor that adapts its subunit composition to the cell needs.

  13. Two Sides of the Same Coin: TFIIH Complexes in Transcription and DNA Repair

    Directory of Open Access Journals (Sweden)

    Alexander Zhovmer

    2010-01-01

    Full Text Available TFIIH is organized into a seven-subunit core associated with a three-subunit Cdk-activating kinase (CAK module. TFIIH has roles in both transcription initiation and DNA repair. During the last 15 years, several studies have been conducted to identify the composition of the TFIIH complex involved in DNA repair. Recently, a new technique combining chromatin immunoprecipitation and western blotting resolved the hidden nature of the TFIIH complex participating in DNA repair. Following the recruitment of TFIIH to the damaged site, the CAK module is released from the core TFIIH, and the core subsequently associates with DNA repair factors. The release of the CAK is specifically driven by the recruitment of the DNA repair factor XPA and is required to promote the incision/excision of the damaged DNA. Once the DNA lesions have been repaired, the CAK module returns to the core TFIIH on the chromatin, together with the release of the repair factors. These data highlight the dynamic composition of a fundamental cellular factor that adapts its subunit composition to the cell needs.

  14. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    David G. Johnson

    2012-10-01

    Full Text Available Many of the biochemical details of nucleotide excision repair (NER have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER.

  15. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II.

    Science.gov (United States)

    Steurer, Barbara; Marteijn, Jurgen A

    2017-10-27

    The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA

    International Nuclear Information System (INIS)

    Venema, J.; Mullenders, L.H.; Natarajan, A.T.; van Zeeland, A.A.; Mayne, L.V.

    1990-01-01

    Cells from patients with Cockayne syndrome (CS) are hypersensitive to UV-irradiation but have an apparently normal ability to remove pyrimidine dimers from the genome overall. We have measured the repair of pyrimidine dimers in defined DNA sequences in three normal and two CS cell strains. When compared to a nontranscribed locus, transcriptionally active genes were preferentially repaired in all three normal cell strains. There was no significant variation in levels of repair between various normal individuals or between two constitutively expressed genes, indicating that preferential repair may be a consistent feature of constitutively expressed genes in human cells. Neither CS strain, from independent complementation groups, was able to repair transcriptionally active DNA with a similar rate and to the same extent as normal cells, indicating that the genetic defect in CS lies in the pathway for repair of transcriptionally active DNA. These results have implications for understanding the pleiotropic clinical effects associated with disorders having defects in the repair of DNA damage. In particular, neurodegeneration appears to be associated with the loss of preferential repair of active genes and is not simply correlated with reduced levels of overall repair

  17. Computing algebraic transfer entropy and coupling directions via transcripts

    Science.gov (United States)

    Amigó, José M.; Monetti, Roberto; Graff, Beata; Graff, Grzegorz

    2016-11-01

    Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.

  18. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Mullins, D'Anna N; Crawford, Erin L; Khuder, Sadik A; Hernandez, Dawn-Alita; Yoon, Youngsook; Willey, James C

    2005-01-01

    Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC. The putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals. CEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals. We conclude that CEBPG is the transcription factor primarily responsible for regulating

  19. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells.

    Science.gov (United States)

    Scanlon, Susan E; Scanlon, Christine D; Hegan, Denise C; Sulkowski, Parker L; Glazer, Peter M

    2017-06-01

    The heavy metal nickel is a known carcinogen, and occupational exposure to nickel compounds has been implicated in human lung and nasal cancers. Unlike many other environmental carcinogens, however, nickel does not directly induce DNA mutagenesis, and the mechanism of nickel-related carcinogenesis remains incompletely understood. Cellular nickel exposure leads to signaling pathway activation, transcriptional changes and epigenetic remodeling, processes also impacted by hypoxia, which itself promotes tumor growth without causing direct DNA damage. One of the mechanisms by which hypoxia contributes to tumor growth is the generation of genomic instability via down-regulation of high-fidelity DNA repair pathways. Here, we find that nickel exposure similarly leads to down-regulation of DNA repair proteins involved in homology-dependent DNA double-strand break repair (HDR) and mismatch repair (MMR) in tumorigenic and non-tumorigenic human lung cells. Functionally, nickel induces a defect in HDR capacity, as determined by plasmid-based host cell reactivation assays, persistence of ionizing radiation-induced DNA double-strand breaks and cellular hypersensitivity to ionizing radiation. Mechanistically, we find that nickel, in contrast to the metalloid arsenic, acutely induces transcriptional repression of HDR and MMR genes as part of a global transcriptional pattern similar to that seen with hypoxia. Finally, we find that exposure to low-dose nickel reduces the activity of the MLH1 promoter, but only arsenic leads to long-term MLH1 promoter silencing. Together, our data elucidate novel mechanisms of heavy metal carcinogenesis and contribute to our understanding of the influence of the microenvironment on the regulation of DNA repair pathways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. True Lies: The Double Life of the Nucleotide Excision Repair Factors in Transcription and DNA Repair

    Directory of Open Access Journals (Sweden)

    Nicolas Le May

    2010-01-01

    Full Text Available Nucleotide excision repair (NER is a major DNA repair pathway in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation or bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to three genetic disorders that result in predisposition to cancers, accelerated aging, neurological and developmental defects. During NER, more than 30 polypeptides cooperate to recognize, incise, and excise a damaged oligonucleotide from the genomic DNA. Recent papers reveal an additional and unexpected role for the NER factors. In the absence of a genotoxic attack, the promoters of RNA polymerases I- and II-dependent genes recruit XPA, XPC, XPG, and XPF to initiate gene expression. A model that includes the growth arrest and DNA damage 45α protein (Gadd45α and the NER factors, in order to maintain the promoter of active genes under a hypomethylated state, has been proposed but remains controversial. This paper focuses on the double life of the NER factors in DNA repair and transcription and describes the possible roles of these factors in the RNA synthesis process.

  1. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.

    Science.gov (United States)

    Keskin, Havva; Storici, Francesca

    2018-01-01

    A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.

  2. Archaeal RNA polymerase arrests transcription at DNA lesions.

    Science.gov (United States)

    Gehring, Alexandra M; Santangelo, Thomas J

    2017-01-01

    Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.

  3. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair

    NARCIS (Netherlands)

    G.S. Winkler (Sebastiaan); U. Fiedler; W. Vermeulen (Wim); F. Coin (Frédéric); R.D. Wood (Richard); H.T.M. Timmers (Marc); G. Weeda (Geert); J.H.J. Hoeijmakers (Jan); S.J. Araú jo; J-M. Egly (Jean-Marc)

    2000-01-01

    textabstractTFIIH is a multisubunit protein complex involved in RNA polymerase II transcription and nucleotide excision repair, which removes a wide variety of DNA lesions including UV-induced photoproducts. Mutations in the DNA-dependent ATPase/helicase subunits of TFIIH, XPB and

  4. Processivity and coupling in messenger RNA transcription.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2010-01-01

    Full Text Available The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model.In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range.We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low--as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise--a prediction of the on/off model that has no supporting evidence.

  5. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players.

    Science.gov (United States)

    Menoni, Hervé; Di Mascio, Paolo; Cadet, Jean; Dimitrov, Stefan; Angelov, Dimitar

    2017-06-01

    Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin? Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, W.; Kleijer, W.J.; Bootsma, D.; Hoeijmakers, J.H.J.; Weeda, G. (Erasmus Univ., Rotterdam (Netherlands)); Scott, R.J.; Rodgers, S.; Mueller, H.J. (Univ. Hospital, Basel (Switzerland)); Cole, J.; Arlett, C.F. (Univ. of Sussex, Brighton (United Kingdom))

    1994-02-01

    The human DNA excision repair gene ERCC3 specifically corrects the nucleotide excision repair (NER) defect of xeroderma pigmentosum (XP) complementation group B. In addition to its function in NER, the ERCC3 DNA helicase was recently identified as one of the components of the human BTF2/TFIIH transcription factor complex, which is required for initiation of transcription of class II genes. To date, a single patient (XP11BE) has been assigned to this XP group B (XP-B), with the remarkable conjunction of two autosomal recessive DNA repair deficiency disorders: XP and Cockayne syndrome (CS). The intriguing involvement of the ERCC3 protein in the vital process of transcription may provide an explanation for the rarity, severity, and wide spectrum of clinical features in this complementation group. Here the authors report the identification of two new XP-B patients: XPCS1BA and XPCS2BA (siblings), by microneedle injection of the cloned ERCC3 repair gene as well as by cell hybridization. Molecular analysis of the ERCC3 gene in both patients revealed a single base substitution causing a missense mutation in a region that is completely conserved in yeast, Drosophila, mouse, and human ERCC3. As in patient XP11BE, the expression of only one allele (paternal) is detected. The mutation causes a virtually complete inactivation of the NER function of the protein. Despite this severe NER defect, both patients display a late onset of neurologic impairment, mild cutaneous symptoms, and a striking absence of skin tumors even at an age of >40 years. Analysis of the frequency of hprt[sup [minus

  7. DNA damage mediated transcription arrest: Step back to go forward.

    Science.gov (United States)

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  9. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1

    International Nuclear Information System (INIS)

    Sebastian, J.; Sancar, G.B.

    1991-01-01

    The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. The authors here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5' flanking sequence beginning 40 base pairs upstream from the coding sequence. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription

  10. AIDing Chromatin and Transcription-Coupled Orchestration of Immunoglobulin Class-Switch Recombination

    Science.gov (United States)

    Vaidyanathan, Bharat; Yen, Wei-Feng; Pucella, Joseph N.; Chaudhuri, Jayanta

    2014-01-01

    Secondary diversification of the antibody repertoire upon antigenic challenge, in the form of immunoglobulin heavy chain (IgH) class-switch recombination (CSR) endows mature, naïve B cells in peripheral lymphoid organs with a limitless ability to mount an optimal humoral immune response, thus expediting pathogen elimination. CSR replaces the default constant (CH) region exons (Cμ) of IgH with any of the downstream CH exons (Cγ, Cε, or Cα), thereby altering effector functions of the antibody molecule. This process depends on, and is orchestrated by, activation-induced deaminase (AID), a DNA cytidine deaminase that acts on single-stranded DNA exposed during transcription of switch (S) region sequences at the IgH locus. DNA lesions thus generated are processed by components of several general DNA repair pathways to drive CSR. Given that AID can instigate DNA lesions and genomic instability, stringent checks are imposed that constrain and restrict its mutagenic potential. In this review, we will discuss how AID expression and substrate specificity and activity is rigorously enforced at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and how the DNA-damage response is choreographed with precision to permit targeted activity while limiting bystander catastrophe. PMID:24734031

  11. Disruption of Runx1 and Runx3 Leads to Bone Marrow Failure and Leukemia Predisposition due to Transcriptional and DNA Repair Defects

    Directory of Open Access Journals (Sweden)

    Chelsia Qiuxia Wang

    2014-08-01

    Full Text Available The RUNX genes encode transcription factors involved in development and human disease. RUNX1 and RUNX3 are frequently associated with leukemias, yet the basis for their involvement in leukemogenesis is not fully understood. Here, we show that Runx1;Runx3 double-knockout (DKO mice exhibited lethal phenotypes due to bone marrow failure and myeloproliferative disorder. These contradictory clinical manifestations are reminiscent of human inherited bone marrow failure syndromes such as Fanconi anemia (FA, caused by defective DNA repair. Indeed, Runx1;Runx3 DKO cells showed mitomycin C hypersensitivity, due to impairment of monoubiquitinated-FANCD2 recruitment to DNA damage foci, although FANCD2 monoubiquitination in the FA pathway was unaffected. RUNX1 and RUNX3 interact with FANCD2 independently of CBFβ, suggesting a nontranscriptional role for RUNX in DNA repair. These findings suggest that RUNX dysfunction causes DNA repair defect, besides transcriptional misregulation, and promotes the development of leukemias and other cancers.

  12. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.

    Science.gov (United States)

    Castro-Roa, Daniel; Zenkin, Nikolay

    2015-09-15

    The various properties of RNA polymerase (RNAP) complexes with nucleic acids during different stages of transcription involve various types of regulation and different cross-talk with other cellular entities and with fellow RNAP molecules. The interactions of transcriptional apparatus with the translational machinery have been focused mainly in terms of outcomes of gene expression, whereas the study of the physical interaction of the ribosome and the RNAP remains obscure partly due to the lack of a system that allows such observations. In this article we will describe the methodology needed to set up a pure, transcription-coupled-to-translation system in which the translocation of the ribosome can be performed in a step-wise manner towards RNAP allowing investigation of the interactions between the two machineries at colliding and non-colliding distances. In the same time RNAP can be put in various types of states, such as paused, roadblocked, backtracked, etc. The experimental system thus allows studying the effects of the ribosome on different aspects of transcription elongation and the effects by RNAP on translation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. DNA repair pathways involved in determining the level of cytotoxicity of environmentally relevant UV radiation

    International Nuclear Information System (INIS)

    Carpenter, L.

    2000-01-01

    The sensitivity of cell lines with defects in various DNA repair processes to different wavelengths of UV has been assessed in order to determine the importance of these repair pathways to the cytotoxicity of UV light. The cell lines used in this work were xrs-6 (a Chinese Hamster Ovary (CHO) cell line) mutant for XRCC5/Ku80, EM9 a CHO cell line mutant for XRCC1, UV61 a CHO cell line mutant for ERCC6/CSB, and E3p53-/-, a mouse embryonic fibroblast cell line null for p53. Xrs-6 (defective in Non Homologous End-Joining) was found to be sensitive to the cytotoxic effects of broadband UVA, but not narrowband UVA or narrowband UVB. EM9 (defective in Base Excision Repair/Single-Strand Break Repair) was not sensitive to the cytotoxic effects of both broadband and narrowband UVA, narrowband UVB or narrowband UVC. UV61 (defective in the Transcription Coupled Repair branch of Nucleotide Excision Repair) was sensitive to the cytotoxic effects of narrowband UVA, UVB and UVC. E3p53-/- was sensitive to the cytotoxic effects of narrowband UVA and UVB. Broadband UVA was found to induce high levels of chromosomal damage in xrs-6, as quantified by the micronucleus assay, most likely as a result of this cell lines inability to repair DNA double strand breaks. EM9 was found to be defective in the repair of broadband UVA-induced single strand breaks, as measured by the alkaline gel electrophoresis ('comet') assay. UV61 was unable to repair broadband UVB-induced DNA damage as measured by the alkaline gel electrophoresis ('comet') assay. These results provide evidence that: 1. DNA double-strand breaks contribute to the cytotoxicity of UVA to a greater extent than single-strand breaks. 2. Repair mechanisms that operate in response to UVA may be coupled to transcription. 3. UVB may directly induce SSBs. 4. P53 is involved in the response of the cell to both UVA and UVB radiation. (author)

  14. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity.

    Science.gov (United States)

    Mao, Peng; Brown, Alexander J; Malc, Ewa P; Mieczkowski, Piotr A; Smerdon, Michael J; Roberts, Steven A; Wyrick, John J

    2017-10-01

    DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers. © 2017 Mao et al.; Published by Cold Spring Harbor Laboratory Press.

  15. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair.

    NARCIS (Netherlands)

    S. Humbert; H. van Vuuren; Y. Lutz; J.H.J. Hoeijmakers (Jan); J-M. Egly (Jean-Marc); V. Moncollin

    1994-01-01

    textabstractThe human BTF2 (TFIIH) transcription factor is a multisubunit protein involved in transcription initiation by RNA polymerase II (B) as well as in DNA repair. In addition to the previously characterized p62 and p89/ERCC3 subunits, we have cloned two other subunits of BTF2, p44 and p34.

  16. Transcriptional similarity in couples reveals the impact of shared environment and lifestyle on gene regulation through modified cytosines

    Directory of Open Access Journals (Sweden)

    Ke Tang

    2016-06-01

    Full Text Available Gene expression is a complex and quantitative trait that is influenced by both genetic and non-genetic regulators including environmental factors. Evaluating the contribution of environment to gene expression regulation and identifying which genes are more likely to be influenced by environmental factors are important for understanding human complex traits. We hypothesize that by living together as couples, there can be commonly co-regulated genes that may reflect the shared living environment (e.g., diet, indoor air pollutants, behavioral lifestyle. The lymphoblastoid cell lines (LCLs derived from unrelated couples of African ancestry (YRI, Yoruba people from Ibadan, Nigeria from the International HapMap Project provided a unique model for us to characterize gene expression pattern in couples by comparing gene expression levels between husbands and wives. Strikingly, 778 genes were found to show much smaller variances in couples than random pairs of individuals at a false discovery rate (FDR of 5%. Since genetic variation between unrelated family members in a general population is expected to be the same assuming a random-mating society, non-genetic factors (e.g., epigenetic systems are more likely to be the mediators for the observed transcriptional similarity in couples. We thus evaluated the contribution of modified cytosines to those genes showing transcriptional similarity in couples as well as the relationships these CpG sites with other gene regulatory elements, such as transcription factor binding sites (TFBS. Our findings suggested that transcriptional similarity in couples likely reflected shared common environment partially mediated through cytosine modifications.

  17. DNA repair: Dynamic defenders against cancer and aging

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, Jill O.; Cooper, Priscilla K.

    2006-04-01

    (UV) component of sunlight. NER can be divided into two classes based on where the repair occurs. NER occurring in DNA that is not undergoing transcription (i.e., most of the genome) is called global genome repair (GGR or GGNER), while NER taking place in the transcribed strand of active genes is called transcription-coupled repair (TCR or TC-NER). We will explore NER in more detail below. Mismatch repair (MMR) is another type of excision repair that specifically removes mispaired bases resulting from replication errors. DNA damage can also result in breaks in the DNA backbone, in one or both strands. Single-strand breaks (SSBs) are efficiently repaired by a mechanism that shares common features with the later steps in BER. Double-strand breaks (DSBs) are especially devastating since by definition there is no intact complementary strand to serve as a template for repair, and even one unrepaired DSB can be lethal [3]. In cells that have replicated their DNA prior to cell division, the missing information can be supplied by the duplicate copy, or sister chromatid, and DSBs in these cells are faithfully repaired by homologous recombination involving the exchange of strands of DNA between the two copies. However, most cells in the body are non-dividing, and in these cells the major mechanism for repairing DSBs is by non-homologous end joining (NHEJ), which as the name implies involves joining two broken DNA ends together without a requirement for homologous sequence and which therefore has a high potential for loss of genetic information.

  18. The rupture and repair of the couple's communal body with prostate cancer.

    Science.gov (United States)

    Fergus, Karen D

    2011-06-01

    Intimate partners' ability to adopt a "we" outlook in relation to cancer has consistently been associated with optimal adaptation for couples. This investigation adds to the growing body of literature on dyadic coping and resiliency in couples through an in-depth examination of five well-adjusted couples' experiences with prostate cancer. Of specific interest were (1) how the experience of prostate cancer affected the couple's unique intersubjective identity, and how in turn (2) the couple's identity and relationship culture influenced their adjustment to cancer. An ethnographic mode of inquiry was adopted. Marital partners were interviewed together on two separate occasions with the intention of having them deepen their conjoint reflexive processing of their relationship. During the interviews, couples were asked to reflect upon and articulate their sense of themselves as a couple, their experience of "we-ness" and shared identity, and the interaction between the illness and we-ness. Interviews were transcribed verbatim and analyzed using the grounded theory method. The grounded theory analysis yielded three main themes portraying the couples' experience of prostate cancer: (1) riding the vortex, (2) holding the communal body intact, and (3) invincibility and its underbelly. A more broad understanding to arise from this investigation was the notion of a "communal body" and that couples participated in a shared corporeality, to which each partner's identity and sense of self was intricately tied. It is concluded that the intersubjective embodiment displayed by couples in this study was instrumental to the "repair" of the communal body ruptured by prostate cancer. ©2011 APA

  19. Cockayne syndrome: defective repair of transcription?

    NARCIS (Netherlands)

    A.J. van Gool (Alain); G.T.J. van der Horst (Gijsbertus); E. Citterio (Elisabetta); J.H.J. Hoeijmakers (Jan)

    1997-01-01

    textabstractIn the past years, it has become increasingly evident that basal metabolic processes within the cell are intimately linked and influenced by one another. One such link that recently has attracted much attention is the close interplay between nucleotide excision DNA repair and

  20. Repair-modification of radiodamaged genes

    International Nuclear Information System (INIS)

    Volpe, P.; Institute of Experimental Medicine, Rome; Eremenko, T.

    1995-01-01

    It is proposed that through repair-modification, the modified base 5mC may have facilitated the divergent evolution of coding (hypomethylated exon) and uncoding (hypermethylated promoter and intron) sequences in eukaryotic genes. The radioinduced repair patches appearing in regions lacking 5mC are fully reconstructed by excision-repair, whereas those appearing in regions containing 5mC are incompletely reconstructed by this conventional mechanism. Such a second class of repair patches may, however, become fully reconstructed, in the S phase, by repair-modification. In fact, while DNA polymerase β - which is a key enzyme of excision-repair - is active through the whole interphase. DNA methylase - which is responsible for post-synthetic DNA modification - is essentially active in S. Uncoupling of these two enzyme systems, outside S, might explain why in unsynchronised cells repair patches of non-replicating strands are hypomethylated when compared with specific methylation of replicating strands. In other words, excision-repair would always be able to re-establish the primary ATGC language of both damaged unmethylated and methylated regions, while repair-modification would be able to re-establish the modified ATGC(5mC) language of the damaged methylated regions, only in S, but not in G 1 or G 2 . In these two phases, when DNA methylation is inversely correlated with pre-mRNA transcription (as in the case of many tissue-specific genes), such demethylation might induce a silent transcriptional unit to become active. (Author)

  1. Transcription and DNA Damage: Holding Hands or Crossing Swords?

    Science.gov (United States)

    D'Alessandro, Giuseppina; d'Adda di Fagagna, Fabrizio

    2017-10-27

    Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination. Moreover, while canonical transcription is inhibited in the proximity of DNA double-strand breaks, a growing body of evidence supports active non-canonical transcription at DNA damage sites. Small non-coding RNAs accumulate at DNA double-strand break sites in mammals and other organisms, and are involved in DNA damage signaling and repair. Furthermore, RNA binding proteins are recruited to DNA damage sites and participate in the DNA damage response. Here, we discuss the impact of transcription on genome stability, the role of RNA binding proteins at DNA damage sites, and the function of small non-coding RNAs generated upon damage in the signaling and repair of DNA lesions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Dynamic maps of UV damage formation and repair for the human genome.

    Science.gov (United States)

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-06-27

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.

  3. Conserved XPB Core Structure and Motifs for DNA Unwinding:Implications for Pathway Selection of Transcription or ExcisionRepair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Li; Arval, Andrew S.; Cooper, Priscilla K.; Iwai, Shigenori; Hanaoka, Fumio; Tainer, John A.

    2005-04-01

    The human xeroderma pigmentosum group B (XPB) helicase is essential for transcription, nucleotide excision repair, and TFIIH functional assembly. Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characterize two RecA-like XPB helicase domains and discover a DNA damage recognition domain (DRD), a unique RED motif, a flexible thumb motif (ThM), and implied conformational changes within a conserved functional core. RED motif mutations dramatically reduce helicase activity, and the DRD and ThM, which flank the RED motif, appear structurally as well as functionally analogous to the MutS mismatch recognition and DNA polymerase thumb domains. Substrate specificity is altered by DNA damage, such that AfXPB unwinds dsDNA with 3' extensions, but not blunt-ended dsDNA, unless it contains a lesion, as shown for CPD or (6-4) photoproducts. Together, these results provide an unexpected mechanism of DNA unwinding with Implications for XPB damage verification in nucleotide excision repair.

  4. Architecture of the human and yeast general transcription and DNA repair factor TFIIH

    Science.gov (United States)

    Luo, Jie; Cimermancic, Peter; Viswanath, Shruthi; Ebmeier, Christopher C.; Kim, Bong; Dehecq, Marine; Raman, Vishnu; Greenberg, Charles H.; Pellarin, Riccardo; Sali, Andrej; Taatjes, Dylan J.; Hahn, Steven; Ranish, Jeff

    2015-01-01

    Summary TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved “topological regions” that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with Xeroderma pigmentosum and Trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit. PMID:26340423

  5. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  6. Altered minor-groove hydrogen bonds in DNA block transcription elongation by T7 RNA polymerase.

    Science.gov (United States)

    Tanasova, Marina; Goeldi, Silvan; Meyer, Fabian; Hanawalt, Philip C; Spivak, Graciela; Sturla, Shana J

    2015-05-26

    DNA transcription depends upon the highly efficient and selective function of RNA polymerases (RNAPs). Modifications in the template DNA can impact the progression of RNA synthesis, and a number of DNA adducts, as well as abasic sites, arrest or stall transcription. Nonetheless, data are needed to understand why certain modifications to the structure of DNA bases stall RNA polymerases while others are efficiently bypassed. In this study, we evaluate the impact that alterations in dNTP/rNTP base-pair geometry have on transcription. T7 RNA polymerase was used to study transcription over modified purines and pyrimidines with altered H-bonding capacities. The results suggest that introducing wobble base-pairs into the DNA:RNA heteroduplex interferes with transcriptional elongation and stalls RNA polymerase. However, transcriptional stalling is not observed if mismatched base-pairs do not H-bond. Together, these studies show that RNAP is able to discriminate mismatches resulting in wobble base-pairs, and suggest that, in cases of modifications with minor steric impact, DNA:RNA heteroduplex geometry could serve as a controlling factor for initiating transcription-coupled DNA repair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation.

    Science.gov (United States)

    Yang, Shu; Zhang, Jiyuan; Zhang, Yalong; Wan, Xuechao; Zhang, Congzhe; Huang, Xiaohui; Huang, Wenhua; Pu, Honglei; Pei, Chaohan; Wu, Hai; Huang, Yan; Huang, Shengdong; Li, Yao

    2015-06-15

    Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear. The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP). Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription. Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation. © 2015 Wiley Periodicals, Inc.

  8. Effect of exposure to 2.45 GHz microwave on DNA repair genes transcription in cultured cells

    International Nuclear Information System (INIS)

    Perrin, A.; Bachelet, C.; Fournier, C.; Peinnequin, A.; Leveque, P.; Collin, A.

    2006-01-01

    The aim of the study was to investigate, in vitro, the effect of 2.45 GHz continuous (C.W.) and pulsed (P.W.) electromagnetic field exposure combined with a known mutagen on the induction of enzymes implicated in the DNA repair pathway. Microwaves do not create bonds breaks within molecules and there is no clear hypothesis for a possible mechanism supporting a biological action. Nevertheless, an indirect influence of microwaves during an intermediary step of the complex sequence of events involved in mutagenesis cannot yet be excluded. Highly sensitive real-time R.T.q.P.C.R. was used to monitor transcriptional variations of DNA repair genes. The experiments were carried out using the monocyte human cell line T.H.P.1 with the genotoxic compound 4- nitro-quinoline-N-oxide (4-N.Q.O.). The carrier frequency was 2.45 GHz C.W. and P.W. (1 khz repetition time, 10 % duty cycle) with the same power density corresponding to an average specific absorption rate (S.A.R.) value of 0.19 W/kg in the biological samples. Non exposed (sham) and exposed (P.W. and C.W.) cell culture plates were incubated simultaneously in three identical incubators in the presence of 4-N.Q.O., under shaking, at 37 Celsius degrees. Specially designed incubators were integrated in three identical anechoic chambers equipped with waveguide antennas. Care was taken to increase the reproducibility of the experiments and to avoid false positive or misinterpretation of the results. The presence or the absence of the electromagnetic field was the only difference between the sham and exposed assays. The different exposure conditions were applied alternatively in the three anechoic chambers in order to avoid cage effects. The temperature inside the cell plates was measured with an optic fiber probe (Luxtron). Numerical dosimetry was calculated using the Finite Difference Time Domain method. A time-scaled form of the heat transfer equation allowed to calculate the temperature distribution inside the petri dishes

  9. Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells.

    NARCIS (Netherlands)

    G. Giglia-Mari (Giuseppina); C. Miquel (Catherine); A.F. Theil (Arjan); P.O. Mari (Pierre-Olivier); D. Hoogstraten (Deborah); J.M.Y. Ng (Jessica); C. Dinant (Christoffel); J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim)

    2006-01-01

    textabstractTranscription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein.

  10. Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Jeong-Min Park

    2016-11-01

    Full Text Available Ultraviolet (UV radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD and pyrimidine-pyrimidone (6-4 photoproducts (6-4PP. If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER. The NER pathway has multiple components including seven xeroderma pigmentosum (XP proteins (XPA to XPG and numerous auxiliary factors, including ataxia telangiectasia and Rad3-related (ATR protein kinase and RCC1 like domain (RLD and homologous to the E6-AP carboxyl terminus (HECT domain containing E3 ubiquitin protein ligase 2 (HERC2. In this review we highlight recent data on the transcriptional and posttranslational regulation of NER activity.

  11. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock.

    Science.gov (United States)

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.

  12. Base excision repair in Archaea: back to the future in DNA repair.

    Science.gov (United States)

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Re-initiation repair in bacteriophage T4

    International Nuclear Information System (INIS)

    Cupido, M.

    1981-01-01

    Irradiation of bacteriophage T4 with ultraviolet light induces the formation of pyrimidine dimers in its DNA. These dimers hamper replication of DNA and, to a lesser extent, transcription of DNA after its infection of bacteria. A number of pathways enable phage T4 to multiply dimer-containing DNA. One of these pathways has been named replication repair and is described in this thesis. The properties of two phage strains, unable to perform replication repair, have been studied to obtain a picture of the repair process. The mutations in these strains that affect replication repair have been located on the genomic map of T4. (Auth.)

  14. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    Science.gov (United States)

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  15. A MWPC with a cathode coupled delay line read-out as radioactivity detector for DNA repair studies

    International Nuclear Information System (INIS)

    Bellazzini, R.; Del Guerra, A.; Massai, M.M.; Ragadini, M.; Spandre, G.; Tonelli, G.

    1981-01-01

    A non selective method for the isolation of DNA repair-deficient mutants in mammalian cells is discussed. The method requires radioactive labelling of the short DNA sequences synthesized during repair of damaged regions. Mutants should be recognized by the absence of radioactive incorporation into their DNA. A multiwire proportional chamber (MWPC) is proposed as a suitable radioactivity detector. The performance of a MWPC prototype with a cathode coupled delay line read-out is described and is shown to be adequate for this application. The main advantages of a MWPC are reviewed with respect to other methods used for β - radioactivity counting of biological samples, such as liquid scintillators or autoradiography: the proposed detection method is non destructive for the cells, which are being kept alive for further biological studies, furthermore many cell clones can be screened within a reasonable time. (orig.)

  16. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage.

    Science.gov (United States)

    Takagi, Yuichiro; Masuda, Claudio A; Chang, Wei-Hau; Komori, Hirofumi; Wang, Dong; Hunter, Tony; Joazeiro, Claudio A P; Kornberg, Roger D

    2005-04-15

    Core transcription factor (TF) IIH purified from yeast possesses an E3 ubiquitin (Ub) ligase activity, which resides, at least in part, in a RING finger (RNF) domain of the Ssl1 subunit. Yeast strains mutated in the Ssl1 RNF domain are sensitive to ultraviolet (UV) light and to methyl methanesulfonate (MMS). This increased sensitivity to DNA-damaging agents does not reflect a deficiency in nucleotide excision repair. Rather, it correlates with reduced transcriptional induction of genes involved in DNA repair, suggesting that the E3 Ub ligase activity of TFIIH mediates the transcriptional response to DNA damage.

  17. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  18. The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Andrea Pagano

    2017-11-01

    Full Text Available This work provides novel insights into the effects caused by the histone deacetylase inhibitor trichostatin A (TSA during Medicago truncatula seed germination, with emphasis on the seed repair response. Seeds treated with H2O and TSA (10 and 20 μM were collected during imbibition (8 h and at the radicle protrusion phase. Biometric data showed delayed germination and impaired seedling growth in TSA-treated samples. Comet assay, performed on radicles at the protrusion phase and 4-days old M. truncatula seedlings, revealed accumulation of DNA strand breaks upon exposure to TSA. Activation of DNA repair toward TSA-mediated genotoxic damage was evidenced by the up-regulation of MtOGG1(8-OXOGUANINE GLYCOSYLASE/LYASE gene involved in the removal of oxidative DNA lesions, MtLIGIV(LIGASE IV gene, a key determinant of seed quality, required for the rejoining of DNA double strand breaks and TDP(TYROSYL-DNA PHOSPHODIESTERASE genes encoding the multipurpose DNA repair enzymes tyrosyl-DNA phosphodiesterases. Since radical scavenging can prevent DNA damage, the specific antioxidant activity (SAA was measured by DPPH (1,1-diphenyl-2-picrylhydrazyl and Folin-Ciocalteu reagent assays. Fluctuations of SAA were observed in TSA-treated seeds/seedlings concomitant with the up-regulation of antioxidant genes MtSOD(SUPEROXIDE DISMUTASE, MtAPX(ASCORBATE PEROXIDASE and MtMT2(TYPE 2 METALLOTHIONEIN. Chromatin remodeling, required to facilitate the access of DNA repair enzymes at the damaged sites, is also part of the multifaceted seed repair response. To address this aspect, still poorly explored in plants, the MtTRRAP(TRANSFORMATION/TRANSACTIVATION DOMAIN-ASSOCIATED PROTEIN gene was analyzed. TRRAP is a transcriptional adaptor, so far characterized only in human cells where it is needed for the recruitment of histone acetyltransferase complexes to chromatin during DNA repair. The MtTRRAP gene and the predicted interacting partners MtHAM2 (HISTONE ACETYLTRANSFERASE OF

  19. Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons.

    Science.gov (United States)

    Guzowski, John F; Miyashita, Teiko; Chawla, Monica K; Sanderson, Jennifer; Maes, Levi I; Houston, Frank P; Lipa, Peter; McNaughton, Bruce L; Worley, Paul F; Barnes, Carol A

    2006-01-24

    The ability of neurons to alter their transcriptional programs in response to synaptic input is of fundamental importance to the neuroplastic mechanisms underlying learning and memory. Because of technical limitations of conventional gene detection methods, the current view of activity-dependent neural transcription derives from experiments in which neurons are assumed quiescent until a signaling stimulus is given. The present study was designed to move beyond this static model by examining how earlier episodes of neural activity influence transcription of the immediate-early gene Arc. Using a sensitive FISH method that detects primary transcript at genomic alleles, the proportion of hippocampal CA1 neurons that activate transcription of Arc RNA was constant at approximately 40% in response to both a single novel exploration session and daily sessions repeated over 9 days. This proportion is similar to the percentage of active neurons defined electrophysiologically. However, this close correspondence was disrupted in rats exposed briefly, but repeatedly, to the same environment within a single day. Arc transcription in CA1 neurons declined dramatically after as few as four 5-min sessions, despite stable electrophysiological activity during all sessions. Additional experiments indicate that the decrement in Arc transcription occurred at the cellular, rather than synaptic level, and was not simply linked to habituation to novelty. Thus, the neural genomic response is governed by recent, but not remote, cell firing history in the behaving animal. This state-dependence of neuronal transcriptional coupling provides a mechanism of metaplasticity and may regulate capacity for synaptic modification in neural networks.

  20. In TFIIH, XPD helicase is exclusively devoted to DNA repair.

    Directory of Open Access Journals (Sweden)

    Jochen Kuper

    2014-09-01

    Full Text Available The eukaryotic XPD helicase is an essential subunit of TFIIH involved in both transcription and nucleotide excision repair (NER. Mutations in human XPD are associated with several inherited diseases such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. We performed a comparative analysis of XPD from Homo sapiens and Chaetomium thermophilum (a closely related thermostable fungal orthologue to decipher the different molecular prerequisites necessary for either transcription or DNA repair. In vitro and in vivo assays demonstrate that mutations in the 4Fe4S cluster domain of XPD abrogate the NER function of TFIIH and do not affect its transcriptional activity. We show that the p44-dependent activation of XPD is promoted by the stimulation of its ATPase activity. Furthermore, we clearly demonstrate that XPD requires DNA binding, ATPase, and helicase activity to function in NER. In contrast, these enzymatic properties are dispensable for transcription initiation. XPD helicase is thus exclusively devoted to NER and merely acts as a structural scaffold to maintain TFIIH integrity during transcription.

  1. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia.

    Directory of Open Access Journals (Sweden)

    Antoine Marmignon

    2014-08-01

    DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR.

  2. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  3. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  4. The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription.

    Directory of Open Access Journals (Sweden)

    Benjamin J Moss

    2016-07-01

    Full Text Available Regulation of synaptic AMPA receptor levels is a major mechanism underlying homeostatic synaptic scaling. While in vitro studies have implicated several molecules in synaptic scaling, the in vivo mechanisms linking chronic changes in synaptic activity to alterations in AMPA receptor expression are not well understood. Here we use a genetic approach in C. elegans to dissect a negative feedback pathway coupling levels of the AMPA receptor GLR-1 with its own transcription. GLR-1 trafficking mutants with decreased synaptic receptors in the ventral nerve cord (VNC exhibit compensatory increases in glr-1 mRNA, which can be attributed to increased glr-1 transcription. Glutamatergic transmission mutants lacking presynaptic eat-4/VGLUT or postsynaptic glr-1, exhibit compensatory increases in glr-1 transcription, suggesting that loss of GLR-1 activity is sufficient to trigger the feedback pathway. Direct and specific inhibition of GLR-1-expressing neurons using a chemical genetic silencing approach also results in increased glr-1 transcription. Conversely, expression of a constitutively active version of GLR-1 results in decreased glr-1 transcription, suggesting that bidirectional changes in GLR-1 signaling results in reciprocal alterations in glr-1 transcription. We identify the CMK-1/CaMK signaling axis as a mediator of the glr-1 transcriptional feedback mechanism. Loss-of-function mutations in the upstream kinase ckk-1/CaMKK, the CaM kinase cmk-1/CaMK, or a downstream transcription factor crh-1/CREB, result in increased glr-1 transcription, suggesting that the CMK-1 signaling pathway functions to repress glr-1 transcription. Genetic double mutant analyses suggest that CMK-1 signaling is required for the glr-1 transcriptional feedback pathway. Furthermore, alterations in GLR-1 signaling that trigger the feedback mechanism also regulate the nucleocytoplasmic distribution of CMK-1, and activated, nuclear-localized CMK-1 blocks the feedback pathway. We

  5. USE OF GENE EXPRESSION ANALYSIS INCORPORATING OPERON-TRANSCRIPTIONAL COUPLING AND TOXICANT DOSE RESPONSE TO DISTINGUISH AMONG STRUCTURAL HOMOLOGUES OF MX

    Science.gov (United States)

    We recently described a general method that can improve microarray analysis of toxicant-exposed cells that uses the intrinsic power of transcriptional coupling and toxicant concentration-expression response data. In this analysis, we characterized changes in global gene expressio...

  6. DNA repair and its coupling to DNA replication in eukaryotic cells. [UV, x ray

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1978-01-01

    This review article with 184 references presents the view that mammalian cells have one major repair system, excision repair, with many branches (nucleotide excision repair, base excision repair, crosslink repair, etc.) and a multiplicity of enzymes. Any particular carcinogen makes a spectrum of damaged sites and each kind of damage may be repaired by one or more branches of excision repair. Excision repair is rarely complete, except at very low doses, and eukaryotic cells survive and replicate DNA despite the presence of unrepaired damage. An alteration in a specific biochemical pathway seen in damaged or mutant cells will not always be the primary consequence of damage or of the biochemical defect of the cells. Detailed kinetic data are required to understand comprehensively the various facets of excision repair and replication. Correlation between molecular events of repair and cytological and cellular changes such as chromosomal damage, mutagenesis, transformation, and carcinogenesis are also rudimentary.

  7. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise

    Science.gov (United States)

    Gundersen, Kristian

    2011-01-01

    Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine

  8. Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP.

    NARCIS (Netherlands)

    P. Vichi; F. Coin (Frédéric); J-P. Renaud (Jean-Paul); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); D. Moras; J-M. Egly (Jean-Marc)

    1997-01-01

    textabstractA connection between transcription and DNA repair was demonstrated previously through the characterization of TFIIH. Using filter binding as well as in vitro transcription challenge competition assays, we now show that the promoter recognition factor TATA box-binding protein (TBP)/TFIID

  9. Acetylation regulates WRN catalytic activities and affects base excision DNA repair

    DEFF Research Database (Denmark)

    Muftuoglu, Meltem; Kusumoto, Rika; Speina, Elzbieta

    2008-01-01

    The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone...... acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription....

  10. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  11. Hsp90: A New Player in DNA Repair?

    Directory of Open Access Journals (Sweden)

    Rosa Pennisi

    2015-10-01

    Full Text Available Heat shock protein 90 (Hsp90 is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis, transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR pathways that include: (i cell cycle arrest; (ii transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.

  12. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  13. Influence of repair length on residual stress in the repair weld of a clad plate

    International Nuclear Information System (INIS)

    Jiang Wenchun; Xu, X.P.; Gong, J.M.; Tu, S.T.

    2012-01-01

    Highlights: ► Residual stress in the repair weld of a stainless steel clad plate is investigated. ► The effect of repair length on residual stress has been studied. ► Large tensile residual stress is generated in the repair weld and heat affected zone. ► With the increase of repair length, transverse stress is decreased. ► Repair length has little effect on longitudinal stress. - Abstract: A 3-D sequential coupling finite element simulation is performed to investigate the temperature field and residual stress in the repair weld of a stainless steel clad plate. The effect of repair length on residual stress has been studied, aiming to provide a reference for repairing the cracked clad plate. The results show that large tensile residual stresses are generated in the repair weld and heat affected zone (HAZ), and then decrease gradually away from the weld and HAZ. The residual stresses through thickness in the clad layer are relative uniform, while they are non-uniform in the base metal. A discontinuous stress distribution is generated across the interface between weld metal and base metal. The repair length has a great effect on transverse stress. With the increase of repair length, the transverse stress is decreased. When the repair length is increased to 14 cm, the peak of transverse stress has been decreased below yield strength, and the transverse stress in the weld and HAZ has also been greatly decreased. But the repair length has little effect on longitudinal stress.

  14. The Heterochromatic Barrier to DNA Double Strand Break Repair: How to Get the Entry Visa

    Directory of Open Access Journals (Sweden)

    Aaron A. Goodarzi

    2012-09-01

    Full Text Available Over recent decades, a deep understanding of pathways that repair DNA double strand breaks (DSB has been gained from biochemical, structural, biophysical and cellular studies. DNA non-homologous end-joining (NHEJ and homologous recombination (HR represent the two major DSB repair pathways, and both processes are now well understood. Recent work has demonstrated that the chromatin environment at a DSB significantly impacts upon DSB repair and that, moreover, dramatic modifications arise in the chromatin surrounding a DSB. Chromatin is broadly divided into open, transcriptionally active, euchromatin (EC and highly compacted, transcriptionally inert, heterochromatin (HC, although these represent extremes of a spectrum. The HC superstructure restricts both DSB repair and damage response signaling. Moreover, DSBs within HC (HC-DSBs are rapidly relocalized to the EC-HC interface. The damage response protein kinase, ataxia telangiectasia mutated (ATM, is required for HC-DSB repair but is dispensable for the relocalization of HC-DSBs. It has been proposed that ATM signaling enhances HC relaxation in the DSB vicinity and that this is a prerequisite for HC-DSB repair. Hence, ATM is essential for repair of HC-DSBs. Here, we discuss how HC impacts upon the response to DSBs and how ATM overcomes the barrier that HC poses to repair.

  15. The Nucleolus: In Genome Maintenance and Repair.

    Science.gov (United States)

    Tsekrekou, Maria; Stratigi, Kalliopi; Chatzinikolaou, Georgia

    2017-07-01

    The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.

  16. Transcription and recombination: when RNA meets DNA.

    Science.gov (United States)

    Aguilera, Andrés; Gaillard, Hélène

    2014-08-01

    A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  17. Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment

    International Nuclear Information System (INIS)

    Hashimoto, Masami; Takadama, Hiroaki; Mizuno, Mineo; Kokubo, Tadashi

    2006-01-01

    Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO 2 particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO 2 particles. The interfacial morphology and interaction between silanated TiO 2 and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO 2 was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO 2 particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure

  18. Posttranslational modifications of Forkhead box O transcription factors

    NARCIS (Netherlands)

    Horst, Aart Arno van der

    2006-01-01

    FOXO transcription factors play an important role in essential biological processes such as differentiation, proliferation, apoptosis, DNA repair, metabolism and stress resistance. Phosphorylation is the modification that was first found on FOXOs and much of the subsequent studies focused on this

  19. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription.

    Science.gov (United States)

    Singh, Amita; Compe, Emanuel; Le May, Nicolas; Egly, Jean-Marc

    2015-02-05

    Mutations in genes encoding the ERCC3 (XPB), ERCC2 (XPD), and GTF2H5 (p8 or TTD-A) subunits of the transcription and DNA-repair factor TFIIH lead to three autosomal-recessive disorders: xeroderma pigmentosum (XP), XP associated with Cockayne syndrome (XP/CS), and trichothiodystrophy (TTD). Although these diseases were originally associated with defects in DNA repair, transcription deficiencies might be also implicated. By using retinoic acid receptor beta isoform 2 (RARB2) as a model in several cells bearing mutations in genes encoding TFIIH subunits, we observed that (1) the recruitment of the TFIIH complex was altered at the activated RARB2 promoter, (2) TFIIH participated in the recruitment of nucleotide excision repair (NER) factors during transcription in a manner different from that observed during NER, and (3) the different TFIIH variants disturbed transcription by having distinct consequences on post-translational modifications of histones, DNA-break induction, DNA demethylation, and gene-loop formation. The transition from heterochromatin to euchromatin was disrupted depending on the variant, illustrating the fact that TFIIH, by contributing to NER factor recruitment, orchestrates chromatin remodeling. The subtle transcriptional differences found between various TFIIH variants thus participate in the phenotypic variability observed among XP, XP/CS, and TTD individuals. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  1. Biomechanical characteristics of single-row repair in comparison to double-row repair with consideration of the suture configuration and suture material

    OpenAIRE

    Baums, M. H.; Buchhorn, G. H.; Spahn, G.; Poppendieck, B.; Schultz, W.; Klinger, H.-M.

    2008-01-01

    The aim of the study was to evaluate the time zero mechanical properties of single- versus double-row configuration for rotator cuff repair in an animal model with consideration of the stitch technique and suture material. Thirty-two fresh-frozen sheep shoulders were randomly assigned to four repair groups: suture anchor single-row repair coupled with (1) braided, nonabsorbable polyester suture sized USP No. 2 (SRAE) or (2) braided polyblend polyethylene suture sized No. 2 (SRAH). The double-...

  2. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    Science.gov (United States)

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal

  3. Performance of patch repaired composite panels under fatigue loads

    International Nuclear Information System (INIS)

    Darwish, Feras H.; Hamoush, S.; Shivakumar, K.

    2006-01-01

    This paper evaluates the performance of bonded patch-scarf repairs of full scale laminated composite panels under cyclic load conditions. Nondestructive testing to characterize the quality of repairs and destructive testing to evaluate the performance of repaired panels were used in this study. Carbon/Epoxy prepreg material used was used to lay up six-ply (12 in. x 27 in. /305x686mm) (-60/60/0) s quasi-isotropic laminates. 7-ply scarf repair with a gradient of 0.5 inch (12.7mm) per layer was used to perform the repair of a damaged zone. The patch consisted of 7.5 inches (190mm) diameter adhesive film, 1 inch (25.4mm) diameter filler ply at 90fiber orientation, and six plies (2-7 inches (51-178mm) diameter) to match the lay-up of the parent material. The study was extended to include defective repairs. The defect was engineered by inserting a 1 inch (25.4 mm) circular Teflon flaw between the fifth and sixth layers of the patch. A total of 28 panels were prepared and divided into five categories: (1) three pristine panels (undamaged parental materials); (2) three damaged panels (1-inch-centered-hole); (3) two repaired panels with wrong fiber orientation; (4) nine good repaired panels, and (5) eleven defective repair panels (1 inch flaw). A nondestructive evaluation to check the conditions of the repairs was performed on most of the tested panels that include the pulse-echo C-scan and pseudo through transmission air coupled and water coupled C-scan. Based on the results of the experimental evaluation of this study, good repair restored 95% of the tensile strength while defective repair restored 90% of the tensile strength of the pristine panels. Under fatigue loading, panels repaired with a 1 inch delamination flaw within the patch layers showed a major reduction in fatigue life compared to the good repair panels under similar loading conditions. (author)

  4. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  5. The Fanconi Anemia Pathway in Replication Stress and DNA Crosslink Repair

    Science.gov (United States)

    Jones, Mathew JK.; Huang, Tony T.

    2013-01-01

    Interstand crosslinks (ICLs) are DNA lesions where the bases of opposing DNA strands are covalently linked, inhibiting critical cellular processes such as transcription and replication. Chemical agents that generate ICLs cause chromosomal abnormalities including breaks, deletions and rearrangements, making them highly genotoxic compounds. This toxicity has proven useful for chemotherapeutic treatment against a wide variety of cancer types. The majority of our understanding of ICL repair in humans has been uncovered thorough analysis of the rare genetic disorder Fanconi anemia, in which patients are extremely sensitive to crosslinking agents. Here, we discuss recent insights into ICL repair gained through new ICL repair assays and highlight the role of the Fanconi Anemia repair pathway during replication stress. PMID:22744751

  6. Recombinant methods for screening human DNA excision repair proficiency

    International Nuclear Information System (INIS)

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period

  7. Concordant and opposite roles of DNA-PK and the "facilitator of chromatin transcription" (FACT in DNA repair, apoptosis and necrosis after cisplatin

    Directory of Open Access Journals (Sweden)

    Calkins Anne S

    2011-06-01

    Full Text Available Abstract Background Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK binds to DNA double strand breaks (DSBs through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity. Results Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1, Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT. The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis. Conclusions DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and

  8. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks.

    Science.gov (United States)

    Kottemann, Molly C; Smogorzewska, Agata

    2013-01-17

    The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.

  9. Retinal degeneration and ionizing radiation hypersensitivity in a mouse model for Cockayne syndrome

    NARCIS (Netherlands)

    Gorgels, Theo G. M. F.; van der Pluijm, Ingrid; Brandt, Renata M. C.; Garinis, George A.; van Steeg, Harry; van den Aardweg, Gerard; Jansen, Gerard H.; Ruijter, Jan M.; Bergen, Arthur A. B.; van Norren, Dirk; Hoeijmakers, Jan H. J.; van der Horst, Gijsbertus T. J.

    2007-01-01

    Mutations in the CSB gene cause Cockayne syndrome (CS), a DNA repair disorder characterized by UV sensitivity and severe physical and neurological impairment. CSB functions in the transcription-coupled repair subpathway of nucleotide excision repair. This function may explain the UV sensitivity but

  10. R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters.

    Science.gov (United States)

    Chen, Liang; Chen, Jia-Yu; Zhang, Xuan; Gu, Ying; Xiao, Rui; Shao, Changwei; Tang, Peng; Qian, Hao; Luo, Daji; Li, Hairi; Zhou, Yu; Zhang, Dong-Er; Fu, Xiang-Dong

    2017-11-16

    R-loop, a three-stranded RNA/DNA structure, has been linked to induced genome instability and regulated gene expression. To enable precision analysis of R-loops in vivo, we develop an RNase-H-based approach; this reveals predominant R-loop formation near gene promoters with strong G/C skew and propensity to form G-quadruplex in non-template DNA, corroborating with all biochemically established properties of R-loops. Transcription perturbation experiments further indicate that R-loop induction correlates to transcriptional pausing. Interestingly, we note that most mapped R-loops are each linked to a nearby free RNA end; by using a ribozyme to co-transcriptionally cleave nascent RNA, we demonstrate that such a free RNA end coupled with a G/C-skewed sequence is necessary and sufficient to induce R-loop. These findings provide a topological solution for RNA invasion into duplex DNA and suggest an order for R-loop initiation and elongation in an opposite direction to that previously proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Mediator subunit MED23 couples H2B mono-ubiquitination to transcriptional control and cell fate determination.

    Science.gov (United States)

    Yao, Xiao; Tang, Zhanyun; Fu, Xing; Yin, Jingwen; Liang, Yan; Li, Chonghui; Li, Huayun; Tian, Qing; Roeder, Robert G; Wang, Gang

    2015-12-02

    The Mediator complex orchestrates multiple transcription factors with the Pol II apparatus for precise transcriptional control. However, its interplay with the surrounding chromatin remains poorly understood. Here, we analyze differential histone modifications between WT and MED23(-/-) (KO) cells and identify H2B mono-ubiquitination at lysine 120 (H2Bub) as a MED23-dependent histone modification. Using tandem affinity purification and mass spectrometry, we find that MED23 associates with the RNF20/40 complex, the enzyme for H2Bub, and show that this association is critical for the recruitment of RNF20/40 to chromatin. In a cell-free system, Mediator directly and substantially increases H2Bub on recombinant chromatin through its cooperation with RNF20/40 and the PAF complex. Integrative genome-wide analyses show that MED23 depletion specifically reduces H2Bub on a subset of MED23-controlled genes. Importantly, MED23-coupled H2Bub levels are oppositely regulated during myogenesis and lung carcinogenesis. In sum, these results establish a mechanistic link between the Mediator complex and a critical chromatin modification in coordinating transcription with cell growth and differentiation. © 2015 The Authors.

  12. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    Science.gov (United States)

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb.

  13. Electron Transfer Mechanisms of DNA Repair by Photolyase

    Science.gov (United States)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  14. Biomechanical characteristics of single-row repair in comparison to double-row repair with consideration of the suture configuration and suture material.

    Science.gov (United States)

    Baums, M H; Buchhorn, G H; Spahn, G; Poppendieck, B; Schultz, W; Klinger, H-M

    2008-11-01

    The aim of the study was to evaluate the time zero mechanical properties of single- versus double-row configuration for rotator cuff repair in an animal model with consideration of the stitch technique and suture material. Thirty-two fresh-frozen sheep shoulders were randomly assigned to four repair groups: suture anchor single-row repair coupled with (1) braided, nonabsorbable polyester suture sized USP No. 2 (SRAE) or (2) braided polyblend polyethylene suture sized No. 2 (SRAH). The double-row repair was coupled with (3) USP No. 2 (DRAE) or (4) braided polyblend polyethylene suture No. 2 (DRAH). Arthroscopic Mason-Allen stitches were used (single-row) and combined with medial horizontal mattress stitches (double-row). Shoulders were cyclically loaded from 10 to 180 N. Displacement to gap formation of 5- and 10-mm at the repair site, cycles to failure, and the mode of failure were determined. The ultimate tensile strength was verified in specimens that resisted to 3,000 cycles. DRAE and DRAH had a lower frequency of 5- (P = 0.135) and 10-mm gap formation (P = 0.135). All DRAE and DRAH resisted 3,000 cycles while only three SRAE and one SRAH resisted 3,000 cycles (P row specimens was significantly higher than in others (P 0.05). Double-row suture anchor repair with arthroscopic Mason-Allen/medial mattress stitches provides initial strength superior to single-row repair with arthroscopic Mason-Allen stitches under isometric cyclic loading as well as under ultimate loading conditions. Our results support the concept of double-row fixation with arthroscopic Mason-Allen/medial mattress stitches in rotator cuff tears with improvement of initial fixation strength and ultimate tensile load. Use of new polyblend polyethylene suture material seems not to increase the initial biomechanical aspects of the repair construct.

  15. Self-repair in a Bidirectionally Coupled Astrocyte-Neuron (AN System based on Retrograde Signaling

    Directory of Open Access Journals (Sweden)

    John eWade

    2012-09-01

    Full Text Available In this paper we demonstrate that retrograde signaling via astrocytes may underpin self-repair in the brain. Faults manifest themselves in silent or near silent neurons caused by low transmission probability synapses; the enhancement of the transmission probability of a healthy neighbouring synapse by retrograde signaling can enhance the transmission probability of the faulty synapse (repair. Our model of self-repair is based on recent research showing that retrograde signaling via astrocytes can increase the probability of neurotransmitter release at damaged or low transmission probability synapses. The model demonstrates that astrocytes are capable of bidirectional communication with neurons which leads to modulation of synaptic activity, and that indirect signaling through retrograde messengers such as endocannabinoids leads to modulation of synaptic transmission probability. Although our model operates at the level of cells, it provides a new research direction on brain-like self-repair which can be extended to networks of astrocytes and neurons. It also provides a biologically inspired basis for developing highly adaptive, distributed computing systems that can, at fine levels of granularity, fault detect, diagnose and self-repair autonomously, without the traditional constraint of a central fault detect/repair unit.

  16. Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome.

    NARCIS (Netherlands)

    I. van der Pluijm (Ingrid); G.A. Garinis (George); R.M.C. Brandt (Renata); T.G.M.F. Gorgels (Theo); S.W.P. Wijnhoven (Susan); K.E.M. Diderich (Karin); J. de Wit (Jan); J.R. Mitchell (James); C.T.M. van Oostrom (Conny); R.B. Beems (Rudolf); L.J. Niedernhofer (Laura); S. Velasco (Susana); E.C. Friedberg (Errol); K. Tanaka (Kiyoji); H. van Steeg (Harry); J.H.J. Hoeijmakers (Jan); G.T.J. van der Horst (Gijsbertus)

    2006-01-01

    textabstractCockayne syndrome (CS) is a photosensitive, DNA repair disorder associated with progeria that is caused by a defect in the transcription-coupled repair subpathway of nucleotide excision repair (NER). Here, complete inactivation of NER in Csb(m/m)/Xpa(-/-) mutants causes a phenotype that

  17. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    International Nuclear Information System (INIS)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A.

    2015-01-01

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer

  18. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A., E-mail: lsamant@uab.edu [Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, WTI320D, 1824 6th Avenue South, Birmingham, AL 35233 (United States)

    2015-07-21

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  19. Dissecting DNA repair in adult high grade gliomas for patient stratification in the post-genomic era

    Science.gov (United States)

    Perry, Christina; Agarwal, Devika; Abdel-Fatah, Tarek M.A.; Lourdusamy, Anbarasu; Grundy, Richard; Auer, Dorothee T.; Walker, David; Lakhani, Ravi; Scott, Ian S.; Chan, Stephen; Ball, Graham; Madhusudan, Srinivasan

    2014-01-01

    Deregulation of multiple DNA repair pathways may contribute to aggressive biology and therapy resistance in gliomas. We evaluated transcript levels of 157 genes involved in DNA repair in an adult glioblastoma Test set (n=191) and validated in ‘The Cancer Genome Atlas’ (TCGA) cohort (n=508). A DNA repair prognostic index model was generated. Artificial neural network analysis (ANN) was conducted to investigate global gene interactions. Protein expression by immunohistochemistry was conducted in 61 tumours. A fourteen DNA repair gene expression panel was associated with poor survival in Test and TCGA cohorts. A Cox multivariate model revealed APE1, NBN, PMS2, MGMT and PTEN as independently associated with poor prognosis. A DNA repair prognostic index incorporating APE1, NBN, PMS2, MGMT and PTEN stratified patients in to three prognostic sub-groups with worsening survival. APE1, NBN, PMS2, MGMT and PTEN also have predictive significance in patients who received chemotherapy and/or radiotherapy. ANN analysis of APE1, NBN, PMS2, MGMT and PTEN revealed interactions with genes involved in transcription, hypoxia and metabolic regulation. At the protein level, low APE1 and low PTEN remain associated with poor prognosis. In conclusion, multiple DNA repair pathways operate to influence biology and clinical outcomes in adult high grade gliomas. PMID:25026297

  20. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b

    Science.gov (United States)

    He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin

    2017-01-01

    Abstract CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. PMID:27980065

  1. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  2. The other side of cardiac Ca2+ signaling: transcriptional control

    Directory of Open Access Journals (Sweden)

    Alejandro eDomínguez-Rodríquez

    2012-11-01

    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  3. Designing Hydrogel Adhesives for Corneal Wound Repair

    Science.gov (United States)

    Grinstaff, Mark W.

    2013-01-01

    Today, corneal wounds are repaired using nylon sutures. Yet there are a number of complications associated with suturing the cornea, and thus there is interest in an adhesive to replace or supplement sutures in the repair of corneal wounds. We are designing and evaluating corneal adhesives prepared from dendrimers – single molecular weight, highly branched polymers. We have explored two strategies to form these ocular adhesives. The first involves a photocrosslinking reaction and the second uses a peptide ligation reactions to couple the individual dendrimers together to from the adhesive. These adhesives were successfully used to repair corneal perforations, close the flap produced in a LASIK procedure, and secure a corneal transplant. PMID:17889330

  4. Helicase-like transcription factor (Hltf regulates G2/M transition, Wt1/Gata4/Hif-1a cardiac transcription networks, and collagen biogenesis.

    Directory of Open Access Journals (Sweden)

    Rebecca A Helmer

    Full Text Available HLTF/Hltf regulates transcription, remodels chromatin, and coordinates DNA damage repair. Hltf is expressed in mouse brain and heart during embryonic and postnatal development. Silencing Hltf is semilethal. Seventy-four percent of congenic C57BL/6J Hltf knockout mice died, 75% within 12-24 hours of birth. Previous studies in neonatal (6-8 hour postpartum brain revealed silencing Hltf disrupted cell cycle progression, and attenuated DNA damage repair. An RNA-Seq snapshot of neonatal heart transcriptome showed 1,536 of 20,000 total transcripts were altered (p < 0.05 - 10 up- and 1,526 downregulated. Pathway enrichment analysis with MetaCore™ showed Hltf's regulation of the G2/M transition (p=9.726E(-15 of the cell cycle in heart is nearly identical to its role in brain. In addition, Brca1 and 12 members of the Brca1 associated genome surveillance complex are also downregulated. Activation of caspase 3 coincides with transcriptional repression of Bcl-2. Hltf loss caused downregulation of Wt1/Gata4/Hif-1a signaling cascades as well as Myh7b/miR499 transcription. Hltf-specific binding to promoters and/or regulatory regions of these genes was authenticated by ChIP-PCR. Hif-1a targets for prolyl (P4ha1, P4ha2 and lysyl (Plod2 collagen hydroxylation, PPIase enzymes (Ppid, Ppif, Ppil3 for collagen trimerization, and lysyl oxidase (Loxl2 for collagen-elastin crosslinking were downregulated. However, transcription of genes for collagens, fibronectin, Mmps and their inhibitors (Timps was unaffected. The collective downregulation of genes whose protein products control collagen biogenesis caused disorganization of the interstitial and perivascular myocardial collagen fibrillar network as viewed with picrosirius red-staining, and authenticated with spectral imaging. Wavy collagen bundles in control hearts contrasted with collagen fibers that were thin, short and disorganized in Hltf null hearts. Collagen bundles in Hltf null hearts were tangled and

  5. Nrf1 CNC-bZIP protein promotes cell survival and nucleotide excision repair through maintaining glutathione homeostasis.

    Science.gov (United States)

    Han, Weinong; Ming, Mei; Zhao, Rui; Pi, Jingbo; Wu, Chunli; He, Yu-Ying

    2012-05-25

    Skin cancer is the most common cancer in the United States. Its major environmental risk factor is UVB radiation in sunlight. In response to UVB damage, epidermal keratinocytes activate a specific repair pathway, i.e. nucleotide excision repair, to remove UVB-induced DNA lesions. However, the regulation of UVB response is not fully understood. Here we show that the long isoform of the nuclear factor erythroid 2-related factor 1 (Nrf1, also called NFE2L1), a cytoprotective transcription factor critical for the expression of multiple antioxidant response element-dependent genes, plays an important role in the response of keratinocytes to UVB. Nrf1 loss sensitized keratinocytes to UVB-induced apoptosis by up-regulating the expression of the proapoptotic Bcl-2 family member Bik through reducing glutathione levels. Knocking down Bik reduced UVB-induced apoptosis in Nrf1-inhibited cells. In UVB-irradiated surviving cells, however, disruption of Nrf1 impaired nucleotide excision repair through suppressing the transcription of xeroderma pigmentosum C (XPC), a factor essential for initiating the global genome nucleotide excision repair by recognizing the DNA lesion and recruiting downstream factors. Nrf1 enhanced XPC expression by increasing glutathione availability but was independent of the transcription repressor of XPC. Adding XPC or glutathione restored the DNA repair capacity in Nrf1-inhibited cells. Finally, we demonstrate that Nrf1 levels are significantly reduced by UVB radiation in mouse skin and are lower in human skin tumors than in normal skin. These results indicate a novel role of Nrf1 in UVB-induced DNA damage repair and suggest Nrf1 as a tumor suppressor in the skin.

  6. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    NARCIS (Netherlands)

    Wijnhoven, Susan W P; Hoogervorst, Esther M; Waard, Harm de; Horst, Gijsbertus T J van der; Steeg, Harry van

    2007-01-01

    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can

  7. Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene.

    Science.gov (United States)

    Broxson, Christopher; Beckett, Joshua; Tornaletti, Silvia

    2011-05-17

    Non canonical DNA structures correspond to genomic regions particularly susceptible to genetic instability. The transcription process facilitates formation of these structures and plays a major role in generating the instability associated with these genomic sites. However, little is known about how non canonical structures are processed when encountered by an elongating RNA polymerase. Here we have studied the behavior of T7 RNA polymerase (T7RNAP) when encountering a G quadruplex forming-(GGA)(4) repeat located in the human c-myb proto-oncogene. To make direct correlations between formation of the structure and effects on transcription, we have taken advantage of the ability of the T7 polymerase to transcribe single-stranded substrates and of G4 DNA to form in single-stranded G-rich sequences in the presence of potassium ions. Under physiological KCl concentrations, we found that T7 RNAP transcription was arrested at two sites that mapped to the c-myb (GGA)(4) repeat sequence. The extent of arrest did not change with time, indicating that the c-myb repeat represented an absolute block and not a transient pause to T7 RNAP. Consistent with G4 DNA formation, arrest was not observed in the absence of KCl or in the presence of LiCl. Furthermore, mutations in the c-myb (GGA)(4) repeat, expected to prevent transition to G4, also eliminated the transcription block. We show T7 RNAP arrest at the c-myb repeat in double-stranded DNA under conditions mimicking the cellular concentration of biomolecules and potassium ions, suggesting that the G4 structure formed in the c-myb repeat may represent a transcription roadblock in vivo. Our results support a mechanism of transcription-coupled DNA repair initiated by arrest of transcription at G4 structures.

  8. Repair of DNA damage in the human metallothionein gene family

    International Nuclear Information System (INIS)

    Leadon, S.A.; Snowden, M.M.

    1987-01-01

    In order to distinguish enhanced repair of a sequence due to its transcriptional activity from enhanced repair due to chromatin alterations brought about by integration of a sequence into the genome, we have investigated the repair of damage both in endogenous genes and in cell lines that contain an integrated gene with an inducible promoter. The endogenous genes we are studying are the metallothioneins (MTs), a multigene family in man consisting of about 10-12 members. Cultured cells were exposed to 10-J/m 2 uv light and allowed to repair in the presence of bromodeoxyuridine. The DNA was then isolated, digested with Eco RI, and fully hybrid density DNA made by semiconservative synthesis was separated from unreplicated DNA by centrifugation in CsCl density gradients. Unreplicated, parental-density DNA was then reacted with a monoclonal antibody against bromouracil. 1 ref., 1 fig., 1 tab

  9. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b.

    Science.gov (United States)

    He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin; Peng, Xu

    2017-02-28

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  11. Implication of SUMO E3 ligases in nucleotide excision repair.

    Science.gov (United States)

    Tsuge, Maasa; Kaneoka, Hidenori; Masuda, Yusuke; Ito, Hiroki; Miyake, Katsuhide; Iijima, Shinji

    2015-08-01

    Post-translational modifications alter protein function to mediate complex hierarchical regulatory processes that are crucial to eukaryotic cellular function. The small ubiquitin-like modifier (SUMO) is an important post-translational modification that affects transcriptional regulation, nuclear localization, and the maintenance of genome stability. Nucleotide excision repair (NER) is a very versatile DNA repair system that is essential for protection against ultraviolet (UV) irradiation. The deficiencies in NER function remarkably increase the risk of skin cancer. Recent studies have shown that several NER factors are SUMOylated, which influences repair efficiency. However, how SUMOylation modulates NER has not yet been elucidated. In the present study, we performed RNAi knockdown of SUMO E3 ligases and found that, in addition to PIASy, the polycomb protein Pc2 affected the repair of cyclobutane pyrimidine dimers. PIAS1 affected both the removal of 6-4 pyrimidine pyrimidone photoproducts and cyclobutane pyrimidine dimers, whereas other SUMO E3 ligases did not affect the removal of either UV lesion.

  12. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage.

    NARCIS (Netherlands)

    H. de Waard (Harm); J. de Wit (Jan); J.-O. Andressoo (Jaan-Olle); C.T.M. van Oostrom (Conny); B. Riis (Bente); A. Weimann (Allan); H.E. Poulsen (Henrik); H. van Steeg (Harry); J.H.J. Hoeijmakers (Jan); G.T.J. van der Horst (Gijsbertus)

    2004-01-01

    textabstractMutations in the CSA and CSB genes cause Cockayne syndrome, a rare inherited disorder characterized by UV sensitivity, severe neurological abnormalities, and progeriod symptoms. Both gene products function in the transcription-coupled repair (TCR) subpathway of nucleotide excision repair

  13. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  14. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  15. Biochemical studies of DNA strand break repair and molecular characterization of mei-41, a gene involved in DNA break repair

    International Nuclear Information System (INIS)

    Oliveri, D.R.

    1989-01-01

    The ability to repair X-irradiation induced single-strand DNA breaks was examined in mutagen-sensitive mutants of Drosophila melanogaster. This analysis demonstrated that examined stocks possess a normal capacity to repair X-ray induced single-strand breaks. One of the mutants in this study, mei-41, has been shown to be involved in a number of DNA metabolizing functions. A molecular characterization of this mutant is presented. A cDNA hybridizing to genomic DNA both proximal and distal to a P element inducing a mei-41 mutation was isolated from both embryonic and adult female recombinant lambda phage libraries. A 2.2 kilobase embryonic cDNA clone was sequenced; the sequence of an open reading frame was identified which would predict a protein of 384 amino acids with a molecular weight of 43,132 daltons. An examination of homologies to sequences in protein and nucleic acid data bases revealed no sequences with significant homology to mei-41, however, two potential Zinc-finger domains were identified. Analysis of RNA hybridizing to the embryonic cDNA demonstrated the existence of a major 2.2 kilobase transcript expressed primarily in embryos and adult flies. An examination of the transcription of this gene in mei-41 mutants revealed significant variation from wild-type, an indication that the embryonic cDNA does represent a mei-41 transcript. Expression in tissues from adult animals demonstrated that the 2.2 kilobase RNA is expressed primarily in reproductive tissues. A 3.8kb transcript is the major species of RNA in the adult head and thorax. Evidence is presented which implies that expression of the mei-41 gene is strongly induced by exposure of certain cells to mutagens

  16. Mutations in Cockayne Syndrome-Associated Genes (Csa and Csb) Predispose to Cisplatin-Induced Hearing Loss in Mice

    Science.gov (United States)

    Rainey, Robert N.; Ng, Sum-yan; Llamas, Juan; van der Horst, Gijsbertus T. J.

    2016-01-01

    Cisplatin is a common and effective chemotherapeutic agent, yet it often causes permanent hearing loss as a result of sensory hair cell death. The causes of sensitivity to DNA-damaging agents in nondividing cell populations, such as cochlear hair and supporting cells, are poorly understood, as are the specific DNA repair pathways that protect these cells. Nucleotide excision repair (NER) is a conserved and versatile DNA repair pathway for many DNA-distorting lesions, including cisplatin-DNA adducts. Progressive sensorineural hearing loss is observed in a subset of NER-associated DNA repair disorders including Cockayne syndrome and some forms of xeroderma pigmentosum. We investigated whether either of the two overlapping branches that encompass NER, transcription-coupled repair or global genome repair, which are implicated in Cockayne syndrome and xeroderma pigmentosum group C, respectively, modulates cisplatin-induced hearing loss and cell death in the organ of Corti, the auditory sensory epithelium of mammals. We report that cochlear hair cells and supporting cells in transcription-coupled repair-deficient Cockayne syndrome group A (Csa−/−) and group B (Csb−/−) mice are hypersensitive to cisplatin, in contrast to global genome repair-deficient Xpc−/− mice, both in vitro and in vivo. We show that sensory hair cells in Csa−/− and Csb−/− mice fail to remove cisplatin-DNA adducts efficiently in vitro; and unlike Xpc−/− mice, Csa−/− and Csb−/− mice lose hearing and manifest outer hair cell degeneration after systemic cisplatin treatment. Our results demonstrate that Csa and Csb deficiencies predispose to cisplatin-induced hearing loss and hair/supporting cell damage in the mammalian organ of Corti, and emphasize the importance of transcription-coupled DNA repair in the protection against cisplatin ototoxicity. SIGNIFICANCE STATEMENT The utility of cisplatin in chemotherapy remains limited due to serious side effects, including

  17. Sos - response induction by gamma radiation in Escherichia coli strains with different repair capacities

    International Nuclear Information System (INIS)

    Serment Guerrero, J.H.

    1992-01-01

    The Sos - response in Escherichia coli is formed by several genes involved in mechanisms of tolerance and/or repair, and only activates when a DNA - damage appears. It is controlled by recA and lexA genes. In normal circumstances, LexA protein is linked in every Sos operators, blocking the transcription. When a DNA damage occurs, a Sos signal is generated, Rec A protein changes its normal functions, starts acting as a protease and cleaves Lex A, allowing the transcription of all Sos genes. This response can be quantified by means of Sos Chromo test, performed by Quillardet and Ofnung (1985). In using the Chromo test, it has been observed that the DNA damage made by gamma radiation in Escherichia coli depends on both the doses and the doses rate. It has been shown that the exposure of Escherichia coli PQ37 strain (uvrA) to low doses at low dose rate appears to retard the response, suggesting the action of a repair mechanism. (Brena 1990). In this work, we compare the response in Escherichia coli strains deficient in different mechanisms of repair and/or tolerance. It is observed the importance of rec N gene in the repair of DNA damage produced by gamma radiation. (Author)

  18. Initial experience of laparoscopic incisional hernia repair.

    Science.gov (United States)

    Razman, J; Shaharin, S; Lukman, M R; Sukumar, N; Jasmi, A Y

    2006-06-01

    Laparoscopic repair of ventral and incisional hernia has become increasingly popular as compared to open repair. The procedure has the advantages of minimal access surgery, reduction of post operative pain and the recurrence rate. A prospective study of laparoscopic incisional hernia repair was performed in our center from August 2002 to April 2004. Eighteen cases (n: 18) were performed during the study period. Fifteen cases (n: 15) had open hernia repair previously. Sixteen patients (n: 16) had successful repair of the hernia with the laparoscopic approach and two cases were converted to open repair. The mean hernia defect size was 156cm2. There was no intraoperative or immediate postoperative complication. The mean operating time was 100 +/- 34 minutes (75 - 180 minutes). The postoperative pain was graded as mild to moderate according to visual analogue score. The mean day of discharge after surgery was two days (1 - 3 days). During follow up, three patients (16.7%) developed seroma at the hernia sac which was resolved with conservative management after three weeks. One (5.6%) patient developed recurrence six months after surgery. In conclusion, laparoscopic repair of incisional hernia particularly recurrent hernia has been shown to be safe and effective in our centre. However, careful patient selection and acquiring the necessary advanced laparoscopic surgical skills coupled with the proper use of equipment are mandatory before embarking on this procedure.

  19. Mutagenesis and repair of DNA

    International Nuclear Information System (INIS)

    Janion, C.; Grzesiuk, E.; Fabisiewicz, A.; Tudek, B.; Ciesla, J.; Graziewicz, M.; Wojcik, A.; Speina, E.

    1998-01-01

    Full text. The discovery that the mfd gene codes for a transcription-coupling repair factor (TRCF) prompted us to re-investigate the MFD (mutation frequency decline) phenomenon in E.coli K-12 strain when mutations were induced by ultraviolet light, halogen light or MMS-treatment. These studies revealed that: (i) the process of MFD involves the proofreading activity of DNA pol III and the mismatch repair system, as well as, TRCF and the UvrABC-excinuclease (ii) a semi-rich plate test may be replaced by a rich liquid medium, (iii) the T-T pyrimidine dimers are the lesions excised with the highest activity, and (iv) overproduction of UmuD(D'C) proteins leads to a great increase in mutant frequency in irradiated and MMS-treated cells. The role of mismatch repair (MR) in MMS-induced mutagenesis is obscured by the fact that the spectra of mutational specificity are different in bacteria proficient and deficient in MR. It has been found that transposons Tn10 (and Tn5) when inserted into chromosomal DNA of E. coli influence the phenotype lowering the survival and frequency of mutations induced by UV or halogen light irradiation. This is connected with a deficiency of UmuD(D') and UmuC proteins. Transformation of bacteria with plasmids bearing the umuD(D')C genes, suppresses the effects of the transposon insertion, a phenomenon which has not been described before. Single-stranded DNA of M13mp18 phage was oxidized in vitro by a hydroxyl radical generating system including hypoxanthine/xanthine oxidase/Fe3+/EDTA, and it was found that Fapy-Ade, Fapy-Gua, 8-oxyAde and thymine glycol were the main products formed. Replication of the oxidized template by T7 phage DNA polymerase, Klenow fragment of polymerase I, or polymerase beta from bovine thymus has revealed that oxidized pyrimidines are stronger blockers than oxidized purines for T7 phage and Klenow fragment polymerases and the blocking potency depends on the neighboring bases and on the type of polymerase. Studies of

  20. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  1. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  2. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells

    OpenAIRE

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-01-01

    Summary Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically req...

  3. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication

    International Nuclear Information System (INIS)

    Baumbach, L.L.; Stein, G.S.; Stein, J.L.

    1987-01-01

    The extent to which transcriptional and posttranscriptional regulation contributes to the coupling of histone gene expression and DNA replication was examined during the cell cycle in synchronized HeLa S3 cells. Rates of transcription were determined in vitro in isolated nuclei. A 3-5-fold increase in cell cycle dependent histone gene transcription was observed in early S phase, prior to the peak of DNA synthesis. This result is consistent with a previous determination of histone mRNA synthesis in intact cells. The transcription of these genes did not change appreciably after inhibition of DNA replication by hydroxyurea treatment, although Northern blot analysis indicated that cellular levels of histone mRNA decreased rapidly in the presence of the drug. Total cellular levels of histone mRNA closely parallel the rate of DNA synthesis as a function of cell cycle progression, reaching a maximal 20-fold increase as compared with non S phase levels. This DNA synthesis dependent accumulation of histone mRNA occurs predominantly in the cytoplasm and appears to be mediated primarily by control of histone mRNA stability. Changes in nuclear histone mRNA levels were less pronounced. These combined observations suggest that both transcriptional regulation and posttranscriptional regulation contribute toward control of the cell cycle dependent accumulation of histone mRNA during S phase, while the stability of histone mRNA throughout S phase and the selective turnover of histone mRNAs, either at the natural termination of S phase or following inhibition of DNA synthesis, are posttranscriptionally regulated

  4. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. (research article)

    NARCIS (Netherlands)

    L. Schaeffer; R. Roy (Richard); S. Humbert; V. Moncollin; W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); P. Chambon; J-M. Egly (Jean-Marc)

    1993-01-01

    textabstractThe human BTF2 basic transcription factor (also called TFIIH), which is similar to the delta factor in rat and factor b in yeast, is required for class II gene transcription. A strand displacement assay was used to show that highly purified preparation of BTF2 had an adenosine

  5. SUMOylation of the ING1b tumor suppressor regulates gene transcription

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Guérillon, Claire; Kim, Tae-Sun

    2014-01-01

    members of histone deacetylase complexes, whereas ING3-5 are stoichiometric components of different histone acetyltransferase complexes. The INGs target these complexes to histone marks, thus acting as epigenetic regulators. ING proteins affect angiogenesis, apoptosis, DNA repair, metastasis......1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription....

  6. Inducible error-prone repair in Escherichia coli

    International Nuclear Information System (INIS)

    Sedgwick, S.G.

    1975-01-01

    A hypothesis that ultraviolet-induced mutagenesis arises from the induction of an error-prone mode of postreplication repair that requires the exrA + recA + genotype has been tested with alkaline sucrose gradient centrifugation coupled with assays of fixation determined by loss of photoreversibility. The inhibitor of protein synthesis, chloramphenicol, added before irradiation, prevented a small amount of postreplication repair and completely eliminated mutation fixation in E. coli WP2/sub s/ uvrA. However, chloramphenicol did not affect strand joining: in uvrA bacteria allowed 20 min of growth between irradiation and antibiotic treatment; in nonmutable uvrA exrA bacteria; and in urvA tif bacteria grown at 42 0 for 70 min before irradiation. These observations indicate that an inducible product is involved in a fraction of postreplication repair and is responsible for induced mutagenesis. (auth)

  7. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions.

    Science.gov (United States)

    Brooks, Philip J

    2017-06-01

    Patients with the genetic disease xeroderma pigmentosum (XP) who lack the capacity to carry out nucleotides excision repair (NER) have a dramatically elevated risk of skin cancer on sun exposed areas of the body. NER is the DNA repair mechanism responsible for the removal of DNA lesions resulting from ultraviolet light. In addition, a subset of XP patients develop a progressive neurodegenerative disease, referred to as XP neurologic disease, which is thought to be the result of accumulation of endogenous DNA lesions that are repaired by NER but not other repair pathways. The 8,5-cyclopurine deoxynucleotides (cyPu) have emerged as leading candidates for such lesions, in that they result from the reaction of the hydroxyl radical with DNA, are strong blocks to transcription in human cells, and are repaired by NER but not base excision repair. Here I present a focused perspective on progress into understating the repair and biological effects of these lesions. In doing so, I emphasize the role of Tomas Lindahl and his laboratory in stimulating cyPu research. I also include a critical evaluation of the evidence supporting a role for cyPu lesions in XP neurologic disease, with a focus on outstanding questions, and conceptual and technologic challenges. Copyright © 2017. Published by Elsevier Inc.

  8. Bone Injury and Repair Trigger Central and Peripheral NPY Neuronal Pathways.

    Directory of Open Access Journals (Sweden)

    Cecília J Alves

    Full Text Available Bone repair is a specialized type of wound repair controlled by complex multi-factorial events. The nervous system is recognized as one of the key regulators of bone mass, thereby suggesting a role for neuronal pathways in bone homeostasis. However, in the context of bone injury and repair, little is known on the interplay between the nervous system and bone. Here, we addressed the neuropeptide Y (NPY neuronal arm during the initial stages of bone repair encompassing the inflammatory response and ossification phases in femoral-defect mouse model. Spatial and temporal analysis of transcriptional and protein levels of NPY and its receptors, Y1R and Y2R, reported to be involved in bone homeostasis, was performed in bone, dorsal root ganglia (DRG and hypothalamus after femoral injury. The results showed that NPY system activity is increased in a time- and space-dependent manner during bone repair. Y1R expression was trigged in both bone and DRG throughout the inflammatory phase, while a Y2R response was restricted to the hypothalamus and at a later stage, during the ossification step. Our results provide new insights into the involvement of NPY neuronal pathways in bone repair.

  9. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Su Yang

    Full Text Available The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2 treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998, Lon proteases (dr0349 and dr1974, NADH-quinone oxidoreductase (dr1506, thiosulfate sulfurtransferase (dr2531, the DNA repair protein UvsE (dr1819, PprA (dra0346, and RecN (dr1447, are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways.

  10. Repair of model compounds of photoinduced lesions in DNA. Electrochemical approaches

    International Nuclear Information System (INIS)

    Boussicault, F.

    2006-09-01

    The goal of this work is to better understand the repair mechanism of photoinduced lesions in DNA (cyclobutane dimers and pyrimidine (6-4) pyrimidone adducts) by photolyase redox enzymes, using tools and concepts of molecular electrochemistry. Thanks to the study of model compounds of cyclobutane lesions by cyclic voltametry, we have been able to mimic the key step of the enzymatic repair (dissociative electron transfer) and to monitor the repair of model compounds by Escherichia coli DNA photolyase. From these results, we have discussed the repair mechanism, especially the stepwise or concerted character of the process. Repair mechanism of (6-4) adducts is not known now, but a possible pathway implies an electron transfer coupled to the cleavage of two bonds in the closed form of the lesions (oxetanes). Voltammetric study of reduction and oxidation of model oxetanes and their repair by E. coli DNA photolyase gave some experimental evidence confirming the proposed mechanism and allowing a better understanding of it. (author)

  11. Wellbore Seal Repair Using Nanocomposite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States)

    2016-08-31

    ), including the use of either cement or a nanocomposite in the microannulus to represent a repaired system. This wellbore model was successfully coupled with a field-scale model of CO2 injection, to enable predictions of stress and strains in the wellbore subjected to subsurface changes (i.e. domal uplift) associated with fluid injection.

  12. Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.

    Science.gov (United States)

    Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping

    2018-04-26

    In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.

  13. Effects of Replication and Transcription on DNA Structure-Related Genetic Instability.

    Science.gov (United States)

    Wang, Guliang; Vasquez, Karen M

    2017-01-05

    Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.

  14. DNA repair in human cells: Methods for the determination of calmodulin involvement

    International Nuclear Information System (INIS)

    Charp, P.A.

    1987-01-01

    Exposure of DNA to either physical or chemical agents can result in the formation of a number of different lesions which must be repaired enzymatically in order for DNA to carry on normal replication and transcription. In most cases, the enzymes involved in this repair of damaged DNA include endonucleases, exonucleases, glycosylases, polymerases, and ligases. Each group of enzymes is involved in precise steps in DNA repair. Exposure to physical agents such as ultraviolet light (UV) at a wavelength of 254 nm is repaired by two distinct and different mechanisms. One mode of enzymatic repair of pyrimidine dimers is accomplished in situ by photoreactivation of UV-induced pyrimidine dimers by photoreactivating light. The second mode of enzymatic repair is the excision repair of pyrimidine dimers involving several different enzymes including endonuclease, exonuclease, and DNA ligase. A summary of the sequence of enzymatic steps involved is shown. It has been observed that specific drugs which bind to and alter the action of calmodulin in cells block DNA synthesis. This suggests that calmodulin may play a role both in normal DNA replication and repair. Others using an indirect method measuring the degree of DNA nucleoid sedimentation, showed that the specific anti-calmodulin agent W-13 slowed the rate of DNA repair. Others showed that DNA synthesis in T51B rat liver cells could be blocked with the addition of either chlorpromazine or trifluoperazine

  15. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress

    DEFF Research Database (Denmark)

    Kristensen, Hans-Ulrik Svejstrup; Epanchintsev, Alexey; Rauschendorf, Marc-Alexander

    2013-01-01

    Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation...

  16. Altered association of transcriptionally active DNA with the nuclear-matrix after heat shock

    NARCIS (Netherlands)

    Sakkers, RJ; Brunsting, JF; Filon, AR; Kampinga, HH; Konings, AWT; Mullenders, LHF

    Purpose: Exposure of human cells to heat leads to denaturation and aggregation of proteins. Within the nucleus, it has been suggested that protein aggregation is linked to the: selective inhibition by hyperthermia of nucleotide excision repair in transcriptionally active genes. Tn this study it was

  17. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  18. Characterization of a mutant rat kangaroo cell line with alterations in the cell cycle and DNA repair

    Directory of Open Access Journals (Sweden)

    Miyaji E.N.

    2000-01-01

    Full Text Available Using a positive selection system for isolating DNA replication and repair related mutants, we isolated a clone from a rat kangaroo cell line (PtK2 that has increased sensitivity to UV light. Characterization of this clone indicated normal post-replication repair after UV irradiation, and normal removal rates of cyclobutane pyrimidine dimers and pyrimidine(6-4pyrimidone photoproducts by excision repair. However, this cell line has decreased ability to make early incisions on damaged DNA, possibly indicating a defect in preferential repair of actively transcribed genes, and a slower cell proliferation rate, including a longer S-phase. This phenotype reinforces the present notion that control of key mechanisms in cell metabolism, such as cell cycle control, repair, transcription and cell death, can be linked.

  19. Transcriptional and physiological response of fathead minnows (Pimephales promelas) exposed to urban waters entering into wildlife protected areas

    International Nuclear Information System (INIS)

    Rodriguez-Jorquera, Ignacio A.; Kroll, Kevin J.; Toor, Gurpal S.; Denslow, Nancy D.

    2015-01-01

    The mission of protected areas is to conserve biodiversity and improve human welfare. To assess the effect of urban waters entering into protected areas, we performed 48-h whole-effluent exposures with fathead minnows, analyzing changes in steady state levels of mRNAs in the livers of exposed fish. Raw wastewater, treated city wastewater, and treated wastewater from a university were collected for exposures. All exposed fish showed altered mRNA levels of DNA damage-repair genes. Fish exposed to raw and treated wastewaters showed down-regulation of transcripts for key intermediates of cholesterol biosynthesis and elevated plasma cholesterol. The type of wastewater treatment influenced the response of gene transcription. Because of the relevance of some of the altered cellular pathways, we suggest that these effluents may cause deleterious effects on fish inside protected areas that receive these waters. Inclusion of research and mitigation efforts for this type of threat in protected areas management is advised. - Highlights: • Wastewater entering wildlife preserves alters gene expression in exposed fish. • DNA repair mechanisms and cholesterol metabolism were altered in fish. • Effects on cholesterol genes were in agreement with fish hypercholesterolemia. - Urban wastewaters released into protected areas altered gene transcription of key genes such as DNA repair and cholesterol biosynthesis and produced hypercholesterolemia in fish

  20. Ceramic restoration repair: report of two cases

    Directory of Open Access Journals (Sweden)

    Luís Henrique Araújo Raposo

    2009-04-01

    Full Text Available The esthetic and functional rehabilitation of patients with multiple missing teeth can be performed with several techniques and materials. Ceramic restorations provide reliable masticatory function and good esthetics. However, fracture can occur in some cases due to their brittle behavior. In some cases, the replacement of an extensive prosthesis is a problem due to the high treatment cost. In this paper, two cases are presented, in which fractures occurred in extensive metal-ceramic fixed partial dentures, and their replacement was not possible. Ceramic repair was chosen and the sequences of treatment with and without presence of the ceramic fragment are also discussed. The cases illustrate that, in some situations, fractured metal-ceramic partial dentures can be successfully repaired when prosthetic replacement is not a choice. Prosthodontists must use alternatives that allow a reliable repair to extensive metal-ceramic fixed partial dentures. Surface preparation of the ceramic with hydrofluoric acid in conjunction with a silane coupling agent is essential for a predictable bonding of composite resin. The repair performed with composite resin is an esthetic and functional alternative when extensive fixed partial dentures cannot be replaced.

  1. H3K36 Methylation Regulates Nutrient Stress Response in Saccharomyces cerevisiae by Enforcing Transcriptional Fidelity

    Directory of Open Access Journals (Sweden)

    Stephen L. McDaniel

    2017-06-01

    Full Text Available Set2-mediated histone methylation at H3K36 regulates diverse activities, including DNA repair, mRNA splicing, and suppression of inappropriate (cryptic transcription. Although failure of Set2 to suppress cryptic transcription has been linked to decreased lifespan, the extent to which cryptic transcription influences other cellular functions is poorly understood. Here, we uncover a role for H3K36 methylation in the regulation of the nutrient stress response pathway. We found that the transcriptional response to nutrient stress was dysregulated in SET2-deleted (set2Δ cells and was correlated with genome-wide bi-directional cryptic transcription that originated from within gene bodies. Antisense transcripts arising from these cryptic events extended into the promoters of the genes from which they arose and were associated with decreased sense transcription under nutrient stress conditions. These results suggest that Set2-enforced transcriptional fidelity is critical to the proper regulation of inducible and highly regulated transcription programs.

  2. The unique and cooperative roles of the Grainy head-like transcription factors in epidermal development reflect unexpected target gene specificity.

    Science.gov (United States)

    Boglev, Yeliz; Wilanowski, Tomasz; Caddy, Jacinta; Parekh, Vishwas; Auden, Alana; Darido, Charbel; Hislop, Nikki R; Cangkrama, Michael; Ting, Stephen B; Jane, Stephen M

    2011-01-15

    The Grainy head-like 3 (Grhl3) gene encodes a transcription factor that plays essential roles in epidermal morphogenesis during embryonic development, with deficient mice exhibiting failed skin barrier formation, defective wound repair, and loss of eyelid fusion. Despite sharing significant sequence homology, overlapping expression patterns, and an identical core consensus DNA binding site, the other members of the Grhl family (Grhl1 and -2) fail to compensate for the loss of Grhl3 in these processes. Here, we have employed diverse genetic models, coupled with biochemical studies, to define the inter-relationships of the Grhl factors in epidermal development. We show that Grhl1 and Grhl3 have evolved complete functional independence, as evidenced by a lack of genetic interactions in embryos carrying combinations of targeted alleles of these genes. In contrast, compound heterozygous Grhl2/Grhl3 embryos displayed failed wound repair, and loss of a single Grhl2 allele in Grhl3-null embryos results in fully penetrant eyes open at birth. Expression of Grhl2 from the Grhl3 locus in homozygous knock-in mice corrects the wound repair defect, but these embryos still display a complete failure of skin barrier formation. This functional dissociation is due to unexpected differences in target gene specificity, as both GRHL2 and GRHL3 bind to and regulate expression of the wound repair gene Rho GEF 19, but regulation of the barrier forming gene, Transglutaminase 1 (TGase1), is unique to GRHL3. Our findings define the mechanisms underpinning the unique and cooperative roles of the Grhl genes in epidermal development. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Modelling reveals kinetic advantages of co-transcriptional splicing.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2011-10-01

    Full Text Available Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  4. Modelling reveals kinetic advantages of co-transcriptional splicing.

    Science.gov (United States)

    Aitken, Stuart; Alexander, Ross D; Beggs, Jean D

    2011-10-01

    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  5. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Ian Hare

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs, the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16 at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  6. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage.

    Science.gov (United States)

    Hare, Ian; Gencheva, Marieta; Evans, Rebecca; Fortney, James; Piktel, Debbie; Vos, Jeffrey A; Howell, David; Gibson, Laura F

    2016-01-01

    Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  7. Repair of DNA treated with γ-irradiation and chemical carcinogens. Final report, June 1, 1981-May 31, 1984

    International Nuclear Information System (INIS)

    Goldthwait, D.A.

    1984-01-01

    Work done in the past three years has been on DNA repair, on genetic transposition and on the effect of carcinogens on alu sequence transcription. DNA repair work was completed on β-propiolactone DNA adducts, on procaryotic and eucaryotic enzymes capable of removal of 3-methyladenine from DNA, and on in vitro repair of neucleosomal core particle DNA and chromatin DNA. Attempts were made to isolate a human transposable element through the isolation of double stranded RNA and probing of a human library. Experiments were also done to determine whether carcinogens altered the expression of alu sequences in human DNA

  8. Radiation-induced thymine base damage and its excision repair in active and inactive chromatin of HeLa cells

    International Nuclear Information System (INIS)

    Patil, M.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    The extent of production and excision repair of 5,6-dihydroxydihydrothymine type base (t') damage was determined in transcriptionally active and inactive chromatin of HeLa cells after exposure to 6.8 MeV electrons. It was observed that not only the yield but also rate of repair of t' products was greater in the active chromatin compared to the inactive chromatin of HeLa cells. The results strongly indicate that the conformation of chromatin is an important factor in determining the sensitivity to radiation damage and accessibility to enzymes required for repair of such damage. (author)

  9. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  10. Alkyltransferase-like proteins: brokers dealing with alkylated DNA bases.

    Science.gov (United States)

    Schärer, Orlando D

    2012-07-13

    A new pathway for the repair of DNA alkylation damage is described in this issue of Molecular Cell (Latypov et al., 2012). Alkyltransferase-like enzymes mark O(6)-alkylguanine lesions and, depending on adduct size, channel them into global genome or transcription-coupled nucleotide excision repair pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  12. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice.

    Science.gov (United States)

    Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara

    2016-11-10

    Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether sleep provides any selective advantage over wake in their repair. In flies and mice, we find that enriched wake, more than simply time spent awake, induces DSBs, and their repair in mice is delayed or prevented by subsequent wake. In both species the repair of irradiation-induced neuronal DSBs is also quicker during sleep, and mouse genes mediating the response to DNA damage are upregulated in sleep. Thus, sleep facilitates the repair of neuronal DSBs.

  13. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  14. Stalled repair of lesions when present within a clustered DNA damage site

    International Nuclear Information System (INIS)

    Lomax, M.E.; Cunniffe, S.; O'Neill, P.

    2003-01-01

    Ionising radiation produces clustered DNA damages (two or more lesions within one or two helical turns of the DNA) which could challenge the repair mechanism(s) of the cell. Using purified base excision repair (BER) enzymes and synthetic oligonucleotides a number of recent studies have established the excision of a lesion within clustered damage sites is compromised. Evidence will be presented that the efficiency of repair of lesions within a clustered DNA damage site is reduced, relative to that of the isolated lesions, since the lifetime of both lesions is extended by up to four fold. Simple clustered damage sites, comprised of single-strand breaks, abasic sites and base damages, one or five bases 3' or 5' to each other, were synthesised in oligonucleotides and repair carried out in mammalian cell nuclear extracts. The rate of repair of the single-strand break/abasic site within these clustered damage sites is reduced, mainly due to inhibition of the DNA ligase. The mechanism of repair of the single-strand break/abasic site shows some asymmetry. Repair appears to be by the short-patch BER pathway when the lesions are 5' to each other. In contrast, when the lesions are 3' to each other repair appears to proceed along the long-patch BER pathway. The lesions within the cluster are processed sequentially, the single-strand break/abasic site being repaired before excision of 8-oxoG, limiting the formation of double-strand breaks to <2%. Stalled processing of clustered DNA damage extends the lifetime of the lesions to an extent that could have biological consequences, e.g. if the lesions are still present during transcription and/or at replication mutations could arise

  15. Roles of Aag, Alkbh2, and Alkbh3 in the Repair of Carboxymethylated and Ethylated Thymidine Lesions.

    Science.gov (United States)

    You, Changjun; Wang, Pengcheng; Nay, Stephanie L; Wang, Jianshuang; Dai, Xiaoxia; O'Connor, Timothy R; Wang, Yinsheng

    2016-05-20

    Environmental and endogenous genotoxic agents can result in a variety of alkylated and carboxymethylated DNA lesions, including N3-ethylthymidine (N3-EtdT), O(2)-EtdT, and O(4)-EtdT as well as N3-carboxymethylthymidine (N3-CMdT) and O(4)-CMdT. By using nonreplicative double-stranded vectors harboring a site-specifically incorporated DNA lesion, we assessed the potential roles of alkyladenine DNA glycosylase (Aag); alkylation repair protein B homologue 2 (Alkbh2); or Alkbh3 in modulating the effects of N3-EtdT, O(2)-EtdT, O(4)-EtdT, N3-CMdT, or O(4)-CMdT on DNA transcription in mammalian cells. We found that the depletion of Aag did not significantly change the transcriptional inhibitory or mutagenic properties of all five examined lesions, suggesting a negligible role of Aag in the repair of these DNA adducts in mammalian cells. In addition, our results revealed that N3-EtdT, but not other lesions, could be repaired by Alkbh2 and Alkbh3 in mammalian cells. Furthermore, we demonstrated the direct reversal of N3-EtdT by purified human Alkbh2 protein in vitro. These findings provided important new insights into the repair of the carboxymethylated and alkylated thymidine lesions in mammalian cells.

  16. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R

    2007-01-01

    -term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence...... geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long...... that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability....

  17. Chemotherapy induces alternative transcription and splicing: Facts and hopes for cancer treatment.

    Science.gov (United States)

    Lambert, Charles A; Garbacki, Nancy; Colige, Alain C

    2017-10-01

    Alternative promoter usage, alternative splicing and alternative cleavage/polyadenylation (referred here as to alternative transcription and splicing) are main instruments to diversify the transcriptome from a limited set of genes. There is a good deal of evidence that chemotherapeutic drugs affect these processes, but the therapeutic incidence of these effects is poorly documented. The scope of this study is to review the impact of chemotherapy on alternative transcription and splicing and to discuss potential implications in cancer therapy. A literature survey identified >2200 events induced by chemotherapeutic drugs. The molecular pathways involved in these regulations are briefly discussed. The GO terms associated with the alternative transcripts are mainly related to cell cycle/division, mRNA processing, DNA repair, macromolecules catabolism and chromatin. A large fraction (43%) of transcripts are also related to the new hallmarks of cancer, mostly genetic instability and replicative immortality. Finally, we ask the question of the impact of alternative transcription and splicing on drug efficacy and of the possible curative benefit of combining chemotherapy and pharmaceutical regulation of this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair.

    Science.gov (United States)

    Tao, Xu; Liu, Junpeng; Chen, Lei; Zhou, You; Tang, Kanglai

    2015-01-01

    The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. The aim of this study was to investigate the function of the zinc finger transcription factor early growth response 1 (EGR1) in the differentiation of tendon stem cells (TSCs) and in tendon formation, healing, and tendon tear repair using an animal model of rotator cuff repair. Tenocyte, adipocyte, osteocyte, and chondrocyte differentiation as well as the expression of related genes were determined in EGR1-overexpressing TSCs (EGR1-TSCs) using tissue-specific staining, immunofluorescence staining, quantitative PCR, and western blotting. A rabbit rotator cuff repair model was established, and TSCs and EGR1-TSCs in a fibrin glue carrier were applied onto repair sites. The rabbits were sacrificed 8 weeks after repair operation, and tissues were histologically evaluated and tenocyte-related gene expression was determined. EGR1 induced tenogenic differentiation of TSCs and inhibited non-tenocyte differentiation of TSCs. Furthermore, EGR1 promoted tendon repair in a rabbit model of rotator cuff injury. The BMP12/Smad1/5/8 signaling pathway was involved in EGR1-induced tenogenic differentiation and rotator cuff tendon repair. EGR1 plays a key role in tendon formation, healing, and repair through BMP12/Smad1/5/8 pathway. EGR1-TSCs is a promising treatment for rotator cuff tendon repair surgeries. © 2015 S. Karger AG, Basel.

  19. EGR1 Induces Tenogenic Differentiation of Tendon Stem Cells and Promotes Rabbit Rotator Cuff Repair

    Directory of Open Access Journals (Sweden)

    Xu Tao

    2015-01-01

    Full Text Available Background/Aims: The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. The aim of this study was to investigate the function of the zinc finger transcription factor early growth response 1 (EGR1 in the differentiation of tendon stem cells (TSCs and in tendon formation, healing, and tendon tear repair using an animal model of rotator cuff repair. Methods: Tenocyte, adipocyte, osteocyte, and chondrocyte differentiation as well as the expression of related genes were determined in EGR1-overexpressing TSCs (EGR1-TSCs using tissue-specific staining, immunofluorescence staining, quantitative PCR, and western blotting. A rabbit rotator cuff repair model was established, and TSCs and EGR1-TSCs in a fibrin glue carrier were applied onto repair sites. The rabbits were sacrificed 8 weeks after repair operation, and tissues were histologically evaluated and tenocyte-related gene expression was determined. Results: EGR1 induced tenogenic differentiation of TSCs and inhibited non-tenocyte differentiation of TSCs. Furthermore, EGR1 promoted tendon repair in a rabbit model of rotator cuff injury. The BMP12/Smad1/5/8 signaling pathway was involved in EGR1-induced tenogenic differentiation and rotator cuff tendon repair. Conclusion: EGR1 plays a key role in tendon formation, healing, and repair through BMP12/Smad1/5/8 pathway. EGR1-TSCs is a promising treatment for rotator cuff tendon repair surgeries.

  20. Role of nuclear hexokinase II in DNA repair

    International Nuclear Information System (INIS)

    Khanna, S.; Bhatt, A.N.; Dwarakanath, B.S.; Kalaiarasan, P.; Brahmachari, V.

    2012-01-01

    A common signature of many cancer cells is a high glucose catabolic rate primarily due to the over expression of Type II hexokinase (HKII; responsible for the phosphorylation of glucose), generally known as cytosolic and mitochondrial bound enzyme that also suppresses cell death. Although, nuclear localization and transcriptional regulation of HKII has been reported in yeast; we and few others have recently demonstrated its nuclear localization in malignant cell lines. Interestingly, modification of a human glioma cell line (BMG-1) for enhancing glycolysis through mitochondrial respiration (OPMBMG cells) resulted in a higher nuclear localization of HKII as compared to the parental cells with concomitant increase in DNA repair and radio-resistance. Further, the glucose phosphorylation activity of the nuclear HKII was nearly 2 folds higher in the relatively more radioresistant HeLa cells (human cervical cancer cell line) as compared to MRC-5 cells (human normal lung fibroblast cell line). Therefore, we hypothesize that nuclear HKII facilitates DNA repair, in a hither to unknown mechanism, that may partly contribute to the enhanced resistance of highly glycolytic cells to radiation. Sequence alignment studies suggest that the isoenzymes, HKI and HKII share strong homology in the kinase active site, which is also found in few protein kinases. Interestingly HKI has been shown to phosphorylate H2A in-vitro. Further, in-silico protein-protein interaction data suggest that HKII can interact with several DNA repair proteins including ATM. Taken together; available experimental evidences as well as in-silico predictions strongly suggest that HKII may play a role in DNA repair by phosphorylation of certain DNA repair proteins. (author)

  1. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    Science.gov (United States)

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  2. Diagnostic testing and repair of Hollingsworth Generating Station`s Unit One

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This paper presents a case history of the diagnosis of a hydroelectric generator problem and the corrections implemented. The problem involved an excessive rotor imbalance coupled with a static air gap imbalance that cause severe load-sensitive vibrations. The problem constrained the plant from operating the generator unit throughout the range of its nameplate rating and caused periodic failure of the generator guide and thrust bearing. The paper describes the vibration survey and mechanical survey of the generator rotor, the pre-overhaul diagnosis, the repairs undertaken to the rotor, and the generator performance after the repair, with comparison to the pre-repair condition. The paper concludes with a discussion of the economic, operational, and logistic issues involved in the overhaul.

  3. Implication of Posttranslational Histone Modifications in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Shisheng Li

    2012-09-01

    Full Text Available Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4 or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.

  4. A non-isotopic assay uses bromouridine and RNA synthesis to detect DNA damage responses.

    Science.gov (United States)

    Hasegawa, Mayu; Iwai, Shigenori; Kuraoka, Isao

    2010-06-17

    Individuals with inherited xeroderma pigmentosum (XP) disorder and Cockayne syndrome (CS) are deficient in nucleotide excision repair and experience hypersensitivity to sunlight. Although there are several diagnostic assays for these disorders, the recovery of RNA synthesis (RRS) assay that can discriminate between XP cells and CS cells is very laborious. Here, we report on a novel non-radioisotope RRS assay that uses bromouridine (a uridine analog) as an alternative to (3)H-uridine. This assay can easily detect RNA polymerase I transcription in nucleoli and RNA polymerase II transcription in nuclei. The non-RI RSS assay also can rapidly detect normal RRS activity in HeLa cells. Thus, this assay is useful as a novel and easy technique for CS diagnosis. Because RRS is thought to be related to transcription-coupled DNA repair, which is triggered by the blockage of transcriptional machinery by DNA lesions, this assay may be of use for analysis of DNA repair, transcription, and/or genetic toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  6. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription

    International Nuclear Information System (INIS)

    Davie, J.R.; Murphy, L.C.

    1990-01-01

    The relationship between transcription and ubiquitination of the histones was investigated. Previous studies have shown that ubiquitinated (u) histone H2B and, to a lesser extend, mono- and polyubiquitinated histone H2A are enriched in transcriptionally active gene-enriched chromatin fractions. Here, the authors show that treatment of T-47D-5 human breast cancer cells with actinomycin D or 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, inhibitors of heterogeneous nuclear RNA synthesis, selectively reduced the level of uH2B, but not uH2A, uH2A.Z, or polyubiquitinated H2A, in chromatin. Treatment of the cells with low levels of actinomycin D slightly reduced the level of uH2B, suggesting that inhibition of ribosomal RNA synthesis does not have a profound effect on the level of uH2B in chromatin. These results demonstrate that maintenance of the levels of uH2B in chromatin is dependent upon ongoing transcription, particularly the synthesis of hnRNA. Thus, histone H2B would be ubiquitinated when the nucleosome was opened during transcription. Ubiquitination of histone H2B may impede nucleosome refolding, facilitating subsequent rounds of transcription

  7. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  8. DNA repair diseases: what do they tell us about cancer and aging?

    Directory of Open Access Journals (Sweden)

    Carlos FM Menck

    2014-01-01

    Full Text Available The discovery of DNA repair defects in human syndromes, initially in xeroderma pigmentosum (XP but later in many others, led to striking observations on the association of molecular defects and patients' clinical phenotypes. For example, patients with syndromes resulting from defective nucleotide excision repair (NER or translesion synthesis (TLS present high levels of skin cancer in areas exposed to sunlight. However, some defects in NER also lead to more severe symptoms, such as developmental and neurological impairment and signs of premature aging. Skin cancer in XP patients is clearly associated with increased mutagenesis and genomic instability, reflecting the defective repair of DNA lesions. By analogy, more severe symptoms observed in NER-defective patients have also been associated with defective repair, likely involving cell death after transcription blockage of damaged templates. Endogenously induced DNA lesions, particularly through oxidative stress, have been identified as responsible for these severe pathologies. However, this association is not that clear and alternative explanations have been proposed. Despite high levels of exposure to intense sunlight, patients from tropical countries receive little attention or care, which likely also reflects the lack of understanding of how DNA damage causes cancer and premature aging.

  9. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo.

    Science.gov (United States)

    He, Shengwei; Zhao, Wenzhi; Zhang, Lu; Mi, Lidong; Du, Guangyu; Sun, Chuanxiu; Sun, Xuegang

    2017-01-01

    To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo . Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz) were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligan, and pre-collagen type 1 α were measured. Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligand, and pre-collagen type 1 α were also markedly higher following 25 and 50 Hz treatment. Low frequency (25-50 Hz) vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.

  10. Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions

    DEFF Research Database (Denmark)

    Rennie, Sarah; Dalby, Maria; van Duin, Lucas

    2018-01-01

    Transcriptional regulation is tightly coupled with chromosomal positioning and three-dimensional chromatin architecture. However, it is unclear what proportion of transcriptional activity is reflecting such organisation, how much can be informed by RNA expression alone and how this impacts disease...... proportion of total levels and is highly informative of topological associating domain activities and organisation, revealing boundaries and chromatin compartments. Furthermore, expression data alone accurately predict individual enhancer-promoter interactions, drawing features from expression strength...... between transcription and chromatin architecture....

  11. A human homolog of the yeast nucleotide excision repair gene MMS19 interacts with transcription repair factor TFIIH through the XPB and XPD helicases.

    NARCIS (Netherlands)

    T. Seroz; G.S. Winkler (Sebastiaan); J. Auriol; R.A. Verhage; W. Vermeulen (Wim); B. Smit (Bep); J. Brouwer (Jaap); A.P.M. Eker (André); G. Weeda (Geert); J-M. Egly (Jean-Marc); J.H.J. Hoeijmakers (Jan)

    2000-01-01

    textabstractNucleotide excision repair (NER) removes UV-induced photoproducts and numerous other DNA lesions in a highly conserved 'cut-and-paste' reaction that involves approximately 25 core components. In addition, several other proteins have been identified which are dispensable for NER in vitro

  12. Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells.

    Science.gov (United States)

    Bailis, Julie M; Weidmann, Alyson G; Mariano, Natalie F; Barton, Jacqueline K

    2017-07-03

    The DNA mismatch repair (MMR) pathway recognizes and repairs errors in base pairing and acts to maintain genome stability. Cancers that have lost MMR function are common and comprise an important clinical subtype that is resistant to many standard of care chemotherapeutics such as cisplatin. We have identified a family of rhodium metalloinsertors that bind DNA mismatches with high specificity and are preferentially cytotoxic to MMR-deficient cells. Here, we characterize the cellular mechanism of action of the most potent and selective complex in this family, [Rh(chrysi)(phen)(PPO)] 2+ (Rh-PPO). We find that Rh-PPO binding induces a lesion that triggers the DNA damage response (DDR). DDR activation results in cell-cycle blockade and inhibition of DNA replication and transcription. Significantly, the lesion induced by Rh-PPO is not repaired in MMR-deficient cells, resulting in selective cytotoxicity. The Rh-PPO mechanism is reminiscent of DNA repair enzymes that displace mismatched bases, and is differentiated from other DNA-targeted chemotherapeutics such as cisplatin by its potency, cellular mechanism, and selectivity for MMR-deficient cells.

  13. CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method

    KAUST Repository

    Zhou, Jian

    2016-03-25

    Data repairing aims at discovering and correcting erroneous data in databases. Traditional methods relying on predefined quality rules to detect the conflict between data may fail to choose the right way to fix the detected conflict. Recent efforts turn to use the power of crowd in data repairing, but the crowd power has its own drawbacks such as high human intervention cost and inevitable low efficiency. In this paper, we propose a crowd-aided interactive data repairing method which takes the advantages of both rule-based method and crowd-based method. Particularly, we investigate the interaction between crowd-based repairing and rule-based repairing, and show that by doing crowd-based repairing to a small portion of values, we can greatly improve the repairing quality of the rule-based repairing method. Although we prove that the optimal interaction scheme using the least number of values for crowd-based repairing to maximize the imputation recall is not feasible to be achieved, still, our proposed solution identifies an efficient scheme through investigating the inconsistencies and the dependencies between values in the repairing process. Our empirical study on three data collections demonstrates the high repairing quality of CrowdAidRepair, as well as the efficiency of the generated interaction scheme over baselines.

  14. General organisational principles of the transcriptional regulation system: a tree or a circle?

    Science.gov (United States)

    Muskhelishvili, Georgi; Sobetzko, Patrick; Geertz, Marcel; Berger, Michael

    2010-04-01

    Recent advances of systemic approaches to gene expression and cellular metabolism provide unforeseen opportunities for relating and integrating extensive datasets describing the transcriptional regulation system as a whole. However, due to the multifaceted nature of the phenomenon, these datasets often contain logically distinct types of information determined by underlying approach and adopted methodology of data analysis. Consequently, to integrate the datasets comprising information on the states of chromatin structure, transcriptional regulatory network and cellular metabolism, a novel methodology enabling interconversion of logically distinct types of information is required. Here we provide a holistic conceptual framework for analysis of global transcriptional regulation as a system coordinated by structural coupling between the transcription machinery and DNA topology, acting as interdependent sensors and determinants of metabolic functions. In this operationally closed system any transition in physiological state represents an emergent property determined by shifts in structural coupling, whereas genetic regulation acts as a genuine device converting one logical type of information into the other.

  15. Caffeine sensitive repair and mutation induction in UV- or γ-ray-irradiated Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Kanishi, Nobuji; Kinjo, Yasuhito; Watanabe, Makoto.

    1990-01-01

    It seems that certain kinds of chemical substances increase the distortion in molecules, change the high order microstructures of nuclei and chromosomes, and exert large variation to the function of repairing the damage of genes due to radiation and others, by coupling with DNA, protein or enzyme system. It has been well known that caffeine is one of such compounds, and by coupling with DNA, it increases the damage due to ultraviolet ray and gives the action of obstructing repair in addition to the action of inducing the abnormality of chromosomes and mutation. Dictyostelium discoideum has the simplest nuclear structure, and shows extremely high resistance to radiation by its high restoration ability. The authors have advanced the research by paying attention to its characteristics, and comparing the Dictyostelium discoideum as one model system with the lymphocyte system of higher animals. This time, the authors analyzed the characteristics of two kinds of sensitivity repair process of caffeine, and investigated into their relation with the occurrence of mutation. The experimental method and the results are reported. (K.I.)

  16. Caffeine sensitive repair and mutation induction in UV- or. gamma. -ray-irradiated Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Kanishi, Nobuji (Tokyo Metropolitan Research Lab. of Public Health (Japan)); Kinjo, Yasuhito; Watanabe, Makoto

    1990-01-01

    It seems that certain kinds of chemical substances increase the distortion in molecules, change the high order microstructures of nuclei and chromosomes, and exert large variation to the function of repairing the damage of genes due to radiation and others, by coupling with DNA, protein or enzyme system. It has been well known that caffeine is one of such compounds, and by coupling with DNA, it increases the damage due to ultraviolet ray and gives the action of obstructing repair in addition to the action of inducing the abnormality of chromosomes and mutation. Dictyostelium discoideum has the simplest nuclear structure, and shows extremely high resistance to radiation by its high restoration ability. The authors have advanced the research by paying attention to its characteristics, and comparing the Dictyostelium discoideum as one model system with the lymphocyte system of higher animals. This time, the authors analyzed the characteristics of two kinds of sensitivity repair process of caffeine, and investigated into their relation with the occurrence of mutation. The experimental method and the results are reported. (K.I.).

  17. Identification of Novel Proteins Co-Purifying with Cockayne Syndrome Group B (CSB Reveals Potential Roles for CSB in RNA Metabolism and Chromatin Dynamics.

    Directory of Open Access Journals (Sweden)

    Serena Nicolai

    Full Text Available The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER known as transcription coupled repair (TCR. CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.

  18. DNA Repair and Cancer Therapy: Targeting APE1/Ref-1 Using Dietary Agents

    Directory of Open Access Journals (Sweden)

    Julian J. Raffoul

    2012-01-01

    Full Text Available Epidemiological studies have demonstrated the cancer protective effects of dietary agents and other natural compounds isolated from fruits, soybeans, and vegetables on neoplasia. Studies have also revealed the potential for these natural products to be combined with chemotherapy or radiotherapy for the more effective treatment of cancer. In this paper we discuss the potential for targeting the DNA base excision repair enzyme APE1/Ref-1 using dietary agents such as soy isoflavones, resveratrol, curcumin, and the vitamins ascorbate and α-tocopherol. We also discuss the potential role of soy isoflavones in sensitizing cancer cells to the effects of radiotherapy. A comprehensive review of the dual nature of APE1/Ref-1 in DNA repair and redox activation of cellular transcription factors, NF-κB and HIF-1α, is also discussed. Further research efforts dedicated to delineating the role of APE1/Ref-1 DNA repair versus redox activity in sensitizing cancer cells to conventional treatment are warranted.

  19. DOT1L and H3K79 Methylation in Transcription and Genomic Stability.

    Science.gov (United States)

    Wood, Katherine; Tellier, Michael; Murphy, Shona

    2018-02-27

    The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  20. DOT1L and H3K79 Methylation in Transcription and Genomic Stability

    Directory of Open Access Journals (Sweden)

    Katherine Wood

    2018-02-01

    Full Text Available The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79. H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  1. Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells.

    Science.gov (United States)

    Vélez-Cruz, Renier; Zadorin, Anton S; Coin, Frédéric; Egly, Jean-Marc

    2013-01-15

    Specific mutations in the XPD subunit of transcription factor IIH result in combined xeroderma pigmentosum (XP)/Cockayne syndrome (CS), a severe DNA repair disorder characterized at the cellular level by a transcriptional arrest following UV irradiation. This transcriptional arrest has always been thought to be the result of faulty transcription-coupled repair. In the present study, we showed that, following UV irradiation, XP-D/CS cells displayed a gross transcriptional dysregulation compared with "pure" XP-D cells or WT cells. Furthermore, global RNA-sequencing analysis showed that XP-D/CS cells repressed the majority of genes after UV, whereas pure XP-D cells did not. By using housekeeping genes as a model, we demonstrated that XP-D/CS cells were unable to reassemble these gene promoters and thus to restart transcription after UV irradiation. Furthermore, we found that the repression of these promoters in XP-D/CS cells was not a simple consequence of deficient repair but rather an active heterochromatinization process mediated by the histone deacetylase Sirt1. Indeed, RNA-sequencing analysis showed that inhibition of and/or silencing of Sirt1 changed the chromatin environment at these promoters and restored the transcription of a large portion of the repressed genes in XP-D/CS cells after UV irradiation. Our work demonstrates that a significant part of the transcriptional arrest displayed by XP-D/CS cells arises as a result of an active repression process and not simply as a result of a DNA repair deficiency. This dysregulation of Sirt1 function that results in transcriptional repression may be the cause of various severe clinical features in patients with XP-D/CS that cannot be explained by a DNA repair defect.

  2. The transcription elongation factor Bur1-Bur2 interacts with replication protein A and maintains genome stability during replication stress

    DEFF Research Database (Denmark)

    Clausing, Emanuel; Mayer, Andreas; Chanarat, Sittinan

    2010-01-01

    Multiple DNA-associated processes such as DNA repair, replication, and recombination are crucial for the maintenance of genome integrity. Here, we show a novel interaction between the transcription elongation factor Bur1-Bur2 and replication protein A (RPA), the eukaryotic single-stranded DNA......-binding protein with functions in DNA repair, recombination, and replication. Bur1 interacted via its C-terminal domain with RPA, and bur1-¿C mutants showed a deregulated DNA damage response accompanied by increased sensitivity to DNA damage and replication stress as well as increased levels of persisting Rad52...... foci. Interestingly, the DNA damage sensitivity of an rfa1 mutant was suppressed by bur1 mutation, further underscoring a functional link between these two protein complexes. The transcription elongation factor Bur1-Bur2 interacts with RPA and maintains genome integrity during DNA replication stress....

  3. On cycles in the transcription network of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Berman Piotr

    2008-01-01

    Full Text Available Abstract Background We investigate the cycles in the transcription network of Saccharomyces cerevisiae. Unlike a similar network of Escherichia coli, it contains many cycles. We characterize properties of these cycles and their place in the regulatory mechanism of the cell. Results Almost all cycles in the transcription network of Saccharomyces cerevisiae are contained in a single strongly connected component, which we call LSCC (L for "largest", except for a single cycle of two transcription factors. The fact that LSCC includes almost all cycles is well explained by the properties of a random graph with the same in- and out-degrees of the nodes. Among different physiological conditions, cell cycle has the most significant relationship with LSCC, as the set of 64 transcription interactions that are active in all phases of the cell cycle has overlap of 27 with the interactions of LSCC (of which there are 49. Conversely, if we remove the interactions that are active in all phases of the cell cycle (25% of interactions to transcription factors, the LSCC would have only three nodes and 5 edges, many fewer than expected. This subgraph of the transcription network consists mostly of interactions that are active only in the stress response subnetwork. We also characterize the role of LSCC in the topology of the network. We show that LSCC can be used to define a natural hierarchy in the network and that in every physiological subnetwork LSCC plays a pivotal role. Conclusion Apart from those well-defined conditions, the transcription network of Saccharomyces cerevisiae is devoid of cycles. It was observed that two conditions that were studied and that have no cycles of their own are exogenous: diauxic shift and DNA repair, while cell cycle and sporulation are endogenous. We claim that in a certain sense (slow recovery stress response is endogenous as well.

  4. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

    Directory of Open Access Journals (Sweden)

    Shengwei He

    2017-01-01

    Full Text Available Objective(s:To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligan, and pre-collagen type 1 a were measured. Results:Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligand, and pre-collagen type 1 a were also markedly higher following 25 and 50 Hz treatment. Conclusion:Low frequency (25–50 Hz vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.

  5. H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex

    DEFF Research Database (Denmark)

    Saredi, Giulia; Huang, Hongda; Hammond, Colin M

    2016-01-01

    After DNA replication, chromosomal processes including DNA repair and transcription take place in the context of sister chromatids. While cell cycle regulation can guide these processes globally, mechanisms to distinguish pre- and post-replicative states locally remain unknown. Here we reveal...

  6. Transcriptional coupling of synaptic transmission and energy metabolism: role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons.

    Science.gov (United States)

    Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T

    2009-10-01

    Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts down-regulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level.

  7. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage

    International Nuclear Information System (INIS)

    McClanahan, T.; McEntee, K.

    1984-01-01

    Differential hybridization has been used to identify genes in Saccharomyces cerevisiae displaying increased transcript levels after treatment of cells with UV irradiation or with the mutagen/carcinogen 4-nitroquinoline-1-oxide (NQO). The authors describe the isolation and characterization of four DNA damage responsive genes obtained from screening ca. 9000 yeast genomic clones. Two of these clones, lambda 78A and pBR178C, contain repetitive elements in the yeast genome as shown by Southern hybridization analysis. Although the genomic hybridization pattern is distinct for each of these two clones, both of these sequences hybridize to large polyadenylated transcripts ca. 5 kilobases in length. Two other DNA damage responsive sequences, pBRA2 and pBR3016B, are single-copy genes and hybridize to 0.5- and 3.2-kilobase transcripts, respectively. Kinetic analysis of the 0.5-kilobase transcript homologous to pBRA2 indicates that the level of this RNA increases more than 15-fold within 20 min after exposure to 4-nitroquinoline-1-oxide. Moreover, the level of this transcript is significantly elevated in cells containing the rad52-1 mutation which are deficient in DNA strand break repair and gene conversion. These results provide some of the first evidence that DNA damage stimulates transcription of specific genes in eucaryotic cells

  8. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    International Nuclear Information System (INIS)

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-01-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s)

  9. ATM-mediated transcriptional and developmental responses to gamma-rays in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lilian Ricaud

    Full Text Available ATM (Ataxia Telangiectasia Mutated is an essential checkpoint kinase that signals DNA double-strand breaks in eukaryotes. Its depletion causes meiotic and somatic defects in Arabidopsis and progressive motor impairment accompanied by several cell deficiencies in patients with ataxia telangiectasia (AT. To obtain a comprehensive view of the ATM pathway in plants, we performed a time-course analysis of seedling responses by combining confocal laser scanning microscopy studies of root development and genome-wide expression profiling of wild-type (WT and homozygous ATM-deficient mutants challenged with a dose of gamma-rays (IR that is sublethal for WT plants. Early morphologic defects in meristematic stem cells indicated that AtATM, an Arabidopsis homolog of the human ATM gene, is essential for maintaining the quiescent center and controlling the differentiation of initial cells after exposure to IR. Results of several microarray experiments performed with whole seedlings and roots up to 5 h post-IR were compiled in a single table, which was used to import gene information and extract gene sets. Sequence and function homology searches; import of spatio-temporal, cell cycling, and mutant-constitutive expression characteristics; and a simplified functional classification system were used to identify novel genes in all functional classes. The hundreds of radiomodulated genes identified were not a random collection, but belonged to functional pathways such as those of the cell cycle; cell death and repair; DNA replication, repair, and recombination; and transcription; translation; and signaling, indicating the strong cell reprogramming and double-strand break abrogation functions of ATM checkpoints. Accordingly, genes in all functional classes were either down or up-regulated concomitantly with downregulation of chromatin deacetylases or upregulation of acetylases and methylases, respectively. Determining the early transcriptional indicators of

  10. Expression, purification and characterization of the human MTA2-RBBP7 complex

    DEFF Research Database (Denmark)

    Brasen, Christoffer; Dorosz, Jerzy; Wiuf, Anders

    2017-01-01

    The repressive Nucleosome Remodeling and histone Deacetylation (NuRD) complex remodels the chromatin structure by coupling ATP-dependent remodeling activity with histone deacetylase function and plays important roles in regulating gene transcription, DNA damage repair and chromatin assembly. The ...

  11. RYBP Is a K63-Ubiquitin-Chain-Binding Protein that Inhibits Homologous Recombination Repair

    Directory of Open Access Journals (Sweden)

    Mohammad A.M. Ali

    2018-01-01

    Full Text Available Summary: Ring1-YY1-binding protein (RYBP is a member of the non-canonical polycomb repressive complex 1 (PRC1, and like other PRC1 members, it is best described as a transcriptional regulator. However, several PRC1 members were recently shown to function in DNA repair. Here, we report that RYBP preferentially binds K63-ubiquitin chains via its Npl4 zinc finger (NZF domain. Since K63-linked ubiquitin chains are assembled at DNA double-strand breaks (DSBs, we examined the contribution of RYBP to DSB repair. Surprisingly, we find that RYBP is K48 polyubiquitylated by RNF8 and rapidly removed from chromatin upon DNA damage by the VCP/p97 segregase. High expression of RYBP competitively inhibits recruitment of BRCA1 repair complex to DSBs, reducing DNA end resection and homologous recombination (HR repair. Moreover, breast cancer cell lines expressing high endogenous RYBP levels show increased sensitivity to DNA-damaging agents and poly ADP-ribose polymerase (PARP inhibition. These data suggest that RYBP negatively regulates HR repair by competing for K63-ubiquitin chain binding. : Ali et al. find that RYBP binds K63-linked ubiquitin chains and is removed from DNA damage sites. This K63-ubiquitin binding allows RYBP to hinder the recruitment of BRCA1 and Rad51 to DNA double-strand breaks, thus inhibiting homologous recombination repair. Accordingly, cancer cells expressing high RYBP are more sensitive to DNA-damaging therapies. Keywords: DNA damage response, homologous recombination, ubiquitylation, RYBP, polycomb proteins, double-strand break repair, chromatin, histone modification

  12. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    Science.gov (United States)

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  13. The base excision repair pathway is required for efficient lentivirus integration.

    Directory of Open Access Journals (Sweden)

    Kristine E Yoder

    Full Text Available An siRNA screen has identified several proteins throughout the base excision repair (BER pathway of oxidative DNA damage as important for efficient HIV infection. The proteins identified included early repair factors such as the base damage recognition glycosylases OGG1 and MYH and the late repair factor POLß, implicating the entire BER pathway. Murine cells with deletions of the genes Ogg1, Myh, Neil1 and Polß recapitulate the defect of HIV infection in the absence of BER. Defective infection in the absence of BER proteins was also seen with the lentivirus FIV, but not the gammaretrovirus MMLV. BER proteins do not affect HIV infection through its accessory genes nor the central polypurine tract. HIV reverse transcription and nuclear entry appear unaffected by the absence of BER proteins. However, HIV integration to the host chromosome is reduced in the absence of BER proteins. Pre-integration complexes from BER deficient cell lines show reduced integration activity in vitro. Integration activity is restored by addition of recombinant BER protein POLß. Lentiviral infection and integration efficiency appears to depend on the presence of BER proteins.

  14. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivites of virus functions.

    Science.gov (United States)

    Eglin, R P; Gugerli, P; Wildy, P

    1980-07-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).

  15. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivities of virus functions

    International Nuclear Information System (INIS)

    Eglin, R.P.; Gugerli, P.; Wildy, P.

    1980-01-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription; unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II). (U.K.)

  16. Recruitment of DNA methyltransferase I to DNA repair sites

    Science.gov (United States)

    Mortusewicz, Oliver; Schermelleh, Lothar; Walter, Joachim; Cardoso, M. Cristina; Leonhardt, Heinrich

    2005-01-01

    In mammalian cells, the replication of genetic and epigenetic information is directly coupled; however, little is known about the maintenance of epigenetic information in DNA repair. Using a laser microirradiation system to introduce DNA lesions at defined subnuclear sites, we tested whether the major DNA methyltransferase (Dnmt1) or one of the two de novo methyltransferases (Dnmt3a, Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse microscopy of microirradiated mammalian cells expressing GFP-tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent protein-tagged proliferating cell nuclear antigen (PCNA) revealed that Dnmt1 and PCNA accumulate at DNA damage sites as early as 1 min after irradiation in S and non-S phase cells, whereas recruitment of Dnmt3a and Dnmt3b was not observed. Deletion analysis showed that Dnmt1 recruitment was mediated by the PCNA-binding domain. These data point to a direct role of Dnmt1 in the restoration of epigenetic information during DNA repair. PMID:15956212

  17. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    Science.gov (United States)

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  18. Experimental Observation of the Skeletal Adaptive Repair Mechanism and Bionic Topology Optimization Method

    Directory of Open Access Journals (Sweden)

    Kaysar Rahman

    2014-01-01

    Full Text Available Bone adaptive repair theory considers that the external load is the direct source of bone remodeling; bone achieves its maintenance by remodeling some microscopic damages due to external load during the process. This paper firstly observes CT data from the whole self-repairing process in bone defects in rabbit femur. Experimental result shows that during self-repairing process there exists an interaction relationship between spongy bone and enamel bone volume changes of bone defect, that is when volume of spongy bone increases, enamel bone decreases, and when volume of spongy bone decreases, enamel bone increases. Secondly according to this feature a bone remodeling model based on cross-type reaction-diffusion system influenced by mechanical stress is proposed. Finally, this model coupled with finite element method by using the element adding and removing process is used to simulate the self-repairing process and engineering optimization problems by considering the idea of bionic topology optimization.

  19. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  20. Recombinational DNA repair and human disease

    International Nuclear Information System (INIS)

    Thompson, Larry H.; Schild, David

    2002-01-01

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities

  1. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  2. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Peters, L.J.

    1984-01-01

    A model is proposed for cell survival after multiple doses, when the interfraction interval is insufficient for complete Elkind repair. In the limit of ever-increasing number of ever-smaller fractional doses, the model transforms into the accumulation model of survival after continuous irradiation. When adapted to describe tissue responses to isoeffective multifractionated regimens, wherein repair is incomplete, a generalization of the usually linear plot of reciprocal total dose versus dose per fraction is obtained, in which downward curvature is evident. There is an advantage in studying tissue responses to multifractionated regimens with incomplete repair in the interfraction intervals, or continuous exposures at various dose rates since, in addition to determination of repair capacity, there is an estimate of repair kinetics. Results of analyses of previously published data are presented as illustration. Estimated from the response of three acutely responding normal tissues in the mouse (jejunum, colon and bone marrow), repair halftimes ranged from 0.3-0.9 h and values of β/delta were approximately 0.1 Gy -1 . From the response of mouse lung (LD50 for pneumonitis) to multifractionated regimens with incomplete repair, the repair halftime was estimated at 1.5 h and β/delta was 0.27 Gy -1 . In the rat spinal cord β/delta was 0.7 Gy -1 and Tsub(1/2) was 1.5 h. (U.K.)

  3. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury.

    Science.gov (United States)

    Arthur-Farraj, Peter J; Morgan, Claire C; Adamowicz, Martyna; Gomez-Sanchez, Jose A; Fazal, Shaline V; Beucher, Anthony; Razzaghi, Bonnie; Mirsky, Rhona; Jessen, Kristjan R; Aitman, Timothy J

    2017-09-12

    Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Comparing Biomechanical Properties, Repair Times, and Value of Common Core Flexor Tendon Repairs.

    Science.gov (United States)

    Chauhan, Aakash; Schimoler, Patrick; Miller, Mark C; Kharlamov, Alexander; Merrell, Gregory A; Palmer, Bradley A

    2018-05-01

    The aim of the study was to compare biomechanical strength, repair times, and repair values for zone II core flexor tendon repairs. A total of 75 fresh-frozen human cadaveric flexor tendons were harvested from the index through small finger and randomized into one of 5 repair groups: 4-stranded cross-stitch cruciate (4-0 polyester and 4-0 braided suture), 4-stranded double Pennington (2-0 knotless barbed suture), 4-stranded Pennington (4-0 double-stranded braided suture), and 6-stranded modified Lim-Tsai (4-0 looped braided suture). Repairs were measured in situ and their repair times were measured. Tendons were linearly loaded to failure and multiple biomechanical values were measured. The repair value was calculated based on operating room costs, repair times, and suture costs. Analysis of variance (ANOVA) and Tukey post hoc statistical analysis were used to compare repair data. The braided cruciate was the strongest repair ( P > .05) but the slowest ( P > .05), and the 4-stranded Pennington using double-stranded suture was the fastest ( P > .05) to perform. The total repair value was the highest for braided cruciate ( P > .05) compared with all other repairs. Barbed suture did not outperform any repairs in any categories. The braided cruciate was the strongest of the tested flexor tendon repairs. The 2-mm gapping and maximum load to failure for this repair approached similar historical strength of other 6- and 8-stranded repairs. In this study, suture cost was negligible in the overall repair cost and should be not a determining factor in choosing a repair.

  5. The Polymorphism of DNA Repair Gene ERCC2/XPD Arg156Arg and Susceptibility to Breast Cancer in a Chinese Population

    DEFF Research Database (Denmark)

    Yin, J. Y.; Liang, D. H.; Vogel, Ulla Birgitte

    2009-01-01

    Polymorphisms in DNA repair genes are good candidates for modifying cancer risk. ERCC2/XPD, a gene involved in nucleotide excision repair and basal transcription, may influence individual DNA repair capacity, particularly of bulky adducts. This is implicated in cancer susceptibility. To detect...... found between ERCC2/XPD Arg156Arg and risk of breast cancer (AA/AC versus CC: OR = 0.79, 95% CI = 0.49-1.28, P = 0.33; AA versus CC: OR = 0.89, 95% CI = 0.49-1.63, P = 0.72; AC versus CC: OR = 0.74, 95% CI = 0.44-1.24, P = 0.25). Breast cancer cases with the variant AA genotype were marginally younger...

  6. Rapid Detection of Prunus Necrotic Ringspot Virus by Reverse Transcription-cross-priming Amplification Coupled with Nucleic Acid Test Strip Cassette.

    Science.gov (United States)

    Huo, Ya-Yun; Li, Gui-Fen; Qiu, Yan-Hong; Li, Wei-Min; Zhang, Yong-Jiang

    2017-11-23

    Prunus necrotic ringspot virus (PNRSV) is one of the most devastating viruses to Prunus spp. In this study, we developed a diagnostic system RT-CPA-NATSC, wherein reverse transcription-cross-priming amplification (RT-CPA) is coupled with nucleic acid test strip cassette (NATSC), a vertical flow (VF) visualization, for PNRSV detection. The RT-CPA-NATSC assay targets the encoding gene of the PNRSV coat protein with a limit of detection of 72 copies per reaction and no cross-reaction with the known Prunus pathogenic viruses and viroids, demonstrating high sensitivity and specificity. The reaction is performed on 60 °C and can be completed less than 90 min with the prepared template RNA. Field sample test confirmed the reliability of RT-CPA-NATSC, indicating the potential application of this simple and rapid detection method in routine test of PNRSV.

  7. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  8. Exposure to 4100K fluorescent light elicits sex specific transcriptional responses in Xiphophorus maculatus skin.

    Science.gov (United States)

    Boswell, William T; Boswell, Mikki; Walter, Dylan J; Navarro, Kaela L; Chang, Jordan; Lu, Yuan; Savage, Markita G; Shen, Jianjun; Walter, Ronald B

    2018-06-01

    It has been reported that exposure to artificial light may affect oxygen intake, heart rate, absorption of vitamins and minerals, and behavioral responses in humans. We have reported specific gene expression responses in the skin of Xiphophorus fish after exposure to ultraviolet light (UV), as well as, both broad spectrum and narrow waveband visible light. In regard to fluorescent light (FL), we have shown that male X. maculatus exposed to 4100K FL (i.e. "cool white") rapidly suppress transcription of many genes involved with DNA replication and repair, chromosomal segregation, and cell cycle progression in skin. We have also detailed sex specific transcriptional responses of Xiphophorus skin after exposure to UVB. However, investigation of gender differences in global gene expression response after exposure to 4100K FL has not been reported, despite common use of this FL source for residential, commercial, and animal facility illumination. Here, we compare RNA-Seq results analyzed to assess changes in the global transcription profiles of female and male X. maculatus skin in response to 4100K FL exposure. Our results suggest 4100K FL exposure incites a sex-biased genetic response including up-modulation of inflammation in females and down modulation of DNA repair/replication in males. In addition, we identify clusters of genes that become oppositely modulated in males and females after FL exposure that are principally involved in cell death and cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  10. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  11. Emerging functions of ribosomal proteins in gene-specific transcription and translation

    International Nuclear Information System (INIS)

    Lindstroem, Mikael S.

    2009-01-01

    Ribosomal proteins have remained highly conserved during evolution presumably reflecting often critical functions in ribosome biogenesis or mature ribosome function. In addition, several ribosomal proteins possess distinct extra-ribosomal functions in apoptosis, DNA repair and transcription. An increasing number of ribosomal proteins have been shown to modulate the trans-activation function of important regulatory proteins such as NF-κB, p53, c-Myc and nuclear receptors. Furthermore, a subset of ribosomal proteins can bind directly to untranslated regions of mRNA resulting in transcript-specific translational control outside of the ribosome itself. Collectively, these findings suggest that ribosomal proteins may have a wider functional repertoire within the cell than previously thought. The future challenge is to identify and validate these novel functions in the background of an often essential primary function in ribosome biogenesis and cell growth.

  12. Stimulation of ribosomal RNA gene promoter by transcription factor Sp1 involves active DNA demethylation by Gadd45-NER pathway.

    Science.gov (United States)

    Rajput, Pallavi; Pandey, Vijaya; Kumar, Vijay

    2016-08-01

    The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  14. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  15. A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates.

    Science.gov (United States)

    Buntru, Matthias; Vogel, Simon; Stoff, Katrin; Spiegel, Holger; Schillberg, Stefan

    2015-05-01

    Cell-free protein synthesis is a powerful method for the high-throughput production of recombinant proteins, especially proteins that are difficult to express in living cells. Here we describe a coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates (BYLs). Using a combination of fractional factorial designs and response surface models, we developed a cap-independent system that produces more than 250 μg/mL of functional enhanced yellow fluorescent protein (eYFP) and about 270 μg/mL of firefly luciferase using plasmid templates, and up to 180 μg/mL eYFP using linear templates (PCR products) in 18 h batch reactions. The BYL contains actively-translocating microsomal vesicles derived from the endoplasmic reticulum, promoting the formation of disulfide bonds, glycosylation and the cotranslational integration of membrane proteins. This was demonstrated by expressing a functional full-size antibody (∼ 150 μg/mL), the model enzyme glucose oxidase (GOx) (∼ 7.3 U/mL), and a transmembrane growth factor (∼ 25 μg/mL). Subsequent in vitro treatment of GOx with peptide-N-glycosidase F confirmed the presence of N-glycans. Our results show that the BYL can be used as a high-throughput expression and screening platform that is particularly suitable for complex and cytotoxic proteins. © 2014 Wiley Periodicals, Inc.

  16. Enhancing the Relationship Adjustment of South Asian Canadian Couples Using a Systemic-Constructivist Approach to Couple Therapy.

    Science.gov (United States)

    Ahmad, Saunia; Reid, David W

    2016-10-01

    The effectiveness of systemic-constructivist couple therapy (SCCT) in improving the relationship adjustment of South Asian Canadian couples in ways that attend to their culture was evaluated. The SCCT interventions engage partners in reflexive processing of both their own and their partner's ways of construing, and the reciprocity between these two. A core change mechanism of SCCT, couple identity ("we-ness"), that connotes the ability for thinking and experiencing relationally, was coded from verbatim transcripts of partners' within-session dialogue. As predicted, South Asian partners' relationship adjustment improved significantly from the first to final session of SCCT, and concurrent increases in each partner's couple identity mediated such improvements. The implications for considering culture and couple identity in couple therapy are discussed. Video Abstract is found in the online version of the article. © 2016 American Association for Marriage and Family Therapy.

  17. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  18. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.

    Science.gov (United States)

    Vandamme, Niels; Berx, Geert

    2014-01-01

    Compared to the overwhelming amount of literature describing how epithelial-to-mesenchymal transition (EMT)-inducing transcription factors orchestrate cellular plasticity in embryogenesis and epithelial cells, the functions of these factors in non-epithelial contexts, such as melanoma, are less clear. Melanoma is an aggressive tumor arising from melanocytes, endowed with unique features of cellular plasticity. The reversible phenotype-switching between differentiated and invasive phenotypes is increasingly appreciated as a mechanism accounting for heterogeneity in melanoma and is driven by oncogenic signaling and environmental cues. This phenotypic switch is coupled with an intriguing and somewhat counterintuitive signaling switch of EMT-inducing transcription factors. In contrast to carcinomas, different EMT-inducing transcription factors have antagonizing effects in melanoma. Balancing between these different EMT transcription factors is likely the key to successful metastatic spread of melanoma.

  19. Optimizing pressurized contact area in rotator cuff repair: the diamondback repair.

    Science.gov (United States)

    Burkhart, Stephen S; Denard, Patrick J; Obopilwe, Elifho; Mazzocca, Augustus D

    2012-02-01

    The purpose of this study was to compare tendon-bone footprint contact area over time under physiologic loads for 4 different rotator cuff repair techniques: single row (SR), triangle double row (DR), chain-link double row (CL), and diamondback double row (DBK). A supraspinatus tear was created in 28 human cadavers. Tears were fixed with 1 of 4 constructs: SR, DR, CL, or DBK. Immediate post-repair measurements of pressurized contact area were taken in neutral rotation and 0° of abduction. After a static tensile load, pressurized contact area was observed over a 160-minute period after repair. Cyclic loading was then performed. The DBK repair had the highest pressurized contact area initially, as well as the highest pressurized contact area and lowest percentage decrease in pressurized contact area after 160 minutes of testing. The DBK repair had significantly larger initial pressurized contact than CL (P = .003) and SR (P = .004) but not DR (P = .06). The DBK technique was the only technique that produced a pressurized contact area that exceeded the native footprint both at initial repair (P = .01) and after 160 minutes of testing (P = .01). DBK had a significantly larger mean pressurized contact area than all the repairs after 160 minutes of testing (P = .01). DBK had a significantly larger post-cyclic loading pressurized contact area than CL (P = .01) and SR (P = .004) but not DR (P = .07). This study showed that a diamondback repair (a modification of the transosseous repair) can significantly increase the rotator cuff pressurized contact area in comparison with other standard rotator cuff repair constructs when there is sufficient tendon mobility to perform a double-row repair without excessive tension on the repair site. The persistent pressurized contact area of a DBK repair may be desirable to enhance healing potential when there is sufficient tendon mobility to perform a double-row repair, particularly for large or massive rotator cuff tears where it is

  20. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?

    Science.gov (United States)

    Matamales, Miriam

    2012-12-19

    Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  1. Wave Propagation of Coupled Modes in the DNA Double Helix

    International Nuclear Information System (INIS)

    Tabi, Conrad B.; Mohamadou, Alidou; Kofane, Timoleon C.

    2010-06-01

    The dynamics of waves propagating along the DNA molecule is described by the coupled nonlinear Schroedinger equations. We consider both the single and the coupled nonlinear excitation modes, and we discuss their biological implications. Furthermore, the characteristics of the coupled mode solution are discussed and we show that such a solution can describe the local opening observed within the transcription and the replication phenomena. (author)

  2. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra, E-mail: rr228@georgetown.edu

    2015-05-15

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.

  3. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    International Nuclear Information System (INIS)

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra

    2015-01-01

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination

  4. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  5. Laser-activated protein solder for peripheral nerve repair

    Science.gov (United States)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  6. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS).

    Science.gov (United States)

    KhorshidAhmad, Tina; Acosta, Crystal; Cortes, Claudia; Lakowski, Ted M; Gangadaran, Surendiran; Namaka, Michael

    2016-03-01

    Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS.

  7. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  8. Theory on the Coupled Stochastic Dynamics of Transcription and Splice-Site Recognition

    Science.gov (United States)

    Murugan, Rajamanickam; Kreiman, Gabriel

    2012-01-01

    Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII) and the spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs). Here we propose a biophysically plausible initial theory of splicing that aims to explain the effects of the stochastic dynamics of snRNPs on the splicing patterns of eukaryotic genes. We consider two different ways to model the dynamics of snRNPs: pure three-dimensional diffusion and a combination of three- and one-dimensional diffusion along the emerging pre-mRNA. Our theoretical analysis shows that there exists an optimum position of the splice sites on the growing pre-mRNA at which the time required for snRNPs to find the 5′ donor site is minimized. The minimization of the overall search time is achieved mainly via the increase in non-specific interactions between the snRNPs and the growing pre-mRNA. The theory further predicts that there exists an optimum transcript length that maximizes the probabilities for exons to interact with the snRNPs. We evaluate these theoretical predictions by considering human and mouse exon microarray data as well as RNAseq data from multiple different tissues. We observe that there is a broad optimum position of splice sites on the growing pre-mRNA and an optimum transcript length, which are roughly consistent with the theoretical predictions. The theoretical and experimental analyses suggest that there is a strong interaction between the dynamics of RNAPII and the stochastic nature of snRNP search for 5′ donor splicing sites. PMID:23133354

  9. Theory on the coupled stochastic dynamics of transcription and splice-site recognition.

    Directory of Open Access Journals (Sweden)

    Rajamanickam Murugan

    Full Text Available Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII and the spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs. Here we propose a biophysically plausible initial theory of splicing that aims to explain the effects of the stochastic dynamics of snRNPs on the splicing patterns of eukaryotic genes. We consider two different ways to model the dynamics of snRNPs: pure three-dimensional diffusion and a combination of three- and one-dimensional diffusion along the emerging pre-mRNA. Our theoretical analysis shows that there exists an optimum position of the splice sites on the growing pre-mRNA at which the time required for snRNPs to find the 5' donor site is minimized. The minimization of the overall search time is achieved mainly via the increase in non-specific interactions between the snRNPs and the growing pre-mRNA. The theory further predicts that there exists an optimum transcript length that maximizes the probabilities for exons to interact with the snRNPs. We evaluate these theoretical predictions by considering human and mouse exon microarray data as well as RNAseq data from multiple different tissues. We observe that there is a broad optimum position of splice sites on the growing pre-mRNA and an optimum transcript length, which are roughly consistent with the theoretical predictions. The theoretical and experimental analyses suggest that there is a strong interaction between the dynamics of RNAPII and the stochastic nature of snRNP search for 5' donor splicing sites.

  10. RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage.

    Science.gov (United States)

    Cristini, Agnese; Groh, Matthias; Kristiansen, Maiken S; Gromak, Natalia

    2018-05-08

    R-loops comprise an RNA/DNA hybrid and displaced single-stranded DNA. They play important biological roles and are implicated in pathology. Even so, proteins recognizing these structures are largely undefined. Using affinity purification with the S9.6 antibody coupled to mass spectrometry, we defined the RNA/DNA hybrid interactome in HeLa cells. This consists of known R-loop-associated factors SRSF1, FACT, and Top1, and yet uncharacterized interactors, including helicases, RNA processing, DNA repair, and chromatin factors. We validate specific examples of these interactors and characterize their involvement in R-loop biology. A top candidate DHX9 helicase promotes R-loop suppression and transcriptional termination. DHX9 interacts with PARP1, and both proteins prevent R-loop-associated DNA damage. DHX9 and other interactome helicases are overexpressed in cancer, linking R-loop-mediated DNA damage and disease. Our RNA/DNA hybrid interactome provides a powerful resource to study R-loop biology in health and disease. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  12. Transcriptional evidence for inferred pattern of pollen tube-stigma metabolic coupling during pollination.

    Directory of Open Access Journals (Sweden)

    Xun Yue

    Full Text Available It is difficult to derive all qualitative proteomic and metabolomic experimental data in male (pollen tube and female (pistil reproductive tissues during pollination because of the limited sensitivity of current technology. In this study, genome-scale enzyme correlation network models for plants (Arabidopsis/maize were constructed by analyzing the enzymes and metabolic routes from a global perspective. Then, we developed a data-driven computational pipeline using the "guilt by association" principle to analyze the transcriptional coexpression profiles of enzymatic genes in the consecutive steps for metabolic routes in the fast-growing pollen tube and stigma during pollination. The analysis identified an inferred pattern of pollen tube-stigma ethanol coupling. When the pollen tube elongates in the transmitting tissue (TT of the pistil, this elongation triggers the mobilization of energy from glycolysis in the TT cells of the pistil. Energy-rich metabolites (ethanol are secreted that can be taken up by the pollen tube, where these metabolites are incorporated into the pollen tube's tricarboxylic acid (TCA cycle, which leads to enhanced ATP production for facilitating pollen tube growth. In addition, our analysis also provided evidence for the cooperation of kaempferol, dTDP-alpha-L-rhamnose and cell-wall-related proteins; phosphatidic-acid-mediated Ca2+ oscillations and cytoskeleton; and glutamate degradation IV for γ-aminobutyric acid (GABA signaling activation in Arabidopsis and maize stigmas to provide the signals and materials required for pollen tube tip growth. In particular, the "guilt by association" computational pipeline and the genome-scale enzyme correlation network models (GECN developed in this study was initiated with experimental "omics" data, followed by data analysis and data integration to determine correlations, and could provide a new platform to assist inachieving a deeper understanding of the co-regulation and inter

  13. Defective DNA repair mechanisms in prostate cancer: impact of olaparib

    Directory of Open Access Journals (Sweden)

    De Felice F

    2017-03-01

    Full Text Available Francesca De Felice,1 Vincenzo Tombolini,1 Francesco Marampon,2 Angela Musella,3 Claudia Marchetti3 1Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, Rome, 2Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, L’Aquila, 3Department of Gynecological and Obstetrical Sciences and Urological Sciences, “Sapienza” University of Rome, Rome, Italy Abstract: The field of prostate oncology has continued to change dramatically. It has truly become a field that is intensely linked to molecular genetic alterations, especially DNA-repair defects. Germline breast cancer 1 gene (BRCA1 and breast cancer 2 gene (BRCA2 mutations are implicated in the highest risk of prostate cancer (PC predisposition and aggressiveness. Poly adenosine diphosphate ribose polymerase (PARP proteins play a key role in DNA repair mechanisms and represent a valid target for new therapies. Olaparib is an oral PARP inhibitor that blocks DNA repair pathway and coupled with BRCA mutated-disease results in tumor cell death. In phase II clinical trials, including patients with advanced castration-resistant PC, olaparib seems to be efficacious and well tolerated. Waiting for randomized phase III trials, olaparib should be considered as a promising treatment option for PC. Keywords: prostate cancer, metastatic disease, castration resistant, BRCA, DNA-repair, PARP, olaparib

  14. HORSE SPECIES SYMPOSIUM: Use of mesenchymal stem cells in fracture repair in horses.

    Science.gov (United States)

    Govoni, K E

    2015-03-01

    Equine bone fractures are often catastrophic, potentially fatal, and costly to repair. Traditional methods of healing fractures have limited success, long recovery periods, and a high rate of reinjury. Current research in the equine industry has demonstrated that stem cell therapy is a promising novel therapy to improve fracture healing and reduce the incidence of reinjury; however, reports of success in horses have been variable and limited. Stem cells can be derived from embryonic, fetal, and adult tissue. Based on the ease of collection, opportunity for autologous cells, and proven success in other models, adipose- or bone marrow-derived mesenchymal stem cells (MSC) are often used in equine therapies. Methods for isolation, proliferation, and differentiation of MSC are well established in rodent and human models but are not well characterized in horses. There is recent evidence that equine bone marrow MSC are able to proliferate in culture for several passages in the presence of autologous and fetal bovine serum, which is important for expansion of cells. Mesenchymal stem cells have the capacity to differentiate into osteoblasts, the bone forming cells, and this complex process is regulated by a number of transcription factors including runt-related transcription factor 2 (Runx2) and osterix (Osx). However, it has not been well established if equine MSC are regulated in a similar manner. The data presented in this review support the view that equine bone marrow MSC are regulated by the same transcription factors that control the differentiation of rodent and human MSC into osteoblasts. Although stem cell therapy is promising in equine bone repair, additional research is needed to identify optimal methods for reintroduction and potential manipulations to improve their ability to form new bone.

  15. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  16. Epidermal wound repair is regulated by the planar cell polarity signaling pathway.

    Science.gov (United States)

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A; Murdoch, Jennifer N; Humbert, Patrick O; Parekh, Vishwas; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M; Jane, Stephen M

    2010-07-20

    The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair. (c) 2010 Elsevier Inc. All rights reserved.

  17. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.

    Science.gov (United States)

    Haruta, Nami; Kubota, Yoshino; Hishida, Takashi

    2012-09-01

    UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.

  18. A geometric process repair model for a repairable cold standby system with priority in use and repair

    International Nuclear Information System (INIS)

    Zhang Yuanlin; Wang Guanjun

    2009-01-01

    In this paper, a deteriorating cold standby repairable system consisting of two dissimilar components and one repairman is studied. For each component, assume that the successive working times form a decreasing geometric process while the consecutive repair times constitute an increasing geometric process, and component 1 has priority in use and repair. Under these assumptions, we consider a replacement policy N based on the number of repairs of component 1 under which the system is replaced when the number of repairs of component 1 reaches N. Our problem is to determine an optimal policy N* such that the average cost rate (i.e. the long-run average cost per unit time) of the system is minimized. The explicit equation of the average cost rate of the system is derived and the corresponding optimal replacement policy N* can be determined analytically or numerically. Finally, a numerical example with Weibull distribution is given to illustrate some theoretical results in this paper.

  19. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis

    International Nuclear Information System (INIS)

    Radman, M.

    1974-01-01

    A hypothesis is proposed according to which E. coli possesses an inducible DNA repair system. This hypothetical repair, which we call SOS repair, is manifested only following damage to DNA, and requires de novo protein synthesis. SOS repair in E. coli requires some known genetic elements: recA + , lex + and probably zab + . Mutagenesis by ultraviolet light is observed only under conditions of functional SOS repair: we therefore suspect that this is a mutation-prone repair. A number of phenomena and experiments is reviewed which at this point can best be interpreted in terms of an inducible mutagenic DNA repair system. Two recently discovered phenomena support the proposed hypothesis: existence of a mutant (tif) which, after a shift to elevated temperature, mimicks the effect of uv irradiation in regard to repair of phage lambda and uv mutagenesis, apparent activation of SOS repair by introduction into the recipient cell of damaged plasmid or Hfr DNA. Several specific predictions based on SOS repair hypothesis are presented in order to stimulate further experimental tests. (U.S.)

  20. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Gokhan Yildiz

    Full Text Available Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become "immortal" by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15

  1. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  2. Analysis for a two-dissimilar-component cold standby repairable system with repair priority

    International Nuclear Information System (INIS)

    Leung, Kit Nam Francis; Zhang Yuanlin; Lai, Kin Keung

    2011-01-01

    In this paper, a cold standby repairable system consisting of two dissimilar components and one repairman is studied. Assume that working time distributions and repair time distributions of the two components are both exponential, and Component 1 has repair priority when both components are broken down. After repair, Component 1 follows a geometric process repair while Component 2 obeys a perfect repair. Under these assumptions, using the perfect repair model, the geometric process repair model and the supplementary variable technique, we not only study some important reliability indices, but also consider a replacement policy T, under which the system is replaced when the working age of Component 1 reaches T. Our problem is to determine an optimal policy T* such that the long-run average loss per unit time (i.e. average loss rate) of the system is minimized. The explicit expression for the average loss rate of the system is derived, and the corresponding optimal replacement policy T* can be found numerically. Finally, a numerical example for replacement policy T is given to illustrate some theoretical results and the model's applicability. - Highlights: → A two-dissimilar-component cold standby system with repair priority is formulated. → The successive up/repair times of Component 1 form a decreasing/increasing geometric process. → Not only some reliability indices but also a replacement policy are studied.

  3. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  4. 55K isoform of CDK9 associates with Ku70 and is involved in DNA repair

    International Nuclear Information System (INIS)

    Liu, Hongbing; Herrmann, Christine H.; Chiang, Karen; Sung, Tzu-Ling; Moon, Sung-Hwan; Donehower, Lawrence A.; Rice, Andrew P.

    2010-01-01

    Positive elongation factor b (P-TEFb) is a cellular protein kinase that is required for RNA polymerase II (RNAP II) transcriptional elongation of protein coding genes. P-TEFb is a set of different molecular complexes, each containing CDK9 as the catalytic subunit. There are two isoforms of the CDK9 protein - the major 42 KDa CDK9 isoform and the minor 55KDa isoform that is translated from an in-frame mRNA that arises from an upstream transcriptional start site. We found that shRNA depletion of the 55K CDK9 protein in HeLa cells induces apoptosis and double-strand DNA breaks (DSBs). The levels of apoptosis and DSBs induced by the depletion were reduced by expression of a 55K CDK9 protein variant resistant to the shRNA, indicating that these phenotypes are the consequence of depletion of the 55K protein and not off-target effects. We also found that the 55K CDK9 protein, but not the 42K CDK9 protein, specifically associates with Ku70, a protein involved in DSB repair. Our findings suggest that the 55K CDK9 protein may function in repair of DNA through an association with Ku70.

  5. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  6. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  7. Flexor tendon repair: a comparative study between a knotless barbed suture repair and a traditional four-strand monofilament suture repair.

    LENUS (Irish Health Repository)

    Joyce, C W

    2014-01-01

    We compared the tensile strength of a novel knotless barbed suture method with a traditional four-strand Adelaide technique for flexor tendon repairs. Forty fresh porcine flexor tendons were transected and randomly assigned to one of the repair groups before repair. Biomechanical testing demonstrated that the tensile strengths between both tendon groups were very similar. However, less force was required to create a 2 mm gap in the four-strand repair method compared with the knotless barbed technique. There was a significant reduction in the cross-sectional area in the barbed suture group after repair compared with the Adelaide group. This would create better gliding within the pulley system in vivo and could decrease gapping and tendon rupture.

  8. Development of bonded composite doublers for the repair of oil recovery equipment.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, David W.; Rackow, Kirk A.

    2005-06-01

    structures. This study developed and proved an optimum field installation process using specific mechanical and chemical surface preparation techniques coupled with unique, in-situ heating methods. In addition, a comprehensive performance assessment of composite doubler repairs was completed to establish the viability of this technology for large, steel structures. The factors influencing the durability of composite patches in severe field environments were evaluated along with related laminate design issues.

  9. Skeletal muscle repair in a mouse model of nemaline myopathy.

    Science.gov (United States)

    Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H

    2006-09-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.

  10. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  11. IMPROVING TRADITIONAL BUILDING REPAIR CONSTRUCTION QUALITY USING HISTORIC BUILDING INFORMATION MODELING CONCEPT

    Directory of Open Access Journals (Sweden)

    T. C. Wu

    2013-07-01

    Full Text Available In addition to the repair construction project following the repair principles contemplated by heritage experts, the construction process should be recorded and measured at any time for monitoring to ensure the quality of repair. The conventional construction record methods mostly depend on the localized shooting of 2D digital images coupled with text and table for illustration to achieve the purpose of monitoring. Such methods cannot fully and comprehensively record the 3D spatial relationships in the real world. Therefore, the construction records of traditional buildings are very important but cannot function due to technical limitations. This study applied the 3D laser scanning technology to establish a 3D point cloud model for the repair construction of historical buildings. It also broke down the detailed components of the 3D point cloud model by using the concept of the historic building information modeling, and established the 3D models of various components and their attribute data in the 3DGIS platform database. In the construction process, according to the time of completion of each stage as developed on the construction project, this study conducted the 3D laser scanning and database establishment for each stage, also applied 3DGIS spatial information and attribute information comparison and analysis to propose the analysis of differences in completion of various stages for improving the traditional building repair construction quality. This method helps to improve the quality of repair construction work of tangible cultural assets of the world. The established 3DGIS platform can be used as a power tool for subsequent management and maintenance.

  12. Satisfaction, function and repair integrity after arthroscopic versus mini-open rotator cuff repair.

    Science.gov (United States)

    Barnes, L A Fink; Kim, H M; Caldwell, J-M; Buza, J; Ahmad, C S; Bigliani, L U; Levine, W N

    2017-02-01

    Advances in arthroscopic techniques for rotator cuff repair have made the mini-open approach less popular. However, the mini-open approach remains an important technique for repair for many surgeons. The aims of this study were to compare the integrity of the repair, the function of the shoulder and satisfaction post-operatively using these two techniques in patients aged > 50 years. We identified 22 patients treated with mini-open and 128 patients treated with arthroscopic rotator cuff repair of July 2007 and June 2011. The mean follow-up was two years (1 to 5). Outcome was assessed using the American Shoulder and Elbow Surgeons (ASES) and Simple Shoulder Test (SST) scores, and satisfaction. The integrity of the repair was assessed using ultrasonography. A power analysis ensured sufficient enrolment. There was no statistically significant difference between the age, function, satisfaction, or pain scores (p > 0.05) of the two groups. The integrity of the repair and the mean SST scores were significantly better in the mini-open group (91% of mini-open repairs were intact versus 60% of arthroscopic repairs, p = 0.023; mean SST score 10.9 (standard deviation (sd) 1.3) in the mini-open group; 8.9 (sd 3.5) in arthroscopic group; p = 0.003). The ASES scores were also higher in the mini-open group (mean ASES score 91.0 (sd 10.5) in mini-open group; mean 82.70 (sd 19.8) in the arthroscopic group; p = 0.048). The integrity of the repair and function of the shoulder were better after a mini-open repair than after arthroscopic repair of a rotator cuff tear in these patients. The functional difference did not translate into a difference in satisfaction. Mini-open rotator cuff repair remains a useful technique despite advances in arthroscopy. Cite this article: Bone Joint J 2017;99-B:245-9. ©2017 The British Editorial Society of Bone & Joint Surgery.

  13. Molecular cloning of transcripts induced by UV-radiation in rodent cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Mitchell, J.B.

    1987-01-01

    Several inducible DNA repair genes have been well characterized in bacteria. In eukaryotes including mammalian cells, there is increasing evidence that similar events may occur. Recently, the authors have shown that hybridization subtraction can be used to enrich for sequences induced only several fold by a particular cell treatment such as heat shock. Chinese hamster V79 cells were UV-irradiated with 17 Jm/sup -2/ and cDNA was synthesized from the polyadenylated (poly A) RNA. This ''UV'' cDNA was hybridized with a 3 fold excess of polyA RNA from unirradiated cells and the nonhybridizing cDNA was isolated. With this approach, UV-induced sequences were enriched over 20 fold. This enriched cDNA was cloned into a high copy number plasmid and a cDNA library was constructed. By RNA dot blot and northern analysis, 42 clones from this library were found to represent transcripts induced 3 to 25 fold by UV. The most common isolates were found to be metallothionein transcripts by DNA sequencing. The metallothionein transcripts were found to be induced 10 to 25 fold by UV with maximum induction at 4-8 h after 10 Jm/sup -2/. A similar approach was also used with a Chinese hamster ovary line which does not express metallothionein and multiple clones were isolated which represented transcripts induced 3-15 fold by UV. Except for the metallothionein clones, the other Chinese hamster cDNA clones have not been identified, but it is probable that the protein products of at least some of these transcripts play a role in the cellular response to UV damage

  14. Peripherally Inserted Central Catheters in Pediatric Patients: To Repair or Not Repair

    International Nuclear Information System (INIS)

    Gnannt, Ralph; Patel, Premal; Temple, Michael; Al Brashdi, Yahya; Amaral, Joao; Parra, Dimitri; Rea, Vanessa; Stephens, Derek; Connolly, Bairbre

    2017-01-01

    IntroductionPreservation of venous access in children is a major concern in pediatric interventional radiology. If a peripherally inserted central catheter (PICC) breaks, there are two options: repair the line with a repair kit or exchange the line over a wire in the interventional suite. The purpose of this study is to assess the outcome of PICC repairs in children and to compare these with the outcomes of PICC exchange.Materials and MethodsThis is a single-center, retrospective study of central line-associated bloodstream infection (CLABSI) following management of externally broken PICCs (2010–2014). The occurrence of CLABSI within 30 days after repair (Group A) or exchange (Group B) of a line was analyzed, as well as PICCs exchanged following an initial and failed repair.ResultsA total of 235 PICC breaks were included in the study, of which 161 were repaired, and 116 of whom were successful (68%, Group A). No repair was performed in 74 PICCs—55/74 of these were exchanged over a wire (74%, Group B), and 19/74 lines were removed. The 30 days post-repair CLABSI rate (Group A) was 2.0 infections per 1000 catheter days, and the calculated risk was 4.3%. In comparison the 30 days post-exchange CLABSI rate (Group B) was 4.0 per 1000 catheter days and the calculated risk 10.9%. This difference was significant when adjusted for antibiotic use (OR 3.87; 95% CI 1.07–14.0, p = 0.039).ConclusionThe results of this study support repairing a broken PICC instead of removing or replacing the line.

  15. Peripherally Inserted Central Catheters in Pediatric Patients: To Repair or Not Repair

    Energy Technology Data Exchange (ETDEWEB)

    Gnannt, Ralph, E-mail: ralph.gnannt@usz.ch; Patel, Premal; Temple, Michael; Al Brashdi, Yahya; Amaral, Joao; Parra, Dimitri; Rea, Vanessa [University of Toronto, Image Guided Therapy, Diagnostic Imaging, The Hospital for Sick Children (Canada); Stephens, Derek [University of Toronto, Child Health Evaluative Sciences (Canada); Connolly, Bairbre [University of Toronto, Image Guided Therapy, Diagnostic Imaging, The Hospital for Sick Children (Canada)

    2017-06-15

    IntroductionPreservation of venous access in children is a major concern in pediatric interventional radiology. If a peripherally inserted central catheter (PICC) breaks, there are two options: repair the line with a repair kit or exchange the line over a wire in the interventional suite. The purpose of this study is to assess the outcome of PICC repairs in children and to compare these with the outcomes of PICC exchange.Materials and MethodsThis is a single-center, retrospective study of central line-associated bloodstream infection (CLABSI) following management of externally broken PICCs (2010–2014). The occurrence of CLABSI within 30 days after repair (Group A) or exchange (Group B) of a line was analyzed, as well as PICCs exchanged following an initial and failed repair.ResultsA total of 235 PICC breaks were included in the study, of which 161 were repaired, and 116 of whom were successful (68%, Group A). No repair was performed in 74 PICCs—55/74 of these were exchanged over a wire (74%, Group B), and 19/74 lines were removed. The 30 days post-repair CLABSI rate (Group A) was 2.0 infections per 1000 catheter days, and the calculated risk was 4.3%. In comparison the 30 days post-exchange CLABSI rate (Group B) was 4.0 per 1000 catheter days and the calculated risk 10.9%. This difference was significant when adjusted for antibiotic use (OR 3.87; 95% CI 1.07–14.0, p = 0.039).ConclusionThe results of this study support repairing a broken PICC instead of removing or replacing the line.

  16. LIN28 phosphorylation by MAPK/ERK couples signaling to the post-transcriptional control of pluripotency

    Science.gov (United States)

    Tsanov, Kaloyan M.; Pearson, Daniel S.; Wu, Zhaoting; Han, Areum; Triboulet, Robinson; Seligson, Marc T.; Powers, John T.; Osborne, Jihan K.; Kane, Susan; Gygi, Steven P.; Gregory, Richard I.; Daley, George Q.

    2016-01-01

    Signaling and post-transcriptional gene control are both critical for the regulation of pluripotency1,2, yet how they are integrated to influence cell identity remains poorly understood. LIN28 (also known as LIN28A), a highly conserved RNA-binding protein (RBP), has emerged as a central post-transcriptional regulator of cell fate through blockade of let-7 microRNA (miRNA) biogenesis and direct modulation of mRNA translation3. Here we show that LIN28 is phosphorylated by MAPK/ERK in pluripotent stem cells (PSCs), which increases its levels via post-translational stabilization. LIN28 phosphorylation had little impact on let-7 but enhanced LIN28’s effect on its direct mRNA targets, revealing a mechanism that uncouples LIN28’s let-7-dependent and independent activities. We have linked this mechanism to the induction of pluripotency by somatic cell reprogramming and the transition from naïve to primed pluripotency. Collectively, our findings indicate that MAPK/ERK directly impacts LIN28, defining an axis that connects signaling, post-transcriptional gene control, and cell fate regulation. PMID:27992407

  17. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    Science.gov (United States)

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  18. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin

    2015-01-01

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  19. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun

    2015-09-27

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  20. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  1. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes.

    Science.gov (United States)

    Chang, Wing Y; Andrews, Joseph; Carter, David E; Dagnino, Lina

    2006-08-01

    E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.

  2. Improvement of adhesion performance of mortar-repair interface with inducing crack path into repair

    Directory of Open Access Journals (Sweden)

    A. Satoh

    2015-10-01

    Full Text Available The most important performance for repair materials is adhesion to the substrate. The authors experimentally find out that high modulus fine aggregates in repair material enhance strength of it as well as the strength of the interface repaired with it, compared to the ordinary repair without fine aggregates. This paper elaborates the mechanisms for that with fractographic observation and FEM analysis based on the results of experiment. Also the authors discuss the ways for enhancing the strength and ductility of the repaired mortar

  3. Radiobiological significance of DNA repair

    International Nuclear Information System (INIS)

    Kuzin, A.M.

    1978-01-01

    A short outline is given on the history of the problem relating to the repair of radiation injuries, specifically its molecular mechanisms. The most urgent problems which currently confront the researchers are noted. This is a further study on the role of DNA repair in post-radiation recovery, search for ways to activate and suppress DNA repair, investigations into the activity balance of various repair enzymes as well as the problem of errors in the structure of repairing DNA. An important role is attached to the investigations of DNA repair in solving a number of practical problems

  4. E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair.

    Science.gov (United States)

    Singh, Randeep K; Dagnino, Lina

    2016-05-03

    Nucleotide excision repair (NER) is a major mechanism for removal of DNA lesions induced by exposure to UV radiation in the epidermis. Recognition of damaged DNA sites is the initial step in their repair, and requires multiprotein complexes that contain XPC and hHR23 proteins, or their orthologues. A variety of transcription factors are also involved in NER, including E2F1. In epidermal keratinocytes, UV exposure induces E2F1 phosphorylation, which allows it to recruit various NER factors to sites of DNA damage. However, the relationship between E2F1 and hHR23 proteins vis-à-vis NER has remained unexplored. We now show that E2F1 and hHR23 proteins can interact, and this interaction stabilizes E2F1, inhibiting its proteasomal degradation. Reciprocally, E2F1 regulates hHR23A subcellular localization, recruiting it to sites of DNA photodamage. As a result, E2F1 and hHR23A enhance DNA repair following exposure to UV radiation, contributing to genomic stability in the epidermis.

  5. The G-quadruplex DNA stabilizing drug pyridostatin promotes DNA damage and downregulates transcription of Brca1 in neurons.

    Science.gov (United States)

    Moruno-Manchon, Jose F; Koellhoffer, Edward C; Gopakumar, Jayakrishnan; Hambarde, Shashank; Kim, Nayun; McCullough, Louise D; Tsvetkov, Andrey S

    2017-09-12

    The G-quadruplex is a non-canonical DNA secondary structure formed by four DNA strands containing multiple runs of guanines. G-quadruplexes play important roles in DNA recombination, replication, telomere maintenance, and regulation of transcription. Small molecules that stabilize the G-quadruplexes alter gene expression in cancer cells. Here, we hypothesized that the G-quadruplexes regulate transcription in neurons. We discovered that pyridostatin, a small molecule that specifically stabilizes G-quadruplex DNA complexes, induced neurotoxicity and promoted the formation of DNA double-strand breaks (DSBs) in cultured neurons. We also found that pyridostatin downregulated transcription of the Brca1 gene, a gene that is critical for DSB repair. Importantly, in an in vitro gel shift assay, we discovered that an antibody specific to the G-quadruplex structure binds to a synthetic oligonucleotide, which corresponds to the first putative G-quadruplex in the Brca1 gene promoter. Our results suggest that the G-quadruplex complexes regulate transcription in neurons. Studying the G-quadruplexes could represent a new avenue for neurodegeneration and brain aging research.

  6. DNA repair in neurons: So if they don't divide what's to repair?

    International Nuclear Information System (INIS)

    Fishel, Melissa L.; Vasko, Michael R.; Kelley, Mark R.

    2007-01-01

    Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects

  7. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    Science.gov (United States)

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  8. Reward optimization of a repairable system

    International Nuclear Information System (INIS)

    Castro, I.T.; Perez-Ocon, R.

    2006-01-01

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures

  9. Reward optimization of a repairable system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, I.T. [Departamento de Matematicas, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad, s/n. 10071 Caceres (Spain)]. E-mail: inmatorres@unex.es; Perez-Ocon, R. [Departamento de Estadistica e Investigacion Operativa, Facultad de Ciencias, Universidad de Granada, Avenida de Severo Ochoa, s/n. 18071 Granada (Spain)]. E-mail: rperezo@ugr.es

    2006-03-15

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures.

  10. DNA Mismatch Repair Deficiency Promotes Genomic Instability in a Subset of Papillary Thyroid Cancers.

    Science.gov (United States)

    Javid, Mahsa; Sasanakietkul, Thanyawat; Nicolson, Norman G; Gibson, Courtney E; Callender, Glenda G; Korah, Reju; Carling, Tobias

    2018-02-01

    Efficient DNA damage repair by MutL-homolog DNA mismatch repair (MMR) enzymes, MLH1, MLH3, PMS1 and PMS2, are required to maintain thyrocyte genomic integrity. We hypothesized that persistent oxidative stress and consequent transcriptional dysregulation observed in thyroid follicles will lead to MMR deficiency and potentiate papillary thyroid tumorigenesis. MMR gene expression was analyzed by targeted microarray in 18 papillary thyroid cancer (PTC), 9 paracarcinoma normal thyroid (PCNT) and 10 normal thyroid (NT) samples. The findings were validated by qRT-PCR, and in follicular thyroid cancers (FTC) and follicular thyroid adenomas (FTA) for comparison. FOXO transcription factor expression was also analyzed. Protein expression was assessed by immunohistochemistry. Genomic integrity was evaluated by whole-exome sequencing-derived read-depth analysis and Mann-Whitney U test. Clinical correlations were assessed using Fisher's exact and t tests. Microarray and qRT-PCR revealed reduced expression of all four MMR genes in PTC compared with PCNT and of PMS2 compared with NT. FTC and FTA showed upregulation in MLH1, MLH3 and PMS2. PMS2 protein expression correlated with the mRNA expression pattern. FOXO1 showed lower expression in PMS2-deficient PTCs (log2-fold change -1.72 vs. -0.55, U = 11, p clinical characteristics. MMR deficiency, potentially promoted by FOXO1 suppression, may explain the etiology for PTC development in some patients. FTC and FTA retain MMR activity and are likely caused by a different tumorigenic pathway.

  11. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation

    DEFF Research Database (Denmark)

    Csikász-Nagy, Attila; Kapuy, Orsolya; Tóth, Attila

    2009-01-01

    of these EPs. From genome-scale data sets of budding yeast, we identify 126 EPs that are regulated by Cdk1 both through direct phosphorylation of the EP and through phosphorylation of the transcription factors that control expression of the EP, so that each of these EPs is regulated by a feed-forward loop (FFL......) from Cdk1. By mathematical modelling, we show that such FFLs can activate EPs at different phases of the cell cycle depending of the effective signs (+ or -) of the regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly as our models predict. The signal...

  12. Retinal detachment repair

    Science.gov (United States)

    ... medicines Problems breathing You may not recover full vision. ... detachments can be repaired. Failure to repair the retina always results in loss of vision to some degree. After surgery, the quality of ...

  13. A new incomplete-repair model based on a ''reciprocal-time'' pattern of sublethal damage repair

    International Nuclear Information System (INIS)

    Dale, R.G.; Fowler, J.F.

    1999-01-01

    A radiobiological model for closely spaced non-instantaneous radiation fractions is presented, based on the premise that the time process of sublethal damage (SLD) repair is 'reciprocal-time' (second order), rather than exponential (first order), in form. The initial clinical implications of such an incomplete-repair model are assessed. A previously derived linear-quadratic-based model was revised to take account of the possibility that SLD may repair with time such that the fraction of an element of initial damage remaining at time t is given as 1/(1+zt), where z is an appropriate rate constant; z is the reciprocal of the first half-time (τ) of repair. The general equation so derived for incomplete repair is applicable to all types of radiotherapy delivered at high, low and medium dose-rate in fractions delivered at regular time intervals. The model allows both the fraction duration and interfraction intervals to vary between zero and infinity. For any given value of z, reciprocal repair is associated with an apparent 'slowing-down' in the SLD repair rate as treatment proceeds. The instantaneous repair rates are not directly governed by total dose or dose per fraction, but are influenced by the treatment duration and individual fraction duration. Instantaneous repair rates of SLD appear to be slower towards the end of a continuous treatment, and are also slower following 'long' fractions than they are following 'short' fractions. The new model, with its single repair-rate parameter, is shown to be capable of providing a degree of quantitative explanation for some enigmas that have been encountered in clinical studies. A single-component reciprocal repair process provides an alternative explanation for the apparent existence of a range of repair rates in human tissues, and which have hitherto been explained by postulating the existence of a multi-exponential repair process. The build-up of SLD over extended treatments is greater than would be inferred using a

  14. NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation

    Directory of Open Access Journals (Sweden)

    Labhart Paul

    2007-05-01

    Full Text Available Abstract Background p53 is recognized as a critical regulator of the cell cycle and apoptosis. Mounting evidence also suggests a role for p53 in differentiation of cells including neuronal precursors. We studied the transcriptional role of p53 during nerve growth factor-induced differentiation of the PC12 line into neuron-like cells. We hypothesized that p53 contributed to PC12 differentiation through the regulation of gene targets distinct from its known transcriptional targets for apoptosis or DNA repair. Results Using a genome-wide chromatin immunoprecipitation cloning technique, we identified and validated 14 novel p53-regulated genes following NGF treatment. The data show p53 protein was transcriptionally activated and contributed to NGF-mediated neurite outgrowth during differentiation of PC12 cells. Furthermore, we describe stimulus-specific regulation of a subset of these target genes by p53. The most salient differentiation-relevant target genes included wnt7b involved in dendritic extension and the tfcp2l4/grhl3 grainyhead homolog implicated in ectodermal development. Additional targets included brk, sdk2, sesn3, txnl2, dusp5, pon3, lect1, pkcbpb15 and other genes. Conclusion Within the PC12 neuronal context, putative p53-occupied genomic loci spanned the entire Rattus norvegicus genome upon NGF treatment. We conclude that receptor-mediated p53 transcriptional activity is involved in PC12 differentiation and may suggest a contributory role for p53 in neuronal development.

  15. CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method

    KAUST Repository

    Zhou, Jian; Li, Zhixu; Gu, Binbin; Xie, Qing; Zhu, Jia; Zhang, Xiangliang; Li, Guoliang

    2016-01-01

    turn to use the power of crowd in data repairing, but the crowd power has its own drawbacks such as high human intervention cost and inevitable low efficiency. In this paper, we propose a crowd-aided interactive data repairing method which takes

  16. Repair of model compounds of photoinduced lesions in DNA. Electrochemical approaches; Reparation de modeles de lesions photoinduites de l'ADN. Approches electrochimiques

    Energy Technology Data Exchange (ETDEWEB)

    Boussicault, F

    2006-09-15

    The goal of this work is to better understand the repair mechanism of photoinduced lesions in DNA (cyclobutane dimers and pyrimidine (6-4) pyrimidone adducts) by photolyase redox enzymes, using tools and concepts of molecular electrochemistry. Thanks to the study of model compounds of cyclobutane lesions by cyclic voltametry, we have been able to mimic the key step of the enzymatic repair (dissociative electron transfer) and to monitor the repair of model compounds by Escherichia coli DNA photolyase. From these results, we have discussed the repair mechanism, especially the stepwise or concerted character of the process. Repair mechanism of (6-4) adducts is not known now, but a possible pathway implies an electron transfer coupled to the cleavage of two bonds in the closed form of the lesions (oxetanes). Voltammetric study of reduction and oxidation of model oxetanes and their repair by E. coli DNA photolyase gave some experimental evidence confirming the proposed mechanism and allowing a better understanding of it. (author)

  17. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  19. A homozygote splice site PMS2 mutation as cause of Turcot syndrome gives rise to two different abnormal transcripts.

    Science.gov (United States)

    Sjursen, Wenche; Bjørnevoll, Inga; Engebretsen, Lars F; Fjelland, Kristine; Halvorsen, Tore; Myrvold, Helge E

    2009-01-01

    Turcot syndrome is a rare, inherited disease predisposing of tumours in the central nerve system and in the colorectal system. This report describes a Turcot patient with an extraordinary clinical history. The patient is still alive at the age of 43. She was operated at the age of 10 by brain tumour and at the age of 16 by colorectal cancer. She has since then been treated for multiple cancers (gastrointestinal, endometrial, basal cell carcinomas), and removal of adenomatous polyps at several occasions. The aim of this work was to investigate if there was any specific genotype that explains her remarkable clinical history. Microsatellite instability and immunohistochemistry analysis for four DNA mismatch repair proteins were performed. DNA mutation analysis was done for genes involved in polyposis and mismatch repair by denaturing high performance liquid chromatography and sequencing. cDNA analysis was carried out for the mismatch repair gene PMS2. The patients genotype was found to be a homozygous splice site mutation in the PMS2 gene, c.989-1Gtranscripts, not one as expected. The patient's long time survival may in part be explained by meticulous follow up by health care professionals. The other importing factor is probably the nature of here genotype. cDNA analysis showed that the homozygous mutation led to two abnormal transcripts, of which one is perhaps less detrimental. Thus cDNA analysis is of prime importance for the full evaluation of the effect of putative splicing mutations.

  20. Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells.

    Science.gov (United States)

    Youngblood, Ben; Wherry, E John; Ahmed, Rafi

    2012-01-01

    Failure to control viral infections such as HIV results in T-cell receptor (TCR) and inhibitory receptor driven exhaustion of antigen-specific T cells. Persistent signaling by these receptors during chronic viral infection sculpts the transcriptional regulatory programs of virus-specific T cells. The resulting gene expression profile is tailored to temper the potentially damaging effector functions of cytotoxic T cells and adapt them to an antigen-rich and inflammation-rich environment. Here we review recent studies investigating mechanisms of transcriptional regulation of effector, functional memory, and exhausted T-cell functions during acute versus chronic infections. Patterns of gene expression in virus-specific CD8 T cells are a result of a combination of pro and inhibitory signals from antigen presentation (TCR-mediated) and co-inhibitory receptor ligation (PD-1, 2B4). Further, memory-specific transcriptional regulation of 2B4 expression and signaling impose a self-limiting secondary effector response to a prolonged viral infection. Additionally, differentiation of functional memory CD8 T cells is coupled with acquisition of a repressive epigenetic program for PD-1 expression. However, chronic infection provides a signal that blocks the acquisition of these epigenetic modifications reinforcing the suppression of cytotoxic lymphocyte (CTL) functions in exhausted cells. Current findings suggest that the mechanism(s) that delineate functional memory versus exhaustion are coupled with acquisition of transcriptional programs at the effector stage of differentiation, reinforced by cessation or persistence of TCR signaling.

  1. 49 CFR 1242.42 - Administration, repair and maintenance, machinery repair, equipment damaged, dismantling retired...

    Science.gov (United States)

    2010-10-01

    ... repair, equipment damaged, dismantling retired property, fringe benefits, other casualties and insurance, lease rentals, joint facility rents, other rents, depreciation, joint facility, repairs billed to others... maintenance, machinery repair, equipment damaged, dismantling retired property, fringe benefits, other...

  2. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  3. PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, R

    2011-06-28

    Background: Transcription factors often play important roles in tumourigenesis. Members of the PEA3 subfamily of ETS-domain transcription factors fulfil such a role and have been associated with tumour metastasis in several different cancers. Moreover, the activity of the PEA3 subfamily transcription factors is potentiated by Ras-ERK pathway signalling, which is itself often deregulated in tumour cells.\\r\

  4. Repair mechanisms and exposure standards

    International Nuclear Information System (INIS)

    Mills, W.A.

    1978-01-01

    The following topics are discussed; public policy for setting radiation standards; use of linear, nonthreshold theory in setting radiation standards; dose-rate dependence; occupational exposure to radiation; radon inhalation from radium in the soil in the vicinity of the phosphate industry; relation of repair mechanisms for cell survival to cancer induction; application of information on genetic repair to humans and to cancer induction; importance of repair processes in radiation protection standards; corrective factors for repair processes; relation of repair processes to age, sex, and other factors; and population distribution in radiosensitivity

  5. Laparoscopic repair of postoperative perineal hernia.

    LENUS (Irish Health Repository)

    Ryan, Stephen

    2010-01-01

    Perineal hernias are infrequent complications following abdominoperineal operations. Various approaches have been described for repair of perineal hernias including open transabdominal, transperineal or combined abdominoperineal repairs. The use of laparoscopic transabdominal repair of perineal hernias is not well-described. We present a case report demonstrating the benefits of laparoscopic repair of perineal hernia following previous laparoscopic abdominoperineal resection (APR) using a nonabsorbable mesh to repair the defect. We have demonstrated that the use of laparoscopy with repair of the pelvic floor defect using a non absorbable synthetic mesh offers an excellent alternative with many potential advantages over open transabdominal and transperineal repairs.

  6. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  7. Transfer of Chinese hamster DNA repair gene(s) into repair-deficient human cells (Xeroderma pigmentosum)

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1985-01-01

    Transfer of repair genes by DNA transfection into repair-deficient Xeroderma pigmentosum (XP) cells has thus far been unsuccessful, presenting an obstacle to cloning XP genes. The authors chose an indirect route to transfer repair genes in chromosome fragments. DNA repair-competent (UV resistant) hybrid cell lines were established by PEG-mediated fusions of DNA repair-deficient (UV sensitive) human fibroblasts (XP12RO) with wild type Chinese hamster (CHO) cells (AA8). CHO cells were exposed to 5 Krad X-rays prior to fusions, predisposing hybrid cells to lose CHO chromosome fragments preferentially. Repair-competent hybrids were selected by periodic exposures to UV light. Secondary and tertiary hybrid cell lines were developed by fusion of X-irradiated hybrids to XP12RO. The hybrid cell lines exhibit resistance to UV that is comparable to that of CHO cells and they are proficient at repair replication after UV exposure. Whole cell DNA-DNA hybridizations indicate that the hybrids have greater homology to CHO DNA than is evident between XP12RO and CHO. These observations indicate that CHO DNA sequences which can function in repair of UV-damaged DNA in human cells have been transferred into the genome of the repair-deficient XP12RO cells

  8. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists

    Directory of Open Access Journals (Sweden)

    Matheus Sanitá Lima

    2017-11-01

    Full Text Available Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb, indicating that most of the organelle DNA—coding and noncoding—is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells.

  9. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice

    OpenAIRE

    Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether slee...

  10. Rickettsia conorii transcriptional response within inoculation eschar.

    Directory of Open Access Journals (Sweden)

    Patricia Renesto

    Full Text Available BACKGROUND: Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii. Given this, analysis of the survival strategies used by the bacterium within infected skin is critical for our understanding of rickettsiosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first genome-wide analysis of R. conorii gene expression from infected human skin biopsies. Our data showed that R. conorii exhibited a striking transcript signature that is remarkably conserved across patients, regardless of genotype. The expression profiles obtained using custom Agilent microarrays were validated by quantitative RT-PCR. Within eschars, the amount of detected R. conorii transcripts was of 55%, this value being of 74% for bacteria grown in Vero cells. In such infected host tissues, approximately 15% (n = 211 of the total predicted R. conorii ORFs appeared differentially expressed compared to bacteria grown in standard laboratory conditions. These genes are mostly down-regulated and encode proteins essential for bacterial replication. Some of the strategies displayed by rickettsiae to overcome the host defense barriers, thus avoiding killing, were also pointed out. The observed up-regulation of rickettsial genes associated with DNA repair is likely to correspond to a DNA-damaging agent enriched environment generated by the host cells to eradicate the pathogens. Survival of R. conorii within eschars also involves adaptation to osmotic stress, changes in cell surface proteins and up-regulation of some virulence factors. Interestingly, in contrast to down-regulated transcripts, we noticed that up-regulated ones rather exhibit a small nucleotide size, most of them being exclusive for the spotted fever group rickettsiae. CONCLUSION/SIGNIFICANCE: Because eschar is a site for rickettsial

  11. Resistance to minor groove binders.

    Science.gov (United States)

    Colmegna, Benedetta; Uboldi, Sarah; Erba, Eugenio; D'Incalci, Maurizio

    2014-03-01

    In this paper multiple resistance mechanisms to minor groove binders (MGBs) are overviewed. MGBs with antitumor properties are natural products or their derivatives and, as expected, they are all substrates of P-glycoprotein (P-gp). However, a moderate expression of P-gp does not appear to reduce the sensitivity to trabectedin, the only MGB so far approved for clinical use. Resistance to this drug is often related to transcriptional mechanisms and to DNA repair pathways, particularly defects in transcription-coupled nucleotide excision repair (TC-NER). Therefore tumors resistant to trabectedin may become hypersensitive to UV rays and other DNA damaging agents acting in the major groove, such as Platinum (Pt) complexes. If this is confirmed in clinic, that will provide the rationale to combine trabectedin sequentially with Pt derivates.

  12. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair.

    Science.gov (United States)

    Knipscheer, Puck; Räschle, Markus; Smogorzewska, Agata; Enoiu, Milica; Ho, The Vinh; Schärer, Orlando D; Elledge, Stephen J; Walter, Johannes C

    2009-12-18

    Fanconi anemia is a human cancer predisposition syndrome caused by mutations in 13 Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand cross-links (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. Using a cell-free system, we showed that FANCI-FANCD2 is required for replication-coupled ICL repair in S phase. Removal of FANCD2 from extracts inhibits both nucleolytic incisions near the ICL and translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S-phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised.

  13. Parental Decisional Regret after Primary Distal Hypospadias Repair: Family and Surgery Variables, and Repair Outcomes.

    Science.gov (United States)

    Ghidini, Filippo; Sekulovic, Sasa; Castagnetti, Marco

    2016-03-01

    Decisional regret is defined as distress after making a health care choice and can be an issue for parents electing distal hypospadias repair for their sons. We assessed the influence on decisional regret of variables related to the family, surgery and outcomes. Charts for 372 patients undergoing primary distal hypospadias repair between 2005 and 2012 were reviewed, and validated questionnaires, including the Decisional Regret Scale, Pediatric Penile Perception Score and Dysfunctional Voiding and Incontinence Scoring System, were administered to parents. Data were available for 172 of 372 families (response rate 46.2%). Of 323 parents 128 (39.6%) presented with moderately strong decisional regret, with good agreement within couples. Predictors of decisional regret included intermediate parental educational level (OR 3.19, 95% CI 1.52-6.69), patient not being the first born (OR 2.01, 95% CI 1.07-3.78), family history of hypospadias (OR 4.42, 95% CI 1.96-9.97), initial desire to avoid surgery (OR 2.07, 95% CI 1.04-4.12), younger age at followup (OR 0.81, 95% CI 0.72-0.91), presence of lower urinary tract symptoms (OR 4.92, 95% CI 1.53-15.81) and lower Pediatric Penile Perception Score (OR 0.86, 95% CI 0.75-0.99). Decisional regret was unrelated to parental desire to avoid circumcision, surgical variables, development of complications and duration of followup. Decisional regret is a problem in a significant proportion of parents electing distal hypospadias repair for their sons. In our experience family variables seemed to be predictors of decisional regret, while surgical variables did not. Predictors of decisional regret included worse parental perception of penile appearance and the presence of lower urinary tract symptoms. However, the latter could be unrelated to surgery. Irrespective of the duration of followup, decisional regret seems decreased in parents of older patients. Copyright © 2016 American Urological Association Education and Research, Inc

  14. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  15. A role for the malignant brain tumour (MBT domain protein LIN-61 in DNA double-strand break repair by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Nicholas M Johnson

    Full Text Available Malignant brain tumour (MBT domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR for the repair of DNA double-strand breaks (DSBs. lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.

  16. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein coding...... regions, the map of transcripts is very complex due to small transcripts from the flanking ends of the transcription unit, the use of multiple start and stop sites for the main transcript, production of multiple functional RNA molecules from the same primary transcript, and RNA molecules made...... by independent transcription from within the unit. In genomic regions separating those that encode proteins or highly abundant RNA molecules with known function, transcripts are generally of low abundance and short-lived. In most of these cases, it is unclear to what extent a function is related to transcription...

  17. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    International Nuclear Information System (INIS)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng

    2001-01-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  18. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    Energy Technology Data Exchange (ETDEWEB)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng [National Yang Ming Univ., Taipei, Taiwan (China). Inst. of Radiological Sciences] (and others)

    2001-12-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  19. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    Science.gov (United States)

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  20. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  1. DNA repair in Mycobacterium tuberculosis revisited.

    Science.gov (United States)

    Dos Vultos, Tiago; Mestre, Olga; Tonjum, Tone; Gicquel, Brigitte

    2009-05-01

    Our understanding of Mycobacterium tuberculosis DNA repair mechanisms is still poor compared with that of other bacterial organisms. However, the publication of the first complete M. tuberculosis genome sequence 10 years ago boosted the study of DNA repair systems in this organism. A first step in the elucidation of M. tuberculosis DNA repair mechanisms was taken by Mizrahi and Andersen, who identified homologs of genes involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes required for nucleotide excision repair, base excision repair, recombination, and SOS repair and mutagenesis were identified. Notably, no homologs of genes involved in mismatch repair were identified. Novel characteristics of the M. tuberculosis DNA repair machinery have been found over the last decade, such as nonhomologous end joining, the presence of Mpg, ERCC3 and Hlr - proteins previously presumed to be produced exclusively in mammalian cells - and the recently discovered bifunctional dCTP deaminase:dUTPase. The study of these systems is important to develop therapeutic agents that can counteract M. tuberculosis evolutionary changes and to prevent adaptive events resulting in antibiotic resistance. This review summarizes our current understanding of the M. tuberculosis DNA repair system.

  2. Laser-activated protein bands for peripheral nerve repair

    Science.gov (United States)

    Lauto, Antonio; Trickett, Rodney I.; Malik, Richard; Dawes, Judith M.; Owen, Earl R.

    1996-01-01

    A 100 micrometer core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the protein based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 plus or minus 5 min. (n equals 24) compared to 23 plus or minus 9 min (n equals 13) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 plus or minus 5 g, while microsutured nerves had a tensile strength of 40 plus or minus 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study, with a total of fifty-seven adult male wistar rats, compared laser solder repaired tibial nerves to conventional microsuture repair. Twenty-four laser soldered nerves and thirteen sutured nerves were characterized at three months and showed successful regeneration with average compound muscle action potentials (CMAP) of 2.4 plus or minus 0.7 mV and 2.7 plus or minus 0.8 mV respectively. Histopathology of the in vivo study, confirmed the comparable regeneration of axons in laser and suture operated nerves. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  3. Inferring transcriptional compensation interactions in yeast via stepwise structure equation modeling

    Directory of Open Access Journals (Sweden)

    Wang Woei-Fuh

    2008-03-01

    Full Text Available Abstract Background With the abundant information produced by microarray technology, various approaches have been proposed to infer transcriptional regulatory networks. However, few approaches have studied subtle and indirect interaction such as genetic compensation, the existence of which is widely recognized although its mechanism has yet to be clarified. Furthermore, when inferring gene networks most models include only observed variables whereas latent factors, such as proteins and mRNA degradation that are not measured by microarrays, do participate in networks in reality. Results Motivated by inferring transcriptional compensation (TC interactions in yeast, a stepwise structural equation modeling algorithm (SSEM is developed. In addition to observed variables, SSEM also incorporates hidden variables to capture interactions (or regulations from latent factors. Simulated gene networks are used to determine with which of six possible model selection criteria (MSC SSEM works best. SSEM with Bayesian information criterion (BIC results in the highest true positive rates, the largest percentage of correctly predicted interactions from all existing interactions, and the highest true negative (non-existing interactions rates. Next, we apply SSEM using real microarray data to infer TC interactions among (1 small groups of genes that are synthetic sick or lethal (SSL to SGS1, and (2 a group of SSL pairs of 51 yeast genes involved in DNA synthesis and repair that are of interest. For (1, SSEM with BIC is shown to outperform three Bayesian network algorithms and a multivariate autoregressive model, checked against the results of qRT-PCR experiments. The predictions for (2 are shown to coincide with several known pathways of Sgs1 and its partners that are involved in DNA replication, recombination and repair. In addition, experimentally testable interactions of Rad27 are predicted. Conclusion SSEM is a useful tool for inferring genetic networks, and the

  4. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: Molecules to patients

    Science.gov (United States)

    Niedernhofer, Laura J.; Bohr, Vilhelm A.; Sander, Miriam; Kraemer, Kenneth H.

    2012-01-01

    A workshop1 to share, consider and discuss the latest developments in understanding xeroderma pigmentosum and other human diseases caused by defects in nucleotide excision repair (NER) of DNA damage was held on September 21–24, 2010 in Virginia. It was attended by approximately 100 researchers and clinicians, as well as several patients and representatives of patient support groups. This was the third in a series of workshops with similar design and goals: to emphasize discussion and interaction among participants as well as open exchange of information and ideas. The participation of patients, their parents and physicians was an important feature of this and the preceding two workshops. Topics discussed included the natural history and clinical features of the diseases, clinical and laboratory diagnosis of these rare diseases, therapeutic strategies, mouse models of neurodegeneration, molecular analysis of accelerated aging, impact of transcriptional defects and mitochondrial dysfunction on neurodegeneration, and biochemical insights into mechanisms of NER and base excision repair. PMID:21708183

  5. Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila.

    Directory of Open Access Journals (Sweden)

    Michelle T Juarez

    2011-12-01

    Full Text Available The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating

  6. Hippo, TGF-β, and Src-MAPK pathways regulate transcription of the upd3 cytokine in Drosophila enterocytes upon bacterial infection.

    Science.gov (United States)

    Houtz, Philip; Bonfini, Alessandro; Liu, Xi; Revah, Jonathan; Guillou, Aurélien; Poidevin, Mickael; Hens, Korneel; Huang, Hsin-Yi; Deplancke, Bart; Tsai, Yu-Chen; Buchon, Nicolas

    2017-11-01

    Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-β/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.

  7. Repair promoted by plasmid pKM101 is different from SOS repair

    International Nuclear Information System (INIS)

    Goze, A.; Devoret, R.

    1979-01-01

    In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid PKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although Wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions. (Auth.)

  8. Cleft lip and palate repair

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002979.htm Cleft lip and palate repair To use the sharing features on this ... Cheiloplasty; Cleft rhinoplasty; Palatoplasty; Tip rhinoplasty Patient Instructions Cleft lip and palate repair - discharge Images Cleft lip repair - series References ...

  9. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  10. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists.

    Science.gov (United States)

    Sanitá Lima, Matheus; Smith, David Roy

    2017-11-06

    Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq) data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb), indicating that most of the organelle DNA-coding and noncoding-is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb) and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells. Copyright © 2017 Sanitá Lima and Smith.

  11. Ups and Downs: Mechanisms of Repeat Instability in the Fragile X-Related Disorders

    Directory of Open Access Journals (Sweden)

    Xiao-Nan Zhao

    2016-09-01

    Full Text Available The Fragile X-related disorders (FXDs are a group of clinical conditions resulting from the expansion of a CGG/CCG-repeat tract in exon 1 of the Fragile X mental retardation 1 (FMR1 gene. While expansions of the repeat tract predominate, contractions are also seen with the net result being that individuals can show extensive repeat length heterogeneity in different tissues. The mechanisms responsible for expansion and contraction are still not well understood. This review will discuss what is known about these processes and current evidence that supports a model in which expansion arises from the interaction of components of the base excision repair, mismatch repair and transcription coupled repair pathways.

  12. When is cartilage repair successful?

    International Nuclear Information System (INIS)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S.; Schreiner, M.M.

    2017-01-01

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [de

  13. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  14. Meniscal repair devices.

    Science.gov (United States)

    Barber, F A; Herbert, M A

    2000-09-01

    Meniscal repair devices not requiring accessory incisions are attractive. Many factors contribute to their clinical effectiveness including their biomechanical characteristics. This study compared several new meniscal repair devices with standard meniscal suture techniques. Using a porcine model, axis-of-insertion loads were applied to various meniscal sutures and repair devices. A single device or stitch was placed in a created meniscal tear and a load applied. Both loads and modes of failure were recorded. The load-to-failure data show stratification into 4 distinct statistical groups. Group A, 113 N for a double vertical stitch; group B, 80 N for a single vertical stitch; group C, 57 N for the BioStinger, 56 N for a horizontal mattress stitch, and 50 N for the T-Fix stitch; and group D, 33 N for the Meniscus Arrow (inserted by hand or gun), 32 N for the Clearfix screw, 31 N for the SDsorb staple, 30 N for the Mitek meniscal repair system, and 27 N for the Biomet staple. The failure mechanism varied. Sutures broke away from the knot. The Meniscus Arrow and BioStinger pulled through the inner rim with the crossbar intact. The Clearfix screw failed by multiple mechanisms, whereas 1 leg of the SDsorb staple always pulled out of the outer rim. The Mitek device usually failed by pullout from the inner rim. The Biomet staple always broke at the crosshead or just below it. Although the surgeon should be aware of the material properties of the repair technique chosen for a meniscal repair, this information is only an indication of device performance and may not correlate with clinical healing results.

  15. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs

    Directory of Open Access Journals (Sweden)

    Jonathan L. S. Esguerra

    2014-11-01

    Full Text Available Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs is termed “stimulus-secretion coupling.” Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D. The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.

  16. The DNA damage- and transcription-associated protein Paxip1 controls thymocyte development and emigration

    DEFF Research Database (Denmark)

    Callen, E.; Faryabi, R.B.; Daniel, Jeremy Austin

    2012-01-01

    Histone 3 lysine 4 trimethylation (H3K4me3) is associated with promoters of active genes and found at hot spots for DNA recombination. Here we have shown that PAXIP1 (also known as PTIP), a protein associated with MLL3 and MLL4 methyltransferase and the DNA damage response, regulates RAG......-mediated cleavage and repair during V(D)J recombination in CD4 CD8 DP thymocytes. Loss of PAXIP1 in developing thymocytes diminished Jα H3K4me3 and germline transcription, suppressed double strand break formation at 3' Jα segments, but resulted in accumulation of unresolved T cell receptor α-chain gene (Tcra......) breaks. Moreover, PAXIP1 was essential for release of mature single positive (SP) αβ T cells from the thymus through transcriptional activation of sphingosine-1-phosphate receptor S1pr1 as well as for natural killer T cell development. Thus, in addition to maintaining genome integrity during Tcra...

  17. Transcription factor ZNF25 is associated with osteoblast differentiation of human skeletal stem cells

    DEFF Research Database (Denmark)

    Twine, Natalie A.; Harkness, Linda; Kassem, Moustapha

    2016-01-01

    containing G protein-coupled receptor 5 and RAN-binding protein 3-like. We also observed enrichment in extracellular matrix organization, skeletal system development and regulation of ossification in the entire upregulated set of genes. Consistent with its function as a transcription factor during osteoblast...

  18. Biomechanical Analysis of an Arthroscopic Broström Ankle Ligament Repair and a Suture Anchor-Augmented Repair.

    Science.gov (United States)

    Giza, Eric; Whitlow, Scott R; Williams, Brady T; Acevedo, Jorge I; Mangone, Peter G; Haytmanek, C Thomas; Curry, Eugene E; Turnbull, Travis Lee; LaPrade, Robert F; Wijdicks, Coen A; Clanton, Thomas O

    2015-07-01

    Secondary surgical repair of ankle ligaments is often indicated in cases of chronic lateral ankle instability. Recently, arthroscopic Broström techniques have been described, but biomechanical information is limited. The purpose of the present study was to analyze the biomechanical properties of an arthroscopic Broström repair and augmented repair with a proximally placed suture anchor. It was hypothesized that the arthroscopic Broström repairs would compare favorably to open techniques and that augmentation would increase the mean repair strength at time zero. Twenty (10 matched pairs) fresh-frozen foot and ankle cadaveric specimens were obtained. After sectioning of the lateral ankle ligaments, an arthroscopic Broström procedure was performed on each ankle using two 3.0-mm suture anchors with #0 braided polyethylene/polyester multifilament sutures. One specimen from each pair was augmented with a 2.9-mm suture anchor placed 3 cm proximal to the inferior tip of the lateral malleolus. Repairs were isolated and positioned in 20 degrees of inversion and 10 degrees of plantarflexion and loaded to failure using a dynamic tensile testing machine. Maximum load (N), stiffness (N/mm), and displacement at maximum load (mm) were recorded. There were no significant differences between standard arthroscopic repairs and the augmented repairs for mean maximum load and stiffness (154.4 ± 60.3 N, 9.8 ± 2.6 N/mm vs 194.2 ± 157.7 N, 10.5 ± 4.7 N/mm, P = .222, P = .685). Repair augmentation did not confer a significantly higher mean strength or stiffness at time zero. Mean strength and stiffness for the arthroscopic Broström repair compared favorably with previous similarly tested open repair and reconstruction methods, validating the clinical feasibility of an arthroscopic repair. However, augmentation with an additional proximal suture anchor did not significantly strengthen the repair. © The Author(s) 2015.

  19. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Directory of Open Access Journals (Sweden)

    Kun Wei

    Full Text Available In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE. Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  20. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    Science.gov (United States)

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  1. Steroids Regulate CXCL4 in the Human Endometrium During Menstruation to Enable Efficient Endometrial Repair.

    Science.gov (United States)

    Maybin, Jacqueline A; Thiruchelvam, Uma; Madhra, Mayank; Saunders, Philippa T K; Critchley, Hilary O D

    2017-06-01

    Repair of the endometrial surface at menstruation must be efficient to minimize blood loss and optimize reproductive function. The mechanism and regulation of endometrial repair remain undefined. To determine the presence/regulation of CXCL4 in the human endometrium as a putative repair factor at menses. Endometrial tissue was collected throughout the menstrual cycle from healthy women attending the gynecology department. Menstrual blood loss was objectively measured in a subset, and heavy menstrual bleeding (HMB) was defined as >80 mL per cycle. Monocytes were isolated from peripheral blood. CXCL4 messenger RNA (mRNA) and protein were identified by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The function/regulation of endometrial CXCL4 was explored by in vitro cell culture. CXCL4 mRNA concentrations were significantly increased during menstruation. Intense staining for CXCL4 was detected in late secretory and menstrual tissue, localized to stromal, epithelial and endothelial cells. Colocalization identified positive staining in CD68+ macrophages. Treatment of human endometrial stromal and endothelial cells (hESCs and HEECs, respectively) with steroids revealed differential regulation of CXCL4. Progesterone withdrawal resulted in significant increases in CXCL4 mRNA and protein in hESCs, whereas cortisol significantly increased CXCL4 in HEECs. In women with HMB, CXCL4 was reduced in endothelial cells during the menstrual phase compared with women with normal menstrual bleeding. Cortisol-exposed macrophages displayed increased chemotaxis toward CXCL4 compared with macrophages incubated with estrogen or progesterone. These data implicate CXCL4 in endometrial repair after menses. Reduced cortisol at the time of menses may contribute to delayed endometrial repair and HMB, in part by mechanisms involving aberrant expression of CXCL4. Copyright © 2017 by the Endocrine Society

  2. The time course of repair of ultraviolet-induced DNA damage; implications for the structural organization of repair

    International Nuclear Information System (INIS)

    Collins, A.; Squires, S.

    1986-01-01

    Alternative molecular mechanisms can be envisaged for the cellular repair of UV-damaged DNA. In the 'random collision' model, DNA damage distributed throughout the genome is recognised and repaired by a process of random collision between DNA damage and repair enzymes. The other model assumes a 'processive' mechanism, whereby DNA is scanned for damage by a repair complex moving steadily along its length. Random collision should result in a declining rate of repair with time as the concentration of lesions in the DNA falls; but the processive model predicts a constant rate until scanning is complete. The authors have examined the time course of DNA repair in human fibroblasts given low doses of UV light. Using 3 distinct assays, the authors find no sign of a constant repair rate after 4 J/m 2 or less, even when the first few hours after irradiation are examined. Thus DNA repair is likely to depend on random collision. (Auth.)

  3. A biomechanical evaluation of all-inside 2-stitch meniscal repair devices with matched inside-out suture repair.

    Science.gov (United States)

    Ramappa, Arun J; Chen, Alvin; Hertz, Benjamin; Wexler, Michael; Grimaldi Bournissaint, Leandro; DeAngelis, Joseph P; Nazarian, Ara

    2014-01-01

    Many all-inside suture-based devices are currently available, including the Meniscal Cinch, FasT-Fix, Ultra FasT-Fix, RapidLoc, MaxFire, and CrossFix System. These different devices have been compared in various configurations, but to our knowledge, the Sequent meniscal repair device, which applies running sutures, has not been compared with the Ultra FasT-Fix, nor has it been compared with its suture, No. 0 Hi-Fi, using an inside-out repair technique. To assess the quality of the meniscal repair, all new devices should be compared with the gold standard: the inside-out repair. To that end, this study aims to compare the biomechanical characteristics of running sutures delivered by the Sequent meniscal repair device with 2 vertical mattress sutures applied using the Ultra FasT-Fix device and with 2 vertical mattress sutures using an inside-out repair technique with No. 0 Hi-Fi suture. Controlled laboratory study. Paired (medial and lateral), fresh-frozen porcine menisci were randomly assigned to 1 of 3 groups: Sequent (n = 17), Ultra FasT-Fix (n = 19), and No. 0 Hi-Fi inside-out repair (n = 20). Bucket-handle tears were created in all menisci and were subjected to repair according to their grouping. Once repaired, the specimens were subjected to cyclic loading (100, 300, and 500 cycles), followed by loading to failure. The Sequent and Ultra FasT-Fix device repairs and the suture repair exhibited low initial displacements. The Sequent meniscal repair device demonstrated the lowest displacement in response to cyclic loading. No. 0 Hi-Fi suture yielded the highest load to failure. With the development of the next generation of all-inside meniscal repair devices, surgeons may use these findings to select the method best suited for their patients. The Sequent meniscal repair device displays the least amount of displacement during cyclic loading but has a similar failure load to other devices.

  4. Sequence homology and expression profile of genes associated with DNA repair pathways in Mycobacterium leprae.

    Science.gov (United States)

    Sharma, Mukul; Vedithi, Sundeep Chaitanya; Das, Madhusmita; Roy, Anindya; Ebenezer, Mannam

    2017-01-01

    Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. T he genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%), 11 hypothetical proteins (18%), and 14 pseudogenes (23%). All these genes have homologs in M. tuberculosis and 49 (80.32%) in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. leprae which was obtained from the signal intensities of 60bp probes, tiling the entire genome with 10bp overlaps. It was noted that transcripts corresponding to all the 61 genes were identified in the transcriptome data with varying expression levels ranging from 0.18 to 2.47 fold (normalized with 16SrRNA). The mRNA expression levels of a representative set of seven genes ( four annotated and three hypothetical protein coding genes) were analyzed using quantitative Polymerase Chain Reaction (qPCR) assays with RNA extracted from skin biopsies of 10 newly diagnosed, untreated leprosy cases. It was noted that RNA expression levels were higher for genes involved in homologous recombination whereas the genes with a low level of expression are involved in the direct repair pathway. This study provided

  5. Recommendations for optimised repair welding operations in steam systems exposed to creep; Rekommendationer foer optimering av svetsreparationer i kryppaakaenda aangsystem

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Samuelson, Aake; Klasen, Bjoern; Jensen, Carsten

    2002-03-01

    Recommendations for optimised repair welding in creep exposed steam systems have been produced on basis of different parts of the project which involve a literature survey, case studies, metallographical investigations and finite element simulations. The separate parts are compiled in the present report where the results also are coupled to each other. Two of the project parts are reported in appendices in the present report and the other ones in three separate work reports. The studies have shown evidence of the complexity associated with repair welding and many alternatives may be offered for a given situation. The importance of the factors which may influence the life time of the repair have been investigated and are described in order to facilitate the decision-making process for the given situation. From the obtained results there are also more general recommendations to be given: Make sure that system stresses not are acting at the repair. Avoid welding methods that could result in strongly creep soft HAZs. Select a weld metal for the repair which is slightly creep hard compared to the remaining aged material. Selection of a wide and 'medium' deep excavation geometry as well as a repair around the whole circumference is to be preferred. Repairs of welds that not include excavation of the whole width of the original weld should be avoided. Replica testing is recommended in addition to the common practice in the quality and condition-monitoring control of the repair.

  6. The journey of DNA repair.

    Science.gov (United States)

    Saini, Natalie

    2015-12-01

    21 years ago, the DNA Repair Enzyme was declared "Molecule of the Year". Today, we are celebrating another "year of repair", with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  7. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    Science.gov (United States)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  8. Thymus repair compared with hemopoiesis repair in spleen after protracted irradiation

    International Nuclear Information System (INIS)

    Mackova, N.

    1987-01-01

    Matured female mice of ICR strain were irradiated from a 60 Co source with a daily dose rate of 5 Gy till total accumulated dose of 10 Gy for 2 days. Animals were examined in various intervals within 42 days after irradiation. The results revealed that protracted irradiation will induce a massive injury to hemopoiesis. The first repair processes occurred in thymus and were characterized by two phases. The first repair wave peaked about the day 10 and the second about the day 30 after irradiation. The repair processes observed in the red pulp of the spleen reached their highest intensity approximately between the days 14-16 after irradiation. (author)

  9. Laparoscopic totally extraperitoneal inguinal hernia repair: lessons learned from 3,100 hernia repairs over 15 years.

    Science.gov (United States)

    Dulucq, Jean-Louis; Wintringer, Pascal; Mahajna, Ahmad

    2009-03-01

    Two revolutions in inguinal hernia repair surgery have occurred during the last two decades. The first was the introduction of tension-free hernia repair by Liechtenstein in 1989 and the second was the application of laparoscopic surgery to the treatment of inguinal hernia in the early 1990s. The purposes of this study were to assess the safety and effectiveness of laparoscopic totally extraperitoneal (TEP) repair and to discuss the technical changes that we faced on the basis of our accumulative experience. Patients who underwent an elective inguinal hernia repair at the Department of Abdominal Surgery at the Institute of Laparoscopic Surgery (ILS), Bordeaux, between June 1990 and May 2005 were enrolled retrospectively in this study. Patient demographic data, operative and postoperative course, and outpatient follow-up were studied. A total of 3,100 hernia repairs were included in the study. The majority of the hernias were repaired by TEP technique; the repair was done by transabdominal preperitoneal (TAPP) repair in only 3%. Eleven percent of the hernias were recurrences after conventional repair. Mean operative time was 17 min in unilateral hernia and 24 min in bilateral hernia. There were 36 hernias (1.2%) that required conversion: 12 hernias were converted to open anterior Liechtenstein and 24 to laparoscopic TAPP technique. The incidence of intraoperative complications was low. Most of the patients were discharged at the second day of the surgery. The overall postoperative morbidity rate was 2.2%. The incidence of recurrence rate was 0.35%. The recurrence rate for the first 200 repairs was 2.5%, but it decreased to 0.47% for the subsequent 1,254 hernia repairs According to our experience, in the hands of experienced laparoscopic surgeons, laparoscopic hernia repair seems to be the favored approach for most types of inguinal hernias. TEP is preferred over TAPP as the peritoneum is not violated and there are fewer intra-abdominal complications.

  10. 40 CFR 63.1024 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1024 Section 63.1024... Standards for Equipment Leaks-Control Level 2 Standards § 63.1024 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical, but not later than 15 calendar...

  11. Evaluation of Repair Tension in Arthroscopic Rotator Cuff Repair: Does It Really Matter to the Integrity of the Rotator Cuff?

    Science.gov (United States)

    Kim, Do Hoon; Jang, Young Hoon; Choi, Young Eun; Lee, Hwa-Ryeong; Kim, Sae Hoon

    2016-11-01

    Repair tension of a torn rotator cuff can affect healing after repair. However, a measurement of the actual tension during arthroscopic rotator cuff repair is not feasible. The relationship between repair tension and healing of a rotator cuff repair remains unclear. The purpose of this study was to evaluate the effect of repair tension on healing at the repair site. The hypothesis was that repair tension would be a major factor in determining the anatomic outcome of rotator cuff repair. Cohort study; Level of evidence, 2. Arthroscopic rotator cuff repairs (132 patients) for full-thickness rotator cuff tears were analyzed. An intraoperative model was designed for the estimation of repair tension using a tensiometer. Magnetic resonance imaging (MRI) was performed approximately 1 year (mean [±SD], 12.7 ± 3.2 months) postoperatively for the evaluation of healing at the repair site. Multivariable analysis was performed for tear size, amount of retraction, and fatty degeneration (FD) of rotator cuff muscles. The mean repair tension measured during the arthroscopic procedure was 28.5 ± 23.1 N. There was a statistically significant correlation between tension and tear size (Pearson correlation coefficient [PCC], 0.529; P repair tension also showed a significant inverse correlation with healing at the repair site (SCC, 0.195; P = .025). However, when sex, age, tear size, amount of retraction, tendon quality, and FD of rotator cuff muscles were included for multivariable logistic regression analysis, only FD of the infraspinatus showed an association with the anatomic outcome of repair (Exp(B) = 0.596; P = .010). Our intraoperative model for the estimation of rotator cuff repair tension showed an inverse correlation of repair tension with healing at the repair site, suggesting that complete healing is less likely with high-tension repairs. A significant association was observed on MRI between a high level of FD of the infraspinatus and repaired tendon integrity. © 2016

  12. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses

    Directory of Open Access Journals (Sweden)

    Kathrin Davari

    2017-04-01

    Full Text Available Summary: Activation of immune cells results in rapid functional changes, but how such fast changes are accomplished remains enigmatic. By combining time courses of 4sU-seq, RNA-seq, ribosome profiling (RP, and RNA polymerase II (RNA Pol II ChIP-seq during T cell activation, we illustrate genome-wide temporal dynamics for ∼10,000 genes. This approach reveals not only immediate-early and posttranscriptionally regulated genes but also coupled changes in transcription and translation for >90% of genes. Recruitment, rather than release of paused RNA Pol II, primarily mediates transcriptional changes. This coincides with a genome-wide temporary slowdown in cotranscriptional splicing, even for polyadenylated mRNAs that are localized at the chromatin. Subsequent splicing optimization correlates with increasing Ser-2 phosphorylation of the RNA Pol II carboxy-terminal domain (CTD and activation of the positive transcription elongation factor (pTEFb. Thus, rapid de novo recruitment of RNA Pol II dictates the course of events during T cell activation, particularly transcription, splicing, and consequently translation. : Davari et al. visualize global changes in RNA Pol II binding, transcription, splicing, and translation. T cells change their functional program by rapid de novo recruitment of RNA Pol II and coupled changes in transcription and translation. This coincides with fluctuations in RNA Pol II phosphorylation and a temporary reduction in cotranscriptional splicing. Keywords: RNA Pol II, cotranscriptional splicing, T cell activation, ribosome profiling, 4sU, H3K36, Ser-5 RNA Pol II, Ser-2 RNA Pol II, immune response, immediate-early genes

  13. 40 CFR 63.1005 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1005 Section 63.1005... Standards for Equipment Leaks-Control Level 1 § 63.1005 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected no later than 15 calendar days after it is detected, except as...

  14. 40 CFR 65.105 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Leak repair. 65.105 Section 65.105... FEDERAL AIR RULE Equipment Leaks § 65.105 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical but not later than 15 calendar days after it is...

  15. Effect of repair resin type and surface treatment on the repair strength of polyamide denture base resin.

    Science.gov (United States)

    Gundogdu, Mustafa; Yanikoglu, Nuran; Bayindir, Funda; Ciftci, Hilal

    2015-01-01

    The purpose of the present study was to evaluate the effects of different repair resins and surface treatments on the repair strength of a polyamide denture base material. Polyamide resin specimens were prepared and divided into nine groups according to the surface treatments and repair materials. The flexural strengths were measured with a 3-point bending test. Data were analyzed with a 2-way analysis of variance, and the post-hoc Tukey test (α=0.05). The effects of the surface treatments on the surface of the polyamide resin were examined using scanning electron microscopy. The repair resins and surface treatments significantly affected the repair strength of the polyamide denture base material (p0.05). The flexural strength of the specimens repaired with the polyamide resin was significantly higher than that of those repaired with the heat-polymerized and autopolymerizing acrylic resins.

  16. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  17. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    Science.gov (United States)

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  18. Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points.

    Science.gov (United States)

    DeVilbiss, Andrew W; Sanalkumar, Rajendran; Johnson, Kirby D; Keles, Sunduz; Bresnick, Emery H

    2014-08-01

    Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin, remains poorly understood. Transformative technologic advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain; notably, ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while using powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review focuses on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  19. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination.

    Science.gov (United States)

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤ 4 µg/ml) and stimulates CSR at high concentrations (≥ 8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients.

  20. Cellular Repair of DNA–DNA Cross-Links Induced by 1,2,3,4-Diepoxybutane

    Directory of Open Access Journals (Sweden)

    Lisa N. Chesner

    2017-05-01

    Full Text Available Xenobiotic-induced interstrand DNA–DNA cross-links (ICL interfere with transcription and replication and can be converted to toxic DNA double strand breaks. In this work, we investigated cellular responses to 1,4-bis-(guan-7-yl-2,3-butanediol (bis-N7G-BD cross-links induced by 1,2,3,4-diepoxybutane (DEB. High pressure liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI+-MS/MS assays were used to quantify the formation and repair of bis-N7G-BD cross-links in wild-type Chinese hamster lung fibroblasts (V79 and the corresponding isogenic clones V-H1 and V-H4, deficient in the XPD and FANCA genes, respectively. Both V-H1 and V-H4 cells exhibited enhanced sensitivity to DEB-induced cell death and elevated bis-N7G-BD cross-links. However, relatively modest increases of bis-N7G-BD adduct levels in V-H4 clones did not correlate with their hypersensitivity to DEB. Further, bis-N7G-BD levels were not elevated in DEB-treated human clones with defects in the XPA or FANCD2 genes. Comet assays and γ-H2AX focus analyses conducted with hamster cells revealed that ICL removal was associated with chromosomal double strand break formation, and that these breaks persisted in V-H4 cells as compared to control cells. Our findings suggest that ICL repair in cells with defects in the Fanconi anemia repair pathway is associated with aberrant re-joining of repair-induced double strand breaks, potentially resulting in lethal chromosome rearrangements.

  1. The impact of endovascular repair on specialties performing abdominal aortic aneurysm repair

    NARCIS (Netherlands)

    Ultee, Klaas H J; Hurks, Rob; Buck, Dominique B.; Dasilva, George S.; Soden, Peter A.; Van Herwaarden, Joost A.; Verhagen, Hence J M; Schermerhorn, Marc L.

    2015-01-01

    Background Abdominal aortic aneurysm (AAA) repair has been performed by various surgical specialties for many years. Endovascular aneurysm repair (EVAR) may be a disruptive technology, having an impact on which specialties care for patients with AAA. Therefore, we examined the proportion of AAA

  2. The impact of endovascular repair on specialties performing abdominal aortic aneurysm repair

    NARCIS (Netherlands)

    K.H.J. Ultee (Klaas); R. Hurks (Rob); D.B. Buck (Dominique B.); G.S. Dasilva (George S.); P.A. Soden (Peter A.); J.A. van Herwaarden (Joost); H.J.M. Verhagen (Hence); M.L. Schermerhorn (Marc)

    2015-01-01

    textabstractBackground Abdominal aortic aneurysm (AAA) repair has been performed by various surgical specialties for many years. Endovascular aneurysm repair (EVAR) may be a disruptive technology, having an impact on which specialties care for patients with AAA. Therefore, we examined the proportion

  3. Synaptic, transcriptional and chromatin genes disrupted in autism.

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P; Poultney, Christopher S; Samocha, Kaitlin; Cicek, A Erucment; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarinder; Klei, Lambertus; Kosmicki, Jack; Shih-Chen, Fu; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F; Brownfeld, Jessica M; Cai, Jinlu; Campbell, Nicholas G; Carracedo, Angel; Chahrour, Maria H; Chiocchetti, Andreas G; Coon, Hilary; Crawford, Emily L; Curran, Sarah R; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A; Gallagher, Louise; Geller, Evan; Guter, Stephen J; Hill, R Sean; Ionita-Laza, Juliana; Jimenz Gonzalez, Patricia; Kilpinen, Helena; Klauck, Sabine M; Kolevzon, Alexander; Lee, Irene; Lei, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R; McInnes, Alison L; Neale, Benjamin; Owen, Michael J; Ozaki, Noriio; Parellada, Mara; Parr, Jeremy R; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Li-San, Wang; Weiss, Lauren A; Willsey, A Jeremy; Yu, Timothy W; Yuen, Ryan K C; Cook, Edwin H; Freitag, Christine M; Gill, Michael; Hultman, Christina M; Lehner, Thomas; Palotie, Aaarno; Schellenberg, Gerard D; Sklar, Pamela; State, Matthew W; Sutcliffe, James S; Walsh, Christiopher A; Scherer, Stephen W; Zwick, Michael E; Barett, Jeffrey C; Cutler, David J; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J; Buxbaum, Joseph D

    2014-11-13

    The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.

  4. Treatment and Controversies in Paraesophageal Hernia Repair

    Directory of Open Access Journals (Sweden)

    P. Marco eFisichella

    2015-04-01

    Full Text Available Background: Historically all paraesophageal hernias were repaired surgically, today intervention is reserved for symptomatic paraesophageal hernias. In this review, we describe the indications for repair and explore the controversies in paraesophageal hernia repair, which include a comparison of open to laparoscopic paraesophageal hernia repair, the necessity of complete sac excision, the routine performance of fundoplication, and the use of mesh for hernia repair.Methods: We searched Pubmed for papers published between 1980 and 2015 using the following keywords: hiatal hernias, paraesophageal hernias, regurgitation, dysphagia, gastroesophageal reflux disease, aspiration, GERD, endoscopy, manometry, pH monitoring, proton pump inhibitors, anemia, iron deficiency anemia, Nissen fundoplication, sac excision, mesh, mesh repair. Results: Indications for paraesophageal hernia repair have changed, and currently symptomatic paraesophageal hernias are recommended for repair. In addition, it is important not to overlook iron-deficiency anemia and pulmonary complaints, which tend to improve with repair. Current practice favors a laparoscopic approach, complete sac excision, primary crural repair with or without use of mesh, and a routine fundoplication.

  5. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  6. Ultrasound determination of rotator cuff tear repairability

    Science.gov (United States)

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p tear size (p tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  7. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  9. Scarf Repair of Composite Laminates

    Directory of Open Access Journals (Sweden)

    Xie Zonghong

    2016-01-01

    Full Text Available The use of composite materials, such as carbon-fiber reinforced plastic (CFRP composites, aero-structures has led to an increased need of advanced assembly joining and repair technologies. Adhesive bonded repairs as an alternative to recover full or part of initial strength were investigated. Tests were conducted with the objective of evaluating the effectiveness of techniques used for repairing damage fiber reinforced laminated composites. Failure loads and failure modes were generated and compared with the following parameters: scarf angles, roughness of grind tool and number of external plies. Results showed that scarf angle was the critical parameter and the largest tensile strength was observed with the smallest scarf angle. Besides, the use of external plies at the outer surface could not increase the repairs efficiency for large scarf angle. Preparing the repair surfaces by sanding them with a sander ranging from 60 to 100 grit number had significant effect on the failure load. These results allowed the proposal of design principles for repairing CFRP structures.

  10. Overlapping sphincteroplasty and posterior repair.

    Science.gov (United States)

    Crane, Andrea K; Myers, Erinn M; Lippmann, Quinn K; Matthews, Catherine A

    2014-12-01

    Knowledge of how to anatomically reconstruct extensive posterior-compartment defects is variable among gynecologists. The objective of this video is to demonstrate an effective technique of overlapping sphincteroplasty and posterior repair. In this video, a scripted storyboard was constructed that outlines the key surgical steps of a comprehensive posterior compartment repair: (1) surgical incision that permits access to posterior compartment and perineal body, (2) dissection of the rectovaginal space up to the level of the cervix, (3) plication of the rectovaginal muscularis, (4) repair of internal and external anal sphincters, and (5) reconstruction of the perineal body. Using a combination of graphic illustrations and live video footage, tips on repair are highlighted. The goals at the end of repair are to: (1) have improved vaginal caliber, (2) increase rectal tone along the entire posterior vaginal wall, (3) have the posterior vaginal wall at a perpendicular plane to the perineal body, (4) reform the hymenal ring, and (5) not have an overly elongated perineal body. This video provides a step-by-step guide on how to perform an overlapping sphincteroplasty and posterior repair.

  11. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    Science.gov (United States)

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  12. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors.

    Science.gov (United States)

    Brevik, Asgeir; Karlsen, Anette; Azqueta, Amaya; Tirado, Anna Estaban; Blomhoff, Rune; Collins, Andrew

    2011-01-01

    Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit- and antioxidant-rich plant-based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant-rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant-rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (-39%, p plant products. Reduced NER was also observed in the kiwifruit group (-38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Magnetic Resonance Imaging of Cartilage Repair

    Science.gov (United States)

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  14. Transcript structure and domain display: a customizable transcript visualization tool.

    Science.gov (United States)

    Watanabe, Kenneth A; Ma, Kaiwang; Homayouni, Arielle; Rushton, Paul J; Shen, Qingxi J

    2016-07-01

    Transcript Structure and Domain Display (TSDD) is a publicly available, web-based program that provides publication quality images of transcript structures and domains. TSDD is capable of producing transcript structures from GFF/GFF3 and BED files. Alternatively, the GFF files of several model organisms have been pre-loaded so that users only needs to enter the locus IDs of the transcripts to be displayed. Visualization of transcripts provides many benefits to researchers, ranging from evolutionary analysis of DNA-binding domains to predictive function modeling. TSDD is freely available for non-commercial users at http://shenlab.sols.unlv.edu/shenlab/software/TSD/transcript_display.html : jeffery.shen@unlv.nevada.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  16. The Weekend Effect in AAA Repair.

    Science.gov (United States)

    O'Donnell, Thomas F X; Li, Chun; Swerdlow, Nicholas J; Liang, Patric; Pothof, Alexander B; Patel, Virendra I; Giles, Kristina A; Malas, Mahmoud B; Schermerhorn, Marc L

    2018-04-18

    Conflicting reports exist regarding whether patients undergoing surgery on the weekend or later in the week experience worse outcomes. We identified patients undergoing abdominal aortic aneurysm (AAA) repair in the Vascular Quality Initiative between 2009 and 2017 [n = 38,498; 30,537 endovascular aneurysm repair (EVAR) and 7961 open repair]. We utilized mixed effects logistic regression to compare adjusted rates of perioperative mortality based on the day of repair. Tuesday was the most common day for elective repair (22%), Friday for symptomatic repairs (20%), and ruptured aneurysms were evenly distributed. Patients with ruptured aneurysms experienced similar adjusted mortality whether they underwent repair during the week or on weekends. Transfers of ruptured AAA were more common over the weekend. However, patients transferred on the weekend experienced higher adjusted mortality than those transferred during the week (28% vs 21%, P = 0.02), despite the fact that during the week, transferred patients actually experienced lower adjusted mortality than patients treated at the index hospital (21% vs 31%, P AAA repair. However, patients with ruptured AAA transferred on the weekend experienced higher mortality than those transferred during the week, suggesting a need for improvement in weekend transfer processes.

  17. Systems Maintenance Automated Repair Tasks (SMART)

    Science.gov (United States)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  18. Laparoscopic repair of large suprapubic hernias.

    Science.gov (United States)

    Sikar, Hasan Ediz; Çetin, Kenan; Eyvaz, Kemal; Kaptanoglu, Levent; Küçük, Hasan Fehmi

    2017-09-01

    Suprapubic hernia is the term to describe ventral hernias located less than 4 cm above the pubic arch in the midline. Hernias with an upper margin above the arcuate line encounter technical difficulties, and the differences in repair methods forced us to define them as large suprapubic hernias. To present our experience with laparoscopic repair of large suprapubic hernias that allows adequate mesh overlap. Nineteen patients with suprapubic incisional hernias who underwent laparoscopic repair between May 2013 and January 2015 were included in the study. Patients with laparoscopic extraperitoneal repair who had a suprapubic hernia with an upper margin below the arcuate line were excluded. Two men and 17 women, with a mean age of 58.2, underwent laparoscopic repair. Most of the incisions were midline vertical (13/68.4%). Twelve (63.1%) of the patients had previous incisional hernia repair (PIHR group); the mean number of previous incisional hernia repair was 1.4. Mean defect size of the PIHR group was higher than in patients without previous repair - 107.3 cm 2 vs. 50.9 cm 2 (p < 0.05). Mean operating time of the PIHR group was higher than in patients without repair - 126 min vs. 77.9 min (p < 0.05). Although all complications occurred in the PIHR group, there was no statistically significant difference. Laparoscopic repair of large suprapubic hernias can be considered as the first option in treatment. The low recurrence rates reported in the literature and the lack of recurrence, as observed in our study, support this view.

  19. DNA repair in neurons: So if they don't divide what's to repair?

    Energy Technology Data Exchange (ETDEWEB)

    Fishel, Melissa L. [Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States) and Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202 (United States) and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States)]. E-mail: mkelley@iupui.edu

    2007-01-03

    Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major

  20. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    Science.gov (United States)

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific

  1. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.

    Science.gov (United States)

    Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I

    2013-05-30

    Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a

  2. Procedures for maintenance and repairs

    International Nuclear Information System (INIS)

    Pickel, E.

    1981-01-01

    After a general review of the operation experience in the history of more than 12 operating years, the organization in the plant will be shown with special aspect to quality assurance, capacity of the workshops and connected groups as radiation protection, chemical laboratories etc. The number, time intervals and manpower effort for the repeating tests will be discussed. Reasons and examples for back-fitting activities in the plant are given. Besides special repair and maintenance procedures as repair of the steam generators, in-service inspection of the reactor pressure vessel, repair of a feed-water pipe and repair of the core structure in the pressure vessel, the general system to handle maintenance and repair-work in the KWO-plant will be shown. This includes also the detailed planning of the annual refueling and revision of the plant. (orig./RW)

  3. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  4. The long-term behavior of lightweight and heavyweight meshes used to repair abdominal wall defects is determined by the host tissue repair process provoked by the mesh.

    Science.gov (United States)

    Pascual, Gemma; Hernández-Gascón, Belén; Rodríguez, Marta; Sotomayor, Sandra; Peña, Estefania; Calvo, Begoña; Bellón, Juan M

    2012-11-01

    Although heavyweight (HW) or lightweight (LW) polypropylene (PP) meshes are widely used for hernia repair, other alternatives have recently appeared. They have the same large-pore structure yet are composed of polytetrafluoroethylene (PTFE). This study compares the long-term (3 and 6 months) behavior of meshes of different pore size (HW compared with LW) and composition (PP compared with PTFE). Partial defects were created in the lateral wall of the abdomen in New Zealand White rabbits and then repaired by the use of a HW or LW PP mesh or a new monofilament, large-pore PTFE mesh (Infinit). At 90 and 180 days after implantation, tissue incorporation, gene and protein expression of neocollagens (reverse transcription-polymerase chain reaction/immunofluorescence), macrophage response (immunohistochemistry), and biomechanical strength were determined. Shrinkage was measured at 90 days. All three meshes induced good host tissue ingrowth, yet the macrophage response was significantly greater in the PTFE implants (P .05). Host collagen deposition is mesh pore size dependent whereas the macrophage response induced is composition dependent with a greater response shown by PTFE. In the long term, macroporous meshes show comparable biomechanical behavior regardless of their pore size or composition. Copyright © 2012 Mosby, Inc. All rights reserved.

  5. Repair of steam turbines by welding

    International Nuclear Information System (INIS)

    Bohnstedt, H.J.; Loebert, P.

    1987-01-01

    In some cases, turbine parts can be repaired by welding, even rotating parts such as the shaft or the blades. Practical examples of successful repair work are explained, as for instance: welding of the last web of the turbine wheel of two MD-rotors, repair of erosion damage on turbine blades, of solid-matter erosion on a medium-pressure blading, or welding repair of a high-pressure turbine casing. (DG) [de

  6. Current Biomechanical Concepts for Rotator Cuff Repair

    Science.gov (United States)

    2013-01-01

    For the past few decades, the repair of rotator cuff tears has evolved significantly with advances in arthroscopy techniques, suture anchors and instrumentation. From the biomechanical perspective, the focus in arthroscopic repair has been on increasing fixation strength and restoration of the footprint contact characteristics to provide early rehabilitation and improve healing. To accomplish these objectives, various repair strategies and construct configurations have been developed for rotator cuff repair with the understanding that many factors contribute to the structural integrity of the repaired construct. These include repaired rotator cuff tendon-footprint motion, increased tendon-footprint contact area and pressure, and tissue quality of tendon and bone. In addition, the healing response may be compromised by intrinsic factors such as decreased vascularity, hypoxia, and fibrocartilaginous changes or aforementioned extrinsic compression factors. Furthermore, it is well documented that torn rotator cuff muscles have a tendency to atrophy and become subject to fatty infiltration which may affect the longevity of the repair. Despite all the aforementioned factors, initial fixation strength is an essential consideration in optimizing rotator cuff repair. Therefore, numerous biomechanical studies have focused on elucidating the strongest devices, knots, and repair configurations to improve contact characteristics for rotator cuff repair. In this review, the biomechanical concepts behind current rotator cuff repair techniques will be reviewed and discussed. PMID:23730471

  7. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  8. Arthroscopic Partial Repair of Irreparable Rotator Cuff Tears: Preoperative Factors Associated With Outcome Deterioration Over 2 Years.

    Science.gov (United States)

    Shon, Min Soo; Koh, Kyoung Hwan; Lim, Tae Kang; Kim, Won Ju; Kim, Kyung Cheon; Yoo, Jae Chul

    2015-08-01

    Arthroscopic partial repair is a treatment option in irreparable large-to-massive rotator cuff tears without arthritic changes. However, there are indications that arthroscopic partial repair does not yield satisfactory outcomes. To report the clinical and radiographic results of arthroscopic partial repairs in patients with irreparable large-to-massive cuff tears. In addition, an analysis was performed regarding preoperative factors that may influence patient outcomes and patient-rated satisfaction over time. Case series; Level of evidence, 4. From 2005 to 2011, a total of 31 patients who underwent arthroscopic partial repair for irreparable large-to-massive cuff tears were retrospectively evaluated. Partial repair was defined as posterior cuff tissue repair with or without subscapularis tendon repair to restore the transverse force couple of the cuff. Pain visual analog scale (PVAS), questionnaire results (American Shoulder and Elbow Surgeons [ASES] and Simple Shoulder Test [SST]), and radiographic changes (acromiohumeral distance and degenerative change) were assessed preoperatively, at first follow-up (roughly 1 year postoperatively), and at final follow-up (>2 years postoperatively). Patients rated their satisfaction level at each postoperative follow-up as well. Preoperative factors that might influence outcomes, such as patient demographics, tear size, and fatty infiltration, were investigated. The preoperative, first follow-up, and final follow-up results for mean PVAS (5.13, 2.13, and 3.16, respectively) and questionnaires (ASES: 41.97, 76.37, and 73.78; SST: 3.61, 6.33, and 6.07, respectively) improved significantly (all P .05) from the first to the final follow-up. Among preoperative factors, fatty infiltration of the teres minor was identified as the only statistically significant factor affecting patient-rated satisfaction (P = .007). This study showed that arthroscopic partial repair may produce initial improvement in selected outcomes at 2-year

  9. Cloning of a postreplication repair gene in Drosophila

    International Nuclear Information System (INIS)

    Banga, S.S.; Yamamoto, A.H.; Mason, J.M.; Boyd, J.B.

    1987-01-01

    Mutants at the mei-41 locus in Drosophila are strongly hypersensitive to each of eight tested mutagens. Mutant flies exhibit reduced meiotic recombination and elevated levels of chromosomal aberrations. In analogy with the defect in xeroderma pigmentosum variant cells, mei-41 cells are strongly defective in postreplication repair following UV radiation. In preparation for cloning that gene they have performed complementation studies between chromosomal aberrations and mei-41 mutants. That study has localized the mei-41 gene to polytene chromosome bands 14C4-6. A chromosomal walk conducted in that region has recovered about 65 kb of contiguous DNA sequence. The position of the mei-41 gene within that region has been established with the aid of a mutation in that gene which was generated by the insertion of a transposable element. Transcription mapping is being employed to define the complete coding region of the gene in preparation for investigations of gene function

  10. A study of everyday repair: informing interaction design

    OpenAIRE

    Maestri, Leah Adriana

    2012-01-01

    Repair is typically seen in design as the restoration of broken objects to their original state. Repair by non-experts, or everyday repair, can often lead to novel forms of repair resulting in the creative repurposing of objects that are often unforeseen by designers. Using a grounded theory approach, this study describes key aspects of repair including: the techniques non-experts employ for repairing their objects; the motivations that prompt acts of repair; and the outcomes that result fr...

  11. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  12. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    Science.gov (United States)

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  13. ANALYTICAL MODEL OF DAMAGED AIRCRAFT SKIN BONDED REPAIRS ASSUMING THE MATERIAL PROPERTIES DEGRADATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The search of optimal variants for composite repair patches allows to increase the service life of a damaged air- plane structure. To sensibly choose the way of repair, it is necessary to have a computational complex to predict the stress- strain condition of "structure-adhesive-patch" system and to take into account the damage growth considering the material properties change. The variant of the computational complex based on inclusion method is proposed.For calculation purposes the repair bonded joint is divided into two areas: a metal plate with patch-shaped hole and a "patch-adhesive layer-skin" composite plate (inclusion.Calculation stages:Evaluation of the patch influence to the skin stress-strain condition, stress distribution between skin and patch in the case of no damage. Calculation of the stress-strain condition is performed separately for the skin with hole and for the inclusion; solutions are coupled based on strain compatibility.Definition of the damage growth parameters at new stress-strain condition due to bonded patch existence. Skincrack stress intensity factors are found to identify the crack growth velocity. Patch is modelled as a set of "springs" bridging the crack.Degradation analysis of elasticity properties for the patch material.Repair effectiveness is evaluated with respect to crack growth velocity reduction in the initial material in compari- son with the case of the patch absence.Calculation example for the crack repair effectiveness depending on number of loading cycles for the 7075-T6 aluminum skin is given. Repair patches are carbon-epoxy, glass-epoxy and boron-epoxy material systems with quasi- isotropic layup and GLARE hybrid metal-polymeric material.The analysis shows the high effectiveness of the carbon-epoxy patch. Due to low stiffness, the glass-epoxy patchdemonstrates the least effectiveness. GLARE patch containing the fiberglass plies oriented across the crack has the same effectiveness as the carbon and

  14. The phytochemical 3,3'-diindolylmethane decreases expression of AR-controlled DNA damage repair genes through repressive chromatin modifications and is associated with DNA damage in prostate cancer cells.

    Science.gov (United States)

    Palomera-Sanchez, Zoraya; Watson, Gregory W; Wong, Carmen P; Beaver, Laura M; Williams, David E; Dashwood, Roderick H; Ho, Emily

    2017-09-01

    Androgen receptor (AR) is a transcription factor involved in normal prostate physiology and prostate cancer (PCa) development. 3,3'-Diindolylmethane (DIM) is a promising phytochemical agent against PCa that affects AR activity and epigenetic regulators in PCa cells. However, whether DIM suppresses PCa via epigenetic regulation of AR target genes is unknown. We assessed epigenetic regulation of AR target genes in LNCaP PCa cells and showed that DIM treatment led to epigenetic suppression of AR target genes involved in DNA repair (PARP1, MRE11, DNA-PK). Decreased expression of these genes was accompanied by an increase in repressive chromatin marks, loss of AR occupancy and EZH2 recruitment to their regulatory regions. Decreased DNA repair gene expression was associated with an increase in DNA damage (γH2Ax) and up-regulation of genomic repeat elements LINE1 and α-satellite. Our results suggest that DIM suppresses AR-dependent gene transcription through epigenetic modulation, leading to DNA damage and genome instability in PCa cells. Published by Elsevier Inc.

  15. Metabolic modulation of mammalian DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, T.J.

    1988-01-01

    First, ultraviolet light (UVL)- and dimethylsulfate (DMS)-induced excision repair was examined in quiescent and lectin-stimulated bovine lymphocytes. Upon mitogenic stimulation, UVL-induced repair increased by a factor of 2 to 3, and reached this maximum 2 days before the onset of DNA replication. However, DMS-induced repair increased sevenfold in parallel with DNA replication. Repair patch sizes were smaller for DMS-induced damage reflecting patches of 7 nucleotides in quiescent lymphocytes compared to 20 nucleotides induced by UVL. The patch size increased during lymphocyte stimulation until one day prior to the peak of DNA replication when patch sizes of 45 and 35 nucleotides were produced in response to UVL- and DMS-induced damage, respectively. At the peak of DNA replication, the patch sizes were equal for both damaging agents at 34 nucleotides. In the second study, a small amount of repair replication was observed in undamaged quiescent and concanavalin A-stimulated bovine lymphocytes as well as in human T98G glioblastoma cells. Repair incorporation doubled in the presence of hydroxyurea. Thirdly, the enhanced repair replication induced by the poly (ADP-ribose) polymerase inhibitor, 3-aminobenzamide, (3-AB), could not be correlated either with an increased rate of repair in the presence of 3-AB or with the use of hydroxyurea in the repair protocol. Finally, treatment of unstimulated lymphocytes with hyperthermia was accompanied by decreased repair replication while the repair patches remained constant at 20 nucleotides.

  16. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood.

    Directory of Open Access Journals (Sweden)

    Helen Budworth

    Full Text Available DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS. Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.

  17. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    Science.gov (United States)

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  18. Self-repair of cracks in brittle material systems

    Science.gov (United States)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  19. Impact of radiotherapy on PBMCs DNA repair capacity - Use of a multiplexed functional repair assay

    International Nuclear Information System (INIS)

    Sauvaigo, S.; Sarrazy, F.; Breton, J.; Caillat, S.; Chapuis, V.

    2012-01-01

    Radiation therapy is an essential part of cancer treatment as about 50% of patients will receive radiations at least once. Significant broad variation in radiosensitivity has been demonstrated in patients. About 5-10% of patients develop acute toxicity after radiotherapy. Therefore there is a need for the identification of markers able to predict the occurrence of adverse effects and thus adapt the radiotherapy regimen for radiosensitive patients. As a first step toward this goal, and considering the DNA repair defects associated with hypersensitivity radiation syndromes, we investigated the DNA repair phenotype of patients receiving radiotherapy. More precisely, we used a functional repair assay on support to follow the evolution of the glycosylases/AP endonuclease activities of PBMCs extracts of a series of patients during the time course of radiotherapy. For each patient, we collected one PBMCs sample before the first radiotherapy application (S1) and three samples after (S2 to S4) (one day and one week after application 1, and one at the end of the radiotherapy protocol). These four samples have been analysed for 11 donors. Clustering analyses of the results demonstrated a great heterogeneity of responses among the patients. Interestingly, this heterogeneity decreased between S1 and S4 where only 2 classes of patients remained if we except one patient that exhibited an atypical DNA repair phenotype. Furthermore, we showed that repair of several oxidized bases significantly increased between S1 and S3 or S4 (8oxoG, thymine glycol, A paired with 8oxoG), suggesting an adaptation of patients repair systems to the oxidative stress generated by the ionising radiations. Our preliminary results provided evidence that the DNA repair phenotype was impacted by the radiotherapy regimen. Further characterization of patients with known repair defects are needed to determine if atypical repair phenotypes could be associated with radiotherapy complications. Finally

  20. DNA Damage, Repair, and Cancer Metabolism

    Science.gov (United States)

    Turgeon, Marc-Olivier; Perry, Nicholas J. S.; Poulogiannis, George

    2018-01-01

    Although there has been a renewed interest in the field of cancer metabolism in the last decade, the link between metabolism and DNA damage/DNA repair in cancer has yet to be appreciably explored. In this review, we examine the evidence connecting DNA damage and repair mechanisms with cell metabolism through three principal links. (1) Regulation of methyl- and acetyl-group donors through different metabolic pathways can impact DNA folding and remodeling, an essential part of accurate double strand break repair. (2) Glutamine, aspartate, and other nutrients are essential for de novo nucleotide synthesis, which dictates the availability of the nucleotide pool, and thereby influences DNA repair and replication. (3) Reactive oxygen species, which can increase oxidative DNA damage and hence the load of the DNA-repair machinery, are regulated through different metabolic pathways. Interestingly, while metabolism affects DNA repair, DNA damage can also induce metabolic rewiring. Activation of the DNA damage response (DDR) triggers an increase in nucleotide synthesis and anabolic glucose metabolism, while also reducing glutamine anaplerosis. Furthermore, mutations in genes involved in the DDR and DNA repair also lead to metabolic rewiring. Links between cancer metabolism and DNA damage/DNA repair are increasingly apparent, yielding opportunities to investigate the mechanistic basis behind potential metabolic vulnerabilities of a substantial fraction of tumors. PMID:29459886

  1. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  2. Newly identified CHO ERCC3/XPB mutations and phenotype characterization

    Science.gov (United States)

    Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav

    2010-01-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  3. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Janet L Gibson

    Full Text Available Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR. We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.

  4. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    Science.gov (United States)

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases. Copyright © 2015. Published by Elsevier B.V.

  6. Revision Arthroscopic Repair Versus Latarjet Procedure in Patients With Recurrent Instability After Initial Repair Attempt: A Cost-Effectiveness Model.

    Science.gov (United States)

    Makhni, Eric C; Lamba, Nayan; Swart, Eric; Steinhaus, Michael E; Ahmad, Christopher S; Romeo, Anthony A; Verma, Nikhil N

    2016-09-01

    To compare the cost-effectiveness of arthroscopic revision instability repair and Latarjet procedure in treating patients with recurrent instability after initial arthroscopic instability repair. An expected-value decision analysis of revision arthroscopic instability repair compared with Latarjet procedure for recurrent instability followed by failed repair attempt was modeled. Inputs regarding procedure cost, clinical outcomes, and health utilities were derived from the literature. Compared with revision arthroscopic repair, Latarjet was less expensive ($13,672 v $15,287) with improved clinical outcomes (43.78 v 36.76 quality-adjusted life-years). Both arthroscopic repair and Latarjet were cost-effective compared with nonoperative treatment (incremental cost-effectiveness ratios of 3,082 and 1,141, respectively). Results from sensitivity analyses indicate that under scenarios of high rates of stability postoperatively, along with improved clinical outcome scores, revision arthroscopic repair becomes increasingly cost-effective. Latarjet procedure for failed instability repair is a cost-effective treatment option, with lower costs and improved clinical outcomes compared with revision arthroscopic instability repair. However, surgeons must still incorporate clinical judgment into treatment algorithm formation. Level IV, expected value decision analysis. Copyright © 2016. Published by Elsevier Inc.

  7. Two-Tunnel Transtibial Repair of Radial Meniscus Tears Produces Comparable Results to Inside-Out Repair of Vertical Meniscus Tears.

    Science.gov (United States)

    Cinque, Mark E; Geeslin, Andrew G; Chahla, Jorge; Dornan, Grant J; LaPrade, Robert F

    2017-08-01

    Radial meniscus tears disrupt the circumferential fibers and thereby compromise meniscus integrity. Historically, radial tears were often treated with meniscectomy because of an incomplete understanding of the biomechanical consequences of these tears, limited information regarding the biomechanical performance of repair, and the technical difficulty associated with repair. There is a paucity of studies on the outcomes of the repair of radial meniscus tears. Purpose/Hypothesis: The purpose was to determine the outcomes of 2-tunnel transtibial repair of radial meniscus tears and compare these results to the outcomes of patients who underwent the repair of vertical meniscus tears with a minimum of 2-year follow-up. The hypothesis was that radial and vertical meniscus tear repair outcomes were comparable. Cohort study; Level of evidence, 3. Patients who underwent 2-tunnel transtibial pullout repair for a radial meniscus tear were included in this study and compared with patients who underwent inside-out repair for a vertical meniscus tear. Subjective questionnaires were administered preoperatively and at a minimum of 2-year follow-up, including the Lysholm score, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the Short Form-12 (SF-12) physical component summary (PCS), the Tegner activity scale, and patient satisfaction. Analysis of covariance was used to compare postoperative outcome scores between the meniscus repair groups while accounting for baseline scores. Adjusted mean effects relative to the radial repair group were reported with 95% CIs. Twenty-seven patients who underwent 2-tunnel transtibial pullout repair for radial meniscus tears and 33 patients who underwent inside-out repair for vertical meniscus tears were available for follow-up at a mean of 3.5 years (range, 2.0-5.4 years). No preoperative outcome score significantly differed between the groups. There were no significant group differences for any of the 2-year

  8. Meniscal repair by fibrocartilage in the dog : Characterization of the repair tissue and the role of vascularity

    NARCIS (Netherlands)

    Veth, RPH; Jansen, HWB; Nielsen, HKL; deGroot, JH; Pennings, AJ; Kuijer, R

    Lesions in the avascular part of 20 canine menisci were repaired by implantation of a porous polyurethane. Seven menisci were not repaired and served as controls. The repair tissue was characterized by biochemical and immunological analysis. The role of vascularity in healing was studied by

  9. Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination.

    Science.gov (United States)

    Grigera, Fernando; Bellacosa, Alfonso; Kenter, Amy L

    2013-01-01

    Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2-5 despite concomitant reduction of MSH2. We show by comparison in Msh2(+/-) B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6-8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3' end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR.

  10. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling.

    Science.gov (United States)

    Nikolova, Teodora; Roos, Wynand P; Krämer, Oliver H; Strik, Herwig M; Kaina, Bernd

    2017-08-01

    Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O 6 -methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O 6 -chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    International Nuclear Information System (INIS)

    Yu, Shuangying; Tang, Song; Mayer, Gregory D.; Cobb, George P.; Maul, Jonathan D.

    2015-01-01

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  12. Systems analysis of transcriptional data provides insights into muscle's biological response to botulinum toxin.

    Science.gov (United States)

    Mukund, Kavitha; Mathewson, Margie; Minamoto, Viviane; Ward, Samuel R; Subramaniam, Shankar; Lieber, Richard L

    2014-11-01

    This study provides global transcriptomic profiling and analysis of botulinum toxin A (BoNT-A)-treated muscle over a 1-year period. Microarray analysis was performed on rat tibialis anterior muscles from 4 groups (n = 4/group) at 1, 4, 12, and 52 weeks after BoNT-A injection compared with saline-injected rats at 12 weeks. Dramatic transcriptional adaptation occurred at 1 week with a paradoxical increase in expression of slow and immature isoforms, activation of genes in competing pathways of repair and atrophy, impaired mitochondrial biogenesis, and increased metal ion imbalance. Adaptations of the basal lamina and fibrillar extracellular matrix (ECM) occurred by 4 weeks. The muscle transcriptome returned to its unperturbed state 12 weeks after injection. Acute transcriptional adaptations resemble denervated muscle with some subtle differences, but resolved more quickly compared with denervation. Overall, gene expression across time correlates with the generally accepted BoNT-A time course and suggests that the direct action of BoNT-A in skeletal muscle is relatively rapid. © 2014 Wiley Periodicals, Inc.

  13. 30 CFR 56.6801 - Vehicle repair.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Vehicle repair. 56.6801 Section 56.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Vehicle repair. Vehicles containing explosive material and oxidizers shall not be taken into a repair...

  14. Shuttle Repair Tools Automate Vehicle Maintenance

    Science.gov (United States)

    2013-01-01

    Successfully building, flying, and maintaining the space shuttles was an immensely complex job that required a high level of detailed, precise engineering. After each shuttle landed, it entered a maintenance, repair, and overhaul (MRO) phase. Each system was thoroughly checked and tested, and worn or damaged parts replaced, before the shuttle was rolled out for its next mission. During the MRO period, workers needed to record exactly what needed replacing and why, as well as follow precise guidelines and procedures in making their repairs. That meant traceability, and with it lots of paperwork. In 2007, the number of reports generated during electrical system repairs was getting out of hand-placing among the top three systems in terms of paperwork volume. Repair specialists at Kennedy Space Center were unhappy spending so much time at a desk and so little time actually working on the shuttle. "Engineers weren't spending their time doing technical work," says Joseph Schuh, an electrical engineer at Kennedy. "Instead, they were busy with repetitive, time-consuming processes that, while important in their own right, provided a low return on time invested." The strain of such inefficiency was bad enough that slow electrical repairs jeopardized rollout on several occasions. Knowing there had to be a way to streamline operations, Kennedy asked Martin Belson, a project manager with 30 years experience as an aerospace contractor, to co-lead a team in developing software that would reduce the effort required to document shuttle repairs. The result was System Maintenance Automated Repair Tasks (SMART) software. SMART is a tool for aggregating and applying information on every aspect of repairs, from procedures and instructions to a vehicle s troubleshooting history. Drawing on that data, SMART largely automates the processes of generating repair instructions and post-repair paperwork. In the case of the space shuttle, this meant that SMART had 30 years worth of operations

  15. Sequence homology and expression profile of genes associated with dna repair pathways in Mycobacterium leprae

    Directory of Open Access Journals (Sweden)

    Mukul Sharma

    2017-01-01

    Full Text Available Background: Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. Methods: T he genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%, 11 hypothetical proteins (18%, and 14 pseudogenes (23%. All these genes have homologs in M. tuberculosis and 49 (80.32% in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. leprae which was obtained from the signal intensities of 60bp probes, tiling the entire genome with 10bp overlaps. Results: It was noted that transcripts corresponding to all the 61 genes were identified in the transcriptome data with varying expression levels ranging from 0.18 to 2.47 fold (normalized with 16SrRNA. The mRNA expression levels of a representative set of seven genes ( four annotated and three hypothetical protein coding genes were analyzed using quantitative Polymerase Chain Reaction (qPCR assays with RNA extracted from skin biopsies of 10 newly diagnosed, untreated leprosy cases. It was noted that RNA expression levels were higher for genes involved in homologous recombination whereas the genes with a low level of expression are involved in the

  16. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  17. Chronic radiation-induced leukemogenesis: alterations of hematopoietic progenitor repair functions during preclinical phases

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.; Grdina, D.J.; Frazier, M.E.

    1987-01-01

    Chronic exposure to low daily doses of whole-body gamma irradiation elicits a high incidence of myeloid leukemia (ML) and related myeloproliferative diseases (MPD) in beagles. Previously, the authors identified and partially characterized a four-phase sequence of evolving MPD as a consequence of chronic radiation exposure. With a focus on preclinical alterations in granulocyte/monocyte-committed stem cells, they have identified two critical events in the process: (i) an early event, involving the coupling of acquired radioresistance of the stem cell with renewed proliferative capacity; and (ii) a late event, involving acquired autocrine functions and associated change in stem cell clonality. In terms of the early event, repair-associated parameters are currently being examined on the cellular level by both split-dose and low dose-rate-type assays with survival enhancement used as the measured end point. On the molecular level, these parameters are examined by microfluorometric alkaline elution assays with DNA damage and repair used as end points

  18. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    Science.gov (United States)

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  19. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  20. Snowmobile Repair. Teacher Edition.

    Science.gov (United States)

    Hennessy, Stephen S.; Conrad, Rex

    This teacher's guide contains 14 units on snowmobile repair: (1) introduction to snowmobile repair; (2) skis, front suspension, and steering; (3) drive clutch; (4) drive belts; (5) driven clutch; (6) chain drives; (7) jackshafts and axles; (8) rear suspension; (9) tracks; (10) shock absorbers; (11) brakes; (12) engines; (13) ignition and…

  1. Innovative repair of subsidence damage

    International Nuclear Information System (INIS)

    Marino, G.G.

    1992-01-01

    In order to improve handling of subsidence damages the Illinois Mine Subsidence Insurance Fund supported the development of novel cost-effective methods of repair. The research in developing the repairs was directed towards the most common and costly damages that had been observed. As a result repair techniques were designed for structurally cracked foundations in the tension zone; structurally cracked foundations in the compression zone; and damaged or undamaged tilted foundations. When appropriate the postulated methods would result in: 1. significant cost savings (over conventional procedures); 2. a structural capacity greater than when the foundation was uncracked; and 3. an aesthetic appeal. All the postulated repair methodologies were laboratory and/or field tested. This paper will summarize the essentials of each technique developed and the test results

  2. Analysis of circulating microRNAs in patients with repaired Tetralogy of Fallot with and without heart failure.

    Science.gov (United States)

    Abu-Halima, Masood; Meese, Eckart; Keller, Andreas; Abdul-Khaliq, Hashim; Rädle-Hurst, Tanja

    2017-07-10

    MicroRNAs (miRNAs) are a class of regulatory RNAs that regulate gene expression post-transcriptionally. Little, however, is known on the expression profile of circulating miRNAs in Tetralogy of Fallot (TOF) patients late after surgical repair. In this study, we aimed to identify the specific patterns of circulating miRNAs in blood of patients with repaired, non-syndromic TOF and to assess whether these specific miRNAs may be useful to differentiate patients with and without heart failure. SurePrint™ 8 × 60 K Human v16 miRNA arrays were used to determine miRNA expression profiles in 15 healthy controls and 37 patients after TOF repair of whom 3 had symptomatic right heart failure. The expression levels of selected miRNAs have been validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Enrichment analyses of altered miRNA expression were predicted using bioinformatic tools. Compared with healthy controls, a total of 49, 58 and 77 miRNAs were found to be significantly altered in TOF patients (TOF-all), TOF patients with (TOF-HF) and without symptomatic right heart failure (TOF-noHF) (>2.0-fold change, adjusted P < 0.05), respectively. Three miRNAs namely miR-181d-5p, miR-206 and miR-625-5p were validated by RT-qPCR in all TOF groups. The area under the receiver operating characteristic curve (AUC) for miR-181d-5p, miR-206 and miR-625-5p were 0.987, 0.993 and 0.769 in TOF-all and 0.990, 0.994 and 0.749 in TOF-noHF, respectively. Moreover, expression levels of miR-625-5p, miR-1233-3p and miR-421 were lower in TOF-HF compared to TOF-noHF (P = 0.012). Altered expression levels of circulating miRNAs were found in TOF patients late after surgical repair and are different to those seen in the right ventricular myocardium of infants with TOF. Expression levels of miR-421, miR-1233-3p and miR-625-5p are lower in TOF patients with symptomatic right heart failure and thus may indicate disease progression in these patients.

  3. Laparoscopic inguinal hernia repair: gold standard in bilateral hernia repair? Results of more than 2800 patients in comparison to literature.

    Science.gov (United States)

    Wauschkuhn, Constantin Aurel; Schwarz, Jochen; Boekeler, Ulf; Bittner, Reinhard

    2010-12-01

    Advantages and disadvantages of open and endoscopic hernia surgery are still being discussed. Until now there has been no study that evaluated the advantages and disadvantages of bilateral hernia repair in a large number of patients. Our prospectively collected database was analyzed to compare the results of laparoscopic bilateral with laparoscopic unilateral hernia repair. We then compared these results with the results of a literature review regarding open and laparoscopic bilateral hernia repair. From April 1993 to December 2007 there were 7240 patients with unilateral primary hernia (PH) and 2880 patients with bilateral hernia (5760 hernias) who underwent laparoscopic transabdominal preperitoneal patch plastic (TAPP). Of the 10,120 patients, 28.5% had bilateral hernias. Adjusted for the number of patients operated on, the mean duration of surgery for unilateral hernia repair was shorter than that for bilateral repair (45 vs. 70 min), but period of disability (14 vs. 14 days) was the same. Adjusted for the number of hernias repaired, morbidity (1.9 vs. 1.4%), reoperation (0.5 vs. 0.43%), and recurrence rate (0.63 vs. 0.42%) were similar for unilateral versus bilateral repair, respectively. The review of the literature shows a significantly shorter time out of work after laparoscopic bilateral repair than after the bilateral open approach. Simultaneous laparoscopic repair of bilateral inguinal hernias does not increase the risk for the patient and has an equal length of down time compared with unilateral repair. According to literature, recovery after laparoscopic repair is faster than after open simultaneous repair. Laparoscopic/endoscopic inguinal hernia repair of bilateral hernias should be recommended as the gold standard.

  4. The two faces of plan repair

    NARCIS (Netherlands)

    Van der Krogt, R.P.J.; De Weerdt, M.M.

    2004-01-01

    Plan repair has two faces. Alternately, a plan repair method looks like a planning method, or looks like a method that does exactly the opposite, i.e., removing actions from a plan. We propose a general framework for plan repair that shows the relation between these two alternating steps. Any plan

  5. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content.

    Science.gov (United States)

    Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles

    2014-04-23

    Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.

  6. Transcription Factor NF-κB: An Update on Intervention Strategies.

    Science.gov (United States)

    Panday, Arvind; Inda, Maria Eugenia; Bagam, Prathyusha; Sahoo, Malaya K; Osorio, Diana; Batra, Sanjay

    2016-12-01

    The nuclear factor (NF)-κB family of transcription factors are ubiquitous and pleiotropic molecules that regulate the expression of more than 150 genes involved in a broad range of processes including inflammation, immunity, cell proliferation, differentiation, and survival. The chronic activation or dysregulation of NF-κB signaling is the central cause of pathogenesis in many disease conditions and, therefore, NF-κB is a major focus of therapeutic intervention. Because of this, understanding the relationship between NF-κB and the induction of various downstream signaling molecules is imperative. In this review, we provide an updated synopsis of the role of NF-κB in DNA repair and in various ailments including cardiovascular diseases, HIV infection, asthma, herpes simplex virus infection, chronic obstructive pulmonary disease, and cancer. Furthermore, we also discuss the specific targets for selective inhibitors and future therapeutic strategies.

  7. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    Directory of Open Access Journals (Sweden)

    María Belén Federico

    2016-01-01

    Full Text Available Fanconi Anemia (FA is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs. FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  8. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    Science.gov (United States)

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  9. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  10. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    Britt, A.B.

    1996-01-01

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  11. Imaging of cartilage repair procedures

    International Nuclear Information System (INIS)

    Sanghvi, Darshana; Munshi, Mihir; Pardiwala, Dinshaw

    2014-01-01

    The rationale for cartilage repair is to prevent precocious osteoarthritis in untreated focal cartilage injuries in the young and middle-aged population. The gamut of surgical techniques, normal postoperative radiological appearances, and possible complications have been described. An objective method of recording the quality of repair tissue is with the magnetic resonance observation of cartilage repair tissue (MOCART) score. This scoring system evaluates nine parameters that include the extent of defect filling, border zone integration, signal intensity, quality of structure and surface, subchondral bone, subchondral lamina, and records presence or absence of synovitis and adhesions. The five common techniques of cartilage repair currently offered include bone marrow stimulation (microfracture or drilling), mosaicplasty, synthetic resorbable scaffold grafts, osteochondral allograft transplants, and autologous chondrocyte implantation (ACI). Complications of cartilage repair procedures that may be demonstrated on magnetic resonance imaging (MRI) include plug loosening, graft protuberance, graft depression, and collapse in mosaicplasty, graft hypertrophy in ACI, and immune response leading to graft rejection, which is more common with synthetic grafts and cadaveric allografts

  12. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    Science.gov (United States)

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  13. About the Collision Repair Campaign

    Science.gov (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  14. Composite Repair System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL has developed an innovative composite repair methodology known as the Composite Repair System (CRS). In this phase I effort, CRS is being developed for the...

  15. Vesicovaginal Fistula Repair During Pregnancy

    African Journals Online (AJOL)

    Vesicovaginal Fistula Repair During Pregnancy: A Case Report ... Abstract. We report a repair of Vesicovaginal fistula during pregnancy that was aimed at preventing another spontaneous ... practices that encourage teenage marriage and girl.

  16. Heterogenous mismatch-repair status in colorectal cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Veurink, Nynke; Holck, Susanne

    2014-01-01

    BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative......, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms. METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative....... CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification. VIRTUAL SLIDES: The virtual slide(s) for this article...

  17. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year.

    Science.gov (United States)

    Siclari, Alberto; Mascaro, Gennaro; Gentili, Chiara; Cancedda, Ranieri; Boux, Eugenio

    2012-03-01

    Bone marrow stimulation techniques in cartilage repair such as drilling are limited by the formation of fibrous to hyaline-like repair tissue. It has been suggested such techniques can be enhanced by covering the defect with scaffolds. We present an innovative approach using a polyglycolic acid (PGA)-hyaluronan scaffold with platelet-rich-plasma (PRP) in drilling. We asked whether (1) PRP immersed in a cell-free PGA-hyaluronan scaffold improves patient-reported 1-year outcomes for the Knee injury and Osteoarthritis Score (KOOS), and (2) implantation of the scaffold in combination with bone marrow stimulation leads to the formation of hyaline-like cartilage repair tissue. We reviewed 52 patients who had arthroscopic implantation of the PGA-hyaluronan scaffold immersed with PRP in articular cartilage defects of the knee pretreated with Pridie drilling. Patients were assessed by KOOS. At 9 months followup, histologic staining was performed in specimens obtained from five patients to assess the repair tissue quality. The KOOS subscores improved for pain (55 to 91), symptoms (57 to 88), activities of daily living (69 to 86), sports and recreation (36 to 70), and quality of life (38 to 73). The histologic evaluation showed a homogeneous hyaline-like cartilage repair tissue. The cell-free PGA-hyaluronan scaffold combined with PRP leads to cartilage repair and improved patient-reported outcomes (KOOS) during 12 months of followup. Histologic sections showed morphologic features of hyaline-like repair tissue. Long-term followup is needed to determine if the cartilage repair tissue is durable. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  18. Radiation damage and its repair in non-sporulating bacteria

    International Nuclear Information System (INIS)

    Moseley, B.E.B.

    1984-01-01

    A review is given of radiation damage and its repair in non-sporulating bacteria. The identification and measurement of radiation damage in the DNA of the bacteria after exposure to ultraviolet radiation and ionizing radiation is described. Measuring the extent of DNA repair and ways of isolating repair mutants are also described. The DNA repair mechanisms for UV-induced damage are discussed including photoreactivation repair, excision repair, post-replication recombination repair and induced error-prone repair. The DNA repair mechanisms for ionizing radiation damage are also discussed including the repair of both single and double-strand breaks. Other aspects discussed include the effects of growth, irradiation medium and recovery medium on survival, DNA repair in humans, the commercial use of UV and ionizing radiations and the future of ionizing irradiation as a food treatment process. (U.K.)

  19. Stochastic Modelling Of The Repairable System

    Directory of Open Access Journals (Sweden)

    Andrzejczak Karol

    2015-11-01

    Full Text Available All reliability models consisting of random time factors form stochastic processes. In this paper we recall the definitions of the most common point processes which are used for modelling of repairable systems. Particularly this paper presents stochastic processes as examples of reliability systems for the support of the maintenance related decisions. We consider the simplest one-unit system with a negligible repair or replacement time, i.e., the unit is operating and is repaired or replaced at failure, where the time required for repair and replacement is negligible. When the repair or replacement is completed, the unit becomes as good as new and resumes operation. The stochastic modelling of recoverable systems constitutes an excellent method of supporting maintenance related decision-making processes and enables their more rational use.

  20. A new incision for unilateral cleft lip repair developed using animated simulation of repair on computer

    Directory of Open Access Journals (Sweden)

    Sahay A

    2007-01-01

    Full Text Available Background: Unilateral cleft lip repair continues to leave behind some amount of dissatisfaction, as a scope for further improvement is always felt. Most surgeons do not like to deviate from the standard Millard′s/ triangular techniques, or their minor modifications, as no one likes to experiment on the face for fear of unfavourable outcomes. The computer can be utilized as a useful tool in the analysis and planning of surgery and new methods can be developed and attempted subsequently with greater confidence. Aim: We decided to see if an improved lip repair could be developed with the use of computers. Materials and Methods: Analysis of previous lip repairs was done to determine where an improvement was required. Movement of tissues, by simulating an ideal repair, using image warping software, on digital images of cleft lip was studied in animation sequences. A repair which could reproduce these movements was planned. A new incision emerged, which had combined the principles of Millard′s and Randall / Tennyson repairs, with additional features. The new method was performed on 30 cases. Conclusions: The results were encouraging as the shortcomings of these methods were minimized, and the advantages maximized.

  1. FOXO3 Transcription Factor Is Essential for Protecting Hematopoietic Stem and Progenitor Cells from Oxidative DNA Damage.

    Science.gov (United States)

    Bigarella, Carolina L; Li, Jianfeng; Rimmelé, Pauline; Liang, Raymond; Sobol, Robert W; Ghaffari, Saghi

    2017-02-17

    Accumulation of damaged DNA in hematopoietic stem cells (HSC) is associated with chromosomal abnormalities, genomic instability, and HSC aging and might promote hematological malignancies with age. Despite this, the regulatory pathways implicated in the HSC DNA damage response have not been fully elucidated. One of the sources of DNA damage is reactive oxygen species (ROS) generated by both exogenous and endogenous insults. Balancing ROS levels in HSC requires FOXO3, which is an essential transcription factor for HSC maintenance implicated in HSC aging. Elevated ROS levels result in defective Foxo3 -/- HSC cycling, among many other deficiencies. Here, we show that loss of FOXO3 leads to the accumulation of DNA damage in primitive hematopoietic stem and progenitor cells (HSPC), associated specifically with reduced expression of genes implicated in the repair of oxidative DNA damage. We provide further evidence that Foxo3 -/- HSPC are defective in DNA damage repair. Specifically, we show that the base excision repair pathway, the main pathway utilized for the repair of oxidative DNA damage, is compromised in Foxo3 -/- primitive hematopoietic cells. Treating mice in vivo with N -acetylcysteine reduces ROS levels, rescues HSC cycling defects, and partially mitigates HSPC DNA damage. These results indicate that DNA damage accrued as a result of elevated ROS in Foxo3 -/- mutant HSPC is at least partially reversible. Collectively, our findings suggest that FOXO3 serves as a protector of HSC genomic stability and health. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. 30 CFR 57.14104 - Tire repairs.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tire repairs. 57.14104 Section 57.14104 Mineral... Devices and Maintenance Requirements § 57.14104 Tire repairs. (a) Before a tire is removed from a vehicle for tire repair, the valve core shall be partially removed to allow for gradual deflation and then...

  3. 30 CFR 56.14104 - Tire repairs.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tire repairs. 56.14104 Section 56.14104 Mineral... Devices and Maintenance Requirements § 56.14104 Tire repairs. (a) Before a tire is removed from a vehicle for tire repair, the valve core shall be partially removed to allow for gradual deflation and then...

  4. Lichtenstein Mesh Repair (LMR) v/s Modified Bassini's Repair (MBR) + Lichtenstein Mesh Repair of Direct Inguinal Hernias in Rural Population - A Comparative Study.

    Science.gov (United States)

    Patil, Santosh M; Gurujala, Avinash; Kumar, Ashok; Kumar, Kuthadi Sravan; Mithun, Gorre

    2016-02-01

    Lichtenstein's tension free mesh hernioplasty is the commonly done open technique for inguinal hernias. As our hospital is in rural area, majority of patients are labourers, open hernias are commonly done. The present study was done by comparing Lichtenstein Mesh Repair (LMR) v/s Modified Bassini's repair (MBR) + Lichtenstein mesh repair (LMR) of direct Inguinal Hernias to compare the technique of both surgeries and its outcome like postoperative complications and recurrence rate. A comparative randomized study was conducted on patients reporting to MNR hospital, sangareddy with direct inguinal hernias. A total of fifty consecutive patients were included in this study of which, 25 patients were operated by LMR and 25 patients were operated by MBR+LMR and followed up for a period of two years. The outcomes of the both techniques were compared. Study involved 25 each of Lichtenstein's mesh repair (LMR) and modified bassini's repair (MBR) + LMR, over a period of 2 years. The duration of surgery for lichtenstein mesh repair is around 34.56 min compared to LMR+MBR, which is 47.56 min which was statistically significant (p-value is MBR group in POD 1, but not statistically significant (p-value is 0.0949) and from POD 7 the pain was almost similar in both groups. The recurrence rate is 2% for LMR and 0% for MBR+LMR. LMR+MBR was comparatively better than only LMR in all direct inguinal hernias because of low recurrence rate (0%) and low postoperative complications, which showed in our present study.

  5. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  6. Aging increases cell-to-cell transcriptional variability upon immune stimulation.

    Science.gov (United States)

    Martinez-Jimenez, Celia Pilar; Eling, Nils; Chen, Hung-Chang; Vallejos, Catalina A; Kolodziejczyk, Aleksandra A; Connor, Frances; Stojic, Lovorka; Rayner, Timothy F; Stubbington, Michael J T; Teichmann, Sarah A; de la Roche, Maike; Marioni, John C; Odom, Duncan T

    2017-03-31

    Aging is characterized by progressive loss of physiological and cellular functions, but the molecular basis of this decline remains unclear. We explored how aging affects transcriptional dynamics using single-cell RNA sequencing of unstimulated and stimulated naïve and effector memory CD4 + T cells from young and old mice from two divergent species. In young animals, immunological activation drives a conserved transcriptomic switch, resulting in tightly controlled gene expression characterized by a strong up-regulation of a core activation program, coupled with a decrease in cell-to-cell variability. Aging perturbed the activation of this core program and increased expression heterogeneity across populations of cells in both species. These discoveries suggest that increased cell-to-cell transcriptional variability will be a hallmark feature of aging across most, if not all, mammalian tissues. Copyright © 2017, American Association for the Advancement of Science.

  7. Ship Repair Workflow Cost Model

    National Research Council Canada - National Science Library

    McDevitt, Mike

    2003-01-01

    The effects of intermittent work patterns and funding on the costs of ship repair and maintenance were modeled for the San Diego region in 2002 for Supervisor of Shipbuilding and Repair (SUPSHIP) San Diego...

  8. Content-Related Repairing of Inconsistencies in Distributed Data

    Institute of Scientific and Technical Information of China (English)

    Yue-Feng Du; De-Rong Shen; Tie-Zheng Nie; Yue Kou; Ge Yu

    2016-01-01

    Conditional functional dependencies (CFDs) are a critical technique for detecting inconsistencies while they may ignore some potential inconsistencies without considering the content relationship of data. Content-related conditional functional dependencies (CCFDs) are a type of special CFDs, which combine content-related CFDs and detect potential inconsistencies by putting content-related data together. In the process of cleaning inconsistencies, detection and repairing are interactive: 1) detection catches inconsistencies, 2) repairing corrects caught inconsistencies while may bring new incon-sistencies. Besides, data are often fragmented and distributed into multiple sites. It consequently costs expensive shipment for inconsistencies cleaning. In this paper, our aim is to repair inconsistencies in distributed content-related data. We propose a framework consisting of an inconsistencies detection method and an inconsistencies repairing method, which work iteratively. The detection method marks the violated CCFDs for computing the inconsistencies which should be repaired preferentially. Based on the repairing-cost model presented in this paper, we prove that the minimum-cost repairing using CCFDs is NP-complete. Therefore, the repairing method heuristically repairs the inconsistencies with minimum cost. To improve the efficiency and accuracy of repairing, we propose distinct values and rules sequences. Distinct values make less data shipments than real data for communication. Rules sequences determine appropriate repairing sequences to avoid some incorrect repairs. Our solution is proved to be more effective than CFDs by empirical evaluation on two real-life datasets.

  9. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Student Manual.

    Science.gov (United States)

    Hamlin, Larry

    This document is a student manual for a general mechanical repair course. Following a list of common essential elements of trade and industrial education, the manual is divided into three sections. The first section, on minor automotive maintenance, contains 13 units: automotive shop safety; engine principles; fuel system operation and repair;…

  10. DNA repair in non-mammalian animals

    International Nuclear Information System (INIS)

    Mitani, Hiroshi

    1984-01-01

    Studies on DNA repair have been performed using microorganisms such as Escherichia coli and cultured human and mammalian cells. However, it is well known that cultured organic cells differ from each other in many respects, although DNA repair is an extremely fundamental function of organisms to protect genetic information from environmental mutagens such as radiation and 0 radicals developing in the living body. To answer the question of how DNA repair is different between the animal species, current studies on DNA repair of cultured vertebrate cells using the methods similar to those in mammalian experiments are reviewed. (Namekawa, K.)

  11. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  12. Repairing and Upgrading Your PC

    CERN Document Server

    Thompson, Robert

    2009-01-01

    Repairing and Upgrading Your PC delivers start-to-finish instructions, simple enough for even the most inexperienced PC owner, for troubleshooting, repairing, and upgrading your computer. Written by hardware experts Robert Bruce Thompson and Barbara Fritchman Thompson, this book covers it all: how to troubleshoot a troublesome PC, how to identify which components make sense for an upgrade, and how to tear it all down and put it back together. This book shows how to repair and upgrade all of your PC's essential components.

  13. Active Transcription of rRNA Operons Condenses the Nucleoid in Escherichia coli: Examining the Effect of Transcription on Nucleoid Structure in the Absence of Transertion | Center for Cancer Research

    Science.gov (United States)

    In Escherichia coli the genome must be compacted ∼1,000-fold to be contained in a cellular structure termed the nucleoid. It is proposed that the structure of the nucleoid is determined by a balance of multiple compaction forces and one major expansion force. The latter is mediated by transertion, a coupling of transcription, translation, and translocation of nascent membrane proteins and/or exported proteins.

  14. Couple interdependence impacts HIV-related health behaviours among pregnant couples in southwestern Kenya: a qualitative analysis.

    Science.gov (United States)

    Rogers, Anna Joy; Achiro, Lillian; Bukusi, Elizabeth A; Hatcher, Abigail M; Kwena, Zachary; Musoke, Pamela L; Turan, Janet M; Weke, Elly; Darbes, Lynae A

    2016-01-01

    HIV infection is frequently transmitted within stable couple partnerships. In order to prevent HIV acquisition in HIV-negative couples, as well as improve coping in couples with an HIV-positive diagnosis, it has been suggested that interventions be aimed at strengthening couple relationships, in addition to addressing individual behaviours. However, little is known about factors that influence relationships to impact joint decision-making related to HIV. We conducted qualitative in-depth interviews with 40 pregnant women and 40 male partners in southwestern Kenya, an area of high HIV prevalence. Drawing from the interdependence model of communal coping and health behaviour change, we employed thematic analysis methods to analyze interview transcripts in Dedoose software with the aim of identifying key relationship factors that could contribute to the development of a couples-based intervention to improve health outcomes for pregnant women and their male partners. In accordance with the interdependence model, we found that couples with greater relationship-centred motivations described jointly engaging in more health-enhancing behaviours, such as couples HIV testing, disclosure of HIV status, and cooperation to improve medication and clinic appointment adherence. These couples often had predisposing factors such as stronger communication skills and shared children, and were less likely to face potential challenges such as polygamous marriages, wife inheritance, living separately, or financial difficulties. For HIV-negative couples, joint decision-making helped them face the health threat of acquiring HIV together. For couples with an HIV-positive diagnosis, communal coping helped reduce risk of interspousal transmission and improve long-term health prospects. Conversely, participants felt that self-centred motivations led to more concurrent sexual partnerships, reduced relationship satisfaction, and mistrust. Couples who lacked interdependence were more likely to

  15. Stripped-down DNA repair in a highly reduced parasite

    Directory of Open Access Journals (Sweden)

    Fast Naomi M

    2007-03-01

    Full Text Available Abstract Background Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair. DNA repair is essential to any living cell. A loss of these mechanisms invariably results in accumulation of mutations and/or cell death. Six major pathways of DNA repair in eukaryotes include: non-homologous end joining (NHEJ, homologous recombination repair (HRR, mismatch repair (MMR, nucleotide excision repair (NER, base excision repair (BER and methyltransferase repair. DNA polymerases are also critical players in DNA repair processes. Given the close relationship between microsporidia and fungi, the repair mechanisms present in E. cuniculi were compared to those of the yeast Saccharomyces cerevisiae to ascertain how the process of genome reduction has affected the DNA repair pathways. Results E. cuniculi lacks 16 (plus another 6 potential absences of the 56 DNA repair genes sought via BLASTP and PSI-BLAST searches. Six of 14 DNA polymerases or polymerase subunits are also absent in E. cuniculi. All of these genes are relatively well conserved within eukaryotes. The absence of genes is not distributed equally among the different repair pathways; some pathways lack only one protein, while there is a striking absence of many proteins that are components of both double strand break repair pathways. All specialized repair polymerases are also absent. Conclusion Given the large number of DNA repair genes that are absent from the double strand break repair pathways, E. cuniculi is a prime candidate for the study of double strand break repair with minimal machinery. Strikingly, all of the

  16. Situation-dependent repair of DNA damage in yeast

    International Nuclear Information System (INIS)

    von Borstel, R.C.; Hastings, P.J.

    1985-01-01

    The concept of channelling of lesions in DNA into defined repair systems has been used to explain many aspects of induced and spontaneous mutation. The channelling hypothesis states that lesions excluded from one repair process will be taken up by another repair process. This is a simplification. The three known modes of repair of damage induced by radiation are not equivalent modes of repair; they are, instead, different solutions to the problem of replacement of damaged molecules with new molecules which have the same informational content as those that were damaged. The mode of repair that is used is the result of the response to the situation in which the damage takes place. Thus, when the most likely mode of repair does not take place, then the situation changes with respect to the repair of the lesion; the lesion may enter the replication fork and be reparable by another route

  17. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    Science.gov (United States)

    Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (plife cycle.

  18. Cost-effectiveness of endovascular repair, open repair, and conservative management of splenic artery aneurysms

    NARCIS (Netherlands)

    Hogendoorn, Wouter; Lavida, Anthi; Hunink, M. G Myriam; Moll, Frans L.; Geroulakos, George; Muhs, Bart E.; Sumpio, Bauer E.

    2015-01-01

    Objective Open repair (OPEN) and conservative management (CONS) have been the treatments of choice for splenic artery aneurysms (SAAs) for many years. Endovascular repair (EV) has been increasingly used with good short-term results. In this study, we evaluated the cost-effectiveness of OPEN, EV, and

  19. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB

    Science.gov (United States)

    Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana

    2013-01-01

    Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612

  20. Recent advances in DNA repair and recombination.

    Science.gov (United States)

    Iwanejko, L A; Jones, N J

    1998-09-11

    The subjects of the talks at this 1-day DNA Repair Network meeting, held at City University, London on December 15, 1997, encompassed a range of topics and reflected some of the current areas of research in the United Kingdom. Topics included DNA double-strand break repair, V(D)J recombination, DNA ligases, the RecQ family of helicases and Bloom's syndrome, UVB and immunosuppression, the repair of oxidative damage and mismatch repair mechanisms.

  1. Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA.

    Science.gov (United States)

    Scheibye-Knudsen, Morten; Tseng, Anne; Borch Jensen, Martin; Scheibye-Alsing, Karsten; Fang, Evandro Fei; Iyama, Teruaki; Bharti, Sanjay Kumar; Marosi, Krisztina; Froetscher, Lynn; Kassahun, Henok; Eckley, David Mark; Maul, Robert W; Bastian, Paul; De, Supriyo; Ghosh, Soumita; Nilsen, Hilde; Goldberg, Ilya G; Mattson, Mark P; Wilson, David M; Brosh, Robert M; Gorospe, Myriam; Bohr, Vilhelm A

    2016-11-01

    Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.

  2. Interaction of proliferating cell nuclear antigen with PMS2 is required for MutLα activation and function in mismatch repair.

    Science.gov (United States)

    Genschel, Jochen; Kadyrova, Lyudmila Y; Iyer, Ravi R; Dahal, Basanta K; Kadyrov, Farid A; Modrich, Paul

    2017-05-09

    Eukaryotic MutLα (mammalian MLH1-PMS2 heterodimer; MLH1-PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/β, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721 QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif ( 723 QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif ( 723 AKLIIP) with an exo1 Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell.

  3. Serum Bile Acids in Repaired Tetralogy of Fallot: A Marker for Liver and Heart?

    Science.gov (United States)

    Grangl, Gernot; Zöhrer, Evelyn; Köstenberger, Martin; Jud, Alexandra; Fauler, Günter; Scharnagl, Hubert; Stojakovic, Tatjana; Marterer, Robert; Gamillscheg, Andreas; Jahnel, Jörg

    2015-01-01

    Patients with repaired tetralogy of Fallot may develop chronic right ventricular dysfunction and hepatic congestion over time. We hypothesized that bile acid metabolism is altered in repaired tetralogy of Fallot patients and therefore sought to correlate right ventricular indices with serum bile acid levels. Indexed right ventricular end diastolic volume, as assessed by cardiac magnetic-resonance imaging, was classified as 150ml/m2 (Group 3, n = 6) in 29 patients with repaired tetralogy of Fallot. Pulmonary regurgitation fraction and right ventricular ejection fraction were calculated. The serum bile acid profile, including 15 species, in these patients was determined by liquid chromatography coupled with mass spectrometry. Serum bile acid levels increased from Group 1 to Group 3 (2.5 ± 0.7; 4.1 ± 2.5; 6.0 ± 2.8 μmol/l, respectively) with significantly increased bile acid values in Group 3 compared to Group 1 (p≤0.05). In Group 3, but not in Group 1 and 2, a significant increase in glycine-conjugated bile acids was observed. Pulmonary regurgitation fraction increased (12 ± 1; 28 ± 16; 43 ± 3%, Groups 1-3, respectively) and right ventricular ejection fraction decreased (48.4 ± 6.4; 48.5 ± 6.5; 42.1 ± 5.3%, Groups 1-3, respectively) with rising indexed right ventricular end diastolic volume. These preliminary results suggest that serum bile acid levels are positively correlated with indexed right ventricular end-diastolic volume in patients with repaired tetralogy of Fallot; however, this needs to be confirmed in a larger patient cohort.

  4. Laparoscopic hernia repair and bladder injury.

    Science.gov (United States)

    Dalessandri, K M; Bhoyrul, S; Mulvihill, S J

    2001-01-01

    Bladder injury is a complication of laparoscopic surgery with a reported incidence in the general surgery literature of 0.5% and in the gynecology literature of 2%. We describe how to recognize and treat the injury and how to avoid the problem. We report two cases of bladder injury repaired with a General Surgical Interventions (GSI) trocar and a balloon device used for laparoscopic extraperitoneal inguinal hernia repair. One patient had a prior appendectomy; the other had a prior midline incision from a suprapubic prostatectomy. We repaired the bladder injury, and the patients made a good recovery. When using the obturator and balloon device, it is important to stay anterior to the preperitoneal space and bladder. Prior lower abdominal surgery can be considered a relative contraindication to extraperitoneal laparoscopic hernia repair. Signs of gas in the Foley bag or hematuria should alert the surgeon to a bladder injury. A one- or two-layer repair of the bladder injury can be performed either laparoscopically or openly and is recommended for a visible injury. Mesh repair of the hernia can be completed provided no evidence exists of urinary tract infection. A Foley catheter is placed until healing occurs.

  5. Contact Dermatitis In Automobile Repair workers

    Directory of Open Access Journals (Sweden)

    Joshi M P

    1997-01-01

    Full Text Available Automobile repair workers are at risk of developing skin morbidity including occupational dermatoses because of their exposure to mineral oils, petroleum products and its derivatives and lubricating oil. This cross- sectional study was carried out at Maharashtra State Road Transport Corporation workshops in Nagpur city to investigate prevalence of skin morbidity including contact dermatitis in automobile repair workers. The study included 288 (49.9% automobile repair workers 180 (31.3% workshop office staff and 109 (18.8% divisional office employees. Dermatitis was the commonest skin morbidity in all the study subjects and it was significantly more prevalent in automobile repair workers. Folliculitis was detected in 13.2% of auto â€" repair workers and was not seen in the other two groups. Increasing trend of skin morbidity was correlated with the length of service of employees. Proper protective measures along with suitable washing facilities should be provided

  6. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  7. Exploiting global information in complex network repair processes

    Institute of Scientific and Technical Information of China (English)

    Tianyu WANG; Jun ZHANG; Sebastian WANDELT

    2017-01-01

    Robustness of complex networks has been studied for decades,with a particular focus on network attack.Research on network repair,on the other hand,has been conducted only very lately,given the even higher complexity and absence of an effective evaluation metric.A recently proposed network repair strategy is self-healing,which aims to repair networks for larger compo nents at a low cost only with local information.In this paper,we discuss the effectiveness and effi ciency of self-healing,which limits network repair to be a multi-objective optimization problem and makes it difficult to measure its optimality.This leads us to a new network repair evaluation metric.Since the time complexity of the computation is very high,we devise a greedy ranking strategy.Evaluations on both real-world and random networks show the effectiveness of our new metric and repair strategy.Our study contributes to optimal network repair algorithms and provides a gold standard for future studies on network repair.

  8. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription

    Science.gov (United States)

    Kang, Jian; Kusnadi, Eric P.; Ogden, Allison J.; Hicks, Rodney J.; Bammert, Lukas; Kutay, Ulrike; Hung, Sandy; Sanij, Elaine; Hannan, Ross D.; Hannan, Katherine M.; Pearson, Richard B.

    2016-01-01

    Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer. PMID:27385002

  9. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  10. Repair of traumatized mammalian hair cells via sea anemone repair proteins.

    Science.gov (United States)

    Tang, Pei-Ciao; Smith, Karen Müller; Watson, Glen M

    2016-08-01

    Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea. © 2016. Published by The Company of Biologists Ltd.

  11. DNA Damage Induced by Alkylating Agents and Repair Pathways

    Science.gov (United States)

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  12. Biochemical and immnulogical analysis of UV-induced photolesions

    International Nuclear Information System (INIS)

    Hoffen, A. van; Kalle, W.H.J.; Hazekamp, A.M.; Zeeland, A.A. van; Lohman, P.H.M.; Mullenders, L.H.F.

    1994-01-01

    The induction and removal of UV-induced photolesions was investigated in confluent human fibroblasts employing two different approaches. Photolyase and highly purified E. coli Uvr A,B and C proteins were used to measure the frequency of 6-4 photoproducts (6-4PP) in transcriptionally active and inactive genes. At a UV-dose range of 20-60 J/m 2 6-4PP were induced at about 4-fold lower frequency then cyclobutane pyrimidine dimers (CPD). In normal cells exposed to 30J/m 2 6-4PP were induced at about 4-fold lower frequency then cyclobutane pyrimidine dimers (CPD). In normal cells exposed to 30J/m 2 , the repair of 6-4PP was very rapid in both active and inactive genes when compared to CPD removal. No strand specific repair of 6-4PP in active genes was observed, although repair of 6-4PP occurred preferentially in the active genes when compared to inactive X-chromosomal genes. In xeroderma pigmentosum group C cells 6-4PP were selectively removed from the transcribed strand of active genes. In these cells the kinetics of repair of CPD and 6-4PP from the transcribed strand of active genes was very similar. Our results indicate that 6-4PP can be removed by a transcription coupled repair pathway, but that repair of 6-4PP by the global repair system is much more efficient. The sam conclusion can be drawn from studies aimed to determine BUdR labelled repair sites in genomic fragments. The results of these studies indicate a lack of strandspecific repair of 6-4 PP in active genes in normal cells at a relative low UV-dose of 10J/m 2

  13. PTMC in post-MV repair status

    Directory of Open Access Journals (Sweden)

    Lachikarathman Devegowda

    2016-09-01

    Full Text Available MV repair in the rheumatic population is feasible with acceptable long-term results.1 Incidence of mitral stenosis (MS following mitral valve (MV repair for severe rheumatic mitral regurgitation (MR and usefulness of percutaneous transluminal mitral valvuloplasty (PTMC in these patients is not described in literature. We report a case of successful PTMC in severe MS following MV repair for severe rheumatic MR.

  14. Hepatopancreaticobiliary Values after Thoracoabdominal Aneurysm Repair

    OpenAIRE

    Wu, Darrell; Coselli, Joseph S.; Johnson, Michael L.; LeMaire, Scott A.

    2014-01-01

    Background: After thoracoabdominal aortic aneurysm (TAAA) repair, blood tests assessing hepatopancreaticobiliary (HPB) organs commonly have abnormal results. The clinical significance of such abnormalities is difficult to determine because the expected postoperative levels have not been characterized. Therefore, we sought to establish expected trends in HPB laboratory values after TAAA repair. Methods: This 5-year study comprised 155 patients undergoing elective Crawford extent II TAAA repair...

  15. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    Science.gov (United States)

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  16. Patient selection, echocardiographic screening and treatment strategies for interventional tricuspid repair using the edge-to-edge repair technique.

    Science.gov (United States)

    Hausleiter, Jörg; Braun, Daniel; Orban, Mathias; Latib, Azeem; Lurz, Philipp; Boekstegers, Peter; von Bardeleben, Ralph Stephan; Kowalski, Marek; Hahn, Rebecca T; Maisano, Francesco; Hagl, Christian; Massberg, Steffen; Nabauer, Michael

    2018-04-24

    Severe tricuspid regurgitation (TR) has long been neglected despite its well known association with mortality. While surgical mortality rates remain high in isolated tricuspid valve surgery, interventional TR repair is rapidly evolving as an alternative to cardiac surgery in selected patients at high surgical risk. Currently, interventional edge-to-edge repair is the most frequently applied technique for TR repair even though the device has not been developed for this particular indication. Due to the inherent differences in tricuspid and mitral valve anatomy and pathology, percutaneous repair of the tricuspid valve is challenging due to a variety of factors including the complexity and variability of tricuspid valve anatomy, echocardiographic visibility of the valve leaflets, and device steering to the tricuspid valve. Furthermore, it remains to be clarified which patients are suitable for a percutaneous tricuspid repair and which features predict a successful procedure. On the basis of the available experience, we describe criteria for patient selection including morphological valve features, a standardized process for echocardiographic screening, and a strategy for clip placement. These criteria will help to achieve standardization of valve assessment and the procedural approach, and to further develop interventional tricuspid valve repair using either currently available devices or dedicated tricuspid edge-to-edge repair devices in the future. In summary, this manuscript will provide guidance for patient selection and echocardiographic screening when considering edge-to-edge repair for severe TR.

  17. Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    Science.gov (United States)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.

  18. Discrete time analysis of a repairable machine

    OpenAIRE

    Alfa, Attahiru Sule; Castro, I. T.

    2002-01-01

    We consider, in discrete time, a single machine system that operates for a period of time represented by a general distribution. This machine is subject to failures during operations and the occurrence of these failures depends on how many times the machine has previously failed. Some failures are repairable and the repair times may or may not depend on the number of times the machine was previously repaired. Repair times also have a general distribution. The operating times...

  19. Next-Generation Sequencing of Genomic DNA Fragments Bound to a Transcription Factor in Vitro Reveals Its Regulatory Potential

    Directory of Open Access Journals (Sweden)

    Yukio Kurihara

    2014-12-01

    Full Text Available Several transcription factors (TFs coordinate to regulate expression of specific genes at the transcriptional level. In Arabidopsis thaliana it is estimated that approximately 10% of all genes encode TFs or TF-like proteins. It is important to identify target genes that are directly regulated by TFs in order to understand the complete picture of a plant’s transcriptome profile. Here, we investigate the role of the LONG HYPOCOTYL5 (HY5 transcription factor that acts as a regulator of photomorphogenesis. We used an in vitro genomic DNA binding assay coupled with immunoprecipitation and next-generation sequencing (gDB-seq instead of the in vivo chromatin immunoprecipitation (ChIP-based methods. The results demonstrate that the HY5-binding motif predicted here was similar to the motif reported previously and that in vitro HY5-binding loci largely overlapped with the HY5-targeted candidate genes identified in previous ChIP-chip analysis. By combining these results with microarray analysis, we identified hundreds of HY5-binding genes that were differentially expressed in hy5. We also observed delayed induction of some transcripts of HY5-binding genes in hy5 mutants in response to blue-light exposure after dark treatment. Thus, an in vitro gDNA-binding assay coupled with sequencing is a convenient and powerful method to bridge the gap between identifying TF binding potential and establishing function.

  20. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    Science.gov (United States)

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  1. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.

    Science.gov (United States)

    Wong, J M; Ingles, C J

    2001-02-01

    Nucleotide excision repair is the major pathway responsible for removing UV-induced DNA damage, and is therefore essential for cell survival following exposure to UV radiation. In this report, we have assessed the contributions of some components of the RNA polymerase II (Pol II) transcription machinery to UV resistance in Saccharomyces cerevisiae. Deletion of the gene encoding the Pol II elongation factor TFIIS (SII) resulted in enhanced UV sensitivity, but only in the absence of global genome repair dependent on the RAD7 and RAD16 genes, a result seen previously with deletions of RAD26 and RAD28, yeast homologs of the human Cockayne syndrome genes CSB and CSA, respectively. A RAD7/16-dependent reduction in survival after UV irradiation was also seen in the presence of mutations in RNA Pol II that confer a defect in its response to SII, as well as with other mutations which reside in regions of the largest subunit of Pol II not involved in SII interactions. Indeed, an increase in UV sensitivity was achieved by simply decreasing the steadystate level of RNA Pol II. Truncation of the C-terminal domain and other RNA Pol II mutations conferred sensitivity to the ribonucleotide reductase inhibitor hydroxyurea and induction of RNR1 and RNR2 mRNAs after UV irradiation was attenuated in these mutant cells. That UV sensitivity can be a consequence of mutations in the RNA Pol II machinery in yeast cells suggests that alterations in transcriptional programs could underlie some of the pathophysiological defects seen in the human disease Cockayne syndrome.

  2. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  3. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  4. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  5. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  6. Multi-modal assessment of neurovascular coupling during cerebral ischaemia and reperfusion using remote middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Sutherland, Brad A; Fordsmann, Jonas C; Martin, Chris

    2017-01-01

    . Male Wistar rats were subjected to remote middle cerebral artery occlusion, where a long filament was advanced intraluminally through a guide cannula in the common carotid artery. Transcallosal stimulation evoked increases in blood flow, tissue oxygenation and neuronal activity, which were diminished...... that neurovascular dysfunction was not sustained. These data show for the first time that the rat remote middle cerebral artery occlusion model coupled with transcallosal stimulation provides a novel method for continuous assessment of hyperacute neurovascular coupling changes during ischaemia and reperfusion......Hyperacute changes in cerebral blood flow during cerebral ischaemia and reperfusion are important determinants of injury. Cerebral blood flow is regulated by neurovascular coupling, and disruption of neurovascular coupling contributes to brain plasticity and repair problems. However, it is unknown...

  7. Repair-misrepair model of cell survival

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.

    1980-01-01

    During the last three years a new model, the repair-misrepair model (RMR) has been proposed, to interpret radiobiological experiments with heavy ions. In using the RMR model it became apparent that some of its features are suitable for handling the effects produced by a variety of environmental agents in addition to ionizing radiation. Two separate sequences of events are assumed to take place in an irradiated cell. The first sequence begins with an initial energy transfer consisting of ionizations and excitations, culminating via fast secondary physical and chemical processes in established macromolecular lesions in essential cell structures. The second sequence contains the responses of the cell to the lesions and consists of the processes of recognition and molecular repair. In normal cells there exists one repair process or at most a few enzymatic repair processes for each essential macromolecular lesion. The enzymatic repair processes may last for hours and minutes, and can be separated in time from the initial physicochemical and later genetic phases

  8. Combining rhinoplasty with septal perforation repair.

    Science.gov (United States)

    Foda, Hossam M T; Magdy, Emad A

    2006-11-01

    A combined septal perforation repair and rhinoplasty was performed in 80 patients presenting with septal perforations (size 1 to 5 cm) and external nasal deformities. The external rhinoplasty approach was used for all cases and the perforation was repaired using bilateral intranasal mucosal advancement flaps with a connective tissue interposition graft in between. Complete closure of the perforation was achieved in 90% of perforations of size up to 3.5 cm and in only 70% of perforations that were larger than 3.5 cm. Cosmetically, 95% were very satisfied with their aesthetic result. The external rhinoplasty approach proved to be very helpful in the process of septal perforation repair especially in large and posteriorly located perforations and in cases where the caudal septal cartilage was previously resected. Our results show that septal perforation repair can be safely combined with rhinoplasty and that some of the routine rhinoplasty maneuvers, such as medial osteotomies and dorsal lowering, could even facilitate the process of septal perforation repair.

  9. Oxidative DNA damage & repair: An introduction.

    Science.gov (United States)

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Development and validation of predictive simulation model of multi-layer repair welding process by temper bead technique

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Miyasaka, Fumikazu; Mochizuki, Masahito; Tanaka, Manabu

    2015-01-01

    Stress corrosion cracking (SCC) has recently been observed in the nickel base alloy weld metal of dissimilar pipe joint used in pressurized water reactor (PWR) . Temper bead technique has been developed as one of repair procedures against SCC applicable in case that post weld heat treatment (PWHT) is difficult to carry out. In this regard, however it is essential to pass the property and performance qualification test to confirm the effect of tempering on the mechanical properties at repair welds before temper bead technique is actually used in practice. Thus the appropriate welding procedure conditions in temper bead technique are determined on the basis of the property and performance qualification testing. It is necessary for certifying the structural soundness and reliability at repair welds but takes a lot of work and time in the present circumstances. Therefore it is desirable to establish the reasonable alternatives for qualifying the property and performance at repair welds. In this study, mathematical modeling and numerical simulation procedures were developed for predicting weld bead configuration and temperature distribution during multi-layer repair welding process by temper bead technique. In the developed simulation technique, characteristics of heat source in temper bead welding are calculated from weld heat input conditions through the arc plasma simulation and then weld bead configuration and temperature distribution during temper bead welding are calculated from characteristics of heat source obtained through the coupling analysis between bead surface shape and thermal conduction. The simulation results were compared with the experimental results under the same welding heat input conditions. As the results, the bead surface shape and temperature distribution, such as A cl lines, were in good agreement between simulation and experimental results. It was concluded that the developed simulation technique has the potential to become useful for

  11. An Increase of Abundance and Transcriptional Activity for Acinetobacter junii Post Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Muhammad Raihan Jumat

    2018-04-01

    Full Text Available A membrane bioreactor (MBR-based wastewater treatment plant (WWTP in Saudi Arabia is assessed over a five-month period in 2015 and once in 2017 for bacterial diversity and transcriptional activity using metagenomics, metatranscriptomics and real time quantitative polymerase chain reaction (RT-qPCR. Acinetobacter spp. are shown to be enriched in the chlorinated effluent. Members of the Acinetobacter genus are the most abundant in the effluent and chlorinated effluent. At the species level, Acinetobacter junii have higher relative abundances post MBR and chlorination. RNA-seq analysis show that, in A. junii, 288 genes and 378 genes are significantly upregulated in the effluent and chlorinated effluent, respectively, with 98 genes being upregulated in both. RT-qPCR of samples in 2015 and 2017 confirm the upregulation observed in RNA-seq. Analysis of the 98 genes show that majority of the upregulated genes are involved in cellular repair and metabolism followed by resistance, virulence, and signaling. Additionally, two different subpopulations of A. junii are observed in the effluent and chlorinated effluent. The upregulation of cellular repair and metabolism genes, and the formation of different subpopulations of A. junii in both effluents provide insights into the mechanisms employed by A. junii to persist in the conditions of a WWTP.

  12. An Increase of Abundance and Transcriptional Activity for Acinetobacter junii Post Wastewater Treatment

    KAUST Repository

    Jumat, Muhammad; Haroon, Muhammad; Aljassim, Nada I.; Cheng, Hong; Hong, Pei-Ying

    2018-01-01

    A membrane bioreactor (MBR)-based wastewater treatment plant (WWTP) in Saudi Arabia is assessed over a five-month period in 2015 and once in 2017 for bacterial diversity and transcriptional activity using metagenomics, metatranscriptomics and real time quantitative polymerase chain reaction (RT-qPCR). Acinetobacter spp. are shown to be enriched in the chlorinated effluent. Members of the Acinetobacter genus are the most abundant in the effluent and chlorinated effluent. At the species level, Acinetobacter junii have higher relative abundances post MBR and chlorination. RNA-seq analysis show that, in A. junii, 288 genes and 378 genes are significantly upregulated in the effluent and chlorinated effluent, respectively, with 98 genes being upregulated in both. RT-qPCR of samples in 2015 and 2017 confirm the upregulation observed in RNA-seq. Analysis of the 98 genes show that majority of the upregulated genes are involved in cellular repair and metabolism followed by resistance, virulence, and signaling. Additionally, two different subpopulations of A. junii are observed in the effluent and chlorinated effluent. The upregulation of cellular repair and metabolism genes, and the formation of different subpopulations of A. junii in both effluents provide insights into the mechanisms employed by A. junii to persist in the conditions of a WWTP.

  13. An Increase of Abundance and Transcriptional Activity for Acinetobacter junii Post Wastewater Treatment

    KAUST Repository

    Jumat, Muhammad

    2018-04-11

    A membrane bioreactor (MBR)-based wastewater treatment plant (WWTP) in Saudi Arabia is assessed over a five-month period in 2015 and once in 2017 for bacterial diversity and transcriptional activity using metagenomics, metatranscriptomics and real time quantitative polymerase chain reaction (RT-qPCR). Acinetobacter spp. are shown to be enriched in the chlorinated effluent. Members of the Acinetobacter genus are the most abundant in the effluent and chlorinated effluent. At the species level, Acinetobacter junii have higher relative abundances post MBR and chlorination. RNA-seq analysis show that, in A. junii, 288 genes and 378 genes are significantly upregulated in the effluent and chlorinated effluent, respectively, with 98 genes being upregulated in both. RT-qPCR of samples in 2015 and 2017 confirm the upregulation observed in RNA-seq. Analysis of the 98 genes show that majority of the upregulated genes are involved in cellular repair and metabolism followed by resistance, virulence, and signaling. Additionally, two different subpopulations of A. junii are observed in the effluent and chlorinated effluent. The upregulation of cellular repair and metabolism genes, and the formation of different subpopulations of A. junii in both effluents provide insights into the mechanisms employed by A. junii to persist in the conditions of a WWTP.

  14. Endogenous DNA Damage and Repair Enzymes

    Directory of Open Access Journals (Sweden)

    Arne Klungland

    2016-06-01

    Full Text Available Tomas Lindahl completed his medical studies at Karolinska Institute in 1970. Yet, his work has always been dedicated to unraveling fundamental mechanisms of DNA decay and DNA repair. His research is characterized with groundbreaking discoveries on the instability of our genome, the identification of novel DNA repair activities, the characterization of DNA repair pathways, and the association to diseases, throughout his 40 years of scientific career.

  15. An apology for primary repair of tetralogy of Fallot.

    Science.gov (United States)

    Van Arsdell, Glen; Yun, Tae-Jin

    2005-01-01

    The first repair of tetralogy of Fallot (TOF) was 50 years ago, so it would seem that the details for optimal management strategies would be clear. Timing of repair and operative repair strategy for TOF are still a source of debate. Varying institutions have published excellent outcomes with a primary repair strategy or a selective staged repair strategy. In this article, the current and historic strategy for repair of TOF at the Hospital for Sick Children in Toronto is delineated along with associated outcomes. Data from our institution indicate a clear survival advantage for primary repair of TOF.

  16. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    International Nuclear Information System (INIS)

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung; Lee, Daeyoup

    2016-01-01

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  17. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hanna [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kwon, Chang Seob [Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 614-822 (Korea, Republic of); Choi, Yoonjung, E-mail: jjungii@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Daeyoup, E-mail: daeyoup@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-08-05

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.

  18. Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus? [v1; ref status: indexed, http://f1000r.es/TYJStu

    Directory of Open Access Journals (Sweden)

    Miriam Matamales

    2012-12-01

    Full Text Available Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.

  19. Monogenic diseases of DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bakula, Daniela; Scheibye-Knudsen, Morten

    2017-01-01

    Maintaining the stability of the genome is essential for all organisms, and it is not surprising that damage to DNA has been proposed as an explanation for multiple chronic diseases.1-5 Conserving a pristine genome is therefore of central importance to our health. To overcome the genotoxic stress...... of a growing number of human diseases. Notably, many of these monogenic DNA-repair disorders display features of accelerated aging, supporting the notion that genome maintenance is a key factor for organismal longevity. This review focuses on the physiological consequences of loss of DNA repair, particularly...... in the context of monogenic DNA-repair diseases....

  20. Radiation repair models for clinical application.

    Science.gov (United States)

    Dale, Roger G

    2018-02-28

    A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.