WorldWideScience

Sample records for repair proteins correlates

  1. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  2. Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions

    NARCIS (Netherlands)

    Franken, Nicolaas A. P.; ten Cate, Rosemarie; van Bree, Chris; Haveman, Jaap

    2004-01-01

    The role of EGR-1 in potentially lethal damage repair (PLDR) was studied. Induction of the early response protein EGR-1 and survival after ionizing radiation of two human tumour cell lines after culturing for 48 h in serum-deprived medium was investigated. The glioblastoma cell line (Gli-6) and a

  3. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  4. The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Andrea Pagano

    2017-11-01

    Full Text Available This work provides novel insights into the effects caused by the histone deacetylase inhibitor trichostatin A (TSA during Medicago truncatula seed germination, with emphasis on the seed repair response. Seeds treated with H2O and TSA (10 and 20 μM were collected during imbibition (8 h and at the radicle protrusion phase. Biometric data showed delayed germination and impaired seedling growth in TSA-treated samples. Comet assay, performed on radicles at the protrusion phase and 4-days old M. truncatula seedlings, revealed accumulation of DNA strand breaks upon exposure to TSA. Activation of DNA repair toward TSA-mediated genotoxic damage was evidenced by the up-regulation of MtOGG1(8-OXOGUANINE GLYCOSYLASE/LYASE gene involved in the removal of oxidative DNA lesions, MtLIGIV(LIGASE IV gene, a key determinant of seed quality, required for the rejoining of DNA double strand breaks and TDP(TYROSYL-DNA PHOSPHODIESTERASE genes encoding the multipurpose DNA repair enzymes tyrosyl-DNA phosphodiesterases. Since radical scavenging can prevent DNA damage, the specific antioxidant activity (SAA was measured by DPPH (1,1-diphenyl-2-picrylhydrazyl and Folin-Ciocalteu reagent assays. Fluctuations of SAA were observed in TSA-treated seeds/seedlings concomitant with the up-regulation of antioxidant genes MtSOD(SUPEROXIDE DISMUTASE, MtAPX(ASCORBATE PEROXIDASE and MtMT2(TYPE 2 METALLOTHIONEIN. Chromatin remodeling, required to facilitate the access of DNA repair enzymes at the damaged sites, is also part of the multifaceted seed repair response. To address this aspect, still poorly explored in plants, the MtTRRAP(TRANSFORMATION/TRANSACTIVATION DOMAIN-ASSOCIATED PROTEIN gene was analyzed. TRRAP is a transcriptional adaptor, so far characterized only in human cells where it is needed for the recruitment of histone acetyltransferase complexes to chromatin during DNA repair. The MtTRRAP gene and the predicted interacting partners MtHAM2 (HISTONE ACETYLTRANSFERASE OF

  5. Interobserver variability in the evaluation of mismatch repair protein immunostaining

    DEFF Research Database (Denmark)

    Klarskov, Louise Laurberg; Ladelund, Steen; Holck, Susanne

    2010-01-01

    Immunohistochemical staining for mismatch repair proteins has during recent years been established as a routine analysis in many pathology laboratories with the aim to identify tumors linked to the hereditary nonpolyposis colorectal cancer syndrome. Despite widespread application, data on reliabi......Immunohistochemical staining for mismatch repair proteins has during recent years been established as a routine analysis in many pathology laboratories with the aim to identify tumors linked to the hereditary nonpolyposis colorectal cancer syndrome. Despite widespread application, data...... on reliability are lacking. We therefore evaluated interobserver variability among 6 pathologists, 3 experienced gastrointestinal pathologists and 3 residents. In total, 225 immunohistochemically stained colorectal cancers were evaluated as having normal, weak, loss of, or nonevaluable mismatch repair protein...... variability was considerable, though experienced pathologists and residents reached the same level of consensus. Because results from immunohistochemical mismatch repair protein stainings are used for decisions on mutation analysis and as an aid in the interpretation of gene variants of unknown significance...

  6. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites.

    Science.gov (United States)

    Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G

    2015-12-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.

  7. Protein damage and repair controlling seed vigor and longevity.

    Science.gov (United States)

    Ogé, Laurent; Broyart, Caroline; Collet, Boris; Godin, Béatrice; Jallet, Denis; Bourdais, Gildas; Job, Dominique; Grappin, Philippe

    2011-01-01

    The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein L: -isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.

  8. Sporadic colorectal polyps and mismatch repair proteins

    Directory of Open Access Journals (Sweden)

    Mahsa Molaei

    2011-01-01

    Full Text Available Background: Colorectal cancers often arise from benign polyps. Adenomatous polyps and serrated polyps progress step by step to adenocarcinoma and change into malignant cancers. Genetic and epigenetic changes have correlation with specific stages of polyp-adenocarcinoma progression and colorectal cancer histopathological changes. Aims: In this study we used immunohistochemistry (IHC staining in sporadic colorectal polyps to assay functional status of MLH1, MSH2, MSH6, and PMS2 proteins, to track genetic/epigenetic roles of this issue in our patients. Materials and Methods: In this cross-sectional study we assessed all patients who were admitted with sporadic colorectal polyps and underwent polypectomy in endoscopy department during 2004-2008. Result: IHC results were abnormal in 6.8% cases for MLH1, in 4.5% cases for MSH2, in 3% for MSH6, and in 4.8% for PMS2. In all cases with abnormal PMS2, MLH1 was also reported as abnormal. Same results were reported for abnormal MSH2, which is accompanied with abnormal MSH6 in all cases (P values < 0.001. There is no significant difference between IHC staining results, gender, dysplasia grade, adenomatous type, and invasion. On the other hand, there was significant difference between IHC staining results, polyp location, and mean age of patients. The same significant difference was between adenomatous polyps and serrated adenoma polyps by MLH1 and PMS2 (P values < 0.05. Conclusion: According to our findings, maybe MMR dysfunction is the cause of sporadic colorectal polyps in younger age and its increasing risk of dysplasia progression and malignancy progression is only in serrated adenoma. Sporadic polyps in left colon had a higher risk to progress to malignancies, and abnormal IHC staining for MLH1 and PMS2 in serrated polyps is much more than in other adenomatous polyps.

  9. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR.

    Science.gov (United States)

    Zhu, Suwei; Segura, Tatiana

    2014-05-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo . One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release.

  10. Repair of traumatized mammalian hair cells via sea anemone repair proteins.

    Science.gov (United States)

    Tang, Pei-Ciao; Smith, Karen Müller; Watson, Glen M

    2016-08-01

    Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea. © 2016. Published by The Company of Biologists Ltd.

  11. Transected sciatic nerve repair by diode laser protein soldering.

    Science.gov (United States)

    Fekrazad, Reza; Mortezai, Omid; Pedram, MirSepehr; Kalhori, Katayoun Am; Joharchi, Khojasteh; Mansoori, Korosh; Ebrahimi, Roja; Mashhadiabbas, Fatemeh

    2017-08-01

    Despite advances in microsurgical techniques, repair of peripheral nerve injuries (PNI) is still a major challenge in regenerative medicine. The standard treatment for PNI includes suturing and anasthomosis of the transected nerve. The objective of this study was to compare neurorraphy (nerve repair) using standard suturingto diode laser protein soldering on the functional recovery of transected sciatic nerves. Thirty adult male Fischer-344 Wistar rats were randomly assigned to 3 groups: 1. The control group, no repair, 2. the standard of care suture group, and 3. The laser/protein solder group. For all three groups, the sciatic nerve was transected and the repair was done immediately. For the suture repair group, 10.0 prolene suture was used and for the laser/protein solder group a diode laser (500mW output power) in combination with bovine serum albumen and indocyanine green dye was used. Behavioral assessment by sciatic functional index was done on all rats biweekly. At 12weeks post-surgery, EMG recordings were done on all the rats and the rats were euthanized for histological evaluation of the sciatic nerves. The one-way ANOVA test was used for statistical analysis. The average time required to perform the surgery was significantly shorter for the laser-assisted nerve repair group compared to the suture group. The EMG evaluation revealed no difference between the two groups. Based on the sciatic function index the laser group was significantly better than the suture group after 12weeks (pneurorraphy using standard suturing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. DNA repair by the Ada protein of E. coli

    International Nuclear Information System (INIS)

    Karran, P.; Hall, J.

    1988-01-01

    This paper discusses the Ada protein of E. coli which exemplifies the highly specialized nature of the enzymes which have evolved to repair DNA. According to the authors, this protein exhibits not only novel mechanistic features but also provides an apparently unique example of a strategy for controlling gene expression in E. coli. They report that knowledge of the properties and mode of action of the Ada protein has afforded insight into how human cells are affected by alkylating agents, including those used in chemotherapy

  13. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  14. Laser-activated protein solder for peripheral nerve repair

    Science.gov (United States)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  15. Protein synthesis and sublethal damage repair in synchronized CHO cells

    International Nuclear Information System (INIS)

    Yezzi, M.J.; Tobias, C.A.; Blakely, E.A.

    1984-01-01

    The authors have previously reported that the split dose survival response to x-rays of asynchronous CHO-TSH1 cells is reduced if the cells are held at 40 0 C,a temperature that inhibits protein synthesis, for 2 hours before the first dose and during a 2-hour interval between doses. In conjunction with the survival experiments on asynchronous cells, the authors also examined the DNA rejoining ability in split dose studies with and without inhibition of protein synthesis. The results of these experiments suggest that inhibition of protein synthesis affects a pool of proteins that are necessary for the correct expression of the DNA, although they do not appear to be involved in rejoining DNA breaks. They have extended this work to the study of cells synchronized in G1 phase (2 hour post-mitosis) and S phase (10 hour post-mitosis). Autoradiographic analyses, using 3H-TdR pulse labeling, demonstrated that a delay in the progression of each synchronized cell population occurs after inhibition of protein synthesis. Data are reported on the effects of inhibition of protein synthesis on the ability of G1 and S phase cells to repair sublethal damage

  16. Laser-activated protein bands for peripheral nerve repair

    Science.gov (United States)

    Lauto, Antonio; Trickett, Rodney I.; Malik, Richard; Dawes, Judith M.; Owen, Earl R.

    1996-01-01

    A 100 micrometer core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the protein based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 plus or minus 5 min. (n equals 24) compared to 23 plus or minus 9 min (n equals 13) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 plus or minus 5 g, while microsutured nerves had a tensile strength of 40 plus or minus 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study, with a total of fifty-seven adult male wistar rats, compared laser solder repaired tibial nerves to conventional microsuture repair. Twenty-four laser soldered nerves and thirteen sutured nerves were characterized at three months and showed successful regeneration with average compound muscle action potentials (CMAP) of 2.4 plus or minus 0.7 mV and 2.7 plus or minus 0.8 mV respectively. Histopathology of the in vivo study, confirmed the comparable regeneration of axons in laser and suture operated nerves. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  17. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    Science.gov (United States)

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  18. Correlation between early surgical complications and readmission rate after ventral hernia repair.

    Science.gov (United States)

    Kokotovic, D; Sjølander, H; Gögenur, I; Helgstrand, F

    2017-08-01

    Postoperative surgical complications arising from ventral hernia repair have been assessed by a variety of outcome measures. The objective of this study was to correlate the Clavien Dindo Classification (CDC) graded complications with the 30-day readmission rate as early outcome measures in ventral hernia repair. Secondarily, we wanted to investigate whether the risk factors for Clavien Dindo class ≥1 and 30-day readmission were comparable. Single-centre retrospective study including all patients (≥18 years) who underwent ventral hernia repair between January 1, 2009 and September 1, 2014 at Zealand University Hospital. Data were obtained from hospital files and the Danish National Patient Registry. A 100% follow-up was obtained. In total, the study included 700 patients (261 patients with incisional hernia repair and 439 patients with umbilical or epigastric hernia repair). There was a significant association between a complication graded by the CDC ≥1 and 30-day readmission for both incisional and umbilical/epigastric hernia repair (p readmission. Recurrent (vs. primary) hernia repair was an independent risk factors for both CDC ≥1 and 30-day readmission in umbilical/epigastric hernia repair. Furthermore, hernia size 2-7 cm (vs. >2 cm) was a risk factor for CDC ≥1 but not for 30-day readmission in umbilical/epigastric hernia repair. Reports on 30-day readmission can be used as a general outcome measure in ventral hernia repair, however CDC provides a more precise and detailed registration of postoperative complications.

  19. Correlation between early surgical complications and readmission rate after ventral hernia repair

    DEFF Research Database (Denmark)

    Kokotovic, D; Sjølander, H; Gögenur, I

    2017-01-01

    PURPOSE: Postoperative surgical complications arising from ventral hernia repair have been assessed by a variety of outcome measures. The objective of this study was to correlate the Clavien Dindo Classification (CDC) graded complications with the 30-day readmission rate as early outcome measures...... in ventral hernia repair. Secondarily, we wanted to investigate whether the risk factors for Clavien Dindo class ≥1 and 30-day readmission were comparable. METHODS: Single-centre retrospective study including all patients (≥18 years) who underwent ventral hernia repair between January 1, 2009 and September 1......). There was a significant association between a complication graded by the CDC ≥1 and 30-day readmission for both incisional and umbilical/epigastric hernia repair (p readmission. Recurrent...

  20. Functions and Dynamics of DNA Repair Proteins in Mitosis and Meiosis

    NARCIS (Netherlands)

    E.J. Uringa

    2005-01-01

    textabstractMy PhD project encompassed studies on the functions of several different proteins, all involved in DNA repair, in somatic and germ-line cells. Hr6b and Rad18Sc are involved in a DNA repair mechanism called ‘Replicative Damage Bypass’ (RDB), and function as ubiquitin conjugating

  1. Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination.

    Science.gov (United States)

    Grigera, Fernando; Bellacosa, Alfonso; Kenter, Amy L

    2013-01-01

    Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2-5 despite concomitant reduction of MSH2. We show by comparison in Msh2(+/-) B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6-8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3' end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR.

  2. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    Science.gov (United States)

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  3. Laser-activated solid protein bands for peripheral nerve repair: an vivo study.

    Science.gov (United States)

    Lauto, A; Trickett, R; Malik, R; Dawes, J M; Owen, E R

    1997-01-01

    Severed tibial nerves in rats were repaired using a novel technique, utilizing a semiconductor diode-laser-activated protein solder applied longitudinally across the join. Welding was produced by selective laser denaturation of solid solder bands containing the dye indocyanine green. An in vivo study, using 48 adult male Wistar rats, compared conventional microsuture-repaired tibial nerves with laser solder-repaired nerves. Nerve repairs were characterised immediately after surgery and after 3 months. Successful regeneration with average compound muscle action potentials of 2.5 +/- 0.5 mV and 2.7 +/- 0.3 mV (mean and standard deviation) was demonstrated for the laser-soldered nerves and the sutured nerves, respectively. Histopathology confirmed comparable regeneration of axons in laser- and suture-operated nerves. The laser-based nerve repair technique was easier and faster than microsuture repair, minimising manipulation damage to the nerve.

  4. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    International Nuclear Information System (INIS)

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra

    2015-01-01

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination

  5. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra, E-mail: rr228@georgetown.edu

    2015-05-15

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.

  6. Regulation of homologous recombination repair protein Rad51 by Ku70

    International Nuclear Information System (INIS)

    Du Liqing; Liu Qiang; Wang Yan; Xu Chang; Cao Jia; Fu Yue; Chen Fenghua; Fan Feiyue

    2013-01-01

    Objective: To explore the regulative effect of non-homologous end joining (NHEJ)protein Ku70 on homologous recombination repair protein Rad51, and to investigate the synergistic mechanism of homologous recombination repair in combination with NHEJ. Methods: Observed Rad51 protein expression after transfect Ku70 small interfering RNA or Ku70 plasmid DNA into tumor cells using Western blot. Results: Expression of Rad51 was obviously reduced after pretreated with Ku70 small interfering RNA. And with the increasing expression of Ku70 protein after transfection of Ku70 plasmid DNA PGCsi3.0-hKu70 into tumor cell lines, the Rad51 protein expression was increased. Conclusion: Ku70 protein has regulating effect on gene expression of Rad51, and it might participate in the collaboration between homologous recombination repair and NHEJ. (authors)

  7. Immunohistochemical analysis of oxidative stress and DNA repair proteins in normal mammary and breast cancer tissues

    International Nuclear Information System (INIS)

    Curtis, Carol D; Thorngren, Daniel L; Nardulli, Ann M

    2010-01-01

    During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment. Because increased ROS accumulation and/or unrepaired DNA damage can lead to initiation and progression of cancer and we had identified a number of oxidative stress and DNA repair proteins that influence estrogen responsiveness of MCF-7 breast cancer cells, it seemed possible that these proteins might be differentially expressed in normal mammary tissue, benign hyperplasia (BH), ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC). Immunohistochemistry was used to examine the expression of a number of oxidative stress proteins, DNA repair proteins, and damage markers in 60 human mammary tissues which were classified as BH, DCIS or IBC. The relative mean intensity was determined for each tissue section and ANOVA was used to detect statistical differences in the relative expression of BH, DCIS and IBC compared to normal mammary tissue. We found that a number of these proteins were overexpressed and that the cellular localization was altered in human breast cancer tissue. Our studies suggest that oxidative stress and DNA repair proteins not only protect normal cells from the damaging effects of ROS, but may also promote survival of mammary tumor cells

  8. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    Energy Technology Data Exchange (ETDEWEB)

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of

  9. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    Science.gov (United States)

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an

  10. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    Science.gov (United States)

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  11. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

    Science.gov (United States)

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø; Rizzo, Carmelo J; Guengerich, F Peter; Tudek, Barbara

    2015-06-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. Copyright © 2015 Elsevier B

  12. Correlation between histological outcome and surgical cartilage repair technique in the knee: A meta-analysis.

    Science.gov (United States)

    DiBartola, Alex C; Everhart, Joshua S; Magnussen, Robert A; Carey, James L; Brophy, Robert H; Schmitt, Laura C; Flanigan, David C

    2016-06-01

    Compare histological outcomes after microfracture (MF), autologous chondrocyte implantation (ACI), and osteochondral autograft transfer (OATS). Literature review using PubMed MEDLINE, SCOPUS, Cumulative Index for Nursing and Allied Health Literature (CINAHL), and Cochrane Collaboration Library. Inclusion criteria limited to English language studies International Cartilage Repair Society (ICRS) grading criteria for cartilage analysis after ACI (autologous chondrocyte implantation), MF (microfracture), or OATS (osteochondral autografting) repair techniques. Thirty-three studies investigating 1511 patients were identified. Thirty evaluated ACI or one of its subtypes, six evaluated MF, and seven evaluated OATS. There was no evidence of publication bias (Begg's p=0.48). No statistically significant correlation was found between percent change in clinical outcome and percent biopsies showing ICRS Excellent scores (R(2)=0.05, p=0.38). Percent change in clinical outcome and percent of biopsies showing only hyaline cartilage were significantly associated (R(2)=0.24, p=0.024). Mean lesion size and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Most common lesion location and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Microfracture has poorer histologic outcomes than other cartilage repair techniques. OATS repairs primarily are comprised of hyaline cartilage, followed closely by cell-based techniques, but no significant difference was found cartilage quality using ICRS grading criteria among OATS, ACI-C, MACI, and ACI-P. IV, meta-analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome.

    Science.gov (United States)

    Harper, Holly L; McKenney, Jesse K; Heald, Brandie; Stephenson, Andrew; Campbell, Steven C; Plesec, Thomas; Magi-Galluzzi, Cristina

    2017-01-01

    Increased risk for upper tract urothelial carcinoma is described in patients with Lynch syndrome, caused by germline mutations in mismatch repair genes. We aimed to identify the frequency of mismatch repair protein loss in upper tract urothelial carcinoma and its potential for identifying an association with Lynch syndrome. We queried our database to identify upper tract urothelial carcinomas. Patients were cross-referenced for history of colorectal carcinoma or other common Lynch syndrome-associated neoplasms to enrich for potential Lynch syndrome cases. Tumor histopathologic characteristics were reviewed and each case was analyzed for loss of mismatch repair proteins, MLH1, MSH2, MSH6, and PMS2, by immunohistochemistry. Of 444 patients with upper tract urothelial carcinoma, a subset of 215 (encompassing 30 with upper tract urothelial carcinoma and another common Lynch syndrome-associated neoplasm) was analyzed for loss of mismatch repair protein expression. Of 30 patients with Lynch syndrome-associated neoplasms, six had documented Lynch syndrome, including two with Muir-Torre syndrome. Mismatch repair protein loss was identified in 7% of total upper tract urothelial carcinomas and 30% of patients with Lynch syndrome-associated neoplasms (including all patients with Lynch syndrome/Muir-Torre syndrome). Of patients without history of Lynch syndrome-associated neoplasms, 5 of 184 (2.7%) had loss of mismatch repair protein expression. Twelve cases with mismatch repair protein loss demonstrated loss of MSH2 and MSH6, and 2 had isolated loss of MSH6. MLH1 and PMS2 expression were consistently retained. Although increased intratumoral lymphocytes, inverted growth, pushing tumor-stromal interface, and lack of nuclear pleomorphism were more commonly seen in cases with mismatch repair protein loss, only intratumoral lymphocytes and presence of pushing borders were statistically significant. MLH1 and PMS2 testing appear to have little utility in upper tract urothelial

  14. Correlation between DNA repair of embryonic fibroblasts and different life span of 3 inbred mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Paffenholz, V.

    1978-02-01

    Primary mouse fibroblast cultures were established from 10 day old embryos of 3 inbred strains with a genetically determined different life expectancy. The capacity for unscheduled DNA synthesis following uv irradiation was studied in these cells at various passage levels of the in vitro ageing process. The mouse fibroblasts show considerable repair synthesis corresponding to the duration of exposure time. The capacity for induction of unscheduled DNA synthesis was different in the cells of each strain and correlated to the natural life span of the animal. In each case, however, the ability to perform repair synthesis was subjected to an age-associated decline, although semiconservative DNA synthesis and proliferative potential of the cell was not changed until the cultures entered phase III passages.

  15. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; Beucken, J.J.J.P van den; Tabata, Y.; Kasper, F.K.; Scott, D.W.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.

    2015-01-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and

  16. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity.

    Science.gov (United States)

    Sawant, Akshada; Floyd, Ashley M; Dangeti, Mohan; Lei, Wen; Sobol, Robert W; Patrick, Steve M

    2017-03-01

    Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins

    International Nuclear Information System (INIS)

    Krawczyk, P. M.; Stap, C.; Van Oven, C.; Hoebe, R.; Aten, J. A.

    2006-01-01

    For efficient repair of DNA double strand breaks (DSBs) cells rely on a process that involves the Mre11/Rad50/Nbs1 complex, which may help to protect non-repaired DNA ends from separating until they can be rejoined by DNA repair proteins. It has been observed that as a secondary effect, this process can lead to unintended clustering of multiple, initially separate, DSB-containing chromosome domains. This work demonstrates that neither inactivation of the major repair proteins XRCC3 and the DNA-dependent protein kinase (DNA-PK) nor inhibition of DNA-PK by vanillin influences the aggregation of DSB-containing chromosome domains. (authors)

  18. Protein phosphatase 5 is necessary for ATR-mediated DNA repair

    International Nuclear Information System (INIS)

    Kang, Yoonsung; Cheong, Hyang-Min; Lee, Jung-Hee; Song, Peter I.; Lee, Kwang-Ho; Kim, Sang-Yong; Jun, Jae Yeoul; You, Ho Jin

    2011-01-01

    Research highlights: → Serine/threonine protein phosphatase 5 (PP5) has been shown to participate in ataxia telangiectasia-mutated (ATM)- and ATR (ATM- and Rad3-related)-mediated checkpoint pathways, which plays an important role in the DNA damage response and maintenance of genomic stability. → However, it is not clear exactly how PP5 participates in this process. → Our results indicate that PP5 is more closely related with ATR-mediated pathway than ATM-mediated pathway in DNA damage repair. -- Abstract: Several recent studies have shown that protein phosphatase 5 (PP5) participates in cell cycle arrest after DNA damage, but its roles in DNA repair have not yet been fully characterized. We investigated the roles of PP5 in the repair of ultraviolet (UV)- and neocarzinostatin (NCS)-induced DNA damage. The results of comet assays revealed different repair patterns in UV- and NCS-exposed U2OS-PS cells. PP5 is only essential for Rad3-related (ATR)-mediated DNA repair. Furthermore, the phosphorylation of 53BP1 and BRCA1, important mediators of DNA damage repair, and substrates of ATR and ATM decreased in U2OS-PS cells exposed to UV radiation. In contrast, the cell cycle arrest proteins p53, CHK1, and CHK2 were normally phosphorylated in U2OS and U2OS-PS cells exposed to UV radiation or treated with NCS. In view of these results, we suggest that PP5 plays a crucial role in ATR-mediated repair of UV-induced DNA damage.

  19. The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells

    DEFF Research Database (Denmark)

    de Souza-Pinto, Nadja C; Maynard, Scott; Hashiguchi, Kazunari

    2009-01-01

    number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic...... knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1...... to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities....

  20. RYBP Is a K63-Ubiquitin-Chain-Binding Protein that Inhibits Homologous Recombination Repair

    Directory of Open Access Journals (Sweden)

    Mohammad A.M. Ali

    2018-01-01

    Full Text Available Summary: Ring1-YY1-binding protein (RYBP is a member of the non-canonical polycomb repressive complex 1 (PRC1, and like other PRC1 members, it is best described as a transcriptional regulator. However, several PRC1 members were recently shown to function in DNA repair. Here, we report that RYBP preferentially binds K63-ubiquitin chains via its Npl4 zinc finger (NZF domain. Since K63-linked ubiquitin chains are assembled at DNA double-strand breaks (DSBs, we examined the contribution of RYBP to DSB repair. Surprisingly, we find that RYBP is K48 polyubiquitylated by RNF8 and rapidly removed from chromatin upon DNA damage by the VCP/p97 segregase. High expression of RYBP competitively inhibits recruitment of BRCA1 repair complex to DSBs, reducing DNA end resection and homologous recombination (HR repair. Moreover, breast cancer cell lines expressing high endogenous RYBP levels show increased sensitivity to DNA-damaging agents and poly ADP-ribose polymerase (PARP inhibition. These data suggest that RYBP negatively regulates HR repair by competing for K63-ubiquitin chain binding. : Ali et al. find that RYBP binds K63-linked ubiquitin chains and is removed from DNA damage sites. This K63-ubiquitin binding allows RYBP to hinder the recruitment of BRCA1 and Rad51 to DNA double-strand breaks, thus inhibiting homologous recombination repair. Accordingly, cancer cells expressing high RYBP are more sensitive to DNA-damaging therapies. Keywords: DNA damage response, homologous recombination, ubiquitylation, RYBP, polycomb proteins, double-strand break repair, chromatin, histone modification

  1. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  2. Analysis of the correlative factors for velopharyngeal closure of patients with cleft palate after primary repair.

    Science.gov (United States)

    Chen, Qi; Li, Yang; Shi, Bing; Yin, Heng; Zheng, Guang-Ning; Zheng, Qian

    2013-12-01

    The objective of this study was to analyze the correlative factors for velopharyngeal closure of patients with cleft palate after primary repair. Ninety-five nonsyndromic patients with cleft palate were enrolled. Two surgical techniques were applied in the patients: simple palatoplasty and combined palatoplasty with pharyngoplasty. All patients were assessed 6 months after the operation. The postoperative velopharyngeal closure (VPC) rate was compared by χ(2) test and the correlative factors were analyzed with logistic regression model. The postoperative VPC rate of young patients was higher than that of old patients, the group with incomplete cleft palate was higher than the group with complete cleft palate, and combined palatoplasty with pharyngoplasty was higher than simple palatoplasty. Operative age, cleft type, and surgical technique were the contributing factors for postoperative VPC rate. Operative age, cleft type, and surgical technique were significant factors influencing postoperative VPC rate of patients with cleft palate. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.

    Science.gov (United States)

    Dutta, Arijit; Yang, Chunying; Sengupta, Shiladitya; Mitra, Sankar; Hegde, Muralidhar L

    2015-05-01

    Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory

  4. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  5. Function of heterochromatin protein 1 during DNA repair

    Czech Academy of Sciences Publication Activity Database

    Bártová, Eva; Malyšková, Barbora; Komůrková, Denisa; Legartová, Soňa; Suchánková, Jana; Krejčí, Jana; Kozubek, Stanislav

    2017-01-01

    Roč. 254, č. 3 (2017), s. 1233-1240 ISSN 0033-183X R&D Projects: GA ČR GBP302/12/G157; GA MŠk 7F14369 Institutional support: RVO:68081707 Keywords : double-strand breaks * damage response * HP1 protein Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.870, year: 2016

  6. Biological significance of facilitated diffusion in protein-DNA interactions. Applications to T4 endonuclease V-initiated DNA repair

    International Nuclear Information System (INIS)

    Dowd, D.R.; Lloyd, R.S.

    1990-01-01

    Facilitated diffusion along nontarget DNA is employed by numerous DNA-interactive proteins to locate specific targets. Until now, the biological significance of DNA scanning has remained elusive. T4 endonuclease V is a DNA repair enzyme which scans nontarget DNA and processively incises DNA at the site of pyrimidine dimers which are produced by exposure to ultraviolet (UV) light. In this study we tested the hypothesis that there exists a direct correlation between the degree of processivity of wild type and mutant endonuclease V molecules and the degree of enhanced UV resistance which is conferred to repair-deficient Eshcerichia coli. This was accomplished by first creating a series of endonuclease V mutants whose in vitro catalytic activities were shown to be very similar to that of the wild type enzyme. However, when the mechanisms by which these enzymes search nontarget DNA for its substrate were analyzed in vitro and in vivo, the mutants displayed varying degrees of nontarget DNA scanning ranging from being nearly as processive as wild type to randomly incising dimers within the DNA population. The ability of these altered endonuclease V molecules to enhance UV survival in DNA repair-deficient E. coli then was assessed. The degree of enhanced UV survival was directly correlated with the level of facilitated diffusion. This is the first conclusive evidence directly relating a reduction of in vivo facilitated diffusion with a change in an observed phenotype. These results support the assertion that the mechanisms which DNA-interactive proteins employ in locating their target sites are of biological significance

  7. Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs

    Directory of Open Access Journals (Sweden)

    Jockusch Rebecca A

    2006-11-01

    Full Text Available Abstract Background By screening a plasmid library for proteins that could cause silencing when targeted to the HMR locus in Saccharomyces cerevisiae, we previously reported the identification of Rtt107/Esc4 based on its ability to establish silent chromatin. In this study we aimed to determine the mechanism of Rtt107/Esc4 targeted silencing and also learn more about its biological functions. Results Targeted silencing by Rtt107/Esc4 was dependent on the SIR genes, which encode obligatory structural and enzymatic components of yeast silent chromatin. Based on its sequence, Rtt107/Esc4 was predicted to contain six BRCT motifs. This motif, originally identified in the human breast tumor suppressor gene BRCA1, is a protein interaction domain. The targeted silencing activity of Rtt107/Esc4 resided within the C-terminal two BRCT motifs, and this region of the protein bound to Sir3 in two-hybrid tests. Deletion of RTT107/ESC4 caused sensitivity to the DNA damaging agent MMS as well as to hydroxyurea. A two-hybrid screen showed that the N-terminal BRCT motifs of Rtt107/Esc4 bound to Slx4, a protein previously shown to be involved in DNA repair and required for viability in a strain lacking the DNA helicase Sgs1. Like SLX genes, RTT107ESC4 interacted genetically with SGS1; esc4Δ sgs1Δ mutants were viable, but exhibited a slow-growth phenotype and also a synergistic DNA repair defect. Conclusion Rtt107/Esc4 binds to the silencing protein Sir3 and the DNA repair protein Slx4 via different BRCT motifs, thus providing a bridge linking silent chromatin to DNA repair enzymes.

  8. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  9. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    Science.gov (United States)

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  10. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage binding protein.

    NARCIS (Netherlands)

    S. Keeney; A.P.M. Eker (André); T. Brody; W. Vermeulen (Wim); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan); S. Linn

    1994-01-01

    textabstractCells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells

  11. The MCM-binding protein ETG1 aids sister chromatid cohesion required for postreplicative homologous recombination repair.

    Directory of Open Access Journals (Sweden)

    Naoki Takahashi

    2010-01-01

    Full Text Available The DNA replication process represents a source of DNA stress that causes potentially spontaneous genome damage. This effect might be strengthened by mutations in crucial replication factors, requiring the activation of DNA damage checkpoints to enable DNA repair before anaphase onset. Here, we demonstrate that depletion of the evolutionarily conserved minichromosome maintenance helicase-binding protein ETG1 of Arabidopsis thaliana resulted in a stringent late G2 cell cycle arrest. This arrest correlated with a partial loss of sister chromatid cohesion. The lack-of-cohesion phenotype was intensified in plants without functional CTF18, a replication fork factor needed for cohesion establishment. The synergistic effect of the etg1 and ctf18 mutants on sister chromatid cohesion strengthened the impact on plant growth of the replication stress caused by ETG1 deficiency because of inefficient DNA repair. We conclude that the ETG1 replication factor is required for efficient cohesion and that cohesion establishment is essential for proper development of plants suffering from endogenous DNA stress. Cohesion defects observed upon knockdown of its human counterpart suggest an equally important developmental role for the orthologous mammalian ETG1 protein.

  12. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  13. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein.

    Science.gov (United States)

    Perugino, Giuseppe; Miggiano, Riccardo; Serpe, Mario; Vettone, Antonella; Valenti, Anna; Lahiri, Samarpita; Rossi, Franca; Rossi, Mosè; Rizzi, Menico; Ciaramella, Maria

    2015-10-15

    Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Modulation of Wound Healing and Scar Formation by MG53 Protein-mediated Cell Membrane Repair*

    Science.gov (United States)

    Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M.; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie

    2015-01-01

    Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53−/− mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. PMID:26306047

  15. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair.

    Science.gov (United States)

    Mian, Elisabeth; Wiesmüller, Lisa

    2017-01-01

    Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells

  16. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  17. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    International Nuclear Information System (INIS)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-01-01

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  18. Role of UV-inducible proteins in repair of various wild-type Escherichia coli cells

    International Nuclear Information System (INIS)

    Sedliakova, M.; Slezarikova, V.; Brozmanova, J.; Masek, F.; Bayerova, V.

    1980-01-01

    3 wild-type strains of E. coli, namely K12 AB2497, B/r WP2 and 15 555-7, proficient in excision and post-replication repair, differ markedly in their UV resistance. To elucidate this difference, the influence was investigated of induction by application of inducing fluence (IF) before lethal fluence (LF) on repair processes after LF. In cells distinguished by low UV resistance (E. coli 15 555-7; E. coli B/r WP2), dimer excision was less complete in cultures irradiated with IF + LF than in cultures irradiated with LF only. The highly resistant E. coli K12 AB2497 performed complete excision both after IF + LF or after LF alone. All 3 types of cell survived better after IF + LF than after LF only. Because, in most strains so far investigated, the application of IF reduced dimer excision and increased survival, dimer excision per se does not appear important for survival. We conclude that the rate and completeness of dimer excision can serve as a measure of efficiency of the excision system whose action is necessary for repair of another lesion. Cells of all investigated strains could not resume DNA replication and died progressively when irradiated with LF and post-incubated with chloramphenicol (LF CAP + ). Thus, it appears that inducible proteins are necessary for repair in all wild-type E. coli cells given with potentially lethal doses of UV irradiation. (orig.)

  19. Proteomic characterization of the human centrosome by protein correlation profiling

    DEFF Research Database (Denmark)

    Andersen, Jens S; Wilkinson, Christopher J; Mayor, Thibault

    2003-01-01

    chromosomes between dividing cells. Despite the importance of this organelle to cell biology and more than 100 years of study, many aspects of its function remain enigmatic and its structure and composition are still largely unknown. We performed a mass-spectrometry-based proteomic analysis of human...... centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions. True centrosomal proteins were revealed by both correlation with already known centrosomal proteins and in vivo localization. We identified and validated 23 novel...... components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins. Protein correlation profiling permits the analysis of any multiprotein complex that can be enriched by fractionation but not purified to homogeneity....

  20. DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a

    Science.gov (United States)

    Walters, Kylie J.; Lech, Patrycja J.; Goh, Amanda M.; Wang, Qinghua; Howley, Peter M.

    2003-01-01

    The Rad23 family of proteins, including the human homologs hHR23a and hHR23b, stimulates nucleotide excision repair and has been shown to provide a novel link between proteasome-mediated protein degradation and DNA repair. In this work, we illustrate how the proteasomal subunit S5a regulates hHR23a protein structure. By using NMR spectroscopy, we have elucidated the structure and dynamic properties of the 40-kDa hHR23a protein and show it to contain four structured domains connected by flexible linker regions. In addition, we reveal that these domains interact in an intramolecular fashion, and by using residual dipolar coupling data in combination with chemical shift perturbation analysis, we present the hHR23a structure. By itself, hHR23a adopts a closed conformation defined by the interaction of an N-terminal ubiquitin-like domain with two ubiquitin-associated domains. Interestingly, binding of the proteasomal subunit S5a disrupts the hHR23a interdomain interactions and thereby causes it to adopt an opened conformation. PMID:14557549

  1. Heterogeneous nuclear ribonucleoprotein B1 protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity

    International Nuclear Information System (INIS)

    Iwanaga, Kentaro; Sueoka, Naoko; Sato, Akemi; Hayashi, Shinichiro; Sueoka, Eisaburo

    2005-01-01

    Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression

  2. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance

  3. Protein structure similarity from principle component correlation analysis

    Directory of Open Access Journals (Sweden)

    Chou James

    2006-01-01

    Full Text Available Abstract Background Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities. Results We measure structural similarity between proteins by correlating the principle components of their secondary structure interaction matrix. In our approach, the Principle Component Correlation (PCC analysis, a symmetric interaction matrix for a protein structure is constructed with relationship parameters between secondary elements that can take the form of distance, orientation, or other relevant structural invariants. When using a distance-based construction in the presence or absence of encoded N to C terminal sense, there are strong correlations between the principle components of interaction matrices of structurally or topologically similar proteins. Conclusion The PCC method is extensively tested for protein structures that belong to the same topological class but are significantly different by RMSD measure. The PCC analysis can also differentiate proteins having similar shapes but different topological arrangements. Additionally, we demonstrate that when using two independently defined interaction matrices, comparison of their maximum

  4. Advancements of two dimensional correlation spectroscopy in protein researches

    Science.gov (United States)

    Tao, Yanchun; Wu, Yuqing; Zhang, Liping

    2018-05-01

    The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.

  5. Trichomonas vaginalis Repair of Iron Centres Proteins: The Different Role of Two Paralogs.

    Science.gov (United States)

    Nobre, Lígia S; Meloni, Dionigia; Teixeira, Miguel; Viscogliosi, Eric; Saraiva, Lígia M

    2016-06-01

    Trichomonas vaginalis, the causative parasite of one of the most prevalent sexually transmitted diseases is, so far, the only protozoan encoding two putative Repair of Iron Centres (RIC) proteins. Homologs of these proteins have been shown to protect bacteria from the chemical stress imposed by mammalian immunity. In this work, the biochemical and functional characterisation of the T. vaginalis RICs revealed that the two proteins have different properties. Expression of ric1 is induced by nitrosative stress but not by hydrogen peroxide, while ric2 transcription remained unaltered under similar conditions. T. vaginalis RIC1 contains a di-iron centre, but RIC2 apparently does not. Only RIC1 resembles bacterial RICs on spectroscopic profiling and repairing ability of oxidatively-damaged iron-sulfur clusters. Unexpectedly, RIC2 was found to bind DNA plasmid and T. vaginalis genomic DNA, a function proposed to be related with its leucine zipper domain. The two proteins also differ in their cellular localization: RIC1 is expressed in the cytoplasm only, and RIC2 occurs both in the nucleus and cytoplasm. Therefore, we concluded that the two RIC paralogs have different roles in T. vaginalis, with RIC2 showing an unprecedented DNA binding ability when compared with all other until now studied RICs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome.

    Science.gov (United States)

    Pai, Rish K; Dudley, Beth; Karloski, Eve; Brand, Randall E; O'Callaghan, Neil; Rosty, Christophe; Buchanan, Daniel D; Jenkins, Mark A; Thibodeau, Stephen N; French, Amy J; Lindor, Noralane M; Pai, Reetesh K

    2018-06-08

    Lynch syndrome is the most common form of hereditary colorectal carcinoma. However, establishing the diagnosis of Lynch syndrome is challenging, and ancillary studies that distinguish between sporadic DNA mismatch repair (MMR) protein deficiency and Lynch syndrome are needed, particularly when germline mutation studies are inconclusive. The aim of this study was to determine if MMR protein-deficient non-neoplastic intestinal crypts can help distinguish between patients with and without Lynch syndrome. We evaluated the expression of MMR proteins in non-neoplastic intestinal mucosa obtained from colorectal surgical resection specimens from patients with Lynch syndrome-associated colorectal carcinoma (n = 52) and patients with colorectal carcinoma without evidence of Lynch syndrome (n = 70), including sporadic MMR protein-deficient colorectal carcinoma (n = 30), MMR protein proficient colorectal carcinoma (n = 30), and "Lynch-like" syndrome (n = 10). MMR protein-deficient non-neoplastic colonic crypts were identified in 19 of 122 (16%) patients. MMR protein-deficient colonic crypts were identified in 18 of 52 (35%) patients with Lynch syndrome compared to only 1 of 70 (1%) patients without Lynch syndrome (p Lynch-like" syndrome and harbored two MSH2-deficient non-neoplastic colonic crypts. MMR protein-deficient non-neoplastic colonic crypts were not identified in patients with sporadic MMR protein-deficient or MMR protein proficient colorectal carcinoma. Our findings suggest that MMR protein-deficient colonic crypts are a novel indicator of Lynch syndrome, and evaluation for MMR protein-deficient crypts may be a helpful addition to Lynch syndrome diagnostics.

  7. Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair UvrC protein from M. tuberculosis.

    Science.gov (United States)

    Parulekar, Rishikesh S; Barage, Sagar H; Jalkute, Chidambar B; Dhanavade, Maruti J; Fandilolu, Prayagraj M; Sonawane, Kailas D

    2013-08-01

    Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.

  8. Modulation of wound healing and scar formation by MG53 protein-mediated cell membrane repair.

    Science.gov (United States)

    Li, Haichang; Duann, Pu; Lin, Pei-Hui; Zhao, Li; Fan, Zhaobo; Tan, Tao; Zhou, Xinyu; Sun, Mingzhai; Fu, Minghuan; Orange, Matthew; Sermersheim, Matthew; Ma, Hanley; He, Duofen; Steinberg, Steven M; Higgins, Robert; Zhu, Hua; John, Elizabeth; Zeng, Chunyu; Guan, Jianjun; Ma, Jianjie

    2015-10-02

    Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53(-/-) mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-β-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-β signaling may present a potentially effective means for promoting scarless wound healing. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Mismatch repair proteins, meiosis, and mice: understanding the complexities of mammalian meiosis.

    Science.gov (United States)

    Svetlanov, Anton; Cohen, Paula E

    2004-05-15

    Mammalian meiosis differs from that seen in lower eukaryotes in several respects, not least of which is the added complexity of dealing with chromosomal interactions across a much larger genome (12 MB over 16 chromosome pairs in Saccharomyces cerevisiae compared to 2500 MB over 19 autosome pairs in Mus musculus). Thus, the recombination machinery, while being highly conserved through eukaryotes, has evolved to accommodate such issues to preserve genome integrity and to ensure propagation of the species. One group of highly conserved meiotic regulators is the DNA mismatch repair protein family that, as their name implies, were first identified as proteins that act to repair DNA mismatches that arise primarily during DNA replication. Their function in ensuring chromosomal integrity has also translated into a critical role for this family in meiotic recombination in most sexually reproducing organisms. In mice, targeted deletion of certain family members results in severe consequences for meiotic progression and infertility. This review will focus on the studies involving these mutant mouse models, with occasional comparison to the function of these proteins in other organisms.

  10. A novel small molecule inhibitor of the DNA repair protein Ku70/80.

    Science.gov (United States)

    Weterings, Eric; Gallegos, Alfred C; Dominick, Lauren N; Cooke, Laurence S; Bartels, Trace N; Vagner, Josef; Matsunaga, Terry O; Mahadevan, Daruka

    2016-07-01

    Non-Homologous End-Joining (NHEJ) is the predominant pathway for the repair of DNA double strand breaks (DSBs) in human cells. The NHEJ pathway is frequently upregulated in several solid cancers as a compensatory mechanism for a separate DSB repair defect or for innate genomic instability, making this pathway a powerful target for synthetic lethality approaches. In addition, NHEJ reduces the efficacy of cancer treatment modalities which rely on the introduction of DSBs, like radiation therapy or genotoxic chemotherapy. Consequently, inhibition of the NHEJ pathway can modulate a radiation- or chemo-refractory disease presentation. The Ku70/80 heterodimer protein plays a pivotal role in the NHEJ process. It possesses a ring-shaped structure with high affinity for DSBs and serves as the first responder and central scaffold around which the rest of the repair complex is assembled. Because of this central position, the Ku70/80 dimer is a logical target for the disruption of the entire NHEJ pathway. Surprisingly, specific inhibitors of the Ku70/80 heterodimer are currently not available. We here describe an in silico, pocket-based drug discovery methodology utilizing the crystal structure of the Ku70/80 heterodimer. We identified a novel putative small molecule binding pocket and selected several potential inhibitors by computational screening. Subsequent biological screening resulted in the first identification of a compound with confirmed Ku-inhibitory activity in the low micro-molar range, capable of disrupting the binding of Ku70/80 to DNA substrates and impairing Ku-dependent activation of another NHEJ factor, the DNA-PKCS kinase. Importantly, this compound synergistically sensitized human cell lines to radiation treatment, indicating a clear potential to diminish DSB repair. The chemical scaffold we here describe can be utilized as a lead-generating platform for the design and development of a novel class of anti-cancer agents. Copyright © 2016 Elsevier B.V. All

  11. Formation and repair of DNA-protein cross-links (DPCs) in newly replicated DNA

    International Nuclear Information System (INIS)

    Chiu, S.; Friedman, L.R.; Oleinick, N.L.

    1987-01-01

    DPCs preferentially involve proteins of the nuclear matrix, the site of replication and transcription. To elucidate the relationship with replication, the formation and repair of DPCs has been studied in newly replicated DNA. Log-phase V79 cells were pulsed with /sup 3/H-TdR (10-20 μCi/ml) for 30-90 sec at 22 0 followed by up to a 60 min chase at 37 0 . Irradiation (0-100 Gy) immediately after the pulse increases the labeled DNA in DPCs with a dose-dependence that is unaffected by the initial level of labeled DPC or by chase time. When cells are irradiated before the pulse, DNA synthesis is inhibited; however, release of pulse-labeled DPCs appears normal. The data suggest that during replication, DNA is cross-linked to (matrix) protein, contributing to background DPCs

  12. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    Science.gov (United States)

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.

  13. Growth rate correlates negatively with protein turnover in Arabidopsis accessions.

    Science.gov (United States)

    Ishihara, Hirofumi; Moraes, Thiago Alexandre; Pyl, Eva-Theresa; Schulze, Waltraud X; Obata, Toshihiro; Scheffel, André; Fernie, Alisdair R; Sulpice, Ronan; Stitt, Mark

    2017-08-01

    Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO 2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day -1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    Science.gov (United States)

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  15. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins.

    Directory of Open Access Journals (Sweden)

    Angela Brieger

    Full Text Available The human DNA mismatch repair (MMR process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2. Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.

  16. Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer.

    Science.gov (United States)

    Norris, Alixanna M; Woodruff, R D; D'Agostino, Ralph B; Clodfelter, Jill E; Scarpinato, Karin Drotschmann

    2007-02-01

    Defects in mismatch repair (MMR) proteins have been identified in various types of cancer. However, an association with prostate cancer has been controversial. Defective MMR results in genome instability with detrimental consequences that significantly contribute to tumorigenesis. This study determined alterations in key MMR protein levels in prostate cancer with the goal to identify prognostic markers. Prostatectomy samples were immunohistochemically stained and the relative presence or absence of key proteins MSH2, MLH1, and PMS2 determined. Cancer tissue of distinct grades was compared with the normal surrounding tissue. Microsatellite instability (MSI) in altered tissues was determined according to NCI guidelines. In contrast to reports that associate a lack of individual MMR proteins with tumorigenesis, a significant increase in PMS2 levels was identified in PIN lesions and prostate cancer tissue. This elevation in PMS2 was independent of changes in levels in its heterodimeric partner, MLH1. Prostate tumors with elevated levels of PMS2 were genetically unstable, which was corrected by MLH1 co-elevation. This is the first documentation of detrimental consequences associated with the increase in a MMR protein in human cancer. This study recognizes PMS2 elevation as a prognostic marker in pre-neoplastic and prostate cancer lesions. This result has significant implications for future diagnostic and treatment measures. (c) 2006 Wiley-Liss, Inc.

  17. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair

    International Nuclear Information System (INIS)

    Sawkins, M J; Mistry, P; Shakesheff, K M; Yang, J; Brown, B N; Bonassar, L J

    2015-01-01

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young’s moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins. (paper)

  18. Identification of genes and proteins involved in excision repair of human cells

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; Westerveld, A.; Van Duin, M.; Vermeulen, W.; Odijk, H.; De Wit, J.; Bootsma, D.

    1986-01-01

    The autosomal, recessive disorder xeroderma pigmentosum (XP) is characterized by extreme sensitivity of the skin to sun exposure and prediposition to skin cancer. The basic defect in most XP patients is thought to reside in an inefficient removal of UV-induced lesions in the DNA by excision repair. The biochemical complexity of this process is amply illustrated by the fact that so far nine complementary groups within this syndrome have been identified. Despite extensive research, none of these genes or proteins involved have been isolated. Using a microinjection assay system the authors identified components in crude cell extracts that transiently correct the defect in (injected) fibroblasts of all excision-deficient XP complementation groups, as indicated by temporary restoration of UV-induced unscheduled DNA synthesis. This correction is complementation group specific, since it is only found when extracts from complementing XP cells are injected. After incubation of extracts with proteinase K the XP-A and KP-G correcting activities were lost, indicating that the complementation is due to proteins. The XP-A correcting protein was found to precipitate between 30 and 60% ammonium sulfate saturation. Furthermore this protein binds to DEAE-cellulose and to (UV-irradiated) double-strand (ds) DNA attached to cellulose. The latter affinity chromatography step allows a considerable purification, since less than 1% of the proteins applied to such columns is retained. It has to be established whether the XP-A correcting proteins binds by itself or via other proteins to the UV-irradiated DNA and whether it also binds to nonirradiated (ds or ss) DNA. Similar experiments with the XP-G correcting protein are in progress

  19. Expression of DNA mismatch repair proteins in transformed non-Hodgkin's lymphoma: relationship to smoking

    DEFF Research Database (Denmark)

    Nandi, S; Yu, J; Reinert, Line

    2006-01-01

    leukemia (CLL/SLL), that have transformed to diffuse-large B-cell lymphoma (DLBCL). We correlated the presence or absence of DNA-mismatch repair enzymes by immunostaining as well as the p53 status to smoking history. Of all patients (n = 30), 37% showed negative immunostaining of MLH1, 16% showed negative...... for either MLH1 or MSH2 was 2.2 times higher in smokers than non-smokers (relative risk = 2.2041, 95% confidence interval: 0.89714, 5.41491). No direct correlation was found between smoking and the mutations in the p53 gene. These results suggest that cigarette smoking may play a role in the development...

  20. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact

    Science.gov (United States)

    Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.

    2015-01-01

    Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer. PMID:26308346

  1. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact.

    Directory of Open Access Journals (Sweden)

    Puya G Yazdi

    Full Text Available Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp and end (115 bp of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer.

  2. Correlation of exercise response in repaired coarctation of the aorta to left ventricular mass and geometry.

    Science.gov (United States)

    Krieger, Eric V; Clair, Mathieu; Opotowsky, Alexander R; Landzberg, Michael J; Rhodes, Jonathan; Powell, Andrew J; Colan, Steven D; Valente, Anne Marie

    2013-02-01

    The role of exercise testing to risk stratify patients with repaired coarctation of the aorta (CoA) is controversial. Concentric left ventricular (LV) hypertrophy, defined as an increase in the LV mass-to-volume ratio (MVR), is associated with a greater incidence of adverse cardiovascular events. The objective of the present study was to determine whether a hypertensive response to exercise (HRE) is associated with increased LVMVR in patients with repaired CoA. Adults with repaired CoA who had a symptom-limited exercise test and cardiac magnetic resonance imaging examination within 2 years were identified. A hypertensive response to exercise was defined as a peak systolic blood pressure >220 mm Hg during a symptom-limited exercise test. The LV mass and volume were measured using cardiac magnetic resonance by an investigator who was unaware of patient status. We included 47 patients (median age 27.3 years, interquartile range 19.8 to 37.3), who had undergone CoA repair at a median age of 4.6 years (interquartile range 0.4 to 15.7). Those with (n = 11) and without (n = 36) HRE did not differ in age, age at repair, body surface area, arm-to-leg systolic blood pressure gradient, gender, or peak oxygen uptake with exercise. Those with a HRE had a greater mean systolic blood pressure at rest (146 ± 18 vs 137 ± 18 mm Hg, p = 0.04) and greater median LVMVR (0.85, interquartile range 0.7 to 1, vs 0.66, interquartile range 0.6 to 0.7; p = 0.04) than those without HRE. Adjusting for systolic blood pressure at rest, age, age at repair, and gender, the relation between HRE and LVMVR remained significant (p = 0.001). In conclusion, HRE was associated with increased LVMVR, even after adjusting for multiple covariates. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil

    2012-01-01

    Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...... and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate...

  4. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    Directory of Open Access Journals (Sweden)

    Rebecca Cook

    2015-03-01

    Full Text Available Deficiencies in DNA double-strand break (DSB repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1 is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ. Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.

  5. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair.

    Science.gov (United States)

    de Laat, W L; Appeldoorn, E; Sugasawa, K; Weterings, E; Jaspers, N G; Hoeijmakers, J H

    1998-08-15

    The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning of the excision repair nucleases XPG and ERCC1-XPF on the DNA. With the 3'-oriented side of hRPA facing a duplex ssDNA junction, hRPA interacts with and stimulates ERCC1-XPF, whereas the 5'-oriented side of hRPA at a DNA junction allows stable binding of XPG to hRPA. Our data pinpoint hRPA to the undamaged strand during nucleotide excision repair. Polarity of hRPA on ssDNA is likely to contribute to the directionality of other hRPA-dependent processes as well.

  6. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  7. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    International Nuclear Information System (INIS)

    Kim, Hyun-Suk; Guo, Chunlu; Thompson, Eric L.; Jiang, Yanlin; Kelley, Mark R.; Vasko, Michael R.; Lee, Suk-Hee

    2015-01-01

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons

  8. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Suk [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Guo, Chunlu; Thompson, Eric L. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Jiang, Yanlin [Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Lee, Suk-Hee, E-mail: slee@iu.edu [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States)

    2015-09-15

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.

  9. Correlation between ultraviolet survival and DNA repair efficiency in mouse cell hybrids and their parent lines

    International Nuclear Information System (INIS)

    Limbosch, S.

    1982-01-01

    Three hybrid cell lines formed between mouse lymphoma (LS) and mouse fibroblasts (A9) have been tested for their capacity to perform unscheduled DNA synthesis; their recovery characteristics after uv irradiation have also been studied to determine if DNA repair is implicated in the high survival observed in one hybrid (clone 3). The results of these investigations indicate that hybrid clone 3 was distinguishable from the more uv sensitive parental and other hybrid cell lines by its higher uv-induced unscheduled DNA synthesis, its greater clonogenic survival in plateau phase, and its faster recovery when maintained in conditioned medium after irradiation. The simultaneous increase of these three properties in hybrid clone 3 suggest that, by three different approaches, we have evidenced the same molecular process, a process involved in the elimination of potentially lethal damage, most probably the excision repair pathway. This report also shows that the low efficiency in excision repair in the parent line A9 is probably not due to deletion but rather to repression of the relevant gene(s) and that somatic cell hybridization can result in a stimulation of a previously poorly expressed repair process

  10. Methods for quantitative evaluation of dynamics of repair proteins within irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Hable, V. [Angewandte Physik und Messtechnik LRT2, UniBw-Muenchen, 85577 Neubiberg (Germany)]. E-mail: volker.hable@unibw.de; Dollinger, G. [Angewandte Physik und Messtechnik LRT2, UniBw-Muenchen, 85577 Neubiberg (Germany); Greubel, C. [Physik Department E12, TU-Muenchen, 85748 Garching (Germany); Hauptner, A. [Physik Department E12, TU-Muenchen, 85748 Garching (Germany); Kruecken, R. [Physik Department E12, TU-Muenchen, 85748 Garching (Germany); Dietzel, S. [Department Biologie II, LMU-Muenchen, 82152 Martinsried (Germany); Cremer, T. [Department Biologie II, LMU-Muenchen, 82152 Martinsried (Germany); Drexler, G.A. [Strahlenbiologisches Institut, LMU-Muenchen, 80336 Munich (Germany); Friedl, A.A. [Strahlenbiologisches Institut, LMU-Muenchen, 80336 Munich (Germany); Loewe, R. [Strahlenbiologisches Institut, LMU-Muenchen, 80336 Munich (Germany)

    2006-04-15

    Living HeLa cells are irradiated well directed with single 100 MeV oxygen ions by the superconducting ion microprobe SNAKE, the Superconducting Nanoscope for Applied Nuclear (=Kern-) Physics Experiments, at the Munich 14 MV tandem accelerator. Various proteins, which are involved directly or indirectly in repair processes, accumulate as clusters (so called foci) at DNA-double strand breaks (DSBs) induced by the ions. The spatiotemporal dynamics of these foci built by the phosphorylated histone {gamma}-H2AX are studied. For this purpose cells are irradiated in line patterns. The {gamma}-H2AX is made visible under the fluorescence microscope using immunofluorescence techniques. Quantitative analysis methods are developed to evaluate the data of the microscopic images in order to analyze movement of the foci and their changing size.

  11. Intense correlation between brain infarction and protein-conjugated acrolein.

    Science.gov (United States)

    Saiki, Ryotaro; Nishimura, Kazuhiro; Ishii, Itsuko; Omura, Tomohiro; Okuyama, Shigeru; Kashiwagi, Keiko; Igarashi, Kazuei

    2009-10-01

    We recently found that increases in plasma levels of protein-conjugated acrolein and polyamine oxidases, enzymes that produce acrolein, are good markers for stroke. The aim of this study was to determine whether the level of protein-conjugated acrolein is increased and levels of spermine and spermidine, the substrates of acrolein production, are decreased at the locus of infarction. A unilateral infarction was induced in mouse brain by photoinduction after injection of Rose Bengal. The volume of the infarction was analyzed using the public domain National Institutes of Health image program. The level of protein-conjugated acrolein at the locus of infarction and in plasma was measured by Western blotting and enzyme-linked immunosorbent assay, respectively. The levels of polyamines at the locus of infarction and in plasma were measured by high-performance liquid chromatography. The level of protein-conjugated acrolein was greatly increased, and levels of spermine and spermidine were decreased at the locus of infarction at 24 hours after the induction of stroke. The size of infarction was significantly decreased by N-acetylcysteine, a scavenger of acrolein. It was also found that the increases in the protein-conjugated acrolein, polyamines, and polyamine oxidases in plasma were observed after the induction of stroke. The results indicate that the induction of infarction is well correlated with the increase in protein-conjugated acrolein at the locus of infarction and in plasma.

  12. Repair of distal biceps brachii tendon assessed with 3-T magnetic resonance imaging and correlation with functional outcome

    Energy Technology Data Exchange (ETDEWEB)

    Alemann, Guillaume; Dietsch, Emmanuel [University Hospital of Besancon, Department of Musculoskeletal Imaging, Besancon (France); Gallinet, David; Obert, Laurent [University Hospital of Besancon, Department of Orthopedic Surgery, Besancon (France); Kastler, Bruno; Aubry, Sebastien [University Hospital of Besancon, Department of Musculoskeletal Imaging, Besancon (France); Franche Comte University, I4S Laboratory-EA 4268-IFR 133, Besancon (France)

    2015-05-01

    Objectives were to study the MRI appearance of the repaired distal biceps tendon (DBT), anatomically reinserted, and to search for a correlation between tendon measurements and functional results. Twenty-five patients (mean age, 49 ± 4.9 years old) who benefited from 3-T MRI follow-up of the elbow after surgical reinsertion of the DBT were retrospectively included and compared to a control group (n = 25; mean age, 48 ± 10 years old). MRI was performed during the month of clinical follow-up and on average 22 months after surgery. Delayed complications (secondary avulsion, new rupture), intratendinous osteoma, tendinous signal on T1-weighted (T1{sub w}) and fat-suppressed proton density-weighted (FS-PD{sub w}) images as well as DBT measurements were recorded. The maximum isometric elbow flexion strength (MEFS) and range of motion of the elbow were assessed. Repaired DBT demonstrated a heterogeneous but normally fibrillar structure. Its low T1{sub w} signal was less pronounced than that of normal tendons, and the FS-PD{sub W} image signal was similar to that of T1{sub w} images. MRI detected seven osteomas (Se = 53 % vs. plain radiography), one textiloma and one secondary avulsion. Repaired DBT measurements were significantly correlated with MEFS (dominant arm R2: 0.38; nondominant arm R2: 0.54); this correlation involved the insertion surface (Δ = -75.7 mm{sup 2}, p = 0.046), transverse diameter (Δ = -2.6 mm, p = 0.018), anteroposterior diameter at the level of the radial head (Δ = -3.9 mm, p = 0.001) and DBT cross-sectional area (Δ = -50.2 mm{sup 2}, p = 0.003). The quality of functional outcome after anatomical elbow rehabilitation of DBT correlates with the extent of tendinous hypertrophy during the healing process. (orig.)

  13. Repair of distal biceps brachii tendon assessed with 3-T magnetic resonance imaging and correlation with functional outcome

    International Nuclear Information System (INIS)

    Alemann, Guillaume; Dietsch, Emmanuel; Gallinet, David; Obert, Laurent; Kastler, Bruno; Aubry, Sebastien

    2015-01-01

    Objectives were to study the MRI appearance of the repaired distal biceps tendon (DBT), anatomically reinserted, and to search for a correlation between tendon measurements and functional results. Twenty-five patients (mean age, 49 ± 4.9 years old) who benefited from 3-T MRI follow-up of the elbow after surgical reinsertion of the DBT were retrospectively included and compared to a control group (n = 25; mean age, 48 ± 10 years old). MRI was performed during the month of clinical follow-up and on average 22 months after surgery. Delayed complications (secondary avulsion, new rupture), intratendinous osteoma, tendinous signal on T1-weighted (T1 w ) and fat-suppressed proton density-weighted (FS-PD w ) images as well as DBT measurements were recorded. The maximum isometric elbow flexion strength (MEFS) and range of motion of the elbow were assessed. Repaired DBT demonstrated a heterogeneous but normally fibrillar structure. Its low T1 w signal was less pronounced than that of normal tendons, and the FS-PD W image signal was similar to that of T1 w images. MRI detected seven osteomas (Se = 53 % vs. plain radiography), one textiloma and one secondary avulsion. Repaired DBT measurements were significantly correlated with MEFS (dominant arm R2: 0.38; nondominant arm R2: 0.54); this correlation involved the insertion surface (Δ = -75.7 mm 2 , p = 0.046), transverse diameter (Δ = -2.6 mm, p = 0.018), anteroposterior diameter at the level of the radial head (Δ = -3.9 mm, p = 0.001) and DBT cross-sectional area (Δ = -50.2 mm 2 , p = 0.003). The quality of functional outcome after anatomical elbow rehabilitation of DBT correlates with the extent of tendinous hypertrophy during the healing process. (orig.)

  14. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    Science.gov (United States)

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. Nanoscale protein diffusion by STED-based pair correlation analysis.

    Directory of Open Access Journals (Sweden)

    Paolo Bianchini

    Full Text Available We describe for the first time the combination between cross-pair correlation function analysis (pair correlation analysis or pCF and stimulated emission depletion (STED to obtain diffusion maps at spatial resolution below the optical diffraction limit (super-resolution. Our approach was tested in systems characterized by high and low signal to noise ratio, i.e. Capsid Like Particles (CLPs bearing several (>100 active fluorescent proteins and monomeric fluorescent proteins transiently expressed in living Chinese Hamster Ovary cells, respectively. The latter system represents the usual condition encountered in living cell studies on fluorescent protein chimeras. Spatial resolution of STED-pCF was found to be about 110 nm, with a more than twofold improvement over conventional confocal acquisition. We successfully applied our method to highlight how the proximity to nuclear envelope affects the mobility features of proteins actively imported into the nucleus in living cells. Remarkably, STED-pCF unveiled the existence of local barriers to diffusion as well as the presence of a slow component at distances up to 500-700 nm from either sides of nuclear envelope. The mobility of this component is similar to that previously described for transport complexes. Remarkably, all these features were invisible in conventional confocal mode.

  16. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    Science.gov (United States)

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  17. Functional implications of the p.Cys680Arg mutation in the MLH1 mismatch repair protein

    DEFF Research Database (Denmark)

    Dominguez-Valentin, Mev; Drost, Mark; Therkildsen, Christina

    2014-01-01

    >C missense mutation in exon 18 of the human MLH1 gene and biochemically characterization of the p.Cys680Arg mutant MLH1 protein to implicate it in the pathogenicity of the Lynch syndrome (LS). We show that the mutation is deficient in DNA mismatch repair and, therefore, contributing to LS in the carriers....

  18. Age-correlated changes in expression of micronuclear damage and repair in Paramecium tetraurelia

    International Nuclear Information System (INIS)

    Rodermel, S.R.; Smith-Sonneborn, J.

    1977-01-01

    In Paramecium, age is defined as the number of mitotic divisions which have elapsed since the previous cross-fertilization (conjugation) or self-fertilization (autogamy). As the mitotic interval between fertilization increases, the percentage of nonviable progeny clones increases. In the current study, resolution of conflicting previous reports on the pattern of increase of death and reduced viability in progeny from aging parent cells is found. Some exautogamous clones exhibit a high mortality at young clonal ages, others show no mortality throughout their life span, but most (73%) show an abrupt increase in the percent death and reduced viability in progeny from cells 50 to 80 fissions old. Ultraviolet-irradiation-induced micronuclear mutations, repairable by photoreactivation, increased with increased clonal age when monitored by percent death and reduced viability of exautogamous progeny of irradiated cells. Loss of dark repair is considered a contributor to the increased expression of micronuclear mutations with increased clonal age

  19. Correlation between protein sequence similarity and x-ray diffraction quality in the protein data bank.

    Science.gov (United States)

    Lu, Hui-Meng; Yin, Da-Chuan; Ye, Ya-Jing; Luo, Hui-Min; Geng, Li-Qiang; Li, Hai-Sheng; Guo, Wei-Hong; Shang, Peng

    2009-01-01

    As the most widely utilized technique to determine the 3-dimensional structure of protein molecules, X-ray crystallography can provide structure of the highest resolution among the developed techniques. The resolution obtained via X-ray crystallography is known to be influenced by many factors, such as the crystal quality, diffraction techniques, and X-ray sources, etc. In this paper, the authors found that the protein sequence could also be one of the factors. We extracted information of the resolution and the sequence of proteins from the Protein Data Bank (PDB), classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the best resolution obtained. The results showed that there was a pronounced correlation between the sequence similarity and the obtained resolution. These results indicate that protein structure itself is one variable that may affect resolution when X-ray crystallography is used.

  20. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  1. Failed healing of rotator cuff repair correlates with altered collagenase and gelatinase in supraspinatus and subscapularis tendons.

    Science.gov (United States)

    Robertson, Catherine M; Chen, Christopher T; Shindle, Michael K; Cordasco, Frank A; Rodeo, Scott A; Warren, Russell F

    2012-09-01

    Despite improvements in arthroscopic rotator cuff repair technique and technology, a significant rate of failed tendon healing persists. Improving the biology of rotator cuff repairs may be an important focus to decrease this failure rate. The objective of this study was to determine the mRNA biomarkers and histological characteristics of repaired rotator cuffs that healed or developed persistent defects as determined by postoperative ultrasound. Increased synovial inflammation and tendon degeneration at the time of surgery are correlated with the failed healing of rotator cuff tendons. Case-control study; Level of evidence, 3. Biopsy specimens from the subscapularis tendon, supraspinatus tendon, glenohumeral synovium, and subacromial bursa of 35 patients undergoing arthroscopic rotator cuff repair were taken at the time of surgery. Expression of proinflammatory cytokines, tissue remodeling genes, and angiogenesis factors was evaluated by quantitative real-time polymerase chain reaction. Histological characteristics of the affected tissue were also assessed. Postoperative (>6 months) ultrasound was used to evaluate the healing of the rotator cuff. General linear modeling with selected mRNA biomarkers was used to predict rotator cuff healing. Thirty patients completed all analyses, of which 7 patients (23%) had failed healing of the rotator cuff. No differences in demographic data were found between the defect and healed groups. American Shoulder and Elbow Surgeons shoulder scores collected at baseline and follow-up showed improvement in both groups, but there was no significant difference between groups. Increased expression of matrix metalloproteinase 1 (MMP-1) and MMP-9 was found in the supraspinatus tendon in the defect group versus the healed group (P = .006 and .02, respectively). Similar upregulation of MMP-9 was also found in the subscapularis tendon of the defect group (P = .001), which was consistent with the loss of collagen organization as determined by

  2. Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Sandra Winkler

    2016-07-01

    Full Text Available Background: The beneficial impact of mesenchymal stem cells (MSC on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. Methods: Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. Results: MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1 increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM decreased. MSC secreted different factors before and after differentiation. These comprised cytokines involved in innate immunity and growth factors regulating liver regeneration. Pathway analysis revealed cytokine-cytokine receptor interactions, chemokine signalling pathways, the complement and coagulation cascades as well as the Januskinase-signal transducers and activators of transcription (JAK-STAT and nucleotide-binding oligomerization domain-like receptor (NOD-like receptor signalling pathways as relevant networks. Relationships to transforming growth factor β (TGF-β and hypoxia-inducible factor 1-α (HIF1-α signalling seemed also relevant. Conclusion: MSC secreted proteins, which differed depending on cell source and degree of differentiation. The factors might address inflammatory and growth factor pathways as well as chemo-attraction and innate immunity. Since these are prone to dysregulation in most liver diseases, MSC release hepatotropic factors, potentially supporting liver regeneration.

  3. Dynamics of the DNA repair proteins WRN and BLM in the nucleoplasm and nucleoli.

    Science.gov (United States)

    Bendtsen, Kristian Moss; Jensen, Martin Borch; May, Alfred; Rasmussen, Lene Juel; Trusina, Ala; Bohr, Vilhelm A; Jensen, Mogens H

    2014-11-01

    We have investigated the mobility of two EGFP-tagged DNA repair proteins, WRN and BLM. In particular, we focused on the dynamics in two locations, the nucleoli and the nucleoplasm. We found that both WRN and BLM use a "DNA-scanning" mechanism, with rapid binding-unbinding to DNA resulting in effective diffusion. In the nucleoplasm WRN and BLM have effective diffusion coefficients of 1.62 and 1.34 μm(2)/s, respectively. Likewise, the dynamics in the nucleoli are also best described by effective diffusion, but with diffusion coefficients a factor of ten lower than in the nucleoplasm. From this large reduction in diffusion coefficient we were able to classify WRN and BLM as DNA damage scanners. In addition to WRN and BLM we also classified other DNA damage proteins and found they all fall into one of two categories. Either they are scanners, similar to WRN and BLM, with very low diffusion coefficients, suggesting a scanning mechanism, or they are almost freely diffusing, suggesting that they interact with DNA only after initiation of a DNA damage response.

  4. Chitinase-like proteins as regulators of innate immunity and tissue repair: helpful lessons for asthma?

    Science.gov (United States)

    Sutherland, Tara E

    2018-02-19

    Chitinases and chitinase-like proteins (CLPs) belong to the glycoside hydrolase family 18 of proteins. Chitinases are expressed in mammals and lower organisms, facilitate chitin degradation, and hence act as host-defence enzymes. Gene duplication and loss-of-function mutations of enzymatically active chitinases have resulted in the expression of a diverse range of CLPs across different species. CLPs are genes that are increasingly associated with inflammation and tissue remodelling not only in mammals but also across distant species. While the focus has remained on understanding the functions and expression patterns of CLPs during disease in humans, studies in mouse and lower organisms have revealed important and overlapping roles of the CLP family during physiology, host defence and pathology. This review will summarise recent insights into the regulatory functions of CLPs on innate immune pathways and discuss how these effects are not only important for host defence and tissue injury/repair after pathogen invasion, but also how they have extensive implications for pathological processes involved in diseases such as asthma. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Correlated mutations in protein sequences: Phylogenetic and structural effects

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.S. [Los Alamos National Lab., NM (United States). Theoretical Div.]|[Santa Fe Inst., NM (United States); Giraud, B.G. [C.E.N. Saclay, Gif/Yvette (France). Service Physique Theorique; Liu, L.C. [Los Alamos National Lab., NM (United States). Theoretical Div.; Stormo, G.D. [Univ. of Colorado, Boulder, CO (United States). Dept. of Molecular, Cellular and Developmental Biology

    1998-12-01

    Covariation analysis of sets of aligned sequences for RNA molecules is relatively successful in elucidating RNA secondary structure, as well as some aspects of tertiary structure. Covariation analysis of sets of aligned sequences for protein molecules is successful in certain instances in elucidating certain structural and functional links, but in general, pairs of sites displaying highly covarying mutations in protein sequences do not necessarily correspond to sites that are spatially close in the protein structure. In this paper the authors identify two reasons why naive use of covariation analysis for protein sequences fails to reliably indicate sequence positions that are spatially proximate. The first reason involves the bias introduced in calculation of covariation measures due to the fact that biological sequences are generally related by a non-trivial phylogenetic tree. The authors present a null-model approach to solve this problem. The second reason involves linked chains of covariation which can result in pairs of sites displaying significant covariation even though they are not spatially proximate. They present a maximum entropy solution to this classic problem of causation versus correlation. The methodologies are validated in simulation.

  6. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. © 2014 Wiley Periodicals, Inc.

  7. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    -PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor......-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA......, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA...

  8. Analysis of correlations between sites in models of protein sequences

    International Nuclear Information System (INIS)

    Giraud, B.G.; Lapedes, A.; Liu, L.C.

    1998-01-01

    A criterion based on conditional probabilities, related to the concept of algorithmic distance, is used to detect correlated mutations at noncontiguous sites on sequences. We apply this criterion to the problem of analyzing correlations between sites in protein sequences; however, the analysis applies generally to networks of interacting sites with discrete states at each site. Elementary models, where explicit results can be derived easily, are introduced. The number of states per site considered ranges from 2, illustrating the relation to familiar classical spin systems, to 20 states, suitable for representing amino acids. Numerical simulations show that the criterion remains valid even when the genetic history of the data samples (e.g., protein sequences), as represented by a phylogenetic tree, introduces nonindependence between samples. Statistical fluctuations due to finite sampling are also investigated and do not invalidate the criterion. A subsidiary result is found: The more homogeneous a population, the more easily its average properties can drift from the properties of its ancestor. copyright 1998 The American Physical Society

  9. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Han, Jeonghoon [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon [Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Su-Jae [Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Heum Gi, E-mail: hgpark@gwnu.ac.kr [Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m{sup 2}) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m{sup 2} of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  10. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    International Nuclear Information System (INIS)

    Won, Eun-Ji; Han, Jeonghoon; Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-01-01

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m 2 ) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m 2 of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana

  11. Post-irradiation replication and repair in UV-irradiated cells of Proteus mirabilis depends on protein synthesis and a functioning rec+ gene

    International Nuclear Information System (INIS)

    Hofemeister, J.

    1977-01-01

    The amount of and the molecular weight of newly synthesized DNA (piDNA) as well as its repair after UV irradiation in excision-proficient strains of P.mirabilis and E.coli K12 have been compared. A fraction of post-replication repair (PRR) in P.mirabilis is found to be dependent on de novo protein synthesis after UV irradiation. Pre-irradiation by UV and pre-treatment with nalidixic acid increase the efficiency of post-irradiation replication and PRR even in the presence of chloramphenicol. An inducible repair function in P.mirabilis is supposed to stimulate post-irradiation replication and repair. (author)

  12. Post-irradiation replication and repair in uv-irradiated cells of Proteus mirabilis depends on protein synthesis and a functioning rec/sup +/ gene

    Energy Technology Data Exchange (ETDEWEB)

    Hofemeister, J [Akademie der Wissenschaften der DDR, Gatersleben. Zentralinstitut fuer Genetik und Kulturpflanzenforschung

    1977-02-28

    The amount of and the molecular weight of newly synthesized DNA (piDNA) as well as its repair after uv irradiation in excision-proficient strains of P.mirabilis and E.coli K12 have been compared. A fraction of post-replication repair (PRR) in P.mirabilis is found to be dependent on de novo protein synthesis after uv irradiation. Pre-irradiation by uv and pre-treatment with nalidixic acid increase the efficiency of post-irradiation replication and PRR even in the presence of chloramphenicol. An inducible repair function in P.mirabilis is supposed to stimulate post-irradiation replication and repair.

  13. Phosphorylation-dependent signaling controls degradation of DNA mismatch repair protein PMS2.

    Science.gov (United States)

    Hinrichsen, Inga; Weßbecher, Isabel M; Huhn, Meik; Passmann, Sandra; Zeuzem, Stefan; Plotz, Guido; Biondi, Ricardo M; Brieger, Angela

    2017-12-01

    MutLα, a heterodimer consisting of MLH1 and PMS2, plays an important role in DNA mismatch repair and has been shown to be additionally involved in several other important cellular mechanisms. Previous work indicated that AKT could modulate PMS2 stability by phosphorylation. Still, the mechanisms of regulation of MutLα remain unclear. The stability of MutLα subunits was investigated by transiently overexpression of wild type and mutant forms of MLH1 and PMS2 using immunoblotting for measuring the protein levels after treatment. We found that treatment with the cell-permeable serine/threonine phosphatase inhibitor, Calyculin, leads to degradation of PMS2 when MLH1 or its C-terminal domain is missing or if amino acids of MLH1 essential for PMS2 interaction are mutated. In addition, we discovered that the C-terminal tail of PMS2 is relevant for this Calyculin-dependent degradation. A direct involvement of AKT, which was previously described to be responsible for PMS2 degradation, could not be detected. The multi-kinase inhibitor Sorafenib, in contrast, was able to avoid the degradation of PMS2 which postulates that cellular phosphorylation is involved in this process. Together, we show that pharmacologically induced phosphorylation by Calyculin can induce the selective proteasome-dependent degradation of PMS2 but not of MLH1 and that the PMS2 degradation could be blocked by Sorafenib treatment. Curiously, the C-terminal Lynch Syndrome-variants MLH1 L749P and MLH1 Y750X make PMS2 prone to Calyculin induced degradation. Therefore, we conclude that the specific degradation of PMS2 may represent a new mechanism to regulate MutLα. © 2017 Wiley Periodicals, Inc.

  14. Protein energy-malnutrition: does the in vitro zinc sulfate supplementation improve chromosomal damage repair?

    Science.gov (United States)

    Padula, Gisel; González, Horacio F; Varea, Ana; Seoane, Analía I

    2014-12-01

    Protein-energy malnutrition (PEM) is originated by a cellular imbalance between nutrient/energy supply and body's demand. Induction of genetic damage by PEM was reported. The purpose of this study was to determine the genetic effect of the in vitro zinc sulfate (ZnSO4) supplementation of cultured peripheral blood lymphocytes from children with PEM. Twenty-four samples from 12 children were analyzed. Anthropometric and biochemical diagnosis was made. For the anthropometric assessment, height-for-age index, weight-for-age index, and weight-for-height index were calculated (WHO, 2005). Micronutrient status was evaluated. A survey for assessed previous exposure to potentially genotoxic agents was applied. Results were statistically evaluated using paired sample t test and χ (2) test. Each sample was fractionated and cultured in two separate flasks to performed two treatments. One was added with 180 μg/dl of ZnSO4 (PEMs/ZnSO4) and the other remains non-supplemented (PEMs). Cytotoxic effects and chromosomal damage were assessed using the cytokinesis-block micronucleus assay (CBMN). All participants have at least one type of malnutrition and none have anemia, nor iron, folate, vitamin A, and zinc deficiency. All PEMs/ZnSO4 samples have a significant reduction in the micronucleus (MNi) frequency compared with PEMs (t = 6.25685; p < 0.001). Nuclear division index (NDI) increase in PEMs/ZnSO4 (t = -17.4226; p < 0.001). Nucleoplasmic bridge (NPBs) frequency was four times smaller in PEMs/ZnSO4 (χ (2) = 40.82; p < 0.001). No nuclear buds (NBuds) were observed. Cytotoxic effects and chromosomal damage observed in children suffering from PEM can be repaired in vitro with zinc sulfate supplementation.

  15. Expression of the DNA repair gene MLH1 correlates with survival in patients who have resected pancreatic cancer and have received adjuvant chemoradiation: NRG Oncology RTOG Study 9704.

    Science.gov (United States)

    Lawrence, Yaacov R; Moughan, Jennifer; Magliocco, Anthony M; Klimowicz, Alexander C; Regine, William F; Mowat, Rex B; DiPetrillo, Thomas A; Small, William; Simko, Jeffry P; Golan, Talia; Winter, Kathryn A; Guha, Chandan; Crane, Christopher H; Dicker, Adam P

    2018-02-01

    The majority of patients with pancreatic cancer who undergo curative resection experience rapid disease recurrence. In previous small studies, high expression of the mismatch-repair protein mutL protein homolog 1 (MLH1) in pancreatic cancers was associated with better outcomes. The objective of this study was to validate the association between MLH1 expression and survival in patients who underwent resection of pancreatic cancer and received adjuvant chemoradiation. Samples were obtained from the NRG Oncology Radiation Therapy Oncology Group 9704 prospective, randomized trial (clinicaltrials.gov identifier NCT00003216), which compared 2 adjuvant protocols in patients with pancreatic cancer who underwent resection. Tissue microarrays were prepared from formalin-fixed, paraffin-embedded, resected tumor tissues. MLH1 expression was quantified using fluorescence immunohistochemistry and automated quantitative analysis, and expression was dichotomized above and below the median value. Immunohistochemical staining was successfully performed on 117 patients for MLH1 (60 and 57 patients from the 2 arms). The characteristics of the participants who had tissue samples available were similar to those of the trial population as a whole. At the time of analysis, 84% of participants had died, with a median survival of 17 months. Elevated MLH1 expression levels in tumor nuclei were significantly correlated with longer disease-free and overall survival in each arm individually and in both arms combined. Two-year overall survival was 16% in patients who had low MLH1 expression levels and 53% in those who had high MLH1 expression levels (P MLH1 expression was correlated with long-term survival. Further studies should assess whether MLH1 expression predicts which patients with localized pancreatic cancer may benefit most from aggressive, multimodality treatment. Cancer 2018;124:491-8. © 2017 American Cancer Society. © 2017 American Cancer Society.

  16. Application of the Goutallier/Fuchs Rotator Cuff Classification to the Evaluation of Hip Abductor Tendon Tears and the Clinical Correlation With Outcome After Repair.

    Science.gov (United States)

    Bogunovic, Ljiljana; Lee, Simon X; Haro, Marc S; Frank, Jonathon M; Mather, Richard C; Bush-Joseph, Charles A; Nho, Shane J

    2015-11-01

    To assess the reliability and reproducibility of the Goutallier/Fuchs classification for the evaluation of abductor tendon tears of the hip, as well as to identify the relation between preoperative tear size, abductor muscle quality, and the success of endoscopic tendon repair. This is a retrospective review of 30 consecutive endoscopic abductor tendon repairs performed by a single surgeon over a 2-year period. Preoperative magnetic resonance imaging scans were reviewed, and the muscle was assigned a grade according to the Goutallier/Fuchs classification. Patient-rated outcome scores--visual analog scale score, Hip Outcome Score (HOS), and modified Harris Hip Score (mHHS)--were collected preoperatively and at a minimum of 2 years postoperatively. Intraobserver and interobserver reliability for muscle grading was calculated. Postoperative outcome measures were compared with preoperative tear size, muscle grade, and repair type to assess for correlations. Of the 30 hips included in the study, over 75% were classified as grade 1 (n = 15) or grade 2 (n = 8). The intraobserver reliability and interobserver reliability of the classification system averaged 0.872 and 0.916, respectively. Two patients (grades 3 and 4) had repair failure and underwent muscle transfer. In the remaining 28 hips, improvement was seen in the visual analog scale score (6.0 v 1.7, P size, or repair type (double v single row) did not affect postoperative outcomes. The Goutallier/Fuchs classification system can be reliably and reproducibly applied to the evaluation of abductor tendon tears of the hip and appears to correlate with patient-rated outcomes after repair. Increasing preoperative muscle fatty atrophy correlates with increased patient pain and decreased patient satisfaction and functional outcomes after repair. Level IV, prognostic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yawei; Spitz, Margaret R.; Guo Zhaozheng; Hadeyati, Mohammad; Grossman, Lawrence; Kraemer, Kenneth H.; Wei Qingyi

    2002-11-30

    As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.

  18. The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells.

    Science.gov (United States)

    Yang, Yun-Gui; Herceg, Zdenko; Nakanishi, Koji; Demuth, Ilja; Piccoli, Colette; Michelon, Jocelyne; Hildebrand, Gabriele; Jasin, Maria; Digweed, Martin; Wang, Zhao-Qi

    2005-10-01

    Fanconi anemia (FA) cells exhibit hypersensitivity to DNA interstrand cross-links (ICLs) and high levels of chromosome instability. FA gene products have been shown to functionally or physically interact with BRCA1, RAD51 and the MRE11/RAD50/NBS1 complex, suggesting that the FA complex may be involved in the repair of DNA double-strand breaks (DSBs). Here, we have investigated specifically the function of the FA group A protein (FANCA) in the repair of DSBs in mammalian cells. We show that the targeted deletion of Fanca exons 37-39 generates a null for Fanca in mice and abolishes ubiquitination of Fancd2, the downstream effector of the FA complex. Cells lacking Fanca exhibit increased chromosomal aberrations and attenuated accumulation of Brca1 and Rad51 foci in response to DNA damage. The absence of Fanca greatly reduces gene-targeting efficiency in mouse embryonic stem (ES) cells and compromises the survival of fibroblast cells in response to ICL agent treatment. Fanca-null cells exhibit compromised homology-directed repair (HDR) of DSBs, particularly affecting the single-strand annealing pathway. These data identify the Fanca protein as an integral component in the early step of HDR of DSBs and thereby minimizing the genomic instability.

  19. The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp. PCC 6803, during Photosystem II assembly and repair

    Directory of Open Access Journals (Sweden)

    Anna eRast

    2016-05-01

    Full Text Available The assembly and repair of photosystem II (PSII is facilitated by a variety of assembly factors. Among those, the tetratricopeptide repeat (TPR protein Slr0151 from Synechocystis sp. PCC 6803 (hereafter Synechocystis has previously been assigned a repair function under high light conditions (Yang et al., 2014, J. Integr. Plant Biol. 56, 1136-50. Here, we show that inactivation of Slr0151 affects thylakoid membrane ultrastructure even under normal light conditions. Moreover, the level and localization of Slr0151 are affected in a variety of PSII-related mutants. In particular, the data suggest a close functional relationship between Slr0151 and Sll0933, which interacts with Ycf48 during PSII assembly and is homologous to PAM68 in Arabidopsis thaliana. Immunofluorescence analysis revealed a punctate distribution of Slr0151 within several different membrane types in Synechocystis cells.

  20. Correlation between intrasac pressure measurements of a pressure sensor and an angiographic catheter during endovascular repair of abdominal aortic aneurysm

    Directory of Open Access Journals (Sweden)

    Pierre Galvagni Silveira

    2008-01-01

    Full Text Available PURPOSE: To establish a correlation between intrasac pressure measurements of a pressure sensor and an angiographic catheter placed in the same aneurysm sac before and after its exclusion by an endoprosthesis. METHODS: Patients who underwent endovascular abdominal aortic aneurysm repair and received an EndoSureTM wireless pressure sensor implant between March 19 and December 11, 2004 were enrolled in the study. Simultaneous readings of systolic, diastolic, mean, and pulse pressure within the aneurysm sac were obtained from the catheter and the sensor, both before and after sac exclusion by the endoprosthesis (Readings 1 and 2, respectively. Intrasac pressure measurements were compared using Pearson's correlation and Student's t test. Statistical significance was set at p0.05, mean (p>0.05, and pulse (p0.05 by the sensor. CONCLUSION: The excellent agreement between intrasac pressure readings recorded by the catheter and the sensor justifies use of the latter for detection of post-exclusion abdominal aortic aneurysm pressurization.

  1. Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population

    DEFF Research Database (Denmark)

    Berquist, Brian R; Singh, Dharmendra Kumar; Fan, Jinshui

    2010-01-01

    XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R...... mutation abolished the interaction with POLbeta, but did not disrupt the interactions with PARP-1, LIG3alpha and PCNA; and an E98K substitution, identified in EM-C12, reduced protein integrity, marginally destabilized the POLbeta interaction, and slightly enhanced DNA binding. Two rare (P161L and Y576S...

  2. Inference of protein diffusion probed via fluorescence correlation spectroscopy

    Science.gov (United States)

    Tsekouras, Konstantinos

    2015-03-01

    Fluctuations are an inherent part of single molecule or few particle biophysical data sets. Traditionally, ``noise'' fluctuations have been viewed as a nuisance, to be eliminated or minimized. Here we look on how statistical inference methods - that take explicit advantage of fluctuations - have allowed us to draw an unexpected picture of single molecule diffusional dynamics. Our focus is on the diffusion of proteins probed using fluorescence correlation spectroscopy (FCS). First, we discuss how - in collaboration with the Bustamante and Marqusee labs at UC Berkeley - we determined using FCS data that individual enzymes are perturbed by self-generated catalytic heat (Riedel et al, Nature, 2014). Using the tools of inference, we found how distributions of enzyme diffusion coefficients shift in the presence of substrate revealing that enzymes performing highly exothermic reactions dissipate heat by transiently accelerating their center of mass following a catalytic reaction. Next, when molecules diffuse in the cell nucleus they often appear to diffuse anomalously. We analyze FCS data - in collaboration with Rich Day at the IU Med School - to propose a simple model for transcription factor binding-unbinding in the nucleus to show that it may give rise to apparent anomalous diffusion. Here inference methods extract entire binding affinity distributions for the diffusing transcription factors, allowing us to precisely characterize their interactions with different components of the nuclear environment. From this analysis, we draw key mechanistic insight that goes beyond what is possible by simply fitting data to ``anomalous diffusion'' models.

  3. Ultraviolet-induced movement of the human DNA repair protein, xeroderma pigmentosum type G, in the nucleus

    International Nuclear Information System (INIS)

    Park, M.S.; Knauf, J.A.; Pendergrass, S.H.

    1996-01-01

    Xeroderma pigmentosum type G (XPG) is a human genetic disease exhibiting extreme sensitivity to sunlight. XPG patients are defective XPG endonuclease, which is an enzyme essential for DNA repair of the major kinds of solar ultraviolet (UV)-induced DNA damages. Here we describe a novel dynamics of this protein within the cell nucleus after UV irradiation of human cells. USing confocal microscopy, we have localized the immunofluorescent, antigenic signal of XPG protein to foci throughout the cell nucleus. Our biochemical studies also established that XPG protein forms a tight association with nuclear structure(s). In human skin fibroblast cells, the number of XPG foci decreased within 2 h after UV irradiation, whereas total nuclear XPG fluorescence intensity remained constant, suggesting redistribution of XPG from a limited number of nuclear foci to the nucleus overall. Within 8 h after UV, most XPG antigenic signal was found as foci. Using β-galactosidase-XPG fusion constructs (β-gal-XPG) transfected into HeLa cells, we have identified a single region of XPG that is evidently responsible both for foci formation and for the UV dynamic response. The fusion protein carrying the C terminus of XPG (amino acids 1146-1185) localized β-gal specific antigenic signal to foci and to the nucleolus regions. After UV irradiation, antigenic β-gal translocated reversibly from the subnuclear structures to the whole nucleus with kinetics very similar to the movements of XPG protein. These findings lead us to propose a model in which distribution of XPG protein may regulate the rate of DNA repair within transcriptionally active and inactive compartments of the cell nucleus. 50 refs., 5 figs., 1 tab

  4. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture (MF) treatment for adult unstable osteochondritis dissecans (OCD) in the ankle: correlations with clinical outcome

    International Nuclear Information System (INIS)

    Tao, Hongyue; Lu, Rong; Feng, Xiaoyuan; Chen, Shuang; Shang, Xiliang; Li, Hong; Hua, Yinghui

    2014-01-01

    To quantitatively evaluate cartilage repair after microfracture (MF) for ankle osteochondritis dissecans (OCD) using MRI and analyse correlations between MRI and clinical outcome. Forty-eight patients were recruited and underwent MR imaging, including 3D-DESS, T2-mapping and T2-STIR sequences, and completed American Orthopaedic Foot and Ankle Society (AOFAS) scoring. Thickness index, T2 index of repair tissue (RT) and volume of subchondral bone marrow oedema (BME) were calculated. Subjects were divided into two groups: group A (3-12 months post-op), and group B (12-24 months post-op). Student's t test was used to compare the MRI and AOFAS score between two groups and Pearson's correlation coefficient to analyse correlations between them. Thickness index and AOFAS score of group B were higher than group A (P < 0.001, P < 0.001). T2 index and BME of group B were lower than group A (P < 0.001, P = 0.012). Thickness index, T2 index and BME were all correlated with AOFAS score (r = 0.416, r = -0.475, r = -0.353), but BME was correlated with neither thickness index nor T2 index. Significant improvement from MF can be expected on the basis of the outcomes of quantitative MRI and AOFAS score. MRI was correlated with AOFAS score. BME is insufficient as an independent predictor to evaluate repair quality, but reduction of BME can improve the patient's clinical outcome. (orig.)

  5. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents.

    Science.gov (United States)

    Christmann, M; Kaina, B

    2000-11-17

    Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gene activity. Cells expressing the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), thus having the ability to repair O(6)-methylguanine, showed no translocation of MutSalpha, whereas inhibition of MGMT by O(6)-benzylguanine provoked the translocation. The results demonstrate that O(6)-methylguanine lesions are involved in triggering nuclear accumulation of MSH2 and MSH6. The finding that treatment of cells with O(6)-methylguanine-generating mutagens results in an increase of MutSalpha and GT binding activity in the nucleus indicates a novel type of genotoxic stress response.

  6. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair.

    Science.gov (United States)

    Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I

    2014-06-01

    Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

  7. Functional Analysis of Homologous Recombination Repair Proteins HerA and NurA in the Thermophile Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Huang, Qihong

    A number of DNA lesions are generated in each cell every day, among which double-stranded breaks (DSBs) constitute one of the most detrimental types of DNA damage. DSBs lead to genome instability, cell death, or even tumorigenesis in human, if not repaired timely. Two main pathways are known...... in the S/G2 phase of the cell cycle are preferentially repaired by HRR pathway, while NHEJ is the favorate pathway to repair DSBs in the G1 phase. Bacteria encode multiple pathways for DSB repair, including RecBCD, the primary HR pathway, SbcC-SbcD, and one backup system, RecFOR. In eukaryotes, the HRR...... pathway is mediated by Mre11-Rad50, homologs of bacterial SbcD-SbcC. However, numerous proteins and multiple layers of regulation exist to ensure these repair pathways are accurate and restricted to the appropriate cellular contexts, making many important mechanistic details poorly understood...

  8. Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2012-10-01

    Full Text Available The pathogenesis of age-related macular degeneration (AMD is complex and involves interactions between environmental and genetic factors, with oxidative stress playing an important role inducing damage in biomolecules, including DNA. Therefore, genetic variability in the components of DNA repair systems may influence the ability of the cell to cope with oxidative stress and in this way contribute to the pathogenesis of AMD. However, few reports have been published on this subject so far. We demonstrated that the c.977C>G polymorphism (rs1052133 in the hOGG1 gene and the c.972G>C polymorphism (rs3219489 in the MUTYH gene, the products of which play important roles in the repair of oxidatively damaged DNA, might be associated with the risk of AMD. Oxidative stress may promote misincorporation of uracil into DNA, where it is targeted by several DNA glycosylases. We observed that the g.4235T>C (rs2337395 and c.−32A>G (rs3087404 polymorphisms in two genes encoding such glycosylases, UNG and SMUG1, respectively, could be associated with the occurrence of AMD. Polymorphisms in some other DNA repair genes, including XPD (ERCC2, XRCC1 and ERCC6 (CSB have also been reported to be associated with AMD. These data confirm the importance of the cellular reaction to DNA damage, and this may be influenced by variability in DNA repair genes, in AMD pathogenesis.

  9. A role for the malignant brain tumour (MBT domain protein LIN-61 in DNA double-strand break repair by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Nicholas M Johnson

    Full Text Available Malignant brain tumour (MBT domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR for the repair of DNA double-strand breaks (DSBs. lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.

  10. Hsp27, Hsp70 and mismatch repair proteins hMLH1 and hMSH2 expression in peripheral blood lymphocytes from healthy subjects and cancer patients.

    Science.gov (United States)

    Nadin, Silvina Beatriz; Vargas-Roig, Laura M; Drago, Gisela; Ibarra, Jorge; Ciocca, Daniel R

    2007-07-08

    Mismatch repair (MMR) deficiency and higher expression levels of heat shock proteins (Hsps) have been implicated with drug resistance to topoisomerase II poisons (doxorubicin) and to platinum compounds (cisplatin). This study was designed to determine individual influences of doxorubicin and cisplatin treatment on the expression of Hsp27, Hsp70, hMLH1 and hMSH2 proteins and in the DNA damage status in peripheral blood lymphocytes (PBLs). In addition, we studied whether these proteins and the DNA damage correlated with the survival of cancer patients. PBLs from 10 healthy donors and 25 cancer patients (before and after three cycles of chemotherapy) were exposed to in vitro treatments: C (control), HS (heat shock at 42 degrees C), Do or Pt (doxorubicin or cisplatin alone), and HS+Do or HS+Pt (heat shock+doxorubicin or heat shock+cisplatin). PBLs were collected at time 0 (T0: immediately after drug treatment) and after 24h of repair (T24). Hsp27, Hsp70, hMLH1 and hMSH2 were studied by immunocytochemistry and the DNA damage by alkaline comet assay. Immunofluorescence studies and confocal microscopy revealed that hMLH1 and hMSH2 colocalized with Hsp27 and Hsp72 (inducible form of Hsp70). hMLH1 and hMSH2 were significantly induced by Pt and HS+Pt at T24 in cancer patients, but only modestly influenced by Do. Cancer patients presented higher basal expression of total and nuclear Hsp27 and Hsp70 than controls, and these proteins were also increased by HS, Do and HS+Do. The Hsp70 induction by Pt and HS+Pt was noted in cancer patients, especially nuclear Hsp70. In cancer patients, basal DNA damage was slightly higher than in healthy persons; and after Pt and HS+Pt treatments, DNA migration and number of apoptotic cells were higher than controls. Hsps accomplished a cytoprotective function in pre-chemotherapy PBLs (HS before Do or Pt), but not in post-chemotherapy samples. In Pt-treated patients the ratio N/C (nuclear/cytoplasmic) of Hsp27 was related to disease free survival

  11. Mismatch Repair Proteins and Microsatellite Instability in Colorectal Carcinoma (MLH1, MSH2, MSH6 and PMS2): Histopathological and Immunohistochemical Study.

    Science.gov (United States)

    Ismael, Nour El Hoda S; El Sheikh, Samar A; Talaat, Suzan M; Salem, Eman M

    2017-03-15

    Colorectal cancer (CRC) is one of the most common cancers worldwide. Microsatellite instability (MSI) is detected in about 15% of all colorectal cancers. CRC with MSI has particular characteristics such as improved survival rates and better prognosis. They also have a distinct sensitivity to the action of chemotherapy. The aim of the study was to detect microsatellite instability in a cohort of colorectal cancer Egyptian patients using the immunohistochemical expression of mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2). Cases were divided into Microsatellite stable (MSS), Microsatellite unstable low (MSI-L) and Microsatellite unstable high (MSI-H). This Microsatellite stability status was correlated with different clinicopathological parameters. There was a statistically significant correlation between the age of cases, tumor site & grade and the microsatellite stability status. There was no statistically significant correlation between the gender of patients, tumor subtype, stage, mucoid change, necrosis, tumor borders, lymphocytic response, lymphovascular emboli and the microsatellite stability status. Testing for MSI should be done for all colorectal cancer patients, especially those younger than 50 years old, right sided and high-grade CRCs.

  12. Correlations between RNA and protein expression profiles in 23 human cell lines

    Directory of Open Access Journals (Sweden)

    Pontén Fredrik

    2009-08-01

    Full Text Available Abstract Background The Central Dogma of biology holds, in famously simplified terms, that DNA makes RNA makes proteins, but there is considerable uncertainty regarding the general, genome-wide correlation between levels of RNA and corresponding proteins. Therefore, to assess degrees of this correlation we compared the RNA profiles (determined using both cDNA- and oligo-based microarrays and protein profiles (determined immunohistochemically in tissue microarrays of 1066 gene products in 23 human cell lines. Results A high mean correlation coefficient (0.52 was obtained from the pairwise comparison of RNA levels determined by the two platforms. Significant correlations, with correlation coefficients exceeding 0.445, between protein and RNA levels were also obtained for a third of the specific gene products. However, the correlation coefficients between levels of RNA and protein products of specific genes varied widely, and the mean correlations between the protein and corresponding RNA levels determined using the cDNA- and oligo-based microarrays were 0.25 and 0.20, respectively. Conclusion Significant correlations were found in one third of the examined RNA species and corresponding proteins. These results suggest that RNA profiling might provide indirect support to antibodies' specificity, since whenever a evident correlation between the RNA and protein profiles exists, this can sustain that the antibodies used in the immunoassay recognized their cognate antigens.

  13. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1

    International Nuclear Information System (INIS)

    Sebastian, J.; Sancar, G.B.

    1991-01-01

    The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. The authors here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5' flanking sequence beginning 40 base pairs upstream from the coding sequence. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription

  14. Purification, crystallization and preliminary X-ray diffraction analysis of the human mismatch repair protein MutSβ

    International Nuclear Information System (INIS)

    Tseng, Quincy; Orans, Jillian; Hast, Michael A.; Iyer, Ravi R.; Changela, Anita; Modrich, Paul L.; Beese, Lorena S.

    2011-01-01

    Human MutSβ is a 232 kDa heterodimer (MSH2–MSH3) involved in the lesion-recognition step of mismatch repair. Here, the overexpression, purification, biochemical characterization and cocrystallization of MutSβ with a duplex DNA substrate are reported. MutSβ is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutSα (MSH2–MSH6). Although mismatch recognition by MutSα has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutSβ. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutSβ and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported

  15. Sealing ability of mineral trioxide aggregate and Portland cement for furcal perforation repair: a protein leakage study.

    Science.gov (United States)

    Shahi, Shahriar; Rahimi, Saeed; Hasan, Maryam; Shiezadeh, Vahab; Abdolrahimi, Majid

    2009-12-01

    The purpose of this study was to compare the sealing ability of gray mineral trioxide aggregate (GMTA), white MTA (WMTA), and both white and gray Portland cement as furcation perforation repair materials. A total of 120 human mandibular first molars were used. After root canal obturation and preparation of furcal perforations the specimens were randomly divided into four groups of 25 teeth each. In groups A, B, C, and D furcation perforations were filled with WMTA, GMTA, white Portland cement, and type II Portland cement, respectively. Ten teeth were used as positive controls with no filling materials in the perforations and 10 teeth with complete coverage with two layers of nail varnish were used as negative controls. A protein leakage model utilizing 22% bovine serum albumin (BSA) was used for evaluation. Leakage was noted when color conversion of the protein reagent was observed. The controls behaved as expected. Leakage was found in the samples from group A (WMTA), group B (GMTA), and in the two other groups (white and gray Portland cement). There were no statistically significant differences between GMTA and WMTA or white and gray Portland cement, but significant differences were observed between the MTA groups and the Portland cement groups. It was concluded that Portland cements have better sealing ability than MTA, and can be recommended for repair of furcation perforation if the present results are supported by other in vivo and in vitro studies.

  16. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Mullins, D'Anna N; Crawford, Erin L; Khuder, Sadik A; Hernandez, Dawn-Alita; Yoon, Youngsook; Willey, James C

    2005-01-01

    Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC. The putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals. CEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals. We conclude that CEBPG is the transcription factor primarily responsible for regulating

  17. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: Determination of interobserver variability and correlation to clinical outcome after 2 years

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Singer, Philipp; Zeller, Philip; Mandl, Irena; Haller, Joerg; Trattnig, Siegfried

    2006-01-01

    In an observational study, the validity and reliability of magnetic resonance imaging (MRI) for the assessment of autologous chondrocyte transplantation (ACT) in the knee joint was determined. Two years after implantation, high-resolution MRI was used to analyze the repair tissue with nine pertinent variables. A complete filling of the defect was found in 61.5%, and a complete integration of the border zone to the adjacent cartilage in 76.9%. An intact subchondral lamina was present in 84.6% and an intact subchondral bone was present in 61.5%. Isointense signal intensities of the repair tissue compared to the adjacent native cartilage were seen in 92.3%. To evaluate interobserver variability, a reliability analysis with the determination of the intraclass correlation coefficient (ICC) was calculated. An 'almost perfect' agreement, with an ICC value >0.81, was calculated in 8 of 9 variables. The clinical outcome after 2 years showed the visual analog score (VAS) at 2.62 (S.D. ±0.65). The values for the knee injury and osteoarthritis outcome score (KOOS) subgroups were 68.29 (±23.90) for pain, 62.09 (±14.62) for symptoms, 75.45 (±21.91) for ADL function, 52.69 (±28.77) for sport and 70.19 (±22.41) for knee-related quality of life. The clinical scores were correlated with the MRI variables. A statistically significant correlation was found for the variables 'filling of the defect,' 'structure of the repair tissue,' 'changes in the subchondral bone,' and 'signal intensities of the repair issue'. High resolution MRI and well-defined MRI variables are a reliable, reproducible and accurate tool for assessing cartilage repair tissue

  18. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: Determination of interobserver variability and correlation to clinical outcome after 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Mandl, Irena [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Haller, Joerg [Department of Radiology, Hanusch Hospital, Heinrich-Collin-Strasse, A-1140 Vienna (Austria); Trattnig, Siegfried [Department of Radiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    In an observational study, the validity and reliability of magnetic resonance imaging (MRI) for the assessment of autologous chondrocyte transplantation (ACT) in the knee joint was determined. Two years after implantation, high-resolution MRI was used to analyze the repair tissue with nine pertinent variables. A complete filling of the defect was found in 61.5%, and a complete integration of the border zone to the adjacent cartilage in 76.9%. An intact subchondral lamina was present in 84.6% and an intact subchondral bone was present in 61.5%. Isointense signal intensities of the repair tissue compared to the adjacent native cartilage were seen in 92.3%. To evaluate interobserver variability, a reliability analysis with the determination of the intraclass correlation coefficient (ICC) was calculated. An 'almost perfect' agreement, with an ICC value >0.81, was calculated in 8 of 9 variables. The clinical outcome after 2 years showed the visual analog score (VAS) at 2.62 (S.D. {+-}0.65). The values for the knee injury and osteoarthritis outcome score (KOOS) subgroups were 68.29 ({+-}23.90) for pain, 62.09 ({+-}14.62) for symptoms, 75.45 ({+-}21.91) for ADL function, 52.69 ({+-}28.77) for sport and 70.19 ({+-}22.41) for knee-related quality of life. The clinical scores were correlated with the MRI variables. A statistically significant correlation was found for the variables 'filling of the defect,' 'structure of the repair tissue,' 'changes in the subchondral bone,' and 'signal intensities of the repair issue'. High resolution MRI and well-defined MRI variables are a reliable, reproducible and accurate tool for assessing cartilage repair tissue.

  19. The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus.

    Directory of Open Access Journals (Sweden)

    Vladimír Kostál

    Full Text Available BACKGROUND: The Pyrrhocoris apterus (Insecta: Heteroptera adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps and the role of Hsps during repair of heat- and cold-induced injury. PRINCIPAL FINDINGS: The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70 and cognate forms (PaHsc70 were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR and corresponding protein (Western blotting were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. CONCLUSION: Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus.

  20. Phosphorylation states of cell cycle and DNA repair proteins can be altered by the nsSNPs

    International Nuclear Information System (INIS)

    Savas, Sevtap; Ozcelik, Hilmi

    2005-01-01

    Phosphorylation is a reversible post-translational modification that affects the intrinsic properties of proteins, such as structure and function. Non-synonymous single nucleotide polymorphisms (nsSNPs) result in the substitution of the encoded amino acids and thus are likely to alter the phosphorylation motifs in the proteins. In this study, we used the web-based NetPhos tool to predict candidate nsSNPs that either introduce or remove putative phosphorylation sites in proteins that act in DNA repair and cell cycle pathways. Our results demonstrated that a total of 15 nsSNPs (16.9%) were likely to alter the putative phosphorylation patterns of 14 proteins. Three of these SNPs (CDKN1A-S31R, OGG1-S326C, and XRCC3-T241M) have already found to be associated with altered cancer risk. We believe that this set of nsSNPs constitutes an excellent resource for further molecular and genetic analyses. The novel systematic approach used in this study will accelerate the understanding of how naturally occurring human SNPs may alter protein function through the modification of phosphorylation mechanisms and contribute to disease susceptibility

  1. Peritumoral granulomatous reaction in endometrial carcinoma: association with DNA mismatch repair protein deficiency, particularly loss of PMS2 expression.

    Science.gov (United States)

    Stewart, Colin J R; Pearn, Amy; Pachter, Nicholas; Tan, Adeline

    2018-04-30

    The observation of peritumoral granulomatous reactions (PGRs) in two endometrial carcinomas (ECs) with a PMS2-deficient/MLH1-intact expression pattern led us to investigate whether PGRs in EC were specifically associated with DNA mismatch repair (MMR) protein deficiency, particularly PMS2 loss. Hysterectomy specimens from 22 MMR protein-intact and 54 MMR protein-deficient ECs were reviewed with specific attention to the presence of a PGR and a tumour-associated lymphoid reaction [including tumour-infiltrating lymphocytes (TILs) and stromal lymphoid infiltrates]. The MMR protein-deficient ECs included 22 cases with combined MLH1/PMS2 loss, 11 with combined MSH2/MSH6 loss, 11 with isolated MSH6 loss, and 10 with PMS2 loss but intact MLH1 staining (including the two 'index' cases). Overall, PGRs were identified in seven of 54 (13%) MMR protein-deficient ECs, five of which showed a PMS2-deficient/MLH1-intact immunophenotype; three of these patients had germline PMS2 mutations and one additional patient had a germline MSH6 mutation. None of the MMR protein-intact tumours showed a PGR. Although five of the seven PGR-positive ECs had a high-grade histological component, six were stage I. Most ECs with PGRs also showed TILs and stromal lymphoid reactions, similarly to MMR protein-deficient ECs in general. MMR protein-deficient ECs, particularly those with PMS2 loss, occasionally show PGRs in addition to stromal lymphoid infiltrates and TILs. Therefore, PGRs could be considered to constitute a histological prompt for consideration of Lynch syndrome. The potential prognostic significance of PGRs in EC requires further study. © 2018 John Wiley & Sons Ltd.

  2. Postexercise Dietary Protein Strategies to Maximize Skeletal Muscle Repair and Remodeling in Masters Endurance Athletes: A Review.

    Science.gov (United States)

    Doering, Thomas M; Reaburn, Peter R; Phillips, Stuart M; Jenkins, David G

    2016-04-01

    Participation rates of masters athletes in endurance events such as long-distance triathlon and running continue to increase. Given the physical and metabolic demands of endurance training, recovery practices influence the quality of successive training sessions and, consequently, adaptations to training. Research has suggested that, after muscle-damaging endurance exercise, masters athletes experience slower recovery rates in comparison with younger, similarly trained athletes. Given that these discrepancies in recovery rates are not observed after non-muscle-damaging exercise, it is suggested that masters athletes have impairments of the protein remodeling mechanisms within skeletal muscle. The importance of postexercise protein feeding for endurance athletes is increasingly being acknowledged, and its role in creating a positive net muscle protein balance postexercise is well known. The potential benefits of postexercise protein feeding include elevating muscle protein synthesis and satellite cell activity for muscle repair and remodeling, as well as facilitating muscle glycogen resynthesis. Despite extensive investigation into age-related anabolic resistance in sedentary aging populations, little is known about how anabolic resistance affects postexercise muscle protein synthesis and thus muscle remodeling in aging athletes. Despite evidence suggesting that physical training can attenuate but not eliminate age-related anabolic resistance, masters athletes are currently recommended to consume the same postexercise dietary protein dose (approximately 20 g or 0.25 g/kg/meal) as younger athletes. Given the slower recovery rates of masters athletes after muscle-damaging exercise, which may be due to impaired muscle remodeling mechanisms, masters athletes may benefit from higher doses of postexercise dietary protein, with particular attention directed to the leucine content of the postexercise bolus.

  3. Co-evolutionary constraints of globular proteins correlate with their folding rates.

    Science.gov (United States)

    Mallik, Saurav; Kundu, Sudip

    2015-08-04

    Folding rates (lnkf) of globular proteins correlate with their biophysical properties, but relationship between lnkf and patterns of sequence evolution remains elusive. We introduce 'relative co-evolution order' (rCEO) as length-normalized average primary chain separation of co-evolving pairs (CEPs), which negatively correlates with lnkf. In addition to pairs in native 3D contact, indirectly connected and structurally remote CEPs probably also play critical roles in protein folding. Correlation between rCEO and lnkf is stronger in multi-state proteins than two-state proteins, contrasting the case of contact order (co), where stronger correlation is found in two-state proteins. Finally, rCEO, co and lnkf are fitted into a 3D linear correlation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Vitamin K-dependent proteins GAS6 and Protein S and TAM receptors in patients of systemic lupus erythematosus: correlation with common genetic variants and disease activity.

    Science.gov (United States)

    Recarte-Pelz, Pedro; Tàssies, Dolors; Espinosa, Gerard; Hurtado, Begoña; Sala, Núria; Cervera, Ricard; Reverter, Joan Carles; de Frutos, Pablo García

    2013-03-12

    Growth arrest-specific gene 6 protein (GAS6) and protein S (ProS) are vitamin K-dependent proteins present in plasma with important regulatory functions in systems of response and repair to damage. They interact with receptor tyrosine kinases of the Tyro3, Axl and MerTK receptor tyrosine kinase (TAM) family, involved in apoptotic cell clearance (efferocytosis) and regulation of the innate immunity. TAM-deficient mice show spontaneous lupus-like symptoms. Here we tested the genetic profile and plasma levels of components of the system in patients with systemic lupus erythematosus (SLE), and compare them with a control healthy population. Fifty SLE patients and 50 healthy controls with matched age, gender and from the same geographic area were compared. Genetic analysis was performed in GAS6 and the TAM receptor genes on SNPs previously identified. The concentrations of GAS6, total and free ProS, and the soluble forms of the three TAM receptors (sAxl, sMerTK and sTyro3) were measured in plasma from these samples. Plasma concentrations of GAS6 were higher and, total and free ProS were lower in the SLE patients compared to controls, even when patients on oral anticoagulant treatment were discarded. Those parameters correlated with SLE disease activity index (SLEDAI) score, GAS6 being higher in the most severe cases, while free and total ProS were lower. All 3 soluble receptors increased its concentration in plasma of lupus patients. The present study highlights that the GAS6/ProS-TAM system correlates in several ways with disease activity in SLE. We show here that this correlation is affected by common polymorphisms in the genes of the system. These findings underscore the importance of mechanism of regulatory control of innate immunity in the pathology of SLE.

  5. Correlation Study of PVDF Membrane Morphology with Protein Adsorption: Quantitative Analysis by FTIR/ATR Technique

    Science.gov (United States)

    Ideris, N.; Ahmad, A. L.; Ooi, B. S.; Low, S. C.

    2018-05-01

    Microporous PVDF membranes were used as protein capture matrices in immunoassays. Because the most common labels in immunoassays were detected based on the colour change, an understanding of how protein concentration varies on different PVDF surfaces was needed. Herein, the correlation between the membrane pore size and protein adsorption was systematically investigated. Five different PVDF membrane morphologies were prepared and FTIR/ATR was employed to accurately quantify the surface protein concentration on membranes with small pore sizes. SigmaPlot® was used to find a suitable curve fit for protein adsorption and membrane pore size, with a high correlation coefficient, R2, of 0.9971.

  6. Expression of DNA repair proteins MSH2, MLH1 and MGMT in human benign and malignant thyroid lesions: An immunohistochemical study

    Science.gov (United States)

    Giaginis, Constantinos; Michailidi, Christina; Stolakis, Vasileios; Alexandrou, Paraskevi; Tsourouflis, Gerasimos; Klijanienko, Jerzy; Delladetsima, Ioanna; Theocharis, Stamatios

    2011-01-01

    Summary Background DNA repair is a major defense mechanism, which contributes to the maintenance of genetic sequence, and minimizes cell death, mutation rates, replication errors, DNA damage persistence and genomic instability. Alterations in the expression levels of proteins participating in DNA repair mechanisms have been associated with several aspects of cancer biology. The present study aimed to evaluate the clinical significance of DNA repair proteins MSH2, MLH1 and MGMT in benign and malignant thyroid lesions. Material/Methods MSH2, MLH1 and MGMT protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 90 patients with benign and malignant lesions. Results The expression levels of MLH1 was significantly upregulated in cases with malignant compared to those with benign thyroid lesions (p=0.038). The expression levels of MGMT was significantly downregulated in malignant compared to benign thyroid lesions (p=0.001). Similar associations for both MLH1 and MGMT between cases with papillary carcinoma and hyperplastic nodules were also noted (p=0.014 and p=0.026, respectively). In the subgroup of malignant thyroid lesions, MSH2 downregulation was significantly associated with larger tumor size (p=0.031), while MLH1 upregulation was significantly associated with the presence of lymphatic and vascular invasion (p=0.006 and p=0.002, respectively). Conclusions Alterations in the mismatch repair proteins MSH2 and MLH1 and the direct repair protein MGMT may result from tumor development and/or progression. Further studies are recommended to draw definite conclusions on the clinical significance of DNA repair proteins in thyroid neoplasia. PMID:21358597

  7. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40 0 C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40 0 C for 2 hrs before a first dose and maintained at 40 0 C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G 1 -phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35 0 C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs

  8. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40/sub 0/C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40/sup 0/C for 2 hrs before a first dose and maintained at 40/sup 0/C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G/sub 1/-phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35/sup 0/C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs.

  9. CORRELATION OF SPOT URINE ALBUMIN AND 12-HOUR URINE PROTEIN WITH 24-HOUR URINE PROTEIN IN PRE-ECLAMPSIA

    Directory of Open Access Journals (Sweden)

    S. Vinayachandran

    2017-11-01

    Full Text Available BACKGROUND Pre-eclampsia is defined as the development of new-onset hypertension in the second half of pregnancy often accompanied by new-onset proteinuria with other signs and symptoms. Proteinuria is defined by the excretion of 300 mg or more of protein in a 24-hour urine collection. To avoid time consumed in collection of 24-hour urine specimens, efforts have been made to develop faster methods to determine concentration of urine protein. Preliminary studies have suggested that 12-hour urine protein collection maybe adequate for evaluation of pre-eclampsia with advantage of early diagnosis and treatment of pre-eclampsia as well as potential for early hospital discharge and increased compliance with specimen collection. The aim of the study is to evaluate and correlate spot urine albumin and 12-hour urine protein with 24-hour urine protein in pre-eclampsia. MATERIALS AND METHODS A diagnostic evaluation study- a 24-hour urine protein, 12-hour urine protein and spot urine albumin results are analysed. Correlation of 12-hour urine protein and spot urine albumin with 24-hour urine protein is analysed using SPSS software. The strength of correlation was measured by Pearson’s correlation coefficient (r. Student’s t-test and Chi-square tests were used to compare patients with and without 24-hour urine protein ≥300 mg. Probability value of 165 mg with 24-hour urine protein ≥300 mg suggest that this test has role in the evaluation of women with suspected pre-eclampsia and could be substituted for 24-hour urine protein as a simple, faster and cheaper method.

  10. Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity.

    Directory of Open Access Journals (Sweden)

    Volker Hable

    Full Text Available The recruitment kinetics of double-strand break (DSB signaling and repair proteins Mdc1, 53BP1 and Rad52 into radiation-induced foci was studied by live-cell fluorescence microscopy after ion microirradiation. To investigate the influence of damage density and complexity on recruitment kinetics, which cannot be done by UV laser irradiation used in former studies, we utilized 43 MeV carbon ions with high linear energy transfer per ion (LET = 370 keV/µm to create a large fraction of clustered DSBs, thus forming complex DNA damage, and 20 MeV protons with low LET (LET = 2.6 keV/µm to create mainly isolated DSBs. Kinetics for all three proteins was characterized by a time lag period T(0 after irradiation, during which no foci are formed. Subsequently, the proteins accumulate into foci with characteristic mean recruitment times τ(1. Mdc1 accumulates faster (T(0 = 17 ± 2 s, τ(1 = 98 ± 11 s than 53BP1 (T(0 = 77 ± 7 s, τ(1 = 310 ± 60 s after high LET irradiation. However, recruitment of Mdc1 slows down (T(0 = 73 ± 16 s, τ(1 = 1050 ± 270 s after low LET irradiation. The recruitment kinetics of Rad52 is slower than that of Mdc1, but exhibits the same dependence on LET. In contrast, the mean recruitment time τ(1 of 53BP1 remains almost constant when varying LET. Comparison to literature data on Mdc1 recruitment after UV laser irradiation shows that this rather resembles recruitment after high than low LET ionizing radiation. So this work shows that damage quality has a large influence on repair processes and has to be considered when comparing different studies.

  11. Involvement of Werner syndrome protein in MUTYH-mediated repair of oxidative DNA damage

    Czech Academy of Sciences Publication Activity Database

    Kanagaraj, R.; Parasuraman, P.; Mihaljevic, B.; van Loon, B.; Burdová, Kamila; König, C.; Furrer, A.; Bohr, V.A.; Hübscher, U.; Janscak, P.

    2012-01-01

    Roč. 40, č. 17 (2012), s. 8449-8459 ISSN 0305-1048 Grant - others:Swiss National Science Foundation(CH) 31003A-129747/1; Swiss National Science Foundation(CH) 3100-109312/2; Oncosuisse(CH) KLS-02344-02-2009; NIH(US) Z01-AG000726-17 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : DNA repair * oxidative stress * MUTYH * WRN * Pol lambda Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.278, year: 2012

  12. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  13. Duplex Interrogation by a Direct DNA Repair Protein in Search of Base Damage

    Science.gov (United States)

    Yi, Chengqi; Chen, Baoen; Qi, Bo; Zhang, Wen; Jia, Guifang; Zhang, Liang; Li, Charles J.; Dinner, Aaron R.; Yang, Cai-Guang; He, Chuan

    2012-01-01

    ALKBH2 is a direct DNA repair dioxygenase guarding mammalian genome against N1-methyladenine, N3-methylcytosine, and 1,N6-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 displays two novel features: i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability; ii) ALKBH2 does not have nor need a “damage-checking site”, which is critical for preventing spurious base-cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly. PMID:22659876

  14. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture (MF) treatment for adult unstable osteochondritis dissecans (OCD) in the ankle: correlations with clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Hongyue; Lu, Rong; Feng, Xiaoyuan; Chen, Shuang [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Shang, Xiliang; Li, Hong; Hua, Yinghui [Fudan University, Department of Sports Medicine, Huashan Hospital, Shanghai (China)

    2014-08-15

    To quantitatively evaluate cartilage repair after microfracture (MF) for ankle osteochondritis dissecans (OCD) using MRI and analyse correlations between MRI and clinical outcome. Forty-eight patients were recruited and underwent MR imaging, including 3D-DESS, T2-mapping and T2-STIR sequences, and completed American Orthopaedic Foot and Ankle Society (AOFAS) scoring. Thickness index, T2 index of repair tissue (RT) and volume of subchondral bone marrow oedema (BME) were calculated. Subjects were divided into two groups: group A (3-12 months post-op), and group B (12-24 months post-op). Student's t test was used to compare the MRI and AOFAS score between two groups and Pearson's correlation coefficient to analyse correlations between them. Thickness index and AOFAS score of group B were higher than group A (P < 0.001, P < 0.001). T2 index and BME of group B were lower than group A (P < 0.001, P = 0.012). Thickness index, T2 index and BME were all correlated with AOFAS score (r = 0.416, r = -0.475, r = -0.353), but BME was correlated with neither thickness index nor T2 index. Significant improvement from MF can be expected on the basis of the outcomes of quantitative MRI and AOFAS score. MRI was correlated with AOFAS score. BME is insufficient as an independent predictor to evaluate repair quality, but reduction of BME can improve the patient's clinical outcome. (orig.)

  15. Ubiquitin Accumulation on Disease Associated Protein Aggregates Is Correlated with Nuclear Ubiquitin Depletion, Histone De-Ubiquitination and Impaired DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Adi Ben Yehuda

    Full Text Available Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phosphorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggregates and are associated with artificial aggregating luciferase mutants. The longevity of brain neurons depends on their capacity to respond to and repair extensive ongoing DNA damage. Impaired DNA damage response, even modest one, could thus lead to premature neuron aging and mortality.

  16. Analysis of long-range correlation in sequences data of proteins

    OpenAIRE

    ADRIANA ISVORAN; LAURA UNIPAN; DANA CRACIUN; VASILE MORARIU

    2007-01-01

    The results presented here suggest the existence of correlations in the sequence data of proteins. 32 proteins, both globular and fibrous, both monomeric and polymeric, were analyzed. The primary structures of these proteins were treated as time series. Three spatial series of data for each sequence of a protein were generated from numerical correspondences between each amino acid and a physical property associated with it, i.e., its electric charge, its polar character and its dipole moment....

  17. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  18. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  19. 1H-15N correlation spectroscopy of nanocrystalline proteins

    International Nuclear Information System (INIS)

    Morcombe, Corey R.; Paulson, Eric K.; Gaponenko, Vadim; Byrd, R. Andrew; Zilm, Kurt W.

    2005-01-01

    The limits of resolution that can be obtained in 1 H- 15 N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee-Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1 H resonances. Heteronuclear decoupling of 15 N from the 1 H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2 H and 15 N enriched protein where the amides have been exchanged in normal water, MAS at ∼20 kHz, and WALTZ-16 decoupling of the 15 N nuclei. The combination of these techniques results in average 1 H lines of only ∼0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15 N decoupling are described for achieving the best possible performance in these experiments

  20. Structural zinc(II thiolate complexes relevant to the modeling of Ada repair protein: Application toward alkylation reactions

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ibrahim

    2014-11-01

    Full Text Available The TtZn(II-bound perchlorate complex [TtZn–OClO3] 1 (Ttxyly = hydrotris[N-xylyl-thioimidazolyl]borate was used for the synthesis of zinc(II-bound ethanthiothiol complex [TtZn–SCH2CH3] 2 and its hydrogen-bond containing analog Tt–ZnSCH2CH2–NH(COOC(CH33 3. These thiolate complexes were examined as structural models for the active sites of Ada repair protein toward methylation reactions. The Zn[S3O] coordination sphere in complex 1 includes three thione donors from the ligand Ttixyl and one oxygen donor from the perchlorate coligand in ideally tetrahedral arrangement around the zinc center. The average Zn(1–S(thione bond length is 2.344 Å, and the Zn(1–O(1 bond length is 1.917 Å.

  1. Roles of Rad51 protein in homologous recombination in mammalian cells: relation with repair, replication and cell cycle

    International Nuclear Information System (INIS)

    Lambert, S.

    2001-01-01

    Homologous recombination (HR) is a fundamental process, allowing a faithful repair. In mammalian, MmRAD51, which is the homologue of Saccharomyces cerevisiae ScRAD51 key protein for HR, is an essential gene. This work is based on the characterisation of viable hyper and hypo-recombinant cell lines specifically affected in the Rad51 pathway. By expressing wild type and dominant negative forms of MmRad51, we demonstrated that Rad51 pathway participates to the repair by HR to induced DNA damages. However, inhibition of the Rad 51 pathway does not affect cell viability, spontaneously or after irradiation, whereas, radiation induced HR is inhibited. In the presence of DNA damages during late S and G2/M phase, inhibition of Rad51 pathway induced chromosomal aberrations, leading to a transient arrest in mitosis. This arrest is associated with an increased of cell death. However, a fraction of cells can escape from this transient arrest by forming tetraploid cells, associated with an absence of chromalid separation. Thus, in response to impaired Rad51 pathway, mitotic checkpoints seems to play an essential role. In line with this, we showed that the essential function of Rad51 is p53-dependent, which is in agreement with the role of p53 in tetraploidy inhibition. Our results suggest that the Rad51 protein could participate to the control of mitotic checkpoints and thus to the maintenance of genetic stability. This function could involve other Rad51 partners such as the tumour suppressors BRCA1, BRCA2 and p53. (author) [fr

  2. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells

    Directory of Open Access Journals (Sweden)

    R. Heru Prasetyo

    2017-06-01

    Full Text Available Aim: This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Materials and Methods: Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1 expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. Results: There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Conclusion: Honey can improve the liver tissue based on: (1 Mobilization of endogenous stem cells (CD34 and CD45; (2 Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3 regeneration histologically of liver tissue.

  3. Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells.

    Science.gov (United States)

    Prasetyo, R Heru; Hestianah, Eka Pramyrtha

    2017-06-01

    This study was to evaluate effect of honey in repairing damage of liver tissue due to energy protein malnutrition and in mobilization of endogenous stem cells. Male mice model of degenerative liver was obtained through food fasting but still have drinking water for 5 days. It caused energy protein malnutrition and damage of liver tissue. The administration of 50% (v/v) honey was performed for 10 consecutive days, while the positive control group was fasted and not given honey and the negative control not fasted and without honey. Observations of regeneration the liver tissue based on histologically examination, observation of Hsp70 expression, and homing signal based on vascular endothelial growth factor-1 (VEGF-1) expression using immunohistochemistry technique. Observation on expression of CD34 and CD45 as the marker of auto mobilization of hematopoietic stem cells using flow cytometry technique. There is regeneration of the liver tissue due to protein energy malnutrition, decrease of Hsp70 expression, increase of VEGF-1 expression, and high expression of CD34 and CD45. Honey can improve the liver tissue based on: (1) Mobilization of endogenous stem cells (CD34 and CD45); (2) Hsp70 and VEGF-1 expressions as regeneration marker of improvement, and (3) regeneration histologically of liver tissue.

  4. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury(II) and X-rays

    International Nuclear Information System (INIS)

    Cantoni, O.; Costa, M.

    1983-01-01

    Alkaline elution analysis demonstrates that both HgCl 2 and X-rays result in a rapid induction of DNA single-strand breaks at acutely cytotoxic doses (HgCl 2 , 25-100 microM for 60 min; X-rays, 150-600 rads) in cultured Chinese hamster ovary cells. Cytotoxicity, as measured by cell-plating efficiency, correlates linearly with the level of DNA breakage induced by both agents (HgCl 2 , r . 0.97; X-rays, r . 0.99), although a substantial difference in axis intercepts of the two linear regression lines indicates that a higher level of DNA damage was required by X-rays as compared with HgCl 2 to produce an equivalent level of cell killing. DNA damage induced by X-rays was rapidly repaired such that within 1 hr following treatment the elution rate of DNA from treated cells resembled that obtained in untreated cultures. In contrast, DNA damage after Hg 2+ insult was not repaired, and further damage was evident following a similar 1-hr recovery period. Addition of noncytotoxic, non-DNA-damaging concentrations of HgCl 2 (10 microM) to cells 15-45 min following treatment with X-rays greatly inhibited the repair of the DNA strand breaks. Thus, although both HgCl 2 and X-rays induce rapid and striking single-strand breaks in the DNA, persistence of Hg 2+ in the cell can inhibit the repair of these breaks. The inhibition of DNA repair by HgCl 2 may explain why this agent is not severely mutagenic or carcinogenic despite its ability to induce an X-ray-like DNA damage and why a lower level of mercury-induced DNA damage, compared with that induced by X-rays, was required to produce an equivalent level of cell death

  5. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra

    International Nuclear Information System (INIS)

    Vreeswijk, Maaike P.G.; Meijers, Caro M.; Giphart-Gassler, Micheline; Vrieling, Harry; Zeeland, Albert A. van; Mullenders, Leon H.F.; Loenen, Wil A.M.

    2009-01-01

    Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C > T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.

  6. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Yezzi, M.J.

    1985-01-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, was compared to the wild-type cell, CHO-SC1, in single- and split-radiation-dose schemes. When the cultures were incubated at 40 0 C for 2 hrs before a first dose and maintained at 40 0 C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal X-ray damage. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Distinct perturbations in the cell-cycle progression were noted following heat alone or heat with radiation. A delay in the progression of synchronized G 1 -phase and S-phase cells was demonstrated autoradiographically after inhibition of protein synthesis. In addition, treated S-phase cells showed a transient increase in the percent labelled cells after the cells were returned to their normal growth temperature of 35 0 C. This observation was suggestive of an unusual pattern of DNA synthesis during the recovery period. Split-dose experiments were done using incubation with cycloheximide to chemically inhibit protein synthesis. Both the chemical and thermal inhibition of protein synthesis substantiate its necessity for the repair of sublethal damage

  7. The mismatch repair protein MLH1 marks a subset of strongly interfering crossovers in tomato

    NARCIS (Netherlands)

    Lhuissier, F.G.P.; Offenberg, H.H.; Wittich, P.E.; Vischer, N.O.E.; Heyting, C.

    2007-01-01

    In most eukaryotes, the prospective chromosomal positions of meiotic crossovers are marked during meiotic prophase by protein complexes called late recombination nodules (LNs). In tomato (Solanum lycopersicum), a cytological recombination map has been constructed based on LN positions. We

  8. HRR25, a putative protein kinase from budding yeast: Association with repair of damaged DNA

    International Nuclear Information System (INIS)

    Hoekstra, M.F.; Ou, A.C.; DeMaggio, A.J.; Burbee, D.G.; Liskay, R.M.; Heffron, F.

    1991-01-01

    In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH 2 -terminus of HRR25 contains the hallmark features of protein kinases, whereas the COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily

  9. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins

    DEFF Research Database (Denmark)

    Kasten-Pisula, Ulla; Vronskaja, Svetlana; Overgaard, Jens

    2008-01-01

    in the activity of the DNA-PK complex induced upon irradiation. CONCLUSIONS: For normal human fibroblasts, the level or activity of NHEJ proteins measured prior to or after irradiation cannot be used to predict the DSB repair capacity or cellular radiosensitivity. Udgivelsesdato: 2008-Mar......BACKGROUND AND PURPOSE: The aim of the present study was to test whether for normal human fibroblasts the variation in double-strand break (DSB) repair capacity results from radiation-induced differences in localisation, expression or activity of major non-homologous end-joining (NHEJ) proteins....... MATERIALS AND METHODS: Experiments were performed with 11 normal human fibroblast strains AF01-11. NHEJ proteins were determined by Western blot and DNA-PK activity by pulldown-assay. RESULTS: The four NHEJ proteins tested (Ku70, Ku80, XRCC4 and DNA-PKcs) were found to be localised almost exclusively...

  10. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair.

    NARCIS (Netherlands)

    S. Humbert; H. van Vuuren; Y. Lutz; J.H.J. Hoeijmakers (Jan); J-M. Egly (Jean-Marc); V. Moncollin

    1994-01-01

    textabstractThe human BTF2 (TFIIH) transcription factor is a multisubunit protein involved in transcription initiation by RNA polymerase II (B) as well as in DNA repair. In addition to the previously characterized p62 and p89/ERCC3 subunits, we have cloned two other subunits of BTF2, p44 and p34.

  11. MMS2, Encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway

    International Nuclear Information System (INIS)

    Broomfield, S.; Chow, B.L.; Xiao, W.

    1998-01-01

    Among the three Saccharomyces cerevisiae DNA repair epistasis groups, the RAD6 group is the most complicated and least characterized, primarily because it consists of two separate repair pathways: an error-free postreplication repair pathway, and a mutagenesis pathway. The rad6 and rad18 mutants are defective in both pathways, and the rev3 mutant affects only the mutagenesis pathway, but a yeast gene that is involved only in error-free postreplication repair has not been reported. We cloned the MMS2 gene from a yeast genomic library by functional complementation of the mms2-1 mutant [Prakash, L. and Prakash, S. (1977) Genetics 86, 33-55]. MMS2 encodes a 137-amino acid, 15.2-kDa protein with significant sequence homology to a conserved family of ubiquitin-conjugating (Ubc) proteins. However, Mms2 does not appear to possess Ubc activity. Genetic analyses indicate that the mms2 mutation is hypostatic to rad6 and rad18 but is synergistic with the rev3 mutation, and the mms2 mutant is proficient in UV-induced mutagenesis. These phenotypes are reminiscent of a pol30-46 mutant known to be impaired in postreplication repair. The mms2 mutant also displayed a REV3-dependent mutator phenotype, strongly suggesting that the MMS2 gene functions in the error-free postreplication repair pathway, parallel to the REV3 mutagenesis pathway. Furthermore, with respect to UV sensitivity, mms2 was found to be hypostatic to the rad6 delta 1-9 mutation, which results in the absence of the first nine amino acids of Rad6. On the basis of these collective results, we propose that the mms2 null mutation and two other allele-specific mutations, rad6 delta 1-9 and pol30-46, define the error-free mode of DNA postreplication repair, and that these mutations may enhance both spontaneous and DNA damage-induced mutagenesis

  12. Gene-specific correlation of RNA and protein levels in human cells and tissues

    DEFF Research Database (Denmark)

    Edfors, Fredrik; Danielsson, Frida; Hallström, Björn M.

    2016-01-01

    An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring...... to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP...

  13. HHR23A, a human homolog of Saccharomyces cerevisiae Rad23, regulates xeroderma pigmentosum C protein and is required for nucleotide excision repair

    International Nuclear Information System (INIS)

    Hsieh, Hui-Chuan; Hsieh, Yi-Hsuan; Huang, Yu-Hsin; Shen, Fan-Ching; Tsai, Han-Ni; Tsai, Jui-He; Lai, Yu-Ting; Wang, Yu-Ting; Chuang, Woei-Jer; Huang, Wenya

    2005-01-01

    HHR23A and hHR23B are the human homologs of Saccharomyces cerevisiae Rad23. hHR23B is associated with the nucleotide excision repair (NER) factor xeroderma pigmentosum C (XPC) protein and is required for global genome repair. The function of hHR23A is not yet clear. In this study, the potential function of the hHR23A protein was investigated using RNA interference techniques. The hHR23A knock-down (KD) construct diminished the RNA level of hHR23A protein by approximately 60%, and it did not interfere with expression of the hHR23B gene. Based on Southwestern immunoblot and host-cell reactivation assays, hHR23A KD cells were found to be deficient in DNA repair activity against the DNA damage caused by UVC irradiation. In these hHR23A KD cells, the XPC gene was not normally induced by UVC irradiation, indicating that the hHR23A protein is involved in NER through regulation of the DNA damage recognition protein XPC. Co-immunoprecipitation experiments revealed that hHR23A was associated with a small portion of hHR23B and the majority of p53 protein, indicating that hHR23A regulates the function of XPC by its association with the NER activator p53

  14. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of gammaH2AX- and NBS1-positive repair foci

    Czech Academy of Sciences Publication Activity Database

    Suchánková, Jana; Kozubek, Stanislav; Legartová, Soňa; Sehnalová, Petra; Kuntzinger, T.; Bártová, Eva

    2015-01-01

    Roč. 107, č. 12 (2015), s. 440-454 ISSN 0248-4900 R&D Projects: GA ČR(CZ) GBP302/12/G157; GA ČR(CZ) GA13-07822S Institutional support: RVO:68081707 Keywords : Cell cycle * DNA repair * Interphase Subject RIV: BO - Biophysics Impact factor: 2.552, year: 2015

  15. Correlation between centromere protein-F autoantibodies and cancer analyzed by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Welner, Simon; Trier, Nicole Hartwig; Morten Frisch, Morten

    2013-01-01

    Centromere protein-F (CENP-F) is a large nuclear protein of 367 kDa, which is involved in multiple mitosis-related events such as proper assembly of the kinetochores, stabilization of heterochromatin, chromosome alignment and mitotic checkpoint signaling. Several studies have shown a correlation...

  16. Mismatch repair protein deficient endometrioid adenocarcinomas, metastasizing to adrenal gland and lymph nodes: Unusual cases with diagnostic implications

    Directory of Open Access Journals (Sweden)

    Bharat Rekhi

    2015-01-01

    Full Text Available Recently, certain endometrial carcinomas have been found to be associated with mismatch repair (MMR protein defects/deficiency. A 39-year-old female presented with cough, decreased appetite and significant weight loss since 2 months. Earlier, she had undergone total abdominal hysterectomy with bilateral salpingo-oophorectomy (TAH-BSO for endometrioid adenocarcinoma. Imaging disclosed an 8 cm-sized adrenal mass that was surgically excised. Histopathology of the adrenal tumor, endocervical tumor, and endometrial biopsy revealed Federation of Gynecology and Obstetrics (FIGO Grade II to III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were positive for cytokeratin 7, epithelial membrane antigen, PAX8, MLH1 and PMS2 while negative for estrogen receptor (ER, progesterone receptor (PR, MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. A 34-year-old lady presented with vaginal bleeding since 9 months. She underwent TAH-BSO, reported as FIGO Grade III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were negative for ER, PR, MLH1, and PMS2 while positive for MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. However, she developed multiple nodal and pericardial metastases and succumbed to the disease within a year post-diagnosis. Certain high-grade endometrioid adenocarcinomas occurring in younger women are MMR protein deficient and display an aggressive clinical course. Adrenal metastasis in endometrial carcinomas is rare.

  17. Functional analysis of rare variants in mismatch repair proteins augments results from computation-based predictive methods

    Science.gov (United States)

    Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.

    2017-01-01

    ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185

  18. Selenoglutathione Diselenide: Unique Redox Reactions in the GPx-Like Catalytic Cycle and Repairing of Disulfide Bonds in Scrambled Protein.

    Science.gov (United States)

    Shimodaira, Shingo; Asano, Yuki; Arai, Kenta; Iwaoka, Michio

    2017-10-24

    Selenoglutathione (GSeH) is a selenium analogue of naturally abundant glutathione (GSH). In this study, this water-soluble small tripeptide was synthesized in a high yield (up to 98%) as an oxidized diselenide form, i.e., GSeSeG (1), by liquid-phase peptide synthesis (LPPS). Obtained 1 was applied to the investigation of the glutathione peroxidase (GPx)-like catalytic cycle. The important intermediates, i.e., GSe - and GSeSG, besides GSeO 2 H were characterized by 77 Se NMR spectroscopy. Thiol exchange of GSeSG with various thiols, such as cysteine and dithiothreitol, was found to promote the conversion to GSe - significantly. In addition, disproportionation of GSeSR to 1 and RSSR, which would be initiated by heterolytic cleavage of the Se-S bond and catalyzed by the generated selenolate, was observed. On the basis of these redox behaviors, it was proposed that the heterolytic cleavage of the Se-S bond can be facilitated by the interaction between the Se atom and an amino or aromatic group, which is present at the GPx active site. On the other hand, when a catalytic amount of 1 was reacted with scrambled 4S species of RNase A in the presence of NADPH and glutathione reductase, native protein was efficiently regenerated, suggesting a potential use of 1 to repair misfolded proteins through reduction of the non-native SS bonds.

  19. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    Science.gov (United States)

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  20. YfiD from E.coli as a Pfl repair protein

    Czech Academy of Sciences Publication Activity Database

    Kolenko, Petr; Doberenz, C.; Beyer, L.; Sawers, G.; Stubbs, M. T.

    2013-01-01

    Roč. 20, č. 1 (2013), s. 30 ISSN 1211-5894. [Discussions in Structural Molecular Biology /11./. 14.03.2013-16.03.2013, Nové Hrady] R&D Projects: GA MŠk EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : YfiD protein * E. coli Subject RIV: CE - Biochemistry

  1. Radiation affects binding of Fpg repair protein to an abasic site containing DNA

    Czech Academy of Sciences Publication Activity Database

    Gillard, N.; Běgusová, Marie; Castaing, B.; Spotheim-Maurizot, M.

    2004-01-01

    Roč. 162, č. 5 (2004), s. 566-571 ISSN 0033-7587 R&D Projects: GA AV ČR IAA1048103 Institutional research plan: CEZ:AV0Z1048901 Keywords : ionizing radiation * DNA * protein komplex Subject RIV: BO - Biophysics Impact factor: 3.208, year: 2003

  2. Mechanism of recombinant human bone morphogenetic protein-2 in repairing hematopoietic injury in mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Liu Shuibing; Hu Peizhen; Hou Ying; Li Xubo; Tian Qiong; Shi Mei

    2009-01-01

    Objective: To investigate the mechanism of recombinant human bone morphogenetic protein-2 (rhBMP-2) in repairing hematopoietic injury in mice irradiated with γ-ray. To prepare SRY gene probe and study the effect of rhBMP-2 in repairing hematopoietic injury in mice by in situ hybridization. Methods: Twenty-two BALB/c female mice were randomly divided into the irradiated group and BMP treated group, respectively. Bone marrow cells of normal male mice were transplanted into 22 female mice post-irradiation to 8.5 Gy of 60 Co γ rays. The left femurs of the survived female mice were re-irradiated with 9 Gy 14 days later. Mice in BMP treated group were given rhBMP-2 20 mg/kg while those in control group were treated with 0.9% saline by intraperitoneal injection every day for 6 days. These mice were killed 14 days later and paraffin sections of femurs were made. The SRY gene was detected with in situ hybridization. Results: There were more positive blots in the left femurs of the mice in irradiated group than those in BMP treated group (T=155.0, P 0.05). The number of positive blots in the left femurs of the mice in BMPtreated group was significantly less than those in the right femurs of the mice in two groups (T=155.0, 55.0, P<0.05). Conclusions: No donor cell of male mice was detected in the left femurs of BMP treated group, suggesting that rhBMP-2 promoted the restoration of residuary bone marrow cells. Thus, rhBMP-2 promotes the proliferation or differentiation of residuary mesenchymal stem cells, improves hematopoietic microenvironment and accelerates the hematopoietic restoration. (authors)

  3. Programmed Death Ligand 1 Expression Among 700 Consecutive Endometrial Cancers: Strong Association With Mismatch Repair Protein Deficiency.

    Science.gov (United States)

    Li, Zaibo; Joehlin-Price, Amy S; Rhoades, Jennifer; Ayoola-Adeola, Martins; Miller, Karin; Parwani, Anil V; Backes, Floor J; Felix, Ashley S; Suarez, Adrian A

    2018-01-01

    This study aims to determine the prevalence of programmed death ligand 1 (PD-L1) expression in endometrial carcinoma (EC) and determine clinical and pathological associations. Immunohistochemistry for PD-L1 was performed on sections of a triple-core tissue microarray of 700 ECs. Positive PD-L1 expression, defined as 1% of cells staining positive, was evaluated in tumor and stromal compartments. Using age-adjusted logistic regression, we estimated odds ratios and 95% confidence intervals for associations between PD-L1 expression (overall and by staining compartment) with clinical and tumor characteristics. Kaplan-Meier plots and log-rank tests were used to evaluate associations between PD-L1 expression and EC-specific survival. PD-L1 expression was observed in 100 cases (14.3%), including 27 (3.9%) with expression in tumor cells only, 35 (5.0%) with expression in both tumor cells and stroma, and 38 (5.4%) with expression in stroma only. Expression was observed in ECs of different histologic types. Tumors characterized by loss of mismatch repair proteins were significantly associated with tumoral PD-L1 expression (P < 0.0001), but not with stromal PD-L1 expression. Both tumoral and stromal PD-L1 expressions were associated with high-grade endometrioid histology, nonendometrioid histology, and lymphovascular space invasion. We observed no significant associations between PD-L1 expression and EC-specific survival. PD-L1 is expressed in a significant proportion of EC and is associated with mismatch repair deficiency, potentially representing a mechanism of tumor immune evasion and a therapeutic target in EC.

  4. Clinicopathological correlation and prognostic significance of sonic hedgehog protein overexpression in human gastric cancer.

    Science.gov (United States)

    Niu, Yanyang; Li, Fang; Tang, Bo; Shi, Yan; Hao, Yingxue; Yu, Peiwu

    2014-01-01

    This study investigated the expression of Sonic Hedgehog (Shh) protein in gastric cancer, and correlated it with clinicopathological parameters. The prognostic significance of Shh protein was analyzed. Shh protein expression was evaluated in 113 cases of gastric cancer and 60 cases of normal gastric mucosa. The immunoreactivity was scored semi quantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely non-overexpression group with score 0 or 1, and overexpression group with score 2 or 3. The overexpression of Shh protein was correlated with clinicopathological parameters. Survival analysis was then performed to determine the Shh protein prognostic significance in gastric cancer. In immunohistochemistry study, nineteen (31.7%) normal gastric mucosa revealed Shh protein overexpression, while eighty-one (71.7%) gastric cancer revealed overexpression. The expression of Shh protein were significantly higher in gastric cancer tissues than in normal gastric mucosa (P overexpression and non-expression groups P = 0.168 and 0.071). However, Shh overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 1.187, P = 0.041). Shh protein expression is upregulated and is statistically correlated with age, tumor differentiation, depth of invasion, pathologic staging, and nodal metastasis. The Shh protein overexpression is a significant independent prognostic factor in multivariate Cox regression analysis in gastric cancer.

  5. Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma.

    Science.gov (United States)

    Stark, Andreas M; Doukas, Alexander; Hugo, Heinz-Herrmann; Hedderich, Jürgen; Hattermann, Kirsten; Maximilian Mehdorn, H; Held-Feindt, Janka

    2015-02-01

    Methylated O6-methylguanin-DNA-methytransferase (MGMT) promoter methylation is associated with survival in patients with glioblastoma. Current evidence suggests that further mismatch repair genes play a pivotal role in the tumor response to treatment. Candidate genes are MLH1, MSH2, and MSH6. Formerly, we found evidence of prognostic impact of MLH1 and MSH6 immunohistochemical expression in a small series of patients with initial glioblastoma. Two hundred and eleven patients were included who underwent macroscopically total removal of primary glioblastoma and at least one re-craniotomy for recurrence. Immunohistochemical staining was performed on paraffin-embedded specimens of initial tumors with specific antibodies against MLH1, MSH2, and MSH6. RESULTS were compared to the Ki67 proliferation index and patient survival. Additionally, fresh frozen samples from 16 paired initial and recurrent specimens were examined using real-time reverse transcription polymerase chain reaction (RT-PCR) with specific primers against MLH1, MSH2, and MSH6. RESULTS were compared to MGMT status and survival. (1) Immunohistochemical expression of MSH6 was significantly associated with the Ki67 proliferation index (PMLH1, MLH2, and MSH6 over treatment combined with lacking MGMT methylation. In another two patients, decreased MLH1, MSH2, and MSH6 expression was observed in combination with MGMT promoter methylation. Our data indicate that there may be glioblastoma patient subgroups characterized by MMR-expression changes beyond MGMT promoter methylation. The immunohistochemical expression of MLH1, MSH2, and MSH6 in initial glioblastoma is not associated with patient survival.

  6. Investigating Correlation between Protein Sequence Similarity and Semantic Similarity Using Gene Ontology Annotations.

    Science.gov (United States)

    Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir

    2018-01-01

    Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.

  7. Nuclear localization of human DNA mismatch repair protein exonuclease 1 (hEXO1)

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Nielsen, Finn Cilius; Vinther, Lena

    2007-01-01

    interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin beta/alpha1,3,7 whereas hMSH2 specifically recognizes importin beta/alpha3. Taken together, we infer...... that hEXO1, hMLH1 and hMSH2 form complexes and are imported to the nucleus together, and that redundant NLS import signals in the proteins may safeguard nuclear import and thereby MMR activity....

  8. Quantification of anti-nutritional factors and their correlations with protein and oil in soybeans

    Directory of Open Access Journals (Sweden)

    RAFAEL D. BUENO

    Full Text Available ABSTRACT Soybeans contain about 30% carbohydrate, mainly consisting of non-starch polysaccharides (NSP and oligosaccharides. NSP are not hydrolyzed in the gastrointestinal tract of monogastric animals. These NSP negatively affect the development of these animals, especially the soluble fraction. This work aimed to establish a method to quantify NSP in soybeans, using high performance liquid chromatography (HPLC, and to estimate correlations between NSP, oligosaccharides, protein and oil. Sucrose, raffinose + stachyose, soluble and insoluble NSP contents were determined by HPLC. Oil and protein contents were determined by near-infrared spectroscopy (NIRS. The soluble PNAs content showed no significant correlation with protein, oil, sucrose and raffinose + stachyose contents, but oligosaccharides showed a negative correlation with protein content. These findings open up the possibility of developing cultivars with low soluble NSP content, aiming to develop feed for monogastric animals.

  9. Quantification of anti-nutritional factors and their correlations with protein and oil in soybeans.

    Science.gov (United States)

    Bueno, Rafael D; Borges, Leandro L; God, Pedro I V Good; Piovesan, Newton D; Teixeira, Arlindo I; Cruz, Cosme Damião; Barros, Everaldo G DE

    2018-01-01

    Soybeans contain about 30% carbohydrate, mainly consisting of non-starch polysaccharides (NSP) and oligosaccharides. NSP are not hydrolyzed in the gastrointestinal tract of monogastric animals. These NSP negatively affect the development of these animals, especially the soluble fraction. This work aimed to establish a method to quantify NSP in soybeans, using high performance liquid chromatography (HPLC), and to estimate correlations between NSP, oligosaccharides, protein and oil. Sucrose, raffinose + stachyose, soluble and insoluble NSP contents were determined by HPLC. Oil and protein contents were determined by near-infrared spectroscopy (NIRS). The soluble PNAs content showed no significant correlation with protein, oil, sucrose and raffinose + stachyose contents, but oligosaccharides showed a negative correlation with protein content. These findings open up the possibility of developing cultivars with low soluble NSP content, aiming to develop feed for monogastric animals.

  10. Correlation of Fragmented QRS with Right Ventricular Indexes and Fibrosis in Patients with Repaired Tetralogy of Fallot, by Cardiac Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Zahra Alizadeh Sani

    2017-09-01

    Full Text Available Background: Repair of tetralogy of fallot (TOF is associated with diffuse myocardial fibrosis. Cardiac magnetic resonance imaging (CMR can visualize the areas with myocardial fibrosis. Presence of fragmented QRS (fQRS implies the presence of the underlying myocardial scar. Despite the strong association between fQRS and myocardial pathologies, the impact of fQRS with myocardial fibrosis in post-TOF correction is unknown. Objectives: Here, we evaluated the possible predictive role of fQRS in repaired TOF cases and its relationship with cardiac function. Patients and Methods: Thirty two patients with previous history of repaired TOF were enrolled. The extent of fQRS was evaluated according to the number of leads with fQRS. After electrocardiographic evaluation, the participants underwent CMR. Results: Results showed a significant relationship between the right ventricular (RV systolic diameter and fQRS (P = 0.014. Also, an inverse linear relationship was found between the number of fQRS edges and RVEF (r = 0.77, P = 0.0001. The mean QRS duration in those with positive and negative fQRS was 132 mm and 115.8 mm (P = 0.0001. Furthermore, a linear correlation was observed between the number of edges and the percentage of scar tissue (r = 0.88, P = 0.001. However, no relevance between gender and fQRS was detected (P = 0.26, and the relationship between RV diastolic diameter and fQRS was not significant (P = 0.1. Thus, fQRS could be used as a marker of RV systolic dysfunction in patients with tetralogy of fallot. Conclusions: We suggested the fQRS as a surrogate indicator of RV dysfunction in repaired TOF patients and showed that diagnostic and prognostic information of the patients were available by fQRS.

  11. Correlation of 2 hour, 4 hour, 8 hour and 12 hour urine protein with 24 hour urinary protein in preeclampsia.

    Directory of Open Access Journals (Sweden)

    Savita Rani Singhal

    2014-09-01

    Full Text Available To find shortest and reliable time period of urine collection for determination of proteinuria.It is a prospective study carried out on 125 pregnant women with preeclampsia after 20 weeks of gestation having urine albumin >1 using dipstick test. Urine was collected in five different time intervals in colors labeled containers with the assistance of nursing staff; the total collection time was 24 hours. Total urine protein of two-hour, four-hour, eight-hour, 12-hour and 24-hour urine was measured and compared with 24-hour collection. Data was analyzed using the Pearson correlation coefficient.There was significant correlation (p value < 0.01 in two, four, eight and 12-hour urine protein with 24-urine protein, with correlation coefficient of 0.97, 0.97, 0.96 and 0.97, respectively. When a cut off value of 25 mg, 50 mg. 100 mg, and 150 mg for urine protein were used for 2-hour, 4-hours, 8-hour and 12-hour urine collection, a sensitivity of 92.45%, 95.28%, 91.51%, and 96.23% and a specificity of 68.42%, 94.74%, 84.21% and 84.21% were obtained, respectively.Two-hour urine proteins can be used for assessment of proteinuria in preeclampsia instead of gold standard 24-hour urine collection for early diagnosis and better patient compliance.

  12. Post-translational protein modifications in type 1 diabetes: a role for the repair enzyme protein-L-isoaspartate (D-aspartate) O-methyltransferase?

    DEFF Research Database (Denmark)

    Wägner, A M; Cloos, P; Bergholdt, R

    2007-01-01

    that recognises and repairs isomerised Asn and Asp residues in proteins. The aim of this study was to assess the role of PIMT in the development of type 1 diabetes. MATERIALS AND METHODS: Immunohistochemical analysis of 59 normal human tissues was performed with a monoclonal PIMT antibody. CGP3466B, which induces...... expression of Pcmt1, was tested on MIN6 and INS1 cells, to assess its effect on Pcmt1 mRNA and PIMT levels (RT-PCR and western blot) and apoptosis. Forty-five diabetes-prone BioBreeding (BB) Ottawa Karlsburg (OK) rats were randomised to receive 0, 14 or 500 microg/kg (denoted as the control, low......-dose and high-dose group, respectively) of CGP3466B from week 5 to week 20. RESULTS: A high level of PIMT protein was detected in beta cells. CGP3466B induced a two- to threefold increase in Pcmt1 mRNA levels and reduced apoptosis by 10% in MIN6 cells. No significant effect was seen on cytokine...

  13. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  14. Analysis of long-range correlation in sequences data of proteins

    Directory of Open Access Journals (Sweden)

    ADRIANA ISVORAN

    2007-04-01

    Full Text Available The results presented here suggest the existence of correlations in the sequence data of proteins. 32 proteins, both globular and fibrous, both monomeric and polymeric, were analyzed. The primary structures of these proteins were treated as time series. Three spatial series of data for each sequence of a protein were generated from numerical correspondences between each amino acid and a physical property associated with it, i.e., its electric charge, its polar character and its dipole moment. For each series, the spectral coefficient, the scaling exponent and the Hurst coefficient were determined. The values obtained for these coefficients revealed non-randomness in the series of data.

  15. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  16. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2011-07-01

    Full Text Available Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.

  17. Correlation of gene expression and protein production rate - a system wide study

    Directory of Open Access Journals (Sweden)

    Arvas Mikko

    2011-12-01

    Full Text Available Abstract Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR. We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR.

  18. Differential expression of SOS genes in an E. coli mutant producing unstable lexA protein enhances excision repair but inhibits mutagenesis

    International Nuclear Information System (INIS)

    Peterson, K.R.; Ganesan, A.K.; Mount, D.W.; Stanford Univ., CA)

    1986-01-01

    The SOS response is displayed following treatments which damage DNA or inhibit DNA replication. Two associated activities include enhanced capacity for DNA repair resulting from derepression of the recA, uvrA, uvrB and uvrD genes and increased mutagenesis due to derepression of recA, umuC and umuD. These changes are the consequence of the derepression of at least seventeen unlinked operons negatively regulated by LexA repressor. Following treatments that induce the SOS response, a signal molecule interacts with RecA protein, converting it to an activated form. Activated RecA protein facilitates the proteolytic cleavage of LexA repressor, which results in derepression of the regulon. The cell then enters a new physiological state during which time DNA repair processes are augmented. The lexA41 mutant of E. coli is a uv-resistant derivative of another mutant, lexA3, which produces a repressor that is not cleaved following inducing treatments. The resultant protein is unstable. Lac operon fusions to most of the genes in the SOS regulon were used to show that the various damage-inducible genes were derepressed to different extents. uvrA, B, and D were almost fully derepressed. Consistent with this finding, the rate of removal of T4 endonuclease V-sensitive sites was more rapid in the uv-irradiated lexA41 mutant than in normal cells, suggesting a more active excision repair system. We propose that the instability of the LexA41 protein reduces the intracellular concentration of repressor to a level that allows a high level of excision repair. The additional observation that SOS mutagenesis was only weakly induced in a lexA41 uvrA - mutant implies that the mutant protein partially represses one or more genes whose products promote SOS mutagenesis. 17 refs., 4 figs., 1 tab

  19. Prediction of essential proteins based on subcellular localization and gene expression correlation.

    Science.gov (United States)

    Fan, Yetian; Tang, Xiwei; Hu, Xiaohua; Wu, Wei; Ping, Qing

    2017-12-01

    Essential proteins are indispensable to the survival and development process of living organisms. To understand the functional mechanisms of essential proteins, which can be applied to the analysis of disease and design of drugs, it is important to identify essential proteins from a set of proteins first. As traditional experimental methods designed to test out essential proteins are usually expensive and laborious, computational methods, which utilize biological and topological features of proteins, have attracted more attention in recent years. Protein-protein interaction networks, together with other biological data, have been explored to improve the performance of essential protein prediction. The proposed method SCP is evaluated on Saccharomyces cerevisiae datasets and compared with five other methods. The results show that our method SCP outperforms the other five methods in terms of accuracy of essential protein prediction. In this paper, we propose a novel algorithm named SCP, which combines the ranking by a modified PageRank algorithm based on subcellular compartments information, with the ranking by Pearson correlation coefficient (PCC) calculated from gene expression data. Experiments show that subcellular localization information is promising in boosting essential protein prediction.

  20. Is the Oxidative DNA Damage Level of Human Lymphocyte Correlated with the Antioxidant Capacity of Serum or the Base Excision Repair Activity of Lymphocyte?

    Directory of Open Access Journals (Sweden)

    Yi-Chih Tsai

    2013-01-01

    Full Text Available A random screening of human blood samples from 24 individuals of nonsmoker was conducted to examine the correlation between the oxidative DNA damage level of lymphocytes and the antioxidant capacity of serum or the base excision repair (BER activity of lymphocytes. The oxidative DNA damage level was measured with comet assay containing Fpg/Endo III cleavage, and the BER activity was estimated with a modified comet assay including nuclear extract of lymphocytes for enzymatic cleavage. Antioxidant capacity was determined with trolox equivalent antioxidant capacity assay. We found that though the endogenous DNA oxidation levels varied among the individuals, each individual level appeared to be steady for at least 1 month. Our results indicate that the oxidative DNA damage level is insignificantly or weakly correlated with antioxidant capacity or BER activity, respectively. However, lymphocytes from carriers of Helicobacter pylori (HP or Hepatitis B virus (HBV tend to give higher levels of oxidative DNA damage (P<0.05. Though sera of this group of individuals show no particular tendency with reduced antioxidant capacity, the respective BER activities of lymphocytes are lower in average (P<0.05. Thus, reduction of repair activity may be associated with the genotoxic effect of HP or HBV infection.

  1. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    International Nuclear Information System (INIS)

    Taguchi, Kazuhiro; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-01-01

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses

  2. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks

    Directory of Open Access Journals (Sweden)

    Mazo Ilya

    2007-07-01

    . An increase in the number and size of GO groups without any noticeable decrease of the link density within the groups indicated that this expansion significantly broadens the public GO annotation without diluting its quality. We revealed that functional GO annotation correlates mostly with clustering in a physical interaction protein network, while its overlap with indirect regulatory network communities is two to three times smaller. Conclusion Protein functional annotations extracted by the NLP technology expand and enrich the existing GO annotation system. The GO functional modularity correlates mostly with the clustering in the physical interaction network, suggesting that the essential role of structural organization maintained by these interactions. Reciprocally, clustering of proteins in physical interaction networks can serve as an evidence for their functional similarity.

  3. Construction and analysis of protein-protein interaction network correlated with ankylosing spondylitis.

    Science.gov (United States)

    Kanwal, Attiya; Fazal, Sahar

    2018-01-05

    Ankylosing spondylitis, a systemic illness is a foundation of progressing joint swelling that for the most part influences the spine. However, it frequently causes aggravation in different joints far from the spine, and in addition organs, for example, the eyes, heart, lungs, and kidneys. It's an immune system ailment that may be activated by specific sorts of bacterial or viral diseases that initiate an invulnerable reaction that don't close off after the contamination is recuperated. The particular reason for ankylosing spondylitis is obscure, yet hereditary qualities assume a huge part in this condition. The rising apparatuses of network medicine offer a stage to investigate an unpredictable illness at framework level. In this study, we meant to recognize the key proteins and the biological regulator pathways including in AS and further investigating the molecular connectivity between these pathways by the topological examination of the Protein-protein communication (PPI) system. The extended network including of 93 nodes and have 199 interactions respectively scanned from STRING database and some separated small networks. 24 proteins with high BC at the threshold of 0.01 and 55 proteins with large degree at the threshold of 1 have been identified. CD4 with highest BC and Closeness centrality located in the centre of the network. The backbone network derived from high BC proteins presents a clear and visual overview which shows all important regulatory pathways for AS and the crosstalk between them. The finding of this research suggests that AS variation is orchestrated by an integrated PPI network centered on CD4 out of 93 nodes. Ankylosing spondylitis, a systemic disease is an establishment of advancing joint swelling that generally impacts the spine. Be that as it may, it as often as possible causes disturbance in various joints a long way from the spine, and what's more organs. It's a resistant framework affliction that might be actuated by particular sorts

  4. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Directory of Open Access Journals (Sweden)

    Atsushi Kurotani

    2015-08-01

    Full Text Available Recent proteome analyses have reported that intrinsically disordered regions (IDRs of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  5. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae.

    Science.gov (United States)

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-08-20

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  6. The RSF1 histone-remodelling factor facilitates DNA double-strand break repair by recruiting centromeric and Fanconi Anaemia proteins.

    Directory of Open Access Journals (Sweden)

    Fabio Pessina

    2014-05-01

    Full Text Available ATM is a central regulator of the cellular responses to DNA double-strand breaks (DSBs. Here we identify a biochemical interaction between ATM and RSF1 and we characterise the role of RSF1 in this response. The ATM-RSF1 interaction is dependent upon both DSBs and ATM kinase activity. Together with SNF2H/SMARCA5, RSF1 forms the RSF chromatin-remodelling complex. Although RSF1 is specific to the RSF complex, SNF2H/SMARCA5 is a catalytic subunit of several other chromatin-remodelling complexes. Although not required for checkpoint signalling, RSF1 is required for efficient repair of DSBs via both end-joining and homology-directed repair. Specifically, the ATM-dependent recruitment to sites of DSBs of the histone fold proteins CENPS/MHF1 and CENPX/MHF2, previously identified at centromeres, is RSF1-dependent. In turn these proteins recruit and regulate the mono-ubiquitination of the Fanconi Anaemia proteins FANCD2 and FANCI. We propose that by depositing CENPS/MHF1 and CENPX/MHF2, the RSF complex either directly or indirectly contributes to the reorganisation of chromatin around DSBs that is required for efficient DNA repair.

  7. Hoechst 33258 dye generates DNA-protein cross-links during ultraviolet light-induced photolysis of bromodeoxyuridine in replicated and repaired DNA

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xicang; Morgan, W.F.; Cleaver, J.E.

    1986-08-01

    Substitution of bromodeoxyuridine for thymidine in the DNA of mammalian cells sensitizes them to a range of wavelengths of ultraviolet light. Cells are also sensitized to photochemical reactions involving dyes such as Hoechst 33258, which is used to produce differential staining of chromatids according to their bromodeoxyuridine content. Irradiation with 313 nm light of human and hamster cells containing bromodeoxyuridine in their DNA produced single-strand breaks but no DNA-protein cross-links. Irradiation with 360 nm light in the presence of Hoechst 33258 produced extensive DNA-protein cross-linkage as well as single-strand breaks. These cross-links were observed in DNA containing bromodeoxyuridine incorporated by either semiconservative or repair replication. When the protein was removed with proteinase K, bromodeoxyuridine in repair patches after irradiation by doses of ultraviolet (254 nm) light as low as 0.26 J/m/sup 2/ could readily be detected. Hoechst 33258-mediated photolysis, therefore, provides a sensitive new technique for measuring repair replication after ultraviolet light irradiation.

  8. Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario—correlation analysis

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.

    2016-06-01

    The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.

  9. Differentially Regulated Host Proteins Associated with Chronic Rhinosinusitis Are Correlated with the Sinonasal Microbiome

    Directory of Open Access Journals (Sweden)

    Kristi Biswas

    2017-12-01

    Full Text Available The chronic inflammatory nature of chronic rhinosinusitis (CRS makes it a morbid condition for individuals with the disease and one whose pathogenesis is poorly understood. To date, proteomic approaches have been applied successfully in a handful of CRS studies. In this study we use a multifaceted approach, including proteomics (iTRAQ labeling and microbiome (bacterial 16S rRNA gene sequencing analyses of middle meatus swabs, as well as immune cell analysis of the underlying tissue, to investigate the host-microbe interaction in individuals with CRS (n = 10 and healthy controls (n = 9. Of the total 606 proteins identified in this study, seven were significantly (p < 0.05 more abundant and 104 were significantly lower in the CRS cohort compared with healthy controls. The majority of detected proteins (82% of proteins identified were not significantly correlated with disease status. Elevated levels of blood and immune cell proteins in the CRS cohort, together with significantly higher numbers of B-cells and macrophages in the underlying tissue, confirmed the inflammatory status of CRS individuals. Protein PRRC2C and Ras-related protein (RAB14 (two of the seven elevated proteins showed the biggest fold difference between the healthy and CRS groups. Validation of the elevated levels of these two proteins in CRS samples was provided by immunohistochemistry. Members of the bacterial community in the two study cohorts were not associated with PRRC2C, however members of the genus Moraxella did correlate with RAB14 (p < 0.0001, rho = −0.95, which is a protein involved in the development of basement membrane. In addition, significant correlations between certain members of the CRS bacterial community and 33 lower abundant proteins in the CRS cohort were identified. Members of the genera Streptococcus, Haemophilus and Veillonella were strongly correlated with CRS and were significantly associated with a number of proteins with varying functions. The

  10. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes.

    Science.gov (United States)

    Chang, Wing Y; Andrews, Joseph; Carter, David E; Dagnino, Lina

    2006-08-01

    E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.

  11. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein

    International Nuclear Information System (INIS)

    Rodriguez, K.; Talamantez, J.; Huang, W.; Reed, S.H.; Wang, Z.; Chen, L.; Feaver, W.J.; Friedberg, E.C.; Tomkinson, A.E.

    1998-01-01

    The nucleotide excision repair (NER) pathway of eukaryotes involves approximately 30 polypeptides. Reconstitution of this pathway with purified components is consistent with the sequential assembly of NER proteins at the DNA lesion. However, recent studies have suggested that NER proteins may be pre-assembled in a high molecular weight complex in the absence of DNA damage. To examine this model further, we have constructed a histidine-tagged version of the yeast DNA damage recognition protein Rad14. Affinity purification of this protein from yeast nuclear extracts resulted in the co-purification of Rad1, Rad7, Rad10, Rad16, Rad23, RPA, RPB1, and TFIIH proteins, whereas none of these proteins bound to the affinity resin in the absence of recombinant Rad14. Furthermore, many of the co-purifying proteins were present in approximately equimolar amounts. Co-elution of these proteins was also observed when the nuclear extract was fractionated by gel filtration, indicating that the NER proteins were associated in a complex with a molecular mass of >1000 kDa prior to affinity chromatography. The affinity purified NER complex catalyzed the incision of UV-irradiated DNA in an ATP-dependent reaction. We conclude that active high molecular weight complexes of NER proteins exist in undamaged yeast cells

  12. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    International Nuclear Information System (INIS)

    Perazzolo, Chiara; Wist, Julien; Loth, Karine; Poggi, Luisa; Homans, Steve; Bodenhausen, Geoffrey

    2005-01-01

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{C'N} and DQC{C'N}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  13. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  14. Proteomic Analysis of Saliva in HIV-positive Heroin Addicts Reveals Proteins Correlated with Cognition

    Energy Technology Data Exchange (ETDEWEB)

    Dominy, Stephen; Brown, Joseph N.; Ryder, Mark I.; Gritsenko, Marina A.; Jacobs, Jon M.; Smith, Richard D.

    2014-04-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite effective antiretroviral therapies. Multiple etiologies have been proposed over the last few years to account for this phenomenon, including the neurotoxic effects of antiretrovirals and co-morbid substance abuse. However, no underlying molecular mechanism has been identified. Emerging evidence in several fields has linked the gut to brain diseases, but the effect of the gut on the brain during HIV infection has not been explored. Saliva is the most accessible gut biofluid, and is therefore of great scientific interest for diagnostic and prognostic purposes. This study presents a longitudinal, liquid chromatography-mass spectrometry-based quantitative proteomics study investigating saliva samples taken from 8 HIV-positive (HIV+) and 11 -negative (HIV-) heroin addicts. In the HIV+ group, 58 proteins were identified that show significant correlations with cognitive scores and that implicate disruption of protein quality control pathways by HIV. Notably, no proteins from the HIV- heroin addict cohort showed significant correlations with cognitive scores. In addition, the majority of correlated proteins have been shown to be associated with exosomes, allowing us to propose that the salivary glands and/or oral epithelium may modulate brain function during HIV infection through the release of discrete packets of proteins in the form of exosomes.

  15. Photosystem II repair and plant immunity: Lessons learned from Arabidopsis mutant lacking the THYLAKOID LUMEN PROTEIN 18.3

    Directory of Open Access Journals (Sweden)

    Sari eJärvi

    2016-03-01

    Full Text Available Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425. Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.

  16. Effect of laser wavelength and protein solder concentration on acute tissue repair using laser welding: initial results in a canine ureter model.

    Science.gov (United States)

    Wright, E J; Poppas, D P

    1997-01-01

    Successful tissue approximation can be performed using low power laser energy combined with human albumin solder. In vitro studies were undertaken to investigate the acute repair strengths achieved using different laser wavelengths. Furthermore, we evaluated the change in repair strength with that resulted from changes in protein solder concentration. Intraluminal bursting pressure following ureterotomy repair was measured for the following laser wavelengths: 532, 808, 1,320, 2,100, and 10,600 nm. The tissue absorption characteristics of the 808-nm diode and the KTP-532-nm lasers required the addition of the exogenous chromophores indocyanine green and fluorescein, respectively. A 40% human albumin solder was incorporated in the repair of a 1.0-cm longitudinal defect in the canine ureter. Following determination of an optimal welding wavelength, human albumin solder of varying concentrations (25%, 38%, 45%, and 50%) were prepared and tested. The 1,320-nm YAG laser achieved the highest acute bursting pressure and was the most effective in this model. Of the concentrations of albumin tested, 50% human albumin yielded the greatest bursting pressures. We conclude that of the laser wavelengths evaluated, the 1,320-nm YAG achieves the strongest tissue weld in the acute ex vivo dog ureter model. In addition, when this laser system is used, the acute strength of a photothermal weld appears to be directly proportional to the concentration of human albumin solder in the range of 25 to 50%.

  17. Chloroacetaldehyde-induced mutagenesis in Escherichia coli: The role of AlkB protein in repair of 3,N4-ethenocytosine and 3,N4-α-hydroxyethanocytosine

    International Nuclear Information System (INIS)

    Maciejewska, Agnieszka M.; Ruszel, Karol P.; Nieminuszczy, Jadwiga; Lewicka, Joanna; Sokolowska, Beata; Grzesiuk, Elzbieta; Kusmierek, Jaroslaw T.

    2010-01-01

    Etheno (ε) adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate ε-adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of ε-adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (Cupples and Miller (1989) ) which allowed to monitor Lac + revertants, the latter arose by GC → AT or GC → TA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in Escherichia coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of εC proceeds via a relatively stable intermediate, 3,N 4 -α-hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and mug, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA + , alkB + , and mug + controls. Considering the levels of CAA-induced Lac + revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of εC and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs εC and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and εC is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of AlkB protein.

  18. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing.

    Science.gov (United States)

    Zuliani-Alvarez, Lorena; Midwood, Kim S

    2015-05-01

    Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.

  19. The correlation between hs C-reactive protein and left ventricular mass in obese women

    Directory of Open Access Journals (Sweden)

    Idrus Alwi

    2006-06-01

    Full Text Available Plasma C-reactive protein (CRP concentrations are increased in obese individuals. In this study, we examined the correlation between hsCRP and left ventricular mass (LV mass. Fourty five healthy obese women and fourty five healthy non obese women as the controls group were studied by echocardiography and hsCRP. There was no significant correlation between hsCRP and left ventricular mass in obese women (r = 0.29, p 0.06. There was a significant correlation between hs CRP and body mass index (r = 0.46, p 0,002, and also hsCRP and visceral fat (r= 0.33, p 0.03. (Med J Indones 2006; 15:100-4 Keywords: hs C-reactive protein, LV mass, obese women

  20. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  1. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  2. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  3. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  4. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    International Nuclear Information System (INIS)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang; Li, Hong; Hua, Yinghui; Chen, Zhongqing

    2015-01-01

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r s = 0.745, P s = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r s = -0.715, P = 0.002; joint debridement: r s = -0.826, P < 0.001). Significant improvement over time after microfracture can be expected on the basis of the quantitative MRI finding and

  5. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Li, Hong; Hua, Yinghui [Fudan University, Department of Sports Medicine, Huashan Hospital, Shanghai (China); Chen, Zhongqing [Fudan University, Department of Pathology, Huashan Hospital, Shanghai (China)

    2014-11-26

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = 0.745, P < 0.001; joint debridement: r{sub s} = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = -0.715, P = 0.002; joint debridement: r{sub s} = -0.826, P < 0.001). Significant improvement over time after

  6. On the computation of molecular surface correlations for protein docking using fourier techniques.

    Science.gov (United States)

    Sakk, Eric

    2007-08-01

    The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.

  7. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    Science.gov (United States)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Noise genetics: inferring protein function by correlating phenotype with protein levels and localization in individual human cells.

    Directory of Open Access Journals (Sweden)

    Shlomit Farkash-Amar

    2014-03-01

    Full Text Available To understand gene function, genetic analysis uses large perturbations such as gene deletion, knockdown or over-expression. Large perturbations have drawbacks: they move the cell far from its normal working point, and can thus be masked by off-target effects or compensation by other genes. Here, we offer a complementary approach, called noise genetics. We use natural cell-cell variations in protein level and localization, and correlate them to the natural variations of the phenotype of the same cells. Observing these variations is made possible by recent advances in dynamic proteomics that allow measuring proteins over time in individual living cells. Using motility of human cancer cells as a model system, and time-lapse microscopy on 566 fluorescently tagged proteins, we found 74 candidate motility genes whose level or localization strongly correlate with motility in individual cells. We recovered 30 known motility genes, and validated several novel ones by mild knockdown experiments. Noise genetics can complement standard genetics for a variety of phenotypes.

  9. Serum proteins reflecting inflammation, injury and repair as biomarkers of disease activity in ANCA-associated vasculitis

    Science.gov (United States)

    Monach, Paul A; Warner, Roscoe L; Tomasson, Gunnar; Specks, Ulrich; Stone, John H; Ding, Linna; Fervenza, Fernando C; Fessler, Barri J; Hoffman, Gary S; Iklé, David; Kallenberg, Cees GM; Krischer, Jeffrey; Langford, Carol A; Mueller, Mark; Seo, Philip; St. Clair, E William; Spiera, Robert; Tchao, Nadia; Ytterberg, Steven R; Johnson, Kent J; Merkel, Peter A

    2016-01-01

    Objective To identify circulating proteins that distinguish between active anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and remission in a manner complementary to markers of systemic inflammation. Methods Twenty-eight serum proteins representing diverse aspects of the biology of AAV were measured before and 6 months after treatment in a large clinical trial of AAV. Subjects (n=186) enrolled in the Rituximab in ANCA-Associated Vasculitis (RAVE) trial were studied. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels were available for comparison. The primary outcome was the ability of markers to distinguish severe AAV (Birmingham Vasculitis Activity Score for Wegener’s granulomatosis (BVAS/WG)≥3 at screening) from remission (BVAS/WG=0 at month 6), using areas under receiver operating characteristic (ROC) curve (AUC). Results All subjects had severe active vasculitis (median BVAS/WG=8) at screening. In the 137 subjects in remission at month 6, 24 of the 28 markers showed significant declines. ROC analysis indicated that levels of CXCL13 (BCA-1), matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinases-1 (TIMP-1) best discriminated active AAV from remission (AUC>0.8) and from healthy controls (AUC>0.9). Correlations among these markers and with ESR or CRP were low. Conclusions Many markers are elevated in severe active AAV and decline with treatment, but CXCL13, MMP-3 and TIMP-1 distinguish active AAV from remission better than the other markers studied, including ESR and CRP. These proteins are particularly promising candidates for future studies to address unmet needs in the assessment of patients with AAV. PMID:22975753

  10. Assessment of cartilage repair after chondrocyte transplantation with a fibrin-hyaluronan matrix – Correlation of morphological MRI, biochemical T2 mapping and clinical outcome

    International Nuclear Information System (INIS)

    Eshed, Iris; Trattnig, Siegfried; Sharon, Michal; Arbel, Ron; Nierenberg, Gabriel; Konen, Eli; Yayon, Avner

    2012-01-01

    Objective: To evaluate change over time of clinical scores, morphological MRI of cartilage appearance and quantitative T2 values after implantation with BioCart™II, a second generation matrix-assisted implantation system. Methods: Thirty-one patients were recruited 6–49 months post surgery for cartilage defect in the femoral condyle. Subjects underwent MRI (morphological and T2-mapping sequences) and completed the International Knee Documentation Committee (IKDC) questionnaire. MRI scans were scored using the MR Observation of Cartilage Repair Tissue (MOCART) system and cartilage T2-mapping values were registered. Analysis included correlation of IKDC scores, MOCART and T2 evaluation with each other, with implant age and with previous surgical intervention history. Results: IKDC score significantly correlated with MOCART score (r = −0.39, p = 0.031), inversely correlated with previous interventions (r = −0.39, p = 0.034) and was significantly higher in patients with longer follow-up time (p = 0.0028). MOCART score was slight, but not significantly higher in patients with longer term implants (p = 0.199). T2 values were significantly lower in patients with longer duration implants (p < 0.001). This trend was repeated in patients with previous interventions, although to a lesser extent. Conclusions: Significant improvement with time from BioCart™II implantation can be expected by IKDC scoring and MRI T2-mapping values. Patients with previous knee operations can also benefit from this procedure.

  11. Using fluorescence correlation spectroscopy to study conformational changes in denatured proteins.

    Science.gov (United States)

    Sherman, Eilon; Itkin, Anna; Kuttner, Yosef Yehuda; Rhoades, Elizabeth; Amir, Dan; Haas, Elisha; Haran, Gilad

    2008-06-01

    Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.

  12. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan

    International Nuclear Information System (INIS)

    Li, Jingfeng; Jin, Lin; Zhu, Shaobo; Wang, Mingbo; Xu, Shuyun

    2015-01-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP 2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP 2 /PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP 2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP 2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP 2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. (paper)

  13. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  14. Correlation analysis of protein quality characteristics with gluten-free bread properties.

    Science.gov (United States)

    Horstmann, S W; Foschia, M; Arendt, E K

    2017-07-19

    The interest in gluten-free cereal products has increased significantly over the last number of years and there is still a high demand for high quality products. This study aims to establish possible connections between protein properties and dough and bread quality which could advance the knowledge for gluten-free product development. The objective of the present study was to correlate protein properties with bread characteristics. Therefore, a wide range of tests (solubility, emulsifying, foaming, water hydration properties) was performed to characterize a range of food proteins (potato, pea, carob, lupin and soy). Furthermore, the performance of these proteins in a dough matrix (pasting, rheology) and bread formulation (volume, structure, and texture) was analysed. Statistical analysis showed significant (p bread characteristics. The addition of the proteins to the gluten-free bread formulation affected pasting rheological and bread characteristics such as crumb density, crumb hardness and specific volume. The addition of potato and soy protein resulted in the lowest volume with a dense crumb structure and a low consumer acceptance score. However, lupin, pea and carob containing gluten-free breads had a higher specific volume and softer and less dense crumb structure. The protein solubility (r, 0.89; p bread quality.

  15. Clinicopathological characteristics of patients with upper urinary tract urothelial cancer with loss of immunohistochemical expression of the DNA mismatch repair proteins in universal screening.

    Science.gov (United States)

    Urakami, Shinji; Inoshita, Naoko; Oka, Suguru; Miyama, Yu; Nomura, Sachio; Arai, Masami; Sakaguchi, Kazushige; Kurosawa, Kazuhiro; Okaneya, Toshikazu

    2018-02-01

    To assess the detection rate of putative Lynch syndrome-associated upper urinary tract urothelial cancer among all upper urinary tract urothelial cancers and to examine its clinicopathological characteristics. A total of 143 patients with upper urinary tract urothelial cancer who had received total nephroureterectomy were immunohistochemically stained for the expression of mismatch repair proteins MLH1, PMS2, MSH2 and MSH6. For all suspected mismatch repair-deficient cases, MMR genetic testing was recommended and clinicopathological features were examined. Loss of mismatch repair proteins was found in seven patients (5%) who were thus categorized as putative Lynch syndrome-associated upper urinary tract urothelial cancer. Five of these patients showed dual loss of MSH2/MSH6. Two patients were confirmed to be MSH2 germline mutation carriers. Histologically, all seven tumors were low-grade atypical urothelial carcinoma and showed its unique histological features, such as an inverted papilloma-like growth pattern and a villous to papillary structure with mild stratification of tumor cells. Six tumors had no invasion of the muscularis propria. No recurrence or cancer-related deaths were reported in these seven patients. Just three patients met the revised Amsterdam criteria. This is the first report that universally examined mismatch repair immunohistochemical screening for upper urinary tract urothelial cancers. The prevalence (5%) of putative Lynch syndrome-associated upper urinary tract urothelial cancers is much higher than we had expected. We ascertained that putative Lynch syndrome-associated upper urinary tract urothelial cancers were clinically in the early stage and histologically classified into low-grade malignancy with its characteristic pathological features. The clinicopathological characteristics that we found in the present study could become additional possible markers in the diagnosis of Lynch syndrome-associated upper urinary tract urothelial cancers

  16. Correlations for the partition behavior of proteins in aqueous two-phase systems

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Andrews, B.A.; Asenjo, J.A.

    1996-01-01

    to its high hydrophilicity. In the case of subtilisin and trypsin inhibitor, their high concentrations in the top phase were due to their hydrophobic nature (hydrophobic interaction with PEG) and small size (negligible steric exclusion). The maximum concentration in the bottom phase for trypsin inhibitor...... of the overall protein concentration, by the ratio between the ''saturation'' equations of the two individual phases. Better correlations were obtained when an empirical sigmoidal Boltzmann equation was fitted to the data, since in virtually all cases the partition coefficient is constant at low protein...

  17. Importance of dispersion and electron correlation in ab initio protein folding.

    Science.gov (United States)

    He, Xiao; Fusti-Molnar, Laszlo; Cui, Guanglei; Merz, Kenneth M

    2009-04-16

    Dispersion is well-known to be important in biological systems, but the effect of electron correlation in such systems remains unclear. In order to assess the relationship between the structure of a protein and its electron correlation energy, we employed both full system Hartree-Fock (HF) and second-order Møller-Plesset perturbation (MP2) calculations in conjunction with the Polarizable Continuum Model (PCM) on the native structures of two proteins and their corresponding computer-generated decoy sets. Because of the expense of the MP2 calculation, we have utilized the fragment molecular orbital method (FMO) in this study. We show that the sum of the Hartree-Fock (HF) energy and force field (LJ6)-derived dispersion energy (HF + LJ6) is well correlated with the energies obtained using second-order Møller-Plesset perturbation (MP2) theory. In one of the two examples studied, the correlation energy as well as the empirical dispersive energy term was able to discriminate between native and decoy structures. On the other hand, for the second protein we studied, neither the correlation energy nor dispersion energy showed discrimination capabilities; however, the ab initio MP2 energy and the HF+LJ6 both ranked the native structure correctly. Furthermore, when we randomly scrambled the Lennard-Jones parameters, the correlation between the MP2 energy and the sum of the HF energy and dispersive energy (HF+LJ6) significantly drops, which indicates that the choice of Lennard-Jones parameters is important.

  18. Correlation as a Determinant of Configurational Entropy in Supramolecular and Protein Systems

    Science.gov (United States)

    2015-01-01

    For biomolecules in solution, changes in configurational entropy are thought to contribute substantially to the free energies of processes like binding and conformational change. In principle, the configurational entropy can be strongly affected by pairwise and higher-order correlations among conformational degrees of freedom. However, the literature offers mixed perspectives regarding the contributions that changes in correlations make to changes in configurational entropy for such processes. Here we take advantage of powerful techniques for simulation and entropy analysis to carry out rigorous in silico studies of correlation in binding and conformational changes. In particular, we apply information-theoretic expansions of the configurational entropy to well-sampled molecular dynamics simulations of a model host–guest system and the protein bovine pancreatic trypsin inhibitor. The results bear on the interpretation of NMR data, as they indicate that changes in correlation are important determinants of entropy changes for biologically relevant processes and that changes in correlation may either balance or reinforce changes in first-order entropy. The results also highlight the importance of main-chain torsions as contributors to changes in protein configurational entropy. As simulation techniques grow in power, the mathematical techniques used here will offer new opportunities to answer challenging questions about complex molecular systems. PMID:24702693

  19. Contribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein.

    Science.gov (United States)

    Wrzesiński, Michał; Nieminuszczy, Jadwiga; Sikora, Anna; Mielecki, Damian; Chojnacka, Aleksandra; Kozłowski, Marek; Krwawicz, Joanna; Grzesiuk, Elzbieta

    2010-06-01

    In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), alpha-ketoglutarate-dependent dioxygenase that oxidatively demethylates 1meA and 3meC lesions in DNA, with recovery of A and C. Here, we studied the impact of transcription-coupled DNA repair (TCR) on MMS-induced mutagenesis in E. coli strain deficient in functional AlkB protein. Measuring the decline in the frequency of MMS-induced argE3-->Arg(+) revertants under transient amino acid starvation (conditions for TCR induction), we have found a less effective TCR in the BS87 (alkB(-)) strain in comparison with the AB1157 (alkB(+)) counterpart. Mutation in the mfd gene encoding the transcription-repair coupling factor Mfd, resulted in weaker TCR in MMS-treated and starved AB1157 mfd-1 cells in comparison to AB1157 mfd(+), and no repair in BS87 mfd(-) cells. Determination of specificity of Arg(+) revertants allowed to conclude that MMS-induced 1meA and 3meC lesions, unrepaired in bacteria deficient in AlkB, are the source of mutations. These include AT-->TA transversions by supL suppressor formation (1meA) and GC-->AT transitions by supB or supE(oc) formation (3meC). The repair of these lesions is partly Mfd-dependent in the AB1157 mfd-1 and totally Mfd-dependent in the BS87 mfd-1 strain. The nucleotide sequence of the mfd-1 allele shows that the mutated Mfd-1 protein, deprived of the C-terminal translocase domain, is unable to initiate TCR. It strongly enhances the SOS response in the alkB(-)mfd(-) bacteria but not in the alkB(+)mfd(-) counterpart. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Correlation of secretion of retinol and protein by the lacrimal gland

    International Nuclear Information System (INIS)

    Ubels, J.L.; Rismondo, V.

    1986-01-01

    Retinol, which is present in tears, is secreted by the lacrimal gland. Retinol secretion is stimulated by cholinergic drugs and vasoactive intestinal peptide with characteristics very similar to the exocytotic secretion of protein by the lacrimal gland, suggesting that retinol and protein are secreted by similar mechanisms. The authors investigated this by cannulating the lacrimal gland ducts of rabbits and collecting lacrimal gland fluid (LGF) under conditions of maximal flow stimulated by IV injection of pilocarpine (400 μg/kg) every 20 min for 4.5 hr. Over this period LGF protein concentration decreased 36.4% from 22.8 +/- 1.94 mg/ml to 8.29 1.86 mg/ml while retinol decreased 37% from 55.1 +/- 16.2 ng/ml to 20.4 +/- 6.5 ng/ml. The retinol/protein ratio remained constant at 2.88 ng/mg. This demonstrates a strong correlation between retinol and protein secretion, suggesting that retinol may be protein bound. To investigate binding of retinol to LGF protein, LGF was incubated with 3 H-retinol. The bound and unbound retinol were separated on a Lipidex 1000 column. Retinol binding was linear over a range of 1.25-200 nM 3 H-retinol. Binding was not inhibited by PCMBS or addition of a 100-fold excess of unlabeled retinol and was not increased by prior extraction of endogenous retinol from the LGF. This indicates that the binding of retinol to LGF protein is non-specific. Retinol therefore appears to be secreted by the lacrimal gland cells in non-specific association with protein

  1. Nrf1 CNC-bZIP protein promotes cell survival and nucleotide excision repair through maintaining glutathione homeostasis.

    Science.gov (United States)

    Han, Weinong; Ming, Mei; Zhao, Rui; Pi, Jingbo; Wu, Chunli; He, Yu-Ying

    2012-05-25

    Skin cancer is the most common cancer in the United States. Its major environmental risk factor is UVB radiation in sunlight. In response to UVB damage, epidermal keratinocytes activate a specific repair pathway, i.e. nucleotide excision repair, to remove UVB-induced DNA lesions. However, the regulation of UVB response is not fully understood. Here we show that the long isoform of the nuclear factor erythroid 2-related factor 1 (Nrf1, also called NFE2L1), a cytoprotective transcription factor critical for the expression of multiple antioxidant response element-dependent genes, plays an important role in the response of keratinocytes to UVB. Nrf1 loss sensitized keratinocytes to UVB-induced apoptosis by up-regulating the expression of the proapoptotic Bcl-2 family member Bik through reducing glutathione levels. Knocking down Bik reduced UVB-induced apoptosis in Nrf1-inhibited cells. In UVB-irradiated surviving cells, however, disruption of Nrf1 impaired nucleotide excision repair through suppressing the transcription of xeroderma pigmentosum C (XPC), a factor essential for initiating the global genome nucleotide excision repair by recognizing the DNA lesion and recruiting downstream factors. Nrf1 enhanced XPC expression by increasing glutathione availability but was independent of the transcription repressor of XPC. Adding XPC or glutathione restored the DNA repair capacity in Nrf1-inhibited cells. Finally, we demonstrate that Nrf1 levels are significantly reduced by UVB radiation in mouse skin and are lower in human skin tumors than in normal skin. These results indicate a novel role of Nrf1 in UVB-induced DNA damage repair and suggest Nrf1 as a tumor suppressor in the skin.

  2. Right ventricular outflow tract systolic function correlates with exercise capacity in patients with severe right ventricle dilatation after repair of tetralogy of Fallot.

    Science.gov (United States)

    Luo, Shuhua; Li, Jianhua; Yang, Dan; Zhou, Yaxin; An, Qi; Chen, Yucheng

    2017-05-01

    The relationship between exercise capacity and right ventricular (RV) components function in repaired tetralogy of Fallot patients with severely dilated right ventricles is poorly understood. The aim of this study was to characterize the exercise capacity and its relationship to RV global and components function in repaired tetralogy of Fallot patients with RV end-diastolic volume index  >150 ml/m 2 , a currently accepted threshold for pulmonary valve replacement. The medical records and results of cardiac magnetic resonance imaging and cardiopulmonary exercise testing of 25 consecutive eligible patients were reviewed. Twenty age- and gender-matched normal subjects were enrolled as cardiac magnetic resonance control. End-diastolic, end-systolic and stroke volumes, and ejection fraction (EF) were determined for the total RV and its components. Of the 25 patients, 44% maintained normal exercise capacity. RV outlet EF was higher ( P  = 0.02) and RV incisions smaller ( P  = 0.04) in patients with normal exercise capacity than those with subnormal exercise capacity. Predicted peak oxygen consumption correlated better with the RV outflow tract EF than with the EF of other components of the RV or the global EF ( r  = 0.59; P  = 0.002). Multivariate analysis showed the RV outflow tract EF to be the only independent predictor of exercise capacity (ß = 0.442; P  = 0.02). Exercise capacity is preserved in some tetralogy of Fallot patients with severe RV dilatation. RV outflow tract EF is independently associated with exercise capacity in such patients, and could be a reliable determinant of intrinsic RV performance. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  3. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

    DEFF Research Database (Denmark)

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia

    2016-01-01

    to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during...... recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits...

  4. New Measurement for Correlation of Co-evolution Relationship of Subsequences in Protein.

    Science.gov (United States)

    Gao, Hongyun; Yu, Xiaoqing; Dou, Yongchao; Wang, Jun

    2015-12-01

    Many computational tools have been developed to measure the protein residues co-evolution. Most of them only focus on co-evolution for pairwise residues in a protein sequence. However, number of residues participate in co-evolution might be multiple. And some co-evolved residues are clustered in several distinct regions in primary structure. Therefore, the co-evolution among the adjacent residues and the correlation between the distinct regions offer insights into function and evolution of the protein and residues. Subsequence is used to represent the adjacent multiple residues in one distinct region. In the paper, co-evolution relationship in each subsequence is represented by mutual information matrix (MIM). Then, Pearson's correlation coefficient: R value is developed to measure the similarity correlation of two MIMs. MSAs from Catalytic Data Base (Catalytic Site Atlas, CSA) are used for testing. R value characterizes a specific class of residues. In contrast to individual pairwise co-evolved residues, adjacent residues without high individual MI values are found since the co-evolved relationship among them is similar to that among another set of adjacent residues. These subsequences possess some flexibility in the composition of side chains, such as the catalyzed environment.

  5. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  6. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    Science.gov (United States)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  7. KIN17, XPC, DNA-PKCS and XRCC4 proteins in the cellular response to DNA damages. Relations between nucleotide excision repair and non-homologous end joining in a human syn-genic model

    International Nuclear Information System (INIS)

    Despras, Emmanuelle

    2006-01-01

    The response to genotoxic stress involves many cellular factors in a complex network of mechanisms that aim to preserve the genetic integrity of the organism. These mechanisms enclose the detection and repair of DNA lesions, the regulation of transcription and replication and, eventually, the setting of cell death. Among the nuclear proteins involved in this response, kin17 proteins are zinc-finger proteins conserved through evolution and activated by ultraviolet (UV) or ionizing radiations (IR). We showed that human kin17 protein (HSAkin17) is found in the cell under a soluble form and a form tightly anchored to nuclear structures. A fraction of HSAkin17 protein is directly associated with chromatin. HSAkin17 protein is recruited to nuclear structures 24 hours after treatment with various agents inducing DNA double-strand breaks (DSB) and/or replication forks blockage. Moreover, the reduction of total HSAkin17 protein level sensitizes RKO cells to IR. We also present evidence for the involvement of HSAkin17 protein in DNA replication. This hypothesis was further confirmed by the biochemical demonstration of its belonging to the replication complex. HSAkin17 protein could link DNA replication and DNA repair, a defect in the HSAkin17 pathway leading to an increased radiosensitivity. In a second part, we studied the interactions between two DNA repair mechanisms: nucleotide excision repair (NER) and non-homologous end joining (NHEJ). NER repairs a wide variety of lesions inducing a distortion of the DNA double helix including UV-induced pyrimidine dimers. NHEJ allows the repair of DSB by direct joining of DNA ends. We used a syn-genic model for DNA repair defects based on RNA interference developed in the laboratory. Epstein-Barr virus-derived vectors (pEBV) allow long-term expression of siRNA and specific extinction of the targeted gene. The reduction of the expression of genes involved in NER (XPA and XPC) or NHEJ (DNA-PKcs and XRCC4) leads to the expected

  8. Correlation of histopathologic characteristics to protein expression and function in malignant melanoma.

    Directory of Open Access Journals (Sweden)

    Charlotte Welinder

    Full Text Available Metastatic melanoma is still one of the most prevalent skin cancers, which upon progression has neither a prognostic marker nor a specific and lasting treatment. Proteomic analysis is a versatile approach with high throughput data and results that can be used for characterizing tissue samples. However, such analysis is hampered by the complexity of the disease, heterogeneity of patients, tumors, and samples themselves. With the long term aim of quest for better diagnostics biomarkers, as well as predictive and prognostic markers, we focused on relating high resolution proteomics data to careful histopathological evaluation of the tumor samples and patient survival information.Regional lymph node metastases obtained from ten patients with metastatic melanoma (stage III were analyzed by histopathology and proteomics using mass spectrometry. Out of the ten patients, six had clinical follow-up data. The protein deep mining mass spectrometry data was related to the histopathology tumor tissue sections adjacent to the area used for deep-mining. Clinical follow-up data provided information on disease progression which could be linked to protein expression aiming to identify tissue-based specific protein markers for metastatic melanoma and prognostic factors for prediction of progression of stage III disease.In this feasibility study, several proteins were identified that positively correlated to tumor tissue content including IF6, ARF4, MUC18, UBC12, CSPG4, PCNA, PMEL and MAGD2. The study also identified MYC, HNF4A and TGFB1 as top upstream regulators correlating to tumor tissue content. Other proteins were inversely correlated to tumor tissue content, the most significant being; TENX, EHD2, ZA2G, AOC3, FETUA and THRB. A number of proteins were significantly related to clinical outcome, among these, HEXB, PKM and GPNMB stood out, as hallmarks of processes involved in progression from stage III to stage IV disease and poor survival.In this feasibility

  9. Correlation of histopathologic characteristics to protein expression and function in malignant melanoma

    Science.gov (United States)

    Pawłowski, Krzysztof; Szasz, A. Marcell; Yakovleva, Maria; Sugihara, Yutaka; Malm, Johan; Jönsson, Göran; Ingvar, Christian; Lundgren, Lotta; Baldetorp, Bo; Olsson, Håkan; Rezeli, Melinda; Laurell, Thomas; Wieslander, Elisabet; Marko-Varga, György

    2017-01-01

    Background Metastatic melanoma is still one of the most prevalent skin cancers, which upon progression has neither a prognostic marker nor a specific and lasting treatment. Proteomic analysis is a versatile approach with high throughput data and results that can be used for characterizing tissue samples. However, such analysis is hampered by the complexity of the disease, heterogeneity of patients, tumors, and samples themselves. With the long term aim of quest for better diagnostics biomarkers, as well as predictive and prognostic markers, we focused on relating high resolution proteomics data to careful histopathological evaluation of the tumor samples and patient survival information. Patients and methods Regional lymph node metastases obtained from ten patients with metastatic melanoma (stage III) were analyzed by histopathology and proteomics using mass spectrometry. Out of the ten patients, six had clinical follow-up data. The protein deep mining mass spectrometry data was related to the histopathology tumor tissue sections adjacent to the area used for deep-mining. Clinical follow-up data provided information on disease progression which could be linked to protein expression aiming to identify tissue-based specific protein markers for metastatic melanoma and prognostic factors for prediction of progression of stage III disease. Results In this feasibility study, several proteins were identified that positively correlated to tumor tissue content including IF6, ARF4, MUC18, UBC12, CSPG4, PCNA, PMEL and MAGD2. The study also identified MYC, HNF4A and TGFB1 as top upstream regulators correlating to tumor tissue content. Other proteins were inversely correlated to tumor tissue content, the most significant being; TENX, EHD2, ZA2G, AOC3, FETUA and THRB. A number of proteins were significantly related to clinical outcome, among these, HEXB, PKM and GPNMB stood out, as hallmarks of processes involved in progression from stage III to stage IV disease and poor

  10. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    Science.gov (United States)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  11. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    Science.gov (United States)

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  12. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    International Nuclear Information System (INIS)

    Vögeli, Beat

    2017-01-01

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H N –N and H α –C α dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  13. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vögeli, Beat, E-mail: beat.vogeli@ucdenver.edu [University of Colorado Denver, Department of Biochemistry and Molecular Genetics (United States)

    2017-03-15

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H{sup N}–N and H{sup α}–C{sup α} dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  14. [Correlation between gaseous exchange rate, body temperature, and mitochondrial protein content in the liver of mice].

    Science.gov (United States)

    Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E

    2002-01-01

    Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.

  15. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein.

    Science.gov (United States)

    Lannergård, Jonas; Kristensen, Bodil M; Gustafsson, Mattias C U; Persson, Jenny J; Norrby-Teglund, Anna; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2015-10-01

    The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein

    Science.gov (United States)

    Lannergård, Jonas; Kristensen, Bodil M; Gustafsson, Mattias C U; Persson, Jenny J; Norrby-Teglund, Anna; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2015-01-01

    The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack. PMID:26175306

  17. CORRELATION BETWEEN ANGIOTENSIN-CONVERTING ENZYME INHIBITORS LIPOPHILICITY AND PROTEIN BINDING DATA

    Directory of Open Access Journals (Sweden)

    Jasna Trbojević-Stanković

    2012-01-01

    Full Text Available Angiotensin-converting enzyme (ACE inhibitors represent a significant group of drugs primarily used in the treatment of hypertension and congestive heart failure. In this research, seven ACE inhibitors (enalapril, quinapril, fosinopril, lisinopril, cilazapril, ramipril, benazepril were studied to evaluate the relationship between their protein binding and calculated (logP values or ultra-high performance liquid chromatographytandem mass spectrometry (UHPLC-MS and reversed-phase thin-layer chromatography (RP-TLC lipophilicity data (ϕ0, CHI or C0 parameters, respectively. Their protein binding data varied from negligible (lisinopril to 99% (fosinopril, while calculated logPKOWWINvalues ranged from -0.94 (lisinopril to 6.61 (fosinopril. The good correlations were established between protein binding values and logPKOWWIN data (R2=0.7520 as well as between protein binding and chromatographic hydrophobicity data, ϕ0, CHI or C0parameters (R2 were 0.6160, 0.6242 and 0.6547, respectively. The possible application of hydrophobicity data in drugs protein binding evaluation can be of great importance in drug bioavailability.

  18. Analysis of DNA repair in XP-HeLa hybrids; lack of correlation between excision repair of u.v. damage and adenovirus reactivation in an XP(D)-like cell line

    International Nuclear Information System (INIS)

    Johnson, R.Y.; Squires, S.; Elliott, G.C.

    1986-01-01

    Hybrids formed between HeLa cells and fibroblasts from xeroderma pigmentosum group D show either HeLa sensitivity or XPD-like hypersensitivity to u.v. radiation and corresponding high or low excision repair capability. Hybrids with low repair are presumed to have lost, via chromosome segregation, the HeLa wild type D alleles. The u.v. sensitivity and excision repair capability of another hybrid, HD1A, derived spontaneously from the normally sensitive hybrid HD1 are analyzed. While HD1A closely resembles the XPD phenotype in terms of u.v. sensitivity and excision repair it differs from XPD because of its ability to reactivate u.v.-irradiated adenovirus 2 to an extent similar to that of its HeLa parent. This capacity functionally dissociates excision repair of chromatin-based damage from damage in a viral environment. Moreover, on the basis of complementation studies the excision repair of genomic damage by HD1A is subtly different from that of a true XPD-like hybrid, HD2. The data are discussed in terms of a second change in the defective D allele of the HD1A cell. (author)

  19. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    International Nuclear Information System (INIS)

    Wessendorf, Petra; Vijg, Jan; Nussenzweig, André; Digweed, Martin

    2014-01-01

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin

  20. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  1. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    Science.gov (United States)

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Correlation of protein content to flatulent galactooligosaccharides and exogenous amino acids in seeds of Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Ryszard Kosson

    2014-01-01

    Full Text Available In order to estimate the possible correlations among constituents of Phaseolus vulgaris seeds, the contents of protein, exogenous amino acids and flatulent galactooligosaccharides (raffinose and stachyose were analyzed in 16 Polish bean cultivars for dry seeds. A negative correlation coefficient (r =-0.9490 was found between protein and methionine contents. High positive correlations among exogenous amino acids, such as lysine and isoleucine, valine and isoleucine, lysine and tyrosine, were observed indicating a chance of selecting far more than one at a time. The small-seeded bean cultivars contained higher contents of protein and galactooligosaccharides than the large-seeded ones.

  3. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lihua [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053 (China); Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wang, Xiong; Huselstein, Celine [Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54500 Vandoeuvre-lès-Nancy (France); Chen, Yun, E-mail: yunchen@whu.edu.cn [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-02-20

    conduits in the field of nerve tissue engineering. - Highlights: • A novel nerve conduit was constructed and applied to repair nerve defect in rats. • Transparent hollow cellulose/soy protein isolate tube was used as conduit matrix. • Pyrroloquinoline quinine was adsorbed into the hollow tube as nerve growth factor. • Schwann cells were cultured into the hollow tube as seed cells. • The new nerve conduit could repair and reconstruct the peripheral nerve defects.

  4. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Shu Ki Tsoi

    2015-01-01

    Full Text Available Group A streptococcus (GAS is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.

  5. Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus

    Science.gov (United States)

    Smeesters, Pierre R.; Frost, Hannah R. C.; Steer, Andrew C.

    2015-01-01

    Group A streptococcus (GAS) is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates. PMID:26101780

  6. Polyglutamine variation in a flowering time protein correlates with island age in a Hawaiian plant radiation

    Directory of Open Access Journals (Sweden)

    Laakkonen Liisa

    2007-07-01

    Full Text Available Abstract Background A controversial topic in evolutionary developmental biology is whether morphological diversification in natural populations can be driven by expansions and contractions of amino acid repeats in proteins. To promote adaptation, selection on protein length variation must overcome deleterious effects of multiple correlated traits (pleiotropy. Thus far, systems that demonstrate this capacity include only ancient or artificial morphological diversifications. The Hawaiian Islands, with their linear geological sequence, present a unique environment to study recent, natural radiations. We have focused our research on the Hawaiian endemic mints (Lamiaceae, a large and diverse lineage with paradoxically low genetic variation, in order to test whether a direct relationship between coding-sequence repeat diversity and morphological change can be observed in an actively evolving system. Results Here we show that in the Hawaiian mints, extensive polyglutamine (CAG codon repeat polymorphism within a homolog of the pleiotropic flowering time protein and abscisic acid receptor FCA tracks the natural environmental cline of the island chain, consequent with island age, across a period of 5 million years. CAG expansions, perhaps following their natural tendency to elongate, are more frequent in colonists of recently-formed, nutrient-rich islands than in their forebears on older, nutrient-poor islands. Values for several quantitative morphological variables related to reproductive investment, known from Arabidopsis fca mutant studies, weakly though positively correlate with increasing glutamine tract length. Together with protein modeling of FCA, which indicates that longer polyglutamine tracts could induce suboptimally mobile functional domains, we suggest that CAG expansions may form slightly deleterious alleles (with respect to protein function that become fixed in founder populations. Conclusion In the Hawaiian mint FCA system, we infer that

  7. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    Science.gov (United States)

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies

    Directory of Open Access Journals (Sweden)

    Keskin Ozlem

    2007-05-01

    Full Text Available Abstract Background How antibodies recognize and bind to antigens can not be totally explained by rigid shape and electrostatic complimentarity models. Alternatively, pre-existing equilibrium hypothesis states that the native state of an antibody is not defined by a single rigid conformation but instead with an ensemble of similar conformations that co-exist at equilibrium. Antigens bind to one of the preferred conformations making this conformation more abundant shifting the equilibrium. Results Here, two antibodies, a germline antibody of 36–65 Fab and a monoclonal antibody, SPE7 are studied in detail to elucidate the mechanism of antibody-antigen recognition and to understand how a single antibody recognizes different antigens. An elastic network model, Anisotropic Network Model (ANM is used in the calculations. Pre-existing equilibrium is not restricted to apply to antibodies. Intrinsic fluctuations of eight proteins, from different classes of proteins, such as enzymes, binding and transport proteins are investigated to test the suitability of the method. The intrinsic fluctuations are compared with the experimentally observed ligand induced conformational changes of these proteins. The results show that the intrinsic fluctuations obtained by theoretical methods correlate with structural changes observed when a ligand is bound to the protein. The decomposition of the total fluctuations serves to identify the different individual modes of motion, ranging from the most cooperative ones involving the overall structure, to the most localized ones. Conclusion Results suggest that the pre-equilibrium concept holds for antibodies and the promiscuity of antibodies can also be explained this hypothesis: a limited number of conformational states driven by intrinsic motions of an antibody might be adequate to bind to different antigens.

  9. WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome

    International Nuclear Information System (INIS)

    Nunez, María I; Mills, Gordon B; Aldaz, C Marcelo; Rosen, Daniel G; Ludes-Meyers, John H; Abba, Martín C; Kil, Hyunsuk; Page, Robert; Klein-Szanto, Andres JP; Godwin, Andrew K; Liu, Jinsong

    2005-01-01

    The putative tumor suppressor WWOX gene spans the common chromosomal fragile site 16D (FRA16D) at chromosome area 16q23.3-24.1. This region is a frequent target for loss of heterozygosity and chromosomal rearrangement in ovarian, breast, hepatocellular, prostate carcinomas and other neoplasias. The goal of these studies was to evaluate WWOX protein expression levels in ovarian carcinomas to determine if they correlated with clinico-pathological parameters, thus providing additional support for WWOX functioning as a tumor suppressor. We performed WWOX protein expression analyses by means of immunobloting and immunohistochemistry on normal ovaries and specific human ovarian carcinoma Tissue Microarrays (n = 444). Univariate analysis of clinical-pathological parameters based on WWOX staining was determined by χ 2 test with Yates' correction. The basic significance level was fixed at p < 0.05. Immunoblotting analysis from normal ovarian samples demonstrated consistently strong WWOX expression while 37% ovarian carcinomas showed reduced or undetectable WWOX protein expression levels. The immunohistochemistry of normal human ovarian tissue sections confirmed strong WWOX expression in ovarian surface epithelial cells and in epithelial inclusion cysts within the cortex. Out of 444 ovarian carcinoma samples analyzed 30% of tumors showed lack of or barely detectable WWOX expression. The remaining ovarian carcinomas (70%) stained moderately to strongly positive for this protein. The two histotypes showing significant loss of WWOX expression were of the Mucinous (70%) and Clear Cell (42%) types. Reduced WWOX expression demonstrated a significant association with clinical Stage IV (FIGO) (p = 0.007), negative Progesterone Receptor (PR) status (p = 0.008) and shorter overall survival (p = 0.03). These data indicate that WWOX protein expression is highly variable among ovarian carcinoma histotypes. It was also observed that subsets of ovarian tumors demonstrated loss of

  10. Role of DNA Repair Factor Xeroderma Pigmentosum Protein Group C in Response to Replication Stress As Revealed by DNA Fragile Site Affinity Chromatography and Quantitative Proteomics.

    Science.gov (United States)

    Beresova, Lucie; Vesela, Eva; Chamrad, Ivo; Voller, Jiri; Yamada, Masayuki; Furst, Tomas; Lenobel, Rene; Chroma, Katarina; Gursky, Jan; Krizova, Katerina; Mistrik, Martin; Bartek, Jiri

    2016-12-02

    Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.

  11. Cyclosporin A inhibits nucleotide excision repair via downregulation of the xeroderma pigmentosum group A and G proteins, which is mediated by calcineurin inhibition.

    Science.gov (United States)

    Kuschal, Christiane; Thoms, Kai-Martin; Boeckmann, Lars; Laspe, Petra; Apel, Antje; Schön, Michael P; Emmert, Steffen

    2011-10-01

    Cyclosporin A (CsA) inhibits nucleotide excision repair (NER) in human cells, a process that contributes to the skin cancer proneness in organ transplant patients. We investigated the mechanisms of CsA-induced NER reduction by assessing all xeroderma pigmentosum (XP) genes (XPA-XPG). Western blot analyses revealed that XPA and XPG protein expression was reduced in normal human GM00637 fibroblasts exposed to 0.1 and 0.5 μm CsA. Interestingly, the CsA treatment reduced XPG, but not XPA, mRNA expression. Calcineurin knockdown in GM00637 fibroblasts using RNAi led to similar results suggesting that calcineurin-dependent signalling is involved in XPA and XPG protein regulation. CsA-induced reduction in NER could be complemented by the overexpression of either XPA or XPG protein. Likewise, XPA-deficient fibroblasts with stable overexpression of XPA (XP2OS-pCAH19WS) did not show the inhibitory effect of CsA on NER. In contrast, XPC-deficient fibroblasts overexpressing XPC showed CsA-reduced NER. Our data indicate that the CsA-induced inhibition of NER is a result of downregulation of XPA and XPG protein in a calcineurin-dependent manner. © 2011 John Wiley & Sons A/S.

  12. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents.

    Science.gov (United States)

    Francia, Giulio; Green, Shane K; Bocci, Guido; Man, Shan; Emmenegger, Urban; Ebos, John M L; Weinerman, Adina; Shaked, Yuval; Kerbel, Robert S

    2005-10-01

    Similar to other anticancer agents, intrinsic or acquired resistance to DNA-damaging chemotherapeutics is a major obstacle for cancer therapy. Current strategies aimed at overcoming this problem are mostly based on the premise that tumor cells acquire heritable genetic mutations that contribute to drug resistance. Here, we present evidence for an epigenetic, tumor cell adhesion-mediated, and reversible form of drug resistance that is associated with a reduction of DNA mismatch repair proteins PMS2 and/or MLH1 as well as other members of this DNA repair process. Growth of human breast cancer, human melanoma, and murine EMT-6 breast cancer cell lines as multicellular spheroids in vitro, which is associated with increased resistance to many chemotherapeutic drugs, including alkylating agents, is shown to lead to a reproducible down-regulation of PMS2, MLH1, or, in some cases, both as well as MHS6, MSH3, and MSH2. The observed down-regulation is in part reversible by treatment of tumor spheroids with the DNA-demethylating agent, 5-azacytidine. Thus, treatment of EMT-6 mouse mammary carcinoma spheroids with 5-azacytidine resulted in reduced and/or disrupted cell-cell adhesion, which in turn sensitized tumor spheroids to cisplatin-mediated killing in vitro. Our results suggest that antiadhesive agents might sensitize tumor spheroids to alkylating agents in part by reversing or preventing reduced DNA mismatch repair activity and that the chemosensitization properties of 5-azacytidine may conceivably reflect its role as a potential antiadhesive agent as well as reversal agent for MLH1 gene silencing in human tumors.

  13. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  14. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.

    Science.gov (United States)

    Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan

    2016-05-05

    Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.

  15. Expression of LDL receptor-related proteins (LRPs in common solid malignancies correlates with patient survival.

    Directory of Open Access Journals (Sweden)

    Steven L Gonias

    Full Text Available LDL receptor-related proteins (LRPs are transmembrane receptors involved in endocytosis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused on LRPs in the fields of vascular biology and neurobiology. How these receptors affect cancer progression in humans remains largely unknown. Herein, we mined provisional databases in The Cancer Genome Atlas (TCGA to compare expression of thirteen LRPs in ten common solid malignancies in patients. Our first goal was to determine the abundance of LRP mRNAs in each type of cancer. Our second goal was to determine whether expression of LRPs is associated with improved or worsened patient survival. In total, data from 4,629 patients were mined. In nine of ten cancers studied, the most abundantly expressed LRP was LRP1; however, a correlation between LRP1 mRNA expression and patient survival was observed only in bladder urothelial carcinoma. In this malignancy, high levels of LRP1 mRNA were associated with worsened patient survival. High levels of LDL receptor (LDLR mRNA were associated with decreased patient survival in pancreatic adenocarcinoma. High levels of LRP10 mRNA were associated with decreased patient survival in hepatocellular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma. LRP2 was the only LRP for which high levels of mRNA expression correlated with improved patient survival. This correlation was observed in renal clear cell carcinoma. Insights into LRP gene expression in human cancers and their effects on patient survival should guide future research.

  16. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  17. C. elegans ring finger protein RNF-113 is involved in interstrand DNA crosslink repair and interacts with a RAD51C homolog.

    Directory of Open Access Journals (Sweden)

    Hyojin Lee

    Full Text Available The Fanconi anemia (FA pathway recognizes interstrand DNA crosslinks (ICLs and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans. Here we report that RNF-113, a ubiquitin ligase, is required for RAD-51 focus formation after inducing ICLs in C. elegans. However, the formation of foci of RPA-1 or FCD-2/FANCD2 in the FA pathway was not affected by depletion of RNF-113. Nevertheless, the RPA-1 foci formed did not disappear with time in the depleted worms, implying serious defects in ICL repair. As a result, RNF-113 depletion increased embryonic lethality after ICL treatment in wild-type worms, but it did not increase the ICL-induced lethality of rfs-1/rad51C mutants. In addition, the persistence of RPA-1 foci was suppressed in doubly-deficient rnf-113;rfs-1 worms, suggesting that there is an epistatic interaction between the two genes. These results lead us to suggest that RNF-113 and RFS-1 interact to promote the displacement of RPA-1 by RAD-51 on single-stranded DNA derived from ICLs.

  18. Search for novel remedies to augment radiation resistance of inhabitants of Fukushima and Chernobyl disasters: identifying DNA repair protein XRCC4 inhibitors.

    Science.gov (United States)

    Sun, Mao-Feng; Chen, Hsin-Yi; Tsai, Fuu-Jen; Lui, Shu-Hui; Chen, Chih-Yi; Chen, Calvin Yu-Chian

    2011-10-01

    Two nuclear plant disasters occurring within a span of 25 years threaten health and genome integrity both in Fukushima and Chernobyl. Search for remedies capable of enhancing DNA repair efficiency and radiation resistance in humans appears to be a urgent problem for now. XRCC4 is an important enhancer in promoting repair pathway triggered by DNA double-strand break (DSB). In the context of radiation therapy, active XRCC4 could reduce DSB-mediated apoptotic effect on cancer cells. Hence, developing XRCC4 inhibitors could possibly enhance radiotherapy outcomes. In this study, we screened traditional Chinese medicine (TCM) database, TCM Database@Taiwan, and have identified three potent inhibitor agents against XRCC4. Through molecular dynamics simulation, we have determined that the protein-ligand interactions were focused at Lys188 on chain A and Lys187 on chain B. Intriguingly, the hydrogen bonds for all three ligands fluctuated frequently but were held at close approximation. The pi-cation interactions and ionic interactions mediated by o-hydroxyphenyl and carboxyl functional groups respectively have been demonstrated to play critical roles in stabilizing binding conformations. Based on these results, we reported the identification of potential radiotherapy enhancers from TCM. We further characterized the key binding elements for inhibiting the XRCC4 activities.

  19. Synapsis-defective mutants reveal a correlation between chromosome conformation and the mode of double-strand break repair during Caenorhabditis elegans meiosis.

    Science.gov (United States)

    Smolikov, Sarit; Eizinger, Andreas; Hurlburt, Allison; Rogers, Eric; Villeneuve, Anne M; Colaiácovo, Mónica P

    2007-08-01

    SYP-3 is a new structural component of the synaptonemal complex (SC) required for the regulation of chromosome synapsis. Both chromosome morphogenesis and nuclear organization are altered throughout the germlines of syp-3 mutants. Here, our analysis of syp-3 mutants provides insights into the relationship between chromosome conformation and the repair of meiotic double-strand breaks (DSBs). Although crossover recombination is severely reduced in syp-3 mutants, the production of viable offspring accompanied by the disappearance of RAD-51 foci suggests that DSBs are being repaired in these synapsis-defective mutants. Our studies indicate that once interhomolog recombination is impaired, both intersister recombination and nonhomologous end-joining pathways may contribute to repair during germline meiosis. Moreover, our studies suggest that the conformation of chromosomes may influence the mode of DSB repair employed during meiosis.

  20. Persistence of Repair Proteins at Unrepaired DNA Damage Distinguishes Diseases with ERCC2 (XPD) Mutations: Cancer-Prone Xeroderma Pigmentosum vs. Non-Cancer-Prone Trichothiodystrophy

    Science.gov (United States)

    Boyle, Jennifer; Ueda, Takahiro; Oh, Kyu-Seon; Imoto, Kyoko; Tamura, Deborah; Jagdeo, Jared; Khan, Sikandar G.; Nadem, Carine; DiGiovanna, John J.; Kraemer, Kenneth H.

    2012-01-01

    Patients with xeroderma pigmentosum (XP) have a 1,000-fold increase in ultraviolet (UV)-induced skin cancers while trichothiodystrophy (TTD) patients, despite mutations in the same genes, ERCC2 (XPD) or ERCC3 (XPB), are cancer-free. Unlike XP cells, TTD cells have a nearly normal rate of removal of UV-induced 6-4 photoproducts (6-4PP) in their DNA and low levels of the basal transcription factor, TFIIH. We examined seven XP, TTD, and XP/TTD complex patients and identified mutations in the XPD gene. We discovered large differences in nucleotide excision repair (NER) protein recruitment to sites of localized UV damage in TTD cells compared to XP or normal cells. XPC protein was rapidly localized in all cells. XPC was redistributed in TTD, and normal cells by 3 hr postirradiation, but remained localized in XP cells at 24-hr postirradiation. In XP cells recruitment of other NER proteins (XPB, XPD, XPG, XPA, and XPF) was also delayed and persisted at 24 hr (p < 0.001). In TTD cells with defects in the XPD, XPB, or GTF2H5 (TTDA) genes, in contrast, recruitment of these NER proteins was reduced compared to normals at early time points (p < 0.001) and remained low at 24 hr postirradiation. These data indicate that in XP persistence of NER proteins at sites of unrepaired DNA damage is associated with greatly increased skin cancer risk possibly by blockage of translesion DNA synthesis. In contrast, in TTD, low levels of unstable TFIIH proteins do not accumulate at sites of unrepaired photoproducts and may permit normal translesion DNA synthesis without increased skin cancer. PMID:18470933

  1. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  2. Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions.

    Science.gov (United States)

    Götz, Markus; Wortmann, Philipp; Schmid, Sonja; Hugel, Thorsten

    2018-01-30

    Single-molecule Förster resonance energy transfer (smFRET) has become a widely used biophysical technique to study the dynamics of biomolecules. For many molecular machines in a cell proteins have to act together with interaction partners in a functional cycle to fulfill their task. The extension of two-color to multi-color smFRET makes it possible to simultaneously probe more than one interaction or conformational change. This not only adds a new dimension to smFRET experiments but it also offers the unique possibility to directly study the sequence of events and to detect correlated interactions when using an immobilized sample and a total internal reflection fluorescence microscope (TIRFM). Therefore, multi-color smFRET is a versatile tool for studying biomolecular complexes in a quantitative manner and in a previously unachievable detail. Here, we demonstrate how to overcome the special challenges of multi-color smFRET experiments on proteins. We present detailed protocols for obtaining the data and for extracting kinetic information. This includes trace selection criteria, state separation, and the recovery of state trajectories from the noisy data using a 3D ensemble Hidden Markov Model (HMM). Compared to other methods, the kinetic information is not recovered from dwell time histograms but directly from the HMM. The maximum likelihood framework allows us to critically evaluate the kinetic model and to provide meaningful uncertainties for the rates. By applying our method to the heat shock protein 90 (Hsp90), we are able to disentangle the nucleotide binding and the global conformational changes of the protein. This allows us to directly observe the cooperativity between the two nucleotide binding pockets of the Hsp90 dimer.

  3. HHR23B, a human RAD23 homolog, stimulates XPC protein in nucleotide excision repair in vitro.

    NARCIS (Netherlands)

    K. Sugasawa (Kaoru); C. Masutani (Chikahide); A. Uchida; T. Maekawa; P.J. van der Spek (Peter); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan); F. Hanaoka (Fumio)

    1996-01-01

    textabstractA protein complex which specifically complements defects of XP-C cell extracts in vitro was previously purified to near homogeneity from HeLa cells. The complex consists of two tightly associated proteins: the XPC gene product and HHR23B, one of two human homologs of the Saccharomyces

  4. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  5. Involvement of mismatch repair proteins in adaptive responses induced by N-methyl-N'-nitro-N-nitrosoguanidine against {gamma}-induced genotoxicity in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Ayumi; Sakamoto, Yasuteru; Masumura, Kenichi; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Nohmi, Takehiko, E-mail: nohmi@nihs.go.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2011-08-01

    Highlights: {yields} Health effects of radiation should be evaluated in combination with chemicals. {yields} Here, we show that MNNG suppresses radiation-induced genotoxicity in human cells. {yields} Mismatch repair proteins play critical roles in the apparent adaptive responses. {yields} Chemical exposure may modulate radiation-induced genotoxicity in humans. - Abstract: As humans are exposed to a variety of chemical agents as well as radiation, health effects of radiation should be evaluated in combination with chemicals. To explore combined genotoxic effects of radiation and chemicals, we examined modulating effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a direct-acting methylating agent, against genotoxicity of {gamma}-radiation. Human lymphoblastoid TK6 cells and its mismatch-deficient derivative, i.e., MT1 cells, were treated with MNNG for 24 h before they were exposed to {gamma}-irradiation at a dose of 1.0 Gy, and the resulting genotoxicity was examined. In TK6 cells, the pretreatments with MNNG at low doses suppressed frequencies of the thymidine kinase (TK) gene mutation and micronucleus (MN) formation induced by {gamma}-irradiation and thus the dose responses of TK and MN assays were U-shaped along with the pretreatment doses of MNNG. In contrast, the genotoxic effects of MNNG and {gamma}-irradiation were additive in MT1 cells and the frequencies of TK mutations and MN induction increased along with the doses of MNNG. Apoptosis induced by {gamma}-radiation was suppressed by the pretreatments in TK6 cells, but not in MT1 cells. The expression of p53 was induced and cell cycle was delayed at G2/M phase in TK6, but not in MT1 cells, by the treatments with MNNG. These results suggest that pretreatments of MNNG at low doses suppress genotoxicity of {gamma}-radiation in human cells and also that mismatch repair proteins are involved in the apparent adaptive responses.

  6. Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations.

    Science.gov (United States)

    Wang, Tao; Stadler, Zsofia K; Zhang, Liying; Weiser, Martin R; Basturk, Olca; Hechtman, Jaclyn F; Vakiani, Efsevia; Saltz, Lenard B; Klimstra, David S; Shia, Jinru

    2018-04-01

    Microsatellite instability, a well-established driver pathway in colorectal carcinogenesis, can develop in both sporadic and hereditary conditions via different molecular alterations in the DNA mismatch repair (MMR) genes. MMR protein immunohistochemistry (IHC) is currently widely used for the detection of MMR deficiency in solid tumors. The IHC test, however, can show varied staining patterns, posing challenges in the interpretation of the staining results in some cases. Here we report a case of an 80-year-old female with a colonic adenocarcinoma that exhibited an unusual "null" IHC staining pattern with complete loss of all four MMR proteins (MLH1, MSH2, MSH6, and PMS2). This led to subsequent MLH1 methylation testing and next generation sequencing which demonstrated that the loss of all MMR proteins was associated with concurrent promoter hypermethylation of MLH1 and double somatic truncating mutations in MSH2. These molecular findings, in conjunction with the patient's age being 80 years and the fact that the patient had no personal or family cancer history, indicated that the MMR deficiency was highly likely sporadic in nature. Thus, the stringent Lynch syndrome type surveillance programs were not recommended to the patient and her family members. This case illustrates a rare but important scenario where a null IHC phenotype signifies complex underlying molecular alternations that bear clinical management implications, highlighting the need for recognition and awareness of such unusual IHC staining patterns.

  7. Developing Master Keys to Brain Pathology, Cancer and Aging from the Structural Biology of Proteins Controlling Reactive Oxygen Species and DNA Repair

    Science.gov (United States)

    Perry, J. Jefferson P.; Fan, Li; Tainer, John A.

    2007-01-01

    This review is focused on proteins with key roles in pathways controlling either reactive oxygen species or DNA damage responses, both of which are essential for preserving the nervous system. An imbalance of reactive oxygen species or inappropriate DNA damage response likely causes mutational or cytotoxic outcomes, which may lead to cancer and/or aging phenotypes. Moreover, individuals with hereditary disorders in proteins of these cellular pathways have significant neurological abnormalities. Mutations in a superoxide dismutase, which removes oxygen free radicals, may cause the neurodegenerative disease amyotrophic lateral sclerosis. Additionally, DNA repair disorders that affect the brain to varying extents include ataxia-telangiectasia-like disorder, Cockayne syndrome or Werner syndrome. Here, we highlight recent advances gained through structural biochemistry studies on enzymes linked to these disorders and other related enzymes acting within the same cellular pathways. We describe the current understanding of how these vital proteins coordinate chemical steps and integrate cellular signaling and response events. Significantly, these structural studies may provide a set of master keys to developing a unified understanding of the survival mechanisms utilized after insults by reactive oxygen species and genotoxic agents, and also provide a basis for developing an informed intervention in brain tumor and neurodegenerative disease progression. PMID:17174478

  8. DNA mismatch repair protein MSH2 dictates cellular survival in response to low dose radiation in endometrial carcinoma cells.

    LENUS (Irish Health Repository)

    Martin, Lynn M

    2013-07-10

    DNA repair and G2-phase cell cycle checkpoint responses are involved in the manifestation of hyper-radiosensitivity (HRS). The low-dose radioresponse of MSH2 isogenic endometrial carcinoma cell lines was examined. Defects in cell cycle checkpoint activation and the DNA damage response in irradiated cells (0.2 Gy) were evaluated. HRS was expressed solely in MSH2+ cells and was associated with efficient activation of the early G2-phase cell cycle checkpoint. Maintenance of the arrest was associated with persistent MRE11, γH2AX, RAD51 foci at 2 h after irradiation. Persistent MRE11 and RAD51 foci were also evident 24 h after 0.2 Gy. MSH2 significantly enhances cell radiosensitivity to low dose IR.

  9. The human cyclin B1 protein modulates sensitivity of DNA mismatch repair deficient prostate cancer cell lines to alkylating agents.

    Science.gov (United States)

    Rasmussen, L J; Rasmussen, M; Lützen, A; Bisgaard, H C; Singh, K K

    2000-05-25

    DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.

  10. DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway.

    Science.gov (United States)

    de Barros, Andrea C; Takeda, Agnes A S; Dreyer, Thiago R; Velazquez-Campoy, Adrian; Kobe, Boštjan; Fontes, Marcos R M

    2018-03-01

    MLH1 and PMS2 proteins form the MutLα heterodimer, which plays a major role in DNA mismatch repair (MMR) in humans. Mutations in MMR-related proteins are associated with cancer, especially with colon cancer. The N-terminal region of MutLα comprises the N-termini of PMS2 and MLH1 and, similarly, the C-terminal region of MutLα is composed by the C-termini of PMS2 and MLH1, and the two are connected by linker region. The nuclear localization sequences (NLSs) necessary for the nuclear transport of the two proteins are found in this linker region. However, the exact NLS sequences have been controversial, with different sequences reported, particularly for MLH1. The individual components are not imported efficiently, presumably due to their C-termini masking their NLSs. In order to gain insights into the nuclear transport of these proteins, we solved the crystal structures of importin-α bound to peptides corresponding to the supposed NLSs of MLH1 and PMS2 and performed isothermal titration calorimetry to study their binding affinities. Both putative MLH1 and PMS2 NLSs can bind to importin-α as monopartite NLSs, which is in agreement with some previous studies. However, MLH1-NLS has the highest affinity measured by a natural NLS peptide, suggesting a major role of MLH1 protein in nuclear import compared to PMS2. Finally, the role of MLH1 and PMS2 in the nuclear transport of the MutLα heterodimer is discussed. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Correlation between Plaque Composition as assessed by Virtual Histology and C-reactive Protein

    International Nuclear Information System (INIS)

    Siqueira, Dimytri Alexandre de Alvim; Sousa, Amanda Guerra Moraes R.; Costa Junior, José de Ribamar; Costa, Ricardo Alves da; Staico, Rodolfo; Tanajura, Luis Fernando Leite; Centemero, Marinella Patrizia; Feres, Fausto; Abizaid, Alexandre Antonio Cunha; Sousa, J. Eduardo Moraes R.

    2013-01-01

    Previous studies have shown that coronary plaque composition plays a pivotal role in plaque instability, and imaging modalities and serum biomarkers have been investigated to identify vulnerable plaque. Virtual histology IVUS (VH-IVUS) characterizes plaque components as calcified, fibrotic, fibrofatty, or necrotic core. C-reactive protein (hsCRP) is an independent risk factor and a powerful predictor of future coronary events. However, a relationship between inflammatory response indicated by CRP and plaque characteristics in ACS patients remains not well established. To determine, by using VH-IVUS, the relation between coronary plaque components and plasma high-sensitivity CRP levels in patients with acute coronary syndromes (ACS). 52 patients with ACS were enrolled in this prospective study. Electrocardiographically-gated VH-IVUS were performed in the culprit lesion before PCI. Blood sample was drawn from all patients before the procedure and after 24 hours, and hs-CRP levels were determined. Mean age was 55.3±4.9 years, 76.9% were men and 30.9% had diabetes. Mean MLA was 3.9±1.3 mm 2 , and plaque burden was 69±11.3%, as assessed by IVUS. VH-IVUS analysis at the minimum luminal site identified plaque components: fibrotic (59.6±15.8%), fibrofatty (7.6±8.2%), dense calcium (12.1±9.2%) and necrotic core (20.7±12.7%). Plasma hs-CRP (mean 16.02±18.07 mg/L) did not correlate with necrotic core (r=-0.089, p = 0.53) and other plaque components. In this prospective study with patients with ACS, the predominant components of the culprit plaque were fibrotic and necrotic core. Serum hs C-reactive protein levels did not correlate with plaque composition

  12. Correlation between Plaque Composition as assessed by Virtual Histology and C-reactive Protein

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Dimytri Alexandre de Alvim, E-mail: dimytri@cardiol.br; Sousa, Amanda Guerra Moraes R.; Costa Junior, José de Ribamar; Costa, Ricardo Alves da; Staico, Rodolfo; Tanajura, Luis Fernando Leite; Centemero, Marinella Patrizia; Feres, Fausto; Abizaid, Alexandre Antonio Cunha; Sousa, J. Eduardo Moraes R. [Instituto Dante Pazzanese de Cardiologia, São Paulo, SP (Brazil)

    2013-07-15

    Previous studies have shown that coronary plaque composition plays a pivotal role in plaque instability, and imaging modalities and serum biomarkers have been investigated to identify vulnerable plaque. Virtual histology IVUS (VH-IVUS) characterizes plaque components as calcified, fibrotic, fibrofatty, or necrotic core. C-reactive protein (hsCRP) is an independent risk factor and a powerful predictor of future coronary events. However, a relationship between inflammatory response indicated by CRP and plaque characteristics in ACS patients remains not well established. To determine, by using VH-IVUS, the relation between coronary plaque components and plasma high-sensitivity CRP levels in patients with acute coronary syndromes (ACS). 52 patients with ACS were enrolled in this prospective study. Electrocardiographically-gated VH-IVUS were performed in the culprit lesion before PCI. Blood sample was drawn from all patients before the procedure and after 24 hours, and hs-CRP levels were determined. Mean age was 55.3±4.9 years, 76.9% were men and 30.9% had diabetes. Mean MLA was 3.9±1.3 mm{sup 2}, and plaque burden was 69±11.3%, as assessed by IVUS. VH-IVUS analysis at the minimum luminal site identified plaque components: fibrotic (59.6±15.8%), fibrofatty (7.6±8.2%), dense calcium (12.1±9.2%) and necrotic core (20.7±12.7%). Plasma hs-CRP (mean 16.02±18.07 mg/L) did not correlate with necrotic core (r=-0.089, p = 0.53) and other plaque components. In this prospective study with patients with ACS, the predominant components of the culprit plaque were fibrotic and necrotic core. Serum hs C-reactive protein levels did not correlate with plaque composition.

  13. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  14. Correlation between cell survival and DNA single-strand break repair proficiency in the Chinese hamster ovary cell lines AA8 and EM9 irradiated with 365-nm ultraviolet-A radiation

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, M.E.; Peak, J.G.; Peak, M.J. (Argonne National Lab., IL (USA))

    1991-02-01

    Cell survival parameters and the induction and repair of DNA single-strand breaks were measured in two Chinese hamster ovary cell lines after irradiation with monochromatic UVA radiation of wavelength 365 nm. The radiosensitive mutant cell line EM9 is known to repair ionizing-radiation-induced single-strand breaks (SSB) more slowly than the parent line AA8. EM9 was determined to be 1.7-fold more sensitive to killing by 365-nm radiation than AA8 at the 10% survival level, and EM9 had a smaller shoulder region on the survival curve ({alpha} = 1.76) than AA8 ({alpha} = 0.62). No significant differences were found between the cell lines in the initial yields of SSB induced either by {gamma}-radiation (as determined by alkaline sucrose gradient sedimentation) or by 365-nm UVA (as determined by alkaline elution). For measurement of initial SSB, cells were irradiated at 0.5{sup o}C to minimize DNA repair processes. Rejoining of 365-nm induced SSB was measured by irradiating cells at 0.5{sup o}C, allowing them to repair at 37{sup o}C in full culture medium, and then quantitating the remaining SSB by alkaline elution. The repair of these breaks followed biphasic kinetics in both cell lines. EM9 repaired the breaks more slowly (T{sub 1/2} values of 1.3 and 61.3 min) than did AA8 (T{sub 1/2} values of 0.9 and 53.3 min), and EM9 also left more breaks unrepaired 90 min after irradiation (24% vs 8% for AA8). Thus, the sensitivity of EM9 to 365-nm radiation correlated with its deficiency in repairing DNA lesions revealed as SSB in alkaline elution. These results suggest that DNA may be a critical target in 365-nm induced cellular lethality and that the ability of AA8 and EM9 cells to repair DNA strand breaks may be related to their ability to survive 365-nm radiation. (author).

  15. Effect of 21-day head down bed rest on urine proteins related to endothelium: Correlations with changes in carbohydrate metabolism

    Science.gov (United States)

    Kashirina, D.; Pastushkova, L.; Custaud, M. A.; Dobrokhotov, I.; Brzhozovsky, A.; Navasiolava, N.; Nosovsky, A.; Kononikhin, A.; Nikolaev, E.; Larina, I.

    2017-08-01

    We performed liquid chromatography-mass spectrometric study of the urine proteome in 8 healthy volunteers aged between 20 and 44 y.o. who have completed 21-day head-down bed rest. ANDSystem software which builds associative networks was used to identify the urinary proteins functionally related to the endothelium. We identified 7 endothelium-related biological processes, directly linked to 13 urine proteins. We performed manual annotation of the proteins which were the most important in terms of endothelial functions. Analysis of the correlations with biochemical variables revealed a positive correlation between fasting blood glucose and the following urine proteins: albumin, CD44 antigen, endothelial protein C receptor, mucin-1, osteopontin, receptor tyrosine kinase. As well, we found a positive correlation between HOMA-insulin resistance index and the following urine proteins: endothelial protein C receptor and syndecan-4. These results might suggest the involvement of above-mentioned proteins in glucose metabolism and their participation in the response to changes in blood glucose level.

  16. Correlation of human epidermal growth factor receptor protein expression and colorectal cancer.

    Science.gov (United States)

    Yang, Wen-Juan; Shen, Xing-Jie; Ma, Xiao-Xia; Tan, Zhi-Gang; Song, Yan; Guo, Yi-Tong; Yuan, Mei

    2015-07-28

    To investigate the correlation between human epidermal growth factor receptor (HER-2) protein expression and colorectal cancer (CRC) using a case-control study and meta-analysis. Tumor tissue specimens from 162 CRC patients were selected for the case group. Fifty cases were randomly selected, and normal CRC tissue at least 10 cm away from the tumor margins of these cases was used to generate the control group. The expression of the HER-2 protein in the 162 CRC tissue samples and the 50 adjacent normal mucosa tissue samples was detected via immunohistochemistry. The experimental data were analyzed using SPSS 18.0 software, and R software version 3.1.0 was utilized for further verification. The expression of HER-2 protein in the 162 CRC tissue samples was significantly higher than in the normal tissue specimens. The data showed that the expression of HER-2 in CRC was related to the Dukes' stage, the depth of invasion and lymph node metastasis. The HER-2-positive patients had lower 3- and 5-year OS rates than the HER-2-negative patients, but there was no significant difference. However, there was a statistically significant difference in the 3- and 5-year disease-free survival (DFS) rates of HER-2-positive and HER-2-negative patients. The results of the meta-analysis showed that the expression of HER-2 in CRC patients was statistically significantly increased over that of healthy people. The 3-year DFS rate in HER-2-positive patients was markedly lower than that in HER-2-negative patients. Down-regulation of HER-2 expression might be a dependable strategy for CRC therapy.

  17. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun-Ah [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From

  18. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  19. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    Science.gov (United States)

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  20. Post-Translational Regulation of Polycystin-2 Protein Expression as a Novel Mechanism of Cholangiocyte Reaction and Repair from Biliary Damage

    Science.gov (United States)

    Spirli, Carlo; Villani, Ambra; Mariotti, Valeria; Fabris, Luca; Fiorotto, Romina; Strazzabosco, Mario

    2015-01-01

    Polycystin-2 (PC2 /TRPP2), a member of the transient receptor potential channels (TRP) family, is a non-selective calcium channel. Mutations in PC2/TRPP2 are associated with Polycystic Liver Diseases. PC2-defective cholangiocytes shows increased production of cAMP, PKA-dependent activation of the ERK1/2 pathway, HIF1α-mediated VEGF production, and stimulation of cyst growth and progression. Activation of the ERK/HIF1α/VEGF pathway in cholangiocytes plays a key role during repair from biliary damage. We hypothesized that PC2 levels are modulated during biliary damage/repair, resulting in activation of the ERK/HIF1α/VEGF pathway. Results PC2 protein expression, but not its gene expression, was significantly reduced in mouse livers with biliary damage (Mdr2−/−-KO, bile duct ligation, DDC-treatment). Treatment of colangiocytes with pro-inflammatory cytokines, nitric oxide (NO) donors and ER stressors), increased ERK1/2 phosphorylation, HIF1α transcriptional activity, secretion of VEGF, VEGFR2 phosphorylation and downregulated PC2 protein expression without affecting PC2 gene expression. Expression of Herp and NEK, ubiquitin-like proteins that promote proteosomal PC2 degradation was increased. Pre-treatment with the proteasome inhibitor MG-132 restored the expression of PC2 in cells treated with cytokines but not in cells treated with NO donors or with ER stressors. In these conditions, PC2 degradation was instead inhibited by interfering with the autophagy pathway. Treatment of DDC-mice and of Mdr2−/−-mice with the proteasome inhibitor bortezomib, restored PC2 expression and significantly reduced the ductular reaction, fibrosis and p-ERK1/2. In conclusion, in response to biliary damage, PC2 expression is modulated post-translationally by the proteasome or the autophagy pathways. PC2-dowregulation is associated with activation of ERK1/2 and increase of HIF1α-mediated VEGF secretion. Treatments able to restore PC2 expression and to reduce ductular reaction

  1. Structure-function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins.

    Science.gov (United States)

    Olmeda, Bárbara; García-Álvarez, Begoña; Pérez-Gil, Jesús

    2013-03-01

    Pulmonary surfactant is a lipid-protein complex secreted by the respiratory epithelium of mammalian lungs, which plays an essential role in stabilising the alveolar surface and so reducing the work of breathing. The surfactant protein SP-B is part of this complex, and is strictly required for the assembly of pulmonary surfactant and its extracellular development to form stable surface-active films at the air-liquid alveolar interface, making the lack of SP-B incompatible with life. In spite of its physiological importance, a model for the structure and the mechanism of action of SP-B is still needed. The sequence of SP-B is homologous to that of the saposin-like family of proteins, which are membrane-interacting polypeptides with apparently diverging activities, from the co-lipase action of saposins to facilitate the degradation of sphingolipids in the lysosomes to the cytolytic actions of some antibiotic proteins, such as NK-lysin and granulysin or the amoebapore of Entamoeba histolytica. Numerous studies on the interactions of these proteins with membranes have still not explained how a similar sequence and a potentially related fold can sustain such apparently different activities. In the present review, we have summarised the most relevant features of the structure, lipid-protein and protein-protein interactions of SP-B and the saposin-like family of proteins, as a basis to propose an integrated model and a common mechanistic framework of the apparent functional versatility of the saposin fold.

  2. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair

    Science.gov (United States)

    Leung, Justin Wai Chung; Wang, Yucai; Fong, Ka Wing; Huen, Michael Shing Yan; Li, Lei; Chen, Junjie

    2012-01-01

    The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway. PMID:22396592

  3. Profile of serum alkaline phosphatase after inoculation of mononuclear cells and bone morphogenetic protein in the repair of osteochondral defects in rabbits

    Directory of Open Access Journals (Sweden)

    Luiz Augusto de Souza

    2011-12-01

    Full Text Available In this study, serum alkaline phosphatase activity was measured in response to the repair of osteochondral defects in twenty-four New Zealand rabbits. The animals were divided into three groups: a control (GC, those treated with bone marrow mononuclear cells (GCM and those that received mononuclear cells with autologous bone morphogenetic protein (BMP + GCM. After exposing the trochlear groove of the left stifle joint, a wedge-shaped segment was removed. Later, the defect was filled with an osteochondral autograft preserved in 98% glycerin. For the GC group, only the bone graft was performed. For the GCM, in addition to the graft, 2x106 seed mononuclear cells were implanted. For the GCM + BMP, the same number of cells, associated with 1μg of bone morphogenetic protein, were intraarticularly administered. The osteoblastic response was measured by analyzing the serum alkaline phosphatase on day 0 (preoperative 3, 15, 30, and 45 after surgery, and by radiographic examinations. Analysis of variance in randomized blocks, factorial and Tukey’s test (p = 0.05 were made. The overall mean GCM was superior to the other groups and the highest rates were among the 15th and 45th days postoperatively. The discrepancy in values between individuals of the same group casts doubts on the veracity of the test.

  4. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair.

    Science.gov (United States)

    Leung, Justin Wai Chung; Wang, Yucai; Fong, Ka Wing; Huen, Michael Shing Yan; Li, Lei; Chen, Junjie

    2012-03-20

    The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway.

  5. Studying repair of a single protein-bound nick in vivo using the Flp-nick system

    DEFF Research Database (Denmark)

    Nielsen, Ida; Andersen, Anni Hangaard; Bjergbæk, Lotte

    2012-01-01

    The Flp-nick system is a simple in vivo system developed for studying the cellular responses to a protein-bound nick at a single genomic site in the budding yeast Saccharomyces cerevisiae. The Flp-nick system takes advantage of a mutant Flp recombinase that can introduce a nick at a specific Flp ...

  6. Meningocele repair

    Science.gov (United States)

    ... is surgery to repair birth defects of the spine and spinal membranes. Meningocele and myelomeningocele ... is covered by a sterile dressing. Your child may then be transferred to a neonatal intensive ...

  7. Entropic formulation for the protein folding process: Hydrophobic stability correlates with folding rates

    Science.gov (United States)

    Dal Molin, J. P.; Caliri, A.

    2018-01-01

    possible connection between the hydrophobic component of protein stability and the native structural topology. We simulated those same 200 targets again with the Mq A, only. However, this time we evaluated the relative frequency {ϕq } in which each target visits its corresponding native structure along an appropriate simulation time. Due to the presence of the hydrophobic effect in our approach we obtained a strong correlation between the stability and the folding rate (R = 0 . 85). So, as faster a sequence found its target, as larger is the hydrophobic component of its stability. The strong correlation fulfills our last goal. This final finding suggests that the hydrophobic effect could not be a general stabilizing factor for proteins.

  8. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...

  9. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  10. Ageing and smoking contribute to plasma surfactant proteins and protease imbalance with correlations to airway obstruction

    Directory of Open Access Journals (Sweden)

    Ishikawa Nobuhisa

    2011-04-01

    Full Text Available Abstract Background A significant number of young people start smoking at an age of 13-15, which means that serious smoking-evoked changes may have been occurred by their twenties. Surfactant proteins (SP and matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs have been linked to cigarette smoke induced lung remodelling and chronic obstructive pulmonary disease (COPD. However, the level of these proteins has not been examined during ageing or in young individuals with short smoking histories. Methods Plasma levels of SP-A, SP-D, MMP-9, and TIMP-1 were measured by EIA/ELISA from young (18-23 years non-smoking controls (YNS (n = 36, smokers (YS (n = 51, middle aged/elderly (37-77 years non-smoking controls (ONS (n = 40, smokers (OS (n = 64 (FEV1/FVC >0.7 in all subjects and patients with COPD (n = 44, 35-79 years. Results Plasma levels of SP-A increased with age and in the older group in relation to smoking and COPD. Plasma SP-D and MMP-9 levels did not change with age but were elevated in OS and COPD as compared to ONS. The TIMP-1 level declined with age but increased in chronic smokers when compared to ONS. The clearest correlations could be detected between plasma SP-A vs. age, pack years and FEV1/FVC. The receiver operating characteristic (ROC curve analysis revealed SP-A to be the best marker for discriminating between patients with COPD and the controls (area under ROC curve of 0.842; 95% confidence interval, 0.785-0.899; p Conclusions Age has a significant contribution to potential markers related to smoking and COPD; SP-A seems to be the best factor in differentiating COPD from the controls.

  11. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  12. Correlation between slowly repairable double-strand breaks and thermal radiosensitization in the human HeLa S3 cell line

    NARCIS (Netherlands)

    Kampinga, HH; Hiemstra, YS; Konings, AWT; Dikomey, E

    The effect of heat on double-strand breaks (dsb) repair was compared with thermal radiosensitization using HeLa S3 cells. Cells were exposed to a combined treatment of X-irradiation followed by heat (44 degrees C, 0.5 h) separated by time intervals up to 8h. DNA dsb were measured by PFGE and

  13. Correlation between seed size, protein and oil contents, and fatty acid composition in soybean genotypes

    Directory of Open Access Journals (Sweden)

    Maestri, Damián M.

    1998-12-01

    Full Text Available Eighteen soybean genotypes (Glycine max (L. Merrill with maturity groups IV, V, VI or VII were grown in 1995/96 at the Estación Experimental Agropecuaria (EEA-INTA of Manfredi and Marcos Juárez, Argentina. The aim of this research was to determine possible associations between seed size, protein and oil contents, and fatty composition. Seed size varied between 13.9-21.0 g/100 seeds. Protein and oil contents ranged from 331 to 448 and from 198 to 267 g kg-1, respectively, and showed no significant correlation with seed size. There were significant correlations between seed size and individual fatty adds: positive with stearic and oleic and negative with linoleic. The results obtained suggest that seed size and its relationship with individual fatty acids must be considered in soybean breeding programs.

    Se analizaron 18 genotipos de soja (Glycine max (L. Merrill con grupos de madurez IV, V, VI o VIl, cultivados en 1995/96 en la Estación Experimental Agropecuaria (EEA-INTA de Manfredi y Marcos Juárez, Argentina. El propósito de la investigación fue determinar posibles asociaciones entre el tamaño del grano, los contenidos de proteínas y aceite y la composición de ácidos grasos del mismo. El tamaño del grano varió entre 13.9-21.0 g/100 granos. Los porcentajes de proteínas y aceite estuvieron comprendidos entre 331-448 y entre 198-267 g kg-1 respectivamente, y no mostraron correlaciones significativas con el tamaño del grano. Se observaron correlaciones significativas entre el tamaño del grano y determinados ácidos grasos: positivas con esteárico y oleico y negativa con linoleico. Las asociaciones encontradas podrían ser de utilidad en programas de mejoramiento de soja.

  14. Correlation between mechanical behavior of protein films at the air/water interface and intrinsic stability of protein molecules

    NARCIS (Netherlands)

    Martin, A.H.; Cohen Stuart, M.A.; Bos, M.A.; Vliet, T. van

    2005-01-01

    The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, σf,

  15. Parathyroid hormone related protein concentration in human serum and CSF correlates with age.

    Science.gov (United States)

    Kushnir, Mark M; Peterson, Lisa K; Strathmann, Frederick G

    2018-02-01

    Parathyroid Hormone-Related Protein (PTHrP) is involved in intracellular calcium (Ca) regulation, and has been demonstrated to participate in regulation of Ca in brain cells, activation of neurons, and modulation of pain. However, there are conflicting reports regarding the presence of PTHrP in CSF. PTHrP and Ca were quantified in paired CSF and serum samples using mass spectrometry-based methods. Associations between PTHrP and Ca concentrations with age, sex and concentrations of nine CSF diagnostic markers in a set of 140 paired serum and CSF patient samples were evaluated. The observed median PTHrP concentration in CSF was 51 times higher than in serum; the median concentration of Ca in CSF was 1.8 times lower than in serum. We observed positive correlation between concentrations of PTHrP in CSF and serum (p=0.013). Distribution of PTHrP concentrations in serum was associated with age (p=0.0068) and the concentrations were higher in women. In samples with serum calcium concentrations within the reference intervals (n=118), central 95% distribution of concentrations for Ca-CSF, PTHrP-serum and PTHrP-CSF were 5.4 (4.5-6.1) mg/dL, 1.2 (0.5-2.5) pmol/L, 62 (22-125) pmol/L, respectively. Our data demonstrate that PTHrP is a normal constituent of human CSF with median concentrations 51 fold higher than in serum. Elevated serum PTHrP concentrations were positively correlated with age and significantly higher in women. Our data suggest that CSF could be a significant source of circulating PTHrP. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Sebaceous neoplasms and the immunoprofile of mismatch-repair proteins as a screening target for syndromic cases

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Thomsen, Birthe M; Holck, Susanne

    2015-01-01

    (SAs) and 6 sebaceous carcinomas (SCs) were accrued. The expression of MLH1, MSH2, MSH6, and PMS2 was recorded. MLH1-deficient cases were tested for p16 status. RESULTS: Eighteen (56%) of the 32 specimens with SA or SC displayed MMR-protein deficiency, comprising 17 (65.4%) SAs (MSH2/MSH6 loss in 12......, MLH1/PMS2 loss in 3, MSH6 loss only in 2 cases) and 1 (16.7%) SC (MLH1/PMS2 loss). All 4 MLH1 deficient cases were p16-positive. CONCLUSION: A substantial proportion of sebaceous neoplasms were MMR-protein deficient and thus likely MTS candidates. Given the low prevalence of sebaceous neoplasms...

  17. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks

    DEFF Research Database (Denmark)

    Liberti, Sascha E; Andersen, Sofie Dabros; Wang, Jing

    2011-01-01

    (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues...

  18. The β-d-Endoglucuronidase Heparanase Is a Danger Molecule That Drives Systemic Inflammation and Correlates with Clinical Course after Open and Endovascular Thoracoabdominal Aortic Aneurysm Repair: Lessons Learnt from Mice and Men

    Directory of Open Access Journals (Sweden)

    Lukas Martin

    2017-06-01

    Full Text Available Thoracoabdominal aortic aneurysm (TAAA is a highly lethal disorder requiring open or endovascular TAAA repair, both of which are rare, but extensive and complex surgical procedures associated with a significant systemic inflammatory response and high post-operative morbidity and mortality. Heparanase is a β-d-endoglucuronidase that remodels the endothelial glycocalyx by degrading heparan sulfate in many diseases/conditions associated with systemic inflammation including sepsis, trauma, and major surgery. We hypothesized that (a perioperative serum levels of heparanase and heparan sulfate are associated with the clinical course after open or endovascular TAAA repair and (b induce a systemic inflammatory response and renal injury/dysfunction in mice. Using a reverse-translational approach, we assessed (a the serum levels of heparanase, heparan sulfate, and the heparan sulfate proteoglycan syndecan-1 preoperatively as well as 6 and 72 h after intensive care unit (ICU admission in patients undergoing open or endovascular TAAA repair and (b laboratory and clinical parameters and 90-day survival, and (c the systemic inflammatory response and renal injury/dysfunction induced by heparanase and heparan sulfate in mice. When compared to preoperative values, the serum levels of heparanase, heparan sulfate, and syndecan-1 significantly transiently increased within 6 h of ICU admission and returned to normal within 72 h after ICU admission. The kinetics of any observed changes in heparanase, heparan sulfate, or syndecan-1 levels, however, did not differ between open and endovascular TAAA-repair. Postoperative heparanase levels positively correlated with noradrenalin dose at 12 h after ICU admission and showed a high predictive value of vasopressor requirements within the first 24 h. Postoperative heparan sulfate showed a strong positive correlation with interleukin-6 levels day 0, 1, and 2 post-ICU admission and a strong negative correlation with

  19. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA......, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M...

  20. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Jae-Sung [Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Bo-Mi; Kim, Ryeo-Ok [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Jung Soo [Pathology Team, National Fisheries Research and Development Institute, Busan 619-902 (Korea, Republic of); Kim, Il-Chan [Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon 406-840 (Korea, Republic of); Lee, Young-Mi, E-mail: ymlee70@smu.ac.kr [Department of Green Life Science, College of Convergence, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac.kr [Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-09-15

    Highlights: •Novel identification of DNA repair-related genes in fish. •Investigation of whole expression profiling of DNA repair genes upon gamma radiation. •Analysis of effects of gamma radiation on antioxidant system and cell stress proteins. •Usefulness of verification of pathway-based profiling for mechanistic understanding. -- Abstract: To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4 Gy of radiation, and biochemical and molecular damage became substantial from 8 Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6 Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae.

  1. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28.

    Directory of Open Access Journals (Sweden)

    Kristin E Murphy

    Full Text Available KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity.

  2. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    International Nuclear Information System (INIS)

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-01-01

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient

  3. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes

    Directory of Open Access Journals (Sweden)

    Tiessen Axel

    2012-02-01

    Full Text Available Abstract Background The sizes of proteins are relevant to their biochemical structure and for their biological function. The statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of proteomes. Results Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of proteins can be roughly described with a gamma type or log-normal model, depending on the species. However the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between 1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only ~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa and archaeal (283 aa proteins are significantly smaller (33-40% on average. Average protein sizes in different phylogenetic groups were: Alveolata (628 aa, Amoebozoa (533 aa, Fornicata (543 aa, Placozoa (453 aa, Eumetazoa (486 aa, Fungi (487 aa, Stramenopila (486 aa, Viridiplantae (392 aa. Amino acid composition is biased according to protein size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes. Conclusions Mathematical modeling of protein length empirical distributions can be used to asses the quality of small ORFs annotation in genomic releases (detection of too many false positive small ORFs. There is a negative correlation between average protein size and total number of

  4. Synapsis-Defective Mutants Reveal a Correlation Between Chromosome Conformation and the Mode of Double-Strand Break Repair During Caenorhabditis elegans Meiosis

    OpenAIRE

    Smolikov, Sarit; Eizinger, Andreas; Hurlburt, Allison; Rogers, Eric; Villeneuve, Anne M.; Colaiácovo, Mónica P.

    2007-01-01

    SYP-3 is a new structural component of the synaptonemal complex (SC) required for the regulation of chromosome synapsis. Both chromosome morphogenesis and nuclear organization are altered throughout the germlines of syp-3 mutants. Here, our analysis of syp-3 mutants provides insights into the relationship between chromosome conformation and the repair of meiotic double-strand breaks (DSBs). Although crossover recombination is severely reduced in syp-3 mutants, the production of viable offspri...

  5. Contribution of cathepsins B, L and D to muscle protein profiles correlated with texture in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Godiksen, Helene; Morzel, M.; Hyldig, Grethe

    2009-01-01

    Post-mortem softening of fish tissue often results in low yield and decreased product quality. In this study, proteolytic profiles of trout stored 5 days oil ice were obtained by SDS-PAGE. The link between protein hand intensities and firmness of trout fillets was examined through a correlation...

  6. Circulating fibroblast activation protein activity and antigen levels correlate strongly when measured in liver disease and coronary heart disease

    NARCIS (Netherlands)

    S.U. de Willige; Keane, F.M. (Fiona M.); Bowen, D.G. (David G.); J.J.M.C. Malfliet (Joyce); Zhang, H.E. (H. Emma); Maneck, B. (Bharvi); G. McCaughan (Geoff); F.W.G. Leebeek (Frank); D.C. Rijken (Dingeman); Gorrell, M.D. (Mark D.)

    2017-01-01

    textabstractBackground and aim: Circulating fibroblast activation protein (cFAP) is a constitutively active enzyme expressed by activated fibroblasts that has both dipeptidyl peptidase and endopeptidase activities. We aimed to assess the correlation between cFAP activity and antigen levels and to

  7. Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy

    NARCIS (Netherlands)

    Winters, B.R. (Brian R.); Vakar-Lopez, F. (Funda); Brown, L. (Lisha); Montgomery, B. (Bruce); Seiler, R. (Roland); P.C. Black (Peter C.); J.L. Boormans (Joost); Dall′Era, M. (Marc); Davincioni, E. (Elai); Douglas, J. (James); Gibb, E.A. (Ewan A.); B.W. van Rhijn (Bas); M.S. van der Heijden (Michiel); Hsieh, A.C. (Andrew C.); Wright, J.L. (Jonathan L.); Lam, H.-M. (Hung-Ming)

    2018-01-01

    textabstractBackground: The mechanistic target of rapamycin (mTOR) has been implicated in driving tumor biology in multiple malignancies, including urothelial carcinoma (UC). We investigate how mTOR and phosphorylated mTOR (pmTOR) protein expression correlate with chemoresponsiveness in the tumor

  8. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation.

    Science.gov (United States)

    Krawczenko, Agnieszka; Bielawska-Pohl, Aleksandra; Wojtowicz, Karolina; Jura, Roksana; Paprocka, Maria; Wojdat, Elżbieta; Kozłowska, Urszula; Klimczak, Aleksandra; Grillon, Catherine; Kieda, Claudine; Duś, Danuta

    2017-01-01

    Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.

  9. DNA double strand break repair in mammalian cells: role of MRE11 and BLM proteins at the initiation of Non Homologous End Joining (NHEJ)

    International Nuclear Information System (INIS)

    Grabarz, Anastazja

    2011-01-01

    DNA double strand breaks (DSBs) are highly cytotoxic lesions, which can lead to genetic rearrangements. Two pathways are responsible for repairing these lesions: homologous recombination (HR) and non homologous end joining (NHEJ). In our laboratory, an intrachromosomal substrate has been established in order to measure the efficiency and the fidelity of NHEJ in living cells (Guirouilh-Barbat 2004). This approach led us to identify a KU-independent alternative pathway, which uses micro homologies in the proximity of the junction to accomplish repair - the alternative NHEJ (Guirouilh-Barbat 2004, Guirouilh-Barbat et Rass 2007). The goal of my thesis consisted in identifying and characterising major actors of this pathway. In the absence of KU, alternative NHEJ would be initiated by ssDNA resection of damaged ends. We showed that the nuclease activity of MRE11 is necessary for this mechanism. MRE11 overexpression leads to a two fold stimulation of NHEJ efficiency, while the extinction of MRE11 by siRNA results in a two fold decrease. Our results demonstrate that the proteins RAD50 and CtIP act in the same pathway as MRE11. Moreover, in cells deficient for XRCC4, MIRIN - an inhibitor of the MRN complex - leads to a decrease in repair efficiency, implicating MRE11 in alternative NHEJ. We also showed that MRE11 can act in an ATM-dependent and independent manner (Rass et Grabarz Nat Struct Mol Biol 2009). The initiation of break resection needs to be pursued by a more extensive degradation of DNA, which is accomplished in yeast by the proteins Exo1 and Sgs1/Dna2. In human cells, in vitro studies have recently proposed a similar model of a two-step break resection. We chose to elucidate the role of one of the human homologs of Sgs1 - the RecQ helicase BLM - in the resection process. Our experiments show, that he absence of BLM decreases the efficiency of end joining by NHEJ, accompanied by an increase in error-prone events, especially long-range deletions (≥200 nt). This

  10. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits

    Directory of Open Access Journals (Sweden)

    Stefania Marono

    2015-07-01

    Full Text Available The aims of this study were to evaluate the correlation between in vitro crude protein digestibility coefficients of insect meals from Tenebrio molitor (TI and Hermetia illucens (HI and their chemical composition traits as well as to develop regression equations able to estimate the in vitro crude protein digestibility (CPd from proximate analysis of insect meals. Twelve samples of insect meals (6 from TM larvae, TM 1-6 and 6 from HI larvae, HI 1-6 were obtained from different producers and analysed for chemical composition and in vitro crude protein digestibility by a two-step enzymatic method (digestion with pepsin and trypsin-enriched pancreatin. For both insect meal samples, CPd was negatively correlated to ADF and chitin contents, while just for HI there was a positive correlation (P<0.01 between CP percentage of the samples and CPd. For both insect meals the former variable chosen in the stepwise analysis was the chitin, explaining the 79.45% of CPd variability for Tenebrio molitor samples and the 98.30% for Hermetia illucens. In the second step, the amount of protein linked to ADF was added in the model for T. molitor and CP for H. illucens samples. The coefficients chitin is the main constituent of insect body able to affect the crude protein digestibility of Tenebrio molitor and Hermetia illucens larvae meals estimated by an in vitro enzymatic method.

  11. Replication protein A in nonearly ovarian adenocarcinomas: correlation with MCM-2, MCM-5, Ki-67 index and prognostic significance.

    Science.gov (United States)

    Levidou, Georgia; Ventouri, Kiriaki; Nonni, Afroditi; Gakiopoulou, Hariklia; Bamias, Aristotle; Sotiropoulou, Maria; Papaspirou, Irene; Dimopoulos, Meletios A; Patsouris, Efstratios; Korkolopoulou, Penelope

    2012-07-01

    Replication protein A (RPA) is an ssDNA-binding protein required for the initiation of DNA replication and the stabilization of ssDNA. Collaboration with several molecules, that is, the MCM2-7 complex, has been suggested to be imperative for its multifaceted role. In this study, we investigated the immunohistochemical expression of the RPA2 subunit in correlation with the MCM-2 and MCM-5 and Ki67 index, and assessed its prognostic significance in 76 patients with nonearly ovarian adenocarcinomas, the majority of whom had a serous histotype. RPA2 protein expression was observed in all cases, whereas the staining intensity varied from weak to strong. RPA2 expression was correlated with the tumor stage in the entire cohort and in serous tumors (P=0.0053 in both relationships). Moreover, RPA2 immunoexpression was positively correlated with MCM-2 (P=0.0001) and MCM-5 (P0.10). In multivariate survival analysis, RPA2 expression emerged as an independent predictor of adverse outcome (PMCM-2 and MCM-5 expression and when analysis was restricted to serous carcinomas (P=0.004). Our results further support the interrelation of RPA2 protein with MCM-2 and MCM-5 in OCs. Moreover, RPA2 protein may play an important role in ovarian tumorigenesis, and may serve as a useful independent molecular marker for stratifying patients with OC in terms of prognosis.

  12. Amyloid- and FDG-PET in sporadic Creutzfeldt-Jakob disease: Correlation with pathological prion protein in neuropathology.

    Science.gov (United States)

    Matías-Guiu, Jordi A; Guerrero-Márquez, Carmen; Cabrera-Martín, María Nieves; Gómez-Pinedo, Ulises; Romeral, María; Mayo, Diego; Porta-Etessam, Jesús; Moreno-Ramos, Teresa; Carreras, José Luis; Matías-Guiu, Jorge

    2017-05-04

    The role of positron emission tomography (PET) in Creutzfeldt-Jakob disease is less defined than in other neurodegenerative diseases. We studied the correlation between the uptake of 18 F-florbetaben and 18 F-fluorodeoxyglucose with pathological prion protein deposition in histopathology in a case. A patient with 80 y old with a rapid neurological deterioration with a confirmed diagnosis of CJD was studied. PET and MRI studies were performed between 13-20 d before the death. A region of interest analysis was performed using Statistical Parametric Mapping. MRI showed atrophy with no other alterations. FDG-PET showed extensive areas of hypometabolism including left frontoparietal lobes as well as bilateral thalamus. Correlation between uptake of 18 F-florbetaben and pathological prion protein deposition was r = 0.786 (p < 0.05). Otherwise, correlation between uptake of 18 F-FDG and pathological prion protein was r = 0.357 (p = 0.385). Immunohistochemistry with β-amyloid did not show amyloid deposition or neuritic plaques. Our study supports the use of FDG-PET in the assessment of CJD. FDG-PET may be especially useful in cases of suspected CJD and negative MRI. Furthermore, this case report provides more evidence about the behavioral of amyloid tracers, and the possibility of a low-affinity binding to other non-amyloid proteins, such as the pathological prion protein, is discussed.

  13. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  14. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair.

    Science.gov (United States)

    Kato-Inui, Tomoko; Takahashi, Gou; Hsu, Szuyin; Miyaoka, Yuichiro

    2018-05-18

    Genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) predominantly induces non-homologous end joining (NHEJ), which generates random insertions or deletions, whereas homology-directed repair (HDR), which generates precise recombination products, is useful for wider applications. However, the factors that determine the ratio of HDR to NHEJ products after CRISPR/Cas9 editing remain unclear, and methods by which the proportion of HDR products can be increased have not yet been fully established. We systematically analyzed the HDR and NHEJ products after genome editing using various modified guide RNAs (gRNAs) and Cas9 variants with an enhanced conformational checkpoint to improve the fidelity at endogenous gene loci in HEK293T cells and HeLa cells. We found that these modified gRNAs and Cas9 variants were able to enhance HDR in both single-nucleotide substitutions and a multi-kb DNA fragment insertion. Our results suggest that the original CRISPR/Cas9 system from the bacterial immune system is not necessarily the best option for the induction of HDR in genome editing and indicate that the modulation of the kinetics of conformational checkpoints of Cas9 can optimize the HDR/NHEJ ratio.

  15. [11C]befloxatone distribution is well correlated to monoamine oxidase A protein levels in the human brain.

    Science.gov (United States)

    Zanotti-Fregonara, Paolo; Bottlaender, Michel

    2014-12-01

    [(11)C]befloxatone is a positron emission tomography radioligand to image monoamine oxidase A (MAO-A) in the brain, which has been used in preclinical studies and in clinical protocols. However, a recent study found that [(11)C]befloxatone binding potential (k(3)/k(4)) has a poor correlation with MAO-A protein levels measured in the human brain. We here show that this poor correlation only depends on the choice of the parameter when performing kinetic modeling. In particular, the total volume of distribution of [(11)C]befloxatone shows a tight correlation with both protein and mRNA levels of MAO-A in the human brain.

  16. Yes-Associated Protein Expression Is Correlated to the Differentiation of Prostate Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Myung-Giun Noh

    2017-07-01

    Full Text Available Background Yes-associated protein (YAP in the Hippo signaling pathway is a growth control pathway that regulates cell proliferation and stem cell functions. Abnormal regulation of YAP was reported in human cancers including liver, lung, breast, skin, colon, and ovarian cancer. However, the function of YAP is not known in prostate adenocarcinoma. The purpose of this study was to investigate the role of YAP in tumorigenesis, differentiation, and prognosis of prostate adenocarcinoma. Methods The nuclear and cytoplasmic expression of YAP was examined in 188 cases of prostate adenocarcinoma using immunohistochemistry. YAP expression levels were evaluated in the nucleus and cytoplasm of the prostate adenocarcinoma and the adjacent normal prostate tissue. The presence of immunopositive tumor cells was evaluated and interpreted in comparison with the patients’ clinicopathologic data. Results YAP expression levels were not significantly different between normal epithelial cells and prostate adenocarcinoma. However, YAP expression level was significantly higher in carcinomas with a high Gleason grades (8–10 than in carcinomas with a low Gleason grades (6–7 (p < .01. There was no statistical correlation between YAP expression and stage, age, prostate-specific antigen level, and tumor volume. Biochemical recurrence (BCR–free survival was significantly lower in patients with high YAP expressing cancers (p = .02. However high YAP expression was not an independent prognostic factor for BCR in the Cox proportional hazards model. Conclusions The results suggested that YAP is not associated with prostate adenocarcinoma development, but it may be associated with the differentiation of the adenocarcinoma. YAP was not associated with BCR.

  17. Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shintani, Satoru; Mihara, Mariko; Li, Chunnan; Nakahara Yuuji; Hino, Satoshi; Nakashiro, Koh-ichi; Hamakawa, Hiroyuki

    2003-01-01

    DNA-PK is a nuclear protein with serine/threonine kinase activity and forms a complex consisting of the DNA-PKcs and a heterodimer of Ku70 and Ku80 proteins. Recent laboratory experiments have demonstrated that the DNA-PK complex formation is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. In this study, we evaluated the relationship between expression levels of DNA-PKcs, Ku70 and Ku80 proteins and radiation sensitivity in oral squamous cell carcinoma (OSCC) cell lines and in OSCC patients treated with preoperative radiation therapy. The OSCC cell lines greatly differed in their response to irradiation, as assessed by a standard colony formation assay. However, the expression levels of the DNA-PK complex proteins were all similar, and there was no association between the magnitude of their expression and the tumor radiation sensitivity. Expression of DNA-PK complex proteins increased after radiation treatment, and the increased values correlated with the tumor radiation resistance. Expression of DNA-PKcs and Ku70 after irradiation was increased in the surviving cells of OSCC tissues irradiated preoperatively. These results suggest that up-regulation of DNA-PK complex protein, especially DNA-PKcs, after radiation treatment correlates to radiation resistance. DNA-PKcs might be a molecular target for a novel radiation sensitization therapy of OSCC. (author)

  18. Fumonisins in corn: correlation with Fusarium sp. count, damaged kernels, protein and lipid content

    Directory of Open Access Journals (Sweden)

    Elisabete Yurie Sataque Ono

    2006-01-01

    Full Text Available Natural fungal and fumonisin contamination were evaluated in 109 freshly harvested corn samples from Paraná State and correlated to damaged kernels (%. In addition, healthy and damaged kernels of 24 corn samples were selected in order to compare the mycoflora profile and fumonisin levels. The correlation among protein/lipid content and fumonisin levels was also analyzed in the 15 most frequently cultivated corn hybrids. Total fungal colony count in 109 freshly harvested corn samples ranged from 1.9x10(4 to 3.5x10(6 CFU/g, Fusarium sp. count from 1.0x10³ to 2.2x10(6 CFU/g, and fumonisin levels from 0.13 to 20.38 µg/g. Total fungal colony/Fusarium sp. count and fumonisin levels showed positive correlation (p A contaminação natural por fungos e fumonisinas foi avaliada em 109 amostras de milho recém-colhido do Estado do Paraná e correlacionada com grãos ardidos (%. Além disso, grãos sadios e ardidos de 24 amostras de milho foram selecionados a fim de comparar o perfil da microbiota fúngica e níveis de fumonisinas. A correlação entre os teores de proteínas/lipídios e os níveis de fumonisinas também foi analisada nos 15 híbridos de milho mais freqüentemente cultivados no Estado do Paraná. A contagem total de fungos em 109 amostras de milho recém-colhido variou de 1,9x10(4 a 3,5x10(6 UFC/g, Fusarium sp. de 1,0x10³ a 2,2x10(6 UFC/g e, níveis de fumonisinas de 0,13 a 20,38 µg/g. A contagem total de fungos/Fusarium spp. e níveis de fumonisinas apresentaram correlação positiva (p<0,05. Adicionalmente, houve uma correlação positiva entre grãos ardidos (% e a contagem total de fungos/ Fusarium spp. (p < 0,05. Os níveis de fumonisinas nos grãos sadios variaram de 0,57 a 20,38 µg/g, enquanto que nos grãos ardidos variaram de 68,96 a 336,38 µg/g. Não foi observada correlação significativa entre os níveis de fumonisinas e os teores de proteínas/lipídios. Esses resultados ratificam a importância do monitoramento

  19. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  20. Evaluation of the collaborative network of highly correlating skin proteins and its change following treatment with glucocorticoids

    Directory of Open Access Journals (Sweden)

    Farman Nicolette

    2010-05-01

    Full Text Available Abstract Background Glucocorticoids (GC represent the core treatment modality for many inflammatory diseases. Its mode of action is difficult to grasp, not least because it includes direct modulation of many components of the extracellular matrix as well as complex anti-inflammatory effects. Protein expression profile of skin proteins is being changed with topical application of GC, however, the knowledge about singular markers in this regard is only patchy and collaboration is ill defined. Material/Methods Scar formation was observed under different doses of GC, which were locally applied on the back skin of mice (1 to 3 weeks. After euthanasia we analyzed protein expression of collagen I and III (picrosirius in scar tissue together with 16 additional protein markers, which are involved in wound healing, with immunhistochemistry. For assessing GC's effect on co-expression we compared our results with a model of random figures to estimate how many significant correlations should be expected by chance. Results GC altered collagen and protein expression with distinct results in different areas of investigation. Most often we observed a reduced expression after application of low dose GC. In the scar infiltrate a multivariate analysis confirmed the significant impact of both GC concentrations. Calculation of Spearman's correlation coefficient similarly resulted in a significant impact of GC, and furthermore, offered the possibility to grasp the entire interactive profile in between all variables studied. The biological markers, which were connected by significant correlations could be arranged in a highly cross-linked network that involved most of the markers measured. A marker highly cross-linked with more than 3 significant correlations was indicated by a higher variation of all its correlations to the other variables, resulting in a standard deviation of > 0.2. Conclusion In addition to immunohistochemical analysis of single protein markers

  1. Meniscal repair devices.

    Science.gov (United States)

    Barber, F A; Herbert, M A

    2000-09-01

    Meniscal repair devices not requiring accessory incisions are attractive. Many factors contribute to their clinical effectiveness including their biomechanical characteristics. This study compared several new meniscal repair devices with standard meniscal suture techniques. Using a porcine model, axis-of-insertion loads were applied to various meniscal sutures and repair devices. A single device or stitch was placed in a created meniscal tear and a load applied. Both loads and modes of failure were recorded. The load-to-failure data show stratification into 4 distinct statistical groups. Group A, 113 N for a double vertical stitch; group B, 80 N for a single vertical stitch; group C, 57 N for the BioStinger, 56 N for a horizontal mattress stitch, and 50 N for the T-Fix stitch; and group D, 33 N for the Meniscus Arrow (inserted by hand or gun), 32 N for the Clearfix screw, 31 N for the SDsorb staple, 30 N for the Mitek meniscal repair system, and 27 N for the Biomet staple. The failure mechanism varied. Sutures broke away from the knot. The Meniscus Arrow and BioStinger pulled through the inner rim with the crossbar intact. The Clearfix screw failed by multiple mechanisms, whereas 1 leg of the SDsorb staple always pulled out of the outer rim. The Mitek device usually failed by pullout from the inner rim. The Biomet staple always broke at the crosshead or just below it. Although the surgeon should be aware of the material properties of the repair technique chosen for a meniscal repair, this information is only an indication of device performance and may not correlate with clinical healing results.

  2. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms.

    Science.gov (United States)

    Athanasopoulos, Athanasios N; Economopoulou, Matina; Orlova, Valeria V; Sobke, Astrid; Schneider, Darius; Weber, Holger; Augustin, Hellmut G; Eming, Sabine A; Schubert, Uwe; Linn, Thomas; Nawroth, Peter P; Hussain, Muzaffar; Hammes, Hans-Peter; Herrmann, Mathias; Preissner, Klaus T; Chavakis, Triantafyllos

    2006-04-01

    Staphylococcus aureus is a major human pathogen interfering with host-cell functions. Impaired wound healing is often observed in S aureus-infected wounds, yet, the underlying mechanisms are poorly defined. Here, we identify the extracellular adherence protein (Eap) of S aureus to be responsible for impaired wound healing. In a mouse wound-healing model wound closure was inhibited in the presence of wild-type S aureus and this effect was reversible when the wounds were incubated with an isogenic Eap-deficient strain. Isolated Eap also delayed wound closure. In the presence of Eap, recruitment of inflammatory cells to the wound site as well as neovascularization of the wound were prevented. In vitro, Eap significantly reduced intercellular adhesion molecule 1 (ICAM-1)-dependent leukocyte-endothelial interactions and diminished the consequent activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB) in leukocytes associated with a decrease in expression of tissue factor. Moreover, Eap blocked alphav-integrin-mediated endothelial-cell migration and capillary tube formation, and neovascularization in matrigels in vivo. Collectively, the potent anti-inflammatory and antiangiogenic properties of Eap provide an underlying mechanism that may explain the impaired wound healing in S aureus-infected wounds. Eap may also serve as a lead compound for new anti-inflammatory and antiangiogenic therapies in several pathologies.

  3. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging

    NARCIS (Netherlands)

    Y. Kamenisch (York); M.I. Fousteri (Maria); J. Knoch (Jennifer); A.K. Von Thaler (Anna Katherina); B. Fehrenbacher (Birgit); H. Kato (Hiroki); T. Becker (Tim); M.E.T. Dollé (Martijn); R. Kuiper (Ruud); M. Majora (Marc); M. Schaller (Martin); G.T.J. van der Horst (Gijsbertus); H. van Steeg (Harry); M. Röcken (Martin); D. Rapaport (Doron); J. Krutmann (Jean); L.H.F. Mullenders (Leon); M. Berneburg (Mark)

    2010-01-01

    textabstractDefects in the DNA repair mechanism nucleotide excision repair (NER) may lead to tumors in xeroderma pigmentosum (XP) or to premature aging with loss of subcutaneous fat in Cockayne syndrome (CS). Mutations of mitochondrial (mt)DNA play a role in aging, but a link between the

  4. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  5. Correlation of secreted protein acidic and rich in cysteine with diabetic nephropathy

    OpenAIRE

    Li, Lei; Song, Hai-Yan; Liu, Kai; An, Meng-Meng

    2015-01-01

    To detect the serum concentrations of secreted protein acidic and rich in cysteine (SPARC) in patients with diabetic nephropathy and SPARC mRNA and protein expressions in renal tissue of db/db mice (C57BL/KsJ, diabetic nephropathy mice), thus preliminary exploration on the role of secreted protein acidic riches in cysteine in the development of diabetic nephropathy were carried out. Serum SPARC levels in normal subjects, patients with type 2 diabetes mellitus (without diabetic nephropathy), c...

  6. Quantitative proteome analysis reveals the correlation between endocytosis-associated proteins and hepatocellular carcinoma dedifferentiation.

    Science.gov (United States)

    Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Reis, Henning; Ahrens, Maike; Turewicz, Michael; Eisenacher, Martin; Tautges, Stephanie; Canbay, Ali E; Meyer, Helmut E; Weber, Frank; Baba, Hideo A; Sitek, Barbara

    2016-11-01

    The majority of poorly differentiated hepatocellular carcinomas (HCCs) develop from well-differentiated tumors. Endocytosis is a cellular function which is likely to take part in this development due to its important role in regulating the abundances of vital signaling receptors. Here, we aimed to investigate the abundance of endocytosis-associated proteins in HCCs with various differentiation grades. Therefore, we analyzed 36 tissue specimens from HCC patients via LC-MS/MS-based label-free quantitative proteomics including 19 HCC tissue samples with different degrees of histological grades and corresponding non-tumorous tissue controls. As a result, 277 proteins were differentially regulated between well-differentiated tumors and controls. In moderately and poorly differentiated tumors, 278 and 1181 proteins, respectively, were significantly differentially regulated compared to non-tumorous tissue. We explored the regulated proteins based on their functions and identified thirty endocytosis-associated proteins, mostly overexpressed in poorly differentiated tumors. These included proteins that have been shown to be up-regulated in HCC like clathrin heavy chain-1 (CLTC) as well as unknown proteins, such as secretory carrier-associated membrane protein 3 (SCAMP3). The abundances of SCAMP3 and CLTC were immunohistochemically examined in tissue sections of 84 HCC patients. We demonstrate the novel association of several endocytosis-associated proteins, in particular, SCAMP3 with HCC progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit

    International Nuclear Information System (INIS)

    Sabehat, A.; Weiss, D.; Lurie, S.

    1996-01-01

    Heating tomato fruit (Lycopersicon esculentum) for 48 h at 38 degrees C prevented chilling injury from developing after 21 d at 2 degrees C, whereas unheated fruit developed high levels of injury. Although the overall protein pattern as seen by Coomassie blue staining was similar from heated and unheated fruit, some high- and many low-molecular-mass proteins were observed in the heated fruit that were absent or present in reduced amounts in unheated fruit. When fruit were injected with [35S]methionine at harvest and then heated, they accumulated high levels of specific radiolabeled proteins that could still be detected after 21 d at 2 degrees C. If the fruit were held at 20 degrees C after heating, the label in the proteins declined rapidly and these fruit were also sensitive to chilling injury. Hsp70 antibody reacted more strongly with proteins from heated and chilled fruit than with proteins from chilled fruit. Hsp18.1 antibody reacted strongly with proteins from heated fruit but not with those from unheated fruit. A 23-kD protein, highly labeled in heated fruit but not in unheated fruit, had its amino terminus sequenced. To our knowledge, this is the first report showing a relationship between the persistence of heat-shock proteins and chilling tolerance in a plant tissue

  8. Evaluation of Repair Tension in Arthroscopic Rotator Cuff Repair: Does It Really Matter to the Integrity of the Rotator Cuff?

    Science.gov (United States)

    Kim, Do Hoon; Jang, Young Hoon; Choi, Young Eun; Lee, Hwa-Ryeong; Kim, Sae Hoon

    2016-11-01

    Repair tension of a torn rotator cuff can affect healing after repair. However, a measurement of the actual tension during arthroscopic rotator cuff repair is not feasible. The relationship between repair tension and healing of a rotator cuff repair remains unclear. The purpose of this study was to evaluate the effect of repair tension on healing at the repair site. The hypothesis was that repair tension would be a major factor in determining the anatomic outcome of rotator cuff repair. Cohort study; Level of evidence, 2. Arthroscopic rotator cuff repairs (132 patients) for full-thickness rotator cuff tears were analyzed. An intraoperative model was designed for the estimation of repair tension using a tensiometer. Magnetic resonance imaging (MRI) was performed approximately 1 year (mean [±SD], 12.7 ± 3.2 months) postoperatively for the evaluation of healing at the repair site. Multivariable analysis was performed for tear size, amount of retraction, and fatty degeneration (FD) of rotator cuff muscles. The mean repair tension measured during the arthroscopic procedure was 28.5 ± 23.1 N. There was a statistically significant correlation between tension and tear size (Pearson correlation coefficient [PCC], 0.529; P repair tension also showed a significant inverse correlation with healing at the repair site (SCC, 0.195; P = .025). However, when sex, age, tear size, amount of retraction, tendon quality, and FD of rotator cuff muscles were included for multivariable logistic regression analysis, only FD of the infraspinatus showed an association with the anatomic outcome of repair (Exp(B) = 0.596; P = .010). Our intraoperative model for the estimation of rotator cuff repair tension showed an inverse correlation of repair tension with healing at the repair site, suggesting that complete healing is less likely with high-tension repairs. A significant association was observed on MRI between a high level of FD of the infraspinatus and repaired tendon integrity. © 2016

  9. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  10. Correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer

    International Nuclear Information System (INIS)

    Zhang Yili; Du Hongwen; Zhang Yun; Zhang Yuelang; Kuang Fangjun; Guo Zuomin

    2004-01-01

    Objective: To discuss the correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer for early diagnosis and forecast of its prognoses. Methods: Fifty-four breast cancers and 26 benign diseases were proved by pathologic methods and all cases underwent mammography. Immunohistochemical technique was used to measure the expression of bcl-2 and bax proteins in these tissues. The correlation of imaging signs with the expression of bcl-2 and bax proteins in breast cancer and benign lesion was analyzed. Results: The expression of bcl-2 or bax protein in the breast cancer was higher than that in breast benign diseases (χ 2 =15.116, 11.361, P 2 =10.358, 12.818, P 2 =10.996, 10.667, P 2 =10.405, P 2 =6.841, P<0.05). Conclusion: Some imaging signs of breast cancer were closely related to the expression of bcl-2 and bax proteins and these signs could reflect the biological behavior of tumor cells and prognoses. Therefore it could be helpful to the early diagnosis and treatment of breast cancer. (authors)

  11. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.

    Science.gov (United States)

    Neveu, Emilie; Ritchie, David W; Popov, Petr; Grudinin, Sergei

    2016-09-01

    Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of a very detailed data-driven model of the binding free energy used with a global and exhaustive rigid-body search space. As well as being accurate, our computations are among the fastest by virtue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled with an arbitrary-shaped distance-dependent interaction potential. First, we present a novel learning process to compute data-driven distant-dependent pairwise potentials, adapted from our previous method used for rescoring of putative protein-protein binding poses. The potential coefficients are learned by combining machine-learning techniques with physically interpretable descriptors. Then, we describe the integration of the deduced potentials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality predictions in the top-10 solutions when starting from bound structures and 20.5% when starting from unbound structures. The method runs in 5-15 min on a modern laptop and can easily be extended to other types of interactions. https://team.inria.fr/nano-d/software/PEPSI-Dock sergei.grudinin@inria.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  12. Correlation of random urine protein creatinine (P-C) ratio with 24-hour urine protein and P-C ratio, based on physical activity: a pilot study.

    Science.gov (United States)

    Sadjadi, Seyed-Ali; Jaipaul, Navin

    2010-09-07

    Quantification of proteinuria is usually predicated upon 24-hour urine collection. Multiple factors influence urine collection and the rate of protein and creatinine excretion. Urine collection is often incomplete, and therefore creatinine and protein excretion rates are underestimated. A random urine protein-creatinine (P-C) ratio has been shown over the years to be a reliable alternative to the 24-hour collection for detection and follow up of proteinuria. However, urine protein excretion may be influenced by physical activity. We studied 48 patients with proteinuria and varying levels of physical activity to determine the correlation between the measures of urine protein excretion. The correlation coefficient (r) between 24-hour urine total protein and random urine P-C ratio was 0.75 (P r = 0.99 (P r = 0.95 (P bedridden patients; r = 0.44 (P = not significant [NS]) and r = 0.54 (P = NS) in semiactive patients; and r = 0.44 (P = NS) and r = 0.58 (P 3500 mg/day) and non-nephrotic (r = 0.84; P r = 0.99 (P r = 0.92 (P bedridden patients; r = 0.61 (P = NS) and r = 0.54 (P = NS) in semiactive patients; and r = 0.64 (P r = 0.52 (P < 0.05) in active patients with nephrotic and non-nephrotic range proteinuria, respectively. We conclude that the random urine P-C ratio is a reliable and practical way of estimating and following proteinuria, but its precision and accuracy may be affected by the level of patient physical activity.

  13. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  14. Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Zihe; Hou, Jin; Martinez Ruiz, José Luis

    2013-01-01

    .g., metabolic and cellular stresses have a strong impact on recombinant protein production. In this work, we investigated the effect of the specific growth rate on the production of two different recombinant proteins. Our results show that human insulin precursor is produced in a growth-associated manner...... turnover, cell cycle, and global stress response. We also found that there is a shift at a specific growth rate of 0.1 h−1 that influences protein production. Thus, for lower specific growth rates, the α-amylase and insulin precursor-producing strains present similar cell responses and phenotypes, whereas......With the increasing demand for biopharmaceutical proteins and industrial enzymes, it is necessary to optimize the production by microbial fermentation or cell cultures. Yeasts are well established for the production of a wide range of recombinant proteins, but there are also some limitations; e...

  15. Physiological slowing and upregulation of inhibition in cortex are correlated with behavioral deficits in protein malnourished rats.

    Directory of Open Access Journals (Sweden)

    Rahul Chaudhary

    Full Text Available Protein malnutrition during early development has been correlated with cognitive and learning disabilities in children, but the neuronal deficits caused by long-term protein deficiency are not well understood. We exposed rats from gestation up to adulthood to a protein-deficient (PD diet, to emulate chronic protein malnutrition in humans. The offspring exhibited significantly impaired performance on the 'Gap-crossing' (GC task after reaching maturity, a behavior that has been shown to depend on normal functioning of the somatosensory cortex. The physiological state of the somatosensory cortex was examined to determine neuronal correlates of the deficits in behavior. Extracellular multi-unit recording from layer 4 (L4 neurons that receive direct thalamocortical inputs and layers 2/3 (L2/3 neurons that are dominated by intracortical connections in the whisker-barrel cortex of PD rats exhibited significantly low spontaneous activity and depressed responses to whisker stimulation. L4 neurons were more severely affected than L2/3 neurons. The response onset was significantly delayed in L4 cells. The peak response latency of L4 and L2/3 neurons was delayed significantly. In L2/3 and L4 of the barrel cortex there was a substantial increase in GAD65 (112% over controls and much smaller increase in NMDAR1 (12-20%, suggesting enhanced inhibition in the PD cortex. These results show that chronic protein deficiency negatively affects both thalamo-cortical and cortico-cortical transmission during somatosensory information processing. The findings support the interpretation that sustained protein deficiency interferes with features of cortical sensory processing that are likely to underlie the cognitive impairments reported in humans who have suffered from prolonged protein deficiency.

  16. Correlation of random urine protein creatinine (P-C ratio with 24-hour urine protein and P-C ratio, based on physical activity: a pilot study

    Directory of Open Access Journals (Sweden)

    Seyed-Ali Sadjadi

    2010-07-01

    Full Text Available Seyed-Ali Sadjadi1,2, Navin Jaipaul1,21Jerry L Pettis Memorial VA Medical Center, 2Loma Linda University School of Medicine, Loma Linda, CA, USAAbstract: Quantification of proteinuria is usually predicated upon 24-hour urine collection. Multiple factors influence urine collection and the rate of protein and creatinine excretion. Urine collection is often incomplete, and therefore creatinine and protein excretion rates are underestimated. A random urine protein-creatinine (P-C ratio has been shown over the years to be a reliable alternative to the 24-hour collection for detection and follow up of proteinuria. However, urine protein excretion may be influenced by physical activity. We studied 48 patients with proteinuria and varying levels of physical activity to determine the correlation between the measures of urine protein excretion. The correlation coefficient (r between 24-hour urine total protein and random urine P-C ratio was 0.75 (P < 0.01 in the overall study population, but varied according to the level of proteinuria and physical activity in a stratified analysis: r = 0.99 (P < 0.001 and r = 0.95 (P < 0.01 in bedridden patients; r = 0.44 (P = not significant [NS] and r = 0.54 (P = NS in semiactive patients; and r = 0.44 (P = NS and r = 0.58 (P < 0.05 in active patients with nephrotic- (>3500 mg/day and non-nephrotic (<3500 mg/day range proteinuria, respectively. The correlation appeared to be stronger between random urine and 24-hour urine P-C ratio for the overall study population (r = 0.84; P < 0.001, and when stratified according to the level of proteinuria and physical activity: r = 0.99 (P < 0.001 and r = 0.92 (P < 0.01 in bedridden patients; r = 0.61 (P = NS and r = 0.54 (P = NS in semiactive patients; and r = 0.64 (P < 0.02 and r = 0.52 (P < 0.05 in active patients with nephrotic and non-nephrotic range proteinuria, respectively. We conclude that the random urine P-C ratio is a reliable and practical way of estimating and

  17. A network model to correlate conformational change and the impedance spectrum of single proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via Arnesano, Lecce (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM) (Italy)

    2008-02-13

    Integrated nanodevices based on proteins or biomolecules are attracting increasing interest in today's research. In fact, it has been shown that proteins such as azurin and bacteriorhodopsin manifest some electrical properties that are promising for the development of active components of molecular electronic devices. Here we focus on two relevant kinds of protein: bovine rhodopsin, prototype of G-protein-coupled-receptor (GPCR) proteins, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer's disease. Both these proteins exert their function starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different impedance spectra associated with the different configurations. The distinct types of conformational change of rhodopsin and AChE agree with their dissimilar electrical responses. In particular, for rhodopsin the model predicts variations of the impedance spectra up to about 30%, while for AChE the same variations are limited to about 10%, which supports the existence of a dynamical equilibrium between its native and complexed states.

  18. The effects of gamma irradiation on growth and expression of genes encoding DNA repair-related proteins in Lombardy poplar (Populus nigra var. italica).

    Science.gov (United States)

    Nishiguchi, Mitsuru; Nanjo, Tokihiko; Yoshida, Kazumasa

    2012-07-01

    In this study, to elucidate the mechanisms of adaptation and tolerance to ionizing radiation in woody plants, we investigated the various biological effects of γ-rays on the Lombardy poplar (Populus nigra L. var. italica Du Roi). We detected abnormal leaf shape and color, fusion, distorted venation, shortened internode, fasciation and increased axillary shoots in γ-irradiated poplar plants. Acute γ-irradiation with a dose of 100Gy greatly reduced the height, stem diameter and biomass of poplar plantlets. After receiving doses of 200 and 300Gy, all the plantlets stopped growing, and then most of them withered after 4-10 weeks of γ-irradiation. Comet assays showed that nuclear DNA in suspension-cultured poplar cells had been damaged by γ-rays. To determine whether DNA repair-related proteins are involved in the response to γ-rays in Lombardy poplars, we cloned the PnRAD51, PnLIG4, PnKU70, PnXRCC4, PnPCNA and PnOGG1 cDNAs and investigated their mRNA expression. The PnRAD51, PnLIG4, PnKU70, PnXRCC4 and PnPCNA mRNAs were increased by γ-rays, but the PnOGG1 mRNA was decreased. Moreover, the expression of PnLIG4, PnKU70 and PnRAD51 was also up-regulated by Zeocin known as a DNA cleavage agent. These observations suggest that the morphogenesis, growth and protective gene expression in Lombardy poplars are severely affected by the DNA damage and unknown cellular events caused by γ-irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Correlation between base-excision repair gene polymorphisms and levels of in-vitro BPDE-induced DNA adducts in cultured peripheral blood lymphocytes.

    Directory of Open Access Journals (Sweden)

    Hongping Yu

    Full Text Available In vitro benzo[a]pyrene diol epoxide (BPDE-induced DNA adducts in cultured peripheral lymphocytes have been shown to be a phenotypic biomarker of individual's DNA repair phenotype that is associated with cancer risk. In this study, we explored associations between genotypes of base-excision repair genes (PARP1 Val762Ala, APEX1 Asp148Glu, and XRCC1 Arg399Gln and in vitro BPDE-induced DNA adducts in cultured peripheral blood lymphocytes in 706 cancer-free non-Hispanic white subjects. We found that levels of BPDE-induced DNA adducts were significantly higher in ever smokers than in never smokers and that individuals with the Glu variant genotypes (i.e., Asp/Glu and Glu/Glu exhibited lower levels of BPDE-induced DNA adducts than did individuals with the common Asp/Asp homozygous genotype (median RAL levels: 32.0 for Asp/Asp, 27.0 for Asp/Glu, and 17.0 for Glu/Glu, respectively; P(trend = 0.030. Further stratified analysis showed that compared with individuals with the common APEX1-148 homozygous Asp/Asp genotype, individuals with the APEX1-148Asp/Glu genotype or the Glu/Glu genotype had a lower risk of having higher-level adducts (adjusted OR = 0.60, 95% CI: 0.36-0.98 and adjusted OR = 0.47, 95% CI: 0.26-0.86, respectively; P(trend = 0.012 among smokers. Such an effect was not observed in non-smokers. However, there was no significant interaction between the APEX1 Asp148Glu polymorphism and smoking exposure in this study population (P = 0.512. Additional genotype-phenotype analysis found that the APEX1-148Glu allele had significantly increased expression of APEX1 mRNA in 270 Epstein-Barr virus-transformed lymphoblastoid cell lines, which is likely associated with more active repair activity. Our findings suggest that the functional APEX1-148Glu allele is associated with reduced risk of having high levels of BPDE-induced DNA adducts mediated with high levels of mRNA expression.

  20. Correlation Between Placental Matrix Metalloproteinase 9 and Tumor Necrosis Factor-α Protein Expression Throughout Gestation in Normal Human Pregnancy.

    Science.gov (United States)

    Basu, Jayasri; Agamasu, Enyonam; Bendek, Bolek; Salafia, Carolyn M; Mishra, Aruna; Lopez, Julia Vasquez; Kroes, Jessica; Dragich, Sharon Claire; Thakur, Ashley; Mikhail, Magdy

    2018-04-01

    Matrix metalloproteinases (MMPs), specifically MMP-9 plays a role in human placentation. The enzyme confers an invasive ability to cytotrophoblasts and degrades the endometrial matrix as the cells infiltrate the decidua to keep up with placental growth. Since tumor necrosis factor-α (TNF-α) can induce the synthesis of MMP-9, we investigated the patterns of changes in and correlation between placental villous MMP-9 and TNF-α expressions throughout normal human gestation. Placentas were obtained from 179 normal pregnant women who underwent elective abortion or term delivery. Chorionic villi isolated from placental samples were grouped as first, second, and third trimester (7 0/7 -13 0/7 , 13 1/7 -23 6/7 , and 37 0/7 -42 4/7 weeks, respectively). Chorionic villous TNF-α and MMP-9 proteins were assayed using enzyme immunoassay kits. There were significant differences in MMP-9 and TNF-α protein expressions among the trimester groups ( P = .001). The MMP-9 protein increased progressively with an increase in gestational age (GA), but TNF-α peaked in the second trimester. Within each trimester group, we searched for the effects of variation of GA in days on the 2 variables. A significant positive correlation between MMP-9 and GA was noted in the first trimester ( r = 0.364, P = .005). No other comparisons were significant. When GA was controlled for, partial correlation revealed a significant positive correlation between TNF-α and MMP-9 only in the second trimester ( r = 0.300, P = .018). We hypothesize that the TNF-α peak and the positive correlation between TNF-α and MMP-9 in the second trimester of normal human gestation could contribute toward a successful pregnancy outcome.

  1. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report; FINAL

    International Nuclear Information System (INIS)

    David A. Boothman

    1999-01-01

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed

  2. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  3. Correlation between Amitriptyline-Induced Cardiotoxic Effects and Cardiac S100b Protein in Isolated Rat Hearts

    Directory of Open Access Journals (Sweden)

    Nil Hocaoğlu

    2016-12-01

    Full Text Available Background: Amitriptyline is an important cause of mortality due to its cardiovascular toxicity. Aims: To investigate the changes in levels of cardiac S100b protein on amitriptyline-induced cardiotoxicity and also to examine the correlation between amitriptyline-induced cardiotoxic effects and cardiac S100b protein in an isolated rat heart model. Study Design: Animal experimentation, isolated heart model. Methods: After a stabilization period, isolated hearts were randomized to two groups (n=5 and n=7. In the control group, isolated hearts were subjected to an infusion of 5% dextrose for 60 minutes. In the amitriptyline group, 5.5×10-5 M amitriptyline was infused for 60 minutes to achieve amitriptyline toxicity. After the infusion period, heart tissues were removed for histological examination. Results: In comparison to control treatment, amitriptyline infusion decreased left ventricular developed pressure (LVDP, dp/dtmax and heart rate (HR and significantly prolonged QRS duration (p<0.05. The semiquantitative scores for S100b protein levels in amitriptyline-infused hearts were higher than in the control group (p<0.01. At the end of the experiment, in the amitriptyline-infused group, significant correlations were found between LVDP and S100b protein scores (r=-0.807, p=0.003 and between QRS duration and S100b protein scores (r=0.859, p=0.001. Conclusion: Our results indicate that the S100b protein may be a helpful indicator or biomarker in studying the cardiotoxic effects of amitriptyline.

  4. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells.

    Directory of Open Access Journals (Sweden)

    Yann S Dufour

    2016-09-01

    Full Text Available Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB at different levels, we quantitatively mapped motile phenotype (tumble bias to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage.

  5. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  6. Activated RecA protein may induce expression of a gene that is not controlled by the LexA repressor and whose function is required for mutagenesis and repair of UV-irradiated bacteriophage lambda

    International Nuclear Information System (INIS)

    Calsou, P.; Villaverde, A.; Defais, M.

    1987-01-01

    The activated form of the RecA protein (RecA) is known to be involved in the reactivation and mutagenesis of UV-irradiated bacteriophage lambda and in the expression of the SOS response in Escherichia coli K-12. The expression of the SOS response requires cleavage of the LexA repressor by RecA and the subsequent expression of LexA-controlled genes. The evidence presented here suggests that RecA induces the expression of a gene(s) that is not under LexA control and that is also necessary for maximal repair and mutagenesis of damaged phage. This conclusion is based on the chloramphenicol sensitivity of RecA -dependent repair and mutagenesis of damaged bacteriophage lambda in lexA(Def) hosts

  7. A study of the dynamics of PTEN proteins in living cells using in vivo fluorescence correlation spectroscopy

    Science.gov (United States)

    Du, Zhixue; Dong, Chaoqing; Ren, Jicun

    2017-06-01

    PTEN (phosphatase and tensin homolog on chromosome 10) is one of the most important tumor-suppressor proteins, which plays a key role in negative regulation of the PI3K/AKT pathway, and governs many cellular processes including growth, proliferation, survival and migration. The dynamics of PTEN proteins in single living cells is as yet unclear owing to a shortage of suitable in vivo approaches. Here, we report a single-molecule method for in vivo study of the dynamics of PTEN proteins in living cells using fluorescence correlation spectroscopy (FCS). First, we established a monoclonal H1299 stable cell line expressing enhanced green fluorescent protein (EGFP) and PTEN (EGFP-PTEN) fusion proteins; we then developed an in vivo FCS method to study the dynamics of EGFP-PTEN both in the nucleus and the cytoplasm. We investigated the diffusion behaviors of EGFP and EGFP-PTEN in solution, nucleus and cytosol, and observed that the motion of PTEN in living cells was restricted compared with EGFP. Finally, we investigated the protein dynamics in living cells under oxidative stress stimulation and a cellular ATP depletion treatment. Under oxidative stress stimulation, the EGFP-PTEN concentration increased in the nucleus, but slightly decreased in the cytoplasm. The diffusion coefficient and alpha value of EGFP-PTEN reduced significantly both in the nucleus and cytoplasm; the significantly decreased alpha parameter indicates a more restricted Brownian diffusion behavior. Under the cellular ATP depletion treatment, the concentration of EGFP-PTEN remained unchanged in the nucleus and decreased significantly in cytosol. The diffusion coefficient of EGFP-PTEN decreased significantly in cytosol, but showed no significant change in the nucleus; the alpha value decreased significantly in both the nucleus and cytoplasm. These results suggest that the concentration and mobility of PTEN in the nucleus and cytoplasm can be regulated by stimulation methods. Our approach provides a unique

  8. Metabolic modulation of mammalian DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, T.J.

    1988-01-01

    First, ultraviolet light (UVL)- and dimethylsulfate (DMS)-induced excision repair was examined in quiescent and lectin-stimulated bovine lymphocytes. Upon mitogenic stimulation, UVL-induced repair increased by a factor of 2 to 3, and reached this maximum 2 days before the onset of DNA replication. However, DMS-induced repair increased sevenfold in parallel with DNA replication. Repair patch sizes were smaller for DMS-induced damage reflecting patches of 7 nucleotides in quiescent lymphocytes compared to 20 nucleotides induced by UVL. The patch size increased during lymphocyte stimulation until one day prior to the peak of DNA replication when patch sizes of 45 and 35 nucleotides were produced in response to UVL- and DMS-induced damage, respectively. At the peak of DNA replication, the patch sizes were equal for both damaging agents at 34 nucleotides. In the second study, a small amount of repair replication was observed in undamaged quiescent and concanavalin A-stimulated bovine lymphocytes as well as in human T98G glioblastoma cells. Repair incorporation doubled in the presence of hydroxyurea. Thirdly, the enhanced repair replication induced by the poly (ADP-ribose) polymerase inhibitor, 3-aminobenzamide, (3-AB), could not be correlated either with an increased rate of repair in the presence of 3-AB or with the use of hydroxyurea in the repair protocol. Finally, treatment of unstimulated lymphocytes with hyperthermia was accompanied by decreased repair replication while the repair patches remained constant at 20 nucleotides.

  9. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices

    Science.gov (United States)

    Lindsay, Richard J.; Siess, Jan; Lohry, David P.; McGee, Trevor S.; Ritchie, Jordan S.; Johnson, Quentin R.; Shen, Tongye

    2018-01-01

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  10. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing

    Science.gov (United States)

    Hoke, Glenn D.; Ramos, Corrine; Hoke, Nicholas N.; Crossland, Mary C.; Shawler, Lisa G.

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer. PMID:27840833

  11. Atypical Diabetic Foot Ulcer Keratinocyte Protein Signaling Correlates with Impaired Wound Healing.

    Science.gov (United States)

    Hoke, Glenn D; Ramos, Corrine; Hoke, Nicholas N; Crossland, Mary C; Shawler, Lisa G; Boykin, Joseph V

    2016-01-01

    Diabetes mellitus is associated with chronic diabetic foot ulcers (DFUs) and wound infections often resulting in lower extremity amputations. The protein signaling architecture of the mechanisms responsible for impaired DFU healing has not been characterized. In this preliminary clinical study, the intracellular levels of proteins involved in signal transduction networks relevant to wound healing were non-biasedly measured using reverse-phase protein arrays (RPPA) in keratinocytes isolated from DFU wound biopsies. RPPA allows for the simultaneous documentation and assessment of the signaling pathways active in each DFU. Thus, RPPA provides for the accurate mapping of wound healing pathways associated with apoptosis, proliferation, senescence, survival, and angiogenesis. From the study data, we have identified potential diagnostic, or predictive, biomarkers for DFU wound healing derived from the ratios of quantified signaling protein expressions within interconnected pathways. These biomarkers may allow physicians to personalize therapeutic strategies for DFU management on an individual basis based upon the signaling architecture present in each wound. Additionally, we have identified altered, interconnected signaling pathways within DFU keratinocytes that may help guide the development of therapeutics to modulate these dysregulated pathways, many of which parallel the therapeutic targets which are the hallmarks of molecular therapies for treating cancer.

  12. Correlation between C-Reactive Protein in Peripheral Vein and Coronary Sinus in Stable and Unstable Angina

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Weverton Ferreira, E-mail: wfleite@cardiol.br [Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP (Brazil); Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP (Brazil); Ramires, José Antonio Franchini; Moreira, Luiz Felipe Pinho; Strunz, Célia Maria Cassaro [Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP (Brazil); Mangione, José Armando [Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP (Brazil)

    2015-03-15

    High sensitivity C-reactive protein (hs-CRP) is commonly used in clinical practice to assess cardiovascular risk. However, a correlation has not yet been established between the absolute levels of peripheral and central hs-CRP. To assess the correlation between serum hs-CRP levels (mg/L) in a peripheral vein in the left forearm (LFPV) with those in the coronary sinus (CS) of patients with coronary artery disease (CAD) and a diagnosis of stable angina (SA) or unstable angina (UA). This observational, descriptive, and cross-sectional study was conducted at the Instituto do Coração, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, and at the Hospital Beneficência Portuguesa de Sao Paulo, where CAD patients referred to the hospital for coronary angiography were evaluated. Forty patients with CAD (20 with SA and 20 with UA) were included in the study. Blood samples from LFPV and CS were collected before coronary angiography. Furthermore, analysis of the correlation between serum levels of hs-CRP in LFPV versus CS showed a strong linear correlation for both SA (r = 0.993, p < 0.001) and UA (r = 0.976, p < 0.001) and for the entire sample (r = 0.985, p < 0.001). Our data suggest a strong linear correlation between hs-CRP levels in LFPV versus CS in patients with SA and UA.

  13. C-reactive protein level in coronary artery disease and its correlation with serum d-dimer

    International Nuclear Information System (INIS)

    Gul, C.; Marwat, Z.I.; Israr, M.; Hanif, R.; Arshad, M.

    2017-01-01

    C-reactive protein concentration has continuous associations with risk of coronary artery disease, ischemic stroke and death from several cancers. In addition, several studies have shown that CRP could be used to predict first ever myocardial infarction and stroke in healthy subjects, as well as outcome in acute setting. High levels of another biomarker, D-dimer, have been found to be independently associated with occurrence of coronary events. Methods: This correlational study was carried out at the Department of Cardiology, Ayub Teaching Hospital Abbottabad, in collaboration with the department of Biochemistry Postgraduate Medical Institute Lahore from 15th July 2013 to 15th May 2014. Patients aged 30 years or more of either gender having coronary artery disease was included in the study. Their serum D-dimer levels and C-reactive protein levels were measured for correlation with coronary artery disease. Results: A total of 50 patients of CAD were included in this study. Out of these 30 (60 percent) were males and 20 (40 percent) were females. Elevated CRP levels and D-dimer levels were noted in all of these patients. Pearson correlation coefficient test was performed on both CRP and D-dimer levels. Pearson correlation coefficient was calculated to be r= -0.1522 and when a p value was calculated, it was found to be 0.292 which implied that the results were not significant. Conclusion: This study showed that there is no correlation between CRP levels and D-dimer levels in patients with Coronary Artery Disease. (author)

  14. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Parise, Gianni; Bellamy, Leeann; Baker, Steven K; Smith, Kenneth; Atherton, Philip J; Phillips, Stuart M

    2014-01-01

    Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m²) underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (Pmuscle volume and acute rates of MPS measured over 1-3 h (r = 0.02), 3-6 h (r = 0.16) or the aggregate 1-6 h post-exercise period (r = 0.10). Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05) with phosphorylation of 4E-BP1(Thr37/46) at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.

  15. Construction of a series of congenic mice with recombinant chromosome 1 regions surrounding the genetic loci for resistance to intracellular parasites (Ity, Lsh, and Bcg), DNA repair responses (Rep-1), and the cytoskeletal protein villin (Vil).

    Science.gov (United States)

    Mock, B A; Holiday, D L; Cerretti, D P; Darnell, S C; O'Brien, A D; Potter, M

    1994-01-01

    The interval of mouse chromosome 1 extending from Idh-1 to Pep-3 harbors the natural resistance gene Ity/Lsh/Bcg; it controls the outcome of infection with Salmonella typhimurium, Leishmania donovani, and several Mycobacterium species. This region also contains a DNA repair gene, Rep-1, which determines the rapidity with which double-strand breaks in chromatin are repaired. BALB/cAnPt and DBA/2N mice differ in their phenotypic expression of these genes. To generate appropriate strains of mice for the study of these genes, a series of 10 C.D2 congenic strains recombinant across a 28-centimorgan interval of mouse chromosome 1 extending from Idh-1 to Pep-3 were derived from crosses of the C.D2-Idh-1 Pep-3 congenic strain back to BALB/cAn. Analyses of these recombinant strains will allow the correlation of biological-immunological phenotypes with defined genetic regions.

  16. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification

    International Nuclear Information System (INIS)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-01-01

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  17. Positive correlation between retinol binding protein 4 (RBP4) and triglyceride level in central obesity

    Science.gov (United States)

    Oktaria, S.; Sari, D. K.; Dalimunthe, D.; Eyanoer, P. C.

    2018-03-01

    Obesity has become an epidemic in both developed and developing countries. Central obesity considered a risk factor that is closely related to several chronic diseases. Central obesity is associated with elevated triglyceride levels and associated with RBP4 which can lead to insulin resistance. Increased level of RBP4 can cause lipid metabolism disorders and can become a marker for insulin resistance and metabolic syndrome. This study aims to find the correlation of RBP4 with triglycerides and Apo B100 in central obesity. It was a cross- sectional study on 46 subjects with central obesity, aged 20-50 years old. Blood samples were taken in cubital vein and examined for RBP4 and triglyceride levels. Data analysis was performed using Spearman correlation test. The results showed that gender frequency distribution showed little difference between men and women, i. e., men 43.5% and women 56.5%. RBP4 level was positively correlated with triglyceride (r = 0.48) and statistically significant (p = 0.001). The rbp4 level was positively correlated with triglyceride, indicating the role of RBP4 on high triglyceride level in central obesity.

  18. Correlation between synaptic plasticity, associated proteins, and rehabilitation training in a rat model of cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Dan Yang; Qian Yu

    2008-01-01

    All motions provide sensory, motoric, and reflexive input to the central nervous system, as well as playing an important role in cerebral functional plasticity and compensation. Cerebral plasticity has become the theoretical basis of neurorehabilitation. Studies of cerebrovascular disease, in particular, demonstrate that regeneration is accompanied by multiple forms of plasticity, such as functional and structural, in different phases of stroke rehabilitation. This study was designed to measure synaptic plasticity and expression of associated proteins to analyze the effect of rehabilitation training on learning and memory in a rat model of cerebral infarction. Results suggest that rehabilitation training increases expression of nerve growth factor associated protein 43, brain-derived neurotrophic factor, and neural cell adhesion molecules, and also promotes cerebral functional plasticity.

  19. Long range correlations and folding angle with applications to α-helical proteins

    Science.gov (United States)

    Krokhotin, Andrey; Nicolis, Stam; Niemi, Antti J.

    2014-03-01

    The conformational complexity of chain-like macromolecules such as proteins and other linear polymers is much larger than that of point-like atoms and molecules. Unlike particles, chains can bend, twist, and even become knotted. Thus chains might also display a much richer phase structure. Unfortunately, it is not very easy to characterize the phase of a long chain. Essentially, the only known attribute is the radius of gyration. The way how it changes when the degree of polymerization becomes different, and how it evolves when the ambient temperature and solvent properties change, is commonly used to disclose the phase. But in any finite length chain there are corrections to scaling that complicate the detailed analysis of the phase structure. Here we introduce a quantity that we call the folding angle to identify and scrutinize the phase structure, as a complement to the radius of gyration. We argue for a mean-field level relationship between the folding angle and the scaling exponent in the radius of gyration. We then estimate the value of the folding angle in the case of crystallographic α-helical protein structures in the Protein Data Bank. We also show how the experimental value of the folding angle can be obtained computationally, using a semiclassical Born-Oppenheimer description of α-helical chiral chains.

  20. Egg CD9 protein tides correlated with sperm oscillations tune the gamete fusion ability in mammal.

    Science.gov (United States)

    Ravaux, Benjamin; Favier, Sophie; Perez, Eric; Gourier, Christine

    2018-01-23

    Mammalian fertilization involves membrane events -adhesion, fusion, sperm engulfment, membrane block to polyspermy- whose causes remain largely unknown. Recently, specific oscillations of the sperm in contact with the egg were shown to be necessary for fusion. Using a microfluidic chip to impose the venue for the encounter of two gametes allowed real-time observation of the membrane remodelling occurring at the sperm/egg interface. The spatiotemporal mapping of egg CD9 revealed that this protein concentrates at the egg/sperm interface as a result of sperm oscillations, until a CD9-rich platform is nucleated on which fusion immediately takes place. Within 2 to 5 minutes after fusion, most of the CD9 leaves the egg for the external aqueous medium. Then an egg membrane wave engulfs the sperm head in approximately 25 minutes. These results show that sperm oscillations initiate the CD9 recruitment that causes gamete fusion after which CD9 and associated proteins leave the membrane in a process likely to contribute to block polyspermy. They highlight that the gamete fusion story in mammals is an unexpected interplay between mechanical constraints and proteins. © The Author(s) (2018). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  1. Nephrotoxicity of Bence-Jones proteins: correlation with endocytosis by BHK cells and intracellular movement

    Directory of Open Access Journals (Sweden)

    Ana Lucia Nicastri

    2001-06-01

    Full Text Available The aim of this investigation was to evaluate the endocytosis of two Bence-Jones proteins by renal cells in order to elucidate the interference of their physical and chemical characteristics on nephrotoxicity. Bence-Jones proteins (AK and GL were purified and isolated from the urine of two patients with multiple myeloma. The isotype of both proteins was characterised as being human monoclonal lambda light chain. The AK protein presented mainly an Ip>7.0, a high content of galactose and a low amount of sialic acid molecules. On the other hand, the GL protein presented a single band with an Ip of 4.3, a higher level of sialic acid and a reduced amount of galactose, in comparison with the AK protein. Baby Hamster Kidney (BHK cells were maintained in culture in bottles at 37ºC, using DMEM culture media supplemented with 10% of calf serum with a pH of 7.4. Once the monolayer was observed to be confluent, the BHK cells were incubated with the two proteins, dissolved in a serum-free medium for 1, 5, 15, 30, 60 minutes and 24 hours. Control cells were established omitting the incubation with Bence-Jones proteins, but maintaining all of the other conditions. After, this the cells were washed, trypsinised, centrifuged and fixed in a solution of 4% paraformaldehyde and 0.5% glutaraldehyde on a 0.1 M, pH 7.4 phosphate buffer. Cells were processed for immunocytochemical reactions by using protein A coupled with colloidal gold and further silver enhancement. Semi-thin sections of the pellets were obtained and submitted to the cytochemical reactions. Detection of labelling was made by using light microscopy. It was observed that GL protein tended to be directed towards a perinuclear position, whereas the AK protein tended to suffer lysosomal deviation, suggesting that there is a direct contribution of physical and chemical characteristics on intracellular direction taken by Bence-Jones proteins.O objetivo deste trabalho foi avaliar a endocitose de duas prote

  2. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  3. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    Science.gov (United States)

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  4. Quality control of technetium-99m DTPA: correlation of analytic tests with in vivo protein binding in man

    International Nuclear Information System (INIS)

    Russell, C.D.; Rowell, K.; Scott, J.W.

    1986-01-01

    When [/sup 99m/Tc]DTPA is administered, a small fraction of the activity (presumably an impurity) is bound to plasma proteins. This causes an error in the calculation of glomerular filtration rate from plasma clearance. This paper presents two methods of laboratory quality control for measuring the fraction that binds to plasma proteins. One method involves in vitro binding to human serum albumin followed by gel filtration. The other method involves descending paper chromatography on wet pre-equilibrated anion exchange paper. In a series of 80 patients, correlation was demonstrated between laboratory characteristics and actual clinical performance of the [/sup 99m/Tc]DTPA preparation. Both laboratory methods appear suitable for routine quality control

  5. Fibrillation mechanism of a model intrinsically disordered protein revealed by 2D correlation deep UV resonance Raman spectroscopy.

    Science.gov (United States)

    Sikirzhytski, Vitali; Topilina, Natalya I; Takor, Gaius A; Higashiya, Seiichiro; Welch, John T; Uversky, Vladimir N; Lednev, Igor K

    2012-05-14

    Understanding of numerous biological functions of intrinsically disordered proteins (IDPs) is of significant interest to modern life science research. A large variety of serious debilitating diseases are associated with the malfunction of IDPs including neurodegenerative disorders and systemic amyloidosis. Here we report on the molecular mechanism of amyloid fibrillation of a model IDP (YE8) using 2D correlation deep UV resonance Raman spectroscopy. YE8 is a genetically engineered polypeptide, which is completely unordered at neutral pH yet exhibits all properties of a fibrillogenic protein at low pH. The very first step of the fibrillation process involves structural rearrangements of YE8 at the global structure level without the detectable appearance of secondary structural elements. The formation of β-sheet species follows the global structural changes and proceeds via the simultaneous formation of turns and β-strands. The kinetic mechanism revealed is an important new contribution to understanding of the general fibrillation mechanism proposed for IDP.

  6. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.

    Directory of Open Access Journals (Sweden)

    Cameron J Mitchell

    Full Text Available Muscle hypertrophy following resistance training (RT involves activation of myofibrillar protein synthesis (MPS to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE in untrained men (n = 23 and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m² underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (P<0.001 above rest 60-180 min post-exercise and 184±28% (P = 0.037 180-360 min post exercise. Quadriceps volume increased 7.9±1.6% (-1.9-24.7% (P<0.001 after training. There was no correlation between changes in quadriceps muscle volume and acute rates of MPS measured over 1-3 h (r = 0.02, 3-6 h (r = 0.16 or the aggregate 1-6 h post-exercise period (r = 0.10. Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05 with phosphorylation of 4E-BP1(Thr37/46 at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.

  7. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  8. Systematic analysis of compositional order of proteins reveals new characteristics of biological functions and a universal correlate of macroevolution.

    Directory of Open Access Journals (Sweden)

    Erez Persi

    Full Text Available We present a novel analysis of compositional order (CO based on the occurrence of Frequent amino-acid Triplets (FTs that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between 'regularity', 'periodicity' and 'vocabulary', to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic 'innovation' at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces.

  9. Systematic Analysis of Compositional Order of Proteins Reveals New Characteristics of Biological Functions and a Universal Correlate of Macroevolution

    Science.gov (United States)

    Persi, Erez; Horn, David

    2013-01-01

    We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between ‘regularity’, ‘periodicity’ and ‘vocabulary’, to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic ‘innovation’ at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces. PMID:24278003

  10. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, S.; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-01-01

    Roč. 22, č. 2 (2016), s. 290-299 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GPP501/12/P951 Institutional support: RVO:61389030 ; RVO:61388955 Keywords : raster image correlation spectroscopy * fluorescence recovery after photobleaching * auxin influx Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.891, year: 2016

  11. Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from Trichoderma atroviride, T. reesei and T. harzianum

    DEFF Research Database (Denmark)

    Borisova, Anna S.; Eneyskaya, Elena V.; Jana, Suvamay

    2018-01-01

    analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. We...... that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering...

  12. Saturation of retinol-binding protein correlates closely to the severity of alcohol-induced liver disease

    DEFF Research Database (Denmark)

    Wagnerberger, S.; Schäfer, C.; Bode, C.

    2006-01-01

    Impaired metabolism of retinol has been shown to occur in alcohol-induced liver disease (ALD). The purpose of the present study was to investigate the saturation of retinol-binding protein (RBP) in 6 patients with different stages of ALD. Hospitalized alcohol consumers (n=118) with different stages......: 43.5+/-6.2%; ALD3: 29.0+/-5.1%). The present study indicates that plasma concentrations of retinol and RBP per se do not correlate to severity of ALD, but rather that the retinol/RBP ratio links to the severity of alcohol-induced liver damage. From these results, a reduced availability of retinol...

  13. Induced repair and mutagenesis in animal cells

    International Nuclear Information System (INIS)

    Takimoto, Koichi

    1981-01-01

    Induced repair and mutagenesis of animal cells against UV were studied in contrast with SOS repair of E. coli primarily by the use of viruses. Since UV-enhanced reactivation is a phenomenon similar to UV-reactivation (mutagenesis) and the presence of lesion bypass synthsis has been suggested, UV-enhanced reactivation has several common aspects with SOS reactivation of E. coli. However, correlation is not necessarily noted between increase in the viral survival rate and mutagenesis, nor do protease blockers exert any effect. Therefore, SOS repair of E. coli may have different mechansms from induced repair and mutagenesis in animal cells. (Ueda, J.)

  14. Stripped-down DNA repair in a highly reduced parasite

    Directory of Open Access Journals (Sweden)

    Fast Naomi M

    2007-03-01

    Full Text Available Abstract Background Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair. DNA repair is essential to any living cell. A loss of these mechanisms invariably results in accumulation of mutations and/or cell death. Six major pathways of DNA repair in eukaryotes include: non-homologous end joining (NHEJ, homologous recombination repair (HRR, mismatch repair (MMR, nucleotide excision repair (NER, base excision repair (BER and methyltransferase repair. DNA polymerases are also critical players in DNA repair processes. Given the close relationship between microsporidia and fungi, the repair mechanisms present in E. cuniculi were compared to those of the yeast Saccharomyces cerevisiae to ascertain how the process of genome reduction has affected the DNA repair pathways. Results E. cuniculi lacks 16 (plus another 6 potential absences of the 56 DNA repair genes sought via BLASTP and PSI-BLAST searches. Six of 14 DNA polymerases or polymerase subunits are also absent in E. cuniculi. All of these genes are relatively well conserved within eukaryotes. The absence of genes is not distributed equally among the different repair pathways; some pathways lack only one protein, while there is a striking absence of many proteins that are components of both double strand break repair pathways. All specialized repair polymerases are also absent. Conclusion Given the large number of DNA repair genes that are absent from the double strand break repair pathways, E. cuniculi is a prime candidate for the study of double strand break repair with minimal machinery. Strikingly, all of the

  15. The correlation between changes of C-reactive protein (CRP level and size of infarct in stroke

    Directory of Open Access Journals (Sweden)

    Shahram Aboutalebi

    2006-09-01

    Full Text Available Background: The presence of C-reactive protein (CRP during different stages of stroke had been shown in several studies. There is still no definite document about the correlation of CRP level and size of infarct in stroke. We studied the correlation of the acute level of CRP with size of infarct in stroke. Methods: A total of 90 consecutive patients with acute stroke admitted in Fatemeh Zahra University Hospital in Bushehr city were studied. Levels of CRP were measured at admission time and 48 hours later. Sizes of infarct and types of stroke were determined with Computerized Tomography scanning. The excluded patients were those with infection, stroke in brain stem, a delay more than 24 hours after attack of stroke and Transient Ischemic Attacks. CRP level was measured quantitatively using ELISA method. Results: No correlation between the first CRP levels and variables of age, size of infarct and type of stroke was detected. Size of infarct was correlated with the second CRP (r=0.41, P<0.001 and the difference in CRP levels (r=0.45, P<0.001. The CRP difference was significant in ischemic, hemorrhagic and territory infarcts (P<0.01. But there was no difference between the first and the second CRP in lacunar infarcts. Conclusion: We found no correlation between the CRP levels of the 24 first hours after acute stroke with size of infarct in stroke. But the increase of CRP levels which were measured in 48 hours after the stroke had correlation with size of infarct irrespective of types of stroke. More studies could reveal the cause and effect of CRP in size of infarct in stroke.

  16. RNA binding protein RNPC1 inhibits breast cancer cells metastasis via activating STARD13-correlated ceRNA network.

    Science.gov (United States)

    Zhang, Zhiting; Guo, Qianqian; Zhang, Shufang; Xiang, Chenxi; Guo, Xinwei; Zhang, Feng; Gao, Lanlan; Ni, Haiwei; Xi, Tao; Zheng, Lufeng

    2018-05-07

    RNA binding proteins (RBPs) are pivotal post-transcriptional regulators. RNPC1, an RBP, acts as a tumor suppressor through binding and regulating the expression of target genes in cancer cells. This study disclosed that RNPC1 expression was positively correlated with breast cancer patients' relapse free and overall survival, and RNPC1suppressed breast cancer cells metastasis. Mechanistically, RNPC1 promoting a competing endogenous network (ceRNA) crosstalk between STARD13, CDH5, HOXD10, and HOXD1 (STARD13-correlated ceRNA network) that we previously confirmed in breast cancer cells through stabilizing the transcripts and thus facilitating the expression of these four genes in breast cancer cells. Furthermore, RNPC1 overexpression restrained the promotion of STARD13, CDH5, HOXD10, and HOXD1 knockdown on cell metastasis. Notably, RNPC1 expression was positively correlated with CDH5, HOXD1 and HOXD10 expression in breast cancer tissues, and attenuated adriamycin resistance. Taken together, these results identified that RNPC1 could inhibit breast cancer cells metastasis via promoting STARD13-correlated ceRNA network.

  17. Renal and urinary levels of endothelial protein C receptor correlate with acute renal allograft rejection.

    Directory of Open Access Journals (Sweden)

    Lionel Lattenist

    Full Text Available The Endothelial Protein C Receptor (EPCR is expressed on leukocytes, on endothelium of large blood vessels and to a lesser extent on capillaries. Membrane bound EPCR plays an important role in the activation of protein C which has anticoagulant, anti-inflammatory and cytoprotective effects. After cleavage by a protease EPCR is also found as a soluble protein. Acute rejection of kidney allografts can be divided in T-cell-mediated rejection (TCMR and antibody-mediated (ABMR rejection. The latter is characterized by strong activation of coagulation. Currently no reliable non-invasive biomarkers are available to monitor rejection. Renal biopsies were available from 81 renal transplant patients (33 without rejection, 26 TCMR and 22 ABMR, we had access to mRNA material, matched plasma and urine samples for a portion of this cohort. Renal EPCR expression was assessed by RT-PCR and immunostaining. Plasma and urine sEPCR levels were measured by ELISA. ABMR patients showed higher levels of EPCR mRNA than TCMR patients. EPCR expression on glomeruli was significantly elevated in ABMR patients than in TCMR or control patients. In the peritubular capillaries EPCR expression was higher in ABMR patients than in control patients. EPCR expression was higher in tubules and arteries of rejection patients than in control patients. Plasma sEPCR levels did not differ. Urine sEPCR levels were more elevated in the ABMR group than in patients with TCMR or without rejection. ROC analysis demonstrated that urinary sEPCR is appropriate to discriminate between ABMR patients and TCMR or control patients. We conclude that urinary sEPCR could be a novel non-invasive biomarker of antibody mediated rejection in renal transplantation.

  18. DNA repair in Mycobacterium tuberculosis revisited.

    Science.gov (United States)

    Dos Vultos, Tiago; Mestre, Olga; Tonjum, Tone; Gicquel, Brigitte

    2009-05-01

    Our understanding of Mycobacterium tuberculosis DNA repair mechanisms is still poor compared with that of other bacterial organisms. However, the publication of the first complete M. tuberculosis genome sequence 10 years ago boosted the study of DNA repair systems in this organism. A first step in the elucidation of M. tuberculosis DNA repair mechanisms was taken by Mizrahi and Andersen, who identified homologs of genes involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes required for nucleotide excision repair, base excision repair, recombination, and SOS repair and mutagenesis were identified. Notably, no homologs of genes involved in mismatch repair were identified. Novel characteristics of the M. tuberculosis DNA repair machinery have been found over the last decade, such as nonhomologous end joining, the presence of Mpg, ERCC3 and Hlr - proteins previously presumed to be produced exclusively in mammalian cells - and the recently discovered bifunctional dCTP deaminase:dUTPase. The study of these systems is important to develop therapeutic agents that can counteract M. tuberculosis evolutionary changes and to prevent adaptive events resulting in antibiotic resistance. This review summarizes our current understanding of the M. tuberculosis DNA repair system.

  19. Correlating labeling chemistry and in-vitro test results with the biological behavior of radiolabeled proteins

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Meinken, G.E.

    1985-01-01

    Monoclonal antibodies possess enormous potential for delivery of therapeutic amounts of radionuclides to target antigens in vivo, in particular for tumor imaging and therapy. Translation of this concept into practice has encountered numerous problems. Specifically whereas general protein radiolabeling methods are applicable to antibodies, immunological properties of the antibodies are often compromised resulting in reduced in-vivo specificity for the target antigens. The bifunctional chelating agent approach shows the most promise, however, development of other agents will be necessary for widespread usefulness of this technique. The effects of labeling chemistry on the in-vivo behavior of several monoclonal antibodies are described. 30 refs., 4 figs., 10 tabs

  20. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein

    DEFF Research Database (Denmark)

    Lannergård, Jonas; Kristensen, Bodil M.; Gustafsson, Mattias C. U.

    2015-01-01

    The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms...... fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant...

  1. The Rev1 interacting region (RIR) motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair.

    Science.gov (United States)

    Breslin, Claire; Mani, Rajam S; Fanta, Mesfin; Hoch, Nicolas; Weinfeld, Michael; Caldecott, Keith W

    2017-09-29

    The scaffold protein X-ray repair cross-complementing 1 (XRCC1) interacts with multiple enzymes involved in DNA base excision repair and single-strand break repair (SSBR) and is important for genetic integrity and normal neurological function. One of the most important interactions of XRCC1 is that with polynucleotide kinase/phosphatase (PNKP), a dual-function DNA kinase/phosphatase that processes damaged DNA termini and that, if mutated, results in ataxia with oculomotor apraxia 4 (AOA4) and microcephaly with early-onset seizures and developmental delay (MCSZ). XRCC1 and PNKP interact via a high-affinity phosphorylation-dependent interaction site in XRCC1 and a forkhead-associated domain in PNKP. Here, we identified using biochemical and biophysical approaches a second PNKP interaction site in XRCC1 that binds PNKP with lower affinity and independently of XRCC1 phosphorylation. However, this interaction nevertheless stimulated PNKP activity and promoted SSBR and cell survival. The low-affinity interaction site required the highly conserved Rev1-interacting region (RIR) motif in XRCC1 and included three critical and evolutionarily invariant phenylalanine residues. We propose a bipartite interaction model in which the previously identified high-affinity interaction acts as a molecular tether, holding XRCC1 and PNKP together and thereby promoting the low-affinity interaction identified here, which then stimulates PNKP directly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  3. O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction

    International Nuclear Information System (INIS)

    Brell, Marta; Ibáñez, Javier; Tortosa, Avelina

    2011-01-01

    The DNA repair protein O 6 -Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably

  4. O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Ibáñez Javier

    2011-01-01

    Full Text Available Abstract Background The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP the most commonly used for promoter methylation study, while immunohistochemistry (IHC has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009, EBSCO (1966-October 2009 and EMBASE (1974-October 2009 was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5% met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.

  5. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leder, Verena [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lummer, Martina [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Tegeler, Kathrin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Humpert, Fabian [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lewinski, Martin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Schüttpelz, Mark [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Staiger, Dorothee, E-mail: dorothee.staiger@uni-bielefeld.de [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany)

    2014-10-10

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R{sup 49} abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K{sub d} value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R{sup 49} that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding.

  6. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis

    International Nuclear Information System (INIS)

    Serce, Nuran Bektas; Knuechel, Ruth; Beckmann, Matthias W; Fasching, Peter A; Dahl, Edgar; Boesl, Andreas; Klaman, Irina; Serényi, Sonja von; Noetzel, Erik; Press, Michael F; Dimmler, Arno; Hartmann, Arndt; Sehouli, Jalid

    2012-01-01

    Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the

  7. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Leder, Verena; Lummer, Martina; Tegeler, Kathrin; Humpert, Fabian; Lewinski, Martin; Schüttpelz, Mark; Staiger, Dorothee

    2014-01-01

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R 49 abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K d value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R 49 that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding

  8. Ultrasound determination of rotator cuff tear repairability

    Science.gov (United States)

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p tear size (p tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  9. Analysis of residuals from enzyme kinetic and protein folding experiments in the presence of correlated experimental noise.

    Science.gov (United States)

    Kuzmic, Petr; Lorenz, Thorsten; Reinstein, Jochen

    2009-12-01

    Experimental data from continuous enzyme assays or protein folding experiments often contain hundreds, or even thousands, of densely spaced data points. When the sampling interval is extremely short, the experimental data points might not be statistically independent. The resulting neighborhood correlation invalidates important theoretical assumptions of nonlinear regression analysis. As a consequence, certain goodness-of-fit criteria, such as the runs-of-signs test and the autocorrelation function, might indicate a systematic lack of fit even if the experiment does agree very well with the underlying theoretical model. A solution to this problem is to analyze only a subset of the residuals of fit, such that any excessive neighborhood correlation is eliminated. Substrate kinetics of the HIV protease and the unfolding kinetics of UMP/CMP kinase, a globular protein from Dictyostelium discoideum, serve as two illustrative examples. A suitable data-reduction algorithm has been incorporated into software DYNAFIT [P. Kuzmic, Anal. Biochem. 237 (1996) 260-273], freely available to all academic researchers from http://www.biokin.com.

  10. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage

    DEFF Research Database (Denmark)

    Roy, Roopali; Wewer, Ulla M; Zurakowski, David

    2004-01-01

    -Sepharose affinity chromatography followed by protein identification by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Four peptides were identified that spanned the amino acid sequence of ADAM 12. Immunoblot analysis using ADAM 12-specific antibodies detected an approximately 68-k......Da band identified as the mature form of ADAM 12. To characterize catalytic properties of ADAM 12, full-length ADAM 12-S was expressed in COS-7 cells and purified. Substrate specificity studies demonstrated that ADAM 12-S degrades gelatin, type IV collagen, and fibronectin but not type I collagen...... or casein. Gelatinase activity of ADAM 12 was completely abrogated by zinc chelators 1,10-phenanthroline and EDTA and was partially inhibited by the hydroxamate inhibitor Marimastat. Endogenous matrix metalloprotease inhibitor TIMP-3 inhibited activity. To validate our initial identification of this enzyme...

  11. Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein

    Directory of Open Access Journals (Sweden)

    Keming Zhou

    2017-05-01

    Full Text Available Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.

  12. Anti-carbamylated Protein Antibody Levels Correlate with Anti-Sa (Citrullinated Vimentin) Antibody Levels in Rheumatoid Arthritis.

    Science.gov (United States)

    Challener, Gregory J; Jones, Jonathan D; Pelzek, Adam J; Hamilton, B JoNell; Boire, Gilles; de Brum-Fernandes, Artur José; Masetto, Ariel; Carrier, Nathalie; Ménard, Henri A; Silverman, Gregg J; Rigby, William F C

    2016-02-01

    The presence of anticitrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) indicates a breach in immune tolerance. Recent studies indicate that this breach extends to homocitrullination of lysines with the formation of anti-carbamylated protein (anti-CarP) antibodies. We analyzed the clinical and serologic relationships of anti-CarP in 2 RA cohorts. Circulating levels of immunoglobulin G anti-CarP antibodies were determined by ELISA in established (Dartmouth-Hitchcock Medical Center) and early (Sherbrooke University Hospital Center) cohorts and evaluated for anticyclic citrullinated peptide antibodies (anti-CCP), specific ACPA, and rheumatoid factor (RF) levels using the Student t test and correlation analysis. We identified elevated anti-CarP antibodies titers in 47.0% of seropositive patients (Dartmouth, n = 164), with relationships to anti-CCP (p < 0.0001) and IgM-RF (p = 0.001). Similarly, 38.2% of seropositive patients from the Sherbrooke cohort (n = 171) had elevated anti-CarP antibodies; titers correlated to anti-CCP (p = 0.01) but not IgM-RF (p = 0.09). A strong correlation with anti-Sa was observed: 47.9% anti-Sa+ patients were anti-CarP antibodies+ versus only 25.4% anti-Sa- in the Sherbrooke cohort (p = 0.0002), and 62.6% anti-Sa+ patients versus 26.9% anti-Sa- were anti-CarP antibodies+ in Dartmouth (p < 0.0001). We found a more variable response for reactivity to citrullinated fibrinogen or to citrullinated peptides from fibrinogen and α enolase. In 2 North American RA cohorts, we observed a high prevalence of anti-CarP antibody positivity. We also describe a surprising and unexpected association of anti-CarP with anti-Sa antibodies that could not be explained by cross-reactivity. Further, considerable heterogeneity exists between anti-CarP reactivity and other citrullinated peptide reactivity, raising the question of how the pathogenesis of antibody responses for carbamylated proteins and citrullinated proteins may be linked in vivo.

  13. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes.

    Science.gov (United States)

    Chen, Mei-En; Hwang, Shang-Jyh; Chen, Hung-Chun; Hung, Chi-Chih; Hung, Hsin-Chia; Liu, Shao-Chun; Wu, Tsai-Jiin; Huang, Meng-Chuan

    2017-05-01

    Dietary energy and protein intake can affect progression of chronic kidney disease (CKD). CKD complicated with diabetes is often associated with a decline in renal function. We investigated the relative importance of dietary energy intake (DEI) and dietary protein intake (DPI) to renal function indicators in nondiabetic and diabetic CKD patients. A total of 539 Stage 3-5 CKD patients [estimated glomerular filtration rate (eGFR)Disease equation] with or without diabetes were recruited from outpatient clinics of Nephrology and Nutrition in a medical center in Taiwan. Appropriateness of DEI and DPI was used to subcategorize CKD patients into four groups:(1) kidney diet (KD) A (KD-A), the most appropriate diet, was characterized by low DPI and adequate DEI; (2) KD-B, low DPI and inadequate DEI; (3) KD-C, excess DPI and adequate DEI; and (4) KD-D, the least appropriate diet, excess DPI and inadequate DEI. Inadequate DEI was defined as a ratio of actual intake/recommended intake less than 90% and adequate DEI as over 90%. Low DPI was defined as less than 110% of recommended intake and excessive when over 110%. Outcome measured was eGFR. In both groups of CKD patients, DEI was significantly lower (ppatients were KD-C and KD-D significantly correlated with reduced eGFR compared with KD-A at increments of -5.63 mL/min/1.73 m 2 (p = 0.029) and -7.72 mL/min/1.73 m 2 (p=0.015). In conclusion, inadequate energy and excessive protein intakes appear to correlate with poorer renal function in nondiabetic CKD patients. Patients with advanced CKD are in need of counseling by dietitians to improve adherence to diets. Copyright © 2017. Published by Elsevier Taiwan.

  14. Phosphorylated Protein Kinase C (Zeta/Lambda) Expression in Colorectal Adenocarcinoma and Its Correlation with Clinicopathologic Characteristics and Prognosis.

    Science.gov (United States)

    Yeo, Min-Kyung; Kim, Ji Yeon; Seong, In-Ock; Kim, Jin-Man; Kim, Kyung-Hee

    2017-01-01

    Background: Protein kinase C zeta/lambda (PKCζ/λ) is a family of protein kinase enzymes that contributes to cell proliferation and regulation, which are important for cancer development. PKCζ/λ has been shown to be an important regulator of tumorigenesis in intestinal cancer. The phosphorylated form of PKCζ/λ, p-PKCζ/λ, is suggested as an active form of PKCζ/λ. However, p-PKCζ/λ expression and its clinicopathologic implication in colorectal adenocarcinoma (CRAC) are unclear. Methods: Seven whole-tissue sections of malignant polyps containing both non-neoplastic and neoplastic mucosa, 11 adenomas with low-grade dysplasia, and 173 CRACs were examined by immunohistochemistry and western blot assay for p-PKCζ/λ protein expression. The association of p-PKCζ/λ expression with clinicopathologic factors including patient survival was studied. Results: In non-neoplastic epithelia, p-PKCζ/λ showed a weak cytoplasmic immunostaining. Adenomas and CRACs demonstrated up-regulated p-PKCζ/λ detection. Cytoplasmic p-PKCζ/λ expression was higher in CRAC than in adenoma. In CRACs, p-PKCζ/λ expression was inversely correlated with pathologic TNM stage (I-II versus III-IV) and poor differentiation. Statistical correlations between low expression of p-PKCζ/λ with shortened overall survival and disease-free survival were seen (p=0.004 and p=0.034, respectively). Conclusions: P-PKCζ/λ overexpression is implicated in tumorigenesis but down-regulation was a poor prognostic factor in CRAC.

  15. Serum klotho protein levels and their correlations with the progression of type 2 diabetes mellitus.

    Science.gov (United States)

    Nie, Fang; Wu, Dongming; Du, Hongfei; Yang, Xianggui; Yang, Min; Pang, Xueli; Xu, Ying

    2017-03-01

    To investigate the associations of serum α-Klotho and β-Klotho levels with type 2 diabetes mellitus (T2DM) progression. We evaluated 106 healthy controls and 261 cases of T2DM with or without diabetic complications (range: 45-84years). Serum α-Klotho and β-Klotho levels were analyzed using enzyme-linked immunosorbent assays. Compared to the healthy controls, α-Klotho and β-Klotho levels were significantly lower among patients with T2DM and with or without diabetic complications (Pdiabetes, and the positive correlation of α-Klotho and β-Klotho levels indicates that they might have similar mechanisms in T2DM. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Detection of C',Cα correlations in proteins using a new time- and sensitivity-optimal experiment

    International Nuclear Information System (INIS)

    Lee, Donghan; Voegeli, Beat; Pervushin, Konstantin

    2005-01-01

    Sensitivity- and time-optimal experiment, called COCAINE (CO-CA In- and aNtiphase spectra with sensitivity Enhancement), is proposed to correlate chemical shifts of 13 C' and 13 C α spins in proteins. A comparison of the sensitivity and duration of the experiment with the corresponding theoretical unitary bounds shows that the COCAINE experiment achieves maximum possible transfer efficiency in the shortest possible time, and in this sense the sequence is optimal. Compared to the standard HSQC, the COCAINE experiment delivers a 2.7-fold gain in sensitivity. This newly proposed experiment can be used for assignment of backbone resonances in large deuterated proteins effectively bridging 13 C' and 13 C α resonances in adjacent amino acids. Due to the spin-state selection employed, the COCAINE experiment can also be used for efficient measurements of one-bond couplings (e.g. scalar and residual dipolar couplings) in any two-spin system (e.g. the N/H in the backbone of protein)

  17. Cartilage oligomeric matrix protein (COMP) in rheumatoid arthritis and its correlation with sonographic knee cartilage thickness and disease activity.

    Science.gov (United States)

    Sakthiswary, Rajalingham; Rajalingam, Shamala; Hussein, Heselynn; Sridharan, Radhika; Asrul, Abdul Wahab

    2017-12-01

    The aim of the study is to investigate the correlation of serum cartilage oligomeric matrix protein (COMP) levels with articular cartilage damage based on sonographic knee cartilage thickness (KCT) and disease activity in rheumatoid arthritis (RA). A total of 61 RA patients and 27 healthy controls were recruited in this study. Serum samples were obtained from all subjects to determine the serum COMP levels. All subjects had bilateral ultrasound scan of their knees. The KCT was based on the mean of measurements at three sites: the medial condyle, lateral condyle and intercondylar notch. Besides, the RA patients were assessed for their disease activity based on 28-joint-based Disease Activity Score (DAS 28). Serum COMP concentrations were significantly elevated in the RA patients compared to the controls (p = 0.001). The serum COMP levels had an inverse relationship with bilateral KCT in RA subjects and the healthy controls. COMP correlated significantly with disease activity based on DAS 28 (r = 0.299, p = 0.010), disease duration (r = 0.439, p = correlation between serum COMP and DAS 28 scores was comparable to the traditional markers of inflammation: erythrocyte sedimentation rate (ESR) (r = 0.372, p = 0.003) and C-reactive protein (CRP) (r = 0.305, p = 0.017). The serum COMP is a promising biomarker in RA which reflects disease activity and damage to the articular cartilage.

  18. SOS-like induction in Bacillus subtilis: induction of the RecA protein analog and a damage-inducible operon by DNA damage in Rec+ and DNA repair-deficient strains

    International Nuclear Information System (INIS)

    Lovett, C.M. Jr.; Love, P.E.; Yasbin, R.E.; Roberts, J.W.

    1988-01-01

    We quantitated the induction of the Bacillus subtilis Rec protein (the analog of Escherichia coli RecA protein) and the B. subtilis din-22 operon (representative of a set of DNA damage-inducible operons in B. subtilis) following DNA damage in Rec+ and DNA repair-deficient strains. After exposure to mitomycin C or UV irradiation, each of four distinct rec (recA1, recB2, recE4, and recM13) mutations reduced to the same extent the rates of both Rec protein induction (determined by densitometric scanning of immunoblot transfers) and din-22 operon induction (determined by assaying beta-galactosidase activity in din-22::Tn917-lacZ fusion strains). The induction deficiencies in recA1 and recE4 strains were partially complemented by the E. coli RecA protein, which was expressed on a plasmid in B. subtilis; the E. coli RecA protein had no effect on either induction event in Rec+, recB2, or recM13 strains. These results suggest that (i) the expression of both the B. subtilis Rec protein and the din-22 operon share a common regulatory component, (ii) the recA1 and recE4 mutations affect the regulation and/or activity of the B. subtilis Rec protein, and (iii) an SOS regulatory system like the E. coli system is highly conserved in B. subtilis. We also showed that the basal level of B. subtilis Rec protein is about 4,500 molecules per cell and that maximum induction by DNA damage causes an approximately fivefold increase in the rate of Rec protein accumulation

  19. Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma.

    Science.gov (United States)

    Meng, Xin-Yu; Liu, Juan; Lv, Feng; Liu, Ming-Qiu; Wan, Jing-Ming

    2015-01-01

    To investigate the correlation between extracellular matrix protein-1 (ECM1) and the growth, metastasis and angiogenesis of laryngeal carcinoma. Forty-five samples with laryngeal benign and malignant tumors confirmed by pathology in Laiwu City People's Hospital from March 2006 to March 2011 were collected, in which there were 29 cases with laryngeal carcinoma and 16 with benign tumors. The expression of ECM1 and factor VIII-related antigens in patients with laryngeal carcinoma and those with benign tumors was respectively detected using immunohistochemical method, and the correlation between ECM1 staining grade and microvessel density (MVD) was analyzed. In laryngeal carcinoma tissue, ECM1 was mainly expressed in cytoplasm, less in cytomembrane or intercellular substance. With abundant expression in the tissue of laryngeal benign tumors (benign mesenchymoma and hemangioma), ECM1 was primarily expressed in the connective tissue, which was different from the expression in laryngeal carcinoma tissue. The proportion of positive ECM1 staining (++) in patients with laryngeal carcinoma was dramatically higher than those with benign tumors (pcorrelation analysis revealed that ECM1 staining grade in laryngeal carcinoma tissue had a significantly-positive correlation with MVD (r=0.866, p=0.000). ECM1 expression in laryngeal carcinoma is closely associated with tumor cell growth, metastasis and angiogenesis, which can be considered as an effective predictor in the occurrence and postoperative recurrence of laryngeal carcinoma.

  20. Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions.

    Science.gov (United States)

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki; Aoki, Kazuhiro

    2014-09-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  2. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  3. Correlates of High Serum C-Reactive Protein Levels in a Socioeconomically Disadvantaged Population

    Directory of Open Access Journals (Sweden)

    Xianglan Zhang

    2008-01-01

    Full Text Available Individuals from low socioeconomic backgrounds are disproportionately affected by the burden of cardiovascular disease (CVD, yet data regarding risk factors in this population are lacking, particularly regarding emerging biomarkers of CVD such as C-reactive protein (CRP. We measured high-sensitivity CRP and examined its association with demographic and lifestyle factors in a sample of 792 participants aged 40–79 years from the Southern Community Cohort Study, which has an over-representation of socioeconomically disadvantaged individuals (over 60% with a total annual household income 3 mg/L varied significantly by sex, race, smoking status, and body mass index (BMI. The multivariable-adjusted prevalence odds ratios (ORs (95% CIs for having elevated CRP were 1.6 (1.1–2.3 for women vs. men, 1.4 (0.9–2.0 for African Americans vs. whites, 2.3 (1.4–3.8 for African American women vs. white men, 1.8 (1.2–2.7 for current smokers vs. non-smokers, and 4.2 (2.7–6.6 for obese (BMI 30.0–44.9 kg/m2 vs. healthy-weight (BMI 18.3–24.9 kg/m2 participants. Further stratified analyses revealed that the association between BMI and elevated CRP was stronger among African Americans than whites and women than men, with prevalence ORs (95% CI comparing obese vs. healthy-weight categories reaching 22.8 (7.1–73.8 for African American women. In conclusion, in this socioeconomically disadvantaged population, sex, race, smoking, and BMI were associated with elevated CRP. Moreover, inflammatory response to obesity differed by race and sex, which may contribute to CVD disparities.

  4. Correlation between protein kinase C alpha activity and membrane phase behavior.

    Science.gov (United States)

    Micol, V; Sánchez-Piñera, P; Villalaín, J; de Godos, A; Gómez-Fernández, J C

    1999-02-01

    Lipid activation of protein kinase C alpha (PKC alpha) was studied by using a model mixture containing 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1, 2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS), and 1, 2-dimyristoyl-sn-glycerol (1,2-DMG). This lipid mixture was physically characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and 31P-nuclear magnetic resonance (31P-NMR). Based on these techniques, a phase diagram was constructed by keeping a constant DMPC/DMPS molar ratio of 4:1 and changing the concentration of 1,2-DMG. This phase diagram displayed three regions and two compounds: compound 1 (C1), with 45 mol% 1,2-DMG, and compound 2 (C2), with 60 mol% 1,2-DMG. When the phase diagram was elaborated in the presence of Ca2+ and Mg2+, at concentrations similar to those used in the PKC alpha activity assay, the boundaries between the regions changed slightly and C1 had 35 mol% 1,2-DMG. The activity of PKC alpha was studied at several temperatures and at different concentrations of 1,2-DMG, with a maximum of activity reached at 30 mol% 1,2-DMG and lower values at higher concentrations. In the presence of Ca2+ and Mg2+, maximum PKC alpha activity occurred at concentrations of 1,2-DMG that were close to the boundary in the phase diagram between region 1, where compound C1 and the pure phospholipid coexisted in the gel phase, and region 2, where compounds C1 and C2 coexisted. These results suggest that the membrane structure corresponding to a mixture of 1,2-DMG/phospholipid complex and free phospholipid is better able to support the activity of PKC alpha than the 1,2-DMG/phospholipid complex alone.

  5. Heterogenous mismatch-repair status in colorectal cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Veurink, Nynke; Holck, Susanne

    2014-01-01

    BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative......, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms. METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative....... CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification. VIRTUAL SLIDES: The virtual slide(s) for this article...

  6. Augmentation of protein production by a combination of the T7 RNA polymerase system and ubiquitin fusion: Overproduction of the human DNA repair protein, ERCC1, as a ubiquitin fusion protein in Escherichia coli.

    NARCIS (Netherlands)

    M.H.M. Koken (Marcel); J.H. Odijk; M. van Duin (Mark); M.W.J. Fornerod (Maarten); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1993-01-01

    textabstractThis article presents the development of a set of new expression vectors for overproduction of proteins in Escherichia coli. The vectors, pETUBI-ES1, 2 and 3, allow in-frame cloning of any sequence with the ubiquitin gene driven by the strong T7f10 promoter. Combination of the T7

  7. SU-E-T-45: Antibody Mean Residence Time in Blood and Its Correlation with Protein Molecular Weight

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, C; Williams, L [Retired from City of Hope Medical Center, Arcadia, CA (United States)

    2014-06-01

    Purpose: Animal biodistribution data are required prior to introducing a new radiopharmaceutical into clinical trials. Protein engineering, using recombinant DNA techniques can produce a large number of related (cognate) antibodies to a given molecular target. Thus, it is important that these constructs be numerically related to one another via a single criterion. In the following, we use the mean residence time (MRT) in murine blood as this criterion. Methods: Five cognate anti-CEA (Carcinoembryonic Antigen) antibodies were compared with regard to their MRT in whole blood of CEA-positive tumor-bearing (LS174T) mice. MRT was defined by blood AUC (area under the curve) divided by the initial blood uptake value; all in units of percent injected dose per gram (%ID/g). Cognates included single chain scFv (25 kDa), diabody (50 kDa), minibody (80 kDa), F(ab')2 (120 kDa), and intact (155 kDa) forms of the murine cT84.66 antibody against CEA. All were labeled with radioactive iodine. Results: The agents, in the sequence listed, exhibited MRT values of 1.16 +/- 0.01 h, 0.99 h, 5.06 +/- 0.70 h, 6.61 +/- 0.36 h, and 59.3 +/- 2.4 h respectively. Because of the monotonic nature of the sequence, a linear correlation analysis was performed between molecular weight (MW) and MRT or ln(MRT) of the 5 proteins. Probability of random correlation was 0.10 for MRT and 0.01 for ln(MRT). Conclusion: MRT values of cognate anti-CEA antibodies were found to be a monotonically increasing sequence with respect to MW. Cognate MW values correlated best to ln(MRT) of the protein species. Thus MRT was proportional to an exponential function of molecular weight. The extended intact antibody circulation time presumably reflected its relatively maximal MW. Presence of an intact FC segment on this native antibody may also have influenced these results.

  8. SU-E-T-45: Antibody Mean Residence Time in Blood and Its Correlation with Protein Molecular Weight

    International Nuclear Information System (INIS)

    Kwok, C; Williams, L

    2014-01-01

    Purpose: Animal biodistribution data are required prior to introducing a new radiopharmaceutical into clinical trials. Protein engineering, using recombinant DNA techniques can produce a large number of related (cognate) antibodies to a given molecular target. Thus, it is important that these constructs be numerically related to one another via a single criterion. In the following, we use the mean residence time (MRT) in murine blood as this criterion. Methods: Five cognate anti-CEA (Carcinoembryonic Antigen) antibodies were compared with regard to their MRT in whole blood of CEA-positive tumor-bearing (LS174T) mice. MRT was defined by blood AUC (area under the curve) divided by the initial blood uptake value; all in units of percent injected dose per gram (%ID/g). Cognates included single chain scFv (25 kDa), diabody (50 kDa), minibody (80 kDa), F(ab')2 (120 kDa), and intact (155 kDa) forms of the murine cT84.66 antibody against CEA. All were labeled with radioactive iodine. Results: The agents, in the sequence listed, exhibited MRT values of 1.16 +/- 0.01 h, 0.99 h, 5.06 +/- 0.70 h, 6.61 +/- 0.36 h, and 59.3 +/- 2.4 h respectively. Because of the monotonic nature of the sequence, a linear correlation analysis was performed between molecular weight (MW) and MRT or ln(MRT) of the 5 proteins. Probability of random correlation was 0.10 for MRT and 0.01 for ln(MRT). Conclusion: MRT values of cognate anti-CEA antibodies were found to be a monotonically increasing sequence with respect to MW. Cognate MW values correlated best to ln(MRT) of the protein species. Thus MRT was proportional to an exponential function of molecular weight. The extended intact antibody circulation time presumably reflected its relatively maximal MW. Presence of an intact FC segment on this native antibody may also have influenced these results

  9. Nanopolymers Delivery of the Bone Morphogenetic Protein-4 Plasmid to Mesenchymal Stem Cells Promotes Articular Cartilage Repair In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Junjun Shi

    2012-01-01

    Full Text Available The clinical application of viral vectors for gene therapy is limited for biosafety consideration. In this study, to promote articular cartilage repair, poly (lactic-co glycolic acid (PLGA nanopolymers were used as non-viral vectors to transfect rabbit mesenchymal stem cells (MSCs with the pDC316-BMP4-EGFP plasmid. The cytotoxicity and transfection efficiency in vitro were acceptable measuring by CCK-8 and flow cytometry. After transfection, Chondrogenic markers (mRNA of Col2a1, Sox9, Bmp4, and Agg of experimental cells (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers were increased more than those of control cells (MSCs being transfected with naked BMP-4 plasmid alone. In vivo study, twelve rabbits (24 knees with large full thickness articular cartilage defects were randomly divided into the experimental group (MSCs being transfected with BMP-4 plasmid by PLGA nanopolymers and the control group (MSCs being transfected with naked BMP-4 plasmid. The experimental group showed better regeneration than the control group 6 and 12 weeks postoperatively. Hyaline-like cartilage formed at week 12 in the experimental group, indicating the local delivery of BMP-4 plasmid to MSCs by PLGA nanopolymers improved articular cartilage repair significantly. PLGA nanopolymers could be a promising and effective non-viral vector for gene therapy in cartilage repair.

  10. Endometrial protein PP14 and CA-125 in recurrent miscarriage patients; correlation with pregnancy outcome.

    Science.gov (United States)

    Dalton, C F; Laird, S M; Estdale, S E; Saravelos, H G; Li, T C

    1998-11-01

    The concentrations of endometrial proteins PP14 and CA-125 were measured in uterine flushings taken on days LH+10 and LH+12 (10 and 12 days after luteinizing hormone surge) of the menstrual cycle from 15 normal, fertile women and 49 women who suffered recurrent miscarriage. The concentration of PP14 was significantly lower in the flushings from the recurrent miscarriage patients than in those from fertile controls on both day LH+10 (median: 1300, range: 3-10 300 ng/ml versus median: 13 933, range: 2174-40 404 ng/ml; P < 0.01) and LH+12 (median: 1560, range: 820-12 100 ng/ml versus median: 14 047, range 1402-62 108 ng/ml; P < 0.05). Similarly concentrations of CA-125 were significantly lower in flushings from recurrent miscarriage women compared to controls on both day LH + 10 (median: 1555, range: 47-6710 U/ml versus median: 6385.5, range 2884-27 731 U/ml, P < 0.01) and LH+12 (median: 2892, range: 956-9974 U/ml versus median: 7127.5, range: 1591-21 343 U/ml; P < 0.05). In contrast there was no significant difference in the concentration of PP14 in plasma samples taken on the same days as the flushings from recurrent miscarriage patients and fertile controls. The concentrations of PP14 in uterine flushings obtained on day LH + 10 or LH + 12 from recurrent miscarriage women during a pre-pregnancy investigative cycle were significantly lower (P < 0.05) in patients who went on to miscarry (median: 1000, range: 9-2900 ng/ml) than those who went on to have a live birth (median: 1440, range: 4-12 100 ng/ml) during a subsequent pregnancy. In contrast there was no significant difference in uterine CA-125 or plasma PP14 concentrations between these two groups of recurrent miscarriage patients. The results suggest that measurements of uterine PP14 and CA-125 may be useful in the assessment of endometrial development in recurrent miscarriage patients and suggest the importance of PP14 in preparing the endometrium for embryo implantation. In addition pre-pregnancy uterine PP14

  11. Mutagenic DNA repair in enterobacteria

    International Nuclear Information System (INIS)

    Sedgwick, S.G.; Chao Ho; Woodgate, R.

    1991-01-01

    Sixteen species of enterobacteria have been screened for mutagenic DNA repair activity. In Escherichia coli, mutagenic DNA repair is encoded by the umuDC operon. Synthesis of UmuD and UmuC proteins is induced as part of the SOS response to DNA damage, and after induction, the UmuD protein undergoes an autocatalytic cleavage to produce the carboxy-terminal UmuD' fragment needed for induced mutagenesis. The presence of a similar system in other species was examined by using a combined approach of inducible-mutagenesis assays, cross-reactivity to E. coli UmuD and UmuD' antibodies to test for induction and cleavage of UmuD-like proteins, and hybridization with E. coli and Salmonella typhimurium u mu DNA probes to map umu-like genes. The results indicate a more widespread distribution of mutagenic DNA repair in other species than was previously thought. They also show that umu loci can be more complex in other species than in E. coli. Differences in UV-induced mutability of more than 200-fold were seen between different species of enteric bacteria and even between multiple natural isolates of E. coli, and yet some of the species which display a poorly mutable phenotype still have umu-like genes and proteins. It is suggested that umuDC genes can be curtailed in their mutagenic activities but that they may still participate in some other, unknown process which provides the continued stimulus for their retention

  12. The diagnostic role of serum inflammatory and soluble proteins on dementia subtypes: correlation with cognitive and functional decline.

    Science.gov (United States)

    Oztürk, Candan; Ozge, Aynur; Yalin, Osman Ozgür; Yilmaz, I Arda; Delialioglu, Nuran; Yildiz, Cilem; Tesdelen, Bahar; Kudiaki, Cigdem

    2007-01-01

    In the past years, the possible involvement of inflammation in the pathogenesis of dementia has been the subject of several investigations. However there are restricted data about the profile of the inflammatory and soluble proteins in well evaluated Alzheimer's disease (AD), vascular dementia (VD), mild cognitive impairment (MCI) and healthy controls. There are also no reliable data regarding the relationship between the overlapping protein levels and cognitive or functional decline. We measured levels of IL-1beta, IL-2, IL-6, IL-18, TNF-alpha, beta-Amlyloid 1-40 and alpha1-antichymotrypsin levels in plasma in groups of total 82 subjects with AD, MCI, VD and controls using enzyme-linked immunosorbent assay (ELISA) method. Our study samples showed high levels of proinflammatory cytokine levels (especially IL-18) in all patient groups but only high levels of alpha1-antichymotrypsine in VD patients compared to controls. There is no significant correlation between the laboratory and clinical variables except for a link between IL-1beta and NPI scores of AD. In conclusion, this study yielded evidence of some shared mechanisms underlying AD and VD and thus motivates further studies of inflammatory markers in various types of dementia and MCI.

  13. A nu-space for image correlation spectroscopy: characterization and application to measure protein transport in live cells

    Science.gov (United States)

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  14. Correlation of antispermatozoal antibody with infertility in immunized female rabbits using 14C-protein A in a filter radioassay

    International Nuclear Information System (INIS)

    Eng, L.A.; Metz, C.B.

    1986-01-01

    The meaningful detection of antisperm antibody in immunologically infertile females has been confounded by the many methods of assay that exist. With many of these methods there is poor correlation of assay results with infertility. In this report, female rabbits were rendered partially or completely infertile by immunization with sperm fractions. A filter radioassay for antisperm antibody was developed that consists of incubating 10(7) sperm with sperm from immunized rabbits and 14 C-Protein A, a long-lived and versatile indirect radiolabel for many antibodies of the IgG class. The spermatozoa are washed by rapid vacuum filtration on polycarbonate membrane filters instead of by time-consuming centrifugation. The filters with the collected spermatozoa are then counted in a liquid scintillation counter. Sera from female rabbits isoimmunized with sperm antigens show a highly significant correlation (r = -0.904; p less than 0.001) between assay results and infertility as measured by the percentage of eggs that underwent cleavage after artificial insemination

  15. Correlation of insulin resistance with serum C-reactive protein, adiponectin and leptin levels in patients with type 2 diabetes

    International Nuclear Information System (INIS)

    Duan Yangqiang; Wang Zuobing; Yu Hui

    2012-01-01

    Objective: To explore the relationship between serum C-reactive protein (CRP), adiponectin (APN), leptin (Leptin) levels, insulin resistance index (HOMA-IR) and type 2 diabetes mellitus (T2DM) disease susceptibility. Methods: The plasma leptin and insulin (FINS) levels in the DM patients were determined by RIA, and the serum ANP levels were determined by ELSIA. The CRP, conventional serum fasting plasma glucose (FPG) levels were determine by automatic biochemistry analyzer. The insulin resistance index (HOMA-IR, FPG x FINS/22.5) was calculated. The result was analyzed with normal healthy control group. Results: The serum CRP and leptin, HOMA-IR levels in T2DM group were significantly higher than that of in control group (P< 0.01), and the serum ANP was significantly lower than in control group (P<0.01). The HOMA-IR in T2DM was positively correlated with serum CRP (r= 0.36, P<0.05) and leptin(r= 0.39, P<0.05), and was negatively correlated with serum APN (r=0.32, P<0.05). Conclusion: The high serum CRP and leptin and low APN levels hyperlipidaemia might be factors for diabetes, and their metabolic disorders may be closely related with insulin resistance in patients with type 2 diabetes. (authors)

  16. Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data.

    Science.gov (United States)

    Newman, J; Egan, T; Harbourne, N; O'Riordan, D; Jacquier, J C; O'Sullivan, M

    2014-08-01

    Sensory evaluation can be problematic for ingredients with a bitter taste during research and development phase of new food products. In this study, 19 dairy protein hydrolysates (DPH) were analysed by an electronic tongue and their physicochemical characteristics, the data obtained from these methods were correlated with their bitterness intensity as scored by a trained sensory panel and each model was also assessed by its predictive capabilities. The physiochemical characteristics of the DPHs investigated were degree of hydrolysis (DH%), and data relating to peptide size and relative hydrophobicity from size exclusion chromatography (SEC) and reverse phase (RP) HPLC. Partial least square regression (PLS) was used to construct the prediction models. All PLS regressions had good correlations (0.78 to 0.93) with the strongest being the combination of data obtained from SEC and RP HPLC. However, the PLS with the strongest predictive power was based on the e-tongue which had the PLS regression with the lowest root mean predicted residual error sum of squares (PRESS) in the study. The results show that the PLS models constructed with the e-tongue and the combination of SEC and RP-HPLC has potential to be used for prediction of bitterness and thus reducing the reliance on sensory analysis in DPHs for future food research. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  18. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis

    International Nuclear Information System (INIS)

    Radman, M.

    1974-01-01

    A hypothesis is proposed according to which E. coli possesses an inducible DNA repair system. This hypothetical repair, which we call SOS repair, is manifested only following damage to DNA, and requires de novo protein synthesis. SOS repair in E. coli requires some known genetic elements: recA + , lex + and probably zab + . Mutagenesis by ultraviolet light is observed only under conditions of functional SOS repair: we therefore suspect that this is a mutation-prone repair. A number of phenomena and experiments is reviewed which at this point can best be interpreted in terms of an inducible mutagenic DNA repair system. Two recently discovered phenomena support the proposed hypothesis: existence of a mutant (tif) which, after a shift to elevated temperature, mimicks the effect of uv irradiation in regard to repair of phage lambda and uv mutagenesis, apparent activation of SOS repair by introduction into the recipient cell of damaged plasmid or Hfr DNA. Several specific predictions based on SOS repair hypothesis are presented in order to stimulate further experimental tests. (U.S.)

  19. Correlations of dietary energy and protein intakes with renal function impairment in chronic kidney disease patients with or without diabetes

    Directory of Open Access Journals (Sweden)

    Mei-En Chen

    2017-05-01

    Full Text Available Dietary energy and protein intake can affect progression of chronic kidney disease (CKD. CKD complicated with diabetes is often associated with a decline in renal function. We investigated the relative importance of dietary energy intake (DEI and dietary protein intake (DPI to renal function indicators in nondiabetic and diabetic CKD patients. A total of 539 Stage 3–5 CKD patients [estimated glomerular filtration rate (eGFR<60 mL/min/1.73 m2 using the Modification of Diet in Renal Disease equation] with or without diabetes were recruited from outpatient clinics of Nephrology and Nutrition in a medical center in Taiwan. Appropriateness of DEI and DPI was used to subcategorize CKD patients into four groups:(1 kidney diet (KD A (KD-A, the most appropriate diet, was characterized by low DPI and adequate DEI; (2 KD-B, low DPI and inadequate DEI; (3 KD-C, excess DPI and adequate DEI; and (4 KD-D, the least appropriate diet, excess DPI and inadequate DEI. Inadequate DEI was defined as a ratio of actual intake/recommended intake less than 90% and adequate DEI as over 90%. Low DPI was defined as less than 110% of recommended intake and excessive when over 110%. Outcome measured was eGFR. In both groups of CKD patients, DEI was significantly lower (p<0.001 and DPI higher (p=0.002 than recommended levels. However, only in the nondiabetic CKD patients were KD-C and KD-D significantly correlated with reduced eGFR compared with KD-A at increments of −5.63 mL/min/1.73 m2 (p = 0.029 and −7.72 mL/min/1.73 m2 (p=0.015. In conclusion, inadequate energy and excessive protein intakes appear to correlate with poorer renal function in nondiabetic CKD patients. Patients with advanced CKD are in need of counseling by dietitians to improve adherence to diets.

  20. Serum liver fatty acid binding protein levels correlate positively with obesity and insulin resistance in Chinese young adults.

    Directory of Open Access Journals (Sweden)

    Juan Shi

    Full Text Available BACKGROUND: Liver fatty acid-binding protein (FABP1 plays an inconclusive role in adiposity. We investigated the association of serum FABP1 levels with obesity and insulin resistance in Chinese young people under 30 years old. METHODOLOGY AND PRINCIPAL FINDINGS: Cross-sectional analysis including 200 obese and 172 normal-weight subjects matched for age and sex, anthropometric measurements were performed and serum FABP1 and biochemical characteristics were measured. Insulin resistance was determined by homeostasis model assessment of insulin resistance (HOMA-IR and by the insulin sensitivity index (S(i derived from Bergman's minimal model. FABP1 levels in obese subjects were significantly higher than those in normal-weight subjects (p<0.001 and the significance remained after adjustment for age, gender, alanine and aspartate aminotransferases (p<0.001. Serum FABP1 levels were significantly correlated with many metabolic-related parameters, with BMI and triglycerides as the independent determinants. FABP1 levels remained an independent risk factor of insulin resistance assessed by binary S(i (OR = 1.868 per SD unit, 95% CI [1.035-3.373], p = 0.038 after adjustment for age, sex, BMI, waist circumference, systolic blood pressure, serum triacylglycerol, total cholesterol, HDL- and LDL-cholesterol,. FABP1 levels were also elevated with an increasing number of components of the metabolic syndrome (p for trend <0.001. Multiple regression modeling for the MetS and its components demonstrated that hypertriglyceridemia and low HDL-cholesterol were significantly correlated to serum FABP1 levels. CONCLUSIONS AND SIGNIFICANCE: Serum FABP1 correlates positively with obesity and insulin resistance in Chinese young adults. Our data supports the fact that FABP1 might be an important mediator participating in fatty acid metabolism and energy balance.

  1. The correlation between leptin and highly sensitive C-reactive protein levels in obese children aged 9-15 years

    Directory of Open Access Journals (Sweden)

    Sarah M. Warouw

    2011-02-01

    Full Text Available Background Obesity is a low level and chronic inflammatory condition predominantly affecting white adipose tissue, where macrophage infiltration is found. Leptin is one of many molecules relating obesity to cardiovascular disease. Leptin can increase cytokine production in macrophages and monocytes, and increase oxidative stress on endothelial cells. Pro-inflammatory cytokines, in turn, may trigger the release of C-reactive protein. Objective To examine the correlation between leptin and hsCRP in obese children aged 9-15 years. Methods This cross-sectional study was done in Manado from May to December 2009, on elementary and junior high school children. Subjects were obese children aged 9-15 years, with nutritional status detennined by Body Mass Index and converted into z-score. Physical examination, blood pressure, and blood examinations for  fasting blood sugar (FBS, lipid profile, leptin, and hsCRP were perfonned. Data were analyzed with appropriate statistical methods. Results The mean leptin level in obese children was 34,009.2 pgiL (SD 18,224.79, higher than that of the control, 7,760.9 pgiL (SD 8,859.55 (P<0.0001. The mean hsCRP level in obese children was 3.6 mgiL (SD 3.60, higher than that of the control, 0.7 mgiL (SD 1.32 (<0.0001. There was a significant positive correlation between leptin and hsCRP levels in obese children (r 0.355; P<0.0001. Conclusions There is significant positive correlation between leptin and hsCRP levels in obese children aged 9-15 years. Increased leptin and hsCRP levels indicate a low degree of chronic inflammation. Thus, intervention is needed to decrease the body weight of obese children.

  2. The "long tail" of the protein tumbling correlation function: observation by (1)H NMR relaxometry in a wide frequency and concentration range.

    Science.gov (United States)

    Roos, Matthias; Hofmann, Marius; Link, Susanne; Ott, Maria; Balbach, Jochen; Rössler, Ernst; Saalwächter, Kay; Krushelnitsky, Alexey

    2015-12-01

    Inter-protein interactions in solution affect the auto-correlation function of Brownian tumbling not only in terms of a simple increase of the correlation time, they also lead to the appearance of a weak slow component ("long tail") of the correlation function due to a slowly changing local anisotropy of the microenvironment. The conventional protocol of correlation time estimation from the relaxation rate ratio R1/R2 assumes a single-component tumbling correlation function, and thus can provide incorrect results as soon as the "long tail" is of relevance. This effect, however, has been underestimated in many instances. In this work we present a detailed systematic study of the tumbling correlation function of two proteins, lysozyme and bovine serum albumin, at different concentrations and temperatures using proton field-cycling relaxometry combined with R1ρ and R2 measurements. Unlike high-field NMR relaxation methods, these techniques enable a detailed study of dynamics on a time scale longer than the normal protein tumbling correlation time and, thus, a reliable estimate of the parameters of the "long tail". In this work we analyze the concentration dependence of the intensity and correlation time of the slow component and perform simulations of high-field (15)N NMR relaxation data demonstrating the importance of taking the "long tail" in the analysis into account.

  3. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    Science.gov (United States)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  4. [Correlation between EGLN1 gene, protein express in lung tissue of rats and pulmonary artery pressure at different altitude].

    Science.gov (United States)

    Li, S H; Li, S; Sun, L; Bai, Z Z; Yang, Q Y; Ga, Q; Jin, G E

    2016-08-23

    To investigate the correlation between pulmonary artery pressure (PAP) and the expression level of Egl nine homologue 1 (EGLN1) gene or its protein in lung tissue of rats at different altitudes. Totally 121 male Wistar rats were randomly divided into low altitude group (n=11), moderate altitude group and high altitude group, the rats in moderate altitude and high altitude group were further divided into 1(st) day, 3(rd) days, 7(th) days, 15(th) day and 30(th) day group according to the exposure time to hypoxic environment, each group 11 rats. The low altitude group, the PAP of rats were determined by physiological signal acquisition system, and tissue samples were collected in liquid nitrogen container for storage at an altitude of 498 m area. Moderate altitude group rats were placed in altitude of 2 260 meters of natural environment, 5 high altitude groups rats were placed in the hypobaric hypoxic chamber, simulating altitude of 4 500 meters. The PAP of rats in moderate altitude group and high altitude group were also determined by physiological signal acquisition system, and tissue samples were collected when rats were exposed to hypoxia at 1(st), 3(rd), 7(th), 15(th) and 30(th) day; Western blot was used to determine expression levels of EGLN1 protein, and person correlation analysis was used to analyze whether the protein was related to the formation of pulmonary arterial hypertension (PH) under hypoxia. Real-time quantitive PCR method determined expression levels of EGLN1 mRNA in lung tissues, and the relative expression method was used to analyze PCR data, and finally assess whether the EGLN1 gene was the initial cause of the formation of PH during hypoxia. The mean PAP of rats was (20.0±3.2) mmHg (1 mmHg=0.133 kPa) in low altitude group; in moderate altitude group, mean PAP began to increase slightly when rats were exposed to hypoxia on the 15(th) day and reached at (22.7±4.1) mmHg on hypoxic 30(th) day, but compared with the low altitude group, there was

  5. Correlation analysis and prognostic impact of 18F-FDG PET and excision repair cross-complementation group 1 (ERCC-1) expression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Jeong, Yong Hyu; Lee, Choong Kun; Jo, Kwan Hyeong; Hwang, Sang Hyun; Cha, Jong Tae; Lee, Jeong Won; Yun, Mi Jin; Cho, Arthur

    2015-01-01

    The aim of this study was to determine the relationship between [ 18 ]-2-fluoro-2-deoxy-D-glucose (FDG) uptake and excision repair cross-complementation group 1 (ERCC-1) expression and to evaluate the prognostic effect of these two factors in resectable non-small cell lung cancer (NSCLC) patients. We retrospectively reviewed 212 patients with resectable NSCLC who underwent FDG positron emission tomography/computed tomography (PET/CT) scan for cancer staging and ERCC-1 expression analysis between January 2008 to December 2011. All patients were then followed-up for survival analysis. Semiquantitative evaluation of ERCC-1 was performed with the H-scoring system and was correlated with maximum standardized uptake value (SUV max ) of NSCLC. Univariate and multivariate analyses were performed to evaluate for FDG uptake and ERCC-1 expression predicting overall survival. In 212 patients (139 male, median age 68 ± 9.11), 112 patients had ERCC-positive tumors and 100 patients had ERCC-negative tumors. There was no significant difference in SUV max between ERCC-1-positive tumors (8.02 ±5.40) and ERCC-1-negative tumors (7.57 ± 6.56, p = 0.584). All patients were followed-up for a median of 40.5 months (95 % confidence interval [CI], 38.5–42.2 months). Univariate analysis and multivariate analysis for all patients showed that both ERCC-1 expression (hazard ratio [HR], 2.78; 95 % CI, 1.20–6.47) and FDG uptake (HR, 4.50; 95 % CI, 2.07–9.77) independently predicted overall survival. We have found no statistical correlation between FDG uptake and ERCC-1 expression in NSCLC. However, both higher FDG uptake and positive ERCC-1 expression are independent predictive markers of prognosis, suggesting that both should be obtained during patient workup

  6. Correlation analysis and prognostic impact of {sup 18}F-FDG PET and excision repair cross-complementation group 1 (ERCC-1) expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hyu; Lee, Choong Kun; Jo, Kwan Hyeong; Hwang, Sang Hyun; Cha, Jong Tae; Lee, Jeong Won; Yun, Mi Jin; Cho, Arthur [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    The aim of this study was to determine the relationship between [{sup 18}]-2-fluoro-2-deoxy-D-glucose (FDG) uptake and excision repair cross-complementation group 1 (ERCC-1) expression and to evaluate the prognostic effect of these two factors in resectable non-small cell lung cancer (NSCLC) patients. We retrospectively reviewed 212 patients with resectable NSCLC who underwent FDG positron emission tomography/computed tomography (PET/CT) scan for cancer staging and ERCC-1 expression analysis between January 2008 to December 2011. All patients were then followed-up for survival analysis. Semiquantitative evaluation of ERCC-1 was performed with the H-scoring system and was correlated with maximum standardized uptake value (SUV{sub max}) of NSCLC. Univariate and multivariate analyses were performed to evaluate for FDG uptake and ERCC-1 expression predicting overall survival. In 212 patients (139 male, median age 68 ± 9.11), 112 patients had ERCC-positive tumors and 100 patients had ERCC-negative tumors. There was no significant difference in SUV{sub max} between ERCC-1-positive tumors (8.02 ±5.40) and ERCC-1-negative tumors (7.57 ± 6.56, p = 0.584). All patients were followed-up for a median of 40.5 months (95 % confidence interval [CI], 38.5–42.2 months). Univariate analysis and multivariate analysis for all patients showed that both ERCC-1 expression (hazard ratio [HR], 2.78; 95 % CI, 1.20–6.47) and FDG uptake (HR, 4.50; 95 % CI, 2.07–9.77) independently predicted overall survival. We have found no statistical correlation between FDG uptake and ERCC-1 expression in NSCLC. However, both higher FDG uptake and positive ERCC-1 expression are independent predictive markers of prognosis, suggesting that both should be obtained during patient workup.

  7. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway.

    Science.gov (United States)

    Mu, Hong; Geacintov, Nicholas E; Min, Jung-Hyun; Zhang, Yingkai; Broyde, Suse

    2017-06-19

    The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N 2 -dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the "pre-flipped" base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [ Mu , H. , ( 2015 ) Biochemistry , 54 ( 34 ), 5263 - 7 ]. The possibility of multiple paths that lead to pro