WorldWideScience

Sample records for repair sublethal radiation

  1. Repair of potentially lethal and sublethal radiation damage in x-irradiated ascites tumor cells

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Okamoto, Mieko; Tsuchiya, Takehiko.

    1985-01-01

    The ability of cells to repair cellular radiation damage during the growth of TMT-3 ascites tumor and the effect of host reaction on the repair ability were examined by using an in vitro assay of cell clonogenicity after in situ irradiation of tumor cells. In single-dose experiments, the repair of potentially lethal radiation damage (PLD) was observed in stationary phase cells (12-day tumor) of the unirradiated host, but not in exponential phase cells (3-day tumor) of the unirradiated host animals. However, if previously irradiated host animals were used, even the exponentially growing tumor cells showed repair of PLD. In two-dose experiments, the ability to repair sublethal radiation damage (SLD) in exponential phase tumor cells was less than that of stationary phase cells in the unirradiated host. In the pre-irradiated host, the extent of the repair in exponential phase cells was somewhat enhanced. These results suggest that irradiation of host animals might suppress a factor that inhibits repair, resulting in enhancement of the repair capability of tumor cells. (author)

  2. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; van de Geijn, J.; Goffman, T. (ROB, DCT, NCI, NIH, Bethesda, Maryland 20892 (US))

    1991-05-01

    In the conventional linear--quadratic model of single-dose response, the {alpha} and {beta} terms reflect lethal damage created {ital during} the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD.

  3. Extra lethal damage due to residual incompletely repaired sublethal damage in hyperfractionated and continuous radiation treatment

    International Nuclear Information System (INIS)

    Chen, J.; van de Geijn, J.; Goffman, T.

    1991-01-01

    In the conventional linear--quadratic model of single-dose response, the α and β terms reflect lethal damage created during the delivery of a dose, from two different presumed molecular processes, one linear with dose, the other quadratic. With the conventional one-fraction-per-day (or less) regimens, the sublethal damage (SLD), presumably repairing exponentially over time, is essentially completely fixed by the time of the next dose of radiation. If this assumption is true, the effects of subsequent fractions of radiation should be independent, that is, there should be little, if any, reversible damage left from previous fractions, at the time of the next dose. For multiple daily fractions, or for the limiting case, continuous radiation, this simplification may overlook damaged cells that have had insufficient time for repair. A generalized method is presented for accounting for extra lethal damage (ELD) arising from such residual SLD for hyperfractionation and continuous irradiation schemes. It may help to predict differences in toxicity and tumor control, if any, obtained with ''unconventional'' treatment regimens. A key element in the present model is the finite size and the dynamic character of the pool of sublethal damage. Besides creating the usual linear and quadratic components of lethal damage, each new fraction converts a certain fraction of the existing SLD into ELD, and creates some new SLD

  4. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  5. Kinetics and capacity of repair of sublethal damage in mouse lip mucosa during fractionated irradiations

    International Nuclear Information System (INIS)

    Ang, K.K.; Xu, F.X.; Landuyt, W.; van der Schueren, E.

    1985-01-01

    The kinetics and capacity of repair of sublethal damage in mouse lip mucosa have been investigated. To assess the rate of repair 2 and 5 irradiations have been given with intervals ranging from 1 to 24 hours. It was found that the sublethal damage induced by a dose of approximately 10 Gy was fully recovered in approximately 4 hr. After a dose of 5-6 Gy, cellular repair was completed within 3 hr. The half time of repair (T1/2) was estimated to be approximately 72 min for 10 Gy and approximately 54 min for 5-6 Gy. Although these results suggest that the rate of repair is dependent on the fraction size, the possible influence of the amount of repair of sublethal radiation damage with the various fraction sizes used can not be ruled out. To evaluate the capacity of repair, a single dose, 2, 4 and 10 fractions have been given in a maximal overall time of 3 days in order to minimize the influence of repopulation. The slope of the isoeffective curve was 0.32 and the alpha/beta ratio was 8.5 Gy. This indicates that the capacity of cellular repair of lip mucosa is similar to those of other rapidly proliferating tissues but smaller than those of late responding tissues. The results of the present and other studies demonstrate that there are considerable differences in the repair characteristics between acutely and late responding tissues. These features have to be dealt with when fractionation schedules are markedly altered

  6. Effect of set up time on sublethal repair in multifield fractionated radiotherapy

    International Nuclear Information System (INIS)

    Kehwar, T.S.; Beriwal, Sushil; Sharma, S.C.

    1998-01-01

    The sublethal repair between two doses given with a variable time interval for mammalian cells in tissue culture was first demonstrated successfully by Elkind and Sutton. Subsequently on the basis of concept of sublethal damage repair between fractions, the radio therapists and radio biologists realized that dose can be increased by increasing the small size fractions. This concept is successfully being used in modern radiotherapy

  7. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  8. A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair

    International Nuclear Information System (INIS)

    Huang, Zhibin; Mayr, Nina A.; Lo, Simon S.; Wang, Jian Z.; Jia Guang; Yuh, William T. C.; Johnke, Roberta

    2012-01-01

    Purpose: It has been conventionally assumed that the repair rate for sublethal damage (SLD) remains constant during the entire radiation course. However, increasing evidence from animal studies suggest that this may not the case. Rather, it appears that the repair rate for radiation-induced SLD slows down with increasing time. Such a slowdown in repair would suggest that the exponential repair pattern would not necessarily accurately predict repair process. As a result, the purpose of this study was to investigate a new generalized linear-quadratic (LQ) model incorporating a repair pattern with reciprocal time. The new formulas were tested with published experimental data. Methods: The LQ model has been widely used in radiation therapy, and the parameter G in the surviving fraction represents the repair process of sublethal damage with T r as the repair half-time. When a reciprocal pattern of repair process was adopted, a closed form of G was derived analytically for arbitrary radiation schemes. The published animal data adopted to test the reciprocal formulas. Results: A generalized LQ model to describe the repair process in a reciprocal pattern was obtained. Subsequently, formulas for special cases were derived from this general form. The reciprocal model showed a better fit to the animal data than the exponential model, particularly for the ED50 data (reduced χ 2 min of 2.0 vs 4.3, p = 0.11 vs 0.006), with the following gLQ parameters: α/β = 2.6-4.8 Gy, T r = 3.2-3.9 h for rat feet skin, and α/β = 0.9 Gy, T r = 1.1 h for rat spinal cord. Conclusions: These results of repair process following a reciprocal time suggest that the generalized LQ model incorporating the reciprocal time of sublethal damage repair shows a better fit than the exponential repair model. These formulas can be used to analyze the experimental and clinical data, where a slowing-down repair process appears during the course of radiation therapy.

  9. Sublethal damages: their nature and repair

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, A.S.; Synzynys, B.I.; Trofimova, S.F. (Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii, Obninsk (USSR)); Gotlib, V.Ya.; Pelevina, I.I. (AN SSSR, Moscow. Inst. Khimicheskoj Fiziki)

    1983-05-12

    The molecular nature of sublethal damage (SLD) arising after ionizing irradiation of cultured mammalian cells was considered on the basis of data on DNA repair and cell recovery after SLD observed in lymphosarcoma cells as well as of literature data. The rate of SLD recovery and that of restoration of the cell's ability to initiate DNA synthesis were shown to be similar in new replicons. These data along with knowledge about the role of exchange type chromosomal aberrations in reproductive death permitted us to propose the hypothesis that conformational changes of chromatine - most probably, relaxation of condensed chromosomal material - are damage registered as SLD at the cellular level. Double-strand breaks and a slowly repaired part of DNA single-strand breaks are candidates for SLD.

  10. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Yezzi, M.J.

    1985-01-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, was compared to the wild-type cell, CHO-SC1, in single- and split-radiation-dose schemes. When the cultures were incubated at 40 0 C for 2 hrs before a first dose and maintained at 40 0 C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal X-ray damage. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Distinct perturbations in the cell-cycle progression were noted following heat alone or heat with radiation. A delay in the progression of synchronized G 1 -phase and S-phase cells was demonstrated autoradiographically after inhibition of protein synthesis. In addition, treated S-phase cells showed a transient increase in the percent labelled cells after the cells were returned to their normal growth temperature of 35 0 C. This observation was suggestive of an unusual pattern of DNA synthesis during the recovery period. Split-dose experiments were done using incubation with cycloheximide to chemically inhibit protein synthesis. Both the chemical and thermal inhibition of protein synthesis substantiate its necessity for the repair of sublethal damage

  11. Repair of radiation damage of Micrococcus radioproteolyticus due to gamma and UV irradiation

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1982-01-01

    Cells were irradiated in dry state with gamma radiation and UV radiation. The post-irradiation warming of freeze dried cells (2 hours to 60deg or to 80deg) influenced the ability to repair sublethal damage. Heating to 80deg caused a mild reduction in survival. The repair of irradiated and heated cells required more time than that of cells which had only been irradiated. (M.D.)

  12. A new incomplete-repair model based on a ''reciprocal-time'' pattern of sublethal damage repair

    International Nuclear Information System (INIS)

    Dale, R.G.; Fowler, J.F.

    1999-01-01

    A radiobiological model for closely spaced non-instantaneous radiation fractions is presented, based on the premise that the time process of sublethal damage (SLD) repair is 'reciprocal-time' (second order), rather than exponential (first order), in form. The initial clinical implications of such an incomplete-repair model are assessed. A previously derived linear-quadratic-based model was revised to take account of the possibility that SLD may repair with time such that the fraction of an element of initial damage remaining at time t is given as 1/(1+zt), where z is an appropriate rate constant; z is the reciprocal of the first half-time (τ) of repair. The general equation so derived for incomplete repair is applicable to all types of radiotherapy delivered at high, low and medium dose-rate in fractions delivered at regular time intervals. The model allows both the fraction duration and interfraction intervals to vary between zero and infinity. For any given value of z, reciprocal repair is associated with an apparent 'slowing-down' in the SLD repair rate as treatment proceeds. The instantaneous repair rates are not directly governed by total dose or dose per fraction, but are influenced by the treatment duration and individual fraction duration. Instantaneous repair rates of SLD appear to be slower towards the end of a continuous treatment, and are also slower following 'long' fractions than they are following 'short' fractions. The new model, with its single repair-rate parameter, is shown to be capable of providing a degree of quantitative explanation for some enigmas that have been encountered in clinical studies. A single-component reciprocal repair process provides an alternative explanation for the apparent existence of a range of repair rates in human tissues, and which have hitherto been explained by postulating the existence of a multi-exponential repair process. The build-up of SLD over extended treatments is greater than would be inferred using a

  13. The effect of sublethal injury by heating, freezing, drying and gamma-radiation on the duration of the lag phase of Salmonella typhimurium

    International Nuclear Information System (INIS)

    Mackey, B.M.; Derrick, C.M.

    1982-01-01

    The duration of the lag phase of Salmonella typhimurium surviving heat, freezing, drying and gamma-radiation was used to indicate the time needed to repair sublethal injury. Following equivalent lethal treatments, heat and freeze-injured cells needed longer to repair than those injured by drying or gamma-radiation. Measurement of repair on membrane filters showed that in a heat-injured population having a lag time of 9 h, some individual cells needed up to 14 h to recover maximum tolerance to 3% NaCl. (author)

  14. Lethal and sublethal cellular injury in multifraction irradiation

    International Nuclear Information System (INIS)

    Withers, H.R.

    1975-01-01

    Work has been carried out on cellular injury in multifraction irradiation of mouse tissues and compared with similar work on human skin reported earlier by Dutreix et al (Eur. J. Cancer.; 9:159 (1973)). In agreement with Dutreix et al it is emphasized that the absolute amount of sublethal injury repaired per fractionation interval (Dsub(r)) is not as important to radiotherapists as the change in the amount repaired (ΔDsub(r)) when the dose-per-fraction is altered. It was found that although there is a critical divergence at low doses, the data for mouse tissues are similar to those previously given for human skin and support the conclusions: (i) That the capacity of many normal cells for accumulating and repairing sublethal radiation injury is probably not greatly different. (ii) That fixed exponents used for fraction number and time in iso-effect formulae are inaproporiate. At low doses-per-fraction, repair of sublethal injury is complete, or nearly so, and hence, additional fractionation of dose does not give appreciable additional sparing, whereas rapidly-regenerating tissues, due to the lengthening of overall time, would continue being spared by repopulation. (U.K.)

  15. Host defenses in experimental scrub typhus: effect of sublethal gamma radiation

    International Nuclear Information System (INIS)

    Kelly, D.J.

    1983-01-01

    The effect of sublethal gamma radiation on inbred mice chronically infected with scrub typhus rickettsiae was examined. Inbred mice which have been inoculated with Gilliam or Karp strain of Rickettsia tsutsugamushi by the subcutaneous route harbored the infection for at least one year. Irradiation of these animals at 12 or 52 weeks post inoculation at normally sublethal levels induced a significantly higher percentage of rickettsemic mice (recrudescence) than in the unirradiated similarly infected control animals. In addition, sublethal irradiation at 12 weeks also induced a quantitative increase in total rickettsiae. Homologous antibody titers to the rickettsiae were examined for five weeks following irradiation to determine the role of the humoral response in radiation induced recrudescence. Modification of recrudescence was investigated using radioprotective drugs. The expected results of this investigation supported the conclusion that the recrudescence of a chronic rickettsial infection in the appropriate host following immunological impairment due to battlefield or clinical exposure to gamma radiation can result in an acute, possibly lethal rickettsemia

  16. Radiation studies on sensitivity and repair of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Tracy Chuihsu Yang; Stampfer, M.R.; Tobias, C.A.

    1989-01-01

    The authors present results indicating that normal breast epithelial cells and fibroblasts respond to X-rays similarly, lacking significant repair of sublethal damage when 2 Gy was used as the conditioning dose. Epithelial cells from tumor and from parenchymal tissue peripheral to the tumor, however, did show an efficient repair of sublethal damage. The reasons for this difference is unknown. Heavy-ion studies suggest energetic carbon and neon particles can be more effective in killing normal and tumour cells. The RBE for normal cells, however, appeared to be slightly less than for tumor cells. The repair of sublethal damage in tumor cells was less for neon particles than for X-rays. These findings suggest that heavy ions might be more advantageous than X-rays in treating breast tumors. (author)

  17. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, H L [East Anglia Univ., Norwich (UK). School of Biological Sciences

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is.

  18. Effect of cell cycle stage, dose rate and repair of sublethal damage of radiation-induced apoptosis in F9 teratocarcinoma cells

    International Nuclear Information System (INIS)

    Langley, R.E.; Quartuccio, S.G.; Kennealey, P.T.

    1995-01-01

    There are at least two different models of cell death after treatment with ionizing radiation. The first is a failure to undergo sustained cell division despite metabolic survival, and we refer to this end point as open-quotes classical reproductive cell death.close quotes The second is a process that results in loss of cell integrity. This second category includes cellular necrosis as well as apoptosis. Earlier studies in our laboratory showed that the predominant mechanism of cell death for irradiated F9 cell is apoptosis, and there is no indication that these cells die by necrosis. We have therefore used cells of this cell line to reassess basic radiobiological principles with respect to apoptosis. Classical reproductive cell death was determined by staining colonies derived from irradiated cells and scoring colonies of less than 50 cells as reproductively dead and colonies of more than 50 cells as survivors. Cells that failed to produce either type of colony (detached from the plate or disintegrated) were scored as having undergone apoptosis. Using these criteria we found that the fraction of the radiation-killed F9 cells that died by apoptosis did not vary when cells were irradiated at different stages of the cell cycle despite large variations in overall survival. This suggests that the factors that influence radiation sensitivity throughout the cell cycle have an equal impact on apoptosis and classical reproductive cell death. There was no difference in cell survival between split doses and single doses of X rays, suggesting that sublethal damage repair is not a factor in radiation-induced apoptosis of F9 cells. Apoptosis was not affected by changes in dose rate in the range of 0.038-4.96 Gy/min. 48 refs., 6 figs., 1 tab

  19. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    International Nuclear Information System (INIS)

    Fletcher, H.L.

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is. (orig./AJ)

  20. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40 0 C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40 0 C for 2 hrs before a first dose and maintained at 40 0 C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G 1 -phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35 0 C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs

  1. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40/sub 0/C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40/sup 0/C for 2 hrs before a first dose and maintained at 40/sup 0/C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G/sub 1/-phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35/sup 0/C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs.

  2. Effect of sublethal gamma radiation on host defenses in experimental scrub typhus

    International Nuclear Information System (INIS)

    Kelly, D.J.; Rees, J.C.

    1986-01-01

    The effect of sublethal gamma radiation on inbred mice chronically infected with scrub typhus rickettsiae was examined. Inbred mice which were inoculated with the Gilliam or Karp strain of Rickettsia tsutsugamushi by the subcutaneous route harbored the infection for at least 1 year. Irradiation of these animals at 12 or 52 weeks postinoculation with normally sublethal levels induced a significantly higher percentage of rickettsemic mice (recrudescence) than was seen in the unirradiated, similarly infected control animals. In addition, sublethal irradiation at 12 weeks induced a quantitative increase in total rickettsiae. Homologous antibody titers to the rickettsiae were examined for 5 weeks after irradiation to determine the role of the humoral response in radiation-induced recrudescence. Unirradiated, infected mice showed consistent titers of about 320 throughout the 5-week observation period, and the titer was not affected by exposure of up to 500 rads of gamma radiation. Drug dose-dependent radioprotection and modification of recrudescence was noted in infected, irradiated mice treated with the antiradiation compound S-2-(3-aminopropylamino)ethyl phosphorothioic acid. The results of this investigation supported the conclusion that the recrudescence of a chronic rickettsial infection in the appropriate host after immunological impairment due to gamma radiation can result in an acute, possibly lethal rickettsemia

  3. Lethal effects of solar radiation in proficient and deficient bacteria in repair systems

    International Nuclear Information System (INIS)

    Sousa Neto, A. de.

    1980-01-01

    A study of the lethal action of solar radiation on strains of E.coli K12, proficient or deficient in repair systems, as well as the wild type strain gene products are involved in repair of damage induced by solar radiation. The inactivation of the various bacterial strains (normalized to a dose equivalent to radiation at a wavelength 254 nm) suggests that the more energetic wavelengths of the solar spectrum (290-320 nm) could be responsible for the primary damage that occurs in the DNA. The reduction in the shoulder of the survival curve in wild type strains in indicative of induction of sub-lethal damage in this region of the curve. Analysing solar inactivation curves of the bacterial strains (normalised by spore dosimetry) together with those of the same strains irradiated with UV at 254 nm, it was evident that 254 nm is not the ideal wavelength for comparison. This analysis also indicated that in addition to damage to DNA, other factors are involved in the solar radiation inactivation of wild type strains. (author)

  4. The suppressive effect of etoposide on recovery from sublethal radiation damage in Chinese hamster V 79 cells

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Shimada, Yuji; Kawamori, Jiro; Kamata, Rikisaburo

    1992-01-01

    The combined effect of radiation and etoposide on the survival of cultured Chinese hamster V 79 cells was investigated. Cells in exponential growth phase were treated with various combinations of radiation and etoposide. The surviving fraction was assessed by colony formation. Etoposide significantly reduced so-called shoulder width, as expressed in Dq (quasithreshold dose), of radiation survival curves. The reduction depended on the increase of etoposide concentrations, although steepening of slopes of exponentially regressing portions of the radiation survival curves was slight. Split dose experiments showed that cells did not recover from sublethal radiation damage in the presence of low concentration of etoposide, although they did recover from sublethal radiation damage under a drug free condition. The results show the suppressive effect of etoposide on recovery from sublethal radiation damage. The effect of a sequential combination of radiation and etoposide was also investigated. The effect was more marked when the interval between radiation and etoposide was shorter regardless of the sequence. (author)

  5. The effect of sub-lethal damage repair and exchange on the final slope of cell survival curves

    International Nuclear Information System (INIS)

    Carlone, M.C.; Wilkins, D.E.; Raaphorst, G.P.

    2003-01-01

    Full text: The Lea-Catcheside dose rate protraction factor, G, is the most widely used model to describe the effects of dose rate on cell survival. In the linear quadratic formalism, this factor modifies the beta component of cell killing; G is greatest for acute irradiations while vanishing at low dose rates. We have found a simple compartmental model that can derive the Lea-Catcheside function. This compartmental model clearly shows that the G function can only be derived using a little known assumption: the diminution of sub-lethal damage due to exchange of repairable lesions is negligible compared to that due to repair. This assumption was explicitly stated by Lea, but it does not appear to have been restated or verified since very early work on cell survival. The implication of this assumption is that sub-lethal damage can be modeled without considering exchange, which is evidenced by the fact that the G function does not contain parameters relating to exchange. By using a new model that fully accounts for repair and exchange of sublethal lesions, a cell survival expression that has a modified G function, but that retains the linear quadratic formalism, can be obtained. At low doses, this new model predicts linear-quadratic behavior, but the behavior gradually changes to mono-exponential at high doses, which is consistent with experimental observations. Modeling cell survival of well-known survival curves using the modified linear quadratic model shows statistically significant improvement in the fits to the cell survival data as compared to best fits obtained with the linear quadratic model. It is shown that these improvements in fits are due to a superior representation of the high dose region of the survival curve

  6. Repair of double-strand breaks in Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Burrell, A.D.; Dean, C.J.

    1975-01-01

    Micrococcus radiodurans has been shown to sustain double-strand breaks in its DNA after exposure to x-radiation. Following sublethal doses of x-rays (200 krad in oxygen or less), the cells were able to repair these breaks, and an intermediate fast-sedimenting DNA component seemed to be involved in the repair process

  7. Repair of radiation damage caused by cyclotron-produced neutrons

    International Nuclear Information System (INIS)

    Martins, B.I.

    1979-01-01

    Hall et al. present experimental data on repair of sublethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 60 Co γ rays. Hall and Kraljevic present experimental data on repair of potentially lethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 210 kVp x rays. These results of Hall et al. are very difficult to explain from basic concepts in radiobiology. Contrary to Rossi, these data do not support his thesis that repair of radiation damage is dose-dependent and linear energy transfer independent. Nor do these results meet the expectations of multitarget-single hit theory which would require dose-independent repair equal to n. The observation of the same extrapolation number for neutrons and for x rays is also surprising. From the point of view of radiotherapy, the doses of interest are about 140 rad for neutrons and about 300 rad for x rays. There are no data for repair of potentially lethal damage below 800 rad for x rays and 400 rad for neutrons. The difference in survival between single and split dose is negligible up to a total of about 600 rad of x rays or of neutrons. These data of Hall et al. therefore have little significance to radiotherapists and are an enigma to radiobiologists

  8. Repair of radiation injury by transplantation of hemopoietic tissue

    International Nuclear Information System (INIS)

    Smith, L.H.

    1978-01-01

    The following topics are discussed: endogenous repair of tissue by surviving cells; exogenous repair by transplantation of tissue from unirradiated donor; repair of hematopoietic tissue following sublethal exposure or exposure in the LD 1 to LD 100 range; early studies on regeneration of hematopoietic tissue in x-irradiated dogs by giving bone marrow; hypotheses as to how bone marrow injections result in regeneration of blood-forming tissue; effects of rat bone marrow transplants on survival of lethally irradiated mice; and effect of tissue transplants on dose-response curve

  9. Cells, targets, and molecules in radiation biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    Cellular damage and repair are discussed with regard to inactivation models, dose-effect curves and cancer research, repair relative to damage accumulation, potentially lethal damage, repair of potentially lethal vs. sublethal damage, cell killing and DNA damage due to nonionizing radiation, and anisotonicity vs. lethality due to nonionizing radiation. Other topics discussed are DNA damage and repair in cells exposed to ionizing radiation, kinetics of repair of single-strand DNA breaks, effects of actinomycin D on x-ray survival curve of hamster cells, misrepair and lethality, and perspective and prospects

  10. Effects of cytotoxic chemotherapeutic agents on split-dose repair in intestinal crypt cells

    International Nuclear Information System (INIS)

    Phillips, Theodore L.; Ross, Glenda Y.

    1997-01-01

    Purpose: Many cancer chemotherapeutic agents interact with radiation to enhance the amount of radiation damage observed in both tumor and normal tissues. It is important to predict this interaction and to determine the effect of drug on sublethal damage repair. To evaluate for effects in rapid renewing normal tissues, the intestinal crypt cell in vivo assay is an excellent one to employ. These studies investigate the effect of eleven cancer chemotherapeutic drugs on split-dose repair in the intestinal crypt cell of the mouse. Methods and Materials: LAF1 male mice, age 10-12 weeks, were exposed to whole-body irradiation with orthovoltage x-rays delivered as a single dose or as equally divided doses delivered with intervals between the two exposures of 2 to 24 h. In the experimental group, the cancer chemotherapeutic agent was administered intraperitoneally 2 h before the first radiation dose. At 3.6 days after the second irradiation, the mice were sacrificed; the jejunum was removed, fixed, and sectioned for light microscopy. The number of regenerating crypts were counted and corrected to represent the number of surviving cells per circumference. Results: Of the eleven drugs tested, only carmustine eliminated split-dose repair. Cisplatin delayed repair, and methotrexate caused marked synchronization obliterating the observation of split-dose repair. Conclusions: Most cytotoxic chemotherapeutic agents do not inhibit sublethal damage repair in intestinal crypt cells when given 2 h before the first radiation exposure. Absence of the initial increase in survival seen with split-dose radiation is noted with carmustine and high-dose methotrexate

  11. The effect of postirradiation holding at 22 degrees C on the repair of sublethal, potentially lethal and potentially neoplastic transforming damage in gamma-irradiated HeLa x skin fibroblast human hybrid cells

    International Nuclear Information System (INIS)

    Redpath, J.L.; Antoniono, R.J.; Mendonca, M.S.; Sun, C.

    1994-01-01

    The effect of postirradiation holding at 22 degrees C on cell growth, progression of cells through the cell cycle, and the repair of sublethal, potentially lethal and potentially neoplastic transforming damage in γ-irradiated HeLa x skin fibroblast human hybrid cells has been examined. Cell growth and cell cycle progression were essentially stopped at this reduced temperature. Cell survival was dramatically reduced by holding confluent cultures for 6 h at 22 degrees C, as opposed to 37 degrees C, after 7.5 Gy γ radiation delivered at a rate of 2 Gy/min. Return of the cells to 37 degrees C for 6 h after holding at 22 degrees C did not result in increased survival. A similar effect was obtained when the cells were held at 22 degrees C between split-dose irradiation of log-phase cultures where no increase in survival was observed over a split-dose interval of 4 h. In this case a partial increase in survival was observed upon returning the cells to 37 degrees C for 3 h after holding at 22 degrees C for the first 3 h of the split-dose interval. Neoplastic transformation frequency was not enhanced by holding confluent cultures for 6 h at 22 degrees C after 7.5 Gy γ radiation. This is consistent with previous observations that misrepair of potentially neoplastic transforming damage already occurs at 37 degrees C. The overall results are interpreted in terms of the reduced temperature favoring misrepair, rather than inhibition of repair, of sublethal, potentially lethal and potentially transforming radiation damage. 24 refs., 5 figs., 3 tabs

  12. A linear-quadratic model of cell survival considering both sublethal and potentially lethal radiation damage

    International Nuclear Information System (INIS)

    Rutz, H.P.; Coucke, P.A.; Mirimanoff, R.O.

    1991-01-01

    The authors assessed the dose-dependence of repair of potentially lethal damage in Chinese hamster ovary cells x-irradiated in vitro. The recovery ratio (RR) by which survival (SF) of the irradiated cells was enhanced increased exponentially with a linear and a quadratic component namely ζ and ψ: RR=exp(ζD+ψD 2 ). Survival of irradiated cells can thus be expressed by a combined linear-quadratic model considering 4 variables, namely α and β for the capacity of the cells to accumulate sublethal damage, and ζ and ψ for their capacity to repair potentially lethal damage: SF=exp((ζ-α)D+ (ψ-β)D 2 ). author. 26 refs.; 1 fig.; 1 tab

  13. Effect of sublethal levels of ionizing radiation on a predator-prey interaction

    International Nuclear Information System (INIS)

    Chee, P.C.

    1976-01-01

    The predator-prey interaction studied was that between the largemouth bass (Micropterus salmoides) and the fathead minnow (Pimephales promelas) in an artificial test environment. Experiments were first conducted to determine the 50% lethal dose at 30 days of the minnow. Three different dose rates were used to test the effect of dose rate on the 50% lethal dose value. After the 50% lethal dose was determined the predator-prey interaction experiment was conducted using 30% of the 50% lethal dose as the highest radiation dose, this dose being considered the upper limit to sublethal radiation levels. A 4 x 4 Latin square design was chosen for the experiment, with four treatment levels (control plus three radiation levels) and four replicates. In each test 10 prey minnow were offered to one predator bass and the number of prey left after 14 days was the parameter of interest. A predator-prey interaction experiment using a single high level of radiation and two types of controls as conducted to ascertain the ability of the test environment to detect changes in the predator-prey interaction. The two types of controls were irradiated prey not exposed to predation and non-irradiated prey exposed to predation. An experiment was also conducted to test the correlation between the physical activity patterns of minnow and different doses of radiation. At a dose rate of 37.8 rad/min the 50% lethal dose at 30 days for minnow was found to be 2650 rad. It was found that dose rate had a strong influence on the 50% lethal dose. In the predator-prey interaction test it was found that the 14-day survival rate of prey was unaffected by sublethal levels of ionizing radiation. No significant correlation was detected between the physical activity patterns of minnow and radiation dose

  14. Protein synthesis and sublethal damage repair in synchronized CHO cells

    International Nuclear Information System (INIS)

    Yezzi, M.J.; Tobias, C.A.; Blakely, E.A.

    1984-01-01

    The authors have previously reported that the split dose survival response to x-rays of asynchronous CHO-TSH1 cells is reduced if the cells are held at 40 0 C,a temperature that inhibits protein synthesis, for 2 hours before the first dose and during a 2-hour interval between doses. In conjunction with the survival experiments on asynchronous cells, the authors also examined the DNA rejoining ability in split dose studies with and without inhibition of protein synthesis. The results of these experiments suggest that inhibition of protein synthesis affects a pool of proteins that are necessary for the correct expression of the DNA, although they do not appear to be involved in rejoining DNA breaks. They have extended this work to the study of cells synchronized in G1 phase (2 hour post-mitosis) and S phase (10 hour post-mitosis). Autoradiographic analyses, using 3H-TdR pulse labeling, demonstrated that a delay in the progression of each synchronized cell population occurs after inhibition of protein synthesis. Data are reported on the effects of inhibition of protein synthesis on the ability of G1 and S phase cells to repair sublethal damage

  15. Radiation repair models for clinical application.

    Science.gov (United States)

    Dale, Roger G

    2018-02-28

    A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.

  16. Radiobiological basis of total body irradiation with different dose rate and fractionation: repair capacity of hemopoietic cells

    International Nuclear Information System (INIS)

    Song, C.W.; Kim, T.H.; Khan, F.M.; Kersey, J.H.; Levitt, S.H.

    1981-01-01

    Total body irradiation (TBI) followed by bone marrow transplantation is being used in the treatment of malignant or non-malignant hemopoietic disorders. It has been believed that the ability of hemopoietic cells to repair sublethal radiation damage is negligible. Therefore, several schools of investigators suggested that TBI in a single exposure at extremely low dose rate (5 rad/min) over several hours, or in several fractions in 2-3 days, should yield a higher therapeutic gain, as compared with a single exposure at a high dose rate (26 rad/min). We reviewed the existing data in the literature, in particular, the response of hemopoietic cells to fractionated doses of irradiation and found that the repair capacity of both malignant and non-malignant hemopoietic cells might be greater than has been thought. It is concluded that we should not underestimate the ability of hemopoietic cells to repair sublethal radiation damage in using TBI

  17. Radiation damage and its repair in non-sporulating bacteria

    International Nuclear Information System (INIS)

    Moseley, B.E.B.

    1984-01-01

    A review is given of radiation damage and its repair in non-sporulating bacteria. The identification and measurement of radiation damage in the DNA of the bacteria after exposure to ultraviolet radiation and ionizing radiation is described. Measuring the extent of DNA repair and ways of isolating repair mutants are also described. The DNA repair mechanisms for UV-induced damage are discussed including photoreactivation repair, excision repair, post-replication recombination repair and induced error-prone repair. The DNA repair mechanisms for ionizing radiation damage are also discussed including the repair of both single and double-strand breaks. Other aspects discussed include the effects of growth, irradiation medium and recovery medium on survival, DNA repair in humans, the commercial use of UV and ionizing radiations and the future of ionizing irradiation as a food treatment process. (U.K.)

  18. Radiosensitivity and repair capacity of two xenografted human soft tissue sarcomas to photons and fast neutrons

    International Nuclear Information System (INIS)

    Budach, V.; Stuschke, M.; Budach, W.; Krause, U.; Streffer, C.; Sack, H.

    1989-01-01

    The radiation response, the relative biological effectiveness (RBE) and sublethal damage repair of two xenografted human soft tissue sarcomas after single doses and fractionated irradiation with 60 Co and 5.8 MeV fast neutrons are presented. (author)

  19. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  20. Radiopotentiation by the oral platinum agent, JM216: role of repair inhibition

    International Nuclear Information System (INIS)

    Amorino, George P.; Freeman, Michael L.; Carbone, David P.; Lebwohl, David E.; Choy, Hak

    1999-01-01

    Purpose: To test for in vitro radiopotentiation by the orally-administered platinum (IV) complex, JM216; to compare these results to cisplatin and carboplatin; and to investigate whether the mechanism of radiopotentiation involves repair inhibition of radiation-induced DNA damage. Methods and Materials: H460 human lung carcinoma cells were incubated with the drugs for 1 h at 37 deg. C, irradiated at room temperature, and returned to 37 deg. C for 20 min. Cells were then rinsed and colony forming ability was assessed. Wild-type V79 Chinese hamster cells and radiosensitive, DNA repair-deficient mutant cells (XR-V15B) were also studied along with H460 cells. Ku86 cDNA, which encodes part of a protein involved in DNA repair, was transfected into XR-V15B cells as previously described. The effect of JM216 on sublethal damage repair (SLDR) was also assessed using split-dose recovery. Results: Using equally cytotoxic doses of JM216, cisplatin, and carboplatin, the radiation dose enhancement ratios (DER) were 1.39, 1.31, and 1.20, respectively; the DER with 20 μM JM216 was 1.57. JM216 (20 μM) did not significantly change the final slope of radiation survival curves, but greatly reduced the survival curve shoulder. V79 cells also showed radioenhancement using 20 μM JM216, but no enhancement occurred using XR-V15B cells. Transfection of Ku86 cDNA into XR-V15B cells restored radiopotentiation by JM216 to wild-type V79 levels. In addition, 20 μM JM216 completely inhibited sublethal damage repair in H460 cells. Conclusion: Our results show that JM216 can potentiate the effects of radiation in human lung cancer cells, and that the mechanism of this effect is probably inhibition of DNA repair by JM216

  1. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  2. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  3. DNA repair related to radiation therapy

    International Nuclear Information System (INIS)

    Klein, W.

    1979-01-01

    The DNA excision repair capacity of peripheral human lymphocytes after radiation therapy has been analyzed. Different forms of application of the radiation during the therapy have been taken into account. No inhibition of repair was found if cells were allowed a certain amount of accomodation to radiation, either by using lower doses or longer application times. (G.G.)

  4. Repair of gamma radiation damage in wild type and a radiation sensitive mutant of Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Mizuma, Nagayo

    1989-01-01

    In an effort to examine production and repair of radiation-induced single and double strand breaks in the DNA, a repair-deficient wild type and a repair-deficient mutant, UV17, of Deinococcus radiodurans were subjected to Co-60 gamma irradiation at a dose rate of 6.3 kGy/hr for wild type and 3.9 kGy/hr for UV17 mutant. The shoulder of the curve of UV17 mutant was narrow but existed with the intercept of 0.7 kGy and the corresponding value of the wild type was 4.2 kGy. Mutant cells exhibited about 6 fold increases in sensitivity for the shoulder relative to the wild type. The D 37 doses in the wild type and the mutant were 0.57 kGy and 0.25 kGy, respectively. From the survival curves, difference in the sensitivity between two strains was mainly due to difference of repair capacity than the number of radiation sensitive target. Sedimentation rate of the main component in the irradiated cells of UV17 mutant increased almost to the level of unirradiated control by the postincubation at 30deg C for 3 hrs. The results indicated that this sensitive mutant also exhibited an ability to restore single strand breaks after exposure to a sublethal dose of 0.6 kGy. When restitution of double strand breaks was analyzed by sedimentation in a neutral sucrose gradient, the wild type showed restitution to DNA-membrane complex from large part of the breaks. For UV17 mutant, the apparent increase in DNA-membrane complex formation was seen after 3 hours incubation. Large part of the decrease in the activities of peak 2 was recovered in the peak 1 for the wild type. For the mutant, there was little restitution to peak 1. Almost free DNA component in UV17 mutant, therefore, was merely degraded into shorter pieces. Restoration of DNA-membrane complex from free DNA derived from gamma-ray induced double strand scission involved closely in the repair of gamma-induced damage and survival. (N.K.)

  5. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  6. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  7. Hematologic status of mice submitted to sublethal total body irradiation with mixed neutron-gamma radiation

    International Nuclear Information System (INIS)

    Herodin, F.; Court, L.

    1989-01-01

    The hematologic status of mice exposed to sublethal whole body irradiation with mixed neutron-gamma radiation (mainly neutrons) is studied. A slight decrease of the blood cell count is still observed below 1 Gy. The recovery of bone marrow granulocyte-macrophage progenitors seems to require more time than after pure gamma irradiation [fr

  8. Combined effects of hyperthermia and radiation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Ben-Hur, E.; Elkind, M.M.; Riklis, E.

    1977-01-01

    Hyperthermia (temperatures of 39 0 C or higher) enhances the killing of mammalian cells by ionizing radiation (fission-spectrum neutrons and x-rays). The nature and the magnitude of the enhanced radiation killing varies with temperature and for a fixed temperature during irradiation, the enhanced lethality varies inversely with dose rate. For temperatures up to 41 0 C, dose fractionation measurements indicate that hyperthermia inhibits the repair of sublethal damage. At higher temperatures, the expression of potentially lethal damage is enhanced. Since the effect of heat is greatest in cells irradiated during DNA synthesis, the radiation age-response pattern is flattened by hyperthermia. In addition to the enhanced cell killing described above, three other features of the effect of hyperthermia are important in connection with the radiation treatment of cancer. The first is that heat selectively sensitizes S-phase cells to radiation. The second is that it takes radiation survivors 10 to 20 hrs after a modest heat treatment to recover their ability to repair sublethal damage. And the third is that hyperthermia reduces the magnitude of the oxygen enhancement ratio. Thus, heat if applied selectively, could significantly increase the margin of damage between tumors and normal tissues

  9. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    affected DEGs associated with cellular signaling and immune response; 70 mGy radiation affected cell cycle regulation and DNA damage repair, cellular energy production; and 280 mGy radiation affected pathways related to cell cycle regulation and DNA repair, mitochondrial dysfunction and immune functions. Twelve genes representative of key pathways found in this study were verified by qPCR. Potential common MoAs of low-dose gamma radiation may include induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation (OXPHOS). Although common MoAs were proposed, a number of DEGs and pathways were still found to be dose-specific, potentially indicating multiple mechanisms of action (MOAs) of low-dose gamma radiation in fish. In addition, plasma glucose displayed an apparent increase with increasing radiation doses, although the results were not significantly different from the control. These findings suggested that sublethal doses of gamma radiation may cause dose-dependent transcriptional changes in the liver of Atlantic salmon after short-term exposure. The current study predicted multiple MoA for gamma radiation and may aid future impact assessment of environmental radioactivity in fish.

  10. Repair during multifraction exposures: spheroids versus monolayers

    International Nuclear Information System (INIS)

    Durand, R.E.

    1984-01-01

    Many type of mammalian cells, when grown in culture as multicell spheroids, display an increased ability to accumulate and repair sublethal radiation damage which has been called the ''contact effect''. Since this effect has the potential to markedly modify the multifraction radiation response of cells in V79 spheroids relative to cells in monolayer cultures, an investigation was made of regimens ranging from 1 to 100 fractions. Effective dose rates were chosen near 1 Gy h -1 to inhibit cell progression and thus simplify analysis of the results. As expected, larger doses per fraction produced more net cell killing in both systems than lower doses per fraction. Additionally, less killing of spheroid cells was observed in all regimens, in accord with their greater potential for repair. However, when the data were expressed as isoeffect curves, the spheroid and monolayer curves converged as the number of fractions increased. Thus, quite similar inherent sensitivity and repair capabilities would be predicted for ultra-low doses per fraction. High precision techniques for defining survival after doses of radiation from 0.2 to 1 Gy were, however, still able to demonstrate a survival advantage for cells grown as spheroids. (author)

  11. Lethal effects of solar radiation in proficient and deficient bacteria in repair systems; Efeitos letais da luz solar em bacterias proficientes e deficientes em reparos: acoes e interacoes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa Neto, A de

    1981-12-31

    A study of the lethal action of solar radiation on strains of E.coli K12, proficient or deficient in repair systems, as well as the wild type strain gene products are involved in repair of damage induced by solar radiation. The inactivation of the various bacterial strains (normalized to a dose equivalent to radiation at a wavelength 254 nm) suggests that the more energetic wavelengths of the solar spectrum (290-320 nm) could be responsible for the primary damage that occurs in the DNA. The reduction in the shoulder of the survival curve in wild type strains in indicative of induction of sub-lethal damage in this region of the curve. Analysing solar inactivation curves of the bacterial strains (normalised by spore dosimetry) together with those of the same strains irradiated with UV at 254 nm, it was evident that 254 nm is not the ideal wavelength for comparison. This analysis also indicated that in addition to damage to DNA, other factors are involved in the solar radiation inactivation of wild type strains. (author).

  12. Chronic exposure to sublethal doses of radiation mimetic ZeocinTM selects for clones deficient in homologous recombination

    International Nuclear Information System (INIS)

    Delacote, Fabien; Deriano, Ludovic; Lambert, Sarah; Bertrand, Pascale; Saintigny, Yannick; Lopez, Bernard S.

    2007-01-01

    DNA double-strand breaks (DSBs) are highly toxic lesions leading to genome variability/instability. The balance between homologous recombination (HR) and non-homologous end-joining (NHEJ), two alternative DSB repair systems, is essential to ensure genome maintenance in mammalian cells. Here, we transfected CHO hamster cells with the pcDNA TM 3.1/Zeo plasmid, and selected transfectants with Zeocin TM , a bleomycin analog which produces DSBs. Despite the presence of a Zeocin TM resistance gene in pcDNA TM 3.1/Zeo, Zeocin TM induced 8-10 γ-H2AX foci per cell. This shows that the Zeocin TM resistance gene failed to fully detoxify cells treated with Zeocin TM , and that during selection cells were submitted to a chronic sublethal DSB stress. Selected clones show decreases in both spontaneous and induced intrachromosomal HR. In contrast, in an in vitro assay, these clones show an increase in NHEJ products specific to the KU86 pathway. We selected cells, in the absence of pcDNA TM 3.1/Zeo, with low and sublethal doses of Zeocin TM , producing a mean 8-10 γ-H2AX foci per cell. Newly selected clones exhibited similar phenotypes: HR decrease accompanied by an increase in KU86-dependent NHEJ efficiency. Thus chronic exposure to sublethal numbers of DSBs selects cells whose HR versus NHEJ balance is altered. This may well have implications for radio- and chemotherapy, and for management of environmental hazards

  13. Lead exposure in radiator repair workers: a survey of Washington State radiator repair shops and review of occupational lead exposure registry data.

    Science.gov (United States)

    Whittaker, Stephen G

    2003-07-01

    Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.

  14. Modification of radiation damage in CHO cells by hyperthermia at 40 and 450C

    International Nuclear Information System (INIS)

    Henle, K.J.; Leeper, D.B.

    1977-01-01

    Low hyperthermia at 40 0 C either before or after X irradiation did not alter the slope of the radiation dose-cell survival curve but reduced the D/sub q/ from 145 to 41 or to 0 rad for a pre- or postirradiation incubation period of 2 hr at 40 0 C, respectively. In contrast, hyperthermia at 45 0 C increased the slope of the radiation survival curve by a factor of 1.7 for a radiation pretreatment of 10 min at 45 0 C, but only by 1.3 for the same treatment immediately after irradiation. The corresponding D/sub q/'s were 262 and 138 rad, respectively. A combination of 45 and 40 0 C hyperthermia (10 min at 45 0 C + 2 hr at 40 0 C + X) resulted in a superposition of the individual effects of 45 or 40 0 C hyperthermia on the radiation survival curve. In addition, the radiation survival curve was shifted downward by a factor of three due to the potentiation of 45 0 C hyperthermia damage by postincubation at 40 0 C. Repair of sublethal radiation damage was completely suppressed during incubation at 40 following hyperthermia at 45 0 C. However, when cells were returned to 37 0 C, even after 6 hr at 40 following 45 0 C hyperthermia, the capacity to accumulate and repair sublethal radiation damage was immediately restored. These findings imply that the hyperthermia damage from low or high temperatures interacts differentially with radiation damage. Low hyperthermia at 40 0 C may affect principally the radiation repair system, whereas 45 0 C hyperthermia probably alters the radiation target more severely than the repair system

  15. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    International Nuclear Information System (INIS)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-01-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO 3 ). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  16. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    Science.gov (United States)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  18. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  19. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    International Nuclear Information System (INIS)

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica

    2005-01-01

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation

  20. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  1. Study of Engraftment of human cord blood cells to rescue the sublethal radiation damage mice

    International Nuclear Information System (INIS)

    Cao Xiangshan; Zou Zhenghui; Yu Fei; Zhang Zhilin; Lin Baojue

    1997-01-01

    To investigate alternative source of hematopoiesis stem cells to rescue the sublethal radiation damage (SRD) casualties. Human-umbilical cord blood hematopoietic cells were transplanted into SRD mice, the survival rate and the hematopoiesis reconstitution of bone marrow were assessed. The survival rate, in the mice transplanted and the untransplanted, were 90% and 10% respectively. Bone marrow and spleen of survival mice showed human leukocytic antigen CD45 + cells. Presence of multilineage engraftment, including myeloid and erythroid lineages, were found indicating that immature human cells home to the mouse bone marrow. conclusion: engraftment of umbilical cord blood cells is very useful to reconstitute hematopoiesis of SRD casualties. As cord blood has many advantages over bone marrow and peripheral blood, it is important in rescuing radiation accidental casualties

  2. A saturable repair model for radionuclide therapy using low LET radiation emitters

    International Nuclear Information System (INIS)

    Calderon, Carlos F.; Joaquin Gonzalez; Guido Martin

    2004-01-01

    Purpose: In conventional radiotherapy doses of about 60Gy are necessary to achieve the tumor control or eradication. For systemic applications in radionuclide radiotherapy (RT) 0.1-0.5cGy/min and total dose 15-20 Gy could be reached with effective irradiation times of few days. The dose rate in tumor change exponentially as a time function where an uptake phase well differentiated from an elimination phase-will- appear both determined by the effective uptake and elimination times respectively. The biological response in RT will be determined not only by the total dose, but also by initial dose rate, the length of irradiation time (effective half-life) and biological factors, like radiosensitivity, repair and doubling times. Most quantitative models of radiation action on cells make the assumption that cell repair mechanisms are relevant in the response and it proceed in a dose-dependent way. The cell proliferation will influence too the response when the overall irradiation is comparable or greater than cell population doubling time. Many proposal had been made to apply radiobiological model for the prediction of the treatment response in RN. Saturable repair models are able, in principle, to explain the usual data base of radiobiological phenomena including which where other biophysical model does not work good. It is presented here an analytical expression to calculate the survival fraction in a cell population after irradiation based on a saturable repair radiobiological model proposed by Sanchez-Reyes [Sanchez-Reyes A. Radiact. Res., 1992;130:139-147] as function of radiobiological and biokinetics parameters which could be used in RN. The original radiobiological model consider a cell population where the DNA repair mechanisms are saturable and it could be affected by radiation action. The contribution of cell proliferation were considered keeping in mind that cell population grow up exponentially at constant rate. The dose rate was considered uniformly

  3. The growth and development of Schistosoma mansoni in mice exposed to sublethal doses of radiation

    International Nuclear Information System (INIS)

    Aitken, R.; Wilson, R.A.

    1989-01-01

    The maturation of Schistosoma mansoni was studied in mice exposed to various sublethal doses of radiation. Although the treatment of mice with 500 rads of radiation prior to infection did not alter parasite maturation, doses in excess of 500 rads led to a reduction in worm burden. This could not be attributed to a delay in the arrival of parasites in the hepatic portal system. Worms developing in mice treated with 800 rads commenced egg-laying about 1 wk later than worms in intact mice, and the rate of egg deposition appeared to be lower in irradiated hosts. The data demonstrate that exposure of C57BL/6 mice to doses of radiation in excess of 500 rads impairs their ability to carry infections of S. mansoni. The findings do not support the hypothesis that primary worm burdens in the mouse are controlled by a host immune response

  4. Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice

    International Nuclear Information System (INIS)

    Munson, G.P.; Woloschak, G.E.

    1990-01-01

    Experiments were designed to examine in vivo changes in total transcription and in the expression of the c-fos gene following whole-body exposure of mice to JANUS fission-spectrum neutrons. Radiation repair-deficient (wst/wst) and -proficient (wst/., C57BL/6 x C3H F1) mice were exposed to JANUS fission-spectrum neutrons calibrated to deliver a gut dose of 50 cGy. Animals were sacrificed less than 10 or at 60 min postirradiation, and gut tissues were removed for study. Our results revealed that, in repair-proficient mice, an immediate depression (relative to untreated control) in total transcription was evident that continued through 1 h postirradiation. Conversely, radiation-sensitive wst/wst mice displayed doubled transcription levels postirradiation. Expression of c-fos was consistently depressed following radiation exposure in control and wst/wst mice. However, the depression of c-fos mRNA was delayed in wst/wst mice relative to controls. These results demonstrate abnormal regulation of transcription and of c-fos mRNA accumulation in repair-deficient wasted mice following exposure to ionizing radiation. In addition, this work documents rapid total transcriptional depression in normal mice following radiation exposure

  5. Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions

    NARCIS (Netherlands)

    Franken, Nicolaas A. P.; ten Cate, Rosemarie; van Bree, Chris; Haveman, Jaap

    2004-01-01

    The role of EGR-1 in potentially lethal damage repair (PLDR) was studied. Induction of the early response protein EGR-1 and survival after ionizing radiation of two human tumour cell lines after culturing for 48 h in serum-deprived medium was investigated. The glioblastoma cell line (Gli-6) and a

  6. Migration of bone marrow cells to the thymus in sublethally irradiated mice

    International Nuclear Information System (INIS)

    Varlet, Andree; Lenaerts, Patrick; Houben-Defresne, M.P.; Boniver, Jacques

    1982-01-01

    In sublethally irradiated mice, thymus repopulation is due first to the proliferation of surviving thymocytes followed by the multiplication of bone marrow derived prothymocytes. The migration of bone marrow cells to the thymus after a single sublethal whole-body X irradiation was studied by using fluorescein isothiocyanate as a cell marker. Irradiation increases the permissiveness of the thymus to the immigration of bone marrow cells. Furthermore, the post-Rx regenerating bone marrow cells exhibit migration capacities greater than the normal ones. The radiation induced changes in the bone marrow thymus interaction might play an important role in thymus regeneration after sublethal irradiation [fr

  7. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii.

    Science.gov (United States)

    Almeda, Rodrigo; Harvey, Tracy E; Connelly, Tara L; Baca, Sarah; Buskey, Edward J

    2016-06-01

    Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure. UVB radiation increased toxicity of dispersed crude oil by 1.3-3.8 times, depending on the experiment and measured variables. Ingestion of crude oil droplets may increase photoenhanced toxicity of crude oil to copepod nauplii by enhancing photosensitization. Photoenhanced sublethal toxicity was significantly higher when T. turbinata nauplii were exposed to dispersant-treated oil than crude oil alone, suggesting that chemical dispersion of crude oil may promote photoenhanced toxicity to marine zooplankton. Our results demonstrate that acute exposure to concentrations of dispersed crude oil and dispersant (Corexit 9500) commonly found in the sea after oil spills are highly toxic to copepod nauplii and that natural levels of UVB radiation substantially increase the toxicity of crude oil to these planktonic organisms. Overall, this study emphasizes the importance of considering sunlight in petroleum toxicological studies and models to better estimate the impact of crude oil spills on marine zooplankton. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Are we at risk from level radiation - DNA repair capacity studies

    International Nuclear Information System (INIS)

    Riklis, E.; Kol, R.; Heimer, Y.M.

    1979-01-01

    A new biochemical method, based on determination of DNA repair capability, which will enable predetermination of radiation sensitivity and further - an indication of inherent sensitivity which may be expressed only in the future when a cell will be faced with a situation in which its repair capacity will have to function to its full capability was developed. Cells are treated with trioxalen (trimethylpsoralen, TMP) and near ultraviolet light (NUV), bringing about an almost complete cessation of semiconservative DNA synthesis, 99.5 to 99.8 % inhibition. This method enabled the accurate measurement of incorporation of labelled thymidine into DNA following assaults by radiation or chemicals, indicating that repair synthesis is occurring. The method has been found suitable for the following cells: human fibroblasts, human breast cancer cells, chinese hamster V-79 cells, human lymphocytes. Since the method is applicable also for lymphocytes, it will enable carrying out a world-wide interlaboratory comparative study in which the range of 'repair capacity' of 'normal healthy' humans will be established. Individuals showing no repair capacity will not be permitted to be exposed to any level of radiation above natural background. These are the persons 'at risk' from radiation, while the general public, showing normal repair capacity may be considered safe from the effects of low-level radiations. (B.G.)

  9. Radiation response of tumours

    International Nuclear Information System (INIS)

    Twentyman, P.R.

    1988-01-01

    In this chapter knowledge regarding cellular radiation response and the factors which modify it is related to the volume changes and probability of control of irradiated solid tumors. After a discussion of the different cell populations present within solid tumors the cell population kinetics of the neoplastic cells are considered in more detail. The influence of factors related to the three-dimensional geometry of the tumor, particularly hypoxia, are considered, and also the role of the tumor vasculature in radiation response. Repair of sublethal damage (SLD) and potentially lethal damage (PLD) is dealt with and finally the relationship between the various end-points of tumor radioresponsiveness is discussed

  10. Effects of low dose radiation on repair processes in human lymphocytes

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Egg, D.; Guenther, R.

    1978-10-01

    DNA excision repair was investigated in lymphocytes of persons occupationally exposed to low dose radiation of 222 Rn. Autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine incorporation by repair replication into double stranded and single-strand containing DNA fractions obtained by BND cellulose chromatography seem to indicate a stimulatory effect of repeated low dose radiation on repair enzymes. (author)

  11. Role of repair saturation in the response of plateau-phase Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.; Metting, N.F.

    1987-01-01

    Two repair rates are seen in split-dose experiments on starved plateau-phase CHO cells. It has been assumed that this indicates two different processes repairing two distinct types of sublethal damage. However results of experiments at different dose levels are not consistent with models that assume that the damage is entirely sublethal. Another hypothesis that has been considered is the saturation of a repair mechanism having a limited pool of repair enzymes. Such saturation phenomena have been observed in biochemical repair studies and have thus formed the basis for a model of cellular response, which was shown to be capable of producing dose response curves in good agreement with experimental observations. This model can be extended to account for both dose-rate and split-dose effects

  12. The effect of low radiation doses on DNA repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1978-08-01

    Error free DNA repair processes are an important preprequisite for the maintenance of genetic integrity of cells. They are of special importance for persons therapeutically or occupationally exposed to radiation. Therefore the effect of radiation therapy and elevated natural background radiation on unscheduled DNA synthesis was tested in peripheral lymphocytes of exposed persons. Both, autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine uptake into double stranded and single-strand containing DNA fractions revealed an increase of capacity for DNA repair. (author)

  13. Linear-quadratic dose kinetics or dose-dependent repair/misrepair

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.

    1992-01-01

    Models for the response of cells exposed to low (LET) linear energy transfer radiation can be grouped into three general types on the basis of assumptions about the nature of the interaction which results in the shoulder of the survival curve. The three forms of interaction are 1) sublethal damage becoming lethal, 2) potentially lethal damage becoming irreparable, and 3) potentially lethal damage ''saturating'' a repair system. The effects that these three forms of interaction would have on the results of specific types of experiments are investigated. Comparisons with experimental results indicate that only the second type is significant in determining the response of typical cultured mammalian cells. (author)

  14. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  15. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1980-October 31, 1981

    International Nuclear Information System (INIS)

    Evans, H.H.

    1981-10-01

    The isolation of several radiation-sensitive BHK strains following a host-cell viral suicide enrichment procedure has been reported in which mutagenized cells were infected with heavily irradiated Herpes virus (HSV). Six surviving colonies were isolated from 38,000 infected cells. The survivors were not transformed by HSV, as indicated by a lack of reaction with fluorescent HSV antibody. At least two of the strains were shown to be sensitive to the lethal effects of ionizing radiation and methylmethane sulfonate, but not to ethylmethane sulfonate (EMS) or to uv radiation. These two strains showed a small decrease in the ability to repair sublethal damage following a split dose of ionizing radiation. The two strains differed from wild-type BHK cells in EMS-induced mutability; strain VI showed a higher mutation frequency and V2 a lower mutation frequency than did BHK cells following treatment with this agent. When either ionizing radiation or uv radiation was used as the mutagenic agent, however, the comparative mutability patterns were altered: the mutation frequency of both strains was somewhat less than the wild type following ionizing radiation, whereas following uv radiation, strain V1 showed a markedly lower mutation frequency than the wild type. It is possible that the strain V1 is deficient in the repair of an EMS-induced mutagenic lesion, while strain V2 is either efficient in such repair or deficient in an error-prone repair process

  16. Comments on ''V79 survival following simultaneous or sequential irradiation by 15-MeV neutrons and 60Co photons'' by Higgins et al. [Radiat. Res. 95, 45-56(1983)

    International Nuclear Information System (INIS)

    Zaider, M.; Brenner, D.J.

    1984-01-01

    In a recent paper Higgins et al. reported survival data for V79 Chinese hamster cells exposed simultaneously or sequentially to 15-MeV neutrons and 60 Co photons. In each case the results showed the combined modality to be more effective at cell killing than would be expected from the simple multiplication of the effects due to each radiation alone. Thus the effects of the two radiations are synergistic. In addition, simultaneous exposures yielded lower surviving fractions than sequential ones. Both these results are easy to understand, at least qualitatively, if the concepts of sublethal damage and sublethal damage repair are used. The proposition that simultaneous exposure is more effective than sequential ones thus proposition that simultaneous exposure is more effective than sequential ones thus becomes evident. Theoretical expressions have been derived also to quantify these phenomena. Higgins et al. rederive several of the equations previously obtained, however, the interpretation that they give to these equations is not appropriate. It is the purpose of this note to comment on some of these problems and offer a simple analysis and interpretation of the results based on sublethal damage repair

  17. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  18. Protracted radiation-induced alterations in hematopoietic repair and recovery

    International Nuclear Information System (INIS)

    Seed, T.M.; Fritz, T.E.

    1997-01-01

    Pathologic predisposition of beagle dogs under chronic, low daily dose (7.5 cGy day -1 ) whole-body gamma irradiation has been studied relative to molecular repair and hematopoietic competency. Molecular repair, assessed by a microscopy-based unscheduled DNA synthesis (UDS) response, was measured within proliferative and nonproliferative marrow myeloid elements of dogs with markedly different hematopoietic capacities (low capacity, aplasia-prone [AA + ] versus high capacity, myeloproliferative disease-prone [MPD + ]) under protracted radiation stress. Results indicated that protracted exposure elicited a net increase in UDS-repair capacity that was largely independent of exposure duration. This enhanced capacity resulted from the increased strength of the UDS signal together with an expanded number of positively responding cells. The combined response was strong in primitive blasts and weak in more differentiated myelocytic cells. The UDS repair response of the MPD + dogs was significantly greater than that of the AA + animals and was clearly modified relative to the controls. These results suggest that both resiliency and pathologic potential of the hematopoietic system under protracted radiation stress is, in part, associated with an augmentable DNA repair within the more primitive myeloid marrow elements. (author)

  19. Free radical scavenging and the expression of potentially lethal damage in X-irradiated repair-deficient Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1987-01-01

    When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed

  20. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage

    International Nuclear Information System (INIS)

    Park, Jung Wook; Nickel, Kwangok P.; Torres, Alexandra D.; Lee, Denis; Lambert, Paul F.; Kimple, Randall J.

    2014-01-01

    Background and purpose: Patients with human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV−) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV− HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. Material and methods: Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. Results: HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. Conclusions: Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV− HNC

  1. Genetic effects of ionizing radiation and repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1986-11-01

    Since DNA (=desoxyribonucleic acid) is the largest molecule within the cell it is the most important target for direct and indirect radiation effects. Within DNA the total genetic information is stored, thus damage to DNA in germ cells causes genetic disorders and damage in somatic cells is implicated in cancer and immunodeficiences. Alterations of DNA structure are not only due to ionizing radiation effects, but also to spontaneous DNA modifications and damage from interactions with environmental ultraviolet light and chemical agents. To maintain its genetic integrity, each organism had to develop different repair systems able to recognize and remove DNA damage. Repeated exposure to a DNA damaging agent can even lead to adaptation processes and increased resistance to the same agent. At normal function of repair systems it can be assumed that the capacity of those systems is adequate to scope with the effects of low radiation doses. (Author)

  2. Kinetics of sublethal damage recovery in mouse lip mucosa comparing low and high-LET radiation

    International Nuclear Information System (INIS)

    Scalliet, P.; Landuyt, W.; Schueren, E. van der; Vynckier, S.; Wambersie, A.

    1989-01-01

    The effects of d(50)+Be neutrons on the lip mucosa in mice were investigated as a model of early effects. The biological endpoint eas the incidence of desquamation in the lower lip after selective irradiation of the snout of the animals. ED 50 (dose leading to desquamation in 50% of the animals) were calculated by probit analysis. Fractionated (two, four and ten fractions) and protracted (43.5, 11.5 and 0.88 Gy.h -1 ) irradiations have been carried out. Results were analysed using the mathematical method of Dale. An α/β of 39.6 Gy and a t 1/2 of recovery of sublethal damage of 47 min have been derived. These results have been compared to data previously obtained with cobalt-60 gamma rays. Using the same mathematical approach, and comparing similar fractionated and protracted experiments, an α/β of 7.4 Gy and a t 1/2 of recovery of 47 min have been calculated. There was no significant difference in the repair kinetics after irradiations with gamma rays or d(50)+Be neutrons. (orig.) [de

  3. A new dimension in improved radiation protection by enhanced DNA repair

    International Nuclear Information System (INIS)

    Riklis, E.

    1997-01-01

    Radioprotection and photo protection were dependent until now on measures to reduce the amount of damage formed by ionizing and ultraviolet radiations. In both cases the measures are not completely satisfactory: the classical radioprotectors are toxic arid exert serious side effects, and afford a protection factor not higher than around 2. The sunscreens filters are effective for certain wavelength ranges only, and not enough is known about the possible effects of the filters when they absorb light and turn into other chemical entities. Both approaches do not give an answer to damages which are formed in spite of the partial reduction of damage. A new approach offered here is dealing with the damage on a cellular / molecular level, by enhancing the activity of the natural repair enzymes whose task is to remove radiation and photoproducts, rejoin DNA strand breaks and repair the DNA. A combination of vitamins and antioxidants is fulfilling these tasks and provides protection from both ionizing and ultraviolet radiations by enhancing several folds the repair of DNA in living cells. Such a combination which contains the repair enhancers niacinamide and nordihydroguaiaretic acid is employed in preparations named EDNAR ( Enhanced DNA Repair, Patent pending) which demonstrate excellent results of enhancing DNA repair as measured by repair synthesis, and protecting the skin from sunburns as well as skin burns following radiotherapy. These lotions and creams, when not containing any chemical filters yet demonstrating a protective effect, may be called 'the sunscreens without sunscreens'. (author)

  4. Repair of radiation damage in mammalian cells: its relevance to environmental effects

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.

    1979-01-01

    Assessment of the potential biological hazards associated with energy production technologies involves the quantitation of risk on the basis of dose-effect dependencies, from which, it is hoped, some safety guidelines can be developed. Our current knowledge of the biological importance of damage/repair processes stems by and large from radiation studies which clearly demonstrate that cellular response to radiation depends upon the ability of cells to repair the damage. Apparently, the same is true for cellular response to different chemical agents. Drawing upon our experiences from radiation studies, we demonstrate the relevance of ongoing repair processes, as evident in the studies of radiation induced cell killing and neoplastic transformation, to the type of risk estimates that might be associated with the hazards from energy production technologies. The effect of repair on cell survival is considered. It is evident from our studies that in the region of small doses, repair of damage relative to cell lethality is of importance in estimating the magnitude of effect. Aside from the cytotoxic effects in terms of cell killing, one of the greatest concerns associated with energy production is the potential of a given technology, or its effluents, to produce cancer. It is therefore of importance to quantify the risk in this context of damage registration and possible effect of repair on damage expression. It has been generally established that exposure of normal cells in culture to a variety of known carcinogens results in neoplastic transformation. Our observations with C3H/10T1/2 cells in culture lend direct evidence for the hypothesis that reduced tumor incidences at low dose rates of radiation could be due to the repair of induced damage

  5. Investigations of the effects of UV and X-ray radiation and the repair of radiation damage in the ciliate Stylonychia mytilus

    International Nuclear Information System (INIS)

    Dittmann, F.N.

    1978-01-01

    Using the example of Stylomychia mytilus, the effects of UV-radiation and ionizing X-ray radiation are compared. The effects on cell division and on the repair of radiation damage in DNA are compared. Sensitivity to UV radiation differs between the stages of the cell cycle while the effects of X-ray radiation are independent of phase. There is no difference in repair processes. (AJ) 891 AJ/AJ 892 MKO [de

  6. Repair-dependent cell radiation survival and transformation: an integrated theory

    International Nuclear Information System (INIS)

    Sutherland, John C

    2014-01-01

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  7. DNA damage in cultured human skin fibroblasts exposed to excimer laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rimoldi, D.; Miller, A.C.; Freeman, S.E.; Samid, D. (Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD (USA))

    1991-06-01

    Ultraviolet excimer lasers are being considered for use in a variety of refractive and therapeutic procedures, the long-term biologic consequences of which are unknown. The effect of sublethal doses of 193-nm laser radiation on cellular DNA was examined in cultured human skin fibroblasts. In contrast to 248 nm, treatments with the 193-nm laser radiation below 70 J/m2 did not cause significant pyrimidine dimer formation in the skin cells. This was indicated by the lack of excision repair activities (unscheduled DNA synthesis assay), and further demonstrated by direct analysis of pyrimidine dimers in DNA from irradiated cells. However, a low level of unscheduled DNA synthesis could be detected following irradiation at 193 nm with 70 J/m2. Both the 193-nm and 248-nm radiation were able to induce chromosomal aberrations, as indicated by a micronucleus assay. A dose-dependent increase in micronuclei frequency was observed 48 and 72 h after laser irradiation. These results indicate that exposure of actively replicating human skin fibroblasts to sublethal doses of either 193- or 248-nm laser radiation can result in genotoxicity.

  8. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  9. Mathematical simulation of biologically equivalent doses for LDR-HDR

    International Nuclear Information System (INIS)

    Slosarek, K.; Zajusz, A.

    1996-01-01

    Based on the LQ model examples of biologically equivalent doses LDR, HDR and external beams were calculated. The biologically equivalent doses for LDR were calculated by appending to the LQ model the corrector for the time of repair of radiation sublethal damages. For radiation continuously delivered at a low dose rate the influence of sublethal damage repair time changes on biologically equivalent doses were analysed. For fractionated treatment with high dose rate the biologically equivalent doses were calculated by adding to the LQ model the formula of accelerated repopulation. For total biologically equivalent dose calculation for combine LDR-HDR-Tele irradiation examples are presented with the use of different parameters of the time of repair of sublethal damages and accelerated repopulation. The calculations performed show, that the same biologically equivalent doses can be obtained for different parameters of cell kinetics changes during radiation treatment. It also shows, that during biologically equivalent dose calculations for different radiotherapy schedules, ignorance of cell kinetics parameters can lead to relevant errors

  10. DNA replication and repair in Tilapia cells. 1. The effect of ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yew, F.H.; Chang, L.M. (National Taiwan Univ., Taipei (China))

    1984-12-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-..beta..-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor.

  11. Repair effects of exogenous SOD on Bacillus subtilis against gamma radiation exposure

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Zhang, E.; Fang, Liu; Zhang, Jianguo; Zhu, Jie; He, Wei; Luo, Xuegang

    2013-01-01

    Superoxide dismutase (SOD) is an enzyme that removes free radicals from cells in many organisms. In order to further characterize these repair effects and their mechanism when subjected to radiation, Bacillus subtilis cells were exposed to gamma radiation and the cell survival rate, intracellular SOD activity, and DNA double-strand breakage were investigated. Vegetative cells of B. subtilis were irradiated by 60 Co gamma radiation at varying doses and subsequently exposed to varying levels of exogenous SOD. Standard plate-count, xanthine oxidase, and pulsed-field gel electrophoresis (PFGE) methods were employed to investigate the repair effects. The results showed that the exogenous SOD could significantly improve cell survival rate and intracellular SOD activity after gamma radiation. The cell survival rate was elevated 30–87 times above levels observed in control samples. Adding exogenous SOD into gamma irradiated cells may dramatically increase intracellular SOD activity (p 60 Co γ radiation and exposed to exogenous SOD. • Adding exogenous SOD into γ-irradiated cells may dramatically increase cell survival rate. • DNA strand scission may be prevented by addition of SOD. • Exogenous SOD may have the ability to repair cell damage after γ-rays radiation

  12. Effects of acute sublethal gamma radiation exposure on aggressive behavior in male mice: A dose-response study

    International Nuclear Information System (INIS)

    Maier, D.M.; Landauer, M.R.

    1989-01-01

    The resident-intruder paradigm was used to assess the effects of gamma radiation (0, 3, 5, 7 Gray [Gy] cobalt-60) on aggressive offensive behavior in resident male mice over a 3-month period. The defensive behavior of nonirradiated intruder mice was also monitored. A dose of 3 Gy had no effect on either the residents' offensive behavior or the defensive behavior of the intruders paired with them. Doses of 5 and 7 Gy produced decreases in offensive behavior of irradiated residents during the second week postirradiation. The nonirradiated intruders paired with these animals displayed decreases in defensive behavior during this time period, indicating a sensitivity to changes in the residents' behavior. After the third week postirradiation, offensive and defensive behavior did not differ significantly between irradiated mice and sham-irradiated controls. This study suggests that sublethal doses of radiation can temporarily suppress aggressive behavior but have no apparent permanent effect on that behavior

  13. Effect of sublethal doses of radiation and cystamine on the dynamics of Rana temporaria L. larvae development

    International Nuclear Information System (INIS)

    Popov, D.V.

    1979-01-01

    The longevity of Rana temporaria L. larvae in the 45th stage of development is studied after irradiation in sublethal doses (10.000-20.000 R) and irradiation with preliminary cystamine protection. It has been shown that the protective effect of cystamine is revealed in partial normalization of the larvae development rate but does not eliminate the typical anomalies of extremity development and does not prolong the time of animal survival. It has been found that LD 50/30 dose for R. temporaria tadpoles in the 45th stage of development is slightly higher than 10.000 R. The selective effect of X-radiation on the formative bonds at cornea induction in Anura larvae is concluded

  14. Radiation- and drug-induced DNA repair in mammalian oocytes and embryos

    International Nuclear Information System (INIS)

    Pedersen, R.A.; Brandriff, B.

    1979-01-01

    A review of studies showing ultraviolet- or drug-induced unscheduled DNA synthesis in mammalian oocytes and embryos suggests that the female gamete has an excision repair capacity from the earliest stages of oocyte growth. The oocyte's demonstrable excision repair capacity decreases at the time of meiotic maturation for unknown reasons, but the fully mature oocyte maintans a repair capacity, in contrast to the mature sperm, and contributes this to the zygote. Early embryo cells maintain relatively constant levels of excision repair until late fetal stages, when they lose their capacity for excision repair. These apparent changes in excision repair capacity do not have a simple relationship to known differences in radiation sensitivity of germ cells and embryos

  15. Improvement of biological decontamination, protective and repair activity against radiation injury

    International Nuclear Information System (INIS)

    Kagawa, Yasuo

    2013-01-01

    Because the protection of human subject from late radiation injury is the final goal of remediation of radioactive contamination of 137 Cs in environment, improvement of DNA-repairing ability and 137 Cs-removal from human body is important. In order to reduce environmental radioactivity in areas exceeding 5 mSv/year in Fukushima prefecture, the cost is estimated to be 118 trillion yen, and there are difficulties in finding place to store 137 Cs-contaminated soils and in 137 Cs-recontamination. The radiation damage of DNA molecule takes place stochastically following linear no threshold model (LNT), but the cancer risk and other late radiation injury from long-term low dose radiation do not follow LNT model if we improve DNA repair and the cell regeneration systems. Indirect effects of radiation damage on DNA mediated by reactive oxygen species (ROS) are prevented by vitamin C, E, carotenoids including lycopene and phytochemicals. ROS is also removed by superoxide dismutases containing Cu, Mn and Z. Direct effects of radiation damage on DNA are repaired by enzyme systems using folic acid, vitamins B 6 and B 12 . In addition, before the radiation injury, absorption of 137 Cs is prevented by taking pectin etc. and excretion of 137 Cs is accelerated by ingesting more K. Finally, early detection of cancer and its removal by detailed health check of radiation-exposed people is needed. Radiation-protecting diet developed to protect astronauts from about 1 mSv per day, will be useful for many workers of atomic power plant as well as people living in the 137 Cs-contaminated areas. (author)

  16. Radiation Exposure in Endovascular Infra-Renal Aortic Aneurysm Repair and Factors that Influence It

    Directory of Open Access Journals (Sweden)

    Rui Machado

    Full Text Available Abstract Objective: The endovascular repair of aortic abdominal aneurysms exposes the patients and surgical team to ionizing radiation with risk of direct tissue damage and induction of gene mutation. This study aims to describe our standard of radiation exposure in endovascular aortic aneurysm repair and the factors that influence it. Methods: Retrospective analysis of a prospective database of patients with abdominal infra-renal aortic aneurysms submitted to endovascular repair. This study evaluated the radiation doses (dose area product (DAP, fluoroscopy durations and their relationships to the patients, aneurysms, and stent-graft characteristics. Results: This study included 127 patients with a mean age of 73 years. The mean DAP was 4.8 mGy.m2, and the fluoroscopy time was 21.8 minutes. Aortic bilateral iliac aneurysms, higher body mass index, aneurysms with diameters larger than 60 mm, necks with diameters larger than 28 mm, common iliac arteries with diameters larger than 20 mm, and neck angulations superior to 50 degrees were associated with an increased radiation dose. The number of anatomic risk factors present was associated with increased radiation exposure and fluoroscopy time, regardless of the anatomical risk factors. Conclusion: The radiation exposure during endovascular aortic aneurysm repair is significant (mean DAP 4.8 mGy.m2 with potential hazards to the surgical team and the patients. The anatomical characteristics of the aneurysm, patient characteristics, and the procedure's technical difficulty were all related to increased radiation exposure during endovascular aortic aneurysm repair procedures. Approximately 40% of radiation exposure can be explained by body mass index, neck angulation, aneurysm diameter, neck diameter, and aneurysm type.

  17. The effect of caffeine on repair in chlamydomonas reinhardtii. Pt. 1

    International Nuclear Information System (INIS)

    Rosen, H.; Rehn, M.M.; Johnson, B.A.

    1980-01-01

    The effect of caffeine on repair was studied in the green alga Chlamydomonas reinhardtii. Treatment of UV-irradiated wild-type (UVS + ) cells with a sublethal level of caffeine caused a significant increase in survival compared to untreated UV-irradiated cells. Caffeine did not affect survival in the repair-deficient strain UVSE1, which is deficient in repair of UV-induced damage carried out by enzymes associated with recombination during meiosis. A significant increase in survival in the presence of caffeine was observed in the repair-deficient strain UVSE4 in which recombination during meiosis is not affected. Treatment of zygotes homozygous for UVS + , UVSE1, or UVSE4 with sublethal levels of caffeine caused marked increases in recombination frequency in UVS + and UVSE4 zygotes and no increase in recombination in UVSE1 zygotes. These results indicate that caffeine increases recombination in normal strains. Increased opportunity for recombination caused by caffeine would not result in increased recombination frequency in the UVSE1 strain, assuming limited-recombination enzyme activity in this strain. The observed increase in survival following UV-irradiation in the presence of caffeine in strains having normal recombination would therefore be associated with a caffeine-induced increase in opportunities for recombination repair. (orig.)

  18. Radiation shielding design for a hot repair facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Dwight, C.C.

    1991-01-01

    A new repair and decontamination area is being built to support operations at the demonstration fuel cycle facility for the Integral Fast Reactor program at Argonne National Laboratory's site at the Idaho National Engineering Laboratory. Provisions are made for remote, glove wall, and contact maintenance on equipment removed from hot cells where spent fuel will be electrochemically processed and recycled to the Experimental Breeder Reactor-II. The source for the shielding design is contamination from a mix of fission and activation products present on items removed from the hot cells. The repair facility also serves as a transfer path for radioactive waste produced by processing operations. Radiation shields are designed to limit dose rates to no more than 5 microSv h-1 (0.5 mrem h-1) in normally occupied areas. Point kernel calculations with buildup factors have been used to design the shielding and to position radiation monitors within the area

  19. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Marie, Melanie; Hafner, Sophie; Moratille, Sandra; Vaigot, Pierre; Rigaud, Odile; Martin, Michele T.; Mine, Solene

    2012-01-01

    Fibroblast growth factor 2 (FGF2) is a well-known survival factor. However, its role in DNA repair is poorly documented. The present study was designed to investigate in epidermoid carcinoma cells the potential role of FGF2 in DNA repair. The side population (SP) with cancer stem cell-like properties and the main population (MP) were isolated from human A431 squamous carcinoma cells. Radiation-induced DNA damage and repair were assessed using the alkaline comet assay. FGF2 expression was quantified by enzyme linked immunosorbent assay (ELISA). SP cells exhibited rapid repair of radiation induced DNA damage and a high constitutive level of nuclear FGF2. Blocking FGF2 signaling abrogated the rapid DNA repair. In contrast, in MP cells, a slower repair of damage was associated with low basal expression of FGF2. Moreover, the addition of exogenous FGF2 accelerated DNA repair in MP cells. When irradiated, SP cells secreted FGF2, whereas MP cells did not. FGF2 was found to mediate DNA repair in epidermoid carcinoma cells. We postulate that carcinoma stem cells would be intrinsically primed to rapidly repair DNA damage by a high constitutive level of nuclear FGF2. In contrast, the main population with a low FGF2 content exhibits a lower repair rate which can be increased by exogenous FGF2. (authors)

  20. Recovery from sublethal damage during fractionated irradiation of human FaDu SCC

    International Nuclear Information System (INIS)

    Petersen, Cordula; Zips, Daniel; Krause, Mechthild; Voelkel, Wolfram; Thames, Howard D.; Baumann, Michael

    2005-01-01

    Background and purpose: The present study addresses whether recovery of sublethal damage in tumours may change during fractionated irradiation in FaDu human squamous cell carcinoma and whether such an effect might contribute to the pronounced time factor of fractionated irradiation previously found in this tumour. Patients and methods: FaDu tumours were transplanted s.c. into the right hind leg of NMRI nu/nu mice. Single doses or 2, 4, and 8 equal fractions in 3.5 days were applied in previously unirradiated tumours and after priming with 18 fractions of 3 Gy in 18 or 36 days. All irradiations were given under clamp hypoxic conditions. Experimental endpoints were tumour control dose 50% (TCD 50 ) and α/β values without and after priming. Results: Without priming TCD 50 increased with increasing number of fractions from 38.8 Gy (95% CI 35;45) after single dose irradiation to 54.0 Gy (42;57) after 8 fractions. No increase in TCD 50 when given in 1, 2, 4, or 8 fractions in 3.5 days was found after priming with 18 3-Gy fractions in 18 and 36 days. After priming with 18 fractions in 18 days TCD 50 remained constant at 25 Gy and after priming with 18 fractions in 36 days at 42 Gy. The α/β ratio without priming was 68 Gy (42;127). After fractionated irradiation with 18 3-Gy fractions in 18 and 36 days the α/β ratio increased to 317 Gy (38;∞) and to infinite, respectively. Conclusions: Our results indicate that clonogenic cells in FaDu tumours lose entirely their capacity to recover from sublethal radiation damage during fractionated irradiation. Therefore, an increased repair capacity as an explanation for the pronounced time factor of fractionated irradiation in this tumour can be ruled out

  1. Effect of Mercuric Nitrate on Repair of Radiation-induced DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Paneka, Agnieszka; Antonina, Cebulska Wasilewska [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-10-15

    High concentrations of mercury can cause serious damage to the nervous system, immune system, kidneys and liver in humans. And mercury is toxic to developing embryos because mercury ions can penetrate the blood.placenta barrier to reach the embryo. Studies from human monitoring of occupational exposure to mercury vapours have shown that mercury can alter the ability of lymphocytes to repair radiation-induced DNA damage. The aim of this in vitro study was to investigate, on the molecular and cytogenetic levels, the effect of exposure to mercury ions on the kinetics of the repair process of DNA damage induced by ionising radiation.

  2. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  3. Clinical Radiation Sensitivity With DNA Repair Disorders: An Overview

    International Nuclear Information System (INIS)

    Pollard, Julianne M.; Gatti, Richard A.

    2009-01-01

    Adverse reactions to radiotherapy represent a confounding phenomenon in radiation oncology. These reactions are rare, and many have been associated with individuals with DNA repair disorders such as ataxia-telangiectasia and Nijmegen Breakage syndrome. A paucity of published data is available detailing such circumstances. This overview describes four exemplary situations, a comprehensive list of 32 additional cases, and some insights gleaned from this overall experience. Fanconi anemia was associated with more than one-half of the reports. The lowest dose given to a patient that resulted in a reaction was 3 Gy, given to an ataxia-telangiectasia patient. Most patients died within months of exposure. It is clear that the patients discussed in this report had complicated illnesses, in addition to cancer, and the radiotherapy administered was most likely their best option. However, the underlying DNA repair defects make conventional radiation doses dangerous. Our findings support previous wisdom that radiotherapy should either be avoided or the doses should be selected with great care in the case of these radiosensitive genotypes, which must be recognized by their characteristic phenotypes, until more rapid, reliable, and functional assays of DNA repair become available.

  4. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks

    International Nuclear Information System (INIS)

    Turney, Benjamin W.; Kerr, Martin; Chitnis, Meenali M.; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S.; Brewster, Simon F.; Macaulay, Valentine M.

    2012-01-01

    Background and purpose: IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. Methods: We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. Results: We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30–40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. Conclusions: These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments.

  5. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks.

    Science.gov (United States)

    Turney, Benjamin W; Kerr, Martin; Chitnis, Meenali M; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S; Brewster, Simon F; Macaulay, Valentine M

    2012-06-01

    IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30-40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  7. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy

    International Nuclear Information System (INIS)

    Millar, W.T.; Glasgow Univ.

    1991-01-01

    The LQ model has now been extended to include a general time varying dose rate profile, and the equations can be readily evaluated if an exponential radiation damage repair process is assumed. These equations are applicable to radionuclide directed therapy, including brachytherapy. Kinetic uptake data obtained during radionuclide directed therapy may therefore be used to determine the radiobiological dosimetry of the target and non-target tissues. Also, preliminary tracer studies may be used to pre-plan the radionuclide directed therapy, provided that tracer and therapeutic amounts of the radionuclide carrier are identically processed by the tissues. It is also shown that continuous radionuclide therapy will induce less damage in late-responding tissues than 2 Gy/fraction external beam therapy if the ratio of the maximum dose rate and the sublethal damage repair half-life in the tissue is less than 1.0 Gy. Similar inequalities may be derived for β-particle radionuclide directed therapy. (author)

  8. Alteration of cellular radiation response as a consequence of defective DNA mismatch repair

    International Nuclear Information System (INIS)

    Weese, Theodore L. de; Bucci, Jennifer M.; Larrier, Nicole A.; Cutler, Richard G.; Riele, Hein te; Nelson, William G.

    1997-01-01

    Purpose/Objective: A number of genes have been implicated in the response of mammalian cells to ionizing radiation. Among these include the genes P53 and P21. Disruption of these genes can alter the predicted cellular behavior following radiation-induced DNA damage. Similarly, cells defective in mismatch repair are known to be tolerant to the lethal effects of alkylating agents. We hypothesized that mammalian cells which are defective in mismatch repair and tolerant to alkylating DNA damage might also be tolerant to the effects of oxidative DNA damage inflicted by ionizing radiation. Materials and Methods: Mouse embryonic stem cells homozygous for disrupted Msh2 alleles (Msh2-/-), heterozygous for a disrupted Msh2 allele (Msh2+/-) or intact cells (Msh2+/+) were exposed to both acute dose (1 Gy/min) and low dose rate (LDR) radiation (0.004 Gy/min) and cell survival was determined by clonogenic assay. Apoptosis induced by LDR was assessed by a terminal transferase assay. Immunoblot analysis was performed in order to evaluate induction of the polypeptides p53 and p21. Another measure of radiation damage tolerance may be accumulation of oxidative DNA species. Therefore, we monitored levels of 8-hydroxyguanine (8-OHG) and 8-hydroxyadenine (8-OHA) by gas chromatography - mass spectrometry with selected ion monitoring (GC-MS/SIM). Results: Cells containing either one or two disrupted Msh2 alleles (Msh2+/-, Msh2-/-) were found to be less sensitive to LDR than cells containing a complete complement of Msh2 alleles (Msh2+/+). Interestingly, all three cell lines had a nearly identical radiosensitivity to acute dose ionizing radiation despite differences in mismatch repair capacity. Apoptosis after LDR also varied between cells, with the Msh2+/+ cells exhibiting higher levels of apoptosis as compared to either the Msh2+/- or Msh2-/- cell lines. In addition, GC-MS/SIM revealed the Msh2+/- and Msh2-/- cell lines to have an approximately ten fold greater accumulation of the

  9. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  10. Interphase death and repair of radiation injuries to thoracic aorta endothelium of mammals

    International Nuclear Information System (INIS)

    Shcherbova, E.N.; Ivanov, Yu.V.

    1978-01-01

    Using the method of plane preparations injury to the thoracic aorta endothelium of guinea-pigs, rats and rabbits exposed to various doses of γ-rays ( 60 Co) has been studied. The value of the threshold dose, tested by diminution of the endothelial cell quantity, has been found to be 250 R for guinea-pigs, 830 R, for rats and 880 R, for rabbits. It has been shown by means of the fractionated irradiation model that the interphase endothelial cells of guinea-pigs and rats can recover from sublethal radiation injuries

  11. Age associated alteration in DNA damage and repair capacity in Turbatrix aceti exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Targovnik, H.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    Excision repair capacity was measured in young and old Turbatrix aceti (phylum Nematoda) following exposure to ionizing radiation. Both repair synthesis and removal of 5,6-dihydroxydihydrothymine type (glycol) base damage were quantitated. At least two-fold higher glycol levels were produced in the DNA of young than of old nematodes for the same radiation dose. Young worms also excised glycol damage more rapidly and completely than old worms. Both peak repair synthesis activity and completion of repair synthesis occurred at earlier times during post-irradiation incubation in young nematodes. The data indicate there is a significant age-associated difference in both the incidence and removal of ionizing radiation damage in T. aceti which is used as a model of the ageing process. (author)

  12. DNA repair, human cancer and assessment of radiation hazards

    International Nuclear Information System (INIS)

    Paterson, M.C.; Myers, D.K.

    1979-09-01

    Cancers, like genetic defects, are thought to be caused primarily by changes in DNA. Part of the evidence in support of this hypothesis derives from the study of certain rare hereditary disorders in man associated with high risk of cancer. Cells derived from patients suffering from at least one of these disorders, ataxia telangiectasia, appear to be defective in their ability to repair the damage caused by radiation and/or certain other environmental agents. Studies of the consequences of DNA repair suggest that currently accepted estimates of the carcinogenic hazards of low level radiation are substantially correct. There would appear to be some margin of safety involved in these risk estimates for the majority of the population, but any major reduction in the currently accepted risk estimates appears inadvisable in view of the existence of potentially radiosensitive subgroups forming a minority in the general population. (author)

  13. Enhancing repair of radiation-induced strand breaks in cellular DNA as a radiotherapeutic potential

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2014-01-01

    Protection of mammalian organisms including man from deleterious effects of ionizing radiation is of paramount importance and development of effective approaches to combat radiation damages using non-toxic radioprotectors is of considerable interest for defence, nuclear industries, radiation accidents, space travels, etc., besides the protection of normal tissues during radiotherapy of tumours. Many synthetic as well as natural compounds have been investigated in the recent past for their efficacy to protect the biological systems from radiation induced damages. They include sulfhydryl compounds, antioxidants, plant extracts, immune-modulators, and other agents. However, the inherent toxicity of many of the synthetic agents at the effective radio-protective concentration warranted further search for safer and more effective radio-protectors. In this context, therapeutic radioprotectors which are effective on post irradiation administration are of special relevance. One of the property that can be applied while screening for such radiation protective therapeutics is their ability to enhance repair of radiation-induced lesions in cellular DNA in terms of cellular repair index based on the parameters of the DNA following comet assay. Post irradiation administration of some natural and synthetic agents have shown their potential to enhance repair of radiation-induced strand breaks in cellular DNA in mice. These include phytoceuticals such as gallic acid, sesamol etc., extracts of medicinal plants such as Andrographis panniculata, and a few synthetic compounds such as tocopherol-mono-glucoside. The talk will give an overview of the work on DNA repair enhancement by a few natural and synthetic agents. (author)

  14. Radiation induced testicular lesions and their modification by vitamin E

    International Nuclear Information System (INIS)

    Pareek, T.K.; Gajawat, S.; Singh, N.; Goyal, P.K.; Dev, P.K.

    2001-01-01

    Man is subjected to radiation exposure from cosmic rays and radioactivity from soil; apart from these natural sources of radiation, diagnostic and therapeutic radiological procedures are the largest source of radiation dose to human beings. These radiations have been shown to cause lesions in various mammalian tissues and organs. Testis is one of the most radiosensitive organs because of its cell renewal system. A number of chemical compounds have been and are being tested for their radioprotective effects on different animals. The antioxidant nature of Vitamin E and its role in maintenance of member structure suggests the presumptive radioprotective nature of this vitamin as well as its possible role in repair of radiation damage. In spite of some controversial reports, the radioprotective effect of Vitamin E has been observed by some investigators. In the light of above, the present study has been undertaken to assess the presumptive prophylactic effects of Vitamin E on the testes of Swiss albino mice subjected to sub-lethal whole-body gamma radiations

  15. Radiation damage and repair in cells and cell components. Final report. Part 1

    International Nuclear Information System (INIS)

    Fluke, D.J.

    1984-01-01

    An overview of research into the direct action of ionizing radiation, especially the effect of radiation temperature, primarily upon enzymes, into induced repair, and into S.O.S.-related phenomena, is presented

  16. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood.

    Directory of Open Access Journals (Sweden)

    Helen Budworth

    Full Text Available DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS. Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06radiation. Three genes of this panel (CDKN1A, FDXR and BBC3 were also highly sensitive to LPS treatment in the absence of radiation exposure, and LPS co-treatment significantly affected their radiation responses. At the protein level, BAX and pCHK2-thr68 were elevated after radiation exposure, but the pCHK2-thr68 response was significantly decreased in the presence of LPS. Our combined panel yields an estimated 4-group accuracy of ∼90% to discriminate between radiation alone, inflammation alone, or combined exposures. Our findings suggest that DNA repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.

  17. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  18. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  19. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    International Nuclear Information System (INIS)

    Wilding, Craig S.; Relton, Caroline L.; Rees, Gwen S.; Tarone, Robert E.; Whitehouse, Caroline A.; Tawn, E. Janet

    2005-01-01

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC] n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC] n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations

  20. Radiation induced DNA damage and repair in mutagenesis

    International Nuclear Information System (INIS)

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  1. Repair of the radiation induced rectovaginal fistulas without or with interposition of the bulbocavernosus muscle (Martius procedure)

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, E.J.; Sindram, I.S.

    1988-04-01

    Two local repair procedures, one without (9) and the other with (14) a bulbocavernosus muscle graft were performed on 20 patients with a radiation induced rectovaginal fistula. Four patients had two procedures successively. The initial success rate of both procedures was 7/9 and 14/14 respectively. Though the initial result of the bulbocavernosus graft was obviously better, in many of the local repair procedures, subclinical radiation damage progressed, resulting in recurrence of rectovaginal fistula (5), rectovesical fistula (4), pararectal abscess (2) etc. After a mean follow up of around 10 years, the success rate of fistula repair decreased to 5/9 and 13/14 and only 2/9 and 6/14 finally remained without a colostomy. A local repair operation should be restricted to carefully selected cases. The musculus gracilis is proposed as a better vascular graft. If the general condition of the patient does not allow more aggressive reconstructive procedures, fistula repair is better cancelled because there is a high risk of subsequent radiation damage.

  2. DNA excision repair as a component of adaptation to low doses of ionizing radiation Escherichia coli

    International Nuclear Information System (INIS)

    Huang, H.; Claycamp, H.G.

    1993-01-01

    In this study the authors examined whether or not DNA excision repair is a component of adaptation induced by very low-dose ionizing radiation in Escherichia coli, a well-characterized prokaryote, and investigated the relationship between enhanced excision repair and the SOS response. Their data suggest that there seems to be narrow 'windows' of dose-effect for the induction of SOS-independent DNA excision repair. Being similar to mammalian cell studies, the dose range for this effect was about 200-fold less than D 37 for radiation survival. (author)

  3. Radiation Induced G2 Chromatic Break and Repairs Kinetics in Human Lymphoblastoid Cells

    International Nuclear Information System (INIS)

    Seong, Jin Sil

    1993-01-01

    In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently beer explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia(AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to lonizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity in an approach to investigate kinetics of induction and repair of G2 chromatic breaks using normal, AT heterozygous(ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, 9-β-D-arabinosyl-2-fluoroadenine, an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT G2 cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of G2 chromosomal sensitivity is thought to result from the difference of initial damage

  4. Lack of a differential radiation response for proliferative and non-proliferative rat thyroid cells (FRTL-5) in vitro

    International Nuclear Information System (INIS)

    Brosing, J.W.; Giese, W.L.; Mulcahy, R.T.

    1989-01-01

    FRTL-5 rat thyroid epithelial cells maintain normal thyroid function and morphology in vitro, exhibit an absolute requirement for thyroid stimulating hormone (TSH) for proliferation and display radiation dose response characteristics indistinguishable from those of rat thyroid epithelial cells in vivo. In TSH-free medium cells remain in a non-proliferative, yet viable, state for prolonged periods of time and respond to TSH re-stimulation by a return to exponential growth. Flow cytometric analysis using two-step acridine orange (AO) staining revealed an accumulation of cells in the G1 phase of the cell cycle accompanied by a pronounced reduction in red fluorescence (indicative of RNA content) in FRTL-5 cells cultured in the absence of TSH. The response of proliferative and non-proliferative FRTL-5 cells to single dose, split dose and fractionated radiation was compared to determine whether proliferative status was an important response determinant. The response of FRTL-5 cells was not influenced by proliferative status at the time of irradiation. Additionally, dose response was not altered by variable (12 hr-8 days) non-proliferative intervals before or after irradiation. As revealed by split dose experiments, the rate and extent of sublethal damage repair was likewise similar for proliferative and non-proliferative cells. Multifraction experiments employing three fractions separated by 6 hr intervals indicate that non-proliferative FRTL-5 cells completely repair sublethal damage between fractions. These results indicate that the radiation response of FRTL-5 cells is not influenced by the proliferative status of the cells prior to or post-irradiation

  5. Radiation response characteristics of human cell in vitro

    International Nuclear Information System (INIS)

    Hall, E.J.

    1987-01-01

    Improvements in tissue culture techniques and growth media have made it possible to culture a range of cells of human origin, both normal and malignant. The most recent addition to the list are endothelial cells. Interesting results have been obtained, some of which may have implications in Radiation Therapy. (i) Repair of Potentially Lethal Damage (PLDR) has been observed in all cell lines investigated; cells of normal origin repair PLD at least as well as malignant cells, which makes clinical trials of PLDR inhibitors of doubtful usefulness. (ii) PLD in fibroblasts of human origin appears to have a component that is repaired rapidly, in a matter of minutes, as well as a slower component that takes hours to repair. (iii) Sublethal damage repair, manifest by a dose-rate effect, has also been observed in all human cell lines tested. Cells of normal tissue origin, including fibroblasts and endothelial cells, exhibit a dose-rate effect that is intermediate between that for cells from traditionally resistant tumors (melanoma and osteosarcoma) and cells from more sensitive tumors (neuroblastoma and breast). (iv) Fibroblasts from patients with Ataxia Telangectasia (AT) are much more sensitive to x-rays, with a D/sub o/ about half that for normal human fibroblasts. Nevertheless repair of both PLD and SLD can be demonstrated in these cells

  6. Relation between four types of radiation damage and induced repair

    International Nuclear Information System (INIS)

    Radar, M.L.

    1977-08-01

    Four strains of Escherichia coli were exposed to uv and gamma radiation. Procedures are described for mutational studies, classification of revertants, inhibition of postirradiation DNA degradation and radioresistance. Comparisons were made of induction of the error-prone repair (epr) system with four mutagens; uv radiation, near uv radiation, gamma radiation, and DNA-protein crosslinks. An increase in the number of mutations was shown in every case. The observation that induction of mutagenesis, induction of inhibition of post-irradiation DNA degradation, and induction of radioresistance are closely parallel phenomena led to the investigation of the possibility that DNA-protein crosslinks which were known mutagens were also inducers of the epr system. The significance of the results is discussed

  7. High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?

    Science.gov (United States)

    Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula

    2017-03-01

    Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Simultaneous demonstration of UV-type and ionizing radiation-type DNA repair by the nucleoid sedimentation technique

    International Nuclear Information System (INIS)

    Aldenhoff, P.; Sperling, K.

    1984-01-01

    The nucleoid sedimentation technique is one of the most sensitive methods for measuring DNA excision repair. With this technique, it is shown that both UV- and ionizing radiation-type repair (the latter induced by bleomycin) can be discriminated in HeLa and normal diploid cells using 1-β-D-arabinofuranosylcytosine. The latter compound inhibits UV-type repair synthesis, and thus causes DNA breaks due to enzymic incision to persist, but has no effect on rejoining DNA after ionizing radiation-type damage. It was then possible to prove that 4-nitroquinoline-1-oxide induces both types of lesions which are repaired simultaneously. This effect could be demonstrated in HeLa and normal human diploid cells in a single experimental set-up. (Auth.)

  9. Investigation of ionizing sublethal doses effects on endogenous radioresistance background

    International Nuclear Information System (INIS)

    Kudryashov, Yu.B.; Goncharenko, E.N.; Antonova, S.V.; Akhalaya, M.Ya.; Bajzhumanov, A.A.; Shestakova, S.V.

    1997-01-01

    Sublethal doses of X-radiation (0.5 Gy and 1 Gy) caused the alterations in levels of main components of endogenous radioresistance background in rat tissues. There were demonstrated the decrease of serotonin content in stomach mocosa and spleen, adrenalin, noradrenalin and corticosteroids contents in adrenal glands, nonprotein thiols content in spleen and the increase of lipid peroxide level in serum on the 3-14 days after irradiation. The recovery of the investigated parameters was occurred to the 21 day after exposure. (author)

  10. Measurement of DNA breakage and breakage repair in mice spleen cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Wang Qin; Xue Jingying; Li Jin; Mu Chuanjie; Fan Feiyue

    2007-01-01

    Objective: To investigate the radioresistance mechanism of IBM-2 mice through measuring DNA single-strand break(SSB) and double-strands break (DSB) as well as their repair. Methods: Pulsed-field gel electrophoresis was used to measure DSB and SSB in IRM-2 mice and their parental mice ICR/JCL and 615 mice after exposure to different doses of γ-ray at different postirradiation time. Results: The initial DNA damages, ie the quantities of DSB and SSB in unirradiation IRM-2 mice were less serious than that of their parental mice ICR/JCL and 615 alice(P<0.01). The percent- age of DSB and SSB in IBM -2 mice was significantly lower than that of ICB/JCL and 615 mice after exposure to various doses of γ-ray(P<0.01 and P<0.05). There were not statistic differences in DSB and SSB repair between IRM-2 mice and their parental mice after exposure to 2Gy radiation. The DNA damage repair rate induced by 4Gy and 8Gy radiation in IRM - 2 mice was rapid, ie the repair rate of SSB and DSB after 0.5h and 1h postirradiation in IRM-2 mice was higher than that of their' parental mice (P<0.01 and P<0.05). And remaining damages after repair in IRM-2 mice were lower than that of ICR/JCL and 615 mice. Conclusion: The DNA damages in IBM-2 mice were lower than that of their parental mice after exposure to ionizing radiation. Moreover, the repair rate of SSB and DSB was higher than that of their parental mice, which perhaps were the radioresistance causes of IBM-2 mice. Therefore IRM-2 mice are naturally resistant to DNA damages induced by ionizing radiation. (authors)

  11. The recovery of the human organism after radiation exposure

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1976-01-01

    The repair of radiation damage in the human organism is reviewed. A distinction is made between the single repair steps, first the molecular repair of sublethal damage during the periods of 30 min to 2 h and several days to months, second the substitution of the whole cells during a period of reproduction which is specific for the kind and persistence of the cells. One example is the radiosensitive stem cell with a reproduction rate of 40% and a redoublication time of 10 d at 100 rads and the very low reproduction rate of 1% with redoublication time of 7 d after a dose of 400 rads. 5 rads seems to be acceptable for systems with recovery and repeated exposure, single doses normally should not exceed 25 rads, not 100 rads/d for to save human life, and not a total dose of 500 rads. About 20% of irradiation damage is not repaired and leads to late effects, for example the induction of tumors, the shortening of life span and an increase in embryonic mortality. The author recommends the acceptance of a radiation dose leading to 20 additional cases of leucemia in the whole population of Germany and an increase of tumor frequency of 1%. The shortening of life span should not exceed 0,5%. The equivalent residual dose (ERD) can be calculated by the following equation: ERD = last effective dose minus 5 rads x number of days. (AJ) [de

  12. Effect of sublethal doses of gamma radiation on DNA super helicity and survival of human fibroblasts

    International Nuclear Information System (INIS)

    Koceva-Chyla, A.

    1992-01-01

    Effect of sublethal doses of gamma radiation on cell survival and DNA super helicity in human fibroblasts was studied. Cell survival was estimated on the basis the basis of clonal growth of irradiated fibroblasts in monolayer culture in vitro. The nucleoid sedimentation technique was used to study ionizing radiation-induced DNA damage in vivo as well as to examine DNA super helicity. Increased concentrations of ethidium bromine (EB) were used to titrate the DNA super coiling response in non-irradiated cells. This response consisted of a relaxation phase (1-5 μg/ml EB) and rewinding phase (5-20 μg/ml EB). Observed biphasic dependence of sedimentation distance of nucleoid on the concentration of EB suggests the dye altered the amount of DNA super coiling in situ. The degree of DNA super coiling and thus the sedimentation rate of nucleoid in absence of EB was very sensitive to strand break induced in DNA by the doses of gamma radiation employed in the cell survival assay. Doses of 2-8 Gy of gamma radiation induced a dose -dependent reduction in the sedimentation of nucleoid. Loss of negative DNA super coiling was initially rapid (about 30% after the dose of 2 Gy) and then proceeded at a slower rate (about 35% and 48% after the doses of 4 Gy and 8 Gy respectively), indicating a significant relaxation of nucleoid structure at the doses of gamma radiation greater than 4 Gy, at which also significant decrease in fibroblasts survival occurred. Significant loss of negative DNA super coiling within the range of doses of gamma radiation resulting in significant decrease of cell survival suggests that destabilizing effect of radiation on DNA tertiary- and quaternary structures (extensive DNA breaks and relaxation of nucleonic super helicity) disturb normal functions and replications of genomic DNA, in consequence leading to a reproductive death of cells. Considering the sensitivity and simplicity of the method, the nucleoid sedimentation technique might be also a useful tool

  13. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  14. Repair mechanisms and exposure standards

    International Nuclear Information System (INIS)

    Mills, W.A.

    1978-01-01

    The following topics are discussed; public policy for setting radiation standards; use of linear, nonthreshold theory in setting radiation standards; dose-rate dependence; occupational exposure to radiation; radon inhalation from radium in the soil in the vicinity of the phosphate industry; relation of repair mechanisms for cell survival to cancer induction; application of information on genetic repair to humans and to cancer induction; importance of repair processes in radiation protection standards; corrective factors for repair processes; relation of repair processes to age, sex, and other factors; and population distribution in radiosensitivity

  15. Avoidance behaviour and anxiety in rats irradiated with a sublethal dose of gamma-rays.

    Science.gov (United States)

    Tomášová, Lenka; Smajda, B; Bona, M

    2011-12-01

    The aim of this study was to assess, whether a sublethal dose of gamma-rays will influence the avoidance behaviour and anxiety in rats and whether the response to radiation depends on time of day of its application. Adult male Wistar rats were tested in elevated plus-maze, in hot plate test and in the light/dark box in 4 regular intervals during a day. After two weeks the animals were irradiated with a whole-body dose 6 Gy of gamma-rays. One day after irradiation the animals were repeatedly tested in the same way, as before irradiation. In the plus-maze test an increased level of anxiety was established. The irradiation significantly decreased the locomotor activity of rats, but the extent of exploratory and comfortable behaviour were not altered. After irradiation, an elevated aversion to the thermal stimulus was observed in the hot plate test. The effects of radiation were more pronounced in the light period of the day, than in the dark one. No significant differences in aversion to light were detected after irradiation. The obtained results indicate, that sublethal doses of ionizing radiation can markedly influence the reactivity of animals to adverse stimuli, their motoric activity and emotional status, as well.

  16. Bridging plant and human radiation response and DNA repair through an in silico approach

    Czech Academy of Sciences Publication Activity Database

    Nikitaki, Z.; Pavlopoulou, A.; Holá, Marcela; Donà, M.; Michalopoulos, I.; Balestrazzi, A.; Angelis, Karel; Georgakilas, A. G.

    2017-01-01

    Roč. 9, č. 6 (2017), č. článku 65. ISSN 2072-6694 R&D Projects: GA ČR GA16-01137S Institutional support: RVO:61389030 Keywords : Bioinformatics * DNA damage repair * In silico analysis * Ionizing radiation * Plant radiation biodosimeter * Ultraviolet radiation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Oncology

  17. Reduced repair of potentially lethal radiation damage in glutathione synthetase-deficient human fibroblasts after X-irradiation

    International Nuclear Information System (INIS)

    Midander, J.; Revesz, L.; Deschavanne, P.J.; Debieu, D.; Malaise, E.P.

    1986-01-01

    Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions. (author)

  18. Extensive and equivalent repair in both radiation-resistant and radiation-sensitive E. coli determined by a DNA-unwinding technique

    International Nuclear Information System (INIS)

    Ahnstroem, G.; George, A.M.; Cramp, W.A.

    1978-01-01

    The extent of strand breakage and repair in irradiated E. coli B/r and Bsub(s-l) was studied using a DNA-unwinding technique in denaturing conditions of weak alkali. Although these two strains showed widely different response to the lethal effects of ionizing radiation, they both had an equal capacity to repair radiation-induced breaks in DNA. Oxygen enhancement ratios for the killing of B/r and Bsub(s-l) were respectively 4 and 2; but after repair in non-nutrient or nutrient post-irradiation conditions, the oxygen enhancement values for the residual strand breaks were always the same for the two strains. The equal abilities of E.coli B/r and E.coli Bsub(s-l) to remove the strand breaks measured by this weak-alkali technqiue has led to the suggestion that some other type of damage to either DNA or another macromolecule may play a major role in determining whether or not the cells survive to proliferate. (author)

  19. Extensive and equivalent repair in both radiation-resistant and radiation-sensitive E. coli determined by a DNA-unwinding technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahnstroem, G [Stockholm Univ. (Sweden); George, A M; Cramp, W A

    1978-10-01

    The extent of strand breakage and repair in irradiated E. coli B/r and Bsub(s-l) was studied using a DNA-unwinding technique in denaturing conditions of weak alkali. Although these two strains showed widely different response to the lethal effects of ionizing radiation, they both had an equal capacity to repair radiation-induced breaks in DNA. Oxygen enhancement ratios for the killing of B/r and Bsub(s-l) were respectively 4 and 2; but after repair in non-nutrient or nutrient post-irradiation conditions, the oxygen enhancement values for the residual strand breaks were always the same for the two strains. The equal abilities of E.coli B/r and E.coli Bsub(s-l) to remove the strand breaks measured by this weak-alkali technqiue has led to the suggestion that some other type of damage to either DNA or another macromolecule may play a major role in determining whether or not the cells survive to proliferate.

  20. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    International Nuclear Information System (INIS)

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-01-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  1. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  2. Radioprotection of mice by lactoferrin against irradiation with sublethal X-rays

    International Nuclear Information System (INIS)

    Nishimura, Yoshikazu; Homma-Takeda, Shino; Kim, Hee-Sun; Kakuta, Izuru

    2014-01-01

    The influence of a host defense protein, lactoferrin (LF), contained in exocrine secretions such as milk, on radiation disorder was investigated. A total of 25 C3H/He mice in each of two groups were maintained with 0.1% LF-added and LF-free diets, respectively, for one month. The mice were then treated with single whole-body X-ray irradiation at a sublethal dose (6.8 Gy), and the survival rate after irradiation was investigated. The survival rate at 30 d after irradiation was relatively higher in the LF group than in the control group (LF-free), (85 and 62%, respectively). The body weight 15 d after X-ray irradiation was also significantly greater in the LF group than in the control group. The hemoglobin level and hematocrit value were higher in the LF group at 5 d before X-ray irradiation. Another 52 mice underwent whole-body X-ray irradiation at the sublethal dose (6.8 Gy), and then LF was intraperitoneally injected once at 4 mg/animal to half of them. The survival rate in LF-treated mice 30 d after irradiation was 92%, significantly higher than in mice treated with saline (50%) (P = 0.0012). In addition, LF showed hydroxyl radical scavenger activity in vitro. These findings suggest that LF may inhibit radiation damage. (author)

  3. Repair in schizosaccharomyces pombe as measured by recovery from caffeine enhancement of radiation-induced lethality

    International Nuclear Information System (INIS)

    Gentner, N.E.; Werner, M.M.

    1975-01-01

    Inhibition of DNA repair by caffeine is manifested in Schizosaccharomyces pombe wild-type cells as an enhancement of UV- or γ-irradiation-induced lethality. The progress of DNA repair processes involving one or more caffeine-sensitive steps may be conveniently followed by measuring the concomitant decrease of this lethal enhancement effect. By measuring, during post-irradiation incubation, the ability of cells to overcome susceptibility to repair inhibition by caffeine, we have determined the time course and requirements for repair in S. pombe. Recovery began immediately and took 150-200 min after γ-irradiation and more than 500 min after UV-irradiation, for exposures which gave about 10% survival in the absence of caffeine. An incubation medium capable of supporting growth was required for caffeine-sensitive repair; no recovery occurred under liquid holding conditions. Survival curves after various recovery times indicated that a logarithmic phase cell population was homogeneous with respect to caffeine-sensitive repair of both UV- and γ-ray-induced damage. Recovery from caffeine inhibition was compared for cells of different physiological states (logarithmic and stationary phase); although the importance of the physiological state was not the same for the two types of radiation, recovery was found to occur more rapidly in the more radiation-resistant state, in each case. (orig.) [de

  4. Sensitivity of strains of Escherichia coli differing in repair capability to far UV, near UV and visible radiations

    International Nuclear Information System (INIS)

    Webb, R.B.; Brown, M.S.

    1976-01-01

    In stationary phase, strains of Escherichia coli deficient in excision (B/r Hcr) or recombination repair (K12 AB2463) were more sensitive than a repair proficient strain (B/r) to monochromatic near-ultraviolet (365nm) and visible (460 nm) radiations. The relative increase in sensitivity of mutants deficient in excision or recombination repair in comparison to the wildtype, was less at 365 nm than at 254 nm. However, a strain deficient in both excision and recombination repair (K12 AB2480) showed a large, almost equal, increase in sensitivity over mutants deficient in either excision or recombination repair at 365 nm and 254 nm. All strains tested were highly resistant to 650 nm radiation. Action spectra for lethality of strains B/r and B/r Hcr in stationary phase reveal small peaks or shoulders in the 330 to 340, 400 to 410 and 490 to 510 nm wavelength ranges. The presence of 5 micro g/ml acriflavine (an inhibitor of repair) in the plating medium greatly increased the sensitivity of strain B/r to radiation at 254, 365 and 460 nm, while strains E.coli B/r Hcr and K12 AB2463 were sensitized by small amounts. At each of the wavelengths tested, acriflavine in the plating medium had at most a small effect on E.coli K12 AB2480. Acriflavine failed to sensitize any strain tested at 650 nm. Evidence supports the interpretation that lesions induced in DNA by 365 nm and 460 nm radiations play the major role in the inactivation of E.coli by these wavelengths. Single-strand breaks (or alkali-labile bonds), but not pyrimidine dimers are candidates for the lethal DNA lesions in uvrA and repair proficient strains. At high fluences lethality may be enhanced by damage to the excision and recombination repair systems. (author)

  5. Sensitivity of strains of Escherichia coli differing in repair capability to far uv, near uv and visible radiations

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R B; Brown, M S [Argonne National Lab., Ill. (USA)

    1976-11-01

    In stationary phase, strains of Escherichia coli deficient in excision (B/r Hcr) or recombination repair (K12 AB2463) were more sensitive than a repair proficient strain (B/r) to monochromatic near-ultraviolet (365nm) and visible (460 nm) radiations. The relative increase in sensitivity of mutants deficient in excision or recombination repair in comparison to the wildtype, was less at 365 nm than at 254 nm. However, a strain deficient in both excision and recombination repair (K12 AB2480) showed a large, almost equal, increase in sensitivity over mutants deficient in either excision or recombination repair at 365 nm and 254 nm. All strains tested were highly resistant to 650 nm radiation. Action spectra for lethality of strains B/r and B/r Hcr in stationary phase reveal small peaks or shoulders in the 330 to 340, 400 to 410 and 490 to 510 nm wavelength ranges. The presence of 5 micro g/ml acriflavine (an inhibitor of repair) in the plating medium greatly increased the sensitivity of strain B/r to radiation at 254, 365 and 460 nm, while strains E.coli B/r Hcr and K12 AB2463 were sensitized by small amounts. At each of the wavelengths tested, acriflavine in the plating medium had at most a small effect on E.coli K12 AB2480. Acriflavine failed to sensitize any strain tested at 650 nm. Evidence supports the interpretation that lesions induced in DNA by 365 nm and 460 nm radiations play the major role in the inactivation of E.coli by these wavelengths. Single-strand breaks (or alkali-labile bonds), but not pyrimidine dimers are candidates for the lethal DNA lesions in uvrA and repair proficient strains. At high fluences lethality may be enhanced by damage to the excision and recombination repair systems.

  6. Measurement of oxygen enhancement ratio for sub-lethal region using saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, Rajesha K.; Anjaria, K.B.; Bhat, Nagesh N.; Chaurasia, Rajesh K.; Balakrishnan, Sreedevi; Yerol, Narayana

    2013-01-01

    Oxygen is one of the best known modifiers of radiation sensitivity and the biological effects is greater in the presence of oxygen, and significant modifying effect will be observed only for low LET radiations. The reduced oxygen availability is sensed which trigger homeostatic responses, which impact on virtually all areas of biology and medicine. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells, therefore clarifying the mechanism of the oxygen effect is important. In the present study, a mutant type diploid yeast strain, Saccharomyces cerevisiae D7 was used to study Oxygen Enhancement Ratio (OER) using 60 Co gamma radiation. Cells were washed thrice by centrifugation (2000 g for 5 min) and re-suspended to a cell concentration of 1x108 cells mL-1 in a sterile polypropylene vial for irradiation (sub-lethal dose range, 0-100 Gy). Hypoxic conditions were achieved by incubating the cells in airtight vials at 30℃ for 30 min prior to irradiation. The gene conversion and back mutation analysis were carried out according to the standard protocol. Gene conversion is the radio-sensitive biological endpoint, that can be studied in Saccharomyces cerevisiae D7 yeast cells at trp locus in tryptophan (Trp- medium) deficient medium. The dose response relation at euoxic and hypoxic condition in sub-lethal doses are found to be linear and is represented by Y (Euoxic) = (6.54±0.102) D with R2=0.999 and for hypoxic condition Y(Hypoxic) = (3.346±0.033) D with R2=0.996. The OER can be calculated by dividing the euoxic slope with hypoxic slope, and is 1.95. Back mutation, which is a result of reversion of Isoleucine auxotrophs to prototrophs gives very good information at sub-lethal doses. The dose response relation between back mutated cells and radiation doses at Euoxic and hypoxic condition can be represented as Y(Euoxic) = (2.85±0.126) D with R2= 0.976 and for hypoxic condition Y

  7. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    Science.gov (United States)

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  8. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  9. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair

    International Nuclear Information System (INIS)

    Belov, O.V.; Krasavin, E.A.; Lyashko, M.S.; Batmunkh, M.; Sweilam, N.H.

    2014-01-01

    We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the nonhomologous end-joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2-236 keV/μm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of three repair pathways allows one to describe their possible biological relations in response to radiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions.

  10. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways.

    Directory of Open Access Journals (Sweden)

    Victoria Ifeadi

    Full Text Available BACKGROUND: Death receptors (DR of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-X(L and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types. CONCLUSIONS/SIGNIFICANCE: Irradiation of tumor cells can overcome Fas and TRAIL

  11. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    Science.gov (United States)

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  12. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    International Nuclear Information System (INIS)

    Eccles, Laura J.; O'Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a 'friend', leading to cell killing in tumour cells or as a 'foe', resulting in the formation of mutations and genetic instability in normal tissue.

  13. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    International Nuclear Information System (INIS)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-01-01

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  14. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  15. The relation between repair of DNA and radiation and chemical mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of various genes involved in DNA repair functions on radiation and chemical mutagenesis in Escherichia coli is discussed and compared to similar studies done in yeast. Results of the effect of various genes conferring radiation-sensitivty on mutation induction in yeast are presented and related to current ideas of mutagenesis

  16. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment

    International Nuclear Information System (INIS)

    Zhang Liyuan; Chen Liesong; Sun Rui; Ji Shengjun; Ding Yanyan; Wu Jia; Tian Ye

    2013-01-01

    Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5 and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, id est (i.e.) DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway. (author)

  17. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    Directory of Open Access Journals (Sweden)

    Santosh K Katiyar

    Full Text Available Solar ultraviolet (UV radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum, inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

  18. Molecular dynamics simulation studies of radiation damaged DNA. Molecules and repair enzymes

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2004-12-01

    Molecular dynamics (MD) studies on several radiation damages to DNA and their recognition by repair enzymes are introduced in order to describe the stepwise description of molecular process observed at radiation lesion sites. MD studies were performed on pyrimidine (thymine dimer, thymine glycol) and purine (8-oxoguanine) lesions using an MD simulation code AMBER 5.0. The force field was modified for each lesion. In all cases the significant structural changes in the DNA double helical structure were observed; a) the breaking of hydrogen bond network between complementary bases and resulting opening of the double helix (8-oxoguanine); b) the sharp bending of the DNA helix centered at the lesion site (thymine dimer, thymine glycol); and c) the flipping-out base on the strand complementary to the lesion (8-oxoguanine). These changes were related to the overall collapsing double helical structure around the lesion and might facilitate the docking of the repair enzyme into the DNA and formation of DNA-enzyme complex. In addition to the structural changes, at lesion sites there were found electrostatic interaction energy values different from those at native sites (thymine dimer -10 kcal/mol, thymine glycol -26 kcal/mol, 8-oxoguanine -48 kcal/mol). These values of electrostatic energy may discriminate lesion from values at native sites (thymine 0 kcal/mol, guanine -37 kcal/mol) and enable a repair enzyme to recognize a lesion during scanning DNA surface. The observed specific structural conformation and energetic properties at the lesions sites are factors that guide a repair enzyme to discriminate lesions from non-damaged native DNA segments. (author)

  19. Sos - response induction by gamma radiation in Escherichia coli strains with different repair capacities

    International Nuclear Information System (INIS)

    Serment Guerrero, J.H.

    1992-01-01

    The Sos - response in Escherichia coli is formed by several genes involved in mechanisms of tolerance and/or repair, and only activates when a DNA - damage appears. It is controlled by recA and lexA genes. In normal circumstances, LexA protein is linked in every Sos operators, blocking the transcription. When a DNA damage occurs, a Sos signal is generated, Rec A protein changes its normal functions, starts acting as a protease and cleaves Lex A, allowing the transcription of all Sos genes. This response can be quantified by means of Sos Chromo test, performed by Quillardet and Ofnung (1985). In using the Chromo test, it has been observed that the DNA damage made by gamma radiation in Escherichia coli depends on both the doses and the doses rate. It has been shown that the exposure of Escherichia coli PQ37 strain (uvrA) to low doses at low dose rate appears to retard the response, suggesting the action of a repair mechanism. (Brena 1990). In this work, we compare the response in Escherichia coli strains deficient in different mechanisms of repair and/or tolerance. It is observed the importance of rec N gene in the repair of DNA damage produced by gamma radiation. (Author)

  20. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Daniel L. Jones

    2017-09-01

    Full Text Available Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  1. Radiation sensitivity and DNA repair in Caenorhabditis elegans strains with different mean life spans

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P S; Simpson, V J; Johnson, T; Mitchell, D

    1988-06-01

    The sensitivities to three DNA damaging agents (UV and ..gamma..-radiation, methyl methanesulfonate) were measured in four recombinant inbred (RI) strains of Caenorhabditis elegans with mean life spans ranging from 13 to 30.9 days, as well as in the wild-type strains used to derive these RI's. Sensitivities at several stages in the developmental cycle were tested. There were no significant correlations between mean life span and the lethal effects of these 3 agents. Excision of two UV-radiation-induced DNA photoproducts was also measured. Long-lived strains were no more repair competent than shorter-lived strains. These data indicate that DNA repair plays at best a minor role in the aging process of C. elegans. 33 refs.; 4 figs.

  2. Fibroblast growth factor 2 and DNA repair involvement in the keratinocyte stem cells response to ionizing radiation

    International Nuclear Information System (INIS)

    Harfouche, L'Emira Ghida

    2010-02-01

    Keratinocyte stem cells (KSCs) from the human inter follicular epidermis are regarded as the major target to radiation during radiotherapy. We found herein that KSCs are more resistant to ionizing radiation than their direct progeny, and presented more rapid DNA damage repair kinetics than the progenitors. Furthermore, we provided evidence describing the effect of fibroblast growth factor 2 (FGF2) signaling on the ability of KSCs and progenitors to repair damaged DNA. Despite our knowledge of the fact, that FGF is an anti-apoptotic factor in multiple cell types, the direct link between DNA repair and FGF2 signaling has rarely been shown. Existence of such link is an important issue with implications not only to stem cell field but also to cancer therapy. (author)

  3. Effect of an aminothiol (WR-1065) on radiation-induced mutagenesis and cytotoxicity in two repair-deficient mammalian cell lines

    International Nuclear Information System (INIS)

    Grdina, D.J.; Nagy, B.; Meechan, P.J.

    1991-01-01

    WR-2721 and its free thiol WR-1065 have been found to effectively protect against radiation- and/or chemotherapy-induced mutagenesis, transformation and carcinogenesis. With respect to the antimutagenic effect, WR-1065 significantly reduced the frequency of HGPRT mutants even when it was administered up to three hours following exposure of cells to radiation. The mechanisms of action most often attributed to these agents include their ability to scavenge free radicals, enter into chemical repair processes through the donation of hydrogen atoms, and induce intracellular hypoxia by means of auto-oxidative processes. Although evidence exists for each of these processes, none is sufficiently satisfactory to account for the post-irradiation protection of WR-1065 against mutation induction in mammalian cells. The most elegant work describing the role of aminothiols on cellular enzymatic repair processes has focused on well-characterized repair-proficient and -deficient bacterial and yeast cell systems. Protection against radiation-induced cytotoxicity by the aminothiol cysteamine was absent in E. coli cell lines that were characterized as having genetically defective repair systems. Until recently, such studies could not be effectively performed with mammalian cells. However, with the isolation and characterization of rodent cell lines deficient in their ability to repair DNA damage, it is now possible to investigate the role of cell-mediated repair systems on aminothiol radioprotection. Specifically, the authors have investigated the effects of WR-1065 on radiation-induced mutagenesis and cytotoxicity in cell lines EM9 and xrs-5, which are defective in DNA single-strand break (SSB) and double-strand break (DSB) rejoining, respectively. Corresponding parental repair-proficient cell lines, AA8 and K1, were also studied for comparative purposes. 26 refs., 5 figs., 2 tabs

  4. Participation of different genes in the ruptures repair of double chain in Escherichia coli stumps exposed to gamma radiation

    International Nuclear Information System (INIS)

    Serment G, J. H.; Martinez M, E.; Alcantara D, D.

    2013-01-01

    All living organisms are naturally exposed to radiation from different sources. Ionizing radiation produces a plethora of lesions upon DNA that can be categorized as single and double strand breaks and base damage. Among them, unrepaired double strand breaks (Dbs) have the greatest biological significance, since they are responsible of cell death. In Escherichia coli this kind of lesions are repaired mostly by homologous recombination. In this work the participation of some recombination genes in the repair of Dbs is evaluated. Escherichia coli defective strains were exposed to gamma radiation and incubated for different periods in ideal conditions. Both micro electrophoresis and pulse field gel electrophoresis techniques were used to evaluate the kinetics of repair of such lesions, reflecting the importance of each defective gene in the process. (Author)

  5. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    Science.gov (United States)

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  6. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  7. DNA damage and repair in rabbit lens epithelial cells following UVA radiation

    International Nuclear Information System (INIS)

    Sidjanin, Duska; Zigman, Seymour; Reddan, John

    1993-01-01

    Since ultraviolet light may be a contributing factor to cataractogenesis, we investigated the response of the lens epithelium, a potential target for UV insult, to UVA radiation. Cell survival and the induction and repair of DNA single-strand breaks (SSBs) were measured in cultured rabbit lens epithelial cells following UVA exposure. A 30 min exposure to UVA (180 KJ/m 2 ) induced measurable SSBs. An increase in UVA fluenced measurable SSBs. An increase in UVA fluence brought about an increase in UVA fluence brought about an increase in the number of DNA SSBs. Rejoining of SSBs were measured after the cells were irradiated in Tyrode's for 2 hrs and allowed to repair in the dark for 4 hrs at 36 o C in MEM containing 10% serum. Eighty percent of the DNA SSBs were repaired within 4 hrs as determined by analysis of the alkaline elution profile. The repair kinetics were biphasic with an initial fast and subsequently slower component. The results indicate that UVA can induce SSBs in lens-induced SSBs, and that UVA treatment can be toxic to the epithelium. (Author)

  8. The role of DNA repair in the realization of oxygen effect in bacteria Escherichia coli irradiated with various types of radiation

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.

    1983-01-01

    The role of the balance of E. coli repair systems in the sensitivity to ionizing radiation of different LETs is considered. The influence of modifying factors on the balance between fast (2) and slow (3) repair systems is analysed. It is shown that in the case of γg-irradiation of aerobic cells the decreased power of repair 3 in some limits can be compensated by increased power of repair 2 so that the sensitivity remains constant. In anaerobic conditions decreasing power of repair 3 leads inevitably to markedly increased sensitivity. Different mechanisms of the action of radioprotectors on the repair balance in aerobic or anaerobic state are discussed. The role of repair balance in the radiosensitivity of irradiated wild type cells is shown to become unimportant for high LET radiation owing to the presence of markedly increased ratio of direct double-strand breaks

  9. Molecular mechanism of short-patch repair of radiation-damaged DNA by in vitro reconstituted systems

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kim, K.; Biade, S.

    1995-01-01

    Objective: Short-patch excision repair is the major pathway to correct DNA damage such as modified bases, apurinic/apyrimidinic (AP) sites and single-strand breaks. Recently this repair reaction was demonstrated to proceed by two alternative pathways: DNA polymerase β (pol β)-dependent pathway and proliferating cell nuclear antigen (PCNA)-dependent pathway. In this work, we focused to compare substrate specificity of these two repair pathways and elucidate their roles in cellular responses to radiation damage. Materials and Methods: Three protein fractions, AP endonuclease, pol β, and BE-1B, which are required for the pol β-dependent pathway, and five protein fractions, AP endonuclease, BE-1B (these two are common to the pol β-dependent pathway), PCNA, pol δ, and BE-2, which are essential for the PCNA-dependent pathway were obtained from Xenopus laevis ovaries through column chromatography. The circular DNA containing either one of the following three lesions: a natural AP site, its synthetic analog, 3-hydroxy-2-hydroxymethyltetrahydrofuran (tetrahydrofuran), and 5-iododeoxyuridine (IdU), was prepared by in vitro ligation of oligonucleotides to a gapped circular DNA. The IdU-containing DNA was irradiated with 312 nm UV light prior to repair reaction. In addition, DNA carrying a single-strand break was obtained by Cs-137 irradiation. Repair reactions of these substrate DNAs were conducted with either the reconstituted system for the pol β-dependent pathway or the one for the PCNA-dependent pathway. After the reaction, repaired and unrepaired DNAs were separated by gel electrophoresis and quantitated. Results: The pol β-dependent reconstituted system was able to repair natural AP sites but not tetrahydrofuran sites or UV-irradiated IdU. The single-strand breaks generated by γ-irradiation were partially repaired by thepol β-dependent pathway. The PCNA-dependent system was able to repair natural AP sites, tetrahydrofuran sites, and most of the single

  10. Bridging Plant and Human Radiation Response and DNA Repair through an In Silico Approach

    Directory of Open Access Journals (Sweden)

    Zacharenia Nikitaki

    2017-06-01

    Full Text Available The mechanisms of response to radiation exposure are conserved in plants and animals. The DNA damage response (DDR pathways are the predominant molecular pathways activated upon exposure to radiation, both in plants and animals. The conserved features of DDR in plants and animals might facilitate interdisciplinary studies that cross traditional boundaries between animal and plant biology in order to expand the collection of biomarkers currently used for radiation exposure monitoring (REM in environmental and biomedical settings. Genes implicated in trans-kingdom conserved DDR networks often triggered by ionizing radiation (IR and UV light are deposited into biological databases. In this study, we have applied an innovative approach utilizing data pertinent to plant and human genes from publicly available databases towards the design of a ‘plant radiation biodosimeter’, that is, a plant and DDR gene-based platform that could serve as a REM reliable biomarker for assessing environmental radiation exposure and associated risk. From our analysis, in addition to REM biomarkers, a significant number of genes, both in human and Arabidopsis thaliana, not yet characterized as DDR, are suggested as possible DNA repair players. Last but not least, we provide an example on the applicability of an Arabidopsis thaliana—based plant system monitoring the role of cancer-related DNA repair genes BRCA1, BARD1 and PARP1 in processing DNA lesions.

  11. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    International Nuclear Information System (INIS)

    Wang, Chen; Lees-Miller, Susan P.

    2013-01-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation

  12. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chen [Departments of Biochemistry and Molecular Biology and Oncology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary (Canada); Lees-Miller, Susan P., E-mail: leesmill@ucalgary.ca [Departments of Biochemistry and Molecular Biology and Oncology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary (Canada)

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  13. Radiobiological significance of DNA repair

    International Nuclear Information System (INIS)

    Kuzin, A.M.

    1978-01-01

    A short outline is given on the history of the problem relating to the repair of radiation injuries, specifically its molecular mechanisms. The most urgent problems which currently confront the researchers are noted. This is a further study on the role of DNA repair in post-radiation recovery, search for ways to activate and suppress DNA repair, investigations into the activity balance of various repair enzymes as well as the problem of errors in the structure of repairing DNA. An important role is attached to the investigations of DNA repair in solving a number of practical problems

  14. Cellular and molecular repair of X-ray-induced damage: dependence on oxygen tension and nutritional status

    International Nuclear Information System (INIS)

    Spiro, I.J.; Kennedy, K.A.; Stickler, R.; Ling, C.C.

    1985-01-01

    Cellular and molecular repair was studied at 23 0 C using split-dose recovery and alkaline elution techniques, respectively, as a function of cellular oxygen and nutrient conditions. Hypoxic cells in full medium showed a partial reduction in the level of sublethal damage (SLD) repair relative to aerated cells; the respective repair kinetics were similar with a common repair half-time of 30 min. Similarly, hypoxic cells showed a slight reduction in strand break rejoining capacity compared to aerated cells. Under nutrient deprivation, anoxic cells displayed no SLD repair or strand break repair, while aerated cells exhibited the same level of SLD and strand break repair as for well-fed cells. In addition, nutrient deprived cells at low O 2 levels displayed normal SLD and strand break repair capability. These results indicate that both nutrient and O 2 deprivation are necessary for complete inhibition of cellular and molecular repair, and low levels of O 2 can effectively reverse this inhibition

  15. The repair-fixation model: general aspects and the influence of radiation quality

    International Nuclear Information System (INIS)

    Kiefer, J.; Loebrich, M.

    1992-01-01

    To explain the shape of cell survival curves after radiation action it is assumed that initial lesions are transient in nature and subject to repair or fixation. Since the underlying processes are controlled by enzymes, Michaelis-Menten kinetics are assumed. No qualitative differences between repair and fixation are postulated, the only differences being the kinetic parameters. This model yields a mathematical expression which is formally equivalent to the ''lethal-potentially-lethal'' (LPL) model. It is demonstrated that both mammalian as well as microbial survival data can be fitted. The inclusion of linear energy transfer (LET) effects is shown to be possible and is discussed qualitatively. (author)

  16. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  17. DNA polymerase inhibitors and heat alter fixation of postirradiation sublethal damage in L5178Y-S cells

    International Nuclear Information System (INIS)

    Kapiszewska, M.; Szumiel, I.; Lange, C.S.

    1988-01-01

    We have used the inhibitor of DNA polymerase alpha, aphidicolin (apc) (0.5 μg/ml for 1 h), or that of DNA polymerase beta, dideoxythymidine triphosphate (ddTTP) (5 μg/ml), as well as heat (15 min at 43 deg C) to examine fixation of sublethal damage (SLD) induced by X-rays in L5178Y-S (LY-S) cells. This cell line has the unique property of responding to split X-ray doses at 37 deg C by decreased survival. This effect was partly abolished by heating the cells before irradiation with the second dose; the protection was most pronounced when the cells were heated 30-120 min. after the first dose of radiation. Since similar changes in postirradiation survival occurred when ddTTP was applied, we suggest that heat induces a loss of polymerase beta activity. Apc gave a smaller protective effect. We interpreted these results as suggesting that mismatching takes place during DNA semiconservative replication or repair; inhibition of replication results in survival increase, by preventing misrepair. A proper timing of treatment with the inhibitors or heat is essential to obtain the sparing effect, i.e. to prevent SLD fixation. 27 refs., 3 figs., 1 tab. (author)

  18. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  19. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    International Nuclear Information System (INIS)

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  20. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  1. Inhibitors of poly (ADP-ribose) synthesis inhibit the two types of repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi; Elkind, M.M.

    1994-01-01

    The purpose of this study was to examine whether 3-amino-benzamide (3ABA), an inhibitor of poly (ADP-ribose) synthesis, inhibits the two types of potentially lethal damage (PLD) repair, termed slow and fast. The fast-type PLD repair was measured by the decrease in survival of V79 Chinese hamster cells by postirradiation treatment with 3ABA. The slow-type PLD repair was measured by the increase in survival by posttreatment with conditioned medium (CM), which became conditioned by growing a crowed culture of cells and supports the slow-type PLD repair. Up to 1 mM 3-ABA inhibited the slow type repair; at doses of 2 mM and above, it inhibited the fast type of PLD repair. There are quantitative differences in cellular effects of 3ABA dependent on concentration. Poly (ADP-ribose) appears to play an important role in the PLD repairs and has little effect on the repair of sublethal damage. 10 refs., 2 figs

  2. Radiation-induced mutagenicity in repair deficient Chinese hamster ovary (CHO) mutants

    International Nuclear Information System (INIS)

    Tesmer, J.G.; Saunders, E.H.; Chen, D.J.

    1987-01-01

    To determine if there is a relationship between DNA double-strand break repair and mutagenicity the authors utilized two x-ray sensitive mutants of Chinese hamster ovary cells along with the parental line K1. The two mutant lines xrs-5 and xrs-6, which have different DSB repair capabilities, were used to determine cell killing and 6-thioguanine resistance (6TG/sup r/) mutation frequencies induced by either x-rays of α-particles, x-ray survival data indicated the two mutant lines have similar sensitivity and are 5-7 fold more sensitive than the parental line K1. The mutant lines are also sensitive to α-particles but to a lesser extent. The authors' 6TG mutation data indicated that the two mutant lines are hypermutable. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in mutant cell population than in parental K1 cells. Their results support the notion that repair of DSB play an important role in the expression of radiation-induced cell killing and mutagenicity

  3. Effects of hyperthermia on radiation-induced chromosome breakage and loss in excision repair deficient Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mittler, S.

    1986-01-01

    Hyperthermia increased radiosensitivity with respect to γ-ray induced chromosome loss and breakage in all stages of spermatogenesis in the wild type Oregon R strain of Drosophila melanogaster, whereas hyperthermia increased radiosensitivity to a lesser extent in cn mus(2) 201sup(D1), an excision repair mutant with 0 per cent excision capacity and in mus(3) 308sup(D1), a strain with 24 per cent excision capacity. The differences in hyperthermia-induced radiation sensitivity between the excision repair mutants and the wild strain may be due to the hyperthermia affecting the excision repair mechanism, suggesting that one of the possible mechanisms involved in hyperthermia-increased radiosensitivity is an effect on excision repair. (author)

  4. Impacts of chronic sublethal exposure to clothianidin on winter honeybees.

    Science.gov (United States)

    Alkassab, Abdulrahim T; Kirchner, Wolfgang H

    2016-07-01

    A wide application of systemic pesticides and detection of their residues in bee-collected pollen and nectar at sublethal concentrations led to the emergence of concerns about bees' chronic exposure and possible sublethal effects on insect pollinators. Therefore, special attention was given to reducing unintentional intoxications under field conditions. The sensitivity of winter bees throughout their long lifespan to residual exposure of pesticides is not well known, since most previous studies only looked at the effects on summer bees. Here, we performed various laboratory bioassays to assess the effects of clothianidin on the survival and behavior of winter bees. Oral lethal and sublethal doses were administered throughout 12-day. The obtained LD50 values at 48, 72, 96 h and 10 days were 26.9, 18.0, 15.1 and 9.5 ng/bee, respectively. Concentrations <20 µg/kg were found to be sublethal. Oral exposure to sublethal doses was carried out for 12-day and, the behavioral functions were tested on the respective 13th day. Although slight reductions in the responses at the concentrations 10 and 15 µg/kg were observed, all tested sublethal concentrations had showed non-significant effects on the sucrose responsiveness, habitation of the proboscis extension reflex and olfactory learning performance. Nevertheless, chronic exposure to 15 µg/kg affected the specificity of the early long-term memory (24 h). Since the tested concentrations were in the range of field-relevant concentrations, our results strongly suggest that related-effects on winter and summer bees' sensitivity should also be studied under realistic conditions.

  5. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  6. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  7. HIV-1 Tat depresses DNA-PKCS expression and DNA repair, and sensitizes cells to ionizing radiation

    International Nuclear Information System (INIS)

    Sun Yi; Huang Yuechen; Xu Qinzhi; Wang Huiping; Bai Bei; Sui Jianli; Zhou Pingkun

    2006-01-01

    Purpose There is accumulating evidence that cancer patients with human immmunodeficiency virus-1/acquired immunodeficency syndrome (HIV-1/AIDS) have more severe tissue reactions and often develop cutaneous toxic effects when subjected to radiotherapy. Here we explored the effects of the HIV-1 Tat protein on cellular responses to ionizing radiation. Methods and Materials Two Tat-expressing cell lines, TT2 and TE671-Tat, were derived from human rhabdomyosarcoma cells by transfecting with the HIV-1 tat gene. Radiosensitivity was determined using colony-forming ability. Gene expression was assessed by cDNA microarray and immunohybridization. The Comet assay and γ-H2AX foci were use to detect DNA double-strand breaks (DSBs) and repair. Radiation-induced cell cycle changes were detected by flow cytometry. Results The radiosensitivity of TT2 and TE671-Tat cells was significantly increased as compared with parental TE671 cells or the control TE671-pCI cells. Tat also increased proliferation activity. The comet assay and γH2AX foci detection revealed a decreased capacity to repair radiation-induced DNA DSBs in Tat-expressing cells. Microarray assay demonstrated that the DNA repair gene DNA-PKcs, and cell cycle-related genes Cdc20, Cdc25C, KIF2C and CTS1 were downregulated in Tat-expressing cells. Depression of DNA-PKcs in Tat-expressing cells was further confirmed by RT-PCR and immuno-hybridization analysis. Tat-expressing cells exhibited a prolonged S phase arrest after 4 Gy γ-irradiation, and a noticeable delay in the initiation and elimination of radiation-induced G 2 /M arrest as compared with parental cells. In addition, the G 2 /M arrest was incomplete in TT2 cells. Moreover, HIV-1 Tat resulted in a constitutive overexpression of cyclin B1 protein. Conclusion HIV-1 Tat protein sensitizes cells to ionizing radiation via depressing DNA repair and dysregulating cell cycle checkpoints. These observations provide new insight into the increased tissue reactions of AIDS

  8. Single-hit mechanism of tumour cell killing by radiation.

    Science.gov (United States)

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells

  9. The caretakers of the genome. Repair of DNA lesions induced by ultraviolet-light and ionizing radiation

    International Nuclear Information System (INIS)

    Boiteux, S.; Radicella, J.P.

    2000-01-01

    The DNA contained in the nucleus of each of our cells daily suffers of thousand damages caused by solar ultraviolet radiations or ionizing radiations, with a natural or not origin, agents able to modify the genetic information. This information stays stable. True caretakers of the genome repair the DNA, provided that the cell is not over-taken by the level of the attack. Alterations of the repair mechanism are at the origin of extremely severe syndromes. The failure of one of these caretakers of the genome, the O.G.G.1 gene, seems implicated in the cancer development. It can be a lead to discover a predisposition to radioinduced or caused by other toxic agents cancers. (N.C.)

  10. Radiation damage and repair in cells and cell components. Progress report: third new contract year

    International Nuclear Information System (INIS)

    Fluke, D.J.; Pollard, E.C.

    1980-01-01

    Research progress for 1979-1980 is reported. Projects discussed include the process of radiation-induced repair, Weigle-reactivation, induced radioresistance, the induction of the recA gene product, uv mutagenesis, and the induction of lambda

  11. Investigation of DNA damage and repair mechanism using deinococcus radiodurans

    International Nuclear Information System (INIS)

    Lau How Mooi; Kikuchi, M.; Kobayashi, Y.; Narumi, I.; Watanabe, H.

    1997-01-01

    Deninococcus Radiodurans, formerly known as Micrococcus Radiodurans, is a popular bacterium because of its high resistance to damage by carcinogens such as ionizing radiation (Dean et. al. 1966; Kitayama and Matsuyama 1968) and UV radiation (Gasvon et. al., 1995; Arrange et. al. 1993). In this report, we investigated the high resistance to ionizing radiation by this bacterium. The bacteria had been exposed from I to 5 kGy of gamma radiation and then incubated in TGY medium to study their ability to repair the broken DNA. The repair time was measured by Pulse Field Gel Electrophoresis (PFGE) method. The repair time for each dose was determined. Also in order to ensure that the repair was perfect, the bacterium was subjected to a second exposure of ionizing radiation after it has fully repaired. It was found that the 'second' repair characteristic was similar to the first repair. This confirmed that the repair after the exposure to the ionizing radiation was perfect

  12. Modulation of radiation-induced base excision repair pathway gene expression by melatonin

    Directory of Open Access Journals (Sweden)

    Saeed Rezapoor

    2017-01-01

    Full Text Available Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162 were divided into 27 groups (n = 6 in each group including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1, Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05 in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.

  13. Differences in inhibition by beta-arabinofuranosyladenine (araA) of radiation induced DNA damage repair in exponentially growing and plateau-phase CHO-cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Seaner, R.

    1988-01-01

    The effect of beta-arabinofuranosyladenine (araA) on the repair of radiation induced DNA damage, as measured by the DNA unwinding technique, was studied in exponentially growing and plateau-phase CHO-cells after exposure to X-rays. Induction of DNA damage by radiation was found to be similar in exponentially growing and plateau-phase cells. In the absence of araA, repair of radiation induced DNA damage proceeded with similar kinetics in exponentially growing and plateau-phase cells. AraA at concentrations between 0-1500 μM inhibited DNA repair both in exponentially growing and in plateau-phase cells. However, the degree of inhibition was significantly higher (by a factor of 3) in plateau-phase cells. A similar degree of repair inhibition by araA was observed in plateau-phase cells treated in their conditioned medium, as well as in plateau-phase cells that were transferred in fresh growth medium just before treatment initiation. These results indicate the importance of biochemical parameters associated with alterations in the growth state of the cells for the inhibitory effect of araA and may help in the elucidation of the molecular mechanism(s) underlying repair inhibition by inhibitors of DNA replication. (orig.)

  14. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  15. A method to combine three dimensional dose distributions for external beam and brachytherapy radiation treatments for gynecological neoplasms

    International Nuclear Information System (INIS)

    Narayana, V.; Sahijdak, W.M.; Orton, C.G.

    1997-01-01

    Purpose: Radiation treatment of gynecological neoplasms, such as cervical carcinoma, usually combines external radiation therapy with one or more intracavitary brachytherapy applications. Although the dose from external beam radiation therapy and brachytherapy can be calculated and displayed in 3D individually, the dose distributions are not combined. At most, combined point doses are calculated for select points using various time-dose models. In this study, we present a methodology to combine external beam and brachytherapy treatments for gynecological neoplasms. Material and Methods: Three dimensional bio-effect treatment planning to obtain complication probability has been outlined. CT scans of the patient's pelvis with the gynecological applicator in place are used to outline normal tissue and tumor volumes. 3D external beam and brachytherapy treatment plans are developed separately and an external beam dose matrix and a brachytherapy dose matrix was calculated. The dose in each voxel was assumed to be homogeneous. The physical dose in each voxel of the dose matrix was then converted into extrapolated response dose (ERD) based on the linear quadratic model that accounts for the dose per fraction, number of fractions, dose rate, and complete or incomplete repair of sublethal damage (time between fractions). The net biological dose delivered was obtained by summing the ERD grids from external beam and brachytherapy since there was complete repair of sublethal damage between external beam and brachytherapy treatments. The normal tissue complication probability and tumor control probability were obtained using the biological dose matrix based on the critical element model. Results: The outlined method of combining external beam and brachytherapy treatments was implemented on gynecological treatments using an applicator for brachytherapy treatments. Conclusion: Implementation of the biological dose calculation that combine different modalities is extremely useful

  16. The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Balart, Josep; Pueyo, Gemma; Llobet, Lara I de; Baro, Marta; Sole, Xavi; Marin, Susanna; Casanovas, Oriol; Mesia, Ricard; Capella, Gabriel

    2011-01-01

    Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair. Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors. We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself. The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay

  17. Damage to plasmid DNA produced by 60Co-gamma radiation and subsequent repair processes in E. coli with and without SOS induction

    International Nuclear Information System (INIS)

    Bien, M.

    1986-01-01

    This study was carried out to provide information on the question as to whether radiation-induced separation of double-stranded DNA in E. coli is followed by repair processes leading to the formation of replicable material. For the detection of those double-strand breaks, E. coli was first transformed using enzymatically linearised dBR 322-DNA. This served as a reference standard to compare the transformations using radiated DNA. DNA was either exposed to increasing doses of 60 Co-gamma radiation or separated into one oc-fraction and one lin-fraction following exposure to 30 Gy. The DNA samples thus obtained were then used to transform three different strains of E. coli (wild strain, SFX, SFXrecA - ). In order to improve the repair yield, the cells were additionally SOS-induced using ultraviolet radiation. The mutation rates were a measure of the number of errors occurring during the various repair processes. Restriction analysis was carried out to characterise the resulting mutants in greater detail. (orig./MG) [de

  18. Individual repair of radiation-induced DNA double-strand breaks in lymphocytes. Implications for radiation-induced dermatitis in breast cancer

    International Nuclear Information System (INIS)

    Melchior, Patrick Wilhelm

    2011-01-01

    Purpose: Adjuvant 'whole breast radiotherapy' (WBRT) is the standard of care after breast conserving surgery in women with breast cancer. Throughout different cancer stages the addition of WBRT leads to significantly improved rates of freedom from local failure and overall survival. WBRT is generally well tolerated. A 5-10%-rate of severe acute or long-term side effects is commonly observed. For both radiation-mediated tumor-cell-elimination and induction of side effects, DNA-double-strand-breaks (DSB) presumably play the decisive role. The intensity of normal tissue reactions in radiotherapy can, in part, be attributed to the intrinsic DSB repair-capacity. In this study in vivo and in vitro experiments are carried through in order to assess DSB repair-kinetics in blood lymphocytes of women with breast cancer. These findings are to be correlated with the degree of radiation-induced normal tissue toxicity. Patients and Methods: Eighteen patients with breast cancer, in whom WBRT was indicated, were examined. A total WBRT dose of 50 Gy (single dose 2 Gy) with an additional boost-radiotherapy to the initial tumor-region to a total dose of 60-66 Gy was administered. DSB repair was determined by means of counting γ-H2AX foci in blood lymphocytes at predefined points in time, i.e. before and 0.5 h; 2.5 h; 5 h and 24 h after in vivo irradiation (1st fraction of WBRT) and before and 0.5 h; 2.5 h and 5 h after in vitro irradiation with increasing radiation doses in the range of 10 - 500 mGy. Acute normal tissue toxicity was scored on the basis of a modified RTOG-classification (main aspects were erythema and dry or moist skin desquamation). Results: DSB repair-halflife-times did not differ between patients with a higher or lower than average incidence of acute side effects. In patients with 'above average' side effects larger irradiation volumes were treated (volume surrounded by the 50%-isodose). Adjusted for these, no single patients showed elevated residual γ-H2AX foci

  19. The alteration of chromatin domains during damage repair induced by ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Olson, K.M.; Olson, G.B.

    1995-01-01

    Several groups previously have reported the ability of chromatin structure to influence the production of damage induced by ionizing radiation. The authors' interest has been to determine whether chromatin structural alterations exist after ionizing radiation during a repair interval. The earlier work investigated this question using biochemical techniques. The crosslinking of nuclear structural proteins to DNA after ionizing radiation was observed. In addition, they found that the chromatin structure in vitro as measured by sucrose density gradient sedimentation, was altered after ionizing radiation. These observations added to earlier studies in which digital imaging techniques showed an alteration in feulgen-positive DNA after irradiation prompted the present study. The object of this study was to detect whether the higher order structure of DNA into chromatin domains within interphase human cells was altered in interphase cells in response to a radiation induced damage. The present study takes advantage of the advances in the detection of chromatin domains in situ using DNA specific dyes and digital image processing of established human T and B cell lines

  20. Effects of hyperthermia and ionizing radiation in normal and ataxia telangiectasia human fibroblast lines

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Chan, A.; Smith, B.P.; Child, S.D.; Paterson, M.C.

    1984-01-01

    The effects of 45 0 C hyperthermia and γ radiation have been studied in three normal human fibroblast lines (GM38, GM730, WI38) and compared to the effects in two lines derived from patients with the hereditary disease ataxia telangiectasia (AR3BI, AT5BI). All lines, both normal and γ-sensitive AT, showed a similar resistance to killing by heat alone, suggesting that the defect responsible for the increased radiation sensitivity in AT lines does not confer increased heat sensitivity. Shouldered survival curves were obtained in each case indicating the ability to accumulate sublethal heat damage. All normal and AT cell lines exhibited increased resistance to the lethal effects of heat in response to a thermal stress, indicating that the defect that causes radiosensitivity in AT cell lines does not prevent the induction of thermotolerance. It was hypothesized that in normal cells, this heat treatment inactivates the process which is already defective in AT lines, and that this process may be required for the proper rejoining of double-strand breaks produced during the repair of other radiation-induced lesions

  1. Life forms employ different repair strategies of repair single- and double strand DNA breaks caused by different qualities of radiation: criticality of RecA mediated repair system

    International Nuclear Information System (INIS)

    Sharan, R.N.

    2013-01-01

    Different qualities of radiation, either through direct or indirect pathway, induce qualitative different spectrum of damages in DNA, which are also different in in vitro and in vivo systems. The single- and double strand breaks of DNA are of special interest as they lead to serious biological consequences. The implications of such damage to DNA and their processing by various inherent repair pathways together decide the fate of the living form

  2. Investigations of the effect of exogenous gibberellin on the electrophoretic repair of plant DNA damaged by the gamma radiation

    International Nuclear Information System (INIS)

    Kryukova, L.M.; Medvedkova, V.V.

    1981-01-01

    Effect of the exogenous gibberellin on the DNA of plants irradiated with high doses of γ-radiation is studied. Repair of the molecular weight of DNA can be judged on according to electrophoretic mobility in 1% agar sludge of DNA samples denaturated in alkaline. Investigation results reaffirm that exogenous gibberellin promotes to the repair of the DNA of plants damaged with high doses of radiation. The mechanism of the effect of the hormone is not yet studied, but it is supposed that physiological action of the phytohormone is realized through the ferment systems of plants [ru

  3. Pesticides and Arthropods: Sublethal Effects and Demographic Toxicology

    Directory of Open Access Journals (Sweden)

    Dejan Marčić

    2007-01-01

    Full Text Available Insecticides and acaricides designed to control primary harmful insects and mites may also variously affect some other arthopods present in an (agroecosystem (e.g. secondary pests, predators, parasitoids, saprophytes, bioindicators, pollinators. Apart from insecticides and acaricides, arthropods may also be affected by the activity of other pesticides (fungicides, herbicides, etc.. Regardless of whether they are deemed desirable or not, the effects that pesticides have on arthopods need to be quantified as closely as possible through appropriate experimental procedures. Data acquired in tests designed to determined LD50/LC50 values are inadequate for evaluation of pesticide effectiveness in the field as pesticidesalso cause various sublethal effects, generally disregarded in such investigations. The sublethal effects of pesticides refer to any altered behaviour and/or physiology of individuals that have survived exposure to pesticides at doses/concentrations that can be lethal(within range causing mortality in an experimental population that exceeds mortality in an untreated population or sublethal (below that range. Pesticides affect locomotion and mobility, stimulate dispersion of arthropods from treated areas, complicate or prevent their navigation, orientation and ability to locate hosts, and cause changes in their feeding, mating and egg-laying patterns. Sublethal pesticide effects on arthropod physiology reflect on the life span, rate of development, fecundity and/or fertility, sex ratio and immunity of surviving individuals. Different parameters are being used in arthropod bioassays to determine sublethal effects (ED50/EC50, LOEC, NOEC, total effect index. Compared to acute toxicity tests, these parameters improve the quality of evaluation and create a more accurate view of the effects of a pesticide. However, such approach covers mainly fecundity/fertility alone, while all other sublethal effects remain unaccounted for. Besides, it

  4. Post radiation protection and enhancement of DNA repair of beta glucan isolated from Ganoderma lucidum

    International Nuclear Information System (INIS)

    Pillai, Thulasi G.; Nair, C.K.K.; Uma Devi, P.

    2013-01-01

    Ganoderma lucidum (Fr) P. Karst, commonly known as Reishi in Japan and Ling Zhi in China, is well known for its medicinal properties. G. lucidum contains a number of components among which the polysaccharides, particularly beta-glucan, and triterpenoids are the major active components. Radioprotective effect of a beta glucan (BG) isolated from the mushroom G. lucidum against radiation induced damage was investigated taking mouse survival and chromosomal aberrations as end points. DNA repair enhancing property of BG was determined by comet assay in human peripheral blood leucocytes. Young Swiss albino mice were exposed to whole body γ-irradiation. For mouse survival study, BG was administered orally 5 min after 8 Gy radiation exposures and at 4 Gy exposure for chromosomal aberrations. BG at 500 ug/kg body wt produced 66% mouse survival at 30 days given post irradiation. In chromosomal aberrations significant reduction in number of aberrant cells and different types of aberrations was observed in BG administered group compared to RT along treated group. For DNA repair, the comet parameters were studied at 2 Gy γ-irradiation with 15 min intervals. The comet parameters were reduced to normal levels after 120 min of exposure. The DNA repairing ability of BG contributes to the post radio protective effect of BG. (author)

  5. The effect of modulators of radiation-induced G2 arrest on the repair of radiation-induced DNA damage detectable by neutral filter elution

    International Nuclear Information System (INIS)

    Rowley, R.; Kort, L.

    1988-01-01

    The influence of cycloheximide (50 μg/ml), caffeine (5 mM) and cordycepin (0.15 mM) on the repair of the damage detectable in DNA by neutral filter elution was determined. Chinese hamster ovary cells (CHO) were irradiated with X-ray doses of 20, 60 and 100 Gy then allowed to repair without drug treatment or in the presence of each drug for intervals up to 6 h. DNA damage repair proceeded in two phases. The fast component of the repair process (t 1/2 approx. 7 min) was not modified by drug treatment; the slow component (t 1/2 170 min) was unaffected by cycloheximide or cordycepin, but appeared to be inhibited by caffeine. It was concluded that: (a) the lesion which results in radiation-induced G 2 arrest is not the lesion which is detectable by neutral filter elution, and (b) the influence of caffeine on dsb repair is specific to caffeine and is not mediated by a reduction in the duration of G 2 arrest. (author)

  6. Response of sublethally irradiated monkeys to a replicating viral antigen

    International Nuclear Information System (INIS)

    Hilmas, D.E.; Spertzel, R.O.

    1975-01-01

    Temporal effects of exposure to sublethal, total-body x radiation (400 R) on responses to vaccination with the attenuated Venezuelan equine encephalomyelitis vaccine virus, TC-83, were examined in rhesus monkeys. Viremia, often with delayed onset, was prolonged even when irradiation preceded vaccination by 28 days. Virus titers were increased, particularly in groups irradiated 4 or 7 days before vaccination. Delay in appearance of hemagglutination-inhibition and serum-neutralizing antibody correlated closely with persistence of viremia in irradiated-vaccinated monkeys. The temporal course of antibody response was markedly affected by the interval between irradiation and injection of this replicating antigen. With longer intervals between irradiation and vaccination, the somewhat depressed antibody responses approached normal or surpassed those of nonirradiated monkeys. Vaccination 14 days after radiation exposure resulted in lethality to 8 of 12 monkeys, apparently as a result of secondary infection. The additional lymphopenic stress due to the effect of TC-83, superimposed on the severely depressed hematopoietic competence at 14 days, undoubtedly contributed to this increased susceptibility to latent infection

  7. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    International Nuclear Information System (INIS)

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  8. The kinetics of repair in mouse lung after fractionated irradiation

    International Nuclear Information System (INIS)

    Travis, E.L.; Thames, H.D.; Watkins, T.L.; Kiss, I.

    1987-01-01

    The kinetics of repair of sublethal damage in mouse lung was studied after fractionated doses of 137 Cs γ-rays. A wide range of doses per fraction (1.7-12 Gy) was given with interfraction intervals ranging from 0.5 to 24 h. Data were analysed by a direct method of analysis using the incomplete repair model. The half-time of repair (Tsub(1/2)) was 0.76 h for the pneumonitis phase of damage (up to 8 months) and 0.65 h for the later phase of damage up to 12 months. Rate of repair was dependent on fraction size for both phases of lung damage and was faster after large dose fractions than after small fractions. Tsub(1/2) was 0.6 h (95% c.1. 0.53, 0.69) for doses per fraction greater than 5 Gy and 0.83 h (95% c.1. 0.76, 0.92) for doses per fraction of 2 Gy. Repair was nearly complete by 6 h at least for the pneumonitis phase of damage. If extrapolated to humans, these results imply that treatments with multiple fractions per day involving the lung will not be limited by the necessity for interfraction intervals much longer than 6 h. (author)

  9. Changes in tumor cell response due to prolonged dose delivery times in fractionated radiation therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald

    2005-01-01

    Purpose: Dynamic radiation therapy, such as intensity-modulated radiation therapy, delivers more complex treatment fields than conventional techniques. The increased complexity causes longer dose delivery times for each fraction. The cellular damage after a full treatment may depend on the dose rate, because sublethal radiation damage can be repaired more efficiently during prolonged dose delivery. The goal of this study was to investigate the significance of this effect in fractionated radiation therapy. Methods and Materials: The lethal/potentially lethal model was used to calculate lesion induction rates for repairable and nonrepairable lesions. Dose rate effects were analyzed for 9 different cell lines (8 human tumor xenografts and a C3H10T1/2 cell line). The effects of single-fraction as well as fractionated irradiation for different dose rates were studied. Results: Significant differences can be seen for dose rates lower than about 0.1 Gy/min for all cell lines considered. For 60 Gy delivered in 30 fractions, the equivalent dose is reduced by between 1.3% and 12% comparing 2 Gy delivery over 30 min per fraction with 2 Gy delivery over 1 min per fraction. The effect is higher for higher doses per fraction. Furthermore, the results show that dose rate effects do not show a simple correlation with the α/β ratio for ratios between 3 Gy and 31 Gy. Conclusions: If the total dose delivery time for a treatment fraction in radiation therapy increases to about 20 min, a correction for dose rate effects may have to be considered in treatment planning. Adjustments in effective dose may be necessary when comparing intensity-modulated radiation therapy with conventional treatment plans

  10. The role of repopulation in early and late radiation reactions in pig skin

    International Nuclear Information System (INIS)

    Redpath, J.L.; Peel, D.M.; Dodd, P.; Simmonds, R.H.; Hopewell, J.W.

    1984-01-01

    The role of repopulation in early and late radiation reactions in pig skin has been assessed by comparing split dose recovery doses (D/sub 2/-D/sub 1/) for a 1-day interval and a 28-day interval. For a 1-day interval, repair of sublethal damage is the major contribution to any recovery observed, whereas for a 28-day interval, repopulation may also play a role. The early reaction studied was moist desquamation and the late reactions studied were a later dermal erythema and necrosis. The data show that over a 28-day interval, repopulation contributes -- 7.0 Gy to a total D/sub 2/-D/sub 1/, of --14.0 Gy for the early moist desquamation (epidermal) reaction. Data for the role of repopulation in the late (dermal) reactions are also presented

  11. Sublethal Toxic effects of spent Oil Based Drilling Mud and Cuttings ...

    African Journals Online (AJOL)

    Sublethal toxic effects of spent oil based drilling mud collected from an abandoned oil drilling site in Mpanak, Akwa Ibom State, Nigeria were assessed in the earthworm Aporrectodea longa. The test annelid was exposed to sub-lethal Concentration of 0ppm SPP; 62,500ppm SPP; 125, 000ppm SPP; 250,000ppm SPP and ...

  12. Potential for heavy particle radiation therapy

    International Nuclear Information System (INIS)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over 60 Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons

  13. The influence of fractionation and repair kinetics on radiation tolerance

    International Nuclear Information System (INIS)

    Rongen, E. van.

    1989-01-01

    The effect of irradiation of biological tissues is described as the sum of a linear and a quadratic function of the radiation dose, in which α and β and β are denoted as the coefficients of the linear and quadratic terms respectively. The rate of repair of radiation damage is expressed by the half-life time T 1 / 2. The purpose of the study described in this thesis was to determine the α/β and T 1 / 2 values for early and late effects in lungs and kidneys of the rat. Rats have been irradiated upon one of both organs in various numbers of fractions, which have been administered with long or short time intervals in order to obtain respectively complete and incomplete repair. From the results values for α/β and T 1 / 2 could be obtained by means of computer codes. The results of this investigation indicate that for the lung differences exist in α/β for early and late effects. The α/β value for early effects being larger: 3.5 Gy, than the one for late effecfts: 2.3 Gy. The values for T 1 / 2 were respectively 1.0 hour for early and 1.1 hour for late effects. The kidney experiments resulted in equal α/β values for early and late effects: resp. 1.7 and 1.8 Gy. The T 1 / 2 values, however, differed being resp. 1.6 hour and 2.1 hour. Also the influence of the fraction dose upon the α/β and T 1 / 2 values was investigated. For the lung such effects have not been found. In the kidney only between 20 and 40 weeks after the irradiation differences were observed, which disappeared after this period. The results of this investigation indicate that, in radiotherapy of tumors where lungs and kidneys are contained in the radiation field, a scheme following which a large number of small fractions are administered, would give therapeutical advantage with respect to standard therapy. (H.W.). 240 refs.; 38 figs.; 37 tabs

  14. Radiation-induced thymine base damage and its excision repair in active and inactive chromatin of HeLa cells

    International Nuclear Information System (INIS)

    Patil, M.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    The extent of production and excision repair of 5,6-dihydroxydihydrothymine type base (t') damage was determined in transcriptionally active and inactive chromatin of HeLa cells after exposure to 6.8 MeV electrons. It was observed that not only the yield but also rate of repair of t' products was greater in the active chromatin compared to the inactive chromatin of HeLa cells. The results strongly indicate that the conformation of chromatin is an important factor in determining the sensitivity to radiation damage and accessibility to enzymes required for repair of such damage. (author)

  15. Binding of a nitroxyl to radiation-induced DNA transients in repair and repair deficient of E. coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Wold, E; Brustad, T [Norsk Hydros Institutt for Kreftforskning, Oslo

    1975-01-01

    Binding of tritiated 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (/sup 3/H-TAN) to radiation-induced DNA-transients in E. coli K-12 strains AB 1157 and JO 307 rec A uvr A has been studied under in vivo conditions. After irradiation the cells were washed and resuspended in growth medium and left overnight at 37 deg C. Within an uncertainty of about 10 %, no effect of repair could be detected on the yield of TAN bound to DNA for any of the strains. During the period after resuspension TAN or fragments of TAN leaked out of the irradiated cell samples. This leakage may be attributed to semi-permanent association between TAN and radiation-induced radicals within the cell. The relevance of different interactions between TAN and transients in DNA is discussed.

  16. The effect of mitotic inhibitors on DNA strand size and radiation-associated break repair in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.; Steiner, M.E.; Kalvonjian, S.L.

    1985-01-01

    The effect of mitotic inhibitors on formation and repair of DNA breaks was studied in cultured fibroblasts from patients with Down syndrome in order to investigate the hypothesis that the karyotyping procedure itself may play a role in the increased chromosome breakage seen in these cells after gamma radiation exposure. Using the nondenaturing elution and alkaline elution techniques to examine fibroblasts from Down syndrome patients and from controls, no specific abnormalities in Down syndrome cells could be detected after exposure to mitotic inhibitors, including rate and extent of elution of DNA from filters as well as repair of radiation-induced DNA breaks. In both normal and Down syndrome cell strains, however, exposure to mitotic inhibitors was associated with a decrease in cellular DNA strand size, suggesting the presence of drug-induced DNA strand breaks. The mechanism of increased chromosome sensitivity of Down syndrome cells to gamma radiation remains unknown. (orig.)

  17. DNA excision repair in human cells treated with ultraviolet radiation and 7,12-dimethylbenz(a)anthracene 5,6-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.E.; Gentil, A.; Renstein, B.S.; Setlow, R.B.

    1980-01-01

    Excision repair was measured in normal human and xeroderma pigmentosum group C cells treated with 7,12-dimethylbenz(a)anthracene 5,6-oxide and with ultraviolet radiation by the techniques of unscheduled DNA synthesis, repair replication, a modification and bromodeoxyuridine photolysis and endonuclease-sensitive sites assay. Radiautography and repair replication showed that in normal cells the magnitude of repair after a saturation dose of the epoxide to be 0.1 to 0.2, that after a saturating ultraviolet dose, though survival data showed that both doses gave nearly similar killings. Repair was of the long-patch type and repair kinetics after the epoxide treatment were similar to ultraviolet. After a combined treatment with both agents, unscheduled synthesis in normal cells was more than additive. The data indicate that there are different rate-limiting steps in the removal of the ultraviolet and the epoxide damages, and that the residual repair activity in xeroderma pigmentosum cells is accomplished by different, not just fewer, enzymes than in normal cells.

  18. Biological effects of ionizing radiation at the molecular, cellular, and organismal levals. Triannual progress report, July 15, 1974--October 14, 1977

    International Nuclear Information System (INIS)

    Lange, C.S.

    1977-01-01

    Progress is reported on the following studies: organization and repair of DNA; size measurement of DNA by means of the ultracentrifuge; effects of hydroxyurea, cycloheximide, and methylmercury on cell cycle progression; absence of an effect of photoreactivation on sublethal damage repair in a photoreactivating Wallaby cell line; and the control of differentiation and tissue polarity in planarians

  19. Impact of radiotherapy on PBMCs DNA repair capacity - Use of a multiplexed functional repair assay

    International Nuclear Information System (INIS)

    Sauvaigo, S.; Sarrazy, F.; Breton, J.; Caillat, S.; Chapuis, V.

    2012-01-01

    Radiation therapy is an essential part of cancer treatment as about 50% of patients will receive radiations at least once. Significant broad variation in radiosensitivity has been demonstrated in patients. About 5-10% of patients develop acute toxicity after radiotherapy. Therefore there is a need for the identification of markers able to predict the occurrence of adverse effects and thus adapt the radiotherapy regimen for radiosensitive patients. As a first step toward this goal, and considering the DNA repair defects associated with hypersensitivity radiation syndromes, we investigated the DNA repair phenotype of patients receiving radiotherapy. More precisely, we used a functional repair assay on support to follow the evolution of the glycosylases/AP endonuclease activities of PBMCs extracts of a series of patients during the time course of radiotherapy. For each patient, we collected one PBMCs sample before the first radiotherapy application (S1) and three samples after (S2 to S4) (one day and one week after application 1, and one at the end of the radiotherapy protocol). These four samples have been analysed for 11 donors. Clustering analyses of the results demonstrated a great heterogeneity of responses among the patients. Interestingly, this heterogeneity decreased between S1 and S4 where only 2 classes of patients remained if we except one patient that exhibited an atypical DNA repair phenotype. Furthermore, we showed that repair of several oxidized bases significantly increased between S1 and S3 or S4 (8oxoG, thymine glycol, A paired with 8oxoG), suggesting an adaptation of patients repair systems to the oxidative stress generated by the ionising radiations. Our preliminary results provided evidence that the DNA repair phenotype was impacted by the radiotherapy regimen. Further characterization of patients with known repair defects are needed to determine if atypical repair phenotypes could be associated with radiotherapy complications. Finally

  20. Radiation-induced DNA damage and repair: Argonne National Laboratory symposium, Argonne, Illinois 60439, 15 April, 1988. Symposium report

    Energy Technology Data Exchange (ETDEWEB)

    Peak, M J; Peak, J G; Blazek, E R

    1988-10-01

    The Argonne National Laboratory Symposium brought together 109 scientists from five countries to discuss the molecular effects of radiation on DNA and the responses of cells to radiation exposure. Six speakers covered three general areas: (1) DNA damages caused by radiations; (2) repair of these damages in prokaryotes and eukaryotes; and (3) aminothiols as radioprotectors. In addition, a round table discussion chaired by J. Ward dealt with alkaline and neutral elution methodology.

  1. Mechanism of radiation tolerance in higher plants. Radiation damage of DNA in cultured tobacco BY-2 cells and implication from its repair process

    International Nuclear Information System (INIS)

    Yokota, Yuichiro; Narumi, Issay; Funayama, Tomoo; Kobayashi, Yasuhiko; Tanaka, Jun; Inoue, Masayoshi

    2007-01-01

    This paper describes the mechanism of radiation tolerance at the cellular level in higher plants, of which fundamental study basis is rather poor, in cultured cells in the title (BY-2 cells, Nicotiana tabacum L., allotetraploid). When compared with LD 50 of radiation in higher animals (2.4-8.6 Gy), higher plants are generally tolerant to radiation (known LD 50 , >360-2000 Gy). Authors have made unicellular BY-2 cells (protoplasts) by enzyme treatment to see their colony forming ability (CFA) and have found those cells are also resistant to radiation: D 10 (10% CFA dose) (Gy) is found to be 8.2-47.2 by radiation with various linear energy transfer (LET)s like gamma ray and heavy ion beams, in contrast to human D 10 (1.17-8.12, by X-ray and carbon beam). Double strand break (DSB) of DNA by radiation per one BY-2 cell initially occurs 7-10 times more frequently than mammalian cells (CHO-K1). However, DSB repair in BY-2 cells is found only as efficient as in mammalian cells: a slow repair relative to DSB number. Checkpoint mechanism of DNA damage is found poorly working in BY-cells, which results in frequent chromosome aberration like micronucleus. Authors consider that, for an herbaceous plant, to precede the cell cycle rather than to recover from the genomic instability can be profitable for growing more rapidly to have more sunlight energy than other individuals. Improvement of plants by gene technological approach with such a mean as mutation by radiation is conceivably important from aspects of food supply and of ecological environment. (R.T.)

  2. Effect of the uvr D3 mutation on ultraviolet radiation-induced DNA-repair replication in Escherichia coli K12

    International Nuclear Information System (INIS)

    Carlson, K.M.; Smith, K.C.

    1981-01-01

    Ultraviolet-radiation-induced DNA-repair replication was measured in wild-type, polA1, uvrD3, and polA1 uvrD3 strains of Escherichia coli K 12. A large stimulation of repair replication was observed in the uvrD3 strain, compared to the wild-type and polA1 strains. This enhanced repair replication was reduced in the polA1 uvrD3 strain. Therefore, a uvrD3 mutation appears to affect the amount of repair replication performed by DNA polymerase I. In the polA1 strain, there also appears to be an effect of the uvrD3 mutation on the amount of repair replication performed by DNA polymerase III (and/or II). The enhanced repair replication observed for the uvrD3 strains appears to be in response to the enhanced DNA degradation observed for these strains. (orig.)

  3. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  4. Effects of sublethal gamma radiation on T and B cell activity in the antibody response of mice

    International Nuclear Information System (INIS)

    Carlson, D.E.; Lubet, R.A.

    1976-01-01

    The relative radiosensitivity of T and B cells was followed in sublethally irradiated mice reconstituted with bone marrow cells, thymus cells, or both, and simultaneously challenged with sheep erythrocytes. Numbers of antibody-forming cells in recipient spleens were determined on days 4 to 8. In this assay the response of mice given bone marrow cells was limited by the amount of residual T cell activity, while the response of mice given thymus cells was limited by the residual B cell activity. Although residual activity of both T and B cells was suppressed in mice given 300 to 700 rad at 80 rad/min, residual B cell activity was consistently lower in these animals. When antibody responses were initiated at intervals after irradiation, B cell activity was clearly limiting by 48 hr after 500 or 600 rad. The activity of both T and B cells was sensitive to differences in dose rate between 8 and 80 rad/min. The 4 to 7 fold dose-rate sensitivity of T cells paralleled that of differentially irradiated nonreconstituted mice. In contrast, dose-rate dependence of B cell activity varied from 10- to 20-fold between 8 and 80 rad/min. These results suggest that radiation suppression of antibody responses in mice is highly dependent upon B cell sensitivity, and that dose-rate dependence of the antibody response may be explained in large part by differential sensitivity of B cells

  5. DNA repair pathways involved in determining the level of cytotoxicity of environmentally relevant UV radiation

    International Nuclear Information System (INIS)

    Carpenter, L.

    2000-01-01

    The sensitivity of cell lines with defects in various DNA repair processes to different wavelengths of UV has been assessed in order to determine the importance of these repair pathways to the cytotoxicity of UV light. The cell lines used in this work were xrs-6 (a Chinese Hamster Ovary (CHO) cell line) mutant for XRCC5/Ku80, EM9 a CHO cell line mutant for XRCC1, UV61 a CHO cell line mutant for ERCC6/CSB, and E3p53-/-, a mouse embryonic fibroblast cell line null for p53. Xrs-6 (defective in Non Homologous End-Joining) was found to be sensitive to the cytotoxic effects of broadband UVA, but not narrowband UVA or narrowband UVB. EM9 (defective in Base Excision Repair/Single-Strand Break Repair) was not sensitive to the cytotoxic effects of both broadband and narrowband UVA, narrowband UVB or narrowband UVC. UV61 (defective in the Transcription Coupled Repair branch of Nucleotide Excision Repair) was sensitive to the cytotoxic effects of narrowband UVA, UVB and UVC. E3p53-/- was sensitive to the cytotoxic effects of narrowband UVA and UVB. Broadband UVA was found to induce high levels of chromosomal damage in xrs-6, as quantified by the micronucleus assay, most likely as a result of this cell lines inability to repair DNA double strand breaks. EM9 was found to be defective in the repair of broadband UVA-induced single strand breaks, as measured by the alkaline gel electrophoresis ('comet') assay. UV61 was unable to repair broadband UVB-induced DNA damage as measured by the alkaline gel electrophoresis ('comet') assay. These results provide evidence that: 1. DNA double-strand breaks contribute to the cytotoxicity of UVA to a greater extent than single-strand breaks. 2. Repair mechanisms that operate in response to UVA may be coupled to transcription. 3. UVB may directly induce SSBs. 4. P53 is involved in the response of the cell to both UVA and UVB radiation. (author)

  6. DNA-repair synthesis in ataxia telangiectasia lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, M.D.; Houldsworth, J.; Lavin, M.F. (Queensland Univ., Brisbane (Australia). Dept. of Biochemistry)

    1981-12-01

    The ability of a number of Epstein-Barr virus-transformed lymphoblastoid cells from ataxia telangiectasia (AT) patients to repair ..gamma..-radiation damage to DNA was determined. All of these AT cells were previously shown to be hypersensitive to ..gamma..-radiation. Two methods were used to determine DNA-repair synthesis: isopycnic gradient analysis and a method employing hydroxyurea to inhibit semiconservative DNA synthesis. Control, AT heterozygote and AT homozygote cells were demonstrated to have similar capacities for repair of radiation damage to DNA. In addition at high radiation doses (10-40 krad) the extent of inhibition of DNA synthesis was similar in the different cell types.

  7. The effect of thymus cells on bone marrow transplants into sublethally irradiated mice

    International Nuclear Information System (INIS)

    Kruszewski, J.A.; Szcylik, C.; Wiktor-Jedrzejczak, W.

    1984-01-01

    Bone marrow cells formed similar numbers of 10-days spleen colonies in sublethally (6 Gy) irradiated C57B1/6 mice as in lethally (7.5 Gy) irradiated mice i.e. approximately 20 per 10 5 cells. Numbers of 10 day endogenous spleen colonies in sublethally irradiated mice (0.2 to 0.6 per spleen) did not differ significantly from the numbers in lethally irradiated mice. Yet, transplants of 10 7 coisogenic marrow cells into sublethally irradiated mice resulted in predominantly endogenous recovery of granulocyte system as evidenced by utilization of ''beige'' marker for transplanted cells. Nevertheless, transplanted cells engrafted into sublethally irradiated mice were present in their hemopoietic tissues throughout the observation period of 2 months never exceeding 5 to 10% of cells. Thymus cells stimulated endogenous and exogenous spleen colony formation as well as endogenous granulopoietic recovery. Additionally, they increased both the frequency and absolute numbers of graft-derived granulocytic cells in hemopoietic organs of transplanted mice. They failed, however, to essentially change the quantitative relationships between endogenous and exogenous hemopoietic recovery. These results may suggest that spleen colony studies are not suitable for prediction of events following bone marrow transplant into sublethally irradiated mice. Simultaneously, they have strengthened the necessity for appropriate conditioning of recipients of marrow transplants. (orig.) [de

  8. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain

  9. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Richard P. [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  10. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  11. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  12. The relationship of transcription and repair of radioinduced DNA damage

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Igusheva, O.A.

    1997-01-01

    The data are discussed which has become a basement of such important findings as involvement of transcription into repair or existence of transcription-coupling repair factors. Thymine glycols which are appear under ionizing radiation exposure, are repaired preferentially in transcribed DNA. In present review the preferential repair of ionizing radiation-induced singlestrand breaks (SSBa) in transcribed DNA of human cells. Discontinuous distribution of DNA repair along hole genome has a grate role in biological processes

  13. Control of radiation sensitivity of mammalian cells. Regulation of expression of DNA repair genes

    International Nuclear Information System (INIS)

    Yoshida, Kayo; Morita, Takashi

    2003-01-01

    This review describes authors' investigations concerning regulation of expression of DNA repair genes for the purpose of control of radiosensitivity of mammalian cells for cancer radiotherapy. One of their experiments concerns the enhancement of sensitivity to radiation and anti-tumor agents by suppressing the expression of mammalian Rad51 gene which playing a central role in recombination repair against DNA double-strand break, by RNA interference (RNAi). Described are the mode of action of RNAi, mechanism of suppression of Rad51 gene expression by it, enhancing effect in radiosensitivity, stable suppression and enhancement by hairpin RNA and its possible usefulness in cancer therapy. The other concerns the histone H2AX gene, which delivering the repair signal post phosphorylation in chromatin against the double-strand break. Experimental results of suppression of the histone H2AX gene by tet-off system, enhancement of radiosensitivity by the suppression and functional recovery by the gene transfer are described, and the radiosensitivity can be thus artificially controlled by tetracycline in authors' F9 2AX (tet/tet) cells. (N.I.)

  14. Ionizing radiation damage to the folded chromosome of Escherichia coli K-12: repair of double-strand breaks in deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Ulmer, M.K.; Gomez, R.F.; Sinskevy, A.J.

    1979-01-01

    The extremely gentle lysis and unfolding procedures that have been developed for the isolation of nucleoid deoxyribonucleic acid yield undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically significant doses of ionizing radiation. Repair of ionizing radiation damage to folded chromosomes of Escherichia coli K-12 strain AB2497 was observed within 2 to 3 h of post-irradiation incubation in growth medium. Such behavior was not observed after post-irradiation incubation in growth medium of a recA13 strain (strain AB2487). A model based on recombinational repair is proposed to explain the formation of 2,200 to 2,300S material during early stages of incubation and to explain subsequent changes in the gradient profiles. Association of unrepaired DNA with the plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (greater than 3,100S) during the later stage of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from ribonuclease-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2 to 3 h of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells that survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that one to two double-strand breaks per genome are repairable in E. coli K-12 strain AB2497

  15. Repair in unicellular green algae under the chronic action of mutagenic factors

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    Repair of single-standed DNA breaks in different strains of unicellular green Chlamidomonas reinhardii algae under the chronic action of mutagenic factors after γ-radiation was studied. It is shown, that the highest DNA break repair efficiency is observed in M γ mt++ strain, resistant to radiation. Strains, sensitive to UV-rays, possess the same repair efficiency as a wild type strain. UVS-1 strain demonstrated a higher repair efficiency, than a wild type strain. All that gives evidence of the difference in Chlamidomonas reinhardii of repair ways, leading to repair of damages, induced by γ-radiation and UV-rays

  16. Radiation protection for repairs of reactor's internals at the 2nd Unit of the Nuclear Power Plant Temelin

    International Nuclear Information System (INIS)

    Zapletal, P.; Konop, R.; Koc, J.; Kvasnicka, O.; Hort, M.

    2011-01-01

    This presentation describes the process and extent of repairs of the 2 nd unit of the Nuclear power plant Temelin during the shutdown of the reactor. All works were optimized in terms of radiation protection of workers.

  17. DNA replication and repair in Tilapia cells

    International Nuclear Information System (INIS)

    Yew, F.H.; Chang, L.M.

    1984-01-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-β-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor. (author)

  18. Inducible DNA-repair systems in yeast: competition for lesions.

    Science.gov (United States)

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate

  19. Repair of radiation-induced DNA damage in rat epidermis as a function of age

    International Nuclear Information System (INIS)

    Sargent, E.V.; Burns, F.J.

    1985-01-01

    The rate of repair of radiation-induced DNA damage in proliferating rat epidermal cells diminished progressively with increasing age of the animal. The dorsal skin was irradiated with 1200 rad of 0.8 MeV electrons at various ages, and the amount of DNA damage was determined as a function of time after irradiation by the method of alkaline unwinding followed by S 1 nuclease digestion. The amount of DNA damage immediately after irradiation was not age dependent, while the rate of damage removal from the DNA decreased with increasing age. By fitting an exponential function to the relative amount of undamaged DNA as a function of time after irradiation, DNA repair halftimes of 20, 27, 69, and 107 min were obtained for 28, 100-, 200-, and 400-day-old animals, respectively

  20. Adaptive response to ionizing radiation in normal human skin fibroblasts. Enhancement of DNA repair rate and modulation of gene expression

    International Nuclear Information System (INIS)

    Toledo, S.M. de; Mitchel, R.E.J.; Azzam, E.; Ottawa Univ., ON; Raaphorst, G.P.

    1994-01-01

    Low doses and dose rates of ionizing radiation enhance the rate of DNA repair in human fibroblasts and protect the cells against radiation-induced micronucleus formation. Chronic exposures reduce the mRNA levels of the genes topoisomerase II and FACC-1 (Fanconi's anemia, group C). (authors). 11 refs., 1 tab., 2 figs

  1. Sublethal effect of imidacloprid on Solenopsis invicta (Hymenoptera: Formicidae) feeding, digging, and foraging behavior

    Science.gov (United States)

    There is increasing evidence that exposure to neonicotinoid insecticides at sublethal levels impairs colonies of honeybee and other pollinators. Recently, it was found that sublethal contamination with neonicotinoids also affect growth and behavior of ants. In this study, we exposed red imported fi...

  2. Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts

    NARCIS (Netherlands)

    Ashauer, R.; Agatz, A.; Albert, C.; Ducrot, V.; Galic, N.G.; Hendriks, J.; Jager, T.; Kretschmann, A.; O'Connor, I.; Rubach, M.N.; Nyman, M.; Schmitt, W.; Stadnicka, J.; Brink, van den P.J.

    2011-01-01

    We report on the advantages and problems of using toxicokinetic-toxicodynamic (TKTD) models for the analysis, understanding, and simulation of sublethal effects. Only a few toxicodynamic approaches for sublethal effects are available. These differ in their effect mechanism and emphasis on linkages

  3. Dynamics of radiation damage and repair processes in coniferous stands in a 10-km region of the Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Kozubov, G.M.; Taskaev, A.I.

    1995-01-01

    Properties of morphogenesis, growth dynamics, anatomy and ultrastructure of wood and needle, reproductive processes in coniferous plants were studied under different level of radiation effect in the 10-km zone in 1986-1992. It was established that the full drying of pine forests began under absorbed dose 80-100 Gy/year. Threshold doses, after which repair processes were possible, reached to 10-12 Gy/year for Picea abies and 50 Gy/year for Pinus sylvestris. Three maine stages are revealed in dynamics of radiation damage and repair processes in studied conifers and their morphological and functional characteristic is presented. 14 refs., 3 figs., 2 tabs

  4. Mathematical Model for the Sequential Action of Radiation and Heat on Yeast Cells

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun Jong; Kim, Su Hyoun; Nili, Mohammad; Zhurakovskaya, Galina P.; Petin, Vladislav G.

    2009-01-01

    It is well known that the synergistic interaction of hyperthermia with ionizing radiation and other agents is widely used in hyperthermic oncology. Interaction between two agents may be considered as synergistic or antagonistic when the effect produced is greater or smaller than the sum of the two single responses. It has long be considered that the mechanism of synergistic interaction of hyperthermia and ionizing radiation may be brought about by an inhibition of the repair from sublethal and potentially lethal damage at the cellular level. The inhibition of the recovery process after combined treatments cannot be considered as a reason for the synergy, but rather would be the expected and predicted consequence of the production of irreversible damage. On the basis of it, a simple mathematical model of the synergistic interaction of two agents acting simultaneously has been proposed. However, the model has not been applied to predict the degree of interaction of heat and ionizing radiation after their sequential action. Extension of the model to the sequential treatment of heat and ionizing radiation seems to be of interest for theoretical and practical reasons. Thus, the purposes of the present work is to suggest the simplest mathematical model which would be able to account for the results obtained and currently available experimental information on the sequential action of radiation and heat.

  5. Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Burden, J P; Griffiths, C M; Cory, J S; Smith, P; Sait, S M

    2002-03-01

    Knowledge of the mechanisms of pathogen persistence in relation to fluctuations in host density is crucial to our understanding of disease dynamics. In the case of insect baculoviruses, which are typically transmitted horizontally via a lifestage that can persist outside the host, a key issue that remains to be elucidated is whether the virus can also be transmitted vertically as a sublethal infection. We show that RNA transcripts for the Plodia interpunctella GV granulin gene are present in a high proportion of P. interpunctella insects that survive virus challenge. Granulin is a late-expressed gene that is only transcribed after viral genome replication, its presence thus strongly indicates that viral genome replication has occurred. Almost all insects surviving the virus challenge tested positive for viral RNA in the larval and pupal stage. However, this proportion declined in the emerging adults. Granulin mRNA was also detected in both the ovaries and testes, which may represent a putative mechanism by which reduced fecundity in sublethally affected hosts might be manifested. RNA transcripts were also detected in 60-80% of second-generation larvae that were derived from mating surviving adults, but there was no difference between the sexes, with both males and females capable of transmitting a sublethal infection to their offspring. The data indicate that low-level persistent infection, with at least limited gene expression, can occur in P. interpunctella following survival of a granulovirus challenge. We believe that this is the first demonstration of a persistent, sublethal infection by a baculovirus to be initiated by a sublethal virus dose. We hypothesize that the 'latent' baculovirus infections frequently referred to in the literature may also be low level persistent, sublethal infections resulting from survival from initial baculovirus exposure.

  6. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different

  7. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M.

    1991-01-01

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair

  8. Cellular repair and its importance for UV-induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Slamenova, D [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1975-01-01

    Current knowledge is briefly surveyed of the mechanism of the biological repair of injuries induced in DNA cells by the action of various factors, mainly ultraviolet radiation. Genetic loci determining the sensitivity of cells to UV radiation are defined and principal reparation processes are explained; excision repair is described more fully. The role of biological repair is discussed in view of UV-induced mutations in DNA cells.

  9. The effect of 2-[(aminopropyl)amino] ethanethiol (WR 1065) on radiation-induced DNA damage and repair and cell progression in V79 cells

    International Nuclear Information System (INIS)

    Grdina, D.J.; Nagy, B.

    1986-01-01

    The radioprotector 2-[(aminopropyl)amino] ethanethiol (WR 1065) was investigated with respect to its ability to affect radiation-induced DNA damage and repair in V79 cells. At a concentration of 4mM, WR 1065 protected against the formation of single strand breaks (SSB), when present during irradiation. The protector appeared, however, to inhibit the subsequent postirradiation repair or rejoining of SSB. While repair was complete within 24h, the protector reduced the rate of repair by a factor of 3. This inhibitory effect on the rate of repair did not correlate with either measured differences in cell survival or mutagenesis. WR 1065 present in the growth medium inhibited the progression of cells through S-phase, and cell-doubling time following a 3h exposure to the protector was increased from 11 to 18h. These data are consistent with the property of thiols to inhibit DNA polymerase activity. It was concluded that, while the presence of WR 1065 during irradiation reduced SSB-DNA damage, its effect on the subsequent rejoining of these breaks could not be correlated with its observed effect on protecting against radiation-induced mutagenesis. (author)

  10. Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid

    NARCIS (Netherlands)

    Blacquiere, T.

    2010-01-01

    Imidacloprid is a commonly used systemic insecticide which can induce several sublethal effects. Previous research has not shown any increased mortality in bees that were fed with sublethal doses. However, there is very little research conducted with the focus on survival rate of honeybees in the

  11. Correlation between cell survival and DNA single-strand break repair proficiency in the Chinese hamster ovary cell lines AA8 and EM9 irradiated with 365-nm ultraviolet-A radiation

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, M.E.; Peak, J.G.; Peak, M.J. (Argonne National Lab., IL (USA))

    1991-02-01

    Cell survival parameters and the induction and repair of DNA single-strand breaks were measured in two Chinese hamster ovary cell lines after irradiation with monochromatic UVA radiation of wavelength 365 nm. The radiosensitive mutant cell line EM9 is known to repair ionizing-radiation-induced single-strand breaks (SSB) more slowly than the parent line AA8. EM9 was determined to be 1.7-fold more sensitive to killing by 365-nm radiation than AA8 at the 10% survival level, and EM9 had a smaller shoulder region on the survival curve ({alpha} = 1.76) than AA8 ({alpha} = 0.62). No significant differences were found between the cell lines in the initial yields of SSB induced either by {gamma}-radiation (as determined by alkaline sucrose gradient sedimentation) or by 365-nm UVA (as determined by alkaline elution). For measurement of initial SSB, cells were irradiated at 0.5{sup o}C to minimize DNA repair processes. Rejoining of 365-nm induced SSB was measured by irradiating cells at 0.5{sup o}C, allowing them to repair at 37{sup o}C in full culture medium, and then quantitating the remaining SSB by alkaline elution. The repair of these breaks followed biphasic kinetics in both cell lines. EM9 repaired the breaks more slowly (T{sub 1/2} values of 1.3 and 61.3 min) than did AA8 (T{sub 1/2} values of 0.9 and 53.3 min), and EM9 also left more breaks unrepaired 90 min after irradiation (24% vs 8% for AA8). Thus, the sensitivity of EM9 to 365-nm radiation correlated with its deficiency in repairing DNA lesions revealed as SSB in alkaline elution. These results suggest that DNA may be a critical target in 365-nm induced cellular lethality and that the ability of AA8 and EM9 cells to repair DNA strand breaks may be related to their ability to survive 365-nm radiation. (author).

  12. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Begg, A.C.

    1993-01-01

    Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitivities. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis. (author)

  13. Optimisation of cancer therapy : glucose antimetabolites as adjuvants in radiotherapy

    International Nuclear Information System (INIS)

    Jain, V.K.

    1980-01-01

    Inhibiting the repair of radiation damage in the neoplastic cells and thus differentially increasing radiation damage can be one of the ways to improve efficiency of radiotherapy of cancer. The glucose antimetabolite 2-deoxy-D-glucose (2-DG) which is known to inhibit glycolysis and ATP production in different cell systems, has been studied as to its effects on energy supply and repair of radiation damage in wild type yeast cells which are analogous to normal cells, and in respirator-deficient (RD) mutants which are analogous to hypoxic tumour cells. Results indicate that : (1) 2-DG/glucose in molar cencentration ratio of 1 completely inhibits the repair of potentially lethal X-radiation damage in RD mutants, (2) 2-DG enhances repair of sublethal radiation damage in wild-type yeast cells, (3) 2-DG induces a sharp fall in ATP level in RD-mutants as compared to that in wild type cells, (4) 2-DG inhibits repair of potentially lethal X-radiation damage in Ehrlich ascites tumour cells, (5) 2-DG induces greater cell loss from the hypoxic as well as euoxic tumour cell population of sarcoma tumour-180 in mice, and (6) 2-DG increases the survival of normal mice when given whole-body gamma irradiaition. These results, therefore, show that 2-DG may differentially inhibit the repair process in tumours while enhancing repair in normal tissues. (M.G.B.)

  14. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  15. Chronic radiation-induced leukemogenesis: alterations of hematopoietic progenitor repair functions during preclinical phases

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.; Grdina, D.J.; Frazier, M.E.

    1987-01-01

    Chronic exposure to low daily doses of whole-body gamma irradiation elicits a high incidence of myeloid leukemia (ML) and related myeloproliferative diseases (MPD) in beagles. Previously, the authors identified and partially characterized a four-phase sequence of evolving MPD as a consequence of chronic radiation exposure. With a focus on preclinical alterations in granulocyte/monocyte-committed stem cells, they have identified two critical events in the process: (i) an early event, involving the coupling of acquired radioresistance of the stem cell with renewed proliferative capacity; and (ii) a late event, involving acquired autocrine functions and associated change in stem cell clonality. In terms of the early event, repair-associated parameters are currently being examined on the cellular level by both split-dose and low dose-rate-type assays with survival enhancement used as the measured end point. On the molecular level, these parameters are examined by microfluorometric alkaline elution assays with DNA damage and repair used as end points

  16. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  17. Immunocytoadherence and sublethal irradiation

    International Nuclear Information System (INIS)

    Beaumariage, M.L.; Hiesche, K.; Revesz, L.; Haot, J.

    1975-01-01

    In sublethally irradiated CBA mice, the relative and absolute numbers of spontaneous rosette forming cells against sheep erythrocytes are markedly decreased in bone marrow. The decrease of the absolute number of spontaneous RFC is also important in the spleen in spite of an increase of the RFC relative number above the normal values between the 8th and 12th day after irradiation. The graft of normal bone marrow cells immediately after irradiation or the shielding of a medullary area during irradiation promotes the recovery of the immunocytoadherence capacity of the bone marrow cells but not of the spleen cells [fr

  18. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  19. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment.

    Science.gov (United States)

    van Oorschot, Bregje; Granata, Giovanna; Di Franco, Simone; Ten Cate, Rosemarie; Rodermond, Hans M; Todaro, Matilde; Medema, Jan Paul; Franken, Nicolaas A P

    2016-10-04

    Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation.The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found.In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.

  20. Lethal and Sublethal Effects of Fenpropathrin on the Biological Performance of Scolothrips longicornis (Thysanoptera: Thripidae)

    DEFF Research Database (Denmark)

    Pakyari, Hajar; Enkegaard, Annie

    2013-01-01

    Determination of negative nontarget effects of pesticides on beneficial organisms by measuring only lethal effects is likely to underestimate effects of sublethal doses. In this study, the sublethal effects of fenpropathrin on the predatory thrips Scolothrips longicornis Priesner (Thysanoptera: T...

  1. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  2. Research trends in radiobiology since 40 years. a new approach: the enzymatic repair function of DNA, internal factor in evolution of biological systems under irradiation

    International Nuclear Information System (INIS)

    Mouton, R.

    1968-01-01

    In the first part of the report, the author attempts to draw an historical scheme of successive research working hypotheses in radiobiology since 1924. Less than a generation ago the effect of radiation exposure were viewed as being direct, immediate, irreparable and unmodifiable. Now it is generally accepted that radiation lesion can also be indirect, delayed, reparable and often modified with appropriate chemical or biochemical treatment. It was however in 1962-1964 that came the decisive breakthrough in radiobiology with the discovery that the cell possesses a natural active self-defense mechanism against whatever stress would affect the integrity of the genetic message contained in the DNA structure itself. The existence of what could be considered as a fourth DNA function i.e. self-repair by enzymatic action under genetic control-brings at least to radiobiology the missing molecular biology basis it needed to get out of its 'phenomenological night' after abandon of the generalization of Lea's theory through lack of experimental evidence. In the second part, which is a prospective one, the author tries to set an enlarged synthesis considering the possible role of DNA repair system not only in cell survival - in presence or absence of dose modifiers or mutagens - but also in the artificial and natural evolution of biological system exposed to sub-lethal doses of radiation. Most recent data from the literature fit well with what must be still considered as a general working hypothesis. Studies dealing with phenotypic and genotypic characters linked with the acquisition of gamma and UV radiation resistance in 'Escherichia coli K12' has been started by the author, in collaboration with O. Tremeau, in order to bring a new experimental contribution in this respect. (author) [fr

  3. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    International Nuclear Information System (INIS)

    Won, Eun-Ji; Han, Jeonghoon; Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-01-01

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m 2 ) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m 2 of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana

  4. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Han, Jeonghoon [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon [Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Su-Jae [Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Heum Gi, E-mail: hgpark@gwnu.ac.kr [Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m{sup 2}) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m{sup 2} of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  5. Effects of UV-B radiation on tetraspores of Chondrus ocellatus Holm (Rhodophyta), and effects of red and blue light on repair of UV-B-induced damage

    Science.gov (United States)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels (0, 36, 72, 108, 144 and 180 J/m2), and thereafter subjected to PAR, darkness, or red or blue light during a 2-h repair stage, each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers (CPDs), chlorophyll a (Chl a), phycoerythrin, and UV-B-absorbing mycosporinelike amino acids (MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation (36 and 72 J/m2) promoted the growth of C. ocellatus; however, increased UV-B radiation gradually reduced the C. ocellatus growth (greater than 72 J/m2). The MAAs (palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition, photorepair was inhibited by red light, so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase, greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore, PAR, red light, and blue light play different roles during the repair processes for damage induced by UV-B radiation.

  6. Toxicokinetic-toxicodynamic modelling of quantal and graded sub-lethal endpoints - a brief discussion of concepts.

    NARCIS (Netherlands)

    Ashauer, R.; Agatz, A.; Albert, C.; Ducrot, V.; Galic, N.; Hendriks, A.J.; Jager, T.; Kretschmann, A.; O'Connor, I.; Rubach, M.N.; Nyman, A.M.; Schmitt, W.; Stadnicka, J.; van den Brink, P.; Preuss, T.G.

    2011-01-01

    We report on the advantages and problems of using toxicokinetic-toxicodynamic (TKTD) models for the analysis, understanding, and simulation of sublethal effects. Only a few toxicodynamic approaches for sublethal effects are available. These differ in their effect mechanism and emphasis on linkages

  7. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    OpenAIRE

    Sterpone, Silvia; Cozzi, Renata

    2010-01-01

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to de...

  8. Studies of the repair of radiation-induced genetic damage in drosophila. Annual progress report

    International Nuclear Information System (INIS)

    Genetic characteristics of mutagen-sensitive mutants linked to the X chromosome were studied. These mutants increase loss and nondisjunction of chromosomes in female meiosis and are sensitive to radiation and mutagens. A study of chemical characteristics of the mutant suggested the existence of two separate forms of postreplication repair. One pathway is not caffeine sensitive and does not require recombination related functions; the second pathway appears to be caffeine sensitive and probably shares functions involved in meiotic recombination

  9. CXCL12 expression in hematopoietic tissues of mice exposed to sublethal dose of ionizing radiation in the presence od iNOS inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Perez Vieira, Daniel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Hermida, Felipe Pessoa de Melo; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo, SP (Brazil). Lab. de Protozoologia

    2005-07-01

    their use associated to the CXCL12 chemokine to enhance the post-transplantation grafting of hematopoietic tissue and/or treatment of accidentally exposed individuals to sublethal doses of ionizing radiation. (author)

  10. Relationship between Sublethal Injury and Inactivation of Yeast Cells by the Combination of Sorbic Acid and Pulsed Electric Fields▿

    OpenAIRE

    Somolinos, M.; García, D.; Condón, S.; Mañas, P.; Pagán, R.

    2007-01-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm ...

  11. Excision repair in ataxia telangiectasia, Fanconi's anemia, Cockayne syndrome, and Bloom's syndrome after treatment with ultraviolet radiation and N-acetoxy-2-acetylaminofluorene

    International Nuclear Information System (INIS)

    Ahmed, F.E.; Setlow, R.B.

    1978-01-01

    Excision repair of damage due to ultraviolet radiation, N-acetoxy-2-acetylaminofluorene and a combination of both agents was studied in normal human fibroblasts and various cells from cancer prone patients (ataxia telangiectasia, Fanconi's anemia, Cockayne syndrome and Bloom's syndrome). Three methods giving similar results were used: unscheduled DNA synthesis by radioautography, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and loss of sites sensitive to an ultraviolet endonuclease. All cell lines were proficient in repair of ultraviolet and acetoxy acetylaminofluorene damage and at saturation doses of both agents repair was additive. We interpret these data as indicating that the rate limiting step in excision repair of ultraviolet and acetoxy acetylaminofluorene is different and that there are different enzyme(s) working on incision of both types of damages. (Auth.)

  12. Molecular and cellular determinants of the cyto-toxicity in combined ionizing radiations and anti-tumoral drugs exposure

    International Nuclear Information System (INIS)

    Hennequin, Ch.

    1998-01-01

    The radio-chemo-therapy combinations represent a major research way in oncology. The knowledge of the interaction mechanisms can contribute to an improvement of the clinical protocols and to a knowledge of the action processes of drugs and radiations. Three different drugs have been studied - etoposide, camptothecine and taxoids (paclitaxel, docetaxel) - on different in vitro cell descendants (V79, HeLa and SQ-20B). For etoposide, the isobolic analysis shows an additive interaction in slightly deferred exposure but a strong supra-additive interaction in concomitant exposure. A sensitization to the drug effect inside the radio-induced G2 block is also noticed. The supra-additivity in concomitant exposure is linked with the alteration of the sub-lethal lesions repair. For camptothecine, the analysis of survival curves shows a strictly additive interaction (mode II) in concomitant exposure. However, the association becomes additive at low radiation dose rates (1 Gy/h). This synergy is the result of a cyto-kinetic effect corresponding to the radio-induced accumulation of cells inside the most drug sensible compartment. With taxoids, it is shown that all kinds of interactions are possible, from a pronounced antagonism to a significant synergy. The effect depends on drugs and radiation doses and on the cells descendants. Paclitaxel and docetaxel present major differences of phase specificity: the first one targets the mitosis transition, while the second one targets the S phase. These results have permitted to precise some of the mechanisms involved in drugs and radiations synergy. In particular, it is shown that two major mechanisms, the cyto-kinetic cooperation and the alteration of DNA lesions repair, determine the effect of combined treatments on proliferating cells. (J.S.)

  13. Effect of microwave and ionizing radiation on formation of DNA of repair foci in lymphocytes from cord blood; Vplyv mikrovlnneho a ionizacneho ziarenia na tvorbu DNA opravnych fokusov v lymfocytoch z pupocnikovej krvi

    Energy Technology Data Exchange (ETDEWEB)

    Durdik, M.; Markova, E.; Belyaev, I. [Slovenska akademia vied, Ustav experimentalnej onkologie, 83391 Bratislava (Slovakia)

    2013-04-16

    Different types of radiation are affecting us nowadays. Electromagnetic radiation which is produced mainly by mobile phones, Wi-fi and base stations is affecting us practically all of the time. Long term effects of this type of radiation are not fully examined. It is very important to know effects of radiation that influence us so much like electromagnetic radiation. DNA double strand breaks (DSBs) are the most deleterious types of DNA damage. Several proteins involved in DNA repair and DNA damage signaling have been shown to produce discrete foci in response to ionizing radiation. These foci are believed to co-localize to DSB and referred to as ionizing radiation-induced foci or DNA repair foci. Ionizing radiation is known to induce formation of radiation induced foci which are very hard to analyze exactly. That's why the second aim of this work was to compare two automatized systems for analysis of DNA repair foci, METAFER and ImageStream. (authors)

  14. The effect of salinity, light and temperature in a disposal environment on the recovery of E. coli following exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Chan, Y.Y.; Killick, E.G.

    1995-01-01

    The rates of recovery of E.coli previously exposed to a sub-lethal dose of germicidal u.v. radiation have been investigated. The influence of salinity and temperature on both the rates of dark repair and photoreactivation were investigated in order to assess the relative recovery of disinfected effluent released into coastal waters. The photoreactivation rates followed an Arrhenius relationship for samples reactivated in an isotonic medium and reached a maximum of 52% recovery of the viable cell count present before u.v. treatment. For those cells in a saline environment reactivation was slower and a lower maximum recovery was obtained. Dark repair rates were extremely limited in those cells exposed to the saline environment which was produced from synthetic sea water. A maximum recovery of 8% over a nine hour period was achieved. It is concluded that less reactivation by E.coli is likely within u.v. treated effluent disposed of into coastal environments. The levels of reactivation are however dependent upon the temperature and salinity of those waters. (author)

  15. DNA repair mechanism in radioresistant bacteria

    International Nuclear Information System (INIS)

    Kitayama, Shigeru

    1992-01-01

    Many radiation resistant bacteria have been isolated from various sources which are not in high background field. Since Deinococcus radiodurans had been isolated first in 1956, studies on the mechanism for radioresistance were carried out mostly using this bacterium. DNA in this bacterium isn't protected against injury induced by not only ionizing radiation but also ultraviolet light. Therefore, DNA damages induced by various treatments are efficiently and accurately repaired in this cells. Damages in base and/or sugar in DNA are removed by endonucleases which, if not all, are synthesized during postirradiation incubation. Following the endonucleolytic cleavage the strand scissions in DNA are seemed to be rejoined by a process common for the repair of strand scissions induced by such as ionizing radiations. Induce protein(s) is also involved in this rejoining process of strand scissions. DNA repair genes were classified into three phenotypic groups. (1)Genes which are responsible for the endonucleolytic activities. (2) Genes involved in the rejoining of DNA strand scissions. (3) Genes which participate in genetic recombination and repair. Three genes belong to (1) and (2) were cloned onto approximately 1 kbp DNA fragments which base sequences have been determined. (author)

  16. DNA repair mechanism in radioresistant bacteria

    International Nuclear Information System (INIS)

    Kitayama, Shigeru

    1992-01-01

    Many radiation resistant bacteria have been isolated from various sources which are not in high background field. Since Deinococcus radiodurans had been isolated first in 1956, the studies on the mechanism of radioresistance were mostly carried out using this bacterium. DNA in this bacterium isn't protected against injury induced by not only ionizing radiation but also ultraviolet light. Therefore, DNA damages induced by various treatments are efficiently and accurately repaired in this cells. Damages in base and/or sugar in DNA are removed by endonucleases which, if not all, are synthesized during postirradiation incubation. Following the endonucleolytic cleavage the strand scissions in DNA are seemed to be rejoined by a process common for the repair of strand scissions induced by such as ionizing radiations. Induce protein(s) is also involved in this rejoining process of strand scissions. DNA repair genes were classified into three phenotypic groups. (1) Genes which are responsible for the endonucleolytic activities. (2) Genes involved in the rejoining of DNA strand scissions. (3) Genes which participate in genetic recombination and repair. Three genes belong to (1) and (2) were cloned onto approximately 1 kbp DNA fragments which base sequences have been determined. (author)

  17. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    International Nuclear Information System (INIS)

    Utsumi, H.; Elkind, M.M.

    1983-01-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of these cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal

  18. 1,4 Naphthoquinone protects radiation induced cell death and DNA damage in lymphocytes by activation Nrf2/are pathway and enhancing DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazir M; Sandur, Santosh K; Checker, Rahul; Sharma, Deepak; Poduval, T.B., E-mail: nazirbiotech@rediffmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai (India)

    2012-07-01

    1,4-Naphthoquinone (NQ) is the parent molecule of many clinically approved anticancer, anti-infective, and antiparasitic drugs such as anthracycline, mitomycin, daunorubicin, doxorubicin, diospyrin, and malarone. Presence of NQ during a-irradiation (4Gy) significantly reduced the death of irradiated murine splenic lymphocytes in a dose dependent manner (0.05-liM), with complete protection at liM as assessed by PI staining. Radioprotection by NQ was further confirmed by inhibition of caspase activation, decrease in cell size, DNA-fragmentation, nuclear-blebbing and clonogenic assay. All trans retinoic acid which is inhibitor of Nrf-2 pathway, completely abrogated the radioprotective effect of NQ, suggesting that radioprotective activity of NQ may be due to activation of Nrf-2 signaling pathways. Further, addition of NQ to lymphocytes activated Nrf-2 in time dependent manner as shown by confocal microscopy, electrophoretic mobility shift assay and quantitative real time PCR. It also increased the expression of Nrf-2 dependent cytoprotective genes like hemeoxygenase-1, MnSOD, catalse as demonstrated by real time PCR and flowcytometry. NQ protected lymphocytes significantly against radiation-induced cell death even when added after irradiation. Complete protection was observed by addition of NQ up to 2 h after irradiation. However, percentage protection decreased with increasing time interval. These results suggested that NQ may offer protection to lymphocytes activating repair pathways. Repair of radiation induced DNA strand breaks was studied by comet assay. Pretreatment of lymphocytes with NQ induced single strand breaks up to 6h but not double strand breaks in DNA. However, NQ mediated single strand breaks were repaired completely at longer time intervals. Addition of NQ to lymphocytes prior to 4 Gy a-radiation exposure showed decrease in the yield of DNA double strand breaks. The observed time-dependent decrease in the DNA strand breaks could be attributed to

  19. Hands-on repair of component with a lowered pool water level

    International Nuclear Information System (INIS)

    Perfect, J.F.

    1984-01-01

    The repair of a broken positioner mechanism on a TRIGA Reactor neutron collimator, with a lowered pool water level, presented a unique challenge. Radiation dose measurements were made which indicated the repair could be done safely with only 3 feet of water providing shielding over the reactor core. The entire repair project went quite well, due in large part to extensive preplanning. Repair was done safely and radiation exposures were kept well below allowable levels. Savings were significant using this method of repair compared to the alternative of dismantling the facility. (author)

  20. Hands-on repair of component with a lowered pool water level

    International Nuclear Information System (INIS)

    Perfect, J.F.

    1984-01-01

    The repair of a broken positioner mechanism on a TRIGA Reactor neutron collimator, with a lowered pool water level, presented a unique challenge. Radiation dose measurements were made which indicated the repair could be done safetly with only 3 feet of water providing shielding over the reactor core. The entire repair project went quite well, due in large part to extensive preplanning. Repair was done safely and radiation exposures were kept well below allowable levels. Savings were significant using this method of repair compared to the alternative of dismantling the facility

  1. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    Science.gov (United States)

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  2. Primary radiation damage and disturbance in cell divisions

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun-Jong; Kim, Jae-Hun; Petin, Vladislav G.; Nili, Mohammad

    2008-01-01

    Survived cells from a homogeneous population exposed to ionizing radiation form various colonies of different sizes and morphology on a solid nutrient medium, which appear at different time intervals after irradiation. Such a phenomenon agrees well with the modern theory of microdosimetry and classical hit-and-target models of radiobiology. According to the hit-principle, individual cells exposed to the same dose of radiation are damaged in different manners. It means that the survived cells can differ in the content of sublethal damage (hits) produced by the energy absorbed into the cell and which is not enough to give rise to effective radiation damage which is responsible for cell killing or inactivation. In diploid yeast cells, the growth rate of cells from 250 colonies of various sizes appeared at different time intervals after irradiation with 600 Gy of gamma radiation from a 60 Co isotopic source was analyzed. The survival rate after irradiation was 20%. Based on the analyses results, it was possible to categorize the clones grown from irradiated cells according to the number of sub-lesions from 1 to 4. The clones with various numbers of sub-lesions were shown to be different in their viability, radiosensitivity, sensitivity to environmental conditions, and the frequency of recombination and respiratory deficient mutations. Cells from unstable clones exhibited an enhanced radiosensitivity, and an increased portion of morphologically changed cells, nonviable cells and respiration mutants, as well. The degree of expression of the foregoing effects was higher if the number of primary sublethal lesions was greater in the originally irradiated cell. Disturbance in cell division can be characterized by cell inactivation or incorrect distribution of mitochondria between daughter cells. Thus, the suggested methodology of identification of cells with a definite number of primary sublethal lesions will promote further elucidation of the nature of primary radiation

  3. Fixation of potentially lethal radiation damage by post-irradiation exposure of Chinese hamster cells to 0.5 M or 1.5 M NaCl solutions

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Dewey, W.C.

    1979-01-01

    The effect of 0.05 M and 1.5 M NaCl treatments on CHO cells during and after irradiation has been examined. Treatment with either hypotonic or hypertonic salt solutions during and after irradiation resulted in the fixation of radiation damage which would otherwise not be expressed. The half time for fixation was 4 to 5 min, and the increased expression of the potentially lethal damage by anisotonic solutions was mainly characterized by large decreases in the shoulder of the survival curve, as well as by decreases in Dsub(o). Fixation of radiation damage at 37 0 C occurred to a much greater extent for the hypertonic treatment than for the hypotonic treatment and was greater at 37 0 C than at 20 0 C. Although both the hypotonic and hypertonic treatments during and after irradiation reduced or eliminated the repair of sublethal and potentially lethal damage, treatment during irradiation only, radiosensitized the cells when the treatment was hypotonic, and radioprotected the cells when the treatment was hypertonic. These observations are discussed in relation to salt treatments and different temperatures altering competition between repair and fixation of potentially lethal lesions, the number of which depends on the particular salt treatment at the time of irradiation. (author)

  4. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  5. Remote Decontamination Facility and Repair Station for hot-cell manipulators

    International Nuclear Information System (INIS)

    Ryz, M.A.

    1977-01-01

    Increasingly high radiation levels on manipulators at the Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, Canada, necessitated design and construction of a Remote Decontamination Facility and Repair Station. This facility reduces radiation levels on manipulators by an order of magnitude over previous hand decontamination techniques. The reduced radiation levels have allowed superior manipulator repair and maintenance, resulting in 50% fewer manipulator breakdowns

  6. Changes in liver glycogen reserve in Wistar rats as a result of polysaccharide treatment and single sublethal gamma-irradiation

    International Nuclear Information System (INIS)

    Metodiev, S.; Lambov, V.; Pavlova, N.

    1993-01-01

    The phase changes in the quantity of liver glycogen after single sublethal irradiation are investigated. The lowest concentration levels are registered at days 1, 3, 8 and 13 post irradiation. The effect of polysaccharide radioresistance modulation on the liver glycogen concentration is evaluated. The subcutaneous polysaccharide application of the immuno-active product PL prevents the sharp decrease of the liver glycogen concentration level, as a result of radiation provoked damages. The polysaccharide protection is most effective 5 - 21 days after irradiation. The conclusions are based on enzymic and hystomorphological studies. (author)

  7. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  8. Modeling marrow damage from response data: Morphallaxis from radiation biology to benzene toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.D.; Morris, M.D.; Hasan, J.S.

    1995-12-01

    Consensus principles from radiation biology were used to describe a generic set of nonlinear, first-order differential equations for modeling of toxicity-induced compensatory cell kinetics in terms of sublethal injury, repair, direct killing, killing of cells with unrepaired sublethal injury, and repopulation. This cellular model was linked to a probit model of hematopoietic mortality that describes death from infection and/or hemorrhage between {approximately} 5 and 30 days. Mortality data from 27 experiments with 851 doseresponse groups, in which doses were protracted by rate and/or fractionation, were used to simultaneously estimate all rate constants by maximum-likelihood methods. Data used represented 18,940 test animals distributed according to: (mice, 12,827); (rats, 2,925); (sheep, 1,676); (swine, 829); (dogs, 479); and (burros, 204). Although a long-term, repopulating hematopoietic stem cell is ancestral to all lineages needed to restore normal homeostasis, the dose-response data from the protracted irradiations indicate clearly that the particular lineage that is ``critical`` to hematopoietic recovery does not resemble stem-like cells with regard to radiosensitivity and repopulation rates. Instead, the weakest link in the chain of hematopoiesis was found to have an intrinsic radioresistance equal to or greater than stromal cells and to repopulate at the same rates. Model validation has been achieved by predicting the LD{sub 50} and/or fractional group mortality in 38 protracted-dose experiments (rats and mice) that were not used in the fitting of model coefficients.

  9. Modeling marrow damage from response data: Morphallaxis from radiation biology to benzene toxicity

    International Nuclear Information System (INIS)

    Jones, T.D.; Morris, M.D.; Hasan, J.S.

    1995-01-01

    Consensus principles from radiation biology were used to describe a generic set of nonlinear, first-order differential equations for modeling of toxicity-induced compensatory cell kinetics in terms of sublethal injury, repair, direct killing, killing of cells with unrepaired sublethal injury, and repopulation. This cellular model was linked to a probit model of hematopoietic mortality that describes death from infection and/or hemorrhage between ∼ 5 and 30 days. Mortality data from 27 experiments with 851 doseresponse groups, in which doses were protracted by rate and/or fractionation, were used to simultaneously estimate all rate constants by maximum-likelihood methods. Data used represented 18,940 test animals distributed according to: (mice, 12,827); (rats, 2,925); (sheep, 1,676); (swine, 829); (dogs, 479); and (burros, 204). Although a long-term, repopulating hematopoietic stem cell is ancestral to all lineages needed to restore normal homeostasis, the dose-response data from the protracted irradiations indicate clearly that the particular lineage that is ''critical'' to hematopoietic recovery does not resemble stem-like cells with regard to radiosensitivity and repopulation rates. Instead, the weakest link in the chain of hematopoiesis was found to have an intrinsic radioresistance equal to or greater than stromal cells and to repopulate at the same rates. Model validation has been achieved by predicting the LD 50 and/or fractional group mortality in 38 protracted-dose experiments (rats and mice) that were not used in the fitting of model coefficients

  10. Radiation and chemical interactions producing cellular and subcellular damage and their repair. Coordinated programme on improvement in radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Kada, T.

    1982-01-01

    As a result of biochemical studies on the DNA repair of damages induced by ionizing radiation as well as on the radiosensitization with chemicals containing halogen atoms, it was suggested that inhibition of the post-irradiation repair by chemical factors may be useful in improving the radiotherapy. It was possbile to prepare an in vitro repair system in combination with transforming DNA of Bacillus subtilis as well as human placenta extracts; it was shown that certain radiosensitizers worked actually as repair inhibitors in this in vitro system

  11. Sublethal concentrations of ichthyotoxic alga Prymnesium parvum affect rainbow trout susceptibility to viral haemorrhagic septicaemia virus

    DEFF Research Database (Denmark)

    Andersen, Nikolaj Gedsted; Lorenzen, Ellen; Boutrup, Torsten Snogdal

    2016-01-01

    Ichthyotoxic algal blooms are normally considered a threat to maricultured fish only when blooms reach lethal cell concentrations. The degree to which sublethal algal concentrations challenge the health of the fish during blooms is practically unknown. In this study, we analysed whether sublethal...

  12. 11th International Conference of Radiation Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  13. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    International Nuclear Information System (INIS)

    Yu, Shuangying; Tang, Song; Mayer, Gregory D.; Cobb, George P.; Maul, Jonathan D.

    2015-01-01

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  14. Dose-rate effects between 0.3 and 30 Gy/h in a normal and a malignant human cell line

    International Nuclear Information System (INIS)

    Amdur, R.J.; Bedford, J.S.

    1994-01-01

    This study used continuous open-quotes intermediateclose quotes dose rate irradiation (0.3-30 Gy/h) to compare the capacity for and repair of sublethal radiation damage in different cell lines growing in tissue culture. Two human cell lines were studied; one was derived from normal human fibroblasts (AG1522) and the other from a squamous cell carcinoma of the uterine cervix (HTB-35). Dose-response curves for clonogenic survival were determined following irradiation of plateau-phase cultures at five different dose rates: 22.6, 6.12, 3.65, 1.04, and 0.38 Gy/h. Subculture following irradiation was delayed for 8-24 h to allow for the full repair of open-quotes potentially lethal damage.close quotes A significant dose-rate effect was seen in both cell lines. For irradiation at the highest dose rate, survival at 2 Gy (SF2) and the α/β ratio were similar for the two cell lines (approximately 0.7 and 8.0 Gy, respectively) but the half-time of repair of sublethal damage was estimated to be approximately five times longer in the normal human fibroblast line (154 min) than in the carcinoma (31 min) cell line. These results indicate that measuring the dose-rate effect between 0.3 and 30 Gy/h is a useful way to identify and quantify differences in sublethal damage repair between cell lines. To the extent that in vitro and in vivo repair parameters are similar, and that representative tumor biopsy specimens can be examined in this way, this approach may provide a prospective way of determining the dose rate (brachytherapy) or fractionation schedule that will optimize the therapeutic ratio. 32 refs., 1 fig

  15. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage.

    Science.gov (United States)

    Potter, M; Sanford, K K; Parshad, R; Tarone, R E; Price, F M; Mock, B; Huppi, K

    1988-04-01

    Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and the other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.

  16. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin C Thompson

    Full Text Available Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV radiation and affects DNA damage and repair. Nicotinamide (vitamin B3 reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2 solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  17. A comparative study of radiation induced DNA damage and repair in buccal cells and lymphocytes assessed by single cell gel electrophoresis (comet) assay

    International Nuclear Information System (INIS)

    Dhillon, V.S.; Fenech, M.

    2003-01-01

    Full text: During the past few years, there has been increasing interest in epithelial cells from buccal mucosa for genotoxicity evaluation of different chemical and/or physical agents. In the present study we used the buccal and sublingual epithelial cells to detect both inter- and intra-individual variation in radiation induced DNA damage and repair. For this purpose we used the single cell gel electrophoresis assay which over the years has gained wide spread acceptance as a simple, sensitive and reliable assay to measure genotoxicity related effects as well as kinetics of DNA repair. Buccal and sublingual epithelial cells from six individuals (3 male and 3 females; 35-45 years old) were collected. Cells were then irradiated for 0, 2 and 4 Gy doses using 137 Cs-source (5.58 Gy min-1). After irradiation the cells were either placed immediately on ice or incubated at 37 deg C for 2 1/2 hour to allow cellular repair. We also studied G0 and G1 lymphocytes from the same individuals to compare the radiation-induced DNA damage and repair potential with the two types of buccal cells. Baseline DNA damage rate was significantly greater (p < 0.001) in buccal (28.18%) and sublingual epithelial cells (30.66) as compared to G0 (22.02%) and G1 (21.46%) lymphocytes. Radiation-induced DNA damage in buccal (19.34%, 2Gy; 21.41%, 4 Gy) and sublingual epithelial cells (18.11% and 20.60%) was very similar and significantly lower than that observed in lymphocytes (29.76%, 56.77% for G0 and 32.66%, 59.32% for G1). The extent of DNA repair in buccal and sublingual epithelial cells was significantly lower than that observed in lymphocytes. The results for buccal and sublingual epithelial cells were highly correlated with each other (r 0.9541) as were those of G0 and G1 lymphocytes (r 0.9868). The results suggest a much reduced capacity for cellular repair in buccal and sublingual epithelial cells

  18. Individual sensitivity to radiations and DNA repair proficiency: the comet assay contribution; Sensibilite individuelle aux radiations et reparation de l`ADN: apport du test des cometes

    Energy Technology Data Exchange (ETDEWEB)

    Alapetite, C. [Institut Curie, 75 - Paris (France)

    1998-09-01

    Some are hereditary syndromes demonstrate high cancer risk and hypersensitivity in response to exposures to agents such as ultraviolet or ionising radiation, and are characterized by a defective processing of DNA damage. They highlight the importance of the individual risk associated to exposures. The comet assay, a simple technique that detects DNA strand breaks, requires few cells and allows examination of DNA repair capacities in established cell lines, in blood samples or biopsies. The assay has been validated on cellular systems with known repair defects such as xeroderma pigmentosum defective in nucleotide excision repair, on mutant rodent cell lines defective in DNA single strand breaks rejoining (XRCC5/Ku80 and XRCC7/DNAPKcs) (neutral conditions). This assay does not allow to distinguish a defective phenotype in ataxia telangiectasia cells. It shows in homozygous mouse embryo fibroblasts Brca2-/- an impaired DNA double strand break rejoining. Simplicity, rapidity and sensitivity of the alkaline comet assay allow to examine the response of lymphocytes. It has been applied to the analysis of the role of DNA repair in the pathogenesis of collagen diseases, and the involvement of individual DNA repair proficiency in the thyroid tumorigenesis induced in some patients after therapeutic irradiation at childhood has been questioned. Preliminary results of these studies suggest that this type of approach could help for adapting treatment modalities and surveillance in subgroups of patients defective in DNA repair process. It could also have some incidence in the radioprotection field. (author)

  19. Inhibition of repair activity induced by γ-radiation, UV-rays and radiomimetics in the in vitro cultured cells of patients wiyh schizophrenia

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; Zharikov, N.M.; L'vova, G.N.; Vasil'eva, I.M.; Chekova, V.V.; Alekhina, N.I.; Ivanova, T.N.

    1986-01-01

    A study was made of the processes of repair, virus reactivation, and formation of sister chromatid exchages (SCE) in blood cells of patients with schizophrenia after the effect of γ-radiation and 4-nitroquinoline-1-oxide. These processes were estimated by 12 criteria. The mutagen-induced disturbances in the processes of repair and SCE formation were found in cells of patients with schizophrenia and were absent in the control cells of healthy donors

  20. Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies

    Science.gov (United States)

    Peng, Yi-Chan; Yang, En-Cheng

    2016-01-01

    The dramatic loss of honey bees is a major concern worldwide. Previous studies have indicated that neonicotinoid insecticides cause behavioural abnormalities and have proven that exposure to sublethal doses of imidacloprid during the larval stage decreases the olfactory learning ability of adults. The present study shows the effect of sublethal doses of imidacloprid on the neural development of the honey bee brain by immunolabelling synaptic units in the calyces of mushroom bodies. We found that the density of the synaptic units in the region of the calyces, which are responsible for olfactory and visual functions, decreased after being exposed to a sublethal dose of imidacloprid. This not only links a decrease in olfactory learning ability to abnormal neural connectivity but also provides evidence that imidacloprid damages the development of the nervous system in regions responsible for both olfaction and vision during the larval stage of the honey bee. PMID:26757950

  1. Sublethal effects of carbaryl on embryonic and gonadal ...

    African Journals Online (AJOL)

    Carbaryl is a broad-spectrum insecticide used to control insect pests. In aquatic environments, it can disrupt the endocrine system and adversely affect the reproductive function of aquatic animals. This study investigated sublethal impacts of carbaryl on embryos and gonads of zebrafish Danio rerio in order to assess the ...

  2. Implications of the quadratic cell survival curve and human skin radiation ''tolerance doses'' on fractionation and superfractionation dose selection

    International Nuclear Information System (INIS)

    Douglas, B.G.

    1982-01-01

    An analysis of early published multifraction orthovoltage human acute skin irradiation tolerance isoeffect doses is presented. It indicates that human acute skin radiation reactions may result from the repetition, with each dose fraction, of a cell survival curve of the form: S = e/sup -(αD + βD 2 )/). The analysis also shows no need for an independent proliferation related time factor for skin, for daily treatments of six weeks or less in duration. The value obtained for the constant β/α for orthovoltage irradiation from these data is 2.9 x 10 -3 rad -1 for the cell line determining acute skin tolerance. A radiation isoeffect relationship, based on the quadratic cell survival curve, is introduced for human skin. This relationship has some advantages over the nominal standard dose (NSD). First, its use is not restricted to tolerance level reactions. Second, a modification of the relationship, which is also introduced, may be employed in the selection of doses per treatment when irradiation dose fractions are administered at short intervals where repair of sublethal injury is incomplete

  3. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.

    1991-05-01

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiotherapy. Current research topics include: oncogenic transformation assays, mutation studies involving interactions between radiation and environmental contaminants, isolation, characterization and sequencing of a human repair gene, characterization of a dominant transforming gene found in C3H 10T1/2 cells, characterize ab initio the interaction of DNA and radiation, refine estimates of the radiation quality factor Q, a new mechanistic model of oncogenesis showing the role of long-term low dose medium LET radiation, and time dependent modeling of radiation induced chromosome damage and subsequent repair or misrepair

  4. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  5. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  6. Effects Of Exposure To Sublethal Concentrations Of Azadirachta ...

    African Journals Online (AJOL)

    The physiological impairment on the fingerlings of Clarias gariepinus when exposed to sublethal concentrations of Azadirachta Indica was investigated. The fish were exposed to concentrations of 1.25, 2.50, 5.0, 10.0, 20.0 ML -1 for the period of 12 weeks. The crude protein content decreased with increased concentration ...

  7. Mechanisms of radiation-induced changes in mammalian cell properties

    International Nuclear Information System (INIS)

    Elkind, M.M.; Han, A.; Ben-Hur, E.; Hill, C.K.; Myers, C.; Suzuki, F.; Utsumi, H.; Liu, C.M.; Theriot, L.D.

    1981-01-01

    The primary focus of this research is to determine the presence or absence of repair processes relative to linear or so-called single-hit dose effects. Experimental techniques and protocols are developed to test if repair processes contribute to the linear components of the induction of cell killing, mutation, and transformation and, if the slopes of such linear components are dependent upon dose rate. Principal methods are those cell culture techniques for assessing survival, altered phenotype, and transformation. Chinese hamster cells incubated in medium containing 90% D 2 O are inhibited from repairing potentially lethal x-ray and neutron damage (fisson-spectrum neutrons). The sector of damage whose repair is affected by D 2 O medium partially overlaps with that affected by anisotonic buffer. As in the instance of anisotonic buffer, enhanced cell killing due to D 2 O medium does not prevent cells from repairing sublethal damage when incubation in normal medium is resumed. Usng lt of human risk associated with nuclearing collective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  8. DNA damage repair and radiosensitivity

    International Nuclear Information System (INIS)

    Suzuki, Norio

    2003-01-01

    Tailored treatment is not new in radiotherapy; it has been the major subject for the last 20-30 years. Radiation responses and RBE (relative biological effectiveness) depend on assay systems, endpoints, type of tissues and tumors, radiation quality, dose rate, dose fractionation, physiological and environmental factors etc, Latent times to develop damages also differ among tissues and endpoints depending on doses and radiation quality. Recent progress in clarification of radiation induced cell death, especially of apoptotic cell death, is quite important for understanding radiosensitivity of tumor cure process as well as of tumorigenesis. Apoptotic cell death as well as dormant cells had been unaccounted and missed into a part of reproductive cell death. Another area of major progress has been made in clarifying repair mechanisms of radiation damage, i.e., non-homologous end joining (NHEJ) and homologous recombinational repair (HRR). New approaches and developments such as cDNA or protein micro arrays and so called informatics in addition to basic molecular biological analysis are expected to aid identifying molecules and their roles in signal transduction pathways, which are multi-factorial and interactive each other being involved in radiation responses. (authors)

  9. Sublethal effects of some synthetic and botanical insecticides on Bemisia tabaci (Hemiptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Esmaeily Saeideh

    2014-07-01

    Full Text Available In addition to direct mortality caused by insecticides, some biological traits of insects may also be affected by sublethal insecticide doses. In this study, we used the age-stage, two-sex life table method to evaluate the sublethal effects of the four synthetic insecticides: abamectin, imidacloprid, diazinon, and pymetrozin as well as the botanical insecticide taken from Calotropis procera (Asclepiadaceae extract, on eggs of the cotton whitefly, Bemisia tabaci (Hem.: Aleyrodidae. The lowest and highest survival rates and oviposition periods were observed in whiteflies treated by diazinon and imidacloprid, respectively. We found significant differences in the net reproductive rate (R0, the intrinsic rate of increase (r, the finite rate of increase (?, and the gross reproductive rate (GRR among different insecticides. Altogether, our results showed that pymetrozin and C. procera induced the most sublethal effects, thus they may be suitable candidates for use in integrated pest management programs of B. tabaci.

  10. DNA repair in non-mammalian animals

    International Nuclear Information System (INIS)

    Mitani, Hiroshi

    1984-01-01

    Studies on DNA repair have been performed using microorganisms such as Escherichia coli and cultured human and mammalian cells. However, it is well known that cultured organic cells differ from each other in many respects, although DNA repair is an extremely fundamental function of organisms to protect genetic information from environmental mutagens such as radiation and 0 radicals developing in the living body. To answer the question of how DNA repair is different between the animal species, current studies on DNA repair of cultured vertebrate cells using the methods similar to those in mammalian experiments are reviewed. (Namekawa, K.)

  11. Effect of chronic low dose natural radiation in human peripheral blood mononuclear cells: Evaluation of DNA damage and repair using the alkaline comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.R. Vivek, E-mail: prvkumar06@gmail.com [Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala (India); Seshadri, M. [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Jaikrishan, G. [Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala (India); Das, Birajalaxmi [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-05-15

    Highlights: • Effect of chronic low dose natural radiation in radio adaptive response studied. • PBMCs of subjects from NLNRA and HLNRA were challenged with gamma radiation. • DNA damage and repair in PBMCs was compared using the alkaline comet assay. • Significant reduction in DNA damage in subjects of high dose group from HLNRA noted. • Probable induction of an in vivo radio adaptive response in subjects from HLNRA. - Abstract: This study investigates whether peripheral blood mononuclear cells (PBMCs) from inhabitants of Kerala in southwest India, exposed to chronic low dose natural radiation in vivo (>1 mSv year{sup −1}), respond with a radioadaptive response to a challenging dose of gamma radiation. Toward this goal, PBMCs isolated from 77 subjects from high-level natural radiation areas (HLNRA) and 37 subjects from a nearby normal level natural radiation area (NLNRA) were challenged with 2 Gy and 4 Gy gamma radiation. Subjects from HLNRA were classified based on the mean annual effective dose received, into low dose group (LDG) and high dose group (HDG) with mean annual effective doses of 2.69 mSv (N = 43, range 1.07 mSv year{sup −1} to 5.55 mSv year{sup −1}) and 9.62 mSv (N = 34, range 6.07 mSv year{sup −1} to17.41 mSv year{sup −1}), respectively. DNA strand breaks and repair kinetics (at 7 min, 15 min and 30 min after 4 Gy) were evaluated using the alkaline single cell gel electrophoresis (comet) assay. Initial levels of DNA strand breaks observed after either a 2 Gy or a 4 Gy challenging dose were significantly lower in subjects of the HDG from HLNRA compared to subjects of NLNRA (2 Gy, P = 0.01; 4 Gy, P = 0.02) and LDG (2 Gy P = 0.01; 4 Gy, P = 0.05). Subjects of HDG from HLNRA showed enhanced rejoining of DNA strand breaks (HDG/NLNRA, P = 0.06) during the early stage of repair (within 7 min). However at later times a similar rate of rejoining of strand breaks was observed across the groups (HDG, LDG and NLNRA). Preliminary results from

  12. The regularities of mutagenic action of γ-radiation on vegetative Bacillus subtilis cells with different repair genotype

    International Nuclear Information System (INIS)

    Borejko, A.V.; Bulakh, A.P.; Krasavin, E.A.

    2000-01-01

    The regularities of induction of his - →his + mutations in vegetative Bacillus subtilis cells with different repair capacity after γ-irradiation have been studied. The wild type cells, polAl, recE4, recA, recP, add5, recH were used in experiments. It was shown that radiation-induced mutagenesis is determined by a repair genotype of cells. The blocking of different reparation genes is reflected on mutagenesis ratio by various ways. A frequency of induction mutations in polA strain is higher than in wild type cells and it is characterized by the linearly-quadratic dose curve. The different rec - strains that belong to various epistatic groups reveal an unequal mutation induction. The add5 and recP strains are characterized by the high-level induction mutations in contrast with the wild type cells. The mutagenesis in recE and recH strains, on the contrary, sharply reduces. The different influence of rec genes inhering to various epistatic groups on mutagenesis in Bacillus subtilis cells probably reflects the complex organization of their SOS repair system. (author)

  13. DNA repair synthesis in human skin exposed to ultraviolet radiation used in PUVA (psoralen and UV-A) therapy for psoriasis

    International Nuclear Information System (INIS)

    Bishop, S.C.

    1979-01-01

    The ultraviolet radiation used in psoralen and UV-A (PUVA) therapy stimulated DNA repair activity in normal human skin and in the uninvolved skin from psoriatic patients. The activity detected by autoradiography increased linearly with exposure time. No stimulation was observed when the UV-B component was removed from the incident radiation by filtration through glass. Therefore UV-B damage to DNA was found responsible for the activity detected following exposure to the unfiltered PUVA light source. (author)

  14. Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change.

    Science.gov (United States)

    Carlo, Michael A; Riddell, Eric A; Levy, Ofir; Sears, Michael W

    2018-01-01

    The capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change. We reared lizard embryos in the laboratory under temperature cycles that simulated contemporary conditions and warming scenarios. We also artificially warmed natural nests to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribution model reduced annual survival by up to 24% compared to models that did not incorporate sublethal warming. Contrary to models without sublethal effects, our model suggests that modest increases in developmental temperatures influence species ranges due to effects on survivorship. © 2017 John Wiley & Sons Ltd/CNRS.

  15. The sublethal effects of zinc at different water temperatures on ...

    African Journals Online (AJOL)

    The sublethal effects of zinc at different water temperatures on selected ... of 96h at different water temperatures representing the seasonal temperatures in the ... are mobilised to meet increased energy demands during periods of stress.

  16. Low radiation doses and antinuclear lobby

    International Nuclear Information System (INIS)

    Drobnik, J.

    1987-01-01

    The probability of mutations or diseases resulting from other than radiation causes is negatively dependent on radiation. Thus, for instance, the incidence of cancer, is demonstrably lower in areas with a higher radiation background. The hypothesis is expressed that there exist repair mechanisms for DNA damage which will repair the damage, and will give priority to those genes which are currently active. Survival and stochastic processes are not dependent on the overall repair of DNA but on the repair of critical function genes. New discoveries shed a different light on views of the linear dependence of radiation damage on the low level doses. (M.D.)

  17. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    Adams, G.E.

    1987-01-01

    In this contribution about carcinogenesis induced by ionizing radiation some radiation dose-response relationships are discussed. Curves are shown of the relation between cell survival and resp. low and high LET radiation. The difference between both curves can be ascribed to endogenous repair mechanisms in the cell. The relation between single-gen mutation frequency and the surviving fractions of irradiated cells indicates that these repairing mechanisms are not error free. Some examples of reverse dose-response relationships are presented in which decreasing values of dose-rate (LET) correspond with increasing radiation induced cell transformation. Finally some molecular aspects of radiation carcinogenesis are discussed. (H.W.). 22 refs.; 4 figs

  18. Radiation shielding considerations for the repair and maintenance of a swimming pool-type tokamak reactor

    International Nuclear Information System (INIS)

    Seki, Y.; Mori, S.

    1984-01-01

    The radiation shielding relevant to the repair and maintenance of a swimming pool-type tokamak reactor is considered. The dose rate during the reactor operation can be made low enough for personnel access into the reactor room if a 2m thick water layer is installed above the magnet cryostat. The dose rate 24 h after shutdown is such that the human access is allowed above the magnet cryostat. Sufficient water layer thickness is provided in the inboard space for the operation of automatic welder/cutter while retaining the magnet shielding capability. Some forced cooling is required for the decay heat removal in the first wall. The penetration shield thickness around the neutral beam injector port is estimated to be barely sufficient in terms of the magnet radiation damage. (orig.)

  19. G2 repair and chromosomal damage in lymphocytes from workers occupationally exposed to low-level ionizing radiation

    Directory of Open Access Journals (Sweden)

    J PINCHEIRA

    1999-01-01

    Full Text Available The effect of the G2 repair of chromosomal damage in lymphocytes from workers exposed to low levels of X- or g-rays was evaluated. Samples of peripheral blood were collected from 15 radiation workers, 20 subjects working in radiodiagnostics, and 30 healthy control donors. Chromosomal aberrations (CA were evaluated by scoring the presence of chromatid and isochromatid breaks, dicentric and ring chromosomes in lymphocytes with/without 5mM caffeine plus 3mM-aminobenzamide (3-AB treatment during G2. Our results showed that the mean value of basal aberrations in lymphocytes from exposed workers was higher than in control cells (p< 0.001. The chromosomal damage in G2, detected with caffeine plus 3-AB treatment was higher than the basal damage (untreated conditions, both in control and exposed populations (p< 0.05. In the exposed workers group, the mean value of chromosomal abnormalities in G2 was higher than in the control (p< 0.0001. No correlation was found between the frequency of chromosome type of aberrations (basal or in G2, and the absorbed dose. Nevertheless, significant correlation coefficients (p< 0.05 between absorbed dose and basal aberrations yield (r = 0.430 or in G2 (r = 0.448 were detected when chromatid breaks were included in the total aberrations yield. Under this latter condition no significant effect of age, years of employment or smoking habit on the chromosomal aberrations yield was detected. However, analysis of the relationship between basal aberrations yield and the efficiency of G2 repair mechanisms, defined as the percentage of chromosomal lesions repaired in G2, showed a significant correlation coefficient (r = -0.802; p< 0.001. These results suggest that in addition to the absorbed dose, the individual G2 repair efficiency may be another important factor affecting the chromosomal aberrations yield detected in workers exposed to low-level ionizing radiation

  20. Acute and sub-lethal response to mercury in Arctic and boreal calanoid copepods.

    Science.gov (United States)

    Overjordet, Ida Beathe; Altin, Dag; Berg, Torunn; Jenssen, Bjørn Munro; Gabrielsen, Geir Wing; Hansen, Bjørn Henrik

    2014-10-01

    Acute lethal toxicity, expressed as LC50 values, is a widely used parameter in risk assessment of chemicals, and has been proposed as a tool to assess differences in species sensitivities to chemicals between climatic regions. Arctic Calanus glacialis and boreal Calanus finmarchicus were exposed to mercury (Hg(2+)) under natural environmental conditions including sea temperatures of 2° and 10°C, respectively. Acute lethal toxicity (96 h LC50) and sub-lethal molecular response (GST expression; in this article gene expression is used as a synonym of gene transcription, although it is acknowledged that gene expression is also regulated, e.g., at translation and protein stability level) were studied. The acute lethal toxicity was monitored for 96 h using seven different Hg concentrations. The sub-lethal experiment was set up on the basis of nominal LC50 values for each species using concentrations equivalent to 50, 5 and 0.5% of their 96 h LC50 value. No significant differences were found in acute lethal toxicity between the two species. The sub-lethal molecular response revealed large differences both in response time and the fold induction of GST, where the Arctic species responded both faster and with higher mRNA levels of GST after 48 h exposure. Under the natural exposure conditions applied in the present study, the Arctic species C. glacialis may potentially be more susceptible to mercury exposure on the sub-lethal level. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Thyroid nodules, polymorphic variants in DNA repair and RET-related genes, and interaction with ionizing radiation exposure from nuclear tests in Kazakhstan

    Science.gov (United States)

    Sigurdson, Alice J.; Land, Charles E.; Bhatti, Parveen; Pineda, Marbin; Brenner, Alina; Carr, Zhanat; Gusev, Boris I.; Zhumadilov, Zhaxibay; Simon, Steven L.; Bouville, Andre; Rutter, Joni L.; Ron, Elaine; Struewing, Jeffery P.

    2010-01-01

    Risk factors for thyroid cancer remain largely unknown except for ionizing radiation exposure during childhood and a history of benign thyroid nodules. Because thyroid nodules are more common than thyroid cancers and are associated with thyroid cancer risk, we evaluated several polymorphisms potentially relevant to thyroid tumors and assessed interaction with ionizing radiation exposure to the thyroid gland. Thyroid nodules were detected in 1998 by ultrasound screening of 2997 persons who lived near the Semipalatinsk nuclear test site in Kazakhstan when they were children (1949-62). Cases with thyroid nodules (n=907) were frequency matched (1:1) to those without nodules by ethnicity (Kazakh or Russian), gender, and age at screening. Thyroid gland radiation doses were estimated from fallout deposition patterns, residence history, and diet. We analyzed 23 polymorphisms in 13 genes and assessed interaction with ionizing radiation exposure using likelihood ratio tests (LRT). Elevated thyroid nodule risks were associated with the minor alleles of RET S836S (rs1800862, p = 0.03) and GFRA1 -193C>G (rs not assigned, p = 0.05) and decreased risk with XRCC1 R194W (rs1799782, p-trend = 0.03) and TGFB1 T263I (rs1800472, p = 0.009). Similar patterns of association were observed for a small number of papillary thyroid cancers (n=25). Ionizing radiation exposure to the thyroid gland was associated with significantly increased risk of thyroid nodules (age and gender adjusted excess odds ratio/Gy = 0.30, 95% confidence interval 0.05-0.56), with evidence for interaction by genotype found for XRCC1 R194W (LRT p value = 0.02). Polymorphisms in RET signaling, DNA repair, and proliferation genes may be related to risk of thyroid nodules, consistent with some previous reports on thyroid cancer. Borderline support for gene-radiation interaction was found for a variant in XRCC1, a key base excision repair protein. Other pathways, such as genes in double strand break repair, apoptosis, and

  2. Procedures for maintenance and repairs

    International Nuclear Information System (INIS)

    Pickel, E.

    1981-01-01

    After a general review of the operation experience in the history of more than 12 operating years, the organization in the plant will be shown with special aspect to quality assurance, capacity of the workshops and connected groups as radiation protection, chemical laboratories etc. The number, time intervals and manpower effort for the repeating tests will be discussed. Reasons and examples for back-fitting activities in the plant are given. Besides special repair and maintenance procedures as repair of the steam generators, in-service inspection of the reactor pressure vessel, repair of a feed-water pipe and repair of the core structure in the pressure vessel, the general system to handle maintenance and repair-work in the KWO-plant will be shown. This includes also the detailed planning of the annual refueling and revision of the plant. (orig./RW)

  3. Environmental radiation effects. A need to question old paradigms and to enhance collaboration between radiation biologists and radiation ecologists

    International Nuclear Information System (INIS)

    Hinton, T.G.; Whicker, F.W.

    2003-01-01

    The radiological sciences are a real enigma- the maturity and depth of understanding concerning human dosimetry contrasts sharply with our shallow understanding about radiological effects to biota. The richness of the radiological sciences is apparent by looking at the refinements made to the fundamental unit used in human dosimetry. The radiological sciences have developed to where probabilistic risk factors can now be applied that predict specific deleterious effects to humans per unit dose. And yet, these same radiological sciences that have made such advances in human dosimetry, are primitive when effects to biota are concerned. There are no specialized units, no agreed upon weighting factors, no factors that account for distributions within an organism's body, and certainly no risk factors. There are no internationally agreed upon criteria or policies that explicitly address protection of the environment from ionizing radiation. There is not even agreement as to what endpoint should be measured to quantify an environmental effect. The bold aspect of the ICRP framework is the inclusion of sub-lethal effects (reduced reproductive success, scorable DNA damage) as endpoints. A major research consortium funded by the European Union, is also recommending that cytogenetic damage be used as an effect endpoint. The inclusion of sub-lethal endpoints begs for a linkage between molecular effects and those observed in individuals and populations. To do so, will require a strengthening of what has traditionally been separated disciplines of radiation biology and radiation ecology. The impacts of phenomena studied in the petri dishes of radiation biologists (such as genomic instability, adaptive response, and bystander effects) need to be explored and correlated to effects observed in whole organisms and populations, in collaboration with radiation ecologists. (M. Suetake)

  4. Potentially lethal damage and its repair

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1989-01-01

    Two forms termed fast-and slow-potentially lethal lethal damage (PLD) are introduced and discussed. The effect on the survival of x-irradiated Chinese hamster cells (V79) of two different post-treatments is examined in plateau- and in log-phases of growth. The postirradiation treatments used : a) incubation in hypertonic solution, and b) incubation in conditioned medium obtained from plateau-phase. Similar reduction in survival was caused by postirradiation treatment with hypertonic phosphate buffered saline, and similar increased in survival was effected by treatment in conditioned medium in plateau- and in log-phases cells. However, repair of PLD sensitive to hypertonic treatment was faster (half time, 5-10 min)(f-PLD repair) and independent from the repair of PLD (half time, 1-2 hour)(s-PLD repair) observed in conditioned medium. The results indicate the induction of two forms of PLD by radiation. Induction of both PLD was found to decrease with increasing LET of the radiation used. Identification of the molecular processes underlying repair and fixation of PLD is a task of particular interest, since it may allow replacement of a phenomenological definition with a molecular definition. Evidence is reviewed indicating the DNA double strand breaks (directly or indirectly induced) may be the DNA lesions underlying PLD. (author)

  5. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  6. Effect of indomethacin, diclofenac sodium and sodium salicylate on peripheral blood cell counts in sublethally gamma-irradiated mice

    International Nuclear Information System (INIS)

    Pospisil, M.; Netikova, J.; Kozubik, A.; Pipalova, I.

    1989-01-01

    Treatment with indomethacin and diclofenac sodium was found to increase granulocyte counts in the blood of sublethally gamma-irradiated mice. Treatment with sodium salicylate was ineffective in this respect, administration of sodium salicylate together with indomethacin even decreased the indomethacin-induced effects. The results suggest that the hemopoiesis-stimulating effects of non-steroidal anti-flammatory drugs cannot be correlated with the anti-inflammatory activity but rather with the side effects of these compounds, including the action on gastro-intestinal prostanoid production. This conclusion doubts on the possibility of the usefulness of non-steroidal anti-inflammatory drugs in conditions of the radiation syndrome. (orig.) [de

  7. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  8. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.

    Science.gov (United States)

    Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira

    2007-07-01

    Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.

  9. Radiation response of drug-resistant variants of a human breast cancer cell line

    International Nuclear Information System (INIS)

    Lehnert, S.; Greene, D.; Batist, G.

    1989-01-01

    The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells

  10. Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Abbott, V A; Nadeau, J L; Higo, H A; Winston, M L

    2008-06-01

    We examined lethal and sublethal effects of imidacloprid on Osmia lignaria (Cresson) and clothianidin on Megachile rotundata (F.) (Hymenoptera: Megachilidae). We also made progress toward developing reliable methodology for testing pesticides on wild bees for use in pesticide registration by using field and laboratory experiments. Bee larvae were exposed to control, low (3 or 6 ppb), intermediate (30 ppb), or high (300 ppb) doses of either imidacloprid or clothianidin in pollen. Field experiments on both bee species involved injecting the pollen provisions with the corresponding pesticide. Only O. lignaria was used for the laboratory experiments, which entailed both injecting the bee's own pollen provisions and replacing the pollen provision with a preblended pollen mixture containing imidacloprid. Larval development, emergence, weight, and mortality were monitored and analyzed. There were no lethal effects found for either imidacloprid or clothianidin on O. lignaria and M. rotundata. Minor sublethal effects were detected on larval development for O. lignaria, with greater developmental time at the intermediate (30 ppb) and high doses (300 ppb) of imidacloprid. No similar sublethal effects were found with clothianidin on M. rotundata. We were successful in creating methodology for pesticide testing on O. lignaria and M. rotundata; however, these methods can be improved upon to create a more robust test. We also identified several parameters and developmental stages for observing sublethal effects. The detection of sublethal effects demonstrates the importance of testing new pesticides on wild pollinators before registration.

  11. Cell cycle age dependence for radiation-induced G2 arrest: evidence for time-dependent repair

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G 2 . The sensitivity of Chinese hamster ovary cells to G 2 arrest induction by X rays increases through the cell cycle, up to the X-ray transition point (TP) in G 2 . This age response can be explained by cell cycle age-dependent changes in susceptibility of the target(s) for G 2 arrest and/or by changes in capability for postirradiation recovery from G 2 arrest damage. Discrimination between sensitivity changes and repair phenomena is possible only if the level of G 2 arrest-causing damage sustained by a cell at the time of irradiation and the level ultimately expressed as arrest can be determined. The ability of caffeine to ameliorate radiation-induced G 2 arrest, while inhibiting repair of G 2 arrest-causing damage makes such an analysis possible. In the presence of caffeine, progression of irradiated cells was relatively unperturbed, but on caffeine removal, G 2 arrest was expressed. The duration of G 2 arrest was independent of the length of the prior caffeine exposure. This finding indicates that the target for G 2 arrest induction is present throughout the cell cycle and that the level of G 2 arrest damage incurred is initially constant for all cell cycle phases. The data are consistent with the existence of a time-dependent recovery mechanism to explain the age dependence for radiation induction of G 2 arrest

  12. Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals

    OpenAIRE

    Manda, Hortance; Shah, Pankhil; Polsomboon, Suppaluck; Chareonviriyaphap, Theeraphap; Castro-Llanos, Fanny; Morrison, Amy; Burrus, Roxanne G.; Grieco, John P.; Achee, Nicole L.

    2013-01-01

    BACKGROUND: Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application. METHODS: Cont...

  13. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.

    Science.gov (United States)

    Moscariello, Mario; Wieloch, Radi; Kurosawa, Aya; Li, Fanghua; Adachi, Noritaka; Mladenov, Emil; Iliakis, George

    2015-07-01

    Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis(-/-), DNA ligase 4(-/-) (LIG4(-/-)), and LIG4(-/-)/Artemis(-/-) double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Habilitation for research supervision. Yannick Saintigny; Habilitation a diriger des recherches

    Energy Technology Data Exchange (ETDEWEB)

    Saintigny, Y.

    2008-07-01

    In this report, the author gives an overview of his scientific education, his research works, his teaching activities, his scientific publications, and his involvement in the scientific community (communications, posters, seminars). His activities notably dealt with homologous and non homologous recombination, replication inhibition and ionizing radiations, the RecQ helicases the alterations of which cause the Werner syndrome, and which participates to DNA repair by homologous recombination, the influence of XRCC4 deficiency, the sub-lethal incorporation of nucleotides marked with tritium or radio-carbon. Current research projects are dealing with nuclear geno-toxicology and with the analysis of replicative stress repairs

  15. Habilitation for research supervision. Yannick Saintigny

    International Nuclear Information System (INIS)

    Saintigny, Y.

    2008-01-01

    In this report, the author gives an overview of his scientific education, his research works, his teaching activities, his scientific publications, and his involvement in the scientific community (communications, posters, seminars). His activities notably dealt with homologous and non homologous recombination, replication inhibition and ionizing radiations, the RecQ helicases the alterations of which cause the Werner syndrome, and which participates to DNA repair by homologous recombination, the influence of XRCC4 deficiency, the sub-lethal incorporation of nucleotides marked with tritium or radio-carbon. Current research projects are dealing with nuclear geno-toxicology and with the analysis of replicative stress repairs

  16. Energetic response of Chlorella vulgaris to alpha radiation and PCB stress

    International Nuclear Information System (INIS)

    Schaffer, S.A.

    1982-01-01

    This research project has evaluated the bioenergetic response of the green alga Chlorella vulgaris following acute exposure to either the physical stress of radiation or the chemical stress of PCBs. After exposure, changes in survival or growth, adenylate pools (ATP, ADP, and AMP), CO 2 fixation and oxygen evolution and uptake were measured. By employing anaerobic conditions, or the electron transport inhibitor DCMU or dark conditions separately and in specific combinations, this study evaluated the response of three separate algal ATP producing mechanisms (respiration, total and cyclic photophosphorylation) to alpha radiation or PCB. The use of the adenylate energy charge ratio as an indicator of stress was also evaluated. The results of the radiation experiments indicated that alpha particle exposure between 25 to 275 rads caused a one-hour latent demand for ATP due to radioinduced DNA repair. In order to compensate for this ATP demand, nonessential utilization of ATP was decreased by slowing the rate of carbon fixation. The results also suggest that use of radiation as a tool to study algal physiology. The data obtained from the PCB experiments again showed each phosphorylation mechanism to be insensitive to 10, 100 and 200 ppm Aroclor 1254 exposures. Data suggest, however, that PCBs caused an increased photosynthetic rate, and total adenylate pool with decreased growth. The use of the adenylate energy charge ratio as a stress indicator was assessed. Because this ratio did not fluctuate at doses of radiation or PCBs that caused reduced survival and growth rates, this study concluded that for Chlorella the adenylate energy charge ration was a poor indicator of sublethal stress

  17. EVALUATION OF SUBLETHAL EFFECTS OF Ipomoea cairica LINN. EXTRACT ON LIFE HISTORY TRAITS OF DENGUE VECTORS

    Directory of Open Access Journals (Sweden)

    Wan Fatma ZUHARAH

    2016-01-01

    Full Text Available Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity and eggs hatchability (fertility in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors.

  18. Detection and characterization of polymorphisms in XRCC DNA repair genes in human population

    International Nuclear Information System (INIS)

    Staynova, A.; Hadjidekova, V.; Savov, A.

    2004-01-01

    Human population is continuously exposed to low levels of ionizing radiation. The main contribution gives the exposure due to medical applications. Nevertheless, most of the damage induced is repaired shortly after exposure by cellular repair systems. The review is focused on the development and application of methods to estimate the character of polymorphisms in repair genes (XRCC1, APE1), involved in single strand breaks repair which is corresponding mainly to the repair of X-ray induced DNA damage. Since, DSB are major factor for chromosomal aberrations formation, the assays described in this review might be useful for the assessment of the radiation risk for human population. (authors)

  19. Relationship between sublethal injury and inactivation of yeast cells by the combination of sorbic acid and pulsed electric fields.

    Science.gov (United States)

    Somolinos, M; García, D; Condón, S; Mañas, P; Pagán, R

    2007-06-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm in buffer at pHs of both 7.0 and 4.0. The proportion of sublethally injured cells reached a maximum after 50 pulses at 12.0 kV/cm (S. cerevisiae) or 16.5 kV/cm (D. bruxellensis), and it kept constant or progressively decreased at greater electric field strengths and with longer PEF treatments. Sublethally PEF-injured cells showed sensitivity to the presence of sorbic acid at a concentration of 2,000 ppm. A synergistic inactivating effect of the combination of PEF and sorbic acid was observed. Survivors of the PEF treatment were progressively inactivated in the presence of 2,000 ppm of sorbic acid at pH 3.8, with the combined treatments achieving more than log10 5 cycles of dead cells under the conditions investigated. This study has demonstrated the occurrence of sublethal injury after exposure to PEF, so yeast inactivation by PEF is not an all-or-nothing event. The combination of PEF and sorbic acid has proven to be an effective method to achieve a higher level of yeast inactivation. This work contributes to the knowledge of the mechanism of microbial inactivation by PEF, and it may be useful for improving food preservation by PEF technology.

  20. Impacts of Sublethal Mercury Exposure on Birds: A Detailed Review.

    Science.gov (United States)

    Whitney, Margaret C; Cristol, Daniel A

    Mercury is a ubiquitous environmental contaminant known to accumulate in, and negatively affect, fish-eating and oceanic bird species, and recently demonstrated to impact some terrestrial songbirds to a comparable extent. It can bioaccumulate to concentrations of >1 μg/g in tissues of prey organisms such as fish and insects. At high enough concentrations, exposure to mercury is lethal to birds. However, environmental exposures are usually far below the lethal concentrations established by dosing studies.The objective of this review is to better understand the effects of sublethal exposure to mercury in birds. We restricted our survey of the literature to studies with at least some exposures >5 μg/g. The majority of sublethal effects were subtle and some studies of similar endpoints reached different conclusions. Strong support exists in the literature for the conclusion that mercury exposure reduces reproductive output, compromises immune function, and causes avoidance of high-energy behaviors. For some endpoints, notably certain measures of reproductive success, endocrine and neurological function, and body condition, there is weak or contradictory evidence of adverse effects and further study is required. There was no evidence that environmentally relevant mercury exposure affects longevity, but several of the sublethal effects identified likely do result in fitness reductions that could adversely impact populations. Overall, 72% of field studies and 91% of laboratory studies found evidence of deleterious effects of mercury on some endpoint, and thus we can conclude that mercury is harmful to birds, and the many effects on reproduction indicate that bird population declines may already be resulting from environmental mercury pollution.

  1. DNA repair in human xeroderma pigmentosum and chinese hamster cells

    International Nuclear Information System (INIS)

    Zelle, B.

    1980-01-01

    The investigations described were performed to study the genetic heterogeneity of excision repair-deficient XP (xeroderma pigmentosum) strains and the biochemical defects in their repair processes after irradiation with ultraviolet radiation. (Auth.)

  2. The influence of the wavelength of ultraviolet radiation on survival, mutation induction and DNA repair in irradiated Chinese hamster cells

    International Nuclear Information System (INIS)

    Zelle, B.; Reynolds, R.J.; Kottenhagen, M.J.; Schuite, A.; Lohmann, P.H.M.

    1980-01-01

    Chinese hamster ovary cells were used to compare the cytotoxicity and mutagenicity of far-UV radiation emitted by a low-pressure mercury, germicidal lamp (wavelength predominantly 254 nm) with that of near UV radiation emitted by a fluorescent lamp with a continuous spectrum (Westinghouse Sun Lamp), of which only the radiation with wavelengths greater than 290 nm or greater than 310 nm was transmitted to the cells. The radiation effects were compared on the basis of an equal number of pyrimidine dimers, the predominant lesion induced in DNA by far-UV, for the induction of which much more energy is needed with near-UV than with 254-nm radiation. The numbers of dimers induced were determined by a biochemical method detecting UV-endonuclease-susceptible sites. The equivalence of these sites with pyrimidine dimers was established, qualitatively and quantitatively, in studies with enzymic photoreactivation in vitro and chromatographic analysis of dimers. On the basis of induced dimers, more cells were killed by UE 310-nm UV than by UE 290-nm UV; both forms of radiation were more cytotoxic than 254-nm UV when equal numbers of dimers were induced. Moreover, 5-6 times as many mutants were induced per dimer by UE 310-nm UV than by UE 290-nm UV; the latter appeared approximately as mutagenic as 254-nm UV. The differences in lethality and mutagenicity were not caused by differences in repair of dimers: cells with an equal number of dimers induced by either 254-nm or near-UV showed the same removal of sites susceptible to a UV endonuclease specific for dimers, as well as an identical amount of repair replication. The results indicate that near-UV induces, besides pyrimidine dimers, other lesions that appear to be of high biological significance. (orig.)

  3. Histopathological effects of lethal and sub-lethal concentrations of ...

    African Journals Online (AJOL)

    The histopathological effects of lethal and sub-lethal concentrations of glyphosate on African catfish Clarias gariepinus were investigated. C. gariepinus juveniles were assessed in a static renewal bioassay for 96 hours (acute toxicity) and 28 days (chronic toxicity) using varying concentrations (0.0 mg/l 20.0 mg/l, 30.0 mg/l, ...

  4. Effects of sublethal doses of chlorfluazuron on the ovarian ...

    African Journals Online (AJOL)

    AJB_YOMI

    2011-10-12

    Oct 12, 2011 ... eggs (Perveen, 2000a). The objectives of this research were to determine the effects of sublethal doses of chlorfluazuron (LD10or LD30) on the amounts of ovarianprotein, lipid, carbohydrates, DNA, and RNA, and ecdysteroid titres in different developmental stages of S. litura, a major crop pest around the ...

  5. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae).

    Science.gov (United States)

    Barbosa, Wagner Faria; De Meyer, Laurens; Guedes, Raul Narciso C; Smagghe, Guy

    2015-01-01

    Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. Nonetheless, only few studies have been carried out with pollinators, usually emphasizing the honeybee Apis mellifera and neglecting other important pollinator species such as the bumblebee Bombus terrestris. Here, lethal and sublethal effects of azadirachtin were studied on B. terrestris via oral exposure in the laboratory to bring out the potential risks of the compound to this important pollinator. The compound was tested at different concentrations above and below the maximum concentration that is used in the field (32 mg L(-1)). As most important results, azadirachtin repelled bumblebee workers in a concentration-dependent manner. The median repellence concentration (RC50) was estimated as 504 mg L(-1). Microcolonies chronically exposed to azadirachtin via treated sugar water during 11 weeks in the laboratory exhibited a high mortality ranging from 32 to 100 % with a range of concentrations between 3.2 and 320 mg L(-1). Moreover, no reproduction was scored when concentrations were higher than 3.2 mg L(-1). At 3.2 mg L(-1), azadirachtin significantly inhibited the egg-laying and, consequently, the production of drones during 6 weeks. Ovarian length decreased with the increase of the azadirachtin concentration. When azadirachtin was tested under an experimental setup in the laboratory where bumblebees need to forage for food, the sublethal effects were stronger as the numbers of drones were reduced already with a concentration of 0.64 mg L(-1). Besides, a negative correlation was found between the body mass of male offspring and azadirachtin concentration. In conclusion, our results as performed in the laboratory demonstrated that azadirachtin can affect B. terrestris with a range of sublethal effects. Taking into account that sublethal effects are as important as lethal effects for the development and survival of the colonies of B. terrestris

  6. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of Cardiovascular and Neurodevelopmental Metrics as Sublethal Endpoints for the Fish Embryo Toxicity Test.

    Science.gov (United States)

    Krzykwa, Julie C; Olivas, Alexis; Jeffries, Marlo K Sellin

    2018-06-19

    The fathead minnow fish embryo toxicity (FET) test has been proposed as a more humane alternative to current toxicity testing methods, as younger organisms are thought to experience less distress during toxicant exposure. However, the FET test protocol does not include endpoints that allow for the prediction of sublethal adverse outcomes, limiting its utility relative to other test types. Researchers have proposed the development of sublethal endpoints for the FET test to increase its utility. The present study 1) developed methods for previously unmeasured sublethal metrics in fathead minnows (i.e., spontaneous contraction frequency and heart rate) and 2) investigated the responsiveness of several sublethal endpoints related to growth (wet weight, length, and growth-related gene expression), neurodevelopment (spontaneous contraction frequency, and neurodevelopmental gene expression), and cardiovascular function and development (pericardial area, eye size and cardiovascular related gene expression) as additional FET test metrics using the model toxicant 3,4-dichloroaniline. Of the growth, neurological and cardiovascular endpoints measured, length, eye size and pericardial area were found to more responsive than the other endpoints, respectively. Future studies linking alterations in these endpoints to longer-term adverse impacts are needed to fully evaluate the predictive power of these metrics in chemical and whole effluent toxicity testing. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Repair of damaged DNA in vivo: Final technical report

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1987-09-01

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs

  9. Xeroderma Pigmentosum: defective DNA repair causes skin cancer and neurodegeneration

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1988-01-01

    Xeroderma pigmentosum is a rare autosomal recessive disease with numerous malignancies on sun-exposed areas of the skin and eye because of an inability to repair DNA damage inflicted by harmful ultraviolet (UV) radiation of the sun. Because it is the only disease in which cancer is known to result from defective DNA repair, XP has received intense clinical and biochemical study during the last two decades. Furthermore, some patients with XP develop a primary neuronal degeneration, probably due to the inability of nerve cells to repair damage to their DNA caused by intraneuronal metabolites and physicochemical events that mimic the effects of UV radiation. Studies of XP neurodegeneration and DNA-repair defects have led to the conclusion that efficient DNA repair is required to prevent premature death of human nerve cells. Since XP neurodegeneration has similarities to premature death of nerve cells that occurs in such neurodegenerative disorders, XP may be the prototype for these more common neurodegenerations. Recent studies indicate that these degenerations also may have DNA-repair defects

  10. Additivity versus repair inhibition in fractionated treatments combining drugs and X rays: a theoretical analysis

    International Nuclear Information System (INIS)

    Begg, A.C.

    1987-01-01

    Drugs which inhibit the repair of radiation damage could potentially be useful for enhancing the effects of radiotherapy. In pre-clinical combined modality studies, however, it is often difficult to state with certainty whether or not a drug has inhibited radiation damage repair. This paper shows that several commonly used parameters for assessing repair can give the wrong answer regarding the presence of drug-induced repair inhibition. These parameters are; the difference in radiation dose between 1 and n fractions to give the same effect, the fractional recovered dose per fraction interval, FR, and the related parameter FREC. A further parameter used for treatment comparisons is the enhancement ratio for the drug (D.E.R.; ratio of radiation doses, with and without drug, to cause a given effect). An increasing D.E.R. with increasing number of radiation fractions has been taken as an indication that the drug inhibited repair. The present report demonstrates that this, too, can be misleading. From an analysis based on a linear-quadratic survival curve for X rays, it is suggested that deriving and comparing alpha/beta ratios (ratio of the linea to quadratic coefficients) gives the best indication of drug-induced changes in survival curve shape which may reflect underlying changes in repair capacity

  11. Utility of radiation in the prevention of heterotopic ossification following repair of traumatic acetabular fracture

    International Nuclear Information System (INIS)

    Haas, Michael L.; Kennedy, Andrew S.; Copeland, Carol C.; Ames, John W.; Scarboro, Mark; Slawson, Robert G.

    1999-01-01

    Purpose: Heterotopic ossification (HO) is a common problem following surgical repair of traumatic acetabular fracture (TAF), potentially causing severe pain and decreased range of motion. This report analyzes the role of radiation therapy for prevention of HO in TAF. Methods and Materials: The charts of all patients who received RT to the hip following TAF repair between July 1988 and January 1998 were reviewed. Sixty-six patients were identified. RT was given in 5 fractions of 2 Gy in 45 patients, 1 fraction of 8 Gy in 17 patients, and other doses in 4 patients. Treatment fields encompassed peri acetabular tissues at highest risk for HO. Time to RT was ≤ 24 hours for 46 patients. Results: Radiographic follow-up at least 6 months following RT was available in 47/66 (71%) patients to permit Brooker classification, revealing 6 cases (13%) of Grade III HO, compared to historical incidence in this population of 50%. No Grade IV HO was found. Mean follow-up was 18 months. Four of the Grade III patients had received 10 Gy/5 fractions, and 2 received 8 Gy/1 fraction. Postoperative wound infection occurred in 6 patients, and osteonecrosis of the femoral head was found in 13. Conclusions: RT following surgical repair of TAF provides effective prophylaxis against formation of clinically significant HO. We recommend a single fraction of 7-8 Gy within 24 hours of surgery to prevent HO formation and minimize patient discomfort

  12. Molecular radiation biology: Future aspects

    International Nuclear Information System (INIS)

    Hagen, U.

    1990-01-01

    Future aspects of molecular radiation biology may be envisaged by looking for unsolved problems and ways to analyse them. Considering the endpoints of cellular radiation effects as cell inactivation, chromosome aberrations, mutation and transformation, the type of DNA damage in the irradiated cell and the mechanisms of DNA repair as excision repair, recombination repair and mutagenic repair are essential topics. At present, great efforts are made to identify, to clone and to sequence genes involved in the control of repair of DNA damage and to study their regulation. There are close relationships between DNA repair genes isolated from various organisms, which promises fast progress for the molecular analysis of repair processes in mammalian cells. More knowledge is necessary regarding the function of the gene products, i.e. enzymes and proteins involved in DNA repair. Effort should be made to analyse the enzymatic reactions, leading to an altered nucleotide sequence, encountered as a point mutation. Mislead mismatch repair and modulation of DNA polymerase might be possible mechanisms. (orig.)

  13. Remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Hirose, Yasuo; Kawamura, Hironobu; Minato, Akira; Ozaki, Norihiko.

    1984-01-01

    In nuclear facilities, for the purpose of the reduction of radiation exposure of workers, the shortening of working time and the improvement of capacity ratio of the facilities, the technical development of various devices for remote maintenance and inspection has been advanced so far. This time, an occasion came to inspect and repair the pinhole defects occurred in spent fuel dissolving tanks in the reprocessing plant of Tokai Establishment, Power Reactor and Nuclear Fuel Development Corp. However, since the radiation environmental condition and the restricting condition due to the object of repair were extremely severe, it was impossible to cope with them using conventional robot techniques. Consequently, a repair robot withstanding high level radiation has been developed anew, which can work by totally remote operation in the space of about 270 mm inside diameter and about 6 m length. The repair robot comprises a periscope reflecting mirror system, a combined underwater and atmospheric use television, a grinder, a welder, a liquid penetrant tester and an ultrasonic flaw detector. The key points of the development were the parts withstanding high level radiation and the selection of materials, to make the mechanism small size and the realization of totally remote operation. (Kako, I.)

  14. Promotion of accelerated repair in a radiation impaired wound healing model in murine skin

    International Nuclear Information System (INIS)

    Walker, M.D.

    2000-02-01

    therapeutic modalities investigated were unable to counteract any radiation damage and promote acceleration of repair in this impaired wound healing model. (author)

  15. Sublethal Effects of Insecticide Exposure on Megacopta cribraria (Fabricius) Nymphs: Key Biological Traits and Acetylcholinesterase Activity.

    Science.gov (United States)

    Miao, Jin; Reisig, Dominic D; Li, Guoping; Wu, Yuqing

    2016-01-01

    Megacopta cribraria F. (Hemiptera: Plataspidae), the kudzu bug, is an invasive insect pest of U.S. soybean. At present, insecticide application is the primary and most effective control option for M. cribraria In this study, the potential effects of sublethal and low-lethal concentrations (LC10 and LC40) of three common insecticides on key biological traits and acetylcholinesterase (AChE) activity of the treated nymphal stage of insect were assessed. The results show that the sublethal concentration of imidacloprid significantly reduced adult emergence rate of M. cribraria A low-lethal concentration of imidacloprid significantly increased nymphal development time, but significantly decreased adult emergence rate and adult longevity. Both sublethal and low-lethal concentrations of acephate caused an increase in nymphal development time and a reduction in adult emergence rate and adult longevity. Fecundity of females was significantly reduced only by exposure to low-lethal concentrations of acephate. Sublethal and low-lethal concentrations of bifenthrin increased nymphal development time, but significantly decreased adult emergence rate. In addition, we found that the AChE activity of M. cribraria was significantly increased only by LC40 imidacloprid, but strongly inhibited by acephate. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  16. Spontaneous mutation by mutagenic repair of spontaneous lesions in DNA

    International Nuclear Information System (INIS)

    Hastings, P.J.; Quah, S.-K.; Borstel, R.C. von

    1976-01-01

    It is stated that strains of yeast carrying mutations in many of the steps in pathways repairing radiation-induced damage to DNA have enhanced spontaneous mutation rates. Most strains isolated because they have enhanced spontaneous mutation carry mutations in DNA repair systems. This suggests that much spontaneous mutation arises by mutagenic repair of spontaneous lesions. (author)

  17. DNA replication and repair of Tilapia cells: Pt. 2

    International Nuclear Information System (INIS)

    Chen, J.D.; Yew, F.H.

    1988-01-01

    TO-2 is a fish cell line derived from the Tilapia ovary. It grows over a wide range of temperature (15-34 0 C). We report the effects of temperature on DNA replication and u.v. repair in TO-2 cells. When the cells were moved from 31 0 C to the sublethal high temperature of 37 0 C, the rate of DNA synthesis first decreased to 60%, then speedy recovery soon set in, and after 8h at 37 0 C the rate of DNA synthesis overshot the 31 0 C control level by 180%. When moved to low temperature (18 0 C) Tilapia cells also showed an initial suppression of DNA synthesis before settling at 30% of the control level. U.V. reduced but could not block DNA synthesis completely. The inhibition was overcome in 3h at 37, 31 and 25 0 C, but not at 18 0 C. Initiation of nascent DNA synthesis was blocked at 4Jm -2 in TO-2 cells compared with ≤ 1Jm -2 in mammalian cells. After 9Jm -2 u.v. irradiation, low molecular weight DNA replication intermediates started to accumulate. TO-2 cells showed low levels of u.v.-induced excision repair. (author)

  18. Situation-dependent repair of DNA damage in yeast

    International Nuclear Information System (INIS)

    von Borstel, R.C.; Hastings, P.J.

    1985-01-01

    The concept of channelling of lesions in DNA into defined repair systems has been used to explain many aspects of induced and spontaneous mutation. The channelling hypothesis states that lesions excluded from one repair process will be taken up by another repair process. This is a simplification. The three known modes of repair of damage induced by radiation are not equivalent modes of repair; they are, instead, different solutions to the problem of replacement of damaged molecules with new molecules which have the same informational content as those that were damaged. The mode of repair that is used is the result of the response to the situation in which the damage takes place. Thus, when the most likely mode of repair does not take place, then the situation changes with respect to the repair of the lesion; the lesion may enter the replication fork and be reparable by another route

  19. Radio-adaptation: cellular and molecular features of a response to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Rigaud, O.

    1998-01-01

    It is well established that sublethal doses of DNA damaging agents induce protective mechanisms against a subsequent high dose treatment ; for instance, the phenomenon of radio-adaptation in the case of ionizing radiations. Since the early observation described in 1984, numerous studies have confirmed the radio-adaptive response in terms of reduction of chromosomal breaks for varied biological models in vitro and in vivo. Evidence for an adaptive response against the induction of gene mutations and the lethal effect is clearly demonstrated. This paper reviews the experimental results describing various aspects of these adaptive responses expressed on these different biological end-points. The molecular mechanism underlying radio-adaptation still remains nuclear. The development of this phenomenon requires de novo synthesis of transcripts and proteins during the time interval between the two doses. Some data are consistent with the hypotheses that these gene products would be involved in the activation of DNA repair pathways and antioxidant systems. However, a major question still remains unanswered; indeed, it is not clear whether or not the radio-adaptation could affect the estimation of cancer risk related with low level exposure to ionizing radiation, a major concern in radioprotection. Until such data are available, it is yet unwise to evoke the beneficial effects of radio-adaptation. (authors)

  20. Modulation of haemopoietic radiation response of mice by diclofenac in fractionated treatment

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Pipalova, I.; Hola, J.

    1996-01-01

    The effects were studied of diclofenac, an inhibitor of prostaglandin synthesis, on the acute radiation syndrome elicited in mice by fractionated irradiation. Several hematological parameters were evaluated in mice irradiated with 5x 2 Gy and 3x, 4x, or 5x 3 Gy (intervals between fractions 24 h) from a 60 Co gamma source. The animals were treated with diclofenac either before each fraction or only once before the last fraction. The survival of mice was recorded after the irradiation regimen of 5x 3 Gy followed by a ''top-up'' dose of 3.5 Gy given 24 h after the last radiation fraction. Statistically significant enhancement of the endogenous spleen colony and of leukopoiesis was found in mice treated with diclofenac repeatedly, as compared with both saline-treated irradiated controls and animals administered a single diclofenac dose, if a sublethal total radiation dose had been accumulated. However, following accumulation of a lethal radiation dose, slightly impaired survival was observed in mice given diclofenac. It follows from the results that diclofenac is a suitable drug for enhancing leukopoisesis impaired by sublethal fractionated irradiation. Nevertheless, the undesirable side effects of this drug affect adversely the survival of the experimental animals following a lethal accumulated radiation dose. 3 tabs., 3 figs.,32 refs

  1. The effect of repair inhibitor on radiation damages of pleurotus ostreatus

    International Nuclear Information System (INIS)

    Yang Zongqu; Wang Bonan; Li Xuzhao

    1996-01-01

    The growth rate and enzyme activities significantly decreased when dikaryotic hypha of Pleurotus ostreatus were irradiated with γ-rays and subsequently treated with either caffeine or Na 2 -EDTA in comparison with γ-rays treatment alone. The inhibition effect of treatment with either caffeine or Na 2 -EDTA before irradiation was more obvious than that after irradiation. Treatment with either caffeine or Na 2 -EDTA could cause biological damages on hypha when the concentrations of caffeine and Na 2 -EDTA were up to 0.5 and 1.0 mg/ml respectively. It is suggested that either caffeine or Na 2 -EDTA be used to suppress the repair of radiation damage in order to increase mutation efficiency of Pleurotus ostreatus and that 0.2 mg/ml caffeine and 0.5 mg/ml Na 2 -EDTA might be the proper concentrations of treatment both before and after irradiation. The effect of caffeine is better than that of Na 2 -EDTA

  2. Primary and secondary antibody reaction to acute radiation syndrome of calves after parenteral and oral immunization with Salmonella antigen

    International Nuclear Information System (INIS)

    Koch, F.; Mehlhorn, G.; Johannsen, U.; Panndorf, H.

    1984-01-01

    After active immunization against Salmonella dublin 25 calves (2.5 to 4 weeks old) were whole-body irradiated with sublethal to medium lethal X-ray doses, with 5 sham-irradiated control animals in each group. Sublethal and medium lethal doses failed in affecting the antibody titers in general, though short-time effects were observed temporarily. These depressive effects correlated with clinical responses, especially with reduced food intake probably caused by nutritive disorders. Higher antibody levels in the recovery period following sublethal and medium lethal doses indicate an antigenic stimulation released by the radiation syndrome. The depressive action of medium lethal doses on the booster response on the 30th postirradiation day refers to damage of the memory cell pool

  3. Normal tissue tolerance to external beam radiation therapy: Spinal cord; Tolerance a l'irradiation des tissus sains: moelle epiniere

    Energy Technology Data Exchange (ETDEWEB)

    Habrand, J.L. [Departement de radiotherapie, institut Gustave-Roussy, 94 - Villejuif (France); Centre de protontherapie, institut Curie, 91 - Orsay (France); Drouet, F. [Departement de radiotherapie, centre Rene-Gauducheau, 44 - Nantes (France)

    2010-07-15

    Radiation myelopathy is one of the most dreadful complications of radiation therapy. Despite multiple animal experiments and human autopsic series, its pathogenesis remains largely unknown. In most instances, the classical aspect of myelomalacia combines glial and vascular injuries in various sequences. Recent studies point out the role of oligo-dendrocytes and their precursors, as well as of intercellular mediators (cytokines and stress molecules). The clinical presentation comprises a spectrum of non specific neurological symptoms whose evolution is sometimes regressive but more commonly progressive and life-threatening. Usually, it occurs following a latent period of six months to two years after irradiation of the cervical, thoracic or upper lumbar spine to a dose in excess of 50 Gy, conventionally fractionated. Nonetheless, these typical features can be altered by extrinsic factors, such as hypo fractionation/acceleration of the dose, multiple surgical procedures, chemotherapy especially mega therapy, or neurotoxic drugs. Conversely, hyperfractionated regimens that take into account protracted half-time repair of sublethal damages to the CNS, as well as sophisticated estimates of the dose to the cord and QA programs during the treatment course minimize such risks. (authors)

  4. Repair in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Wanna-Nakamura, S.S.

    1981-01-01

    Unscheduled DNA synthesis (UDS), an indicator of excision repair, was induced in freshly drawn Ehrlich ascites tumor cells (EAT), using ionizing radiation, far ultraviolet light (254 nm) or near uv light (365 nm) in combination with 8-methoxypsoralen. UDS was scored by grain counts in autoradiographs following the incorporation of tritium-labelled thymidine. The amount of UDS after each of these agents was expressed in terms of two parameters, viz. numer of cells showing repair and the mean number of grains per nucleus. The influence of radiation dose and of the duration of radioactive thymidine incubation were also examined. To test for a possible relationship between low mitotic index and repair capability, EAT cells were incubated in buffered salt media to lower the mitotic index. Cells kept in a buffered salt solution for 7 h show a marked drop in mitotic index compared to those incubated in minimal medium containing 15% fetal calf serum (MEM + FCS). This drop in mitotic index was reversible for up to 5 h, if cells were returned to MEM + FCS. Cells incubated in MEM + FCS also showed a decrease in mitotic activity compared to freshly drawn cells. This reduced mitotic index is approximately constant for up to 24 h. With the drop in mitotic index, EAT cells also show a drop in repair compared to freshly drawn cells. The repair capability of cells incubated in buffer can be restored by returning cells to MEM + FCS

  5. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Mei Jing Piao

    2015-09-01

    Full Text Available We investigated the protective properties of diphlorethohydroxycarmalol (DPHC, a phlorotannin, against ultraviolet B (UVB radiation-induced cyclobutane pyrimidine dimers (CPDs in HaCaT human keratinocytes. The nucleotide excision repair (NER system is the pathway by which cells identify and repair bulky, helix-distorting DNA lesions such as ultraviolet (UV radiation-induced CPDs and 6-4 photoproducts. CPDs levels were elevated in UVB-exposed cells; however, this increase was reduced by DPHC. Expression levels of xeroderma pigmentosum complementation group C (XPC and excision repair cross-complementing 1 (ERCC1, which are essential components of the NER pathway, were induced in DPHC-treated cells. Expression of XPC and ERCC1 were reduced following UVB exposure, whereas DPHC treatment partially restored the levels of both proteins. DPHC also increased expression of transcription factor specificity protein 1 (SP1 and sirtuin 1, an up-regulator of XPC, in UVB-exposed cells. DPHC restored binding of the SP1 to the XPC promoter, which is reduced in UVB-exposed cells. These results indicate that DPHC can protect cells against UVB-induced DNA damage by inducing the NER system.

  6. The role of the HCR system in the repair of lethal lesions of Bacillus subtilis phages and their transfecting DNA damaged by radiation and alkylating agents

    International Nuclear Information System (INIS)

    Vizdalova, M.; Janovska, E.; Zhestyanikov, V.D.

    1980-01-01

    The role of the HCR system in the repair of prelethal lesions induced by UV light, γ radiation and alkylating agents was studied in the Bacillus subtilis SPP1 phage, its heat sensitive mutants (N3, N73 nad ts 1 ) and corresponding infectious DNA. The survival of phages and their transfecting DNA after treatment with UV light is substantially higher in hcr + cells than in hcr cells, the differences being more striking in intact phages than in their transfecting DNA's. Repair inhibitors reduce survival in hcr + cells: caffeine lowers the survival of UV-irradiated phage SPP1 in exponentially growing hcr + cells but has no effect on its survival in competent hcr + cells; acriflavin and ethidium bromide decrease the survival of the UV-irradiated SPP1 phage in both exponentially growing and competent hcr + cells to the level of survival observed in hcr cells; moreover, ethidium bromide lowers the number of infective centres in hcr + cells of the UV-irradiated DNA of the SPP1 phage. Repair inhibitors do not lower the survival of the UV-irradiated phages or their DNA in hcr cells. The repair mechanism under study also effectively repairs lesions induced by polyfunctional alkylating agents in the transfecting DNA's of B. subtilis phages but is not functional with lesions induced by these agents in free phages and lesions caused in the phages and their DNA by ethyl methanesulphonate or γ radiation. (author)

  7. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP

    Energy Technology Data Exchange (ETDEWEB)

    Stenerl& #246; w, Bo; Karlsson, Karin H.; Radulescu, Irina; Rydberg, Bjorn; Stenerlow, Bo

    2008-04-29

    Ionizing radiation induces a variety of different DNA lesions: in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have previously shown that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites (HLS) within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of HLS on DSB induction and repair, four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for bi-phasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements the fraction of fast rejoining decreased to less than 50% of the total. However, neither the half-times of the fast (t{sub 1/2} = 7-8 min) or slow (t{sub 1/2} = 2.5 h) DSB rejoining were changed significantly. At t=0 the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSB/cell/Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all tested cells, including M059K cells treated with wortmannin or DNA-PKcs defect M059J cells. Furthermore, cells lacking XRCC1 or Poly(ADP-ribose) polymerase-1 (PARP-1) rejoined both total DSBs and heat-released DSBs similar to normal cells. In summary, the presence of heat-labile sites have a substantial impact on DSB induction yields and DSB rejoining rates measured by pulsed-field gel electrophoresis, and HLS repair is independent of DNA-PKcs, XRCC1 and PARP.

  8. Repair of DNA in xeroderma pigmentosum conjunctiva

    International Nuclear Information System (INIS)

    Newsome, D.A.; Kraemer, K.H.; Robbins, J.H.

    1975-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive disease with tumor formation on sun-exposed areas of the skin and eyes. Cells from most XP patients are deficient in repairing DNA damaged by ultraviolet (uv) light as shown by a reduced rate of tritiated thymidine (3HTdR) incorporation during their DNA repair synthesis. We have studied such repair synthesis in conjunctival cells from an XP patient with a conjunctival epithelioma and from normal cadaver conjunctiva. Cultured conjunctival cells were irradiated with uv light and then incubated with 3HTdR. Autoradiograms were prepared and showed that uv radiation induced a considerably slower rate of DNA repair synthesis in the XP cells than in normal cells. Many of the ocular abnormalities of XP, including tumor formation, may be the result of this defective DNA repair process

  9. Frequency of intrachromosomal homologous recombination induced by UV radiation in normally repairing and excision repair-deficient human cells

    International Nuclear Information System (INIS)

    Tsujimura, T.; Maher, V.M.; McCormick, J.J.; Godwin, A.R.; Liskay, R.M.

    1990-01-01

    To investigate the role of DNA damage and nucleotide excision repair in intrachromosomal homologous recombination, a plasmid containing duplicated copies of the gene coding for hygromycin resistance was introduced into the genome of a repair-proficient human cell line, KMST-6, and two repair-deficient lines, XP2OS(SV) from xeroderma pigmentosum complementation group A and XP2YO(SV) from complementation group F. Neither hygromycin-resistance gene codes for a functional enzyme because each contains an insertion/deletion mutation at a unique site, but recombination between the two defective genes can yield hygromycin-resistant cells. The rates of spontaneous recombination in normal and xeroderma pigmentosum cell strains containing the recombination substrate were found to be similar. The frequency of UV-induced recombination was determined for three of these cell strains. At low doses, the group A cell strain and the group F cell strain showed a significant increase in frequency of recombinants. The repair-proficient cell strain required 10-to 20-fold higher doses of UV to exhibit comparable increases in frequency of recombinants. These results suggest that unexcised DNA damage, rather than the excision repair process per se, stimulates such recombination

  10. MicroRNA-Related DNA Repair/Cell-Cycle Genes Independently Associated With Relapse After Radiation Therapy for Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gee, Harriet E., E-mail: harriet.gee@sydney.edu.au [The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW (Australia); The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); Central Clinical School, Sydney Medical School, University of Sydney, NSW (Australia); Buffa, Francesca M.; Harris, Adrian L. [Department of Medical Oncology, The University of Oxford, Oxford (United Kingdom); Toohey, Joanne M.; Carroll, Susan L. [The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); Cooper, Caroline L. [Central Clinical School, Sydney Medical School, University of Sydney, NSW (Australia); Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW (Australia); Beith, Jane [The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); McNeil, Catriona [The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW (Australia); The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); Carmalt, Hugh; Mak, Cindy; Warrier, Sanjay [The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); Holliday, Anne [The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW (Australia); Selinger, Christina; Beckers, Rhiannon [Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW (Australia); Kennedy, Catherine [Central Clinical School, Sydney Medical School, University of Sydney, NSW (Australia); Graham, Peter [Department of Radiation Oncology, Cancer Care Centre, St. George Hospital, Kogarah, NSW (Australia); Swarbrick, Alexander [The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW (Australia); St Vincent' s Clinical School, Faculty of Medicine, University of NSW, Kensington, NSW (Australia); and others

    2015-12-01

    Purpose: Local recurrence and distant failure after adjuvant radiation therapy for breast cancer remain significant clinical problems, incompletely predicted by conventional clinicopathologic markers. We had previously identified microRNA-139-5p and microRNA-1274a as key regulators of breast cancer radiation response in vitro. The purpose of this study was to investigate standard clinicopathologic markers of local recurrence in a contemporary series and to establish whether putative target genes of microRNAs involved in DNA repair and cell cycle control could better predict radiation therapy response in vivo. Methods and Materials: With institutional ethics board approval, local recurrence was measured in a contemporary, prospectively collected series of 458 patients treated with radiation therapy after breast-conserving surgery. Additionally, independent publicly available mRNA/microRNA microarray expression datasets totaling >1000 early-stage breast cancer patients, treated with adjuvant radiation therapy, with >10 years of follow-up, were analyzed. The expression of putative microRNA target biomarkers—TOP2A, POLQ, RAD54L, SKP2, PLK2, and RAG1—were correlated with standard clinicopathologic variables using 2-sided nonparametric tests, and to local/distant relapse and survival using Kaplan-Meier and Cox regression analysis. Results: We found a low rate of isolated local recurrence (1.95%) in our modern series, and that few clinicopathologic variables (such as lymphovascular invasion) were significantly predictive. In multiple independent datasets (n>1000), however, high expression of RAD54L, TOP2A, POLQ, and SKP2 significantly correlated with local recurrence, survival, or both in univariate and multivariate analyses (P<.001). Low RAG1 expression significantly correlated with local recurrence (multivariate, P=.008). Additionally, RAD54L, SKP2, and PLK2 may be predictive, being prognostic in radiation therapy–treated patients but not in untreated matched

  11. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    Science.gov (United States)

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on

  12. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Christof W Schneider

    Full Text Available The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee and clothianidin (0.05-2 ng/bee under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin and ≥1.5 ng/bee (imidacloprid during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further

  13. Effect of lethal and sub-lethal concentrations of tobacco (Nicotiana ...

    African Journals Online (AJOL)

    Lethal and sub-lethal bioassays on Clarias gariepinus were conducted to evaluate the toxicity of tobacco (Nicotiana tobaccum) leaf dust on weight gain and haematological indices of Clarias gariepinus (mean weight 10.5±0.70g) in glass aquaria with aeration system. The concentrations used during the lethal exposure are: ...

  14. Experimental results and clinical implications of the four R's in fractionated radiotherapy

    International Nuclear Information System (INIS)

    Trott, K.R.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg

    1982-01-01

    Experimental and clinical data on the four R' in fractionated radiotherapy are reviewed. The clinical importance of redistribution has not been proven in the experiment yet. On reoxygenation no unequivocal data in human cancer exists and a lot of variability in rodent tumours. Repair and regeneration are the most important of the four R's in fractionated radiotherapy. The presented experimental and clinical evidence suggests a differential response between tumour and late responding normal tissues with regard to these two R's. Tumours appear to have, in general, a smaller capacity for repairing sublethal radiation damage but a higher capacity for repopulation than late responding normal tissues. (orig.)

  15. Chronic Sublethal Effects of Cantharidin on the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae

    Directory of Open Access Journals (Sweden)

    Zhengyu Huang

    2015-05-01

    Full Text Available The diamondback moth, Plutella xylostella (Linnaeus (Lepidoptera: Plutellidae, is a major pest of cruciferous vegetables worldwide. Cantharidin, a natural toxin isolated from blister beetles, has been reported to be toxic to P. xylostella. However, little is known on the chronic sublethal effects of cantharidin on this species. In this study, we assessed the changes of susceptibility, development, reproduction and other demographic parameters in both the selected P. xylostella strain (Sub, selected by LC25 cantharidin for consecutive 12 generations and the revertant strain (SubR, derived from the Sub strain without being exposed to cantharidin for 12 generations. Results revealed that the two strains maintained a relatively high-level susceptibility to cantharidin. Severe adverse effects on the population dynamics and fitness in Sub strain were observed. In addition, repeated exposure of P. xylostella to sublethal concentration of cantharidin resulted in negative effects on adult performance and deformities in adults. Although morphologically normal for individuals, the SubR strain exhibited a disadvantage in population growth rate. Our results showed that sublethal concentration of cantharidin exhibited severe negative effects on population growth for longtime. These findings would be useful for assessing the potential effects and risk of cantharidin on P. xylostella and for developing effective integrated pest management.

  16. Chronic Sublethal Effects of Cantharidin on the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Huang, Zhengyu; Zhang, Yalin

    2015-05-29

    The diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), is a major pest of cruciferous vegetables worldwide. Cantharidin, a natural toxin isolated from blister beetles, has been reported to be toxic to P. xylostella. However, little is known on the chronic sublethal effects of cantharidin on this species. In this study, we assessed the changes of susceptibility, development, reproduction and other demographic parameters in both the selected P. xylostella strain (Sub, selected by LC25 cantharidin for consecutive 12 generations) and the revertant strain (SubR, derived from the Sub strain without being exposed to cantharidin for 12 generations). Results revealed that the two strains maintained a relatively high-level susceptibility to cantharidin. Severe adverse effects on the population dynamics and fitness in Sub strain were observed. In addition, repeated exposure of P. xylostella to sublethal concentration of cantharidin resulted in negative effects on adult performance and deformities in adults. Although morphologically normal for individuals, the SubR strain exhibited a disadvantage in population growth rate. Our results showed that sublethal concentration of cantharidin exhibited severe negative effects on population growth for longtime. These findings would be useful for assessing the potential effects and risk of cantharidin on P. xylostella and for developing effective integrated pest management.

  17. Chronic Sublethal Effects of Cantharidin on the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae)

    Science.gov (United States)

    Huang, Zhengyu; Zhang, Yalin

    2015-01-01

    The diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), is a major pest of cruciferous vegetables worldwide. Cantharidin, a natural toxin isolated from blister beetles, has been reported to be toxic to P. xylostella. However, little is known on the chronic sublethal effects of cantharidin on this species. In this study, we assessed the changes of susceptibility, development, reproduction and other demographic parameters in both the selected P. xylostella strain (Sub, selected by LC25 cantharidin for consecutive 12 generations) and the revertant strain (SubR, derived from the Sub strain without being exposed to cantharidin for 12 generations). Results revealed that the two strains maintained a relatively high-level susceptibility to cantharidin. Severe adverse effects on the population dynamics and fitness in Sub strain were observed. In addition, repeated exposure of P. xylostella to sublethal concentration of cantharidin resulted in negative effects on adult performance and deformities in adults. Although morphologically normal for individuals, the SubR strain exhibited a disadvantage in population growth rate. Our results showed that sublethal concentration of cantharidin exhibited severe negative effects on population growth for longtime. These findings would be useful for assessing the potential effects and risk of cantharidin on P. xylostella and for developing effective integrated pest management. PMID:26035491

  18. Damage and repair in mammalian cells after exposure to non-ionizing radiations. 1

    International Nuclear Information System (INIS)

    Harm, H.

    1978-01-01

    Cornea cells of the rat kangaroo or 'potoroo' (Potorous tridactylus) were exposed to far-UV (254 or 302 nm) radiation, with or without subsequent illumination by near-UV or visible light. The DNA of these cells was extracted and tested for the presence of photoproducts binding yeast photoreactivating enzyme (PRE). The effects on repair kinetics of the transforming DNA indicate that in UV-irradiated potoroo cornea cells up to approximately 90% of photorepairable DNA damage can be photorepaired within 15 min. However, the extent of cellular photorepair depends appreciably on experimental parameters during photoreactivating treatment, including the spectral composition of photoreactivating light. Apparently superposition of damage by the photoreactivating treatment itself is the critical factor. This may explain experimental discrepancies existing in different laboratories studying photorepair in UV-irradiated cells of placental mammals. (Auth.)

  19. Repair-misrepair model of cell survival

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.

    1980-01-01

    During the last three years a new model, the repair-misrepair model (RMR) has been proposed, to interpret radiobiological experiments with heavy ions. In using the RMR model it became apparent that some of its features are suitable for handling the effects produced by a variety of environmental agents in addition to ionizing radiation. Two separate sequences of events are assumed to take place in an irradiated cell. The first sequence begins with an initial energy transfer consisting of ionizations and excitations, culminating via fast secondary physical and chemical processes in established macromolecular lesions in essential cell structures. The second sequence contains the responses of the cell to the lesions and consists of the processes of recognition and molecular repair. In normal cells there exists one repair process or at most a few enzymatic repair processes for each essential macromolecular lesion. The enzymatic repair processes may last for hours and minutes, and can be separated in time from the initial physicochemical and later genetic phases

  20. Influence of radiation damage repair inhibitor on superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in different sensitive crops

    International Nuclear Information System (INIS)

    Song Daojun; Xu Dengyi; Wan Zhaoliang; He Shoulin

    1997-01-01

    The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were affected remarkably by 60 Co γ-ray irradiation and radiation damage repair inhibitor (Caf, EDTA). SOD, CAT and POD activities showed the similar change pattern in both soybean (sensitive to radiation) and Brassica napus L. (resistant to radiation) seedlings in all treatments. After reaching the maximum value, SOD activity decreased with the increase of doses. CAT activity had the same change pattern as that of SOD in soybean, while with Brassica napus L., CAT activity remained relatively steady from 300 Gy to 1000 Gy. And POD activity increased with the increase of doses. Compared with H 2 O-treatments, CaF, EDAT post-treatments obviously enhanced SOD, CAT and POD activities. With all the treatments, the three enzyme activities were higher in Brassica napus L. than those in soybean seedlings

  1. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  2. Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Boyd, J.B.; Setlow, R.B.

    1976-01-01

    Mutants of Drosophila melanogaster, with suspected repair deficiencies, were analyzed for their capacity to repair damage induced by x-rays, and uv radiation. Analysis was performed on cell cultures derived from embryos of homozygous mutant stocks. Postreplication repair following uv radiation has been analyzed in mutant stocks derived from a total of ten complementation groups. Cultures were irradiated, pulse-labeled, and incubated in the dark prior to analysis by alkaline sucrose gradient centrifugation. Kinetics of the molecular weight increase in newly synthesized DNA were assayed after cells had been incubated in the presence or absence of caffeine. Two separate pathways of postreplication repair have been tentatively identified by mutants derived from four complementation groups. The proposed caffeine sensitive pathway (CAS) is defined by mutants which also disrupt meiosis. The second pathway (CIS) is caffeine insensitive and is not yet associated with meiotic functions. All mutants deficient in postreplication repair are also sensitive to nitrogen mustard. The mutants investigated display a normal capacity to repair single-strand breaks induced in DNA by x-rays, although two may possess a reduced capacity to repair damage caused by localized incorporation of high specific activity thymidine- 3 H. The data have been employed to construct a model for repair of uv-induced damage in Drosophila DNA. Implications of the model for DNA repair in mammals are discussed

  3. Comparative study on the immunocompetent activity of three different kinds of Peh-Hue-Juwa-Chi-Cao, Hedyotis diffusa, H. corymbosa and Mollugo pentaphylla after sublethal whole body X-irradiation

    International Nuclear Information System (INIS)

    Yang JenqJer; Hsu HsueYin; Ho YauHui; Lin ChunChing

    1997-01-01

    This brief communication describes the immunocompetent activity of the Chinese folk-medicinal herbs, Hedyotis corymbosa, H. diffusa and Mollugo pentaphylla in mice after moderate whole body x-irradiation. These antitumour drugs, given at doses of 500 and 1000 mg/kg/day for 7 consecutive days before x-irradiation protected ICR strain mice from the sublethal effects of radiation at a dose of 4 Gy, especially for the dose at 1000 mg/kg. Prior administration of H. corymbosa and H. diffusa ameliorated the leukopenia and splenic cellular decrease induced by sublethal irradiation, and slightly increased the immunocompetence of splenic cells after being stimulated by mitogens. However, administration of M. pentaphylla before x-irradiation exerted a less protective effect on ameliorating leukopenia and on splenic cellular immunocompetence. These findings suggest that some types of Peh-Hue-Juwa-Chi-Caoi (PHJCC) may also be effective in the prevention of haematopoietic damage when used in combination with radiotherapy. (author)

  4. Comparative study on the immunocompetent activity of three different kinds of Peh-Hue-Juwa-Chi-Cao, Hedyotis diffusa, H. corymbosa and Mollugo pentaphylla after sublethal whole body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    JenqJer, Yang; HsueYin, Hsu; YauHui, Ho; ChunChing, Lin [School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan (China)

    1997-07-01

    This brief communication describes the immunocompetent activity of the Chinese folk-medicinal herbs, Hedyotis corymbosa, H. diffusa and Mollugo pentaphylla in mice after moderate whole body x-irradiation. These antitumour drugs, given at doses of 500 and 1000 mg/kg/day for 7 consecutive days before x-irradiation protected ICR strain mice from the sublethal effects of radiation at a dose of 4 Gy, especially for the dose at 1000 mg/kg. Prior administration of H. corymbosa and H. diffusa ameliorated the leukopenia and splenic cellular decrease induced by sublethal irradiation, and slightly increased the immunocompetence of splenic cells after being stimulated by mitogens. However, administration of M. pentaphylla before x-irradiation exerted a less protective effect on ameliorating leukopenia and on splenic cellular immunocompetence. These findings suggest that some types of Peh-Hue-Juwa-Chi-Caoi (PHJCC) may also be effective in the prevention of haematopoietic damage when used in combination with radiotherapy. (author)

  5. Remote repair of the dissolvers in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Otani, Yosikuni

    1985-01-01

    In the Tokai fuel reprocessing plant, there occurred failures (pinholes) in two dissolver tanks successively in 1982 and 1983. These dissolvers are set under high radiation field, not permitting access of the personnel. So, repair works were carried out after development of the remotely operated repair system. For repair of the failed dissolver tanks, after tests and studies, the means was employed of grinding off the wall surface to small depth and then forming over it a corrosion resistant sealing layer by padding welding. The repair system which enabled the repair and the inspection in the cell by remote operation consisted of six devices including polishing, welding, dye penetration test, etc. Repair works on the dissolvers took two months and a half from September 1983. (Mori, K.)

  6. Pickering G.S. boiler repair: an example of planned maintenance

    International Nuclear Information System (INIS)

    Dalrymple, D.G.

    1976-04-01

    The first application of boiler repair tools and procedures is estimated to have yielded a four-fold return on the development investment. The need to develop such technology is a result of the environment in which boiler repairs must be made. As nuclear technology evolves and plants and components get bigger, equipment will increasingly have to be repaired in situ with minimum plant downtime and minimum exposure of repair personnel to radiation. This lecture traces development of the Pickering A boiler repair capability which is seen as an example of how utility and contractor should interact to anticipate and meet maintenance requirements. (author)

  7. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.

    Science.gov (United States)

    Stephanou, Nicolas C; Gao, Feng; Bongiorno, Paola; Ehrt, Sabine; Schnappinger, Dirk; Shuman, Stewart; Glickman, Michael S

    2007-07-01

    Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.

  8. Lethal and sublethal effects of pesticides in the management of Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) on Capsicum annuum L.

    Science.gov (United States)

    Breda, Mariana O; Oliveira, José V; Esteves Filho, Alberto B; Barbosa, Douglas Rs; Santos, Andrezo A

    2017-10-01

    The evaluation of lethal and sublethal effects is of great importance for a complete assessment of the total impact of chemical compounds upon pest populations and the development of management strategies. In this study, we evaluated the lethal and sublethal effects of different synthetic and botanical products on the broad mite Polyphagotarsonemus latus (Banks), a major pest of Capsicum annuum L. and other crops. Abamectin had the highest lethal effect on P. latus, followed by spiromesifen, azadirachtin, neem oil and nitrogen fertiliser + citric acid. The sublethal effects of the products were indicated by the influence on mite population growth, affecting the numbers of females, males, larvae, pupae and eggs. Furthermore, a negative instantaneous rate of increase in P. latus and repellent effects were observed. The lethal and sublethal effects of abamectin, spiromesifen, azadirachtin and neem oil significantly affect P. latus population growth, as well as causing repellence to this mite on C. annuum, and they should be considered in the integrated pest management of this mite. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Characterization and radiation response of a heat-resistant variant of V79 cells

    International Nuclear Information System (INIS)

    Campbell, S.D.; Kruuv, J.; Lepock, J.R.

    1983-01-01

    A thermoresistant variant of the established cell line V79-S171-W1 was isolated after treatment with nitrosoguanidine and repeated heat treatments at 42.6 to 43 degrees C, and showed an enhanced ability to survive at 42.6, 43.5, and 44.5 degrees C. The rates of inactivation of the normal and heat-resistant lines differed by approximately a factor of 2 over this temperature range. This level of thermoresistance was stable for the first 80 doublings, but was lost by 120 doublings. This may have been due to a reversion to the normal V79 line since there was no continuous selection pressure and the thermoresistant variant, which was designated at HR7, had a longer average doubling time. Transient thermotolerance was induced in both the V79 and HR7 cells by a 10-min exposure to 44.5 degrees C. After 3 hr incubation at 37 degrees C, both cell lines had an identical sensitivity to further exposure to 44.5 degrees C. Thus the long-term thermoresistance of the HR7 cells may be due to a permanent induction of a low level of thermotolerance. The (ionizing) radiation survival curves and the ability to repair sublethal radiation damage were identical for the thermoresistant variant and the parent cell line

  10. Ultraviolet radiation

    International Nuclear Information System (INIS)

    Hawk, J.

    1986-01-01

    Ultraviolet radiation (UVR) from the sun or artificial sources is reflected or transmitted at the surface of the skin, about 5% of normally incident rays being directly reflected. The transmitted fraction is scattered, photochemically absorbed or dissipated as heat within the skin, or passes from it to contribute to the variable total amount of reflected and transmitted radiation. The UVR absorbers in skin are not definitely known, but DNA is a definite target and probably lipoprotein membranes, RNA, proteins, mucopolysaccharides, elastin and collagen. Photochemical or free radical damage to absorber or nearby organelles leads to pharmacological, ultrastructural, histological and clinical changes. Most frequent DNA damage is pyrimidine dimer formation, apparently inhibiting cell function and replication. This is largely enzymatically repaired in man in the dark by excision repair, post-replication repair and possible other enzymatic mechanisms, and at least in some organisms by light-induced photoreactivation repair. UVR exposure causes well recognized acute and chronic clinical syndromes in man. These are discussed in this paper

  11. Role of DNA damage repair capacity in radiation induced adaptive response

    International Nuclear Information System (INIS)

    Yuan Dexiao; Pan Yan; Zhao Meijia; Chen Honghong; Shao Cunlin

    2009-01-01

    This work was to explore γ-ray induced radioadaptive response (RAR) in Chinese hamster ovary(CHO) cell lines of different DNA damage repair capacities. CHO-9 cells and the two repair-deficient strains, EM-C11(DNA single strand break repair deficient) and XR-C1(DNA double strand break repair deficient), were irradiated with a priming dose of 0.08 Gy or 0.016 Gy. After 4 or 7 hours, they were irradiated again with a challenging dose of 1 Gy. The micronucleus induction and plating efficiency of the cells were assayed. Under 0.08 Gy priming dose and 4-h interval, just the CHO-9 cells showed RAR, while with the 7-h interval the CHO-9 and EM-C11 showed RAR, but XR-C1 did not. When the cells were pretreated with a lower priming dose of 0.016 Gy in a 4-h time interval, all the three cell lines showed RAR to subsequent 1 Gy irradiation. It can be concluded that RAR is not only related to the priming dose and time interval, but also has close dependence on the ability of DNA damage repair. (authors)

  12. Toxic effects of sublethal concentrations of diethyl Phthalate on the ...

    African Journals Online (AJOL)

    An investigation on the effect of Diethyl phthalate (DEP) on the gill of the African catfish Clarias gariepinus was carried out in the laboratory. Seventy-five (75) catfish fingerlings were subjected to continuous exposure to sublethal concentrations of DEP (30, 40, 60 and 80 ìg/L) for a period of four weeks. The gills of the catfish ...

  13. Characteristics of repair following very low doses

    International Nuclear Information System (INIS)

    Braby, L.A.; Metting, N.F.; Nelson, J.M.

    1987-01-01

    The effects of ionizing radiation on living systems being with the physical processes of energy deposition and develop through many stages of chemical reaction and biological response. The modeling effort attempts to organize the available data and theories of all of these stages into self-consistent models that can be compared and tested. In some cases, important differences among models result in only small differences in cell survival within the ranges of dose and dose rate that are normally investigated. To overcome this limitation, new ways of irradiating cells at extremes of dose rate, or ways of evaluating the effects of very small doses, are developed. Mathematical modeling and cellular studies complement each other. It has recently been found that some mechanisms are not adequate to account for the interaction of dose and repair time as they affect the reproductive survival of plateau-phase Chinese hamster ovary (CHO) cells. Repair of radiation-induced cellular damage plays a central role in the survival of cells exposed to doses of 1 Gy or more. This repair is responsible for the dose rate, split-dose and delayed plating effect and can be evaluated. Because split-dose and dose-rate experiments involve repair during irradiation and delayed plating experiments involve repair after irradiation is completed, it was originally thought that different repair processes were involved. It is now clear that this is not necessarily the case. Appropriately designed models can account for observed effects at conventional doses (1 Gy or more) whether they assume all damage is lethal unless repaired or some damage is innocuous unless it interacts with additional damage. The fact that the survival following a plating delay is always less than the survival following immediate plating at low doses indicates that the damage produced is probably not potentially lethal

  14. DNA replication and repair of Tilapia cells: Pt. 2. Effects of temperature on DNA replication and ultraviolet repair in Tilapia ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.D.; Yew, F.H.

    1988-02-01

    TO-2 is a fish cell line derived from the Tilapia ovary. It grows over a wide range of temperature (15-34/sup 0/C). We report the effects of temperature on DNA replication and u.v. repair in TO-2 cells. When the cells were moved from 31/sup 0/C to the sublethal high temperature of 37/sup 0/C, the rate of DNA synthesis first decreased to 60%, then speedy recovery soon set in, and after 8h at 37/sup 0/C the rate of DNA synthesis overshot the 31/sup 0/C control level by 180%. When moved to low temperature (18/sup 0/C) Tilapia cells also showed an initial suppression of DNA synthesis before settling at 30% of the control level. U.V. reduced but could not block DNA synthesis completely. The inhibition was overcome in 3h at 37, 31 and 25/sup 0/C, but not at 18/sup 0/C. Initiation of nascent DNA synthesis was blocked at 4Jm/sup -2/ in TO-2 cells compared with less than or equal to 1Jm/sup -2/ in mammalian cells. After 9Jm/sup -2/ u.v. irradiation, low molecular weight DNA replication intermediates started to accumulate. TO-2 cells showed low levels of u.v.-induced excision repair.

  15. Repair of UVC induced DNA lesions in erythrocytes from Carassius auratus gibelio

    International Nuclear Information System (INIS)

    Bagdonas, E.; Zukas, K.

    2004-01-01

    The kinetics of UVC (254 nm) irradiation induced DNA single-strand breaks generated during the excision repair of UV induced DNA damage in erythrocytes from Carassius auratus gibelio were studied using alkaline comet assay. Nucleotide excision repair recognised DNA lesions such as UVC induced cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidone photoproducts and produced DNA single-stranded breaks that were easily detected by comet assay. After irradiation of erythrocytes with 58 j/m 2 UVC dose, there was an increase in comet tail moment (CTM) at 2 hours post-radiation, whereas at 4 hours post-radiation CTM decreased and did not differ significantly from the control level (P=0,127). When erythrocytes were exposed to 173 J/m 2 UVC dose, the excision repair delayed in the beginning (0 hours), reached maximum level at 2 hours post-radiation (CTM-54,8) and showed slightly decreased level at 4 hours post-radiation (CTM=18,5). (author)

  16. Comparative mutagenesis and interaction between near-ultraviolet (313- to 405-nm) and far-ultraviolet (254-nm) radiation in Escherichia coli strains with differing repair capabilities

    International Nuclear Information System (INIS)

    Turner, M.A.; Webb, R.B.

    1981-01-01

    Comparative mutagenesis and possible synergistic interaction between broad-spectrum (313- to 405-nm) near-ultraviolet (black light bulb [BLB]) radiation and 254-nm radiation were studied in Escherichia coli strains WP2 (wild type), WP2s (uvrA), WP10 (recA), WP6 (polA), WP6s (polA uvrA), WP100 (uvrA recA), and WP5 (lexA). With BLB radiation, strains WP2s and WP6s demonstrated a high level of mutagenesis, whereas strains WP2, WP5, WP6, WP10, and WP100 did not demonstrate significant mutagenesis. In contrast, 254-nm radiation was mutagenic in strains WP2, WP2s, WP6, and WP6s, but strains WP5, WP10, and WP100 were not significantly mutated. The absence of mutagenesis by BLB radiation in lexA and recA strains WP10, WP5, and WP100 suggests that lex + rec + repair may play a major role in mutagenesis by both BLB and 254-nm radiation. The hypothesis that BLB radiation selectively inhibits rec + lex + repair was tested by sequential BLB-254 nm radiation. With strain WP2, a fluence of 30 J/m 2 at 254 nm induced trp + revertants at a frequency of 15 x 10 -6 . However, when 10 5 J/m 2 or more BLB radiation preceded the 254-nm exposure, no trp + revertants could be detected. A similar inhibition of 254-nm mutagenesis was observed with strain WP6 (polA). However, strains WP2s (uvrA) and WP6s (polA uvrA) showed enhanced 254-nm mutagenesis when a prior exposure to BLB radiation was given

  17. Radiation damage, repopulation and cell recovery analysis of in vitro tumour cell megacolony culture data using a non-Poissonian cell repopulation TCP model

    International Nuclear Information System (INIS)

    Stavrev, P; Weldon, M; Warkentin, B; Stavreva, N; Fallone, B G

    2005-01-01

    The effects of radiation damage, tumour repopulation and cell sublethal damage repair and the possibility of extracting information about the model parameters describing them are investigated in this work. Previously published data on two different cultured cell lines were analysed with the help of a tumour control probability (TCP) model that describes tumour cell dynamics properly. Different versions of a TCP model representing the cases of full or partial cell recovery between fractions of radiation, accompanied by repopulation or no repopulation were used to fit the data and were ranked according to statistical criteria. The data analysis shows the importance of the linear-quadratic mechanism of cell damage for the description of the in vitro cell dynamics. In a previous work where in vivo data were analysed, the employment of the single hit model of cell kill and cell repopulation produced the best fit, while ignoring the quadratic term of cell damage in the current analysis leads to poor fits. It is also concluded that more experiments using different fractionation regimes producing diverse data are needed to help model analysis and better ranking of the models

  18. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  19. Monitoring colony-level effects of sublethal pesticide exposure on honey bees

    Science.gov (United States)

    The effects of sublethal pesticide exposure to honey bee colonies may be significant but difficult to detect in the field using standard visual assessment methods. Here we describe methods to measure the quantities of adult bees, brood and food resources by weighing hives and hive parts, by photogra...

  20. Phytochemicals radiosensitize cancer cells by inhibiting DNA repair

    International Nuclear Information System (INIS)

    Singh, Rana P.

    2017-01-01

    Solid tumors are mostly treated with radiotherapy. Radiotherapy is toxic to normal tissues and also promote the invasiveness and radioresistance in cancer cells. The resistance against radiotherapy and adverse effects to normal cells reduce the overall therapeutic effects of the treatment. Radiosensitizing agents usually show limited success during clinical trials. Therefore, the search and development of new radiosensitizers showing selective response to only cancer cells is desirable. We analyzed the radiosensitizing effects including cell death effect of silibinin, a phytochemical on prostate cancer cells. Silibinin enhanced gamma radiation (2.5-10 Gy) induced inhibition in colony formation selectively in prostate cancer cells. In cell cycle progression, G2/M phase is the most sensitive phase for radiation-induced damage which was delayed by the compound treatment in radiation exposed cells. The lower concentrations of silibinin substantially enhanced radiation-induced apoptosis. A prolonged reactive oxygen species production was also observed in these treatments EGFR signaling pathway can contribute to radiation-induced pro-survival mechanisms and to the therapeutic resistance. Agent treatment reduced the IR-induced EGFR phosphorylation and consequently reversed the resistance mediating mechanisms within the cancer cell. Thus, inhibiting DNA repair in cancer cells would enhance therapeutic response of radiation in cancer cells. Silibinin affected the localization of EGFR and DNA-dependent protein kinase, the DNA-PK is known to be an important mediator of DSB repair in human cells, and showed increased number of pH2AX (ser139) foci, and thus indicating lower DNA repair in these cancer cells. This was also confirmed in the tumor xenograft study. Our findings suggest that a combination of silibinin with radiation could be an effective treatment of radioresistant human prostate cancer and warrants further investigation. (author)

  1. Mechanistic and kinetic aspects of microbial inactivation in food irradiation processes

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: A proper reaction mechanism was searched by analyzing the inactivation processes of microorganisms during food irradiation by ionizing radiation. By employing transition-state theory, it was assumed that the overall inactivation process involves a reversible sub-lethal stress and repair reactions to form reversibly injured cell or sensitized cell, which then undergoes irreversible injury leading to dead cell. A shoulder in low dose range in survival kinetics was associated with the repair process. Depending on the postulated mechanism, kinetic model equations were derived. The kinetics of cell inactivation by irradiation was expressed as depending on irradiation dose. By using experimental data in the developed model the inactivation parameters including threshold dose, radiation yield, decimal reduction dose and minimum sterilization dose were evaluated and microbial inactivation by irradiation was simulated by using the numerical values of the parameters. Developed model and model parameters may be used for the process control and the assessment of product quality in radiation preservation of food

  2. Relationship between DNA repair and cell recovery: Importance of competing biochemical and metabolic processes

    International Nuclear Information System (INIS)

    Van Ankeren, S.C.; Wheeler, K.T.; Kansas Univ., Lawrence

    1985-01-01

    The relationship between the inhibition of repair of radiation-induced DNA damage and the inhibition of recovery from radiation-induced potentially lethal damage (PLD) by hypertonic treatment was compared in 9L/Ro rat brain tumor cells. Fed plateau phase cultures were γ-irradiated with 1500 rad and then immediately treated for 20 min with a 37 0 C isotonic (0.15 M) or hypertonic (0.50 M) salt solution. The kinetics of repair of radiation-induced DNA damage as assayed using alkaline filter elution were compared to those of recovery from radiation-induced PLD as assayed by colony formation. hypertonic treatment of unirradiated cells produced neither DNA damage nor cell kill. Post-irradiation hypertonic treatment inhibited both DNA repair and PLD recovery, while post-irradiation istonic treatment inhibited neither phenomenon. However, by 2 h after irradiation, the amount of DNA damage remaining after a 20 min hypertonic treatment was equivalent to that remaining after a 20 min isotonic treatment. In contrast, cell survival after hypertonic treatment remained 2 logs lower than after isotonic treatment even at times up to 24 h. These results suggest that the repair of radiation-induced DNA damage per per se is not causally related to recovery from radiation-induced PLD. However, the data are consistent with the time of DNA repair as an important parameter in determining cell survival and, therefore, tend to support the hypothesis that imbalances in sets of competing biochemical or metabolic processes determine survival rather than the presence of a single class of unrepaired DNA lesions. (orig.)

  3. ErbB2 regulates NHEJ repair pathway by affecting erbB1-triggered IR-induced Akt activity

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Peter Rodemann, H.

    2009-01-01

    We have already reported that erbBl-PI3K-AKT signaling is an important pathway in regulating radiation sensitivity and DNA double strand break repair of human tumor cells. In the present study using small interfering RNA and pharmacological inhibitors in non-small cell lung cancer cell lines we investigated the role of Aktl on radiation-induced DNA-PKcs activity and DNA-double strand break (DNA-DSB) repair. Likewise, the function of erbB2 as hetrodimerization partner of erbBl in radiation-induced Akt activity and regulation of DNA-dsb repair through DNA-PKcs was evaluated. In A549 and H460 transfected with AKTl-siRNA radiation-induced phosphorylation of DNA-PKcs the key enzyme regulating NHEJ repair pathway was markedly inhibited. In both cell lines downregulation of Aktl led to a significant enhancement of residual DNA-DSB, i.e. impaired DNA-DSB repair. Interestingly, in cells transfected with DNA-PKcs-siRNA a lack of effect of AKTl-siRNA on enhancement of residual DNA-DSBs was observed. This results indicate that Aktl regulates NHEJ repair in a DNA-PKcs dependent manner

  4. BIDIRECTIONAL FUNCTION OF SHENGHE POWDER ON REPAIR ...

    African Journals Online (AJOL)

    USER

    Keywords: DNA repair, radiation, glioma, astrocyte, Chinese herbs. Introduction .... Wet transfer was performed for 4 hr at constant voltage (40 V) using polyvinylidene difluoride membrane ..... Mitochondrial survivin inhibits apoptosis and.

  5. Radiation-induced adaptive response in fetal mice: a micro-array study

    International Nuclear Information System (INIS)

    Vares, G.; Bing, Wang; Mitsuru, Nenoi; Tetsuo, Nakajima; Kaoru, Tanaka; Isamu, Hayata

    2006-01-01

    Exposure of sublethal doses of ionizing radiation can induce protective mechanisms against a subsequent higher dose irradiation. This phenomenon called radio-adaptation (or adaptive response - AR), has been described in a wide range of biological models. In a series of studies, we demonstrated the existence of a radiation-induced AR in mice during late organogenesis. For better understanding of molecular mechanisms underlying AR in our model, we performed a global analysis of transcriptome regulations in cells collected from whole mouse fetuses. Using cDNA micro-arrays, we studied gene expression in these cells after in utero priming exposure to irradiation. Several combinations of radiation dose and dose-rate were applied to induce or not an AR in our system. Gene regulation was observed after exposure to priming radiation in each condition. Student's t-test was performed in order to identify genes whose expression modulation was specifically different in AR-inducing an( non-AR-inducing conditions. Genes were ranked according to their ability in discriminating AR-specific modulations. Since AR genes were implicated in variety of functions and cellular processes, we applied a functional classification algorithm, which clustered genes in a limited number of functionally related group: We established that AR genes are significantly enriched for specific keywords. Our results show a significant modulation of genes implicated in signal transduction pathways. No AR-specific alteration of DNA repair could be observed. Nevertheless, it is likely that modulation of DNA repair activity results, at least partly, from post-transcriptional regulation. One major hypothesis is that de-regulations of signal transduction pathways and apoptosis may be responsible for AR phenotype. In previous work, we demonstrated that radiation-induced AR in mice during organogenesis is related to Trp53 gene status and to the occurrence of radiation-induced apoptosis. Other work proposed that p53

  6. Normal and sublethally irradiated stem and granulocyte progenitor cell regeneration in an in vivo culture system. The cellular response to humoral factors released through the action of cyclophosphamide

    International Nuclear Information System (INIS)

    MacVittie, T.

    1977-01-01

    The in vivo diffusion chamber (DC) method of marrow culture was used to determine if the injection of host mice with cyclophosphamide (CY) caused, through its cytoxic action, the release of a humoral factor(s) capable of initiating stem cell (CFU-s) and granulocyte-macrophage progenitor cell (CFU-c) proliferation. Host mice were injected with CY 1-4 days prior to 800 rad of 60 Co WBI and implantation of DCs containing normal or 400 rad sublethally irradiated (SLI) marrow cells. The greatest proliferative response within CFU-s and CFU-c populations occurred in those mice injected with CY 3 days prior to implant. The marked CFU-s and CFU-c regeneration was initiated during the initial 24 hr of culture in both normal and SLI marrow cells. Thereafter growth rates were approximately the same. SLI marrow, however, showed a greater response to the humoral effects of CY injection than did normal marrow. These data provided evidence that CY induced the release of a diffusible factor(s) capable of accelerating regeneration of normal and sublethally irradiated CFU-s and CFU-c, the magnitude of which was dependent upon the time elapsed between CY injected and implantation of DCs. The marked proliferative response of the SLI stem and progenitor cells to the humoral stimulation may be indicative of the heterogeneity of both CFU-s and CFU-c populations surviving sublethal radiation exposure. The target cells may have possessed a differential sensitivity to the factor(s) initiating cell proliferation

  7. DNA repair in gamma-and UV-irradiated Escherichia coli treated with caffeine and acriflavine

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Savel'eva, G.E.

    1978-01-01

    A study is made of the postradiation effect of caffeine and acriflavine on the survival rate and DNA repair in E. coli exposed to γ- and UV-radiation. When added to postradiation growth medium caffeine and acriflavine lower the survival rate of γ-irradiated radioresistant strains, B/r and Bsub(s-1)γR, and UV-irradiated UV-resistant strain B/r, and do not appreciably influence the survival of strains that are sensitive to γ- and UV-radiation. The survival rate of UV-irradiated mutant BsUb(s-1) somewhat increases in the presence of caffeine. Caffeine and acriflavine inhibit repair of single-stranded DNA breaks induced in strain B/r by γ-radiation (slow repair) and UV light. Acriflavine arrests a recombination branch of postreplication repair of DNA in E. coli Bsub(s-1)γR Whereas caffeine does not influence this process

  8. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  9. Radiation response of haematopoietic cell lines of human origin

    International Nuclear Information System (INIS)

    Lehnert, S.; Rybka, W.B.; Suissa, S.; Giambattisto, D.

    1986-01-01

    Six human haematopoietic cell lines, five of leukaemic origin, including cells with myeloid, lymphoid and undifferentiated phenotype have been studied with respect to radiation response. The intrinsic radio-sensitivity of the cells varied widely, the D 0 s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed some capacity to accumulate sublethal damage; in three of these, enhanced survival was demonstrated in split-dose experiments. One cell line (HL-60) was anomalous in that although little accumulation of sublethal damage was demonstrable, survival was enhanced by fractionation of the dose. Five of the six cell lines studied were of leukaemic origin. The results support the belief that, in contrast to the almost constant radiosensitivity of normal haematopoietic cell progenitors, leukaemic cell progenitors may show a wide range of radiosensitivities. (author)

  10. The CNA-1 (Nuclear Power Plant Atucha-1) QK-01 repairing project

    International Nuclear Information System (INIS)

    Pizzaferri, J.C.; Cabot, P.

    1997-01-01

    The repair/maintenance of the CNA-1 QK-01 Moderator Cooler will be a leading case of the repair of a class 1 nuclear component in a high radiation environment; utilizing for the work, sophisticated remotely operated equipment. This paper describes the component, the repair-maintenance objective, and the equipment-procedures developed for the intervention. (author) [es

  11. The role of genes controlling the replication and cell division in the repair of radiation damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zhestyanikov, V D; Svetlova, M P; Tomilin, N V; Savel' eva, G E [AN SSSR, Leningrad. Inst. Tsitologii

    1975-01-01

    Mutations in genes controlling the replication (dnaEsup(ts), dnaBsup(ts), dnaGsup(ts) and cell division (lon) in Escherichia coli prevent the rejoining of the gamma radiation-induced single-strand breaks (dnaE in combination with polA1 mutation and dnaG at the restrictive temperature) and effective postreplication DNA repair in UV-irradiated cells (dnaG at the non-permissive temperature and lon mutation) and decrease the survival of UV- and gamma-irradiated bacteria.

  12. Sub-lethal effects of neonicitinoids on the alfalfa leafcutter bee, Megachile rotundata

    Science.gov (United States)

    Neonicotinoids are commonly used pesticides in U.S. agriculture. For many beneficial insect species, lethal effects of neonicotinoids are well-documented; however, much less is known about sublethal exposure. The alfalfa leaf cutter bee Megachile rotundata is a managed pollinator that constructs com...

  13. Radiation damage repair-preliminary studies

    International Nuclear Information System (INIS)

    Bird, R.P.

    1985-01-01

    An experiment was done with Cs-137 gamma rays to determine the effect of temperature on repair processes and cell-cycle progression. Chinese hamster V79 cells were synchronized with hydroxyurea to be at the G 1 /S transition at time T = O. Starting then at room temperature and either holding at room temperature of incubating at 37 0 C, the responses to a single dose at time T were compared, split doses separated by time T, were comparaed at different temperature, and delayed removal of hydroxyurea at the time T after a single dose at T = O was compared for the two temperatures. Reduced temperature was of minimal influence on the surviving fractions in all three cases. 9 refs., 1 fig

  14. The Regularities of Mutagenic Action of gamma-Radiation on Vegetative Bacillus subtilis Cells with Different Repair Genotype

    CERN Document Server

    Boreyko, A V; Krasavin, E A

    2000-01-01

    The regularities of induction of his^-\\to his^+ mutations in vegetative Bacillus subtilis cells with different repair capacity after gamma-irradiation have been studied. The wild type cells, polA1, recE4, recA, recP, add5, recH were used in experiments. It was shown that radiation-induced mutagenesis is determined by a repair genotype of cells. The blocking of different reparation genes is reflected on mutagenesis ratio by the various ways. A frequency of induction mutations in polA strain is higher than in wild type cells and it is characterized by the linearly-quadratic dose curve. The different rec^- strains that belong to various epistatic groups reveal an unequal mutation induction. The add5 and recP strains are characterized by the high-level induction mutations in contrast with the wild type cells. The mutagenesis in recE and recH strains, on the contrary, sharply reduces. The different influence of rec genes inhering to various epistatic groups on mutagenesis in Bacillus subtilis cells probably reflec...

  15. Investigations into the influence of therapeutic measures on the repair of spontaneous mechanisms of defence following radiation injury

    International Nuclear Information System (INIS)

    Nothdurft, W.; Fliedner, T.M.; Baltschukat, K.; Kreja, L.; Selig, C.

    1992-01-01

    Investigations into the influence of therapeutic measures on the repair of spontaneous mechanisms of defence following radiation injury. The aim of this project was to develop procedures for the repair of the body's own mechanisms of defence following radiation injury and to test these on the basis of animal models. After consultation of the relevant literature and in vivo experiments as a preliminary to the in vivo studies in dogs, recombinant human colony-stimulating factor rhGM-CSF was chosen from among a series of different cytokinins. The influence of rhGM-CSF on granulocytopoiesis and monocytophoiesis was at first studied in an animal having undisturbed bone marrow function. Treatment with daily doses of 30 μg/kg on five consecutive days led to a markedly pronounced increase of granulocytopoiesis and an only modest increase of the monocyte concentration of the blood. For the studies in irradiated dogs, treatment was carried out over a period of 21 days. Each of 2 dogs received daily doses of 10 μg/kg or 30 μg/kg administered by subcutaneous injection. These were in each case divided into two equal fractions being given in the morning and at night. The results lead to the conclusion that the treatment of irradiated individuals with rhGM-CSF alone (monotherapy) may be expected to have favourable effects in respect of granulocytopoiesis and monocytopoiesis. This appears, however, to hold only for cases where the radiation damage to the bone marrow is not much more pronounced than that from homogeneous wholebody irradiation using doses in the range between 3 and 3.5 Gy. It is still open to discussion, if and to which extent such treatments with rhGM-CSF are associated with untoward effects on certain hematological parameters. (orig./MG) [de

  16. 1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil

    International Nuclear Information System (INIS)

    Brown, Sarah A.E.; McKelvie, Jennifer R.; Simpson, Andre J.; Simpson, Myrna J.

    2010-01-01

    1 H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-β-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised ∼65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils. - 1 H NMR metabolomics is used to directly monitor metabolic responses of Eisenia fetida after 48 h of exposure to sub-lethal concentrations of phenanthrene in soil.

  17. Why shorter half-times of repair lead to greater damage in pulsed brachytherapy

    International Nuclear Information System (INIS)

    Fowler, J.F.

    1993-01-01

    Pulsed brachytherapy consists of replacing continuous irradiation at low dose-rate with a series of medium dose-rate fractions in the same overall time and to the same total dose. For example, pulses of 1 Gy given every 2 hr or 2 Gy given every 4 hr would deliver the same 70 Gy in 140 hr as continuous irradiation at 0.5 Gy/hr. If higher dose-rates are used, even with gaps between the pulses, the biological effects are always greater. Provided that dose rates in the pulse do not exceed 3 Gy/hr, and provided that pulses are given as often as every 2 hr, the inevitable increases of biological effect are no larger than a few percent (of biologically effective dose or extrapolated response dose). However, these increases are more likely to exceed 10% (and thus become clinically significant) if the half-time of repair of sublethal damage is short (less than 1 hr) rather than long. This somewhat unexpected finding is explained in detail here. The rise and fall of Biologically Effective Dose (and hence of Relative Effectiveness, for a constant dose in each pulse) is calculated during and after single pulses, assuming a range of values of T 1/2 , the half-time of sublethal damage repair. The area under each curve is proportional to Biologically Effective Dose and therefore to log cell kill. Pulses at 3 Gy/hr do yield greater biological effect (dose x integrated Relative Effectiveness) than lower dose-rate pulses or continuous irradiation at 0.5 Gy/hr. The contrast is greater for the short T 1/2 of 0.5 hr than for the longer T 1/2 of 1.5 hr. More biological damage will be done (compared with traditional low dose rate brachytherapy) in tissues with short T 1/2 (0.1-1 hr) than in tissues with longer T 1/2 values. 8 refs., 3 figs

  18. The response of hypoxic cells in SCCVII murine tumors to treatment with cisplatin and x rays

    International Nuclear Information System (INIS)

    Yan, R.D.; Durand, R.E.

    1991-01-01

    Possible mechanisms of enhancement of radiation effects by cisplatin, including radiosensitization of hypoxic cells, drug-induced tumor reoxygenation, and inhibition of repair of sublethal radiation damage, were examined in the murine SCCVII model. Combination radiation/drug treatments were most effective when drug exposure preceded irradiation of animals breathing a reduced oxygen atmosphere, indicating that the primary interaction between the modalities was a cisplatin-induced increase in the oxygenation status of the acutely hypoxic cells in those tumors. Delivering cisplatin prior to or immediately after the first of two 5 Gy fractions was more effective than combinations with a single x-ray exposure, suggesting that proper sequences of the combined modalities may augment natural reoxygenation processes

  19. Possibilities for prognostication of radiation injury in rats by leucocyte nucleic acid levels

    International Nuclear Information System (INIS)

    Minkova, M.; Pantev, T.

    1988-01-01

    The possibilities to prognosticate acute radiation injury by the changes in the amount of nucleic acids in the leucocytes was studied. Experiments were carried out on male Wistar albino rats, gamma-irradiated with nonlethal and sublethal doses of 0.5, 2 and 4 Gy and lethal dose of 8 Gy (LD 90/30 ). The nucleic acid content and the total leucocyte count were determined at definite intervals on days 1-30. The changes in the nucleic acids in nonlethally and sublethally irradiated animals had phase nature, with a clear-cut abortive increase in their amount on days 7-10. In lethally irradiated animals the phase character of the changes was lost and the abortive peak disappeared. By reducing the effectiveness of the lethal radiation dose survival of the population increased from 10-75% through physical and from 10-70% - through chemical protection. The nucleic acid dynamics showed features typical for an injury with possible survival - appearance of abortive peak and resumption of their normal values. It is assumed that determination of leucocyte nucleic acid content may be used for early prognostication of radiation injury, as it allows keen differentiation of the lethal from nonlethal outcome of radiation sickness. The absence of abortive peak (over 50%) by day 14 post-irradiation is a poor prognostic sign

  20. WE-EF-BRA-08: Cell Survival in Modulated Radiation Fields and Altered DNA-Repair at Field Edges

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, S; Oelfke, U [The Institute of Cancer Research, London (United Kingdom); Eismann, S [University of Heidelberg, Heidelberg, DE (Germany)

    2015-06-15

    Purpose: Tissue damage prognoses in radiotherapy are based on clonogenic assays that provide dose dependent cell survival rates. However, recent work has shown that apart from dose, systemic reactions and cell-cell communication crucially influence the radiation response. These effects are probably a key in understanding treatment approaches such as microbeam radiation therapy (MRT). In this study we tried to quantify the effects on a cellular level in spatially modulated radiation fields. Methods: Pancreas carcinoma cells were cultured, plated and irradiated by spatially modulated radiation fields with an X-ray tube and at a synchrotron. During and after treatment cells were able to communicate via the intercellular medium. Afterwards we stained for DNA and DNA damage and imaged with a fluorescence microscope. Results: Intriguingly we found that DNA damage does not strictly increase with dose. Two cell entities appear that have either a high or a low amount of DNA lesions, indicating that DNA damage is also a cell stress reaction. Close to radiation boundaries damage-levels became alike; they were higher than expected at low and lower than expected at high doses. Neighbouring cells reacted similarly. 6 hours after exposure around 40% of the cells resembled in their reactions neighbouring cells more than randomly chosen cells that received the same dose. We also observed that close to radiation boundaries the radiation induced cell-cycle arrest disappeared and the size of DNA repair-centres increased. Conclusion: Cell communication plays an important role in the radiation response of tissues and may be both, protective and destructive. These effects may not only have the potential to affect conventional radiotherapy but may also be exploited to spare organs at risk by intelligently designing irradiation geometries. To that end intensive work is required to shed light on the still obscure processes in cell-signalling and radiation biology.

  1. Functional modifications of macrophage activity after sublethal irradiation

    International Nuclear Information System (INIS)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin

  2. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  3. Intrinsic radiosensitivity and PLD repair in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Sugimoto, M.; Toguchida, J.; Kotoura, Y.; Yamamuro, T.; Utsumi, H.

    1992-01-01

    The response to radiation of seven osteosarcoma cell lines was analysed by in vitro colony-forming assay and compared with that of eight human fibroblast strains. The values of D 0 , the surviving fraction after 2 Gy (S2Gy), and the mean inactivation dose (D-bar) of osteosarcoma cells in log-phase culture were significantly higher than those of fibroblast strains (p<0.01). PLD (potentially lethal damage) repair of osteosarcoma cells evaluated in the plateau phase of growth showed great variation for enhancement of survival, although all of the values were maximised within 12 h after irradiation. In the osteosarcoma, intrinsic radiosensitivity in vitro reflected the clinical response to radiation. However, the capacity for PLD repair might not be a good indicator for predicting the results of radiation therapy. (author)

  4. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (uv) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either x-ray-like (i.e., they cause damage that XP cells can repair) or uv-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed. (U.S.)

  5. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  6. Lack of effect of inhibitors of DNA synthesis/repair on the ionizing radiation-induced chromosomal damage in G[sub 2] stage of ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Antoccia, A. (Univ. ' La Sapienza' , Rome (Italy). Dipt. di Genetica e Biologia Molecolare); Palitti, F.; Raggi, T. (Univ. del Tuscia, Viterbo (Italy). Dipt. di Agrobiologia ed Agrochimica); Catena, C. (ENEA, Casaccia (Italy). Centro Ricerche Energia); Tanzarella, C. (Rome Univ. 3 (Italy). Dipt. di Biologia)

    1994-09-01

    The relationship between the repair processes occurring at the G[sub 2] phase of the cell cycle and cytogenetic damage in ataxia telangiectasia (AT) cells was studied. Lymphoblastoid cells derived from normal, heterozygote AT (HzAT) and three AT patients were exposed to X-rays or fission neutrons and post-treated with inhibitors of DNA synthesis/repair, such as inhibitors of DNA polymerases [alpha], [sigma] and [epsilon] (cytosine arabinoside, ara-C; aphidicolin, APC; buthylphenyl-guanine, BuPdG) or ribonucleotide reductase (hydroxyurea HU). A strong increase of radiation-induced chromosomal aberrations was observed in normal and HzAT cells post-treated with ara-C, APC and HU, but not in the presence of BuPdG. No enhancing effect was observed in cells derived from AT patients, except for HU post-irradiation treatment. These results suggest that the enzymes that can be inhibited by these agents are not directly involved in the repair of radiation damage induced in G[sub 2] cells from AT patients, indicating that probably the AT cells that we used lack the capability to transform the primary DNA lesions into reparable products, or that AT cells might contain a mutated form of DNA polymerase resistant to the inhibitors. (author).

  7. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography.

    Science.gov (United States)

    Thompson, Larry H

    2012-01-01

    The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Impaired DNA repair as assessed by the 'comet' assay in patients with thyroid tumors after a history of radiation therapy: A preliminary study

    International Nuclear Information System (INIS)

    Leprat, Frederic; Alapetite, Claire; Rosselli, Filippo; Ridet, Agnes; Schlumberger, Martin; Sarasin, Alain; Suarez, Horacio G.; Moustacchi, Ethel

    1998-01-01

    Purpose: Patients with a history of head and neck irradiation in childhood are at risk to develop thyroid tumors. The aim of this study was to determine if an impairment of DNA strand breaks repair could account for this observation. Methods and Materials: Circulating unstimulated lymphocytes of a group of 13 patients who developed thyroid tumors after radiotherapy were submitted to the alkaline single-cell gel electrophoresis assay (SCGE or 'comet' assay) after in vitro exposure to 2 and 5 Gy of γ-rays. A control group of 8 healthy donors and 2 cases with a history of neck irradiation who did not develop a thyroid tumor were also analysed. The immediate response was compared to that observed after 15, 30, and 60 min of postexposure incubation periods. Results: Induction of DNA strand breaks is a dose-dependent process. The SCGE assay parameters did not differ significantly between patients and controls immediately (t = 0) after irradiation at the two doses used. As compared to healthy donors, a slower kinetics of repair was found in the patients. The proportion of residual damage at 60 min postirradiation was significantly (p < 0.01) higher in patients than in controls, at both doses analysed. Flow cytometric analysis of apoptosis and p53 protein status studied before and after irradiation showed no apparent relationship with the repair capacity. Conclusion: This preliminary study suggests that a subgroup of patients who develop thyroid tumors after a history of irradiation are partially defective in the late restitution of in vitro radiation-induced DNA strand breaks. This deficiency could be a predisposing factor to radiation-associated thyroid tumorigenesis. Detection of susceptible individuals using the simple and rapid comet assay, especially children receiving radiotherapeutic treatment, may allow a preventive surveillance for radiation-associated epithelial thyroid tumor development

  9. Discovery and Function of a General Core Hormetic Stress Response in E. coli Induced by Sublethal Concentrations of Antibiotics.

    Science.gov (United States)

    Mathieu, Aurélie; Fleurier, Sébastien; Frénoy, Antoine; Dairou, Julien; Bredeche, Marie-Florence; Sanchez-Vizuete, Pilar; Song, Xiaohu; Matic, Ivan

    2016-09-27

    A better understanding of the impact of antibiotics on bacteria is required to increase the efficiency of antibiotic treatments and to slow the emergence of resistance. Using Escherichia coli, we examined how bacteria exposed to sublethal concentrations of ampicillin adjust gene expression patterns and metabolism to simultaneously deal with the antibiotic-induced damage and maintain rapid growth. We found that the treated cells increased energy production, as well as translation and macromolecular repair and protection. These responses are adaptive, because they confer increased survival not only to lethal ampicillin treatment but also to non-antibiotic lethal stresses. This robustness is modulated by nutrient availability. Because different antibiotics and other stressors induce the same set of responses, we propose that it constitutes a general core hormetic stress response. It is plausible that this response plays an important role in the robustness of bacteria exposed to antibiotic treatments and constant environmental fluctuations in natural environments. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Inductions of reproduction and population growth in the generalist predator Cyrtorhinus lividipennis (Hemiptera: Miridae) exposed to sub-lethal concentrations of insecticides.

    Science.gov (United States)

    Lu, Weiwei; Xu, Qiujing; Zhu, Jun; Liu, Chen; Ge, Linquan; Yang, Guoqing; Liu, Fang

    2017-08-01

    The miridbug, Cyrtorhinus lividipennis, is a significant predacious enemy of rice planthoppers. The effects of sub-lethal concentrations of triazophos, deltamethrin and imidacloprid on fecundity, egg hatchability, expression levels of genes associated with reproduction, and population growth in C. lividipennis were investigated. The fecundities for three pair combinations (♀ c × ♂ t , ♀ t × ♂ c and ♀ t × ♂ t ) treated with sub-lethal concentrations of the insecticides triazophos, deltamethrin and imidacloprid (LC 10 and LC 20 ) showed a significant increase compared to the untreated pairs (♀ c × ♂ c ). However, sub-lethal concentration treatments did not affect the egg hatchability. The ClVg expression levels of female adults exposed to triazophos, deltamethrin and imidacloprid (LC 20 ) increased by 52.6, 48.9 and 91.2%, respectively. The ClSPATA13 expression level of adult males exposed to triazophos, deltamethrim and imidacloprid (LC 20 ) increased by 80.7, 41.3 and 48.3%, respectively. Furthermore, sub-lethal concentrations of insecticides (LC 20 ) caused increased population numbers in C. lividipennis. Sub-lethal concentrations of triazophos, deltamethrin and imidacloprid stimulated reproduction and enhanced population growth of C. lividipennis. The reproductive stimulation might result from the up-regulation of ClVg or ClSPATA13. These findings may be useful in mediating populations of planthoppers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    Science.gov (United States)

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  12. Effect of sodium selenite on bone repair in tibiae of irradiated rats

    International Nuclear Information System (INIS)

    Rocha, Anna Silvia Setti da; Ramos-Perez, Flavia Maria de Moraes; Boscolo, Frab Norberto; Almeida, Solange Maria; Manzi, Flavio Ricardo; Chicareli, Mariliani

    2009-01-01

    This study evaluated the radioprotective effect of sodium selenite on the bone repair process in tibiae of female rats. For such purpose, 100 female Wistar rats (Rattus norvegicus, albinus) were randomly assigned to 4 groups (n=25), according to the treatment received: administration of distilled water (control); administration of sodium selenite; gamma radiation; and administration of sodium selenite plus gamma radiation. A bone defect was prepared on both tibiae of all animals. Three days after surgery, the gamma radiation and selenium/ gamma radiation groups received 8 Gy gamma rays on the lower limbs. Five animals per group were sacrificed 7, 14, 21, 28 days after surgery for evaluation of the repair process by bone volumetric density analysis. The 5 animals remaining in each group were sacrificed 45 days postoperatively for examination of the mature bone by scanning electron microscopy. Based on all analyzed parameters, the results of the present study suggest that sodium selenite exerted a radioprotective effect in the bone repair of tibia of irradiated rats. (author)

  13. Effect of sodium selenite on bone repair in tibiae of irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Anna Silvia Setti da [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR, (Brazil). Dept. of Physics; Ramos-Perez, Flavia Maria de Moraes; Boscolo, Frab Norberto; Almeida, Solange Maria [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Piracicaba Dental School. Dept. of Oral Diagnosis], e-mail: flaviamaria@fop.unicamp.br; Manzi, Flavio Ricardo [Pontifical Catholic University of Minas Gerais (PUC-MG), Belo Horizonte, MG (Brazil). Dept. of Stomatology; Chicareli, Mariliani [State Univ. of Maringa, PR (Brazil). Dept. of Oral Diagnosis

    2009-07-01

    This study evaluated the radioprotective effect of sodium selenite on the bone repair process in tibiae of female rats. For such purpose, 100 female Wistar rats (Rattus norvegicus, albinus) were randomly assigned to 4 groups (n=25), according to the treatment received: administration of distilled water (control); administration of sodium selenite; gamma radiation; and administration of sodium selenite plus gamma radiation. A bone defect was prepared on both tibiae of all animals. Three days after surgery, the gamma radiation and selenium/ gamma radiation groups received 8 Gy gamma rays on the lower limbs. Five animals per group were sacrificed 7, 14, 21, 28 days after surgery for evaluation of the repair process by bone volumetric density analysis. The 5 animals remaining in each group were sacrificed 45 days postoperatively for examination of the mature bone by scanning electron microscopy. Based on all analyzed parameters, the results of the present study suggest that sodium selenite exerted a radioprotective effect in the bone repair of tibia of irradiated rats. (author)

  14. Radiosensitivity of yeast cells as a function of radiation LET

    International Nuclear Information System (INIS)

    Lobachevskij, P.N.; Krasavin, E.A.

    1988-01-01

    A model is proposed for interpreting the radiosensitivity of yeast cells as a function of linear energy transfer (LET) of ionizing radiation. The model takes into account the role of repair processes in sensitivity of yeast cells to ionizing radiation of different LET. Two types of repair are discussed: (1) a nonspecific repair (characteristic of both haploid and diploid cells), and (2) a diploid - soecific repair (characteristic of diploid cells only)

  15. Interactions between Entomopathogenic Fungus, Metarhizium Anisopliae and Sublethal Doses of Spinosad for Control of House Fly, Musca Domestica

    Directory of Open Access Journals (Sweden)

    M Sharififard

    2011-06-01

    Full Text Available Background: Metarhizium anisopliae strain IRAN 437C is one of the most virulent fungal isolates against house fly, Musca domestica. The objective of this study was to determine the interaction of this isolate with sublethal doses of spino­sad against housefly.Methods: In adult bioassay, conidia of entomopathogenic fungus were applied as inoculated bait at 105 and 107 spore per gram and spinosad at 0.5, 1 and 1.5 µg (A.I. per gram bait. In larval bioassay, conidia were applied as combina­tion of spore with larval bedding at 106 and 108 spore per gram and spinosad at sublethals of 0.002, 0.004 and 0.006 µg (AI per gram medium. Results: Adult mortality was 48% and 72% for fungus alone but ranged from 66–87% and 89–95% in combination treat­ments of 105 and 107 spore/g with sublethal doses of spinosad respectively. The interaction between 105 spore/g with sublethals exhibited synergistic effect, but in combination of 107 spore in spite of higher mortality, the interac­tion was additive. There was significant difference in LT50 among various treatments. LT50 values in all combination treat­ments were smaller than LT50 values in alone ones. Larval mortality was 36% and 69% for fungus alone but ranged from 58%–78% and 81%–100% in combination treatments of 106 and 108 spore/g medium with sublethals of spino­sad respectively. The interaction was synergistic in all combination treatments of larvae.Conclusion: The interaction between M. anispliae and spinosad indicated a synergetic effect that increased the house fly mortality as well as reduced the lethal time.

  16. The effect of small radiation doses on the rat spinal cord: the concept of partial tolerance

    International Nuclear Information System (INIS)

    Ang, K.K.; Van Der Kogel, A.J.; Van Der Schueren, E.

    1983-01-01

    To evaluate the tolerance of the rat spinal cord to small radiation doses per fraction, an increasing number of fractions is required for induction of paralysis. The assessment of doses of 1-2 Gy, as used in the clinic, would require that over 100 fractions be given. The validity of replacing part of a fractionated irradiation of the spinal cord by a single large dose has been tested. Fractionated irradiation doses with 18 MeV X rays were followed by a ''top-up'' dose of 15 Gy as a single treatment. This is the fraction size of a treatment with two irradiation doses leading to paralysis in 50% of the animals (ED 50). Fractionated treatments were carried out with 2, 5, 10 and 20 fractions followed by the top-up dose of 15 Gy. the isoeffect curve, as a function of the number of fractions, has the same slope as experiments performed without top-up dose. The results show that the quality and quantity of cellular repair is not modified when part of a multifractionated exposure is replaced by a larger top-dose. An important consequence of this finding is, that in treatments with unequal fraction sizes, the partial tolerances can simply be added. Since a top-up dose can replace a sizable number of irradiation treatments, its application will allow investigations of the extent of sublethal damage repair for fraction sizes as low as 1 Gy

  17. Ionizing radiation-induced DNA double-strand break and repair assessed by γ-H2AX foci analysis in neurons in mice

    International Nuclear Information System (INIS)

    Dong Xiaorong; Wu Gang; Ruebe Claudia; Ruebe Christian

    2009-01-01

    Objective: To investigate if the γ-H2AX foci is a precise index for the DSB formation and repair in mature neurons of brain in vivo after clinically relevant doses irradiation. Methods: For the DSB formation experiment, the mature neurons in the neocortex of brain tissue of C57BL/6 mice were analyzed at 10 rain after whole-body irradiation with 0.1, 0.5 and 1.0 Gy. For the DSB repair kinetics experiment, the mature neurons in the neocortex of brain tissue of repair-proficient (C57BL/6 mice) and repair-deficient mouse strains (BALB/c, A-T and SCID mice) were analyzed at 0.5, 2.5, 5, 24 and 48 h after whole-body irradiation with 2 Gy. The mature neurons in the neocortex of brain tissue of sham-irradiated mice of each strain served as controls. γ-H2AX immunohistochemistry and γ-H2AX and NeuN double immunofluorescence analysis was used to measure DSBs formation and repair in the mature neurons in the neocortex of brain tissue of the different mouse strains. Results: For the DSB formation experiment, γ-H2AX foci levels with a clear linear close correlation and very low backgrounds in the nuclei in the neocortex of brain tissue were observed. Scoring the loss of γ-H2AX foci allowed us to verify the different, genetically determined DSB repair deficiencies, including the minor impairment of BALB/c mice. Repair-proficient C57BL/6 mice exhibited the fastest decrease in foci number with time, and displayed low levels of residual damage at 24 h and 48 h post-irradiation. In contrast, SCID mice showed highly increased γ-H2AX foci levels at all repair times (0.5 h to 48 h) while A-T mice exhibited a lesser defect which was most significant at later repair times (≥ 5 h). Radiosensitive BALB/c mice exhibited slightly elevated foci numbers compared with C57BL/6 mice at 5 h and 24 h but not at 48 h post-irradiation. Conclusion: Quantifying the γ-H2AX foci in normal tissue represents a sensitivie tool for the detection of induction and repair of radiation-induced DSBs at

  18. Development of ideas about the effect of DNA repair on the induction of gene mutations and chromosomal aberrations by radiation and by chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, R F

    1987-07-01

    An historical overview is given of the development of ideas about chromosomal and DNA repair as they relate to the induction of mutations, chromosomal aberrations, and sister-chromatid exchanges by radiations and chemicals. The genetic and molecular bases of the various repair pathways are reviewed whenever possible. Work on both prokaryotes and eukaryotes is included. Mention is made, when deemed appropriate, of major developments in other areas that served as essential background for the repair work, but no attempt is made to cover these background developments in any detail. Near the end, a brief review is given of factors affecting polymerase fidelity. The history is subdivided into approximately 10-year intervals. For the most part, references are to reviews and symposia in which the ideas of the time were brought together. The implications of these findings for some practical problems in genetic toxicology and for our understanding of the maintenance of the genome are discussed at the end. 147 refs.

  19. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    International Nuclear Information System (INIS)

    Chistiakov, Dimitry A.; Voronova, Natalia V.; Chistiakov, Pavel A.

    2008-01-01

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  20. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Chistiakov, Dimitry A. (Dept. of Pathology, Univ. of Pittsburgh, Pittsburgh (US)); Voronova, Natalia V. (Dept. of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow (RU)); Chistiakov, Pavel A. (Dept. of Radiology, Cancer Research Center, Moscow (RU))

    2008-06-15

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  1. Effects of sublethal concentrations of formalin on weight gain in the ...

    African Journals Online (AJOL)

    The African Catfish, Clarias gariepinus, was exposed to various sublethal concentrations (25.0, 12.50, 6.25, 3.125, 1.56 and 0.0 mgl-1) of formalin to investigate their effects on the weight gain of the fish. Decrease in weight gain, directly proportional to the toxicant concentration, was observed in fish exposed to ...

  2. Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy. Effect of prolonged delivery time and applicability of the linear-quadratic model

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Otsuka, Shinya; Iwata, Hiromitsu; Sugie, Chikao; Ogino, Hiroyuki; Tomita, Natsuo

    2012-01-01

    Since the dose delivery pattern in high-precision radiotherapy is different from that in conventional radiation, radiobiological assessment of the physical dose used in stereotactic irradiation and intensity-modulated radiotherapy has become necessary. In these treatments, the daily dose is usually given intermittently over a time longer than that used in conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. This phenomenon is almost universarily observed in vitro. In in vivo tumors, however, this decrease in effect can be counterbalanced by rapid reoxygenation, which has been demonstrated in a laboratory study. Studies on reoxygenation in human tumors are warranted to better evaluate the influence of prolonged radiation delivery. Another issue related to radiosurgery and hypofractionated stereotactic radiotherapy is the mathematical model for dose evaluation and conversion. Many clinicians use the linear-quadratic (LQ) model and biologically effective dose (BED) to estimate the effects of various radiation schedules, but it has been suggested that the LQ model is not applicable to high doses per fraction. Recent experimental studies verified the inadequacy of the LQ model in converting hypofractionated doses into single doses. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when it is used for tumor responses in vivo, since it does not take reoxygenation into account. For normal tissue responses, improved models have been proposed, but, for in vivo tumor responses, the currently available models are not satisfactory, and better ones should be proposed in future studies. (author)

  3. DNA replication and post-replication repair in U.V.-sensitive mouse neuroblastoma cells

    International Nuclear Information System (INIS)

    Lavin, M.F.; McCombe, P.; Kidson, C.

    1976-01-01

    Mouse neuroblastoma cells differentiated when grown in the absence of serum; differentiation was reversed on the addition of serum. Differentiated cells were more sensitive to U.V.-radiation than proliferating cells. Whereas addition of serum to differentiated neuroblastoma cells normally resulted in immediate, synchronous entry into S phase, irradiation just before the addition of serum resulted in a long delay in the onset of DNA replication. During this lag period, incorporated 3 H-thymidine appeared in the light density region of CsCl gradients, reflecting either repair synthesis or abortive replication. Post-replication repair (gap-filling) was found to be present in proliferating cells and at certain times in differentiated cells. It is suggested that the sensitivity of differentiated neuroblastoma cells to U.V.-radiation may have been due to ineffective post-replication repair or to deficiencies in more than one repair mechanism, with reduction in repair capacity beyond a critical threshold. (author)

  4. Advanced repair methods for enhanced reactor safety

    International Nuclear Information System (INIS)

    Kornfeldt, H.

    1993-01-01

    A few innovative concepts are described of the ABB Atom Service Division for repair and mitigation techniques for primary systems in nuclear power plants. The concepts are based on Shape Memory Alloy (SMA) technology. A basic feature of all methods is that welding and component replacement is being avoided and the radiation dose imposed on maintenance personnel reduced. The SMA-based repair methods give plant operators new ways to meet increased safety standards and rising maintenance costs. (Z.S.) 4 figs

  5. Inspection and repair of steam generator tubing with a robot

    International Nuclear Information System (INIS)

    Boehm, H.H.; Foerch, H.

    1985-01-01

    During inspection and repair of steam generator tubing, radiation exposure to personnel is an unrequested endowment. To combat this intrinsic handicap, a robot has been designed for deployment in all operations inside the steam generator water chamber. This measure drastically reduces entering time and also improves inspection capabilities with regard to the accuracy and reproduction of the desired tube address. The inherent flexibility of the robot allows for performing various inspection and repair techniques: eddy-current testing of tubing; ultrasonic testing of tubing; visual examination of tube ends; profilometry measurements; tube plugging; plug removal; tube extraction; sleeving of tubes; tube end repair; chemical cleaning; and thermal treatment. Plant experience has highlighted the following features of the robot: 1) short installation and demounting periods; 2) installation independent of manhole location; 3) installation possible from outside the steam generator; 4) only one relocation required to address all the tube positions; 5) fast and highly accurate positioning; 6) operational surveillance not required; and 7) drastic reduction of radiation exposure to personnel during repair work

  6. Evidence that UV-inducible error-prone repair is absent in Haemophilus influenzae Rd, with a discussion of the relation to error-prone repair of alkylating-agent damage

    International Nuclear Information System (INIS)

    Kimball, R.F.; Boling, M.E.; Perdue, S.W.

    1977-01-01

    Haemophilus influenzae Rd and its derivatives are mutated either not at all or to only a very small extent by ultraviolet radiation, X-rays, methyl methanesulfonate, and nitrogen mustard, though they are readily mutated by such agents as N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, and nitrosocarbaryl (NC). In these respects H. influenzae Rd resembles the lexA mutants of Escherichia coli that lack the SOS or reclex UV-inducible error-prone repair system. This similarity is further brought out by the observation that chloramphenicol has little or no effect on post-replication repair after UV irradiation. In E. coli, chloramphenicol has been reported to considerably inhibit post-replication repair in the wild type but not in the lexA mutant. Earlier work has suggested that most or all the mutations induced in H. influenzae by NC result from error-prone repair. Combined treatment with NC and either X-rays or UV shows that the NC error-prone repair system does not produce mutations from the lesions induced by these radiations even while it is producing them from its own lesions. It is concluded that the NC error-prone repair system or systems and the reclex error-prone system are different

  7. Sub-lethal effects of Vip3A toxin on survival, development and fecundity of Heliothis virescens and Plutella xylostella.

    Science.gov (United States)

    Gulzar, Asim; Wright, Denis J

    2015-11-01

    The assessment of sub-lethal effects is important to interpret the overall insecticide efficacy in controlling insect pest populations. In addition to the lethal effect, sub-lethal effects may also occur in exposed insects. Vegetative insecticidal proteins (Vips) have shown a broad spectrum of insecticidal activity against many insect pest species. In this study the sub-lethal effects of the Bacillus thuringiensis vegetative insecticidal toxin Vip3A on the development and reproduction of Heliothis virescens F. and Plutella xylostella L. were evaluated in the laboratory. The results indicated that the sub-lethal concentration of Vip3A increased the duration of the larval and pupal stages as compared with the control treatment for both species. The percent pupation and percent adult emergence were significantly lower for Vip3A-treated insects. The proportion of pairs that produced eggs and the longevity of adults were not significantly different between treatments. H. virescens and P. xylostella treated with Vip3A showed an 11 and 17 % decrease in their intrinsic rate of increase (rm) respectively compared with untreated insects. The results from this study will be helpful to develop the strategy to incorporate Vip 3A containing crops in an integrated pest management programme.

  8. Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L.

    Science.gov (United States)

    Wu, Yan-Yan; Luo, Qi-Hua; Hou, Chun-Sheng; Wang, Qiang; Dai, Ping-Li; Gao, Jing; Liu, Yong-Jun; Diao, Qing-Yun

    2017-11-21

    A sublethal concentration of imidacloprid can cause chronic toxicity in bees and can impact the behavior of honey bees. The nectar- and water-collecting, and climbing abilities of bees are crucial to the survival of the bees and the execution of responsibilities in bee colonies. Besides behavioral impact, data on the molecular mechanisms underlying the toxicity of imidacloprid, especially by the way of RNA-seq at the transcriptomic level, are limited. We treated Apis mellifera L. with sublethal concentrations of imidacloprid (0.1, 1 and 10 ppb) and determined the effect on behaviors and the transcriptomic changes. The sublethal concentrations of imidacloprid had a limited impact on the survival and syrup consumption of bees, but caused a significant increase in water consumption. Moreover, the climbing ability was significantly impaired by 10 ppb imidacloprid at 8 d. In the RNA-seq analysis, gene ontology (GO) term enrichment indicated a significant down-regulation of muscle-related genes, which might contribute to the impairment in climbing ability of bees. The enriched GO terms were attributed to the up-regulated ribosomal protein genes. Considering the ribosomal and extra-ribosomal functions of the ribosomal proteins, we hypothesized that imidacloprid also causes cell dysfunction. Our findings further enhance the understanding of imidacloprid sublethal toxicity.

  9. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health

    Science.gov (United States)

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 µg/kg over multiple brood cycles. Various endpoints ...

  10. Enhancement of radiation damage in germinating wheat seeds by hyperthermia

    International Nuclear Information System (INIS)

    Guo Fangqing; Gu Ruiqi

    1994-01-01

    Enhancement of X-ray induced radiation damage in germinating wheat seeds by heat treatment (44 degree C or 41 degree C, 20 min) has been investigated. The enhancement effect of heat treatment after irradiation was more significant than that of heat treatment before irradiation at dose range of 4.3-8.6 Gy. It was observed that germinating wheat seeds were very sensitive to heat treatment within 15 min after irradiation, which indicated that the repair of radiation damage was very active and rapid in a short period after irradiation. The repair of radiation damage in interval of fractionated irradiation was severely inhibited by heat treatment. The sensitivity of seeds to heat treatment corresponded with the levels of their repair activities. The more active the repairs of the seeds are, the more sensitive to heat treatment the seeds show. It was assumed that the enhancement of radiation damage by heat treatment in germinating wheat seeds was attributed to the inhibition of radiation damage repair by heat treatment, which is similar to the results of animal experiments

  11. High-dose mode of mortality in Tribolium: A model system for study of radiation injury and repair in non-proliferative tissues

    International Nuclear Information System (INIS)

    Cheng, Chihing Christina.

    1989-01-01

    With appropriate doses of ionizing radiation, both the acute, or lethal-midlethal, dose-independent pattern of mortality, and the hyperacute, dose-dependent pattern, were demonstrated within a single insect genus (Tribolium). This demonstration provides resolution of apparently contradictory reports of insect radiation responses in terms of doses required to cause lethality and those based on survival time as a function of dose. A dose-dependent mortality pattern was elicited in adult Tribolium receiving high doses, viz., 300 Gy or greater; its time course was complete in 10 days, before the dose-independent pattern of mortality began. Visual observations of heavily-irradiated Tribolium suggested neural and/or neuromuscular damage, as had been previously proposed by others for lethally-irradiated wasps, flies, and mosquitoes. Results of experiments using fractionated high doses supported the suggestion that the hyperacute or high-dose mode of death is the result of damage to nonproliferative tissues. Relative resistance of a strain to the hyperacute or high-dose mode of death was not correlated with resistance to the midlethal mode, which is believed to be the result of damage to the proliferative cells of the midgut. Using the high-dose mode of death as a model of radiation damage to nonproliferative tissues, the effects of age, and of a moderate priming dose were assessed. Beetles showed age-related increase in sensitivity to the high-dose mode of death, suggesting a decline in capacity to repair radiation damage to postmitotic tissue. This correlated with a decrease (50%) in the amount of repair reflected in the sparing effect of dose-fractionation (SDF) between the age of 1 to 3 months. The age related increase in radiosensitivity was reduced by a moderate priming dose (40 or 65 Gy) given at a young age

  12. Characterization of the adaptive response to ionizing radiation induced by low doses of X-rays to Vibrio cholerae cells

    International Nuclear Information System (INIS)

    Basak, Jayasri

    1996-01-01

    Pretreatment with sublethal doses of X-rays induced an adaptive response in Vibrio cholerae cells as indicated by their greater resistance to the subsequent challenging doses of X-irradiation. The adaptive response was maximum following a pre-exposure dose of 1.7 Gy X-rays and an optimum incubation period of 40 min at 37C. Pre-exposure to a sublethal dose of 1.7 Gy X-rays made the Vibrio cholerae cells 3.38-fold more resistant to the subsequent challenge by X-rays. Pretreatment with a sublethal dose of hydrogen peroxide offered a similar degree of protection to the bacterial cells against subsequent treatment with challenging doses of X-ray radiation. However, exposure of Vibrio cholerae cells to mild heat (42C for 10 min) before X-ray irradiation decreased their survival following X-irradiation

  13. Participation of different genes in the ruptures repair of double chain in Escherichia coli stumps exposed to gamma radiation; Participacion de diferentes genes en la reparacion de rupturas de doble cadena en cepas de Escherichia coli expuestas a radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Serment G, J. H.; Martinez M, E.; Alcantara D, D., E-mail: jorge.serment@inin.gob.mx [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-05-01

    All living organisms are naturally exposed to radiation from different sources. Ionizing radiation produces a plethora of lesions upon DNA that can be categorized as single and double strand breaks and base damage. Among them, unrepaired double strand breaks (Dbs) have the greatest biological significance, since they are responsible of cell death. In Escherichia coli this kind of lesions are repaired mostly by homologous recombination. In this work the participation of some recombination genes in the repair of Dbs is evaluated. Escherichia coli defective strains were exposed to gamma radiation and incubated for different periods in ideal conditions. Both micro electrophoresis and pulse field gel electrophoresis techniques were used to evaluate the kinetics of repair of such lesions, reflecting the importance of each defective gene in the process. (Author)

  14. Models of mixed irradiation with a 'reciprocal-time' pattern of the repair function

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shozo; Miura, Yuri; Mizuno, Shoichi [Tokyo Metropolitan Inst. of Gerontology (Japan); Furusawa, Yoshiya [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-09-01

    Suzuki presented models for mixed irradiation with two and multiple types of radiation by extending the Zaider and Rossi model, which is based on the theory of dual radiation action. In these models, the repair function was simply assumed to be semi-logarithmically linear (i.e., monoexponential), or a first-order process, which has been experimentally contradicted. Fowler, however, suggested that the repair of radiation damage might be largely a second-order process rather than a first-order one, and presented data in support of this hypothesis. In addition, a second-order repair function is preferred to an n-exponential repair function for the reason that only one parameter is used in the former instead of 2n-1 parameters for the latter, although both repair functions show a good fit to the experimental data. However, according to a second-order repair function, the repair rate depends on the dose, which is incompatible with the experimental data. We, therefore, revised the models for mixed irradiation by Zaider and Rossi and by Suzuki, by substituting a 'reciprocal-time' pattern of the repair function, which is derived from the assumption that the repair rate is independent of the dose in a second-order repair function, for a first-order one in reduction and interaction factors of the models, although the underlying mechanism for this assumption cannot be well-explained. The reduction factor, which reduces the contribution of the square of a dose to cell killing in the linear-quadratic model and its derivatives, and the interaction factor, which also reduces the contribution of the interaction of two or more doses of different types of radiation, were formulated by using a 'reciprocal-time' patterns of the repair function. Cell survivals calculated from the older and the newly modified models were compared in terms of the dose-rate by assuming various types of single and mixed irradiation. The result implies that the newly modified models for

  15. Radiobiologic effect of intermittent radiation exposure in murine tumors

    International Nuclear Information System (INIS)

    Sugie, Chikao; Shibamoto, Yuta; Ito, Masato; Ogino, Hiroyuki; Miyamoto, Akihiko; Fukaya, Nobuyuki; Niimi, Hiroshige; Hashizume, Takuya

    2006-01-01

    Purpose: In stereotactic irradiation using a linear accelerator, the effect of radiation may be reduced during intermittent exposures owing to recovery from sublethal damage in tumor cells. After our previous in vitro study suggesting this phenomenon, we investigated the issue in murine tumors. Methods and Materials: We used EMT6 and SCCVII tumors approximately 1 cm in diameter growing in the hind legs of syngeneic mice. Three schedules of intermittent radiation were investigated. First, 2 fractions of 10 Gy were given at an interval of 15-360 min to investigate the pattern of recovery from sublethal damage. Second, 5 fractions of 4 Gy were given with interfraction intervals of 2.5-15 min each. Third, 10 fractions of 2 Gy were given with interfraction intervals of 1-7 min each. Doses of 15-20 Gy were also given without interruption to estimate the dose-modifying factors. Tumors were excised 20 h later, and tumor cell survival was determined by an in vivo-in vitro assay. Results: In the 2-fraction experiment, the increase in cell survival with elongation of the interval was much less than that observed in our previous in vitro study. In the 5- and 10-fraction experiments, no significant increase in cell survival was observed after the intermittent exposures. Moreover, cell survival decreased at most points of the 5-fraction experiments by interruption of radiation in both EMT6 and SCCVII tumors. In the 10-fraction experiment, cell survival also decreased when the interruption was 3 or 7 min in EMT6 tumors. Conclusion: The results of the present in vivo studies were different from those of our in vitro studies in which cell survival increased significantly when a few minutes or longer intervals were posed between fractions. This suggests that recovery from sublethal damage in vivo may be counterbalanced by other phenomena such as reoxygenation that sensitizes tumor cells to subsequent irradiation

  16. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    Science.gov (United States)

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  17. {sup 1}H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sarah A.E.; McKelvie, Jennifer R.; Simpson, Andre J. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, Ontario, M1C 1A4 (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.c [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, Ontario, M1C 1A4 (Canada)

    2010-06-15

    {sup 1}H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-beta-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised approx65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils. - {sup 1}H NMR metabolomics is used to directly monitor metabolic responses of Eisenia fetida after 48 h of exposure to sub-lethal concentrations of phenanthrene in soil.

  18. Current topics in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kobayashi, Junya; Takata, Minoru; Iwabuchi, Kuniyoshi; Miyagawa, Kiyoshi; Sonoda, Eiichiro; Suzuki, Keiji; Tauchi, Hiroshi

    2008-01-01

    DNA double strand break (DSB) is one of the most critical types of damage which is induced by ionizing radiation. In this review, we summarize current progress in investigations on the function of DSB repair-related proteins. We focused on recent findings in the analysis of the function of proteins such as 53BP1, histone H2AX, Mus81-Eme1, Fanc complex, and UBC13, which are found to be related to homologous recombination repair or to non-homologous end joining. In addition to the function of these proteins in DSB repair, the biological function of nuclear foci formation following DSB induction is discussed. (author)

  19. Response of BP cell lines to γ-radiation: evaluation of DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Paris, F.E.; Martin, M.; Le Rhum, Y.; May, E.; Duriez, P; Shah, G.

    1997-01-01

    In the BP cell lines, mutation of p53 gene is associated with an increased radiosensitivity. In order to understand the relation between p53 and radiosensitivity, we looked at DNA repair and cell death. Unexpectedly, after radiation the mutated p53 cell line BPp- Tu and the wild type p53 cell line BPp- Tu cells, both ell lines died by the same non necrotic process: a programmed cell death independent of their p53 status. The cleavage of poly (ADP-ribose) polymerase (PARP) by an ICE-related protease is considered an early and critical event during apoptosis. The fate of PARP was monitored by Western extensively in the apoptotic BPp- Tu cells than in the BPp cells. This faster PARP cleavage might be linked to the increased radiosensitivity of the BPp- Tu cells. (authors)

  20. Protein phosphatase 5 is necessary for ATR-mediated DNA repair

    International Nuclear Information System (INIS)

    Kang, Yoonsung; Cheong, Hyang-Min; Lee, Jung-Hee; Song, Peter I.; Lee, Kwang-Ho; Kim, Sang-Yong; Jun, Jae Yeoul; You, Ho Jin

    2011-01-01

    Research highlights: → Serine/threonine protein phosphatase 5 (PP5) has been shown to participate in ataxia telangiectasia-mutated (ATM)- and ATR (ATM- and Rad3-related)-mediated checkpoint pathways, which plays an important role in the DNA damage response and maintenance of genomic stability. → However, it is not clear exactly how PP5 participates in this process. → Our results indicate that PP5 is more closely related with ATR-mediated pathway than ATM-mediated pathway in DNA damage repair. -- Abstract: Several recent studies have shown that protein phosphatase 5 (PP5) participates in cell cycle arrest after DNA damage, but its roles in DNA repair have not yet been fully characterized. We investigated the roles of PP5 in the repair of ultraviolet (UV)- and neocarzinostatin (NCS)-induced DNA damage. The results of comet assays revealed different repair patterns in UV- and NCS-exposed U2OS-PS cells. PP5 is only essential for Rad3-related (ATR)-mediated DNA repair. Furthermore, the phosphorylation of 53BP1 and BRCA1, important mediators of DNA damage repair, and substrates of ATR and ATM decreased in U2OS-PS cells exposed to UV radiation. In contrast, the cell cycle arrest proteins p53, CHK1, and CHK2 were normally phosphorylated in U2OS and U2OS-PS cells exposed to UV radiation or treated with NCS. In view of these results, we suggest that PP5 plays a crucial role in ATR-mediated repair of UV-induced DNA damage.

  1. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  2. Repair of soft X-ray damage to mammalian cell DNA

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, R.A.; Wharton, C.W. (Birmingham Univ. (UK). Dept. of Biochemistry)

    1990-10-01

    Inhibitors of polymerase {alpha} (hydroxyurea and cytosine arabinoside) and an inhibitor of polymerase {beta} and ''delta (di-deoxythymidine) had equal inhibitory effects on repair synthesis in the first 15 min after irradiation of Chinese hamster ovary cells with soft x-rays produced from a laser plasma. Polymerase {alpha} inhibitors had considerably more effect after 15 min following irradiation. This implies that polymerase {alpha}, {beta}, and/or {delta} are all equally active in the initial stages of repair synthesis after soft X-radiation, but {alpha}-activity is more prominent in later stages of repair synthesis. Polymerase {alpha} is thought to catalyse long-patch repair synthesis, while polymerase {beta} is thought to catalyse short-patch repair. Polymerase {delta} has been shown to be active in DNA repair synthesis, but its precise function is as yet uncertain. (author).

  3. Radiation damage and repair in cells and cell components. Progress report, 1980-1981

    International Nuclear Information System (INIS)

    1981-01-01

    One aim has been to see whether, in E.coli, the various phenomena which were ascribed to the induction of the recA gene produce (p-recA) are really manifestations of one process. It was concluded that this is true for septum inhibition, Weigle-reactivation, induced inhibition of post radiation DNA degradation, and with the additional concept of a premutational lesion, for uv mutagenesis. lambda prophage induction may perhaps be brought into line with p-recA induction with the consideration of the additional secondary aspects of (a) activation of p-recA to make it enzymatically active and (b) the need to have the concentration of activated p-recA high enough to keep up with the rate of production of lambda-repressors. Revertants seem to be in more than one class and two of these can not easily be explained by the idea that p-recA contains an error-prone repair enzyme that makes errors at mutagenic lesions

  4. Disturbances in carbohydrate metabolism in radiation sickness and its repair under the effect of therapeutic preparations

    International Nuclear Information System (INIS)

    Dokshina, G.A.; Silaeva, T.Yu.; Yartsev, E.I.; Yakovlev, V.G.

    1975-01-01

    The effect of taurin (200mg/kg) in combination with insulin (0.2 IU/kg) on the repair of hormonal activity and of carbohydrate metabolism in an experimentally released radiation sickness was examined. White rats of both sexes weighting 180-200 g were irradiated with a gamma-unit GUM-Co-50 with 700 rad, that corresponds to LDsub(70/30). The preparations were simultaneously administered intraperitoneally every other day altogether 8 times from the 5th day after irradiation. Survival rate in the groups of treated animals was by about 27% higher than in the control. With the administration of therapeutic preparations a repair of the insulin-like plasma activity to the normal levels and a considerable inhibition of liver phosphorylase activity could be observed. Different from insulin action alone a combined use of insulin and taurin led to decrease in blood level of 11-oxycorticosteroids the metabolism of which being essentially impaired by irradiation to the normal value. The restoration of correlation between hormonal activity of adrenal cortex and of the insular apparatus favoured glycogen reproduction in the liver and the decrease in blood-sugar level. Experiments with intact animals as well as in vitro experiments reveal that taurin acts insulin-like

  5. Use of capillary GC-MS for identification of radiation-induced DNA base damage: Implications for base-excision repair of DNA

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    Application of GC-MS to characterization of radiation-induced base products of DNA and DNa base-amino acid crosslinks is presented. Samples of γ-irradiated DNa were hydrolyzed with formic acid, trimethylsilylated and subjected to GC-MS analysis using a fused silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC-properties and easily interpretable mass spectra. The complementary use of t-butyldimetylsilyl derivatives was also demonstrated. Moreover, the usefulness of this method for identification of radiation-induced DNA base-amino acid crosslinks was shown using γ-irradiated mixtures of thymine and tyrosine or phenylalanine. Because of the excellent resolving power of capillary GC and the instant and highly sensitive identification by MS, GC-MS is suggested as a suitable technique for identification of altered bases removed from DNA by base-excision repair enzymes

  6. Mathematical simulation of dose fields in the planning of repair stuff irradiation

    International Nuclear Information System (INIS)

    Tashlykov, O.L.; Shcheklein, S.E.; Markelov, N.I.

    2004-01-01

    The role of planning stage in the cycle of optimization when organizing repair works at NPPs is discussed. The methods used for forecasting irradiation doses for personnel engaged in repair works are considered. The importance of the problems of simulating the doses connected with estimation of dose rate values in different points of the working area and working time period in corresponding radiation fields is shown. The calculated data on distributions of γ radiation dose rate fields from surface and linear sources are given [ru

  7. Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality.

    Science.gov (United States)

    Gu, ZhiYa; Li, FanChi; Hu, JingSheng; Ding, Chao; Wang, Chaoqian; Tian, JiangHai; Xue, Bin; Xu, KaiZun; Shen, WeiDe; Li, Bing

    2017-03-01

    Silkworm (Bombyx mori) is an economically important insect. It is relatively less resistant to certain chemicals and environment exposures such as pesticides and pathogens. After pesticide exposures, the silkworms are more susceptible to microbial infections. The mechanism underlying the susceptibility might be related to immune response and oxidative stress. A sublethal dose of phoxim combined with Bombyx mori nucleopolyhedrovirus (BmNPV) elevated the silkworm mortality at 96 h. We found a higher content of H 2 O 2 and increased levels of genes related to oxidative stress and immune response after treatment with a sublethal dose of phoxim for 24 h or 48 h. However, such response decreased with longer pesticide treatment. Mortality increased by 44% when B. mori was exposed to combined treatment with BmNPV and phoxim rather than BmNPV alone. The level of examined immune-related and oxidative-stress-related genes significantly decreased in the combined treatment group compared with the BmNPV group. Our results indicated that, with long-term exposure to pesticides such as OPs, even at sublethal dose, the oxidative stress response and immune responses in silkworm were inhibited, which may lead to further immune impairment and accumulation of oxidative stress, resulting in susceptibility to the virus and harm to the silkworm. Our study provided insights for understanding the susceptibility to pathogen after pesticide exposures, which may promote the development of better pesticide controls to avoid significant economic losses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    OpenAIRE

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by ...

  9. Effects of sublethal exposure to metofluthrin on the fitness of Aedes aegypti in a domestic setting in Cairns, Queensland

    OpenAIRE

    Buhagiar, Tamara S.; Devine, Gregor J.; Ritchie, Scott A.

    2017-01-01

    Background Metofluthrin is highly effective at reducing biting activity in Aedes aegypti. Its efficacy lies in the rapid onset of confusion, knockdown, and subsequent kill of a mosquito. In the field, there are a variety of scenarios that might result in sublethal exposure to metofluthrin, including mosquitoes that are active at the margins of the chemical?s lethal range, brief exposure as mosquitoes fly in and out of treated spaces or decreasing efficacy of the emanators with time. Sublethal...

  10. The development of ideas about the effect of DNA repair on the induction of gene mutations and chromosomal aberrations by radiation and by chemicals

    International Nuclear Information System (INIS)

    Kimball, R.F.

    1987-01-01

    An historical overview is given of the development of ideas about chromosomal and DNA repair as they relate to the induction of mutations, chromosomal aberrations, and sister-chromatid exchanges by radiations and chemicals. The genetic and molecular bases of the various repair pathways are reviewed whenever possible. Work on both prokaryotes and eukaryotes is included. Mention is made, when deemed appropriate, of major developments in other areas that served as essential background for the repair work, but no attempt is made to cover these background developments in any detail. Near the end, a brief review is given of factors affecting polymerase fidelity. The history is subdivided into approximately 10-year intervals. For the most part, references are to reviews and symposia in which the ideas of the time were brought together. The implications of these findings for some practical problems in genetic toxicology and for our understanding of the maintenance of the genome are discussed at the end. 147 refs

  11. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  12. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    International Nuclear Information System (INIS)

    Wessendorf, Petra; Vijg, Jan; Nussenzweig, André; Digweed, Martin

    2014-01-01

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin

  13. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  14. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy.

    Directory of Open Access Journals (Sweden)

    Yvonne Lorat

    Full Text Available DNA double-strand breaks (DSBs generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair.Using transmission electron microscopy to localize gold-labeled pKu70 and pDNA-PKcs within nuclear ultrastructure, we monitored the formation and repair of actual DSBs within euchromatin (electron-lucent and heterochromatin (electron-dense in cortical neurons of irradiated mouse brain.While DNA lesions in euchromatin (characterized by two pKu70-gold beads, reflecting the Ku70-Ku80 heterodimer are promptly sensed and rejoined, DNA packaging in heterochromatin appears to retard DSB processing, due to the time needed to unravel higher-order chromatin structures. Complex pKu70-clusters formed in heterochromatin (consisting of 4 or ≥ 6 gold beads may represent multiple breaks in close proximity caused by ionizing radiation of highly-compacted DNA. All pKu70-clusters disappeared within 72 hours post-irradiation, indicating efficient DSB rejoining. However, persistent 53BP1 clusters in heterochromatin (comprising ≥ 10 gold beads, occasionally co-localizing with γH2AX, but not pKu70 or pDNA-PKcs, may reflect incomplete or incorrect restoration of chromatin structure rather than persistently unrepaired DNA damage.Higher-order organization of chromatin determines the accessibility of DNA lesions to repair complexes, defining how readily DSBs are detected and processed. DNA lesions in heterochromatin appear to be more complex, with multiple breaks in spatial vicinity inducing

  15. Influence of 1.8-GHz (GSM) radiofrequency radiation (RFR) on DNA damage and repair induced by X-rays in human leukocytes in vitro.

    Science.gov (United States)

    Zhijian, Chen; Xiaoxue, Li; Yezhen, Lu; Deqiang, Lu; Shijie, Chen; Lifen, Jin; Jianlin, Lou; Jiliang, He

    2009-01-01

    In the present study, the in vitro comet assay was used to determine whether 1.8-GHz radiofrequency radiation (RFR) can influence DNA repair in human leukocytes exposed to X-rays. The specific energy absorption rate (SAR) of 2 W/kg (the current European safety limit) was applied. The leukocytes from four young healthy donors were intermittently exposed to RFR for 24 h (fields on for 5 min, fields off for 10 min), and then irradiated with X-rays at doses of 0.25, 0.5, 1.0 and 2.0 Gy. DNA damage to human leukocytes was detected using the comet assay at 0, 15, 45, 90, 150 and 240 min after exposure to X-rays. Using the comet assay, the percent of DNA in the tail (% tail DNA) served as the indicator of DNA damage; the DNA repair percentage (DRP) served as the indicator of the DNA repair speed. The results demonstrated that (1) the DNA repair speeds of human leukocytes after X-ray exposure exhibited individual differences among the four donors; (2) the intermittent exposures of 1.8-GHz RFR at the SAR of 2 W/kg for 24 h did not directly induce DNA damage or exhibit synergistic effects with X-rays on human leukocytes.

  16. Animal experiments with rats as a contribution to the question of whole body irradiation

    International Nuclear Information System (INIS)

    Schraub, A.; Doell, G.; Jonas, H.; Kindt, A.; Sattler, E.L.

    1975-01-01

    Recovery after sublethal radiation damage was studied in the white blood count which shows a fast reaction to attacks caused by radiation. The so-called 'fractionated-dose method' was used. This method detrmines to what extent the total dose must be raised for two partial doses given at different times to produce the same amount of damage as a single irradiation. The second dose was applied after 7. days. A dose reduction by protraction of the first dose over 2 days was only found after doses of 300 to 400 rad. Regarding the anorexia connected with the radiation syndrome, no differences were found at low doses between protracted and one-time irradiation. This suggests that there is no repair. (MG) [de

  17. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23 0 )> rad51-1(30 0 )> rad54-3(36 0 ). At 36 0 , rad54-3 cells cannot repair double-strand breaks, while 23 0 , they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36 0 shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation

  18. Repair pathways for heavy ion-induced complex DNA double strand breaks

    International Nuclear Information System (INIS)

    Yajima, Hirohiko; Nakajima, Nakako; Hirakawa, Hirokazu; Murakami, Takeshi; Okayasu, Ryuichi; Fujimori, Akira

    2012-01-01

    DNA double strand break (DSB) induced by ionizing radiation (IR) is a deleterious damage leading to cell death and genome instability if not properly repaired. It is well known that DSB is repaired by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). It is also known that NHEJ is dominant throughout the cell cycle after X- or gamma-ray irradiation in mammalian cells, Meanwhile, it is thought that heavy-ion radiation (e.g., carbon-ions, iron-ions) gives rise to clustered DNA damages consisting of not only strand breaks but also aberrant bases in the vicinity of DSBs (complex DSBs). Our previous work suggested that the efficiency of NHEJ is diminished for repair of complex DSBs induced by heavy-ion radiation. We thought that this difficulty in NHEJ process associated with heavy ion induced complex DNA damage might be extended to HR process in cells exposed to heavy ions. In order to find out if this notion is true or not, exposed human cells to X-rays and heavy-ions, and studied HR associated processes at the molecular level. Our result indicates that complex DSBs induced by heavy ions effectively evoke DNA end resection activity during the HR process. Together with our results, a relevant recent progress in the field of DNA DSB repair will be discussed. (author)

  19. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    Science.gov (United States)

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    DEFF Research Database (Denmark)

    Mund, Andreas; Schubert, Tobias; Staege, Hannah

    2012-01-01

    -dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non...

  1. Study on bone marrow mesenchymal stem cells in repairing of radiation induced acute liver injury of rats

    International Nuclear Information System (INIS)

    Bao Yongxing; Lou Fan; Zhao Huarong; Zhu Huhu; Ma Yan; Wen Hao

    2010-01-01

    Objective: To investigate the role of mesenchymal stem cells in the repair of radiation induced liver injury. Methods: 12 female SD rats were irradiated with 20 Gy 6 MV X-rays on the right lobe of the liver, to establish the model of radiation induced liver injury. The rats were divided randomly into two groups as invention group and control group, and transplanted with 1 ml male mesenchymal suspension or 1 ml normal saline in 4 hours after radiotherapy. The morphological changes of liver were observed. The existence of sex determining gene Y(SRY) and the level of alpha-smooth muscle actin (a-SMA) were detected. Results: Some injury of right lobe liver in two groups were observed, and the injury degree of right lobe liver in intervention group were lower than that of control group. The amount of SRY positive cells in the right lobe liver of intervention group was higher than that in the left lobe liver (t = 3.77, P <0.05). The positive expression rate of a-SMA in right lobe liver of intervention group was lower than that of control group. Conclusions: Acute radiation induced liver injury could lead BMSCs' homing in order to decrease the degree of liver fibrosis. (authors)

  2. Occurrence of sublethal injury after pulsed electric fields depending on the micro-organism, the treatment medium ph and the intensity of the treatment investigated.

    Science.gov (United States)

    García, D; Gómez, N; Mañas, P; Condón, S; Raso, J; Pagán, R

    2005-01-01

    The objective was to investigate the occurrence of sublethal injury after pulsed electric field (PEF) depending on the treatment time, the electric field strength and the pH of the treatment media in two Gram-positive (Bacillus subtilis ssp. niger, Listeria monocytogenes) and six Gram-negative (Escherichia coli, Escherichia coli O157:H7, Pseudomonas aeruginosa, Salmonella serotype Senftenberg 775W, Salmonella serotype Typhimurium, Yersinia enterocolitica) bacterial strains. A characteristic behaviour was observed for the Gram-positive and Gram-negative bacteria studied. Whereas Gram-positive bacteria showed a higher PEF resistance at pH 7.0, the Gram-negative were more resistant at pH 4.0. In these conditions, in which bacteria showed their maximum resistance, a large proportion of sublethally injured cells were detected. In most cases, the longer the treatment time and the higher the electric field applied, the greater the proportion of sublethally injured cells that were detected. No sublethal injury was detected when Gram-positive bacteria were treated at pH 4.0 and Gram-negative at pH 7.0. Sublethal injury was detected after PEF so, bacterial inactivation by PEF is not an 'all or nothing' event. This work could be useful for improving food preservation by PEF.

  3. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  4. Biological effects of the ionizing radiation. Press breakfast

    International Nuclear Information System (INIS)

    Flury-Herard, A.; Boiteux, S.; Dutrillaux, B.; Toledano, M.

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  5. Search for novel remedies to augment radiation resistance of inhabitants of Fukushima and Chernobyl disasters: identifying DNA repair protein XRCC4 inhibitors.

    Science.gov (United States)

    Sun, Mao-Feng; Chen, Hsin-Yi; Tsai, Fuu-Jen; Lui, Shu-Hui; Chen, Chih-Yi; Chen, Calvin Yu-Chian

    2011-10-01

    Two nuclear plant disasters occurring within a span of 25 years threaten health and genome integrity both in Fukushima and Chernobyl. Search for remedies capable of enhancing DNA repair efficiency and radiation resistance in humans appears to be a urgent problem for now. XRCC4 is an important enhancer in promoting repair pathway triggered by DNA double-strand break (DSB). In the context of radiation therapy, active XRCC4 could reduce DSB-mediated apoptotic effect on cancer cells. Hence, developing XRCC4 inhibitors could possibly enhance radiotherapy outcomes. In this study, we screened traditional Chinese medicine (TCM) database, TCM Database@Taiwan, and have identified three potent inhibitor agents against XRCC4. Through molecular dynamics simulation, we have determined that the protein-ligand interactions were focused at Lys188 on chain A and Lys187 on chain B. Intriguingly, the hydrogen bonds for all three ligands fluctuated frequently but were held at close approximation. The pi-cation interactions and ionic interactions mediated by o-hydroxyphenyl and carboxyl functional groups respectively have been demonstrated to play critical roles in stabilizing binding conformations. Based on these results, we reported the identification of potential radiotherapy enhancers from TCM. We further characterized the key binding elements for inhibiting the XRCC4 activities.

  6. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  7. Radio-induced neuropathology: from early effects to late sequelae. Rat behavioural and metabolic studies after sublethal total body irradiation

    International Nuclear Information System (INIS)

    Martigne, A.P.

    2010-05-01

    The radioresistance dogma of Central Nervous System (CNS) is now obsolete. Recent progress in neuroscience allow us to reconsider the radiation-induced cognitive dysfunctions observed after radiation therapy or after a nuclear accident, and to devise appropriate diagnostic and therapeutic means. We have developed a Rat model to study the effects of total body irradiation at a sublethal dose (4.5 Gy). This leads to impaired learning and memory of a task being acquired during the first month - which is prevented by administration of a radioprotector (amifostine) - while it does not appear to affect retrograde memory. Early, an apoptotic wave occurs in the sub-ventricular zone, 5 to 9 hours after exposure, while neuro-genesis is suppressed. Two days after irradiation, the metabolic study conducted by NMR HRMAS (High Resolution Magic Angle Spinning) suggests the presence of cerebral oedema and the study of brain lipids in liquid NMR confirms the membrane damages (elevated cholesterol and phospholipids). The lipid profile is then normalized while a gliosis appears. Finally, 1 month post-irradiation, the elevation of GABA, an inhibitory neurotransmitter, in 2 separate brain structures, occurs simultaneously with a taurine decrease in the hippocampus that lasts 6 months. Our integrated model allows validating bio-markers measurable in vivo NMR spectroscopy - the next experimental stage - and testing new radiation-protective agents. (author)

  8. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    Science.gov (United States)

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  9. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

    Science.gov (United States)

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  10. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    Directory of Open Access Journals (Sweden)

    Chiew-Yen Wong

    Full Text Available Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR, have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237, temperate (Chlorella vulgaris UMACC 248 and tropical (Chlorella vulgaris UMACC 001 environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm, PAR plus ultraviolet-A (320-400 nm radiation (PAR + UV-A and PAR plus UV-A and ultraviolet-B (280-320 nm radiation (PAR + UV-A + UV-B for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek and light harvesting efficiency (α were determined from rapid light curves. The damage (k and repair (r rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  11. Repair of oxidative DNA damage by amino acids.

    Science.gov (United States)

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  12. Enhancement of postreplication repair in Chinese hamster cells

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Setlow, R.B.

    1976-01-01

    Alkaline sedimentation profiles of pulse-labeled DNA from Chinese hamster cells showed that DNA from cells treated with N-acetoxy-acetylaminofluorene or ultraviolet radiation was made in segments smaller than those from untreated cells. Cells treated with a small dose (2.5 μM) of N-acetoxy-acetylaminofluorene or(2.5 J . m -2 ) 254-nm radiation, several hours before a larger dose (7 to 10 μM) of N-acetoxy-acetylaminofluorene or 5.0 J . m -2 of 254-nm radiation, also synthesized small DNA after the second dose. However, the rate at which this small DNA was joined together into parental size was appreciably greater than in absence of the small dose. This enhancement of postreplication repair (as a result of the initial small dose) was not observed when cells were incubated with cycloheximide between the two treatments. The results suggest that N-acetoxy-acetylaminofluorene and ultraviolet-damaged DNA from Chinese hamster cells are repaired by similar postreplicative mechanisms that require de novo protein synthesis for enhancement

  13. Radiation mutagenesis from molecular and genetic points of view

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-01-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and γ-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by γ-rays, α-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than γ-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate γ-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed

  14. Quantification of DNA repair capacity (DRC) in peripheral blood lymphocytes of individuals from natural high background radiation areas of Kerala, India

    International Nuclear Information System (INIS)

    Vivek Kumar, P.R.; Seshadri, M.

    2011-01-01

    Human populations residing in the coastal areas of Kerala from Neendakara in south to Purakkad in north receive high level natural background radiation primarily due to the presence of thorium ( 232 Th) in the monazite containing beach sand. This provides a unique opportunity to investigate the health effects of natural high level radiation on humans. Earlier studies from our laboratory in newborns for incidence of congenital malformations, structural and numerical chromosome aberrations failed to show any significant health or biological effects due to high level natural radiation exposure. The current study used alkaline single cell gel electrophoresis (comet) assay due to its sensitivity, speed, flexibility and low cost. Biological effects of low level natural radiation was studied by assessing individual's DNA Repair Capacity (DRC), which is essential for maintaining the genome integrity. DNA damage was estimated in terms of DNA strand breaks per million base pairs (SB/106 bp). In our earlier study using comet assay, DNA SBs increased with age in subjects from normal background radiation area (NBRA). However, significant inverse correlation was observed in subjects from high background radiation area (HBRA). Further, spontaneous DNA SBs in elderly subjects (? 41 years) from HBRA was significantly lower compared to the subjects from NBRA. The present study was carried out in 90 healthy adult male subjects of which, 63 subjects belonged to HBRA and 27 subjects from NBRA. The annual effective dose in HBRA subjects was 5.87 ± 4.17 mSv year-1 (Mean ± S.D., range 1.07-17.41) and in NBRA subjects was ? 1mSv year-1. Peripheral blood lymphocytes from these individuals were irradiated with 4Gy of 60 Co gamma rays (1.4Gy/minute, Low dose irradiator 2000, BRIT, India) and DNA repair was assessed at 30 minutes. As the results were not normally distributed, the data were log transformed to normalize variance. Regression analysis was carried out to determine the relative

  15. Regulation of DNA repair processes in mammalian cell

    International Nuclear Information System (INIS)

    Bil'din, V.N.; Sergina, T.B.; Zhestyanikov, V.D.

    1992-01-01

    A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase α and β (aphidicolin) and DNA polymerase β (2', 3'-dideoxythjymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gy) or by γ-ray irradiation (150 Gy) is more sensitive to aphidicolin and mitogen-simulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase α

  16. Enhanced DNA repair of cyclobutane pyrimidine dimers changes the biological response to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yarosh, Daniel B

    2002-11-30

    The goal of DNA repair enzyme therapy is the same as that for gene therapy: to rescue a defective proteome/genome by introducing a substitute protein/DNA. The danger of inadequate DNA repair is highlighted in the genetic disease xeroderma pigmentosum. These patients are hypersensitive to sunlight and develop multiple cutaneous neoplasms very early in life. The bacterial DNA repair enzyme T4 endonuclease V was shown over 25 years ago to be capable of reversing the defective repair in xeroderma pigmentosum cells. This enzyme, packaged in an engineered delivery vehicle, has been shown to traverse the stratum corneum, reach the nuclei of living cells of the skin, and enhance the repair of UV-induced cyclobutane pyrimidine dimers (CPD). In such a system, changes in DNA repair, mutagenesis, and cell signaling can be studied without manipulation of the genome.

  17. Concepts, problems and the role of modifying agents in the relationship between recovery of cells' survival ability and mechanisms of repair of radiation lesions

    International Nuclear Information System (INIS)

    Orr, J.S.

    1984-01-01

    The two strands of the problem are the shapes and changes with time of cell survival curves on the one hand and the responses of cell constituents to radiation on the other. Evidence of correlations between results of studies of these two types of phenomena under the influence of a wide range of modifying agents is required to establish mechanisms. Recovery may be defined as referring to the whole cell, while repair should be regarded as a process carried out by one substance on another. The degrees of usefulness and possible deficiencies of a multi-hit/target model and a repair model for explaining cell survival curves and cell recovery are compared in a range of circumstances. A fully satisfactory model is not yet available. (author)

  18. Molecular dosimetry of chemical mutagens: measurement of molecular dose and DNA repair germ cells

    International Nuclear Information System (INIS)

    Sega, G.A.

    1975-01-01

    Molecular dosimetry in the germ cells of male mice is reviewed with regard to in vivo alkylation of sperm heads, in vivo alkylation of sperm DNA, and possible alkylation of sperm protamine. DNA repair in male germ cells is reviewed with regard to basic design of experiments, DNA repair in various stages of spermatogenesis, effect of protamine on DNA repair following treatment with EMS or x radiation, and induction of DNA repair by methyl methanesulfonate, propyl methanesulfonate, and isopropyl methanesulfonate

  19. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    Science.gov (United States)

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  20. Effects of Sublethal Concentrations of Cyantraniliprole on the Development, Fecundity and Nutritional Physiology of the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    Chunmei Xu

    Full Text Available To better understand the sublethal effects of cyantraniliprole on the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae, several studies were carried out to investigate sublethal effects on development stages, population parameters, feeding indices and nutrient content of A. ipsilon. The result of a bioassay showed that cyantraniliprole had high toxicity against A. ipsilon fourth-instar larvae with an LC50 of 0.354 μg.g-1 using an artificial diet. Compared with controls, sublethal doses of cyantraniliprole at LC5, LC20 and LC40 levels prolonged larval and pupal duration and extended mean generation time and total preovipositional period. In addition, survival rate, reproductive value, intrinsic and finite rates of increase and net reproduction rate declined significantly. Meanwhile, cyantraniliprole had markedly antifeedant effects; decreased the relative growth rate (RGR, the relative consumption rate (RCR, the efficiency of conversion of ingested food (ECI, the efficiency of conversion of digested food (ECD; and increased the approximate digestibility (AD significantly. This phenomenon contributed to the decrease of nutrient contents, including lipids, protein and carbohydrates, to the point that insufficient energy was available for normal growth. Therefore, sublethal concentrations of cyantraniliprole decreased growth speed and reduced population reproduction of A. ipsilon. This result provides information useful in integrated pest management (IPM programs for A. ipsilon.