WorldWideScience

Sample records for repair mechanisms radiosensibilidad

  1. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms; Radiosensibilidad bacteriana frente a gamma y ultravioleta. Dependencia composicional y mecanismos de reparacion

    Energy Technology Data Exchange (ETDEWEB)

    Saez Angulo, R M; Davila, C A

    1974-07-01

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs.

  2. Repair mechanisms and exposure standards

    International Nuclear Information System (INIS)

    Mills, W.A.

    1978-01-01

    The following topics are discussed; public policy for setting radiation standards; use of linear, nonthreshold theory in setting radiation standards; dose-rate dependence; occupational exposure to radiation; radon inhalation from radium in the soil in the vicinity of the phosphate industry; relation of repair mechanisms for cell survival to cancer induction; application of information on genetic repair to humans and to cancer induction; importance of repair processes in radiation protection standards; corrective factors for repair processes; relation of repair processes to age, sex, and other factors; and population distribution in radiosensitivity

  3. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  4. DNA repair mechanism in radioresistant bacteria

    International Nuclear Information System (INIS)

    Kitayama, Shigeru

    1992-01-01

    Many radiation resistant bacteria have been isolated from various sources which are not in high background field. Since Deinococcus radiodurans had been isolated first in 1956, studies on the mechanism for radioresistance were carried out mostly using this bacterium. DNA in this bacterium isn't protected against injury induced by not only ionizing radiation but also ultraviolet light. Therefore, DNA damages induced by various treatments are efficiently and accurately repaired in this cells. Damages in base and/or sugar in DNA are removed by endonucleases which, if not all, are synthesized during postirradiation incubation. Following the endonucleolytic cleavage the strand scissions in DNA are seemed to be rejoined by a process common for the repair of strand scissions induced by such as ionizing radiations. Induce protein(s) is also involved in this rejoining process of strand scissions. DNA repair genes were classified into three phenotypic groups. (1)Genes which are responsible for the endonucleolytic activities. (2) Genes involved in the rejoining of DNA strand scissions. (3) Genes which participate in genetic recombination and repair. Three genes belong to (1) and (2) were cloned onto approximately 1 kbp DNA fragments which base sequences have been determined. (author)

  5. DNA repair mechanism in radioresistant bacteria

    International Nuclear Information System (INIS)

    Kitayama, Shigeru

    1992-01-01

    Many radiation resistant bacteria have been isolated from various sources which are not in high background field. Since Deinococcus radiodurans had been isolated first in 1956, the studies on the mechanism of radioresistance were mostly carried out using this bacterium. DNA in this bacterium isn't protected against injury induced by not only ionizing radiation but also ultraviolet light. Therefore, DNA damages induced by various treatments are efficiently and accurately repaired in this cells. Damages in base and/or sugar in DNA are removed by endonucleases which, if not all, are synthesized during postirradiation incubation. Following the endonucleolytic cleavage the strand scissions in DNA are seemed to be rejoined by a process common for the repair of strand scissions induced by such as ionizing radiations. Induce protein(s) is also involved in this rejoining process of strand scissions. DNA repair genes were classified into three phenotypic groups. (1) Genes which are responsible for the endonucleolytic activities. (2) Genes involved in the rejoining of DNA strand scissions. (3) Genes which participate in genetic recombination and repair. Three genes belong to (1) and (2) were cloned onto approximately 1 kbp DNA fragments which base sequences have been determined. (author)

  6. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Curriculum Guide and Lesson Plans.

    Science.gov (United States)

    Hamlin, Larry

    This document contains a curriculum guide and lesson plans for a general mechanical repair course with three sections: minor automotive maintenance, small engine repair, and welding. The curriculum guide begins with a matrix that relates the lesson plans to essential elements of math, science, language arts, and social studies and to Texas…

  7. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Student Manual.

    Science.gov (United States)

    Hamlin, Larry

    This document is a student manual for a general mechanical repair course. Following a list of common essential elements of trade and industrial education, the manual is divided into three sections. The first section, on minor automotive maintenance, contains 13 units: automotive shop safety; engine principles; fuel system operation and repair;…

  8. Wound repair and regeneration: Mechanisms, signaling, and translation

    Science.gov (United States)

    Eming, Sabine A.; Martin, Paul; Tomic-Canic, Marjana

    2015-01-01

    The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body’s natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies. PMID:25473038

  9. Electron Transfer Mechanisms of DNA Repair by Photolyase

    Science.gov (United States)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  10. Kinetics and mechanism of DNA repair

    International Nuclear Information System (INIS)

    Meldrum, R.A.; Wharton, C.W.; Shall, S.

    1990-01-01

    Experiments are described in which the feasibility of using caged dideoxy and other nucleoside triphosphate analogues for trapping breaks induced by u.v. radiation damage to mammalian cell DNA is evaluated. These nucleotide analogues that have a photolabile 1-(2-nitrophenyl)ethyl-protecting group attached to the γ-phosphate are placed in situ by permeabilizing cells by exposure to hypo-osmotic medium. The nucleoside triphosphate is released by a 351 nm u.v. laser pulse whence it may incorporate in the growing chain of DNA induced by the excision-repair process and terminate chain elongation. If the photoreleased dideoxynucleoside trisphosphate is isotopically labelled in the α-phosphate position the break is trapped and labelled. Incorporation of radioactivity into trichloroacetic acid insoluble material in these experiments confirms their potential for use in studies of the kinetics of mammalian cell DNA repair. (author)

  11. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Competency Test Package.

    Science.gov (United States)

    Hamlin, Larry

    This document contains the competency test package for three sections of a general mechanical repair course: minor automotive maintenance, small engine mechanics, and welding. Following a list of the common essential elements for trade and industrial education, competency tests for the three sections are provided. Each test includes unit name,…

  12. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  13. Molecular mechanisms of DNA repair inhibition by caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.P.; Sancar, A. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  14. Meniscal repair following meniscectomy: Mechanism and protective effect

    International Nuclear Information System (INIS)

    Berjon, J.J.; Munuera, L.; Calvo, M.

    1990-01-01

    Meniscal repair was studied to evaluate the mechanism and its potential protective effects on the articular cartilage in an experimental model consisting of 68 knees of adult dogs on which five different types of medial meniscectomy were performed. The results were assessed by macroscopic, microangiographic, and histological methods, after a sequential follow-up period of 10-450 days. Two different mechanisms of meniscal repair were observed, depending on whether meniscal section had been performed in vascular (total meniscectomy) or avascular (subtotal or partial meniscectomy) zones. It was also observed that the repaired meniscal tissue does not prevent articular cartilage degeneration. This is more closely related to the size of the meniscal fragment preserved at meniscetomy. Due to the biomechanical importance of the meniscus and the lack of functional relevance of the repaired meniscal tissue, the most conservative approach possible to meniscectomy is recommended. (orig.)

  15. Tension (re)builds: Biophysical mechanisms of embryonic wound repair.

    Science.gov (United States)

    Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  17. General Mechanical Repair 2. Minor Automotive Maintenance, Small Engine [Repair, and] Welding. Curriculum Guide.

    Science.gov (United States)

    Hamlin, Larry

    This curriculum guide provides materials for teachers to use in developing a 1-year course in general mechanical repair as part of the trade and industrial education curriculum. The guide contains the following: (1) essential elements common to all trade and industrial courses; (2) an instructional delivery outline (teaching sequence) for the…

  18. Self-repair networks a mechanism design

    CERN Document Server

    Ishida, Yoshiteru

    2015-01-01

    This book describes the struggle to introduce a mechanism that enables next-generation information systems to maintain themselves. Our generation observed the birth and growth of information systems, and the Internet in particular. Surprisingly information systems are quite different from conventional (energy, material-intensive) artificial systems, and rather resemble biological systems (information-intensive systems). Many artificial systems are designed based on (Newtonian) physics assuming that every element obeys simple and static rules; however, the experience of the Internet suggests a different way of designing where growth cannot be controlled but self-organized with autonomous and selfish agents. This book suggests using game theory, a mechanism design in particular, for designing next-generation information systems which will be self-organized by collective acts with autonomous components. The challenge of mapping a probability to time appears repeatedly in many forms throughout this book. The book...

  19. Interplay of DNA repair with transcription: from structures to mechanisms.

    Science.gov (United States)

    Deaconescu, Alexandra M; Artsimovitch, Irina; Grigorieff, Nikolaus

    2012-12-01

    Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Defective DNA repair mechanisms in prostate cancer: impact of olaparib

    Directory of Open Access Journals (Sweden)

    De Felice F

    2017-03-01

    Full Text Available Francesca De Felice,1 Vincenzo Tombolini,1 Francesco Marampon,2 Angela Musella,3 Claudia Marchetti3 1Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, Rome, 2Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, L’Aquila, 3Department of Gynecological and Obstetrical Sciences and Urological Sciences, “Sapienza” University of Rome, Rome, Italy Abstract: The field of prostate oncology has continued to change dramatically. It has truly become a field that is intensely linked to molecular genetic alterations, especially DNA-repair defects. Germline breast cancer 1 gene (BRCA1 and breast cancer 2 gene (BRCA2 mutations are implicated in the highest risk of prostate cancer (PC predisposition and aggressiveness. Poly adenosine diphosphate ribose polymerase (PARP proteins play a key role in DNA repair mechanisms and represent a valid target for new therapies. Olaparib is an oral PARP inhibitor that blocks DNA repair pathway and coupled with BRCA mutated-disease results in tumor cell death. In phase II clinical trials, including patients with advanced castration-resistant PC, olaparib seems to be efficacious and well tolerated. Waiting for randomized phase III trials, olaparib should be considered as a promising treatment option for PC. Keywords: prostate cancer, metastatic disease, castration resistant, BRCA, DNA-repair, PARP, olaparib

  1. Repair mechanisms inducible to the DNA in I.M.M.S. biological systems

    International Nuclear Information System (INIS)

    Guzman, J.; Arceo, C.; Cortinas, C.; Rosa, M.E. De la; Olvera, O.; Cruces, M.; Pimentel, E.

    1990-03-01

    Given the characteristics of the MMS and the relative antecedents to the repair mechanisms in eucariontes are sought to determine the effect of the MMS on the genetic material and their repair in Drosophila melanogaster. (Author)

  2. Relationship among the repair mechanisms and the genetic recombination

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1987-12-01

    In accordance with the previous reports of the Project BZ87 of the Department of Radiobiology, a dependent stimulation of the system exists in E.coli SOS, of the recombination of the bacteriophage Lambda whose genetic material has not been damaged. This stimulation is not due to the increase of the cellular concentration of the protein RecA and the mechanism but probable for which we find that it is carried out, it is through a cooperation among the product of the gene rec N of E. coli and the system Net of recombination of Lambda. The gene recN belongs to the group of genes SOS and its expression is induced when damaging the bacterial DNA where it intervenes in the repair of breaks of the double helix of the molecule (Picksley et, 1984). If the repair of breaks of this type is a factor that limits the speed with which it happens the recombination among viral chromosomes, then the biggest readiness in the protein RecN, due to the induction of the functions SOS, would facilitate the repair of such ruptures. In this new project it is to enlarge the knowledge about this phenomenon, it was, on one hand of corroborating in a way but he/she specifies the relationship between the recombinogenic response of Lambda and the System SOS of E. coli and for the other one to determine the effect that has the inhibition of the duplication of the DNA on the stimulation of the viral recombination. Everything it with the idea of making it but evident and to be able to use it as a system of genotoxic agents detection in E. coli. (Author)

  3. Dental Pulp Defence and Repair Mechanisms in Dental Caries.

    Science.gov (United States)

    Farges, Jean-Christophe; Alliot-Licht, Brigitte; Renard, Emmanuelle; Ducret, Maxime; Gaudin, Alexis; Smith, Anthony J; Cooper, Paul R

    2015-01-01

    Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  4. Dental Pulp Defence and Repair Mechanisms in Dental Caries

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Farges

    2015-01-01

    Full Text Available Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.

  5. Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase.

    Science.gov (United States)

    Bhat, Javaid Y; Miličić, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit

    2017-09-07

    How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Fragile DNA Repair Mechanism Reduces Ageing in Multicellular Model

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss; Juul, Jeppe Søgaard; Trusina, Ala

    2012-01-01

    increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected...... to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity......DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn...

  7. Investigation of DNA damage and repair mechanism using deinococcus radiodurans

    International Nuclear Information System (INIS)

    Lau How Mooi; Kikuchi, M.; Kobayashi, Y.; Narumi, I.; Watanabe, H.

    1997-01-01

    Deninococcus Radiodurans, formerly known as Micrococcus Radiodurans, is a popular bacterium because of its high resistance to damage by carcinogens such as ionizing radiation (Dean et. al. 1966; Kitayama and Matsuyama 1968) and UV radiation (Gasvon et. al., 1995; Arrange et. al. 1993). In this report, we investigated the high resistance to ionizing radiation by this bacterium. The bacteria had been exposed from I to 5 kGy of gamma radiation and then incubated in TGY medium to study their ability to repair the broken DNA. The repair time was measured by Pulse Field Gel Electrophoresis (PFGE) method. The repair time for each dose was determined. Also in order to ensure that the repair was perfect, the bacterium was subjected to a second exposure of ionizing radiation after it has fully repaired. It was found that the 'second' repair characteristic was similar to the first repair. This confirmed that the repair after the exposure to the ionizing radiation was perfect

  8. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects.

    Science.gov (United States)

    Dizdaroglu, Miral; Kirkali, Güldal; Jaruga, Pawel

    2008-12-15

    Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA-protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8-OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines

  9. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    Science.gov (United States)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  10. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    Science.gov (United States)

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  11. The Design of Intelligent Repair Welding Mechanism and Relative Control System of Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Effective repair of worn big gear has large influence on ensuring safety production and enhancing economic benefits. A kind of intelligent repair welding method was put forward mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. Big gear repair welding mechanism was designed in this paper. The work principle and part selection of big gear repair welding mechanism was introduced. The three dimensional mode of big gear repair welding mechanism was constructed by Pro/E three dimensional design software. Three dimensional motions can be realized by motor controlling ball screw. According to involute gear feature, the complicated curve motion on curved gear surface can be transformed to linear motion by orientation. By this way, the repair welding on worn gear area can be realized. In the design of big gear repair welding mechanism control system, Siemens S7-200 series hardware was chosen. Siemens STEP7 programming software was chosen as system design tool. The entire repair welding process was simulated by experiment simulation. It provides a kind of practical and feasible method for the intelligent repair welding of big worn gear.

  12. Impact of occupational mechanical exposures on risk of lateral and medial inguinal hernia requiring surgical repair

    DEFF Research Database (Denmark)

    Vad, Marie Vestergaard; Frost, Poul; Bay-Nielsen, Morten

    2012-01-01

    We undertook a register-based cohort study to evaluate exposure-response relations between cumulative occupational mechanical exposures, and risk of lateral and medial inguinal hernia repair.......We undertook a register-based cohort study to evaluate exposure-response relations between cumulative occupational mechanical exposures, and risk of lateral and medial inguinal hernia repair....

  13. Repair systems with exchangeable items and the longest queue mechanism

    NARCIS (Netherlands)

    Ravid, R.; Boxma, O.J.; Perry, D.

    2013-01-01

    We consider a repair facility consisting of one repairman and two arrival streams of failed items, from bases 1 and 2. The arrival processes are independent Poisson processes, and the repair times are independent and identically exponentially distributed. The item types are exchangeable, and a

  14. Repair systems with exchangeable items and the longest queue mechanism

    NARCIS (Netherlands)

    Ravid, R.; Boxma, O.J.; Perry, D.

    2011-01-01

    We consider a repair facility consisting of one repairman and two arrival streams of failed items, from bases 1 and 2. The arrival processes are independent Poisson processes, and the repair times are independent and identically exponentially distributed. The item types are exchangeable, and a

  15. Asbestos exposure among transmission mechanics in automotive repair shops.

    Science.gov (United States)

    Salazar, Natalia; Cely-García, María Fernanda; Breysse, Patrick N; Ramos-Bonilla, Juan Pablo

    2015-04-01

    Asbestos has been used in a broad variety of industrial products, including clutch discs of the transmission system of vehicles. Studies conducted in high-income countries that have analyzed personal asbestos exposures of transmission mechanics have concluded that these workers are exposed to asbestos concentrations in compliance with the US Occupational Safety and Health Administration (US OSHA) occupational standards. Clutch facings are the friction component of clutch discs. If clutch facings are sold separated from the support, they require manipulation before installation in the vehicle. The manipulation of asbestos containing clutch facings is performed by a group of mechanics known as riveters, and includes drilling, countersinking, riveting, sanding, and occasionally grinding, tasks that can potentially release asbestos fibers, exposing the mechanics. These manipulation activities are not reported in studies conducted in high-income countries. This study analyzes personal asbestos exposures of transmission mechanics that manipulate clutch facings. Air sampling campaigns in two transmission repair shops (TRS) were conducted in November 2012 and July 2013 in Bogotá, Colombia. Four workers employed in these TRS were sampled (i.e. three riveters and one supervisor). Personal samples (n = 39), short-term personal samples (n = 49), area samples (n = 52), blank samples (n = 8), and background samples (n = 2) were collected in both TRS during 3-5 consecutive days, following US National Institute for Occupational Safety and Health (US NIOSH) methods 7400 and 7402. Asbestos samples were analyzed by an American Industrial Hygiene Association accredited laboratory. On at least one of the days sampled, all riveters were exposed to asbestos concentrations that exceeded the US OSHA permissible exposure limit or the Colombian permissible limit value. Additionally, from the forty-seven 30-min short-term personal samples collected, two (4.3%) exceeded the US OSHA excursion

  16. Base excision repair mechanisms and relevance to cancer susceptibility

    International Nuclear Information System (INIS)

    Dogliotti, E.; Wilson, S.H.

    2009-01-01

    The base excision repair (BER) pathway is considered the predominant DNA repair system in mammalian cells for eliminating small DNA lesions generated at DNA bases either exogenously by environmental agents or endogenously by normal cellular metabolic processes (e.g. production of oxyradical species, alkylating agents, etc). The main goal of this project is the understanding of the involvement of BER in genome stability and in particular in sporadic cancer development associated with inflammation such as gastric cancer (GC). A major risk factor of GC is the infection by Helicobacter pylori, which causes oxidative stress. Oxidative DNA damage is mainly repaired by BER

  17. DNA repair mechanisms in cancer development and therapy.

    Science.gov (United States)

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.

  18. DNA Repair Mechanisms in Cancer Development and Therapy

    Directory of Open Access Journals (Sweden)

    Alessandro eTorgovnick

    2015-04-01

    Full Text Available DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: Mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents have been applied that trigger DNA damage checkpoints that halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.

  19. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    International Nuclear Information System (INIS)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A.

    2015-01-01

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer

  20. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A., E-mail: lsamant@uab.edu [Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, WTI320D, 1824 6th Avenue South, Birmingham, AL 35233 (United States)

    2015-07-21

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  1. Double strand break repair: two mechanisms in competition but tightly linked to cell cycle

    International Nuclear Information System (INIS)

    Delacote, F.

    2002-11-01

    DNA double strand breaks (DSB) are highly toxic damage although they can be induced to create genetic diversity. Two distinct pathways can repair DSB: Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). If un- or mis-repaired, this damage can lead to cancer. Thus, it is essential to investigate how these two pathways are regulated for DSB repair. NHEJ inhibition leads to HR DSB repair stimulation. However, this channeling to HR is tightly linked to cell cycle since NHEJ and HR are active in G1/early S and late S/G2, respectively. Our results suggest that G1-unrepaired DSB go through S phase to be repaired by HR in G2. Those results allow a better understanding of DSB repair mechanisms regulation. (author)

  2. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    Science.gov (United States)

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

  3. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    Science.gov (United States)

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  4. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  5. Is forebrain neurogenesis a potential repair mechanism after stroke?

    OpenAIRE

    Inta, Dragos; Gass, Peter

    2015-01-01

    The use of adult subventricular zone (SVZ) neurogenesis as brain repair strategy after stroke represents a hot topic in neurologic research. Recent radiocarbon-14 dating has revealed a lack of poststroke neurogenesis in the adult human neocortex; however, adult neurogenesis has been shown to occur, even under physiologic conditions, in the human striatum. Here, these results are contrasted with experimental poststroke neurogenesis in the murine brain. Both in humans and in rodents, the SVZ ge...

  6. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth.

    Science.gov (United States)

    Kurthkoti, Krishna; Varshney, Umesh

    2012-04-01

    About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Effect of multiple repairs in girth welds of pipelines on the mechanical properties

    International Nuclear Information System (INIS)

    Vega, O.E.; Hallen, J.M.; Villagomez, A.; Contreras, A.

    2008-01-01

    This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases

  8. Bacterial radiosensitivity to gamma and ultraviolet. Compositional dependence and repair mechanisms

    International Nuclear Information System (INIS)

    Saez Angulo, R. M.; Davila, C. A.

    1974-01-01

    The gamma and ultraviolet radiosensitivity of several species of bacteria has been determined its dependence on DNAs composition and repair processes has been studied. Base composition are evaluated by chromatography, DNA melting temperature and isopycnic sedimentation on CsCl gradient. Repair capacity of gamma -and UV- lesions has been studied in two bacterial strains with same DMA base composition. It is concluded that the postulated correlation between radiosensitivity and base composition can not be generalized, the enzymatic repair mechanisms being of determining on radiosensitivity. (Author) 248 refs

  9. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    International Nuclear Information System (INIS)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de

    2008-01-01

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl 2 ) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl 2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl 2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  10. USING THE OUTSOURCING MECHANISM TO INCREASE THE EFFICIENCY OF REPAIR AND MAINTENANCE IN METALLURGICAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Elena I. Kozlova

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the work is to study the outsourcing mechanism from the point of view of increasing the efficiency of repair and maintenance at a metallurgical enterprise. Method Analysis of the experience of using outsourcing of repair services at domestic and foreign metallurgical enterprises was carried out. Analysis of the experience of the withdrawal from enterprise repair services into a separate outsourcing company has shown that the main advantages of this method of organising repair activities are an increase in the transparency of the costs of repairs and maintenance, and hence their reduction, as well as a reduction in the amount of equipment downtime. The main characteristics of outsourcing were revealed, substantiating its expediency. The restructuring of the repair system provides a step-by-step transition from decentralised to centralised structures of technical, mechanical, power and electrical repair services of enterprises, from the principle of "self-service" to the principle of "proprietary service" by isolating the subdivisions of the repair system from the structure of enterprises and creating competing members of the repair services market. Put another way, this is typified by moving away from the status of auxiliary production to a selfdependent activity. The stages of outsourcing the repair services of the enterprise are considered and possible problems that may arise in the course of the work of a working group are established to determine the suitability of outsourcing and to resolve the numerous issues arising from the transfer of repair functions. Results The findings of the research include approaches developed for overcoming risky situations: providing guarantees from the customer and the contractor and indicating them in the contract, increasing the motivation of the outsourcing company through a key performance indicator that should increase the interest of the performer in providing quality

  11. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  12. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Science.gov (United States)

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  13. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies.

    Directory of Open Access Journals (Sweden)

    Ankita Shukla

    Full Text Available DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC. Since lynch syndrome carries high risk (~40-60% for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER and mismatch repair (MMR. Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels.

  14. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    Science.gov (United States)

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Experimental Observation of the Skeletal Adaptive Repair Mechanism and Bionic Topology Optimization Method

    Directory of Open Access Journals (Sweden)

    Kaysar Rahman

    2014-01-01

    Full Text Available Bone adaptive repair theory considers that the external load is the direct source of bone remodeling; bone achieves its maintenance by remodeling some microscopic damages due to external load during the process. This paper firstly observes CT data from the whole self-repairing process in bone defects in rabbit femur. Experimental result shows that during self-repairing process there exists an interaction relationship between spongy bone and enamel bone volume changes of bone defect, that is when volume of spongy bone increases, enamel bone decreases, and when volume of spongy bone decreases, enamel bone increases. Secondly according to this feature a bone remodeling model based on cross-type reaction-diffusion system influenced by mechanical stress is proposed. Finally, this model coupled with finite element method by using the element adding and removing process is used to simulate the self-repairing process and engineering optimization problems by considering the idea of bionic topology optimization.

  16. Cetuximab Induces Eme1-Mediated DNA Repair: a Novel Mechanism for Cetuximab Resistance

    Directory of Open Access Journals (Sweden)

    Agnieszka Weinandy

    2014-03-01

    Full Text Available Overexpression of the epidermal growth factor receptor (EGFR is observed in a large number of neoplasms. The monoclonal antibody cetuximab/Erbitux is frequently applied to treat EGFR-expressing tumors. However, the application of cetuximab alone or in combination with radio- and/or chemotherapy often yields only little benefit for patients. In the present study, we describe a mechanism that explains resistance of both tumor cell lines and cultured primary human glioma cells to cetuximab. Treatment of these cells with cetuximab promoted DNA synthesis in the absence of increased proliferation, suggesting that DNA repair pathways were activated. Indeed, we observed that cetuximab promoted the activation of the DNA damage response pathway and prevented the degradation of essential meiotic endonuclease 1 homolog 1 (Eme1, a heterodimeric endonuclease involved in DNA repair. The increased levels of Eme1 were necessary for enhanced DNA repair, and the knockdown of Eme1 was sufficient to prevent efficient DNA repair in response to ultraviolet-C light or megavoltage irradiation. These treatments reduced the survival of tumor cells, an effect that was reversed by cetuximab application. Again, this protection was dependent on Eme1. Taken together, these results suggest that cetuximab initiates pathways that result in the stabilization of Eme1, thereby resulting in enhanced DNA repair. Accordingly, cetuximab enhances DNA repair, reducing the effectiveness of DNA-damaging therapies. This aspect should be considered when using cetuximab as an antitumor agent and suggests that Eme1 is a negative predictive marker.

  17. Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Pascual, G; Rodríguez, M; Bellón, J M; Calvo, B

    2012-01-01

    Routine hernia repair surgery involves the implant of synthetic mesh. However, this type of procedure may give rise to pain and bowel incarceration and strangulation, causing considerable patient disability. The purpose of this study was to compare the long-term behaviour of three commercial meshes used to repair the partially herniated abdomen in New Zealand White rabbits: the heavyweight (HW) mesh, Surgipro(®) and lightweight (LW) mesh, Optilene(®), both made of polypropylene (PP), and a mediumweight (MW) mesh, Infinit(®), made of polytetrafluoroethylene (PTFE). The implanted meshes were mechanical and histological assessed at 14, 90 and 180 days post-implant. This behaviour was compared to the anisotropic mechanical behaviour of the unrepaired abdominal wall in control non-operated rabbits. Both uniaxial mechanical tests conducted in craneo-caudal and perpendicular directions and histological findings revealed substantial collagen growth over the repaired hernial defects causing stiffness in the repair zone, and thus a change in the original properties of the meshes. The mechanical behaviour of the healthy tissue in the craneo-caudal direction was not reproduced by any of the implanted meshes after 14 days or 90 days of implant, whereas in the perpendicular direction, SUR and OPT achieved similar behaviour. From a mechanical standpoint, the anisotropic PP-lightweight meshes may be considered a good choice in the long run, which correlates with the structure of the regenerated tissue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Mechanical interaction between historical brick and repair mortar: experimental and numerical tests

    International Nuclear Information System (INIS)

    Bocca, P; Grazzini, A; Masera, D; Alberto, A; Valente, S

    2011-01-01

    An innovative laboratory procedure, developed at the Non Destructive Testing Laboratory of the Politecnico di Torino, as a preliminary design stage for the pre-qualification of repair mortars applied to historical masonry buildings is described. Tested repair mortars are suitable for new dehumidified plaster in order to stop the rising damp effects by capillary action on historical masonry walls. Long-term plaster delamination occurs frequently as a consequence of not compatible mechanical characteristics of mortar. Preventing this phenomenon is the main way to increase the durability of repair work. In this direction, it is useful to analyse, through the cohesive crack model, the evolutionary phenomenon of plaster delamination. The parameters used in the numerical simulation of experimental tests are able to characterize the mechanical behaviour of the interface. It is therefore possible to predict delamination in problems with different boundary conditions.

  19. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    Science.gov (United States)

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  20. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    Directory of Open Access Journals (Sweden)

    Daniel L. Jones

    2017-09-01

    Full Text Available Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  1. Apology: a repair mechanism in Akan social interaction | Agyekum ...

    African Journals Online (AJOL)

    This article addresses apology among the Akan of Ghana. An apology is a redressive speech mechanism that pays attention to the face needs of interlocutors during social interaction. Among the Akan, apology forms an integral part of the communicative competence of the individual and denotes humility and a sense of ...

  2. Microtubules self-repair in response to mechanical stress

    Science.gov (United States)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  3. Double Strand Break Repair, one mechanism can hide another: Alternative non-homologous end joining

    International Nuclear Information System (INIS)

    Rass, E.; Grabarz, A.; Bertrand, P.; Lopez, B.S.

    2012-01-01

    DNA double strand breaks are major cytotoxic lesions encountered by the cells. They can be induced by ionizing radiation or endogenous stress and can lead to genetic instability. Two mechanisms compete for the repair of DNA double strand breaks: homologous recombination and non-homologous end joining (NHEJ). Homologous recombination requires DNA sequences homology and is initiated by single strand resection. Recently, advances have been made concerning the major steps and proteins involved in resection. NHEJ, in contrast, does not require sequence homology. The existence of a DNA double strand break repair mechanism, independent of KU and ligase IV, the key proteins of the canonical non homologous end joining pathway, has been revealed lately and named alternative non homologous end joining. The hallmarks of this highly mutagenic pathway are deletions at repair junctions and frequent use of distal micro-homologies. This mechanism is also initiated by a single strand resection of the break. The aim of this review is firstly to present recent data on single strand resection, and secondly the alternative NHEJ pathway, including a discussion on the fidelity of NHEJ. Based on current knowledge, canonical NHEJ does not appear as an intrinsically mutagenic mechanism, but in contrast, as a conservative one. The structure of broken DNA ends actually dictates the quality repair of the alternative NHEJ and seems the actual responsible for the mutagenesis attributed beforehand to the canonical NHEJ. The existence of this novel DNA double strand breaks repair mechanism needs to be taken into account in the development of radiosensitizing strategies in order to optimise the efficiency of radiotherapy. (authors)

  4. Effects of off-specification procedures on the mechanical properties of half-bead weld repairs

    International Nuclear Information System (INIS)

    Hobson, D.O.; Nanstad, R.K.

    1983-07-01

    We examined the effects of off-specification procedures on the mechanical properties of half-bead weld repairs. The name half-bead is derived from the specification that half the thickness of the initial weld layer be ground off before the second layer is deposited. In this study the heat-affected zones of a weldment made with both all and none of the first layer removed were tested for toughness, hardness, and microstructural differences, and the results were compared with the properties of a protypical half-bead repair made under ASME Boiler and Pressure Vessel Code, Sect. XI, guidelines. The results of this limited study showed no apparent justification for the requirement to grind off half the first layer in this type of weld repair. The graded electrode sizes used to make the welds probably had more to do with the weld properties than did the range of first-layer thicknesses used in this study

  5. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  6. Repair mechanism of retinal pigment epithelial tears in age-related macular degeneration.

    Science.gov (United States)

    Mukai, Ryo; Sato, Taku; Kishi, Shoji

    2015-03-01

    To investigate repair mechanisms of retinal pigment epithelial (RPE) tears in age-related macular degeneration. The authors retrospectively studied 10 eyes with age-related macular degeneration that developed RPE tears during follow-up or after treatment with an anti-vascular endothelial growth factor drug or photodynamic therapy combined with ranibizumab. After development of the RPE tears, all follow-ups exceeded 13 months. Spectral domain or swept-source optical coherence tomography have been used to examine consecutive retinal changes where the RPE tears developed and attempted to determine the repair mechanisms. Retinal pigment epithelial tears developed during the natural course (n = 4) after ranibizumab treatment (n = 2) and after photodynamic therapy and ranibizumab (n = 4). Subretinal fluid persisted for more than 6 months after the RPE tears developed (n = 4), with the area where the RPE was lost found to be covered with thickened proliferative tissue. In 6 eyes where the subretinal fluid was absorbed within 2 months, optical coherence tomography showed the outer retina appeared to be directly attached to Bruch membrane, and there was attenuation of the normal hyperreflective band attributable to normal RPE during follow-up. Results suggest that two repair processes may be present in the area where RPE tears developed. Persistent subretinal fluid may lead to repair with thick proliferative tissue, while the outer retina appears to attach to Bruch membrane when there is early subretinal fluid resolution after RPE tear development.

  7. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Biofisica e Biometria. Lab. de Radio e Fotobiologia]. E-mail: jcmattos@uerj.br

    2008-12-15

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl{sub 2}) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl{sub 2} in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl{sub 2} was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  8. Present status of DNA repair mechanisms in uv irradiated yeast taken as a model eukaryotic system

    International Nuclear Information System (INIS)

    Moustacchi, E.; Waters, R.; Heude, M.; Chanet, R.

    1975-01-01

    The repair mechanisms of altered DNA are generally less well understood for eukaryotes than they are for prokaryotes and bacteriophages. For mammalian cell lines cultured in vitro the specific labelling of DNA has allowed the biochemical analysis of some of the steps of the repair processes whereas the determination of their genetic controls is, with a few exceptions, obviously difficult. On the other hand, with fungi and more specifically with yeast taken as a model unicellular eukaryotic system, the genetic approach has been extensively explored: radiosensitive mutants are readily detected and genetically analyzed, double and multiple mutants can be constructed and from their responses to irradiation the number of repair pathways involved can be suggested. The lack of thymidine kinase in these organisms has hampered for a certain time the biochemical analysis of repair. However, the recent isolation of yeast strains capable of taking up and incorporating thymidine 5'-monophosphate into their DNA opens new possibilities for the future. In spite of this difficulty, attempts to measure the induction and removal of uv-induced pyrimidine dimers were performed by several groups during the last three years. The two main repair pathways described for E. coli, i.e., the excision-resynthesis and post-replicative recombinational repair pathways, do exist in yeast. The existence of the former pathway is supported not only by indirect evidence but also by biochemical analysis. The rad 1 and rad 2 mutants for instance have been shown to be blocked in the excision of uv-induced pyrimidine dimers. Other loci are epistatic to rad 1 and rad 2 (rad 3 , rad 4 ) and are likely to act on this excision pathway. The genetic control of the mitochondrial response to a uv treatment involves nuclear genes and mitochondrial determinants

  9. Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability.

    Science.gov (United States)

    Zhu, Xiaotao; Zhang, Zhaozhu; Yang, Jin; Xu, Xianghui; Men, Xuehu; Zhou, Xiaoyan

    2012-08-15

    The poor mechanical stability of superhydrophobic fabrics severely hindered their use in practical applications. Herein, to address this problem, we fabricated a superhydrophobic fabric with both mechanical stability and easy-repairability by a simple method. The mechanical durability of the obtained superhydrophobic fabric was evaluated by finger touching and abrasion with sandpaper. The results show that rough surface textures of the fabric were retained, and the fabric surface still exhibited superhydrophobicity after tests. More importantly, when the fabric lost its superhydrophobicity after a long-time abrasion, it can be easily rendered with superhydrophobicity once more by a regeneration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Stimulation of tendon repair by platelet concentrate, CDMP-2 and mechanical loading in animal models

    OpenAIRE

    Virchenko, Olena

    2007-01-01

    Growth factor delivery may be useful to accelerate the rate of tendon healing. We studied Platelet Concentrate, which in effect can be regarded as a cocktail of growth factors relevant for tendon healing. In a rat Achilles tendon transection model, one postoperative injection of Platelet Concentrate resulted in increased strength even 3 weeks later. Mechanical stimulation improves the repair of ruptured tendons. We studied the effects of platelets upon Achilles tendon regenerates in rats 3, 5...

  11. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.

    Science.gov (United States)

    Jobert, Laure; Nilsen, Hilde

    2014-07-01

    The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.

  12. Arterial Injury and Endothelial Repair: Rapid Recovery of Function after Mechanical Injury in Healthy Volunteers

    Directory of Open Access Journals (Sweden)

    Lindsey Tilling

    2014-01-01

    Full Text Available Objective. Previous studies suggest a protracted course of recovery after mechanical endothelial injury; confounders may include degree of injury and concomitant endothelial dysfunction. We sought to define the time course of endothelial function recovery using flow-mediated dilation (FMD, after ischaemia-reperfusion (IR and mechanical injury in patients and healthy volunteers. The contribution of circulating CD133+/CD34+/VEGFR2+ “endothelial progenitor” (EPC or repair cells to endothelial repair was also examined. Methods. 28 healthy volunteers aged 18–35 years underwent transient forearm ischaemia induced by cuff inflation around the proximal biceps and radial artery mechanical injury induced by inserting a wire through a cannula. A more severe mechanical injury was induced using an arterial sheath and catheter inserted into the radial artery of 18 patients undergoing angiography. Results. IR and mechanical injury produced immediate impairment of FMD (from 6.5 ± 1.2% to 2.9 ± 2.2% and from 7.4 ± 2.3% to 1.5 ± 1.6% for IR and injury, resp., each P<0.001 but recovered within 6 hours and 2 days, respectively. FMD took up to 4 months to recover in patients. Circulating EPC did not change significantly during the injury/recovery period in all subjects. Conclusions. Recovery of endothelial function after IR and mechanical injury is rapid and not associated with a change in circulating EPC.

  13. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases.

    Science.gov (United States)

    Bettencourt, Conceição; Hensman-Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas-Gómez, Petra; García-Velázquez, Lizbeth Esmeralda; Alonso-Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J; Jones, Lesley

    2016-06-01

    The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome-wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single-nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10(-5) ). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10(-5) ) and all SCAs (p = 2.22 × 10(-4) ) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10(-5) ), all in the same direction as in the HD GWAS. We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983-990. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  14. Mechanisms of recurrent aortic regurgitation after aortic valve repair: predictive value of intraoperative transesophageal echocardiography.

    Science.gov (United States)

    le Polain de Waroux, Jean-Benoît; Pouleur, Anne-Catherine; Robert, Annie; Pasquet, Agnès; Gerber, Bernhard L; Noirhomme, Philippe; El Khoury, Gébrine; Vanoverschelde, Jean-Louis J

    2009-08-01

    The aim of the present study was to examine the intraoperative echocardiographic features associated with recurrent severe aortic regurgitation (AR) after an aortic valve repair surgery. Surgical valve repair for AR has significant advantages over valve replacement, but little is known about the predictors and mechanisms of its failure. We blindly reviewed all clinical, pre-operative, intraoperative, and follow-up transesophageal echocardiographic data of 186 consecutive patients who underwent valve repair for AR during a 10-year period and in whom intraoperative and follow-up echo data were available. After a median follow-up duration of 18 months, 41 patients had recurrent 3+ AR, 23 patients presented with residual 1+ to 2+ AR, and 122 had no or trivial AR. In patients with recurrent 3+ AR, the cause of recurrent AR was the rupture of a pericardial patch in 3 patients, a residual cusp prolapse in 26 patients, a restrictive cusp motion in 9 patients, an aortic dissection in 2 patients, and an infective endocarditis in 1 patient. Pre-operatively, all 3 groups were similar for aortic root dimensions and prevalence of bicuspid valve (overall 37%). Patients with recurrent AR were more likely to display Marfan syndrome or type 3 dysfunction pre-operatively. At the opposite end, patients with continent AR repair at follow-up were more likely to have type 2 dysfunction pre-operatively. After cardiopulmonary bypass, a shorter coaptation length, the degree of cusp billowing, a lower level of coaptation (relative to the annulus), a larger diameter of the aortic annulus and the sino-tubular junction, the presence of a residual AR, and the width of its vena contracta were associated with the presence of AR at follow-up. Multivariate Cox analysis identified a shorter coaptation length (odds ratio [OR]: 0.8, p = 0.05), a coaptation occurring below the level of the aortic annulus (OR: 7.9, p < 0.01), a larger aortic annulus (OR: 1.2, p = 0.01), and residual aortic regurgitation

  15. Mechanical Complication with Broviac Repair Kit in a 4-Year-Old Boy with MEN 2a.

    Science.gov (United States)

    Sesia, Sergio B; Haecker, Frank-Martin; Mayr, Johannes

    2009-01-01

    Background. Mechanical complications in the use of indwelling central venous catheters (CVCs) such as the Broviac catheter (BC) include kinking, occlusion, dislocation or leaking. We report on a mechanical complication after using a repair kit for the BC. Method. A 4-year old boy, suffering from multiple endocrine neoplasia type 2a (MEN 2a), intestinal aganglionosis (Hirschsprung's disease), and short bowel syndrome, required a BC for home parenteral nutrition. Result. Due to recurrent leakage of the BC, 5 subsequent repairs were necessary within seven months. During one repair a metallic tube belonging to the repair kit was found to have migrated proximally to the skin entrance level within the BC and requiring surgical removal. Conclusion. To our knowledge, this is the first report focusing on such a serious complication using a BC and its repair kit. The proximal migration of this metallic tube constitutes a distinct theoretical risk of endothoracic foreign body embolization.

  16. Genipin crosslinker releasing sutures for improving the mechanical/repair strength of damaged connective tissue.

    Science.gov (United States)

    Sundararaj, Sharath; Slusarewicz, Paul; Brown, Matt; Hedman, Thomas

    2017-11-01

    The most common mode of surgical repair of ruptured tendons and ligaments involves the use of sutures for reattachment. However, there is a high incidence of rerupture and repair failure due to pulling out of the suture material from the damaged connective tissue. The main goal of this research was to achieve a localized delivery of crosslinking agent genipin (GP) from rapid-release biodegradable coatings on sutures, for strengthening the repair of ruptured connective tissue. Our hypothesis is that GP released from the suture coating will lead to exogenous crosslinking of native connective tissue resulting in beneficial effects on clinically relevant mechanical parameters such as tear resistance, tissue strength, and energy required to rupture the tissue (toughness). Sutures were successfully coated with a biodegradable polymer layer loaded with the crosslinking agent genipin, without compromising the mechanical properties of the suture. The rapid-release of genipin was achieved under both in vitro and ex vivo conditions. Exogenous crosslinking using these genipin releasing sutures was demonstrated using equine tendons. The tendons treated with genipin releasing sutures showed significant improvement in failure load, energy required for pull-out failure, and stiffness. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2199-2205, 2017. © 2016 Wiley Periodicals, Inc.

  17. Dss1 interaction with Brh2 as a regulatory mechanism for recombinational repair

    DEFF Research Database (Denmark)

    Zhou, Qingwen; Kojic, Milorad; Cao, Zhimin

    2007-01-01

    Brh2, the BRCA2 ortholog in Ustilago maydis, enables recombinational repair of DNA by controlling Rad51 and is in turn regulated by Dss1. Interplay with Rad51 is conducted via the BRC element located in the N-terminal region of the protein and through an unrelated domain, CRE, at the C terminus....... Mutation in either BRC or CRE severely reduces functional activity, but repair deficiency of the brh2 mutant can be complemented by expressing BRC and CRE on different molecules. This intermolecular complementation is dependent upon the presence of Dss1. Brh2 molecules associate through the region...... overlapping with the Dss1-interacting domain to form at least dimer-sized complexes, which in turn, can be dissociated by Dss1 to monomer. We propose that cooperation between BRC and CRE domains and the Dss1-provoked dissociation of Brh2 complexes are requisite features of Brh2's molecular mechanism...

  18. Failure mechanism dependence and reliability evaluation of non-repairable system

    International Nuclear Information System (INIS)

    Chen, Ying; Yang, Liu; Ye, Cui; Kang, Rui

    2015-01-01

    Reliability study of electronic system with the physics-of-failure method has been promoted due to the increase knowledge of electronic failure mechanisms. System failure initiates from independent failure mechanisms, have effect on or affect by other failure mechanisms and finally result in system failure. Failure mechanisms in a non-repairable system have many kinds of correlation. One failure mechanism developing to a certain degree will trigger, accelerate or inhibit another or many other failure mechanisms, some kind of failure mechanisms may have the same effect on the failure site, component or system. The destructive effect will be accumulated and result in early failure. This paper presents a reliability evaluation method considering correlativity among failure mechanisms, which includes trigger, acceleration, inhibition, accumulation, and competition. Based on fundamental rule of physics of failure, decoupling methods of these correlations are discussed. With a case, reliability of electronic system is evaluated considering failure mechanism dependence. - Highlights: • Five types of failure mechanism correlations are described. • Decoupling methods of these correlations are discussed. • A reliability evaluation method considering mechanism dependence is proposed. • Results are quite different to results under failure independence assumption

  19. Characterizing the macro and micro mechanical properties of scaffolds for rotator cuff repair.

    Science.gov (United States)

    Smith, Richard D J; Zargar, Nasim; Brown, Cameron P; Nagra, Navraj S; Dakin, Stephanie G; Snelling, Sarah J B; Hakimi, Osnat; Carr, Andrew

    2017-11-01

    Retearing after rotator cuff surgery is a major clinical problem. Numerous scaffolds are being used to try to reduce retear rates. However, few have demonstrated clinical efficacy. We hypothesize that this lack of efficacy is due to insufficient mechanical properties. Therefore, we compared the macro and nano/micro mechanical properties of 7 commercially available scaffolds to those of the human supraspinatus tendons, whose function they seek to restore. The clinically approved scaffolds tested were X-Repair, LARS ligament, Poly-Tape, BioFiber, GraftJacket, Permacol, and Conexa. Fresh frozen cadaveric human supraspinatus tendon samples were used. Macro mechanical properties were determined through tensile testing and rheometry. Scanning probe microscopy and scanning electron microscopy were performed to assess properties of materials at the nano/microscale (morphology, Young modulus, loss tangent). None of the scaffolds tested adequately approximated both the macro and micro mechanical properties of human supraspinatus tendon. Macroscale mechanical properties were insufficient to restore load-bearing function. The best-performing scaffolds on the macroscale (X-Repair, LARS ligament) had poor nano/microscale properties. Scaffolds approximating tendon properties on the nano/microscale (BioFiber, biologic scaffolds) had poor macroscale properties. Existing scaffolds failed to adequately approximate the mechanical properties of human supraspinatus tendons. Combining the macroscopic mechanical properties of a synthetic scaffold with the micro mechanical properties of biologic scaffold could better achieve this goal. Future work should focus on advancing techniques to create new scaffolds with more desirable mechanical properties. This may help improve outcomes for rotator cuff surgery patients. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  20. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  1. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.

    Science.gov (United States)

    Dutta, Arijit; Yang, Chunying; Sengupta, Shiladitya; Mitra, Sankar; Hegde, Muralidhar L

    2015-05-01

    Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory

  2. Repair mechanisms inducible to the DNA in I.M.M.S. biological systems; Mecanismos de reparacion inducible del ADN en sistemas biologicos I.M.M.S

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, J; Arceo, C; Cortinas, C; Rosa, M.E. De la; Olvera, O; Cruces, M; Pimentel, E

    1990-03-15

    Given the characteristics of the MMS and the relative antecedents to the repair mechanisms in eucariontes are sought to determine the effect of the MMS on the genetic material and their repair in Drosophila melanogaster. (Author)

  3. The Mechanism of Nucleotide Excision Repair-Mediated UV-Induced Mutagenesis in Nonproliferating Cells

    Science.gov (United States)

    Kozmin, Stanislav G.; Jinks-Robertson, Sue

    2013-01-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. PMID:23307894

  4. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism

    Directory of Open Access Journals (Sweden)

    Agathi-Vasiliki Goula

    2013-07-01

    Full Text Available More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.

  5. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players.

    Science.gov (United States)

    Menoni, Hervé; Di Mascio, Paolo; Cadet, Jean; Dimitrov, Stefan; Angelov, Dimitar

    2017-06-01

    Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin? Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Spread and Control of Mobile Benign Worm Based on Two-Stage Repairing Mechanism

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2014-01-01

    Full Text Available Both in traditional social network and in mobile network environment, the worm is a serious threat, and this threat is growing all the time. Mobile smartphones generally promote the development of mobile network. The traditional antivirus technologies have become powerless when facing mobile networks. The development of benign worms, especially active benign worms and passive benign worms, has become a new network security measure. In this paper, we focused on the spread of worm in mobile environment and proposed the benign worm control and repair mechanism. The control process of mobile benign worms is divided into two stages: the first stage is rapid repair control, which uses active benign worm to deal with malicious worm in the mobile network; when the network is relatively stable, it enters the second stage of postrepair and uses passive mode to optimize the environment for the purpose of controlling the mobile network. Considering whether the existence of benign worm, we simplified the model and analyzed the four situations. Finally, we use simulation to verify the model. This control mechanism for benign worm propagation is of guiding significance to control the network security.

  7. Mirror-smooth surfaces and repair of defects in superconducting RF cavities by mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C. A. [Fermilab; Cooley, L. D. [Fermilab

    2012-11-22

    Mechanical techniques for polishing the inside surface of niobium superconducting radio-frequency (SRF) cavities have been systematically explored. By extending known techniques to fine polishing, mirror-like finishes were produced, with <15 nm RMS (root mean square) roughness over 1 mm2 scan area. This is an order of magnitude less than the typical roughness produced by the electropolishing of niobium cavities. The extended mechanical polishing (XMP) process was applied to several SRF cavities which exhibited equator defects that caused quench at <20 MV m-1 and were not improved by further electropolishing. Cavity optical inspection equipment verified the complete removal of these defects, and minor acid processing, which dulled the mirror finish, restored performance of the defective cells to the high gradients and quality factors measured for adjacent cells when tested with other harmonics. This innate repair feature of XMP could be used to increase manufacturing yield. Excellent superconducting properties resulted after initial process optimization, with quality factor Q of 3 × 1010 and accelerating gradient of 43 MV m-1 being attained for a single-cell TESLA cavity, which are both close to practical limits. Several repaired nine-cell cavities also attained Q > 8 × 109 at 35 MV m-1, which is the specification for the International Linear Collider. Future optimization of the process and pathways for eliminating requirements for acid processing are also discussed.

  8. Combined effects of scaffold stiffening and mechanical preconditioning cycles on construct biomechanics, gene expression, and tendon repair biomechanics.

    Science.gov (United States)

    Nirmalanandhan, Victor Sanjit; Juncosa-Melvin, Natalia; Shearn, Jason T; Boivin, Gregory P; Galloway, Marc T; Gooch, Cynthia; Bradica, Gino; Butler, David L

    2009-08-01

    Our group has previously reported that in vitro mechanical stimulation of tissue-engineered tendon constructs significantly increases both construct stiffness and the biomechanical properties of the repair tissue after surgery. When optimized using response surface methodology, our results indicate that a mechanical stimulus with three components (2.4% strain, 3000 cycles/day, and one cycle repetition) produced the highest in vitro linear stiffness. Such positive correlations between construct and repair stiffness after surgery suggest that enhancing structural stiffness before surgery could not only accelerate repair stiffness but also prevent premature failures in culture due to poor mechanical integrity. In this study, we examined the combined effects of scaffold crosslinking and subsequent mechanical stimulation on construct mechanics and biology. Autologous tissue-engineered constructs were created by seeding mesenchymal stem cells (MSCs) from 15 New Zealand white rabbits on type I collagen sponges that had undergone additional dehydrothermal crosslinking (termed ADHT in this manuscript). Both constructs from each rabbit were mechanically stimulated for 8h/day for 12 consecutive days with half receiving 100 cycles/day and the other half receiving 3000 cycles/day. These paired MSC-collagen autologous constructs were then implanted in bilateral full-thickness, full-length defects in the central third of rabbit patellar tendons. Increasing the number of in vitro cycles/day delivered to the ADHT constructs in culture produced no differences in stiffness or gene expression and no changes in biomechanical properties or histology 12 weeks after surgery. Compared to MSC-based repairs from a previous study that received no additional treatment in culture, ADHT crosslinking of the scaffolds actually lowered the 12-week repair stiffness. Thus, while ADHT crosslinking may initially stiffen a construct in culture, this specific treatment also appears to mask any benefits

  9. Kinetics and mechanism of DNA repair; Evaluation of caged compounds for use in studies of u. v. -induced DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, R.A.; Wharton, C.W. (Birmingham Univ. (UK). Dept. of Biochemistry); Shall, S. (Sussex Univ., Brighton (UK). School of Biological Sciences)

    1990-03-15

    Experiments are described in which the feasibility of using caged dideoxy and other nucleoside triphosphate analogues for trapping breaks induced by u.v. radiation damage to mammalian cell DNA is evaluated. These nucleotide analogues that have a photolabile 1-(2-nitrophenyl)ethyl-protecting group attached to the {gamma}-phosphate are placed in situ by permeabilizing cells by exposure to hypo-osmotic medium. The nucleoside triphosphate is released by a 351 nm u.v. laser pulse whence it may incorporate in the growing chain of DNA induced by the excision-repair process and terminate chain elongation. If the photoreleased dideoxynucleoside trisphosphate is isotopically labelled in the {alpha}-phosphate position the break is trapped and labelled. Incorporation of radioactivity into trichloroacetic acid insoluble material in these experiments confirms their potential for use in studies of the kinetics of mammalian cell DNA repair. (author).

  10. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Directory of Open Access Journals (Sweden)

    José Carlos Pelielo de Mattos

    2008-12-01

    Full Text Available Reactive oxygen species (ROS can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl2 is a ROS generator, leading to lethality in Escherichia coli (E. coli, with the base excision repair (BER mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms.Espécies reativas de oxigênio (ERO podem induzir lesões em diferentes alvos celulares, incluindo o DNA. O cloreto estanoso (SnCl2 é um gerador de ERO que induz letalidade em E. coli, sendo o reparo por excisão de bases (BER um mecanismo importante neste processo. Técnicas como o ensaio cometa (em eucariotos e a eletroforese de DNA plasmidial em gel de agarose têm sido utilizadas para detectar genotoxicidade. No presente estudo, uma adaptação do método de eletroforese em gel alcalino de agarose foi usada para verificar a indução de quebras, pelo SnCl2, no DNA de E. coli, bem como a participação de enzimas do BER na restauração das lesões. Os resultados mostraram que o SnCl2 induziu quebras no DNA de todas as cepas testadas. Além disso, endonuclease IV e exonuclease III estão envolvidas na reparação dos danos. Em resumo, os dados obtidos indicam que a metodologia de eletroforese em gel alcalino de agarose pode ser empregada tanto para o estudo de quebras no DNA, quanto para avaliação dos

  11. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    Science.gov (United States)

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  12. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity.

    Science.gov (United States)

    Mao, Peng; Brown, Alexander J; Malc, Ewa P; Mieczkowski, Piotr A; Smerdon, Michael J; Roberts, Steven A; Wyrick, John J

    2017-10-01

    DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers. © 2017 Mao et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Molecular mechanism of short-patch repair of radiation-damaged DNA by in vitro reconstituted systems

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kim, K.; Biade, S.

    1995-01-01

    -strand breaks generated by γ-irradiation. Approximately 50% of the UV-irradiated IdU was also repaired by the PCNA-dependent pathway. Conclusion: The PCNA-dependent short-patch repair pathway serves not only as a back-up mechanism for the pol β-dependent pathway but also for the repair of the damage which cannot be a substrate for the pol β-dependent pathway. We are now investigating the characters of such lesions that are generated by ionizing radiation and are able to be repaired only by the PCNA-dependent pathway

  14. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    Science.gov (United States)

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  15. Determination of methyl methanesulfonate pretreatment effect in Drosophila melanogaster larvaes upon repair mechanisms in somatic cells

    International Nuclear Information System (INIS)

    Hernandez Paz, M.

    1992-01-01

    To make evident the existence of SOS repair mecanism in somatic cells, larvaes of drosophila melanogaster with MWH markers for females and FLR markers for males were used. This larvaes received a pretreatment with MMS at concentrations of 0.0007% and 0.0014% during 24 hours and latter a treatment with gamma rays at different dosis. SMART program was used to make stastistical evaluations. Small spots were observed which can have two origins. First could be damage in the last part of third stage in which cells are in last divisions and second could be the damage to larvaes in early stages in shich pretreatment with MMS cause lesions which prevent the reproduction of the cells. Also big spots were observed which presence is due to recombination. It was detected than the bigger the concentration of MMS and radiation dose, the bigger the induced damage. In some groups such observation was impossible may be to technical problems as relative humidity, out of phase in the growth of larvaes giving place that treatment were given in three stages. For this reasons it was impossible to discriminate if drosophila melanogaster is wheter or not capable to induce a repair mechanism (Author)

  16. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes

    Directory of Open Access Journals (Sweden)

    Jolene Michelle Helena

    2018-04-01

    Full Text Available Deoxyribonucleic acid (DNA is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.

  17. Glycosylase-mediated repair of radiation-induced DNA bases: substrate specificities and mechanisms

    International Nuclear Information System (INIS)

    D'ham, Cedric

    1998-01-01

    Cellular DNA is subject to permanent damage and repair processes. One way to restore the integrity of DNA involves the base excision repair pathway. Glycosylases are the key-enzymes of this process. The present work deals with the determination of the substrate specificity and the mechanism of action of three glycosylases: endonuclease III and Fpg of Escherichia coli and Ogg1 of Saccharomyces cerevisiae. The present manuscript is divided into four parts: Endonuclease III-mediated excision of 5,6-dihydro-thymine and 5-hydroxy-5,6-dihydro-thymine from γ-irradiated DNA was analyzed by a gas chromatography-mass spectrometry assay, including a liquid chromatography pre-purification step. This was found to be necessary in order to separate the cis and trans isomers of 6-hydroxy-5,6-dihydro-thymine from the 5-hydroxy-5,6-dihydro-thymine. Modified oligonucleotides that contained a unique lesion, including thymine glycol, 5,6-dihydro-thymine and 5-hydroxy-cytosine were synthesized to assess the substrate specificity of endonuclease III and Fpg. The order of preference of the enzymes for the substrates was determined by the measurement of the Michaelis constants of the kinetics. Furthermore, the mechanism of action of endonuclease III has been reconsidered, after analysis using the MALDI mass spectrometry technique. These studies reveal that hydrolysis is the main pathway by which endonuclease III cleaves the DNA backbone. Using a modified oligonucleotide, 8-oxo-7,8-dihydro-adenine was shown to be a product of excision of the Ogg1 enzyme. The role of the complementary base towards the lesion was found to be preponderant in the damage excision. A last chapter concerns the synthesis and the characterization of the four isomers of 5(6)-hydroxy-6(5)-hydroperoxides of thymine. These products may be substrates for endonuclease III or Fpg. (author) [fr

  18. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  19. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    International Nuclear Information System (INIS)

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  20. Mechanisms involved in repairing the lesions induced in pBR 322 by PUVA treatment (8-Methoxypsoralen + ultraviolet A light)

    International Nuclear Information System (INIS)

    Bauluz, C.

    1988-01-01

    This work deals with the genotoxic effects derived from damaging pBR322 DNA through PUVA treatment (8-Methoxypsoralen plusUVA light), both with respect to the lethality and mutagenicity of the lesions produced by the treatment. The mechanisms involved in the repair of the plasmid lesions have been investigated by transforming several strains of E. coli differing in their DNA-repair capacities. The frequency, distribution and type of mutations occurring in a restriction fragment of the damaged plasmid were determined in order to establish the mutagenic features of the PUVA treatment. Damages produced bY PUVA habe a strong lethal effect on plasmid survival; however, partial recovery is possible through some of the bacterial DNA repair pathways, namely Excision repair, SOS-repair and a third mechanism which appears to be independent from the analised genes and is detected at high density of lesions per plasmid molecule. PUVA treatment produces a high increase in plasmid mutagenesis; however, the contribution of such an increase to the whole plasmid survival is negligible. Only punctual mutations were detected and consisted mainly in base-pair substitutions. Some mutation-prone regions were sound inside the investigated DNA fragment, a though their existence is more likely to be related with the structure acquired by the damaged DNA than with the type of damaging agent. (Author)

  1. The roles of different repair mechanisms in the ultraviolet resistance of Micrococcus luteus

    International Nuclear Information System (INIS)

    Zherebtsov, S.V.; Tomilin, N.V.

    1982-01-01

    In ultraviolet-irradiated Micrococcus luteus wild type the replication of DNA was not interrupted at every pyrimidine dimer, in contrast to that in ultraviolet-sensitive G7 and some other mutants. The contribution of uninterrupted replication to the ultraviolet resistance of M. luteus proved to be equal to the contributions of excision repair and inducible postreplication repair. It was found that some postreplication gaps could be filled by constitutive pathways of postreplication repair when inducible pathways were suppressed by chloramphenicol. Prolonged treatment with chloramphenicol was shown to block not only inducible repair but also other processes essential for ultraviolet irradiation survival. (Auth.)

  2. Human inherited diseases with altered mechanisms for DNA repair and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1977-01-01

    A variety of human diseases involving clinical symptoms of increased cancer risk, and disorders of the central nervous system, and of hematopoietic, immunological, ocular, and cutaneous tissues and embryological development have defects in biochemical pathways for excision repair of damaged DNA. Excision repair has multiple branches by which damaged nucleotides, bases, and cross-links are excised and requires cofactors that control the access of repair enzymes to damage in DNA in chromatin. Diseases in which repair defects are a consistent feature of their biochemistry include xeroderma pigmentosum, ataxia telangiectasia and Fanconi's anemia.

  3. Combined Effects of Scaffold Stiffening and Mechanical Preconditioning Cycles on Construct Biomechanics, Gene Expression, and Tendon Repair Biomechanics

    OpenAIRE

    Nirmalanandhan, Victor Sanjit; Juncosa-Melvin, Natalia; Shearn, Jason T.; Boivin, Gregory P.; Galloway, Marc T.; Gooch, Cynthia; Bradica, Gino; Butler, David L.

    2009-01-01

    Our group has previously reported that in vitro mechanical stimulation of tissue-engineered tendon constructs significantly increases both construct stiffness and the biomechanical properties of the repair tissue after surgery. When optimized using response surface methodology, our results indicate that a mechanical stimulus with three components (2.4% strain, 3000 cycles/day, and one cycle repetition) produced the highest in vitro linear stiffness. Such positive correlations between construc...

  4. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms.

    Science.gov (United States)

    Geoffroy, Cédric G; Meves, Jessica M; Zheng, Binhai

    2017-06-23

    Age is an important consideration for recovery and repair after spinal cord injury. Spinal cord injury is increasingly affecting the middle-aged and aging populations. Despite rapid progress in research to promote axonal regeneration and repair, our understanding of how age can modulate this repair is rather limited. In this review, we discuss the literature supporting the notion of an age-dependent decline in axonal growth after central nervous system (CNS) injury. While both neuron-intrinsic and extrinsic factors are involved in the control of axon growth after injury, here we focus on possible intrinsic mechanisms for this age-dependent decline. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Inguinal hernia repair among men in relation to occupational mechanical exposures and lifestyle factors

    DEFF Research Database (Denmark)

    Vad, Marie Vestergaard; Frost, Poul; Rosenberg, Jacob

    2017-01-01

    showed lower HRs for both repair types. Leisure-time physical activity and smoking status were not related to any of the outcomes. CONCLUSIONS: Assuming a causal relationship, the results suggest that around 30% of all first-time lateral inguinal hernia repairs in the highest exposure category would...

  6. The Use of Alkaliphilic Bacteria-based Repair Solution for Porous Network Concrete Healing Mechanism

    NARCIS (Netherlands)

    Sangadji, S.; Wiktor, V.A.C.; Jonkers, H.M.; Schlangen, H.E.J.G.

    2017-01-01

    Bacteria induced calcium carbonate precipitation based on metabolic conversion of nutrients has been acknowledged for having potentials in self-healing cement-based materials. Recent studies have shown the development of bacteria-based repair solution (liquid) for concrete surface repair. This

  7. Introduction of a New Suture Method in Repair of Peripheral Nerves Injured with a Sharp Mechanism

    Directory of Open Access Journals (Sweden)

    Alireza Saied

    2015-09-01

    Full Text Available Background: The standard method for repair of an injured peripheal nerve is epineural repair with separate sutures. Herein we describe a method in which the nerve is sutured with continous sutures. In fact this method has not been utilized for nerve repair previously and our purpose was to compare it to the standard method. If it proved to be successful it would replace the standard method in certain circumstances. Methods: The proposal of the clinical trial was given a reference number form the ethics comitee. 25 dogs in which the scaitic nerve was cut by a sharp blade under genaeral anesthesia were divided randomly into three groups: control (5 dogs, repair of sciatic nerve with simple sutures (10 and repair with continous sutures (10. In the control group the nerve was not repaired at all. After 6 weeks the dogs were killed and the nerve was studied by light and electronic microscopes. The amount of consumed suture material, time of repair, myelin thickness and axon diiameter were examined. Ultrastructural studies were performed to assess degeneration and regeneration findings. Results: Time of repair and the amount of consumed suture material were significantly lower in the continous group (P

  8. Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanism

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Tatsumi, M.

    1976-01-01

    Replicative bypass repair of UV damage to DNA was studied in a wide variaty of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthesized after irradiation with 10 J/m 2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionally, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimodine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative bypassing became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability

  9. ASPECTS REGARDING THE METHOD OF REALIZING THE TECHNICAL EXPERTISE FOR REPAIRING THE TRANSLATION MECHANISM OF A M4A COAL-MINING MACHINE

    Directory of Open Access Journals (Sweden)

    Marius Liviu CÎRȚÎNĂ

    2018-05-01

    Full Text Available This paper presents the technical state of the mechanism of translation of the coalmining machine after the technical expertise. The rehabilitation to which the translation mechanism will be subjected will be carried out by performing the intervention works that will bring back into the normal operating parameters both the structural part and the functional part. The paper presents: the proposed solutions for repair after verification of the translation mechanism and the way of repairing the mechanism.

  10. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  11. Influence of polyacrylic ester and silica fume on the mechanical properties of mortar for repair application

    Directory of Open Access Journals (Sweden)

    Chaohua Jiang

    2016-12-01

    Full Text Available Experimental investigations on the influence of different amounts of polyacrylic ester and silica fumes on the mechanical properties of mortar such as the compressive strength, splitting tensile strength, bonding strength, and abrasion resistance are presented in this article. The results show that the compressive and splitting tensile strength of mortar can be improved with the addition of polyacrylic ester and silica fumes. Results obtained from both the direct tensile bond test and flexural bond test indicate that the addition of polyacrylic ester and silica fumes improves the bond strength significantly, and the enhancement is more obvious with polyacrylic ester paste as interfacial adhesives. Furthermore, mortar incorporation of polyacrylic ester and silica fumes shows superior abrasion resistance compared to the control mortar. Therefore, the correct combination of polyacrylic ester and silica fumes to produce mortars has been shown to have synergistic effects, which results in excellent properties including high bond strength and superior abrasion resistance. Mortars containing polyacrylic ester and silica fumes are ideal for repairing concrete especially for hydraulic concrete structure.

  12. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair

    International Nuclear Information System (INIS)

    Sawkins, M J; Mistry, P; Shakesheff, K M; Yang, J; Brown, B N; Bonassar, L J

    2015-01-01

    Rapid prototyping of bone tissue engineering constructs often utilizes elevated temperatures, organic solvents and/or UV light for materials processing. These harsh conditions may prevent the incorporation of cells and therapeutic proteins in the fabrication processes. Here we developed a method for using bioprinting to produce constructs from a thermoresponsive microparticulate material based on poly(lactic-co-glycolic acid) at ambient conditions. These constructs could be engineered with yield stresses of up to 1.22 MPa and Young’s moduli of up to 57.3 MPa which are within the range of properties of human cancellous bone. Further study showed that protein-releasing microspheres could be incorporated into the bioprinted constructs. The release of the model protein lysozyme from bioprinted constructs was sustainted for a period of 15 days and a high degree of protein activity could be measured up to day 9. This work suggests that bioprinting is a viable route to the production of mechanically strong constructs for bone repair under mild conditions which allow the inclusion of viable cells and active proteins. (paper)

  13. Studies on the molecular mechanism of nucleotide excision repair in human cells

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-01-01

    Studies in this laboratory have focused on attempts to define the mechanism of nucleotide excision repair of DNA in human cells, with a view to understanding the molecular pathogenesis of the disease XP. With the advent of recombinant DNA technology, they directed their efforts to the molecular cloning of human genes defective in XP, with a view to using the cloned genes to overexpress proteins of interest for biochemical investigations. Initial studies exploited the selectable phenotype of marked sensitivity to killing of XP group A cells by UV radiation and by other DNA damaging agents. However, except for a single report in 1982 there has been no reproducible demonstration of complementation of the UV sensitivity of XP cells by DNA-mediated transfection. The apparent difficulties associated with transfection of XP cells have been the subject of several recent studies. In view of the multiple problems associated with stable transfection of XP cells using total genomic DNA, they have embarked on an alternative strategy designed to facilitate the cloning of human XP genes. This strategy involves the transfer of single human chromosomes into XP cells and screening for this relatively high frequency event. The idea is to identify chromosomes on which particular XP genes reside and then to isolate non-complementing derivatives of these chromosomes so that highly enriched DNA pools containing genes of interest can be generated by employing one or more subtractive strategies

  14. Mississippi Curriculum Framework for Diesel Equipment Repair & Service (Program CIP: 47.0605--Diesel Engine Mechanic & Repairer). Secondary Programs.

    Science.gov (United States)

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for diesel engine mechanics I and II. Presented first are a program…

  15. Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals.

    Science.gov (United States)

    Spampinato, Claudia P

    2017-05-01

    The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.

  16. Alkylation damage in DNA and RNA--repair mechanisms and medical significance

    DEFF Research Database (Denmark)

    Drabløs, Finn; Feyzi, Emadoldin; Aas, Per Arne

    2004-01-01

    Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions...... are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase......, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents...

  17. Remote mechanized equipment for the repair and replacement of boiling water reactor recirculation loop piping

    International Nuclear Information System (INIS)

    Mauser, D.; Busch, D.F.

    1983-01-01

    Equipment has been assembled for the remote repair or replacement of boiling water reactor nuclear plant piping in the diameter range of 4 to 28 inches (10-71 cm). The objectives of this program were to produce high-quality pipe welds, reduce plant downtime, and reduce man-rem exposure. The repair strategy was to permit repair personnel to install and check out the repair subsystems and then leave the radiation zone allowing the operations to be conducted at a distance of up to 300 feet (91 m) from the operator. The complete repair system comprises subsystems for pipe severing, dimensional gaging, joint preparation, counterboring, welding, postweld nondestructive inspection (conceptual design), and audio, electronic, and visual monitoring of all operations. Components for all subsystems, excluding those for postweld nondestructive inspection, were purchased and modified as needed for integration into the repair system. Subsystems were designed for two sizes of Type 304 stainless steelpipe. For smaller, 12-inch-diameter (30.5 cm) pipe, severing is accomplished by a power hack saw and joint preparation and counterboring by an internally mounted lathe. The 22-inch-diameter (56 cm) pipe is severed, prepared, and counterbored using an externally mounted, single-point machining device. Dimensional gaging is performed to characterize the pipe geometry relative to a fixed external reference surface, allowing the placement of the joint preparation and the counterbore to be optimized. For both pipe sizes, a track-mounted gas tungsten-arc welding head with filler wire feed is used

  18. Case study. Health hazards of automotive repair mechanics: thermal and lighting comfort, particulate matter and noise.

    Science.gov (United States)

    Loupa, G

    2013-01-01

    An indoor environmental quality survey was conducted in a small private automotive repair shop during May 2009 (hot season) and February 2010 (cold season). It was established that the detached building, which is naturally ventilated and lit, had all the advantages of the temperate local climate. It provided a satisfactory microclimatic working environment, concerning the thermal and the lighting comfort, without excessive energy consumption for air-conditioning or lighting. Indoor number concentrations of particulate matter (PM) were monitored during both seasons. Their size distributions were strongly affected by the indoor activities and the air exchange rate of the building. During working hours, the average indoor/outdoor (I/O) number concentration ratio was 31 for PM0.3-1 in the hot season and 69 for the cold season. However I/O PM1-10 number concentration ratios were similar, 33 and 32 respectively, between the two seasons. The estimated indoor mass concentration of PM10 for the two seasons was on average 0.68 mg m(-3) and 1.19 mg m(-3), i.e., 22 and 36 times higher than outdoors, during the hot and the cold seasons, respectively. This is indicative that indoor air pollution may adversely affect mechanics' health. Noise levels were highly variable and the average LEX, 8 h of 69.3 dB(A) was below the European Union exposure limit value 87db (A). Noise originated from the use of manual hammers, the revving up of engines, and the closing of car doors or hoods. Octave band analysis indicated that the prevailing noise frequencies were in the area of the maximum ear sensitivity.

  19. Influence of the field humiture environment on the mechanical properties of 316L stainless steel repaired with Fe314

    Science.gov (United States)

    Zhang, Lianzhong; Li, Dichen; Yan, Shenping; Xie, Ruidong; Qu, Hongliang

    2018-04-01

    The mechanical properties of 316L stainless steel repaired with Fe314 under different temperatures and humidities without inert gas protection were studied. Results indicated favorable compatibility between Fe314 and 316L stainless steel. The average yield strength, tensile strength, and sectional contraction percentage were higher in repaired samples than in 316L stainless steel, whereas the elongation rate was slightly lower. The different conditions of humiture environment on the repair sample exerted minimal influence on tensile and yield strengths. The Fe314 cladding layer was mainly composed of equiaxed grains and mixed with randomly oriented columnar crystal and tiny pores or impurities in the tissue. Results indicated that the hardness value of Fe314 cladding layer under different humiture environments ranged within 419-451.1 HV0.2. The field humiture environment also showed minimal impact on the average hardness of Fe314 cladding layers. Furthermore, 316L stainless steel can be repaired through laser cladding by using Fe314 powder without inert gas protection under different temperatures and humidity environments.

  20. Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis.

    Science.gov (United States)

    Deeken, Corey R; Thompson, Dominic M; Castile, Ryan M; Lake, Spencer P

    2014-10-01

    Over the past 60 years, the soft tissue repair market has grown to include over 50 types of hernia repair materials. Surgeons typically implant these materials in the orientation that provides maximum overlap of the mesh over the defect, with little regard for mechanical properties of the mesh material. If the characteristics of the meshes were better understood, an appropriate material could be identified for each patient, and meshes could be placed to optimize integration with neighboring tissue and avoid the mechanical mis-match that can lead to impaired graft fixation. The purpose of this study was to fully characterize and compare the mechanical properties of thirteen types of hernia repair materials via planar biaxial tensile testing. Equibiaxial (i.e., equal simultaneous loading in both directions) and strip biaxial (i.e., loading in one direction with the other direction held fixed) tests were utilized as physiologically relevant loading regimes. After applying a 0.1N pre-load on each arm, samples were subjected to equibiaxial cyclic loading using a triangular waveform to 2.5mm displacement on each arm at 0.1Hz for 10 cycles. Samples were then subjected to two strip biaxial tests (using the same cyclic loading protocol), where extension was applied along a single axis with the other axis held fixed. The thirteen evaluated mesh types exhibited a wide range of mechanical properties. Some were nearly isotropic (C-QUR™, DUALMESH(®), PHYSIOMESH™, and PROCEED(®)), while others were highly anisotropic (Ventralight™ ST, Bard™ Mesh, and Bard™ Soft Mesh). Some displayed nearly linear behavior (Bard™ Mesh), while others were non-linear with a long toe region followed by a sharp rise in tension (INFINIT(®)). These materials are currently utilized in clinical settings as if they are uniform and interchangeable, and clearly this is not the case. The mechanical properties most advantageous for successful hernia repairs are currently only vaguely described

  1. Single- and double-row repair for rotator cuff tears - biology and mechanics.

    Science.gov (United States)

    Papalia, Rocco; Franceschi, Francesco; Vasta, Sebastiano; Zampogna, Biagio; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    We critically review the existing studies comparing the features of single- and double-row repair, and discuss suggestions about the surgical indications for the two repair techniques. All currently available studies comparing the biomechanical, clinical and the biological features of single and double row. Biomechanically, the double-row repair has greater performances in terms of higher initial fixation strength, greater footprint coverage, improved contact area and pressure, decreased gap formation, and higher load to failure. Results of clinical studies demonstrate no significantly better outcomes for double-row compared to single-row repair. Better results are achieved by double-row repair for larger lesions (tear size 2.5-3.5 cm). Considering the lack of statistically significant differences between the two techniques and that the double row is a high cost and a high surgical skill-dependent technique, we suggest using the double-row technique only in strictly selected patients. Copyright © 2012 S. Karger AG, Basel.

  2. Is the Dresden technique a mechanical design of choice suitable for the repair of middle third Achilles tendon ruptures? A biomechanical study.

    Science.gov (United States)

    de la Fuente, C; Carreño-Zillmann, G; Marambio, H; Henríquez, H

    2016-01-01

    To compare the mechanical failure of the Dresden technique for Achilles tendon repair with the double modified Kessler technique controlled repair technique. The maximum resistance of the two repair techniques are also compared. A total of 30 Achilles tendon ruptures in bovine specimens were repaired with an Ethibond(®) suture to 4.5cm from the calcaneal insertion. Each rupture was randomly distributed into one of two surgical groups. After repair, each specimen was subjected to a maximum traction test. The mechanical failure (tendon, suture, or knot) rates (proportions) were compared using the exact Fisher test (α=.05), and the maximum resistances using the Student t test (α=.05). There was a difference in the proportions of mechanical failures, with the most frequent being a tendon tear in the Dresden technique, and a rupture of the suture in the Kessler technique. The repair using the Dresden technique performed in the open mode, compared to the Kessler technique, has a more suitable mechanical design for the repair of middle third Achilles tendon ruptures on developing a higher tensile resistance in 58.7%. However, its most common mechanical failure was a tendon tear, which due to inappropriate loads could lead to lengthening of the Achilles tendon. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  4. Investigations on the mechanism of DNA excision repair in tissue culture cells

    International Nuclear Information System (INIS)

    Wawra, E.; Dolejs, I.; Ott, E.

    1976-12-01

    Semiconservative DNA- synthesis and repair- synthesis was measured in HeLa cells and spleen cells under different conditions (i.e. different temperatures, addition of p-chloromercuribenzoate or cytosine-arabinoside). In order to obtain more information about the enzymatic background of these steps of DNA metabolism, parallel in vitro experiments were done with two different types of DNA polymerase, which had been isolated from pig spleen. At least the experiments at different temperatures are showing some correlations of α-polymerase with semiconservative synthesis and of β-polymerase with repair synthesis. (author)

  5. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Takaji Ikushima

    1997-01-01

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  6. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  7. Contribution to the safety of repairing mechanisms in Staphylococcus epidermidis: characterization of mutants sensible to ultraviolet radiation

    International Nuclear Information System (INIS)

    Rocha Guillobel, H.C. da.

    1985-01-01

    Mutants obtained from N - methyl -N' - nitro - N - nitrosoguanidine (MNNG) treatment of the W 5 strain or Staphylococcus epidermidis and selected for their increased UV - sensitivity were characterized according to their capacity to repair DNA damage. The original W 5 parental strain as well as several phenotypically defined strains of Escherichia coli, described in the literature, were used as a reference. The study included: the verification of cellular UVV - and MNNG - sensitivities; the determination of the bacterial potential for phage-reactivation by constitutive enzymatic mechanisms (host cell reactivation), as well as by the action of inducible repair systems (W-reactivation); the assessment of the UV-inductibility of prophage in the lysogenic hosts. (author)

  8. Occupational Contact Dermatitis in Mechanics and Repairers Referred for Patch Testing: Retrospective Analysis From the North American Contact Dermatitis Group 1998-2014.

    Science.gov (United States)

    Warshaw, Erin M; Hagen, Solveig L; Sasseville, Denis; Maibach, Howard I; DeKoven, Joel G; Belsito, Donald V; Fowler, Joseph F; Zug, Kathryn A; Taylor, James S; Mathias, C G Toby; Fransway, Anthony F; DeLeo, Vincent A; Marks, James G; Pratt, Melanie D; Zirwas, Matthew J; Storrs, Frances J

    Contact dermatoses are common in mechanic and repair occupations. This study aimed to (1) estimate the prevalence of occupationally related contact dermatitis among mechanics/repairers patch tested from 1998 to 2014 by the North American Contact Dermatitis Group, (2) characterize responsible allergens and irritants, and their sources, and (3) compare results among 3 occupational subgroups (mechanics, electrical/electronic, and other). A cross-sectional analysis of patients patch tested by the North American Contact Dermatitis Group between 1998 and 2014. Of 38,784 patients patch tested, 691 (1.8%) were mechanics/repairers. Male sex (93.5%) and hand involvement (59.5%) were common overall. Occupationally related skin disease was more prevalent among vehicle and mobile equipment mechanics/repairers (52.7%) and other mechanics/repairers (41.4%) than electrical/electronic equipment mechanics/repairers (21.3%). Overall, carba mix, thiuram mix, and methylchloroisothiazolone/methylisothiazolone were the most common occupation-related clinically relevant allergens. Gloves, automotive vehicles, solvents, oils, lubricants, and fuels were the most common sources of responsible allergens. Common occupationally related allergens included rubber accelerators and the preservative methylchloroisothiazolone/methylisothiazolone.

  9. Delayed onset of tricuspid valve flow in repaired tetralogy of Fallot: an additional mechanism of diastolic dysfunction and interventricular dyssynchrony

    Directory of Open Access Journals (Sweden)

    Benson Lee N

    2011-08-01

    Full Text Available Abstract Background Diastolic dysfunction of the right ventricle (RV is common after repair of tetralogy of Fallot. While restrictive physiology in late diastole has been well known, dysfunction in early diastole has not been described. The present study sought to assess the prevalence and mechanism of early diastolic dysfunction of the RV defined as delayed onset of the tricuspid valve (TV flow after TOF repair. Methods The study population consisted of 31 children with repaired TOF (mean age ± SD, 12.3 ± 4.1 years who underwent postoperative cardiovascular magnetic resonance (CMR. The CMR protocol included simultaneous phase-contrast velocity mapping of the atrioventricular valves, which enabled direct comparison of the timing and patterns of tricuspid (TV and mitral (MV valve flow. The TV flow was defined to have delayed onset when its onset was > 20 ms later than the onset of the MV flow. The TV and MV flow from 14 normal children was used for comparison. The CMR results were correlated with the findings on echocardiography and electrocardiography. Result Delayed onset of the TV flow was observed in 16/31 patients and in none of the controls. The mean delay time was 64.81 ± 27.07 ms (8.7 ± 3.2% of R-R interval. The delay time correlated with the differences in duration of the TV and MV flow (55.94 ± 32.88 ms (r = 0.90, p Conclusions Early diastolic dysfunction with delayed onset of TV flow is common after TOF repair, and is associated with reduced RV ejection fraction. It is a further manifestation of interventricular dyssynchrony and represent an additional mechanism of ventricular diastolic dysfunction.

  10. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    Science.gov (United States)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  11. Mechanical and mechanobiological influences on bone fracture repair : identifying important cellular characteristics

    NARCIS (Netherlands)

    Isaksson, H.E.

    2007-01-01

    Fracture repair is a complex and multifactorial process, which involves a well-programmed series of cellular and molecular events that result in a combination of intramembranous and endochondral bone formation. The vast majority of fractures is treated successfully. They heal through ‘secondary

  12. Mechanical restoration and failure analyses of a hydrogel and scaffold composite strategy for annulus fibrosus repair

    NARCIS (Netherlands)

    Long, R.G.; Bürki, A.; Zysset, P.; Eglin, D.; Grijpma, Dirk W.; Blanquer, Sebastien; Hecht, A.C.; Iatridis, J.C.

    2016-01-01

    Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of

  13. DNA Damage: Quantum Mechanics/Molecular Mechanics Study on the Oxygen Binding and Substrate Hydroxylation Step in AlkB Repair Enzymes

    Science.gov (United States)

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-01

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1-methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ-and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. PMID:24339041

  14. Evidence for a second 'Prereplicative G2' repair mechanism, specific for γ-induced damage, in wild-type schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Gentner, N.E.; Atomic Energy of Canada Ltd., Chalk River, Ontario. Chalk River Nuclear Labs.)

    1977-01-01

    The major part of the substantial γ-resistance of wild-type Schizosaccharomyces pombe appears to be due to prereplicative recombinational repair mechanisms. The existence of a second 'prereplicative G2' repair pathway, specific for γ-induced damage, has now been deduced from studies of the effect of the repair inhibitor caffeine on γ-irradiated G1 phase and G2 phase cells. Only G2 cells are additionally inactivated on exposure to caffeine after γ-irradiation. This shows that both known caffeine-sensitive γ-repair processes (Genter and Werner, Molec. gen. Genet. 145, 1-5 [1976]) are dependent on the presence of a duplicated genome (2c) at the time of radiation exposure. Pathway I is the known 'prereplicative G2' repair process (Fabre, Radiation Res. 56, 528-539 [1973]) which is involved in both UV- and γ-repair, and which requires post-irradiation protein synthesis for activity. Pathway II represents a second distinct 'prereplicative G2' repair mechanism; it differs from the first in that it is specific for repair of γ-induced damage and appears to be constitutive. (orig.) [de

  15. Endogenous repair mechanisms enhanced in Parkinson's disease following stem cell therapy

    Directory of Open Access Journals (Sweden)

    Eleonora Napoli

    2017-01-01

    Full Text Available This mini-review highlights the innovative observation that transplanted human neural stem cells can bring about endogenous brain repair through the stimulation of multiple regenerative processes in the neurogenic area (i.e., subventricular zone [SVZ] in an animal model of Parkinson's disease (PD. In addition, we convey that identifying anti-inflammatory cytokines, therapeutic proteomes, and neurotrophic factors within the SVZ may be essential to induce brain repair and behavioral recovery. This work opens up a new area of research for further understanding the pathology and treatment of PD. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

  16. Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research

    Science.gov (United States)

    Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with XP. As more abnormalities form in DNA, cells malfunction and eventually become cancerous or die. XP patients have more than a 10,000-fold increased risk of developing skin cancer. Kenneth Kraemer, M.D., in CCR’s Dermatology Branch, has been studying XP patients at the Clinical Center for more than 40 years.

  17. A fracture mechanics analysis of bonded repaired skin/stiffener structures with inclined central crack

    International Nuclear Information System (INIS)

    Chung, Ki Hyun; Yang, Won Ho; Kim, Cheol; Heo, Sung Pil; Ko, Myung Hoon

    2001-01-01

    Composite patch repair of cracked aircraft structures has been accepted as one of improving fatigue life and attaining better structural integrity. Analysis for the stress intensity factor at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels are developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior. In order to investigate the crack growth direction, Maximum Tangential Stress(MTS) criteria is used. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stresses intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. The research on cracked structure subjected to mixed mode loading is accomplished and it is evident that more work using different approaches is necessary

  18. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair.

    Science.gov (United States)

    Liu, Xin; Rahaman, Mohamed N; Hilmas, Gregory E; Bal, B Sonny

    2013-06-01

    There is a need to develop synthetic scaffolds to repair large defects in load-bearing bones. Bioactive glasses have attractive properties as a scaffold material for bone repair, but data on their mechanical properties are limited. The objective of the present study was to comprehensively evaluate the mechanical properties of strong porous scaffolds of silicate 13-93 bioactive glass fabricated by robocasting. As-fabricated scaffolds with a grid-like microstructure (porosity 47%, filament diameter 330μm, pore width 300μm) were tested in compressive and flexural loading to determine their strength, elastic modulus, Weibull modulus, fatigue resistance, and fracture toughness. Scaffolds were also tested in compression after they were immersed in simulated body fluid (SBF) in vitro or implanted in a rat subcutaneous model in vivo. As fabricated, the scaffolds had a strength of 86±9MPa, elastic modulus of 13±2GPa, and a Weibull modulus of 12 when tested in compression. In flexural loading the strength, elastic modulus, and Weibull modulus were 11±3MPa, 13±2GPa, and 6, respectively. In compression, the as-fabricated scaffolds had a mean fatigue life of ∼10(6) cycles when tested in air at room temperature or in phosphate-buffered saline at 37°C under cyclic stresses of 1-10 or 2-20MPa. The compressive strength of the scaffolds decreased markedly during the first 2weeks of immersion in SBF or implantation in vivo, but more slowly thereafter. The brittle mechanical response of the scaffolds in vitro changed to an elasto-plastic response after implantation for longer than 2-4weeks in vivo. In addition to providing critically needed data for designing bioactive glass scaffolds, the results are promising for the application of these strong porous scaffolds in loaded bone repair. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Regulation of DNA repair mechanism in human glioma xenograft cells both in vitro and in vivo in nude mice.

    Science.gov (United States)

    Ponnala, Shivani; Veeravalli, Krishna Kumar; Chetty, Chandramu; Dinh, Dzung H; Rao, Jasti S

    2011-01-01

    Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells. Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9-cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls. Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand

  20. Regulation of DNA repair mechanism in human glioma xenograft cells both in vitro and in vivo in nude mice.

    Directory of Open Access Journals (Sweden)

    Shivani Ponnala

    Full Text Available Glioblastoma Multiforme (GBM is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ repair mechanism plays a major role in double strand break (DSB repair in mammalian cells.Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU and MMP9-cathepsin B (pMC shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls.Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from

  1. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    Energy Technology Data Exchange (ETDEWEB)

    Terán, G., E-mail: gteran@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Cuamatzi-Meléndez, R., E-mail: rcuamatzi@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Albiter, A., E-mail: aalbiter@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Maldonado, C., E-mail: cmzepeda@umich.mx [Instituto de Investigaciones Metalúrgicas, UMSNH, PO Box 52-B, 58000, México (Mexico); Bracarense, A.Q., E-mail: bracarense@ufmg.br [UFMG Departamento de Engeharia Mecánica Belo Horizonte, MG (Brazil)

    2014-04-01

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  2. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  3. Study of radiosensitivity and antioxidant-oxidant state in workers exposed to ionizing radiation in the hospital environment; Estudio de la radiosensibilidad y estado antioxidante-oxidante en trabajadores expuestos a radiaciones ionizantes en el ámbito hospitalario

    Energy Technology Data Exchange (ETDEWEB)

    Sebastià, N.; Rodrigo, R.; Hervás, D.; Olivares-González, L; Óscar Alonso, O.; Marti, L.; Jambrina, E.; Sarrias, A.; Pérez-Calatayud, J.; García, T.; Gras, P.; Villaescusa, J.I.; Soriano, J.M.; León, Z.; Montoro, A.

    2014-07-01

    Prevention and protection of workers exposed to ionizing radiation is an objective of particular importance from the occupational health and safety point of view. This study establishes a technique for the evaluation of the individual radiosensibility of workers exposed to ionizing radiation in the Hospital environment using the cytogenetic biomarker known as the G2 –Test. In addition, using various oxidative stress biomarkers and antioxidant capacity, we evaluate the antioxidant-oxidant state of these workers. Both biomarkers could be established as additional tools in the medical control of workers exposed to ionizing radiation. [Spanish] La prevención y protección de los trabajadores expuestos a radiaciones ionizantes es un objetivo de gran relevancia desde el punto de vista de seguridad ocupacional y salud. Este estudio consiste en la puesta a punto de una técnica de evaluación de la radiosensibilidad individual de los trabajadores expuestos a radiaciones ionizantes en el ámbito hospitalario mediante el biomarcador citogenético conocido como Test G2. Además, utilizando diversos biomarcadores de estrés oxidativo y capacidad anti- oxidante, evaluamos el estado antioxidante-oxidante en estos trabajadores. Ambos biomarcadores podrían establecerse como una herramienta más dentro de la vigilancia médica de los trabajadores expuestos a radiación ionizante.

  4. Divergent impact of Toll-like receptor 2 deficiency on repair mechanisms in healthy muscle versus Duchenne muscular dystrophy.

    Science.gov (United States)

    Mojumdar, Kamalika; Giordano, Christian; Lemaire, Christian; Liang, Feng; Divangahi, Maziar; Qureshi, Salman T; Petrof, Basil J

    2016-05-01

    Injury to skeletal muscle, whether acute or chronic, triggers macrophage-mediated innate immunity in a manner which can be either beneficial or harmful for subsequent repair. Endogenous ligands for Toll-like receptor 2 (TLR2) are released by damaged tissues and might play an important role in activating the innate immune system following muscle injury. To test this hypothesis, we compared macrophage behaviour and muscle repair mechanisms in mice lacking TLR2 under conditions of either acute (cardiotoxin-induced) or chronic (mdx mouse genetic model of Duchenne muscular dystrophy; DMD) muscle damage. In previously healthy muscle subjected to acute damage, TLR2 deficiency reduced macrophage numbers in the muscle post-injury but did not alter the expression pattern of the prototypical macrophage polarization markers iNOS and CD206. In addition, there was abnormal persistence of necrotic fibres and impaired regeneration in TLR2-/- muscles after acute injury. In contrast, TLR2 ablation in chronically diseased muscles of mdx mice not only resulted in significantly reduced macrophage numbers but additionally modified their phenotype by shifting from inflammatory (iNOS(pos) CD206(neg) ) to more anti-inflammatory (iNOS(neg) CD206(pos) ) characteristics. This decrease in macrophage-mediated inflammation was associated with ameliorated muscle histopathology and improved force-generating capacity of the dystrophic muscle. Our results suggest that the role of TLR2 in macrophage function and skeletal muscle repair depends greatly upon the muscle injury context, and raise the possibility that inhibition of TLR2 could serve as a useful therapeutic measure in DMD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Relationship among the repair mechanisms and the genetic recombination; Relacion entre los mecanismos de reparacion y la recombinacion genetica

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1987-12-15

    In accordance with the previous reports of the Project BZ87 of the Department of Radiobiology, a dependent stimulation of the system exists in E.coli SOS, of the recombination of the bacteriophage Lambda whose genetic material has not been damaged. This stimulation is not due to the increase of the cellular concentration of the protein RecA and the mechanism but probable for which we find that it is carried out, it is through a cooperation among the product of the gene rec N of E. coli and the system Net of recombination of Lambda. The gene recN belongs to the group of genes SOS and its expression is induced when damaging the bacterial DNA where it intervenes in the repair of breaks of the double helix of the molecule (Picksley et, 1984). If the repair of breaks of this type is a factor that limits the speed with which it happens the recombination among viral chromosomes, then the biggest readiness in the protein RecN, due to the induction of the functions SOS, would facilitate the repair of such ruptures. In this new project it is to enlarge the knowledge about this phenomenon, it was, on one hand of corroborating in a way but he/she specifies the relationship between the recombinogenic response of Lambda and the System SOS of E. coli and for the other one to determine the effect that has the inhibition of the duplication of the DNA on the stimulation of the viral recombination. Everything it with the idea of making it but evident and to be able to use it as a system of genotoxic agents detection in E. coli. (Author)

  6. Abstracts of the Conference on Mechanisms of DNA Repair and Mutagenesis on the 100. Anniversary of the Discovery of Polonium and Radium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference covered various aspects of mutagenesis and mechanisms of DNA repair. UV and ionizing radiation were use to induce DNA lesions in bacteria, yeast and cell cultures of higher organisms. This allows study of influence of mutations on particular processes in the cell. Mechanisms of resistance were also investigated. Biological investigations were performed using labelled compounds.

  7. Abstracts of the Conference on Mechanisms of DNA Repair and Mutagenesis on the 100. Anniversary of the Discovery of Polonium and Radium

    International Nuclear Information System (INIS)

    1997-01-01

    The conference covered various aspects of mutagenesis and mechanisms of DNA repair. UV and ionizing radiation were use to induce DNA lesions in bacteria, yeast and cell cultures of higher organisms. This allows study of influence of mutations on particular processes in the cell. Mechanisms of resistance were also investigated. Biological investigations were performed using labelled compounds

  8. Abstracts of the Conference on Mechanisms of DNA Repair and Mutagenesis on the 100. Anniversary of the Discovery of Polonium and Radium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The conference covered various aspects of mutagenesis and mechanisms of DNA repair. UV and ionizing radiation were use to induce DNA lesions in bacteria, yeast and cell cultures of higher organisms. This allows study of influence of mutations on particular processes in the cell. Mechanisms of resistance were also investigated. Biological investigations were performed using labelled compounds.

  9. A cytochemical approach to the wound repair mechanism in udotea petiolata (siphonales)

    International Nuclear Information System (INIS)

    Mariani-Colombo, P.; Vannini, G.L.; Mares, D.

    1980-01-01

    When injured, the thalli of the coenocytic alga Udotea petiolata undergo a rapid sealing process mainly due to the extrusion of two successive plugs. In the first, external and transitory plug, sulphated polysaccharides are the predominant components. In the second, permanent and internal plug, roundish bodies having a complex polysaccharidic composition are embedded in a fibrillar matrix of still unknown nature. The sulphated sugars were identified and located by means of Alcian Blue staining and X-ray microanalysis. A periodic acid-thiocarbohydrazide-silver proteinate technique proved useful especially in the study of the roundish bodies and in the compositional and structural comparison of the siphon wall with the wound wall. Phosphotungstic acid at low pH was used to evidentiate an extensive plasma membrane activity in the repairing cytoplasm. (author)

  10. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance

    DEFF Research Database (Denmark)

    Alvero, Ayesha B; Chen, Rui; Fu, Han-Hsuan

    2009-01-01

    A major burden in the treatment of ovarian cancer is the high percentage of recurrence and chemoresistance. Cancer stem cells (CSCs) provide a reservoir of cells that can self-renew, can maintain the tumor by generating differentiated cells [non-stem cells (non-CSCs)] which make up the bulk...... to form spheroids in suspension, and the ability to recapitulate in vivo the original tumor. Chemotherapy eliminates the bulk of the tumor but it leaves a core of cancer cells with high capacity for repair and renewal. The molecular properties identified in these cells may explain some of the unique...... of the tumor and may be the primary source of recurrence. We describe the characterization of human ovarian cancer stem cells (OCSCs). These cells have a distinctive genetic profile that confers them with the capacity to recapitulate the original tumor, proliferate with chemotherapy, and promote recurrence...

  11. Combined effect of radiation and environmental contaminants on DNA repair mechanisms

    International Nuclear Information System (INIS)

    Altmann, H.

    1975-11-01

    Investigations on the influence of various environmental contamination agents on DNA repair (in combination with irradiation) were reviewed. The agents tested were: detergents (Tween 80, Nonidel P40, Cremophor), aflatoxin B 1 , furocumarines, drugs (indometacin, cyclophosphamide, vincristine, vinblastine, procarbacine), fluorides, irradiated food constituents, food additives (saccharin), metal ions (Cd, Hg), pesticides (2,4,5-trichlorophenoxyethanol) and infective agents (mycoplasmas). Most of the tests were carried out in vitro with γ-irradiated mouse spleen cells. The detergents and aflatoxin were tested also on E. coli, and irradiated glucose solutions were tested in vivo on Swiss albino mice injected with Salmonella typhimurium TA 1530. Most of the tested agents showed some kind of inhibitory or mutagenic effect. The experiments and results are explained briefly with references to earlier investigations

  12. Age influences the skin reaction pattern to mechanical stress and its repair level through skin care products.

    Science.gov (United States)

    Zouboulis, Christos C; Elewa, Rana; Ottaviani, Monica; Fluhr, Joachim; Picardo, Mauro; Bernois, Armand; Heusèle, Catherine; Camera, Emanuela

    2018-03-01

    Skin aging is associated with alterations of surface texture, sebum composition and immune response. Mechanical stress induces repair mechanisms, which may be dependent on the age and quality of the skin. The response to mechanical stress in young and aged individuals, their subjective opinion and the objective effectiveness of skin care products were evaluated by biophysical skin quality parameters (stratum corneum hydration, transepidermal water loss, skin pH, pigmentation and erythema) at baseline, 1, 6, 24h and 7days at the forearms of 2 groups of healthy volunteers, younger than 35 years (n=11) and older than 60 years (n=13). In addition, casual surface lipid composition was studied under the same conditions at the baseline and day 7 after mechanical stress induction. Evaluations were also performed in stressed skin areas treated daily with skin care products and the subjective opinion of the volunteers was additionally documented. The tested groups exhibited age-associated baseline skin functions as well as casual surface lipid composition and different reaction patterns to mechanical stress. Skin care was more effective in normalizing skin reaction to stress in the young than in the aged group. The subjective volunteer opinion correlated with the objective measurements. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    Science.gov (United States)

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  14. Some areas of reliability technique which have been neglected to some extent - maintainability - human reliability - mechanical reliability - repairable systems

    International Nuclear Information System (INIS)

    Akersten, P.A.

    1985-01-01

    The present thesis consists of four papers, three of which are of a expositary nature and one more theoretical. The first two papers have a natural coupling to the man-machine interface. The first paper is devoted to the concept of maintainability and the role of man as maintenance technician. The second paper discusses aspects of human reliability, mainly studying man as operator. However, maintenance tasks can be studied in the same manner. The third paper concerns reliability prediction for mechanical components. This is an area of vital importance for the reliability practitioner, who needs realistic and easy-to-use mathematical models for different failure modes. The fourth paper discusses mathematical models for repairable systems, especially the problem of testing whether a constant event intensity model is adequate or not. (author)

  15. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.

    Science.gov (United States)

    Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin

    2012-06-28

    Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    Science.gov (United States)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  17. Investigations into the influence of therapeutic measures on the repair of spontaneous mechanisms of defence following radiation injury

    International Nuclear Information System (INIS)

    Nothdurft, W.; Fliedner, T.M.; Baltschukat, K.; Kreja, L.; Selig, C.

    1992-01-01

    Investigations into the influence of therapeutic measures on the repair of spontaneous mechanisms of defence following radiation injury. The aim of this project was to develop procedures for the repair of the body's own mechanisms of defence following radiation injury and to test these on the basis of animal models. After consultation of the relevant literature and in vivo experiments as a preliminary to the in vivo studies in dogs, recombinant human colony-stimulating factor rhGM-CSF was chosen from among a series of different cytokinins. The influence of rhGM-CSF on granulocytopoiesis and monocytophoiesis was at first studied in an animal having undisturbed bone marrow function. Treatment with daily doses of 30 μg/kg on five consecutive days led to a markedly pronounced increase of granulocytopoiesis and an only modest increase of the monocyte concentration of the blood. For the studies in irradiated dogs, treatment was carried out over a period of 21 days. Each of 2 dogs received daily doses of 10 μg/kg or 30 μg/kg administered by subcutaneous injection. These were in each case divided into two equal fractions being given in the morning and at night. The results lead to the conclusion that the treatment of irradiated individuals with rhGM-CSF alone (monotherapy) may be expected to have favourable effects in respect of granulocytopoiesis and monocytopoiesis. This appears, however, to hold only for cases where the radiation damage to the bone marrow is not much more pronounced than that from homogeneous wholebody irradiation using doses in the range between 3 and 3.5 Gy. It is still open to discussion, if and to which extent such treatments with rhGM-CSF are associated with untoward effects on certain hematological parameters. (orig./MG) [de

  18. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  19. Mechanism of recombinant human bone morphogenetic protein-2 in repairing hematopoietic injury in mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Liu Shuibing; Hu Peizhen; Hou Ying; Li Xubo; Tian Qiong; Shi Mei

    2009-01-01

    Objective: To investigate the mechanism of recombinant human bone morphogenetic protein-2 (rhBMP-2) in repairing hematopoietic injury in mice irradiated with γ-ray. To prepare SRY gene probe and study the effect of rhBMP-2 in repairing hematopoietic injury in mice by in situ hybridization. Methods: Twenty-two BALB/c female mice were randomly divided into the irradiated group and BMP treated group, respectively. Bone marrow cells of normal male mice were transplanted into 22 female mice post-irradiation to 8.5 Gy of 60 Co γ rays. The left femurs of the survived female mice were re-irradiated with 9 Gy 14 days later. Mice in BMP treated group were given rhBMP-2 20 mg/kg while those in control group were treated with 0.9% saline by intraperitoneal injection every day for 6 days. These mice were killed 14 days later and paraffin sections of femurs were made. The SRY gene was detected with in situ hybridization. Results: There were more positive blots in the left femurs of the mice in irradiated group than those in BMP treated group (T=155.0, P 0.05). The number of positive blots in the left femurs of the mice in BMPtreated group was significantly less than those in the right femurs of the mice in two groups (T=155.0, 55.0, P<0.05). Conclusions: No donor cell of male mice was detected in the left femurs of BMP treated group, suggesting that rhBMP-2 promoted the restoration of residuary bone marrow cells. Thus, rhBMP-2 promotes the proliferation or differentiation of residuary mesenchymal stem cells, improves hematopoietic microenvironment and accelerates the hematopoietic restoration. (authors)

  20. Mechanical stress is associated with right ventricular response to pulmonary valve replacement in patients with repaired tetralogy of Fallot.

    Science.gov (United States)

    Tang, Dalin; Yang, Chun; Del Nido, Pedro J; Zuo, Heng; Rathod, Rahul H; Huang, Xueying; Gooty, Vasu; Tang, Alexander; Billiar, Kristen L; Wu, Zheyang; Geva, Tal

    2016-03-01

    Patients with repaired tetralogy of Fallot account for a substantial proportion of cases with late-onset right ventricular failure. The current surgical approach, which includes pulmonary valve replacement/insertion, has yielded mixed results. Therefore, it may be clinically useful to identify parameters that can be used to predict right ventricular function response to pulmonary valve replacement. Cardiac magnetic resonance data before and 6 months after pulmonary valve replacement were obtained from 16 patients with repaired tetralogy of Fallot (8 male, 8 female; median age, 42.75 years). Right ventricular ejection fraction change from pre- to postpulmonary valve replacement was used as the outcome. The patients were divided into group 1 (n = 8, better outcome) and group 2 (n = 8, worst outcome). Cardiac magnetic resonance-based patient-specific computational right ventricular/left ventricular models were constructed, and right ventricular mechanical stress and strain, wall thickness, curvature, and volumes were obtained for analysis. Our results indicated that right ventricular wall stress was the best single predictor for postpulmonary valve replacement outcome with an area under the receiver operating characteristic curve of 0.819. Mean values of stress, strain, wall thickness, and longitudinal curvature differed significantly between the 2 groups with right ventricular wall stress showing the largest difference. Mean right ventricular stress in group 2 was 103% higher than in group 1. Computational modeling and right ventricular stress may be used as tools to identify right ventricular function response to pulmonary valve replacement. Large-scale clinical studies are needed to validate these preliminary findings. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  1. Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms.

    Directory of Open Access Journals (Sweden)

    Elizabeth D Hutchins

    Full Text Available Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.

  2. Advanced self-healing asphalt composites in the pavement performance field: mechanisms at the nano level and new repairing methodologies.

    Science.gov (United States)

    Agzenai, Yahya; Pozuelo, Javier; Sanz, Javier; Perez, Ignacio; Baselga, Juan

    2015-01-01

    In an effort to give a global view of this field of research, in this mini-review we highlight the most recent publications and patents focusing on modified asphalt pavements that contain certain reinforcing nanoparticles which impart desirable thermal, electrical and mechanical properties. In response to the increasing cost of asphalt binder and road maintenance, there is a need to look for alternative technologies and new asphalt composites, able to self-repair, for preserving and renewing the existing pavements. First, we will focus on the self-healing property of asphalt, the evidences that support that healing takes place immediately after the contact between the faces of a crack, and how the amount of healing can be measured in both the laboratory and the field. Next we review the hypothetical mechanisms of healing to understand the material behaviour and establish models to quantify the damage-healing process. Thereafter, we outline different technologies, nanotechnologies and methodologies used for self-healing paying particular attention to embedded micro-capsules, new nano-materials like carbon nanotubes and nano-fibres, ionomers, and microwave and induction heating processes.

  3. Cetuximab Induces Eme1-Mediated DNA Repair: a Novel Mechanism for Cetuximab Resistance

    OpenAIRE

    Agnieszka Weinandy; Marc D. Piroth; Anand Goswami; Kay Nolte; Bernd Sellhaus; Jose Gerardo-Nava; Michael Eble; Stefan Weinandy; Christian Cornelissen; Hans Clusmann; Bernhard Lüscher; Joachim Weis

    2014-01-01

    Overexpression of the epidermal growth factor receptor (EGFR) is observed in a large number of neoplasms. The monoclonal antibody cetuximab/Erbitux is frequently applied to treat EGFR-expressing tumors. However, the application of cetuximab alone or in combination with radio- and/or chemotherapy often yields only little benefit for patients. In the present study, we describe a mechanism that explains resistance of both tumor cell lines and cultured primary human glioma cells to cetuximab. Tre...

  4. Repair effect of transplantation of bone marrow mesenchymal stem cells on liver injury in severe burned rats and its mechanism

    International Nuclear Information System (INIS)

    Chen Hao; Zhou Yubo; Zhang Ying; Qin Yonggang; Guo Li; Yin Fei; Meng Chunyang; Yang Xiaoyu

    2014-01-01

    Objective: To investigate the repair effect of transplantation of bone marrow mesenchymal stem cells (BMSCs) on liver injury in severe burned rats, and to clarify its mechanism. Methods: The BMSCs of rats were isolated, cultured, amplified, identified, and labeled in vitro. 30 Wistar rats were randomly divided into normal control group (n=10), model group (n=10) and cell therapy group (n=10). The burned rat model was established. The BMSCs labeled by chlormethyl-benzamidodialkylcarbocyanine (CM-Dil) were transplanted into the rats in cell therapy group by retro-orbital intravenous injection and the saline was injected into the rats in model group. The general status of all rats were observed. The liver tissues of rats were obtained 2 weeks after transplantation, and the pathohistological changes were observed and the pathohistological scores were detected; the apoptotic rate of liver cells was detected by TUNEL method; the engraftment of BMSCs in liver tissues of the rats was observed under laser scanning confocal microscope. Results: 2 weeks after transplantation, the rats in model group were obviously malaise dispirited and the rats in cell therapy group showed obviously better, and the body weight of the rats in cell therapy group was higher than that in model group (P<0.05). The pathohistological results showed the normal liver lobules of the rats in model group disappeared, and the liver cords disordered, and some liver sinusoids dilated and congested, lymphocytes infiltrated with occasional focal aggregating, and cell edema was found, cytoplasm loose and steatosis were seen in liver tissue. However, the pathohistological changes of liver tissue of the rats in cell therapy group were significantly better than those in model group. The pathohistological score of the rats in cell therapy group was significantly lower than that in model group (P<0.05). The TUNEL staining results showed that there were lots of apoptotic liver cells in liver tissue of the rats in

  5. Masonry repair lime-based mortars: factors affecting the mechanical behavior

    International Nuclear Information System (INIS)

    Lanas, J.; Alvarez-Galindo, Jose I.

    2003-01-01

    The increasing use of lime-based mortars for the restoration of historic buildings and structures justifies the research on these materials. The focus of this paper is the effect of technological variables on pore structure and mechanical properties of lime-based mortars. The influence of curing time, binder-aggregate (B/Ag) ratio, aggregate attributes and porosity is discussed. Mortars prepared with aerial lime, varying aggregate types and B/Ag ratios ranging from 1:1 to 1:5 by volume were tested. Compressive and flexural strength measurements, as well as X-ray diffraction (XRD) and thermal studies, were performed after 3, 7, 28, 91, 182 and 365 days. A strong increase in strength of mortar mixtures after 365 curing days (as compared to 28 curing days) is found. In spite of the fact that larger amounts of binder increase the total porosity, the strength of these mixtures is also increased. A good interlocked structure is obtained as binder contents increase. Also, higher porosities allow better portlandite carbonation. A relationship between mechanical properties and pore structure was established. However, in case of binder excess, the increase in voids leads to a strength reduction. The use of calcareous aggregates improves strength more as compared to the use of siliceous aggregates. Factors as grain size distribution and grain shape of the aggregates have also been considered

  6. The fluid mechanics of scleral buckling surgery for the repair of retinal detachment.

    Science.gov (United States)

    Foster, William Joseph; Dowla, Nadia; Joshi, Saurabh Y; Nikolaou, Michael

    2010-01-01

    Scleral buckling is a common surgical technique used to treat retinal detachments that involves suturing a radial or circumferential silicone element on the sclera. Although this procedure has been performed since the 1960s, and there is a reasonable experimental model of retinal detachment, there is still debate as to how this surgery facilitates the re-attachment of the retina. Finite element calculations using the COMSOL Multiphysics system are utilized to explain the influence of the scleral buckle on the flow of sub-retinal fluid in a physical model of retinal detachment. We found that, by coupling fluid mechanics with structural mechanics, laminar fluid flow and the Bernoulli effect are necessary for a physically consistent explanation of retinal reattachment. Improved fluid outflow and retinal reattachment are found with low fluid viscosity and rapid eye movements. A simulation of saccadic eye movements was more effective in removing sub-retinal fluid than slower, reading speed, eye movements in removing subretinal fluid. The results of our simulations allow us to explain the physical principles behind scleral buckling surgery and provide insight that can be utilized clinically. In particular, we find that rapid eye movements facilitate more rapid retinal reattachment. This is contradictory to the conventional wisdom of attempting to minimize eye movements.

  7. Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: Mechanical properties and effects on wound repair.

    Science.gov (United States)

    Jin, Sung Giu; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Seo, Youn Gee; Go, Toe Gyung; Youn, Yu Seok; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2016-01-30

    To develop a novel sodium fusidate-loaded triple polymer hydrogel dressing (TPHD), numerious polyvinyl alcohol-based (PVA) hydrogel dressings were prepared with various hydrophilic polymers using the freeze-thaw method, and their hydrogel dressing properties were assessed. Among the hydrophilic polymers tested, sodium alginate (SA) improved the swelling capacity the most, and polyvinyl pyrrolidone (PVP) provided the greatest improvement in bioadhesive stength and mechanical properties. Thus, PVA based-TPHDs were prepared using different ratios of PVP:SA. The effect of selected PVP:SA ratios on the swelling capacity, bioadhesive strength, mechanical properties, and drug release, permeation and deposition characteristics of sodium fusidate-loaded PVA-based TPHDs were assessed. As the ratio of PVP:SA increased in PVA-loaded TPHD, the swelling capacity, mechanical properties, drug release, permeation and deposition were improved. The TPHD containing PVA, PVP, SA and sodium fusidate at the weight ratio of 10/6/1/1 showed excellent hydrogel dressing properties, release, permeation and deposition of drug. Within 24h, 71.8 ± 1.3% of drug was released. It permeated 625.1 ± 81.2 μg/cm(2) through the skin and deposited of 313.8 ± 24.1 μg/cm(2) within 24h. The results of in vivo pharmacodynamic studies showed that sodium fusidate-loaded TPHD was more effective in improving the repair process than was a commercial product. Thus, this sodium fusidate-loaded TPHD could be a novel tool in wound care. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Optimizing the effectiveness of a mechanical suture-based anulus fibrosus repair construct in an acute failure laboratory simulation.

    Science.gov (United States)

    Bartlett, Ashley; Wales, Larry; Houfburg, Rodney; Durfee, William K; Griffith, Steven L; Bentley, Ishmael

    2013-10-01

    In vitro comparative, laboratory experiments. This study developed a laboratory apparatus that measured resistance to failure using pressures similar to intradiscal pressure of a lumbar spinal disk. Various combinations of an anular repair device were compared. Herniated material of the intervertebral disk is removed during a lumbar discectomy; however, the defect in the anulus fibrosus remains and can provide a pathway for future herniation. Repairing the anulus fibrosus could mitigate this reherniation and improve patient outcomes. A pneumatic cylinder was used to increase the pressure of a sealed chamber until artificial nucleus pulposus material was expulsed through either a 3-mm circular (diameter) or a 6-mm slit anular defect created in a surrogate anulus fibrosus. Each unrepaired condition was compared with 3 repaired conditions using a commercially available soft tissue repair system. The repaired conditions included: (1) a single tension band; (2) 2 tension bands in a cruciate pattern; or (3) 2 tension bands in a parallel pattern. Maximum pressure at the point of extrusion of the internal chamber material and failure or nonfailure of the repair was measured. Significant differences were detected (P<0.05) in maximum failure pressures for the nonrepaired (control) versus repaired conditions. With 1 or 2 tension bands repairing the circular defect, the maximum failure pressure increased by approximately 76% and 131%, respectively. In addition, the failure pressure for 2 tension bands in either a cruciate or parallel configuration was not different, and was approximately 32% higher (P<0.05) than a single tension band in the case of the circular defect. Similar results were seen for the slit defect, with the exception that no difference between the repaired conditions (ie, single vs. 2 tension bands) was detected. This laboratory simulation demonstrated that repairing the anulus fibrosus after a discectomy procedure can be beneficial for retaining intradiscal

  9. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms

    Science.gov (United States)

    Nichols, Joi A.; Katiyar, Santosh K.

    2009-01-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including premature aging of the skin and melanoma and nonmelanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc.. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse, or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress, and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models, suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage. PMID:19898857

  10. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms.

    Science.gov (United States)

    Nichols, Joi A; Katiyar, Santosh K

    2010-03-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.

  11. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.

    Science.gov (United States)

    Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E

    2016-07-01

    The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.

  12. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  13. Radiobiological significance of DNA repair

    International Nuclear Information System (INIS)

    Kuzin, A.M.

    1978-01-01

    A short outline is given on the history of the problem relating to the repair of radiation injuries, specifically its molecular mechanisms. The most urgent problems which currently confront the researchers are noted. This is a further study on the role of DNA repair in post-radiation recovery, search for ways to activate and suppress DNA repair, investigations into the activity balance of various repair enzymes as well as the problem of errors in the structure of repairing DNA. An important role is attached to the investigations of DNA repair in solving a number of practical problems

  14. Cellular heredity in haploid cultures of somatic cells. Progress report, August 1977--August 1978. [Role of DNA repair mechanisms in uv mutagenesis in cultured frog and fish cells

    Energy Technology Data Exchange (ETDEWEB)

    Freed, J.J.

    1978-09-01

    Studies in progress on cultured frog and fish cells, exploring the relation between the frequency of mutation after ultraviolet irradiation and the pathway through which DNA repair takes place are reported. The rationale is that the mutation frequency induced by a uv exposure is determined not only by the dose delivered but by the fidelity of the DNA repair process. Since frog cells express photoreversal enzyme, whether repair takes place by error-free photoreversal or by other, error-prone, mechanisms can be determined experimentally. An important question is whether an inducible, error-prone mutagenic form of repair is demonstrable. During the past year, methods necessary to determine uv survival and mutation frequency over a range of uv exposures were worked out. Using these methods, we have tested for alteration of the uv survival curve by previous conditioning exposures in frog cells was studied and uv survival and photoreversal capacity in fish cells were determined. The relation between uv survival and induction of ouabain resistance by an alkylating agent (MNNG) was examined as a background for further studies with uv. A procedure intended to accomplish DNA-mediated transfer of frog DNA photolyase enzyme to Chinese hamster cells is described.

  15. Repair and mechanical service of the Ministry of the Oil Refining and Petrochemical Industry of the USSR and the basic trends in its development. Remontno-mekhanicheskaya sluzhba ministerstva neftepererabatyvayushchey i neftekhimicheskoy promyshlennosti SSSR i osnovnyye napravleniya eye razvitiya

    Energy Technology Data Exchange (ETDEWEB)

    Durov, V.S.; Tikhomirov, A.A.

    1983-01-01

    The review gives a characterization of the repair service in the oil refining and petrochemical industry, shows the achieved level of centralization and specialization in repair operations in conditions of intrafactory centralization, the creation of branch specialized contractor organizations, the improvements in the organization of planning for repair operations and the use of systems of low mechanization in repairs. The significance is shown of the system of technical reviews in the increase in the reliability of the operation of equipment, materials are correlated about corrosion and the problem of combatting it in the operation of equipment, the elimination of vibration of pipeline connections and modernization of piston compressors in order to shift them to operations without lubricants. The progressive role of the subbranch institutes in the issues of raising the effectiveness of repair and the directions in their operation and ways for further improving the repair service are examined.

  16. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-10-01

    Full Text Available We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement. The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.

  17. Concepts, problems and the role of modifying agents in the relationship between recovery of cells' survival ability and mechanisms of repair of radiation lesions

    International Nuclear Information System (INIS)

    Orr, J.S.

    1984-01-01

    The two strands of the problem are the shapes and changes with time of cell survival curves on the one hand and the responses of cell constituents to radiation on the other. Evidence of correlations between results of studies of these two types of phenomena under the influence of a wide range of modifying agents is required to establish mechanisms. Recovery may be defined as referring to the whole cell, while repair should be regarded as a process carried out by one substance on another. The degrees of usefulness and possible deficiencies of a multi-hit/target model and a repair model for explaining cell survival curves and cell recovery are compared in a range of circumstances. A fully satisfactory model is not yet available. (author)

  18. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  19. Evidence for repair of ultraviolet light-damaged herpes virus in human fibroblasts by a recombination mechanism

    International Nuclear Information System (INIS)

    Hall, J.D.; Featherston, J.D.; Almy, R.E.

    1980-01-01

    Human cells were either singly or multiply infected with herpes simplex virus (HSV-1) damaged by ultraviolet (uv) light, and the fraction of cells able to produce infectious virus was measured. The fraction of virus-producing cells was considerably greater for multiply infected cells than for singly infected cells at each uv dose examined. These high survival levels of uv-irradiated virus in multiply infected cells demonstrated that multiplicity-dependent repair, possibly due to genetic exchanges between damaged HSV-1 genomes, was occurring in these cells. To test whether uv light is recombinogenic for HSV-1, the effect of uv irradiation on the yield of temperature-resistant viral recombinants in cells infected with pairs of temperature-sensitive mutants was also investigated. The results of these experiments showed that the defective functions in these mutant host cells are not required for multiplicity-dependent repair or uv-stimulated viral recombination in herpes-infected cells

  20. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    Directory of Open Access Journals (Sweden)

    Santosh K Katiyar

    Full Text Available Solar ultraviolet (UV radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum, inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

  1. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  2. Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei-Implications for comparative studies

    DEFF Research Database (Denmark)

    Akbari, Mansour; Krokan, Hans E

    2012-01-01

    The base excision repair (BER) pathway corrects many different DNA base lesions and is important for genomic stability. The mechanism of BER cannot easily be investigated in intact cells and therefore in vitro methods that reflect the in vivo processes are in high demand. Reconstitution of BER...... using purified proteins essentially mirror properties of the proteins used, and does not necessarily reflect the mechanism as it occurs in the cell. Nuclear extracts from cultured cells have the capacity to carry out complete BER and can give important information on the mechanism. Furthermore......, candidate proteins in extracts can be inhibited or depleted in a controlled way, making defined extracts an important source for mechanistic studies. The major drawback is that there is no standardized method of preparing nuclear extract for BER studies, and it does not appear to be a topic given much...

  3. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  5. CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans".

    Science.gov (United States)

    Turcotte, Carolyn A; Andrews, Nicolas P; Sloat, Solomon A; Checchi, Paula M

    2016-11-01

    The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion. Copyright © 2016 by the Genetics Society of America.

  6. An alternative mechanism for radioprotection by dimethyl sulfoxide. Possible facilitation of DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, id est (i.e.), 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in Chinese hamster ovary (CHO), but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action. (author)

  7. An alternative mechanism for radioprotection by dimethyl sulfoxide; possible facilitation of DNA double-strand break repair.

    Science.gov (United States)

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, i.e., 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in CHO, but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action.

  8. PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors.

    Directory of Open Access Journals (Sweden)

    Hiroto Iwasaki

    Full Text Available Despite preclinical success in regenerating and revascularizing the infarcted heart using angiogenic growth factors or bone marrow (BM cells, recent clinical trials have revealed less benefit from these therapies than expected.We explored the therapeutic potential of myocardial gene therapy of placental growth factor (PlGF, a VEGF-related angiogenic growth factor, with progenitor-mobilizing activity.Myocardial PlGF gene therapy improves cardiac performance after myocardial infarction, by inducing cardiac repair and reparative myoangiogenesis, via upregulation of paracrine anti-apoptotic and angiogenic factors. In addition, PlGF therapy stimulated Sca-1(+/Lin(- (SL BM progenitor proliferation, enhanced their mobilization into peripheral blood, and promoted their recruitment into the peri-infarct borders. Moreover, PlGF enhanced endothelial progenitor colony formation of BM-derived SL cells, and induced a phenotypic switch of BM-SL cells, recruited in the infarct, to the endothelial, smooth muscle and cardiomyocyte lineage.Such pleiotropic effects of PlGF on cardiac repair and regeneration offer novel opportunities in the treatment of ischemic heart disease.

  9. Retinal pigment epithelial cell multinucleation in the aging eye - a mechanism to repair damage and maintain homoeostasis.

    Science.gov (United States)

    Chen, Mei; Rajapakse, Dinusha; Fraczek, Monika; Luo, Chang; Forrester, John V; Xu, Heping

    2016-06-01

    Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age-related retinal degenerative disorders particularly age-related macular degeneration. During aging RPE cells decline in number, suggesting an age-dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose-dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted 'postmitotic' status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long-standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age-related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal stem cells in cardiac repair mechanisms.

    Science.gov (United States)

    Di Silvestre, Dario; Brambilla, Francesca; Scardoni, Giovanni; Brunetti, Pietro; Motta, Sara; Matteucci, Marco; Laudanna, Carlo; Recchia, Fabio A; Lionetti, Vincenzo; Mauri, Pierluigi

    2017-05-01

    We have demonstrated that intramyocardial delivery of human mesenchymal stem cells preconditioned with a hyaluronan mixed ester of butyric and retinoic acid (MSCp + ) is more effective in preventing the decay of regional myocardial contractility in a swine model of myocardial infarction (MI). However, the understanding of the role of MSCp + in proteomic remodeling of cardiac infarcted tissue is not complete. We therefore sought to perform a comprehensive analysis of the proteome of infarct remote (RZ) and border zone (BZ) of pigs treated with MSCp + or unconditioned stem cells. Heart tissues were analyzed by MudPIT and differentially expressed proteins were selected by a label-free approach based on spectral counting. Protein profiles were evaluated by using PPI networks and their topological analysis. The proteomic remodeling was largely prevented in MSCp + group. Extracellular proteins involved in fibrosis were down-regulated, while energetic pathways were globally up-regulated. Cardioprotectant pathways involved in the production of keto acid metabolites were also activated. Additionally, we found that new hub proteins support the cardioprotective phenotype characterizing the left ventricular BZ treated with MSCp + . In fact, the up-regulation of angiogenic proteins NCL and RAC1 can be explained by the increase of capillary density induced by MSCp + . Our results show that angiogenic pathways appear to be uniquely positioned to integrate signaling with energetic pathways involving cardiac repair. Our findings prompt the use of proteomics-based network analysis to optimize new approaches preventing the post-ischemic proteomic remodeling that may underlie the limited self-repair ability of adult heart. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Improved mechanical properties of Ni-rich Ni3Al coatings produced by EB-PVD for repairing single crystal blades

    Institute of Scientific and Technical Information of China (English)

    Jing-Yong Sun; Yan-Ling Pei; Shu-Suo Li; Hu Zhang; Sheng-Kai Gong

    2017-01-01

    Active control of turbine blade tip clearance for aircraft engine continues to be a concern in engine operation,because turbine blades are subjected to wear and therefore cause an increasing tip clearance between the rotating blades and the shroud and also reduce the engine efficiency.In this work,a Ni-rich Ni3Al coating with γ'/γtwo-phase microstructure was deposited by electron beam physical vapor deposition (EB-PVD),which worked as repairing the worn blade tips of single crystal blades.Nb molten pool was used to increase the molten pool temperature and thus to enhance the deposition rate.The microstructures and mechanical properties can be modified by the deposition temperatures and the following heat treatments.All coatings consist of γ'and γ phases.At deposition temperature of 600 ℃,a dense microstructure can be achieved to produce a coating with grain size of ~ 1 μm and microhardness of ~HV 477.After being heated for 4 h at a temperature of 1,100 ℃,the coatings have a more uniform microstructure,and microhardness maintains at a high level of ~ HV 292.Effect of Hf and Zr on EB-PVD Ni3Al repair coating will be further investigated.

  12. Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei—Implications for comparative studies

    International Nuclear Information System (INIS)

    Akbari, Mansour; Krokan, Hans E.

    2012-01-01

    Highlights: • We examine effect of volume of extraction buffer relative to volume of isolated nuclei on repair activity of nuclear extract. • Base excision repair activity of nuclear extracts prepared from the same batch and number of nuclei varies inversely with the volume of nuclear extraction buffer. • Effect of the volume of extraction buffer on BER activity of nuclear extracts can only be partially reversed after concentration of the more diluted extract by ultrafiltration. - Abstract: The base excision repair (BER) pathway corrects many different DNA base lesions and is important for genomic stability. The mechanism of BER cannot easily be investigated in intact cells and therefore in vitro methods that reflect the in vivo processes are in high demand. Reconstitution of BER using purified proteins essentially mirror properties of the proteins used, and does not necessarily reflect the mechanism as it occurs in the cell. Nuclear extracts from cultured cells have the capacity to carry out complete BER and can give important information on the mechanism. Furthermore, candidate proteins in extracts can be inhibited or depleted in a controlled way, making defined extracts an important source for mechanistic studies. The major drawback is that there is no standardized method of preparing nuclear extract for BER studies, and it does not appear to be a topic given much attention. Here we have examined BER activity of nuclear cell extracts from HeLa cells, using as substrate a circular DNA molecule with either uracil or an AP-site in a defined position. We show that BER activity of nuclear extracts from the same batch of cells varies inversely with the volume of nuclear extraction buffer relative to nuclei volume, in spite of identical protein concentrations in the BER assay mixture. Surprisingly, the uracil–DNA glycosylase activity (mainly UNG2), but not amount of UNG2, also correlated negatively with the volume of extraction buffer. These studies demonstrate

  13. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  14. [Arterial repair after mechanical injury by migrating fourth-stage larvae of Strongylus vulgaris in the horse (a light and electron microscopic study) (author's transl)].

    Science.gov (United States)

    Pauli, B; Althaus, S; Von Tscharner, C

    1975-08-01

    Migrating fourth-stage larvae of Strongylus vulgaris, a parasite of equines, damage the intima of the anterior mesenteric artery and its larger branches and induce thrombus formation on the injured sites. As the time of larval passage through each of these branches has been exactly determined in earlier experiments, the aim of the present studies is to contribute to a more complete understanding of repair mechanisms in the process of time after thrombotic vascular injuries. five foals were separated individually to specially cleaned stables and given anthelmintic treatment till the age of one year. One foal was infected per os with 350, the second with 500 and the remaining three with 1,000 third-stage larvae of Strongylus vulgaris...

  15. Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy

    NARCIS (Netherlands)

    Snedeker, J.G.; Foolen, J.

    2017-01-01

    Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that tendon tissues bear. These mechanical demands also lie beneath high clinical rates of

  16. Mechanisms of Left Ventricular Dysfunction Assessed by Layer-Specific Strain Analysis in Patients With Repaired Tetralogy of Fallot.

    Science.gov (United States)

    Yamada, Mariko; Takahashi, Ken; Kobayashi, Maki; Yazaki, Kana; Takayasu, Hirobumi; Akimoto, Katsumi; Kishiro, Masahiko; Inage, Akio; Yoshikawa, Tadahiro; Park, In-Sam; Nakanishi, Keisuke; Kawasaki, Shiori; Shimizu, Toshiaki

    2017-05-25

    Left ventricular (LV) dysfunction in patients with repaired tetralogy of Fallot (rTOF) is an important risk factor for adverse outcomes. The aim of this study was to assess the details and time course of such LV dysfunction using layer-specific strain analysis by echocardiography.Methods and Results:The 66 patients with rTOF (mean age, 16.3±9.3 years) were divided into 3 groups (T1: 4-10 years, T2: 11-20 years, T3: 21-43 years), and 113 controls of similar age (mean age, 17.2±9.3 years) were divided into 3 corresponding groups (C1, C2, and C3). Layer-specific longitudinal strain (LS) and circumferential strain (CS) of 3 myocardial layers (endocardial, midmyocardial, and epicardial) were determined by echocardiography. Basal and papillary endocardial CS values were decreased in T1 compared with C1. With the exception of papillary epicardial CS, basal/papillary CS and LS of all 3 layers decreased in T2 compared with C2. Excepting papillary epicardial CS, all other values were decreased in T3 compared with C3. Potential myocardial damage was found in the endocardium at the basal and papillary levels of the LV in young patients with rTOF, extending from the endocardium to the epicardium and from the base to the apex. This is the possible time course of LV dysfunction in patients with rTOF.

  17. Mechanism of radiation tolerance in higher plants. Radiation damage of DNA in cultured tobacco BY-2 cells and implication from its repair process

    International Nuclear Information System (INIS)

    Yokota, Yuichiro; Narumi, Issay; Funayama, Tomoo; Kobayashi, Yasuhiko; Tanaka, Jun; Inoue, Masayoshi

    2007-01-01

    This paper describes the mechanism of radiation tolerance at the cellular level in higher plants, of which fundamental study basis is rather poor, in cultured cells in the title (BY-2 cells, Nicotiana tabacum L., allotetraploid). When compared with LD 50 of radiation in higher animals (2.4-8.6 Gy), higher plants are generally tolerant to radiation (known LD 50 , >360-2000 Gy). Authors have made unicellular BY-2 cells (protoplasts) by enzyme treatment to see their colony forming ability (CFA) and have found those cells are also resistant to radiation: D 10 (10% CFA dose) (Gy) is found to be 8.2-47.2 by radiation with various linear energy transfer (LET)s like gamma ray and heavy ion beams, in contrast to human D 10 (1.17-8.12, by X-ray and carbon beam). Double strand break (DSB) of DNA by radiation per one BY-2 cell initially occurs 7-10 times more frequently than mammalian cells (CHO-K1). However, DSB repair in BY-2 cells is found only as efficient as in mammalian cells: a slow repair relative to DSB number. Checkpoint mechanism of DNA damage is found poorly working in BY-cells, which results in frequent chromosome aberration like micronucleus. Authors consider that, for an herbaceous plant, to precede the cell cycle rather than to recover from the genomic instability can be profitable for growing more rapidly to have more sunlight energy than other individuals. Improvement of plants by gene technological approach with such a mean as mutation by radiation is conceivably important from aspects of food supply and of ecological environment. (R.T.)

  18. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid

    International Nuclear Information System (INIS)

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun; Ren, Li

    2015-01-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)–citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col–CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS = 60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30 ± 5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin–eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col–CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. - Highlights: • Adding different amounts of citric acid could change the properties of films. • The crosslinked films had better mechanical property than non-modified films. • Crosslinked collagen–citric acid films could tolerate suture during operation. • The films showed good ability of epithelial and stromal repair

  19. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xuan; Liu, Yang; Li, Weichang; Long, Kai; Wang, Lin; Liu, Sa; Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou (China)

    2015-10-01

    Corneal disease can lead to vision loss. It has become the second greatest cause of blindness in the world, and keratoplasty is considered as an effective treatment method. This paper presents the crosslinked collagen (Col)–citric acid (CA) films developed by making use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The results showed that the Col–CA films had necessary optical performance, water content. The collagenase resistance of CA crosslinked films was superior to that of EDC crosslinked films. And CA5 film (Col:CA:EDC:NHS = 60:3:10:10) had the best mechanical properties. Cell experiments showed that CA5 film was non-cytotoxic and human corneal epithelial cells could proliferate well on the films. Lamellar keratoplasty showed that the CA5 film could be sutured in the rabbit eyes and was epithelialized completely in about 10 days, and the transparency was restored quickly in 30 ± 5 days. No inflammation and corneal neovascularization were observed at 6 months. Corneal stroma had been repaired; stromal cells and neo-stroma could be seen in the area of operation from the hematoxylin–eosin stained histologic sections and anterior segment optical coherence tomography images. These results indicated that Col–CA films were highly promising biomaterials that could be used in corneal tissue engineering and a variety of other tissue engineering applications. - Highlights: • Adding different amounts of citric acid could change the properties of films. • The crosslinked films had better mechanical property than non-modified films. • Crosslinked collagen–citric acid films could tolerate suture during operation. • The films showed good ability of epithelial and stromal repair.

  20. Meningocele repair

    Science.gov (United States)

    ... is surgery to repair birth defects of the spine and spinal membranes. Meningocele and myelomeningocele ... is covered by a sterile dressing. Your child may then be transferred to a neonatal intensive ...

  1. Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with repaired Tetralogy of Fallot: a cross-sectional study.

    Science.gov (United States)

    Haggerty, Christopher M; Suever, Jonathan D; Pulenthiran, Arichanah; Mejia-Spiegeler, Abba; Wehner, Gregory J; Jing, Linyuan; Charnigo, Richard J; Fornwalt, Brandon K; Fogel, Mark A

    2017-12-11

    Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. Patients with TOF were evaluated with cardiac magnetic resonance in which modified Look-Locker (MOLLI) T1-mapping and spiral cine Displacement encoding (DENSE) sequences were acquired at three LV short-axis positions. Linear mixed modeling was used to define the association between regional LV mechanics from DENSE based on regional T1-derived diffuse fibrosis measures, such as extracellular volume fraction (ECV). Forty patients (26 ± 11 years) were included. LV ECV was generally within normal range (0.24 ± 0.05). For LV mechanics, peak circumferential strains (-15 ± 3%) and dyssynchrony indices (16 ± 8 ms) were moderately impaired, while peak radial strains (29 ± 8%) were generally normal. After adjusting for patient age, sex, and regional LV differences, ECV was associated with log-adjusted LV dyssynchrony index (β = 0.67) and peak LV radial strain (β = -0.36), but not LV circumferential strain. Moreover, post-contrast T1 was associated with log-adjusted LV diastolic circumferential strain rate (β = 0.37). We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.

  2. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  3. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  4. Recent advances in DNA repair and recombination.

    Science.gov (United States)

    Iwanejko, L A; Jones, N J

    1998-09-11

    The subjects of the talks at this 1-day DNA Repair Network meeting, held at City University, London on December 15, 1997, encompassed a range of topics and reflected some of the current areas of research in the United Kingdom. Topics included DNA double-strand break repair, V(D)J recombination, DNA ligases, the RecQ family of helicases and Bloom's syndrome, UVB and immunosuppression, the repair of oxidative damage and mismatch repair mechanisms.

  5. Measures and mechanisms of common ground: backchannels, conversational repair, and interactive alignmentin free and task-oriented social interactions

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Tylén, Kristian; Madsen, Katrine Garly

    A crucial aspect of everyday conversational interactions is our ability to establish and maintain common ground. Understanding the relevant mechanisms involved in such social coordination remains an important challenge for cognitive science. While common ground is often discussed in very general ...

  6. Meniscal repair devices.

    Science.gov (United States)

    Barber, F A; Herbert, M A

    2000-09-01

    Meniscal repair devices not requiring accessory incisions are attractive. Many factors contribute to their clinical effectiveness including their biomechanical characteristics. This study compared several new meniscal repair devices with standard meniscal suture techniques. Using a porcine model, axis-of-insertion loads were applied to various meniscal sutures and repair devices. A single device or stitch was placed in a created meniscal tear and a load applied. Both loads and modes of failure were recorded. The load-to-failure data show stratification into 4 distinct statistical groups. Group A, 113 N for a double vertical stitch; group B, 80 N for a single vertical stitch; group C, 57 N for the BioStinger, 56 N for a horizontal mattress stitch, and 50 N for the T-Fix stitch; and group D, 33 N for the Meniscus Arrow (inserted by hand or gun), 32 N for the Clearfix screw, 31 N for the SDsorb staple, 30 N for the Mitek meniscal repair system, and 27 N for the Biomet staple. The failure mechanism varied. Sutures broke away from the knot. The Meniscus Arrow and BioStinger pulled through the inner rim with the crossbar intact. The Clearfix screw failed by multiple mechanisms, whereas 1 leg of the SDsorb staple always pulled out of the outer rim. The Mitek device usually failed by pullout from the inner rim. The Biomet staple always broke at the crosshead or just below it. Although the surgeon should be aware of the material properties of the repair technique chosen for a meniscal repair, this information is only an indication of device performance and may not correlate with clinical healing results.

  7. Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment

    International Nuclear Information System (INIS)

    Hashimoto, Masami; Takadama, Hiroaki; Mizuno, Mineo; Kokubo, Tadashi

    2006-01-01

    Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO 2 particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO 2 particles. The interfacial morphology and interaction between silanated TiO 2 and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO 2 was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO 2 particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure

  8. Radiation damage and its repair in non-sporulating bacteria

    International Nuclear Information System (INIS)

    Moseley, B.E.B.

    1984-01-01

    A review is given of radiation damage and its repair in non-sporulating bacteria. The identification and measurement of radiation damage in the DNA of the bacteria after exposure to ultraviolet radiation and ionizing radiation is described. Measuring the extent of DNA repair and ways of isolating repair mutants are also described. The DNA repair mechanisms for UV-induced damage are discussed including photoreactivation repair, excision repair, post-replication recombination repair and induced error-prone repair. The DNA repair mechanisms for ionizing radiation damage are also discussed including the repair of both single and double-strand breaks. Other aspects discussed include the effects of growth, irradiation medium and recovery medium on survival, DNA repair in humans, the commercial use of UV and ionizing radiations and the future of ionizing irradiation as a food treatment process. (U.K.)

  9. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms.

    Science.gov (United States)

    Athanasopoulos, Athanasios N; Economopoulou, Matina; Orlova, Valeria V; Sobke, Astrid; Schneider, Darius; Weber, Holger; Augustin, Hellmut G; Eming, Sabine A; Schubert, Uwe; Linn, Thomas; Nawroth, Peter P; Hussain, Muzaffar; Hammes, Hans-Peter; Herrmann, Mathias; Preissner, Klaus T; Chavakis, Triantafyllos

    2006-04-01

    Staphylococcus aureus is a major human pathogen interfering with host-cell functions. Impaired wound healing is often observed in S aureus-infected wounds, yet, the underlying mechanisms are poorly defined. Here, we identify the extracellular adherence protein (Eap) of S aureus to be responsible for impaired wound healing. In a mouse wound-healing model wound closure was inhibited in the presence of wild-type S aureus and this effect was reversible when the wounds were incubated with an isogenic Eap-deficient strain. Isolated Eap also delayed wound closure. In the presence of Eap, recruitment of inflammatory cells to the wound site as well as neovascularization of the wound were prevented. In vitro, Eap significantly reduced intercellular adhesion molecule 1 (ICAM-1)-dependent leukocyte-endothelial interactions and diminished the consequent activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB) in leukocytes associated with a decrease in expression of tissue factor. Moreover, Eap blocked alphav-integrin-mediated endothelial-cell migration and capillary tube formation, and neovascularization in matrigels in vivo. Collectively, the potent anti-inflammatory and antiangiogenic properties of Eap provide an underlying mechanism that may explain the impaired wound healing in S aureus-infected wounds. Eap may also serve as a lead compound for new anti-inflammatory and antiangiogenic therapies in several pathologies.

  10. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  11. The roles of different excision-repair mechanisms in the resistance of Micrococcus luteus to UV and chemical mutagens

    International Nuclear Information System (INIS)

    Tao, Kazuyuki; Noda, Asao; Yonei, Shuji

    1987-01-01

    M. luteus mutants showing increased sensitivity to both UV and 4-NQO were isolated after the treatment of parental ATCC4698 strain with MNNG. The mutants were also highly sensitive to mitomycin C, cis-platinum, 8-methoxypsoralen (8-MOP) plus near-UV and angelicin plus near-UV in various degrees. With regard to host-cell reactivation ability the mutants fell into two groups. The hcr - mutants lacked the ability to reactivate UV-damaged N6 phage and were resistant to X-rays. The incision of DNA did not occur during incubation after the treatment with angelicin plus near-UV in the hcr - mutants, whereas it occurred in the parental strain. The facts indicate that the hcr - mutants are defective in the incision mechanism which has a wide substrate specificity, similar to the UVRABC nuclease of E. coli. On the other hand, the incision of DNA and the removal of UV-induced thymine dimers from DNA occurred in the hcr - mutants as well as in the parental strain, which is ascribed to the UV endonuclease activity. (Auth.)

  12. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    International Nuclear Information System (INIS)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by γH 2 AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual γH2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2

  13. Handbook of Equipment Repair.

    Science.gov (United States)

    1981-05-14

    state of leapin- fn’rw.rd. Tn recent years, many mechanical repair workers often write and ask us to reprint the book. In our consideration, however...ast 4iron 1. .-eat _--OSIS-RTS 5.5 . . 4-5 t4- cast -3.01 -6 ~.0 ’ ɘ.᝱ 5,,:e j?24 2 * 10- 5 aron C l 50 S lcon : Ielt rSSIS-RQTS-s;.4 u a 2.47 5at- .0

  14. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R [ORNL; Peter, William H [ORNL

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  15. DNA Damage Induced by Alkylating Agents and Repair Pathways

    OpenAIRE

    Natsuko Kondo; Akihisa Takahashi; Koji Ono; Takeo Ohnishi

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O 6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O 6-methylguanine-DNA methyltransferase, and O 6MeG:T mispairs are recognized...

  16. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells

    Directory of Open Access Journals (Sweden)

    Margie eCastillo-Melendez

    2013-10-01

    Full Text Available In the research, clinical and wider community there is great interest in the use of stem cells to reduce the progression, or indeed repair brain injury. Perinatal brain injury may result from acute or chronic insults sustained during fetal development, during the process of birth, or in the newborn period. The most readily identifiable outcome of perinatal brain injury is cerebral palsy, however this is just one consequence in a spectrum of mild to severe neurological deficits. As we review, there are now clinical trials taking place worldwide targeting cerebral palsy with stem cell therapies. It will likely be many years before strong evidence-based results emerge from these trials. With such trials underway, it is both appropriate and timely to address the physiological basis for the efficacy of stem-like cells in preventing damage to, or regenerating, the newborn brain. Appropriate experimental animal models are best placed to deliver this information. Cell availability, the potential for immunological rejection, ethical and logistical considerations, together with the propensity for native cells to form terratomas, make it unlikely that embryonic or fetal stem cells will be practical. Fortunately, these issues do not pertain to the use of human amnion epithelial cells (hAECs, or umbilical cord blood (UCB stem cells that are readily and economically obtained from the placenta and umbilical cord discarded at birth. These cells have the potential for transplantation to the newborn where brain injury is diagnosed or even suspected. We will explore the novel characteristics of hAECs and undifferentiated UCB cells, as well as UCB-derived endothelial progenitor cells and mesenchymal stem cells, and how immunomodulation and anti-inflammatory properties are principal mechanisms of action that are common to these cells, and which in turn may ameliorate the cerebral hypoxia and inflammation that are final pathways in the pathogenesis of perinatal brain

  17. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair.

    Science.gov (United States)

    Warbrick, E; Lane, D P; Glover, D M; Cox, L S

    1997-05-15

    Following genomic damage, the cessation of DNA replication is co-ordinated with onset of DNA repair; this co-ordination is essential to avoid mutation and genomic instability. To investigate these phenomena, we have analysed proteins that interact with PCNA, which is required for both DNA replication and repair. One such protein is p21Cip1, which inhibits DNA replication through its interaction with PCNA, while allowing repair to continue. We have identified an interaction between PCNA and the structure specific nuclease, Fen1, which is involved in DNA replication. Deletion analysis suggests that p21Cip1 and Fen1 bind to the same region of PCNA. Within Fen1 and its homologues a small region (10 amino acids) is sufficient for PCNA binding, which contains an 8 amino acid conserved PCNA-binding motif. This motif shares critical residues with the PCNA-binding region of p21Cip1. A PCNA binding peptide from p21Cip1 competes with Fen1 peptides for binding to PCNA, disrupts the Fen1-PCNA complex in replicating cell extracts, and concomitantly inhibits DNA synthesis. Competition between homologous regions of Fen1 and p21Cip1 for binding to the same site on PCNA may provide a mechanism to co-ordinate the functions of PCNA in DNA replication and repair.

  18. Canadian company innovates dam repair

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Successful repair without any downtime, of the Sabana Yegua power and irrigation structure in the western Dominican Republic by Aquatic Sciences Ltd., a St. Catherine, Ontario-based underwater specialist company, is discussed. The structure was damaged by Hurricane George last when when rising water levels damaged a major valve in the control gate chamber. The repair strategy designed by Aquatic Sciences used a remotely operated vehicle with a mechanical arm for minor tasks which placed a specially-made plug into the inlet pipe. The work was completed in one week, saving the utility company a great deal of money by making it possible to make the repairs remotely in the gate chamber without having to drain the tunnel, as would have been necessary had the repair been completed manually. The remotely operated vehicles use a scanning sonar as well as light to find their way. They are particularly well adapted to work underwater under low-visibility conditions

  19. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  20. DNA repair in Mycobacterium tuberculosis revisited.

    Science.gov (United States)

    Dos Vultos, Tiago; Mestre, Olga; Tonjum, Tone; Gicquel, Brigitte

    2009-05-01

    Our understanding of Mycobacterium tuberculosis DNA repair mechanisms is still poor compared with that of other bacterial organisms. However, the publication of the first complete M. tuberculosis genome sequence 10 years ago boosted the study of DNA repair systems in this organism. A first step in the elucidation of M. tuberculosis DNA repair mechanisms was taken by Mizrahi and Andersen, who identified homologs of genes involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes required for nucleotide excision repair, base excision repair, recombination, and SOS repair and mutagenesis were identified. Notably, no homologs of genes involved in mismatch repair were identified. Novel characteristics of the M. tuberculosis DNA repair machinery have been found over the last decade, such as nonhomologous end joining, the presence of Mpg, ERCC3 and Hlr - proteins previously presumed to be produced exclusively in mammalian cells - and the recently discovered bifunctional dCTP deaminase:dUTPase. The study of these systems is important to develop therapeutic agents that can counteract M. tuberculosis evolutionary changes and to prevent adaptive events resulting in antibiotic resistance. This review summarizes our current understanding of the M. tuberculosis DNA repair system.

  1. Underwater coating repair cuts nuclear maintenance costs

    International Nuclear Information System (INIS)

    Stuart, C.O.

    1993-01-01

    This article discusses the cleaning and recoating/repair of condensate tanks or other vessels in a nuclear power plant. The topics of the article include the safety and regulatory need for this system of repair, a description of the work done on the Brown's Ferry MK-1 suppression chamber, coating failure mechanisms, qualitative inspection, quantitative inspection, quantitative inspection results, spot repairs, and economic considerations

  2. Endogenous DNA Damage and Repair Enzymes

    Directory of Open Access Journals (Sweden)

    Arne Klungland

    2016-06-01

    Full Text Available Tomas Lindahl completed his medical studies at Karolinska Institute in 1970. Yet, his work has always been dedicated to unraveling fundamental mechanisms of DNA decay and DNA repair. His research is characterized with groundbreaking discoveries on the instability of our genome, the identification of novel DNA repair activities, the characterization of DNA repair pathways, and the association to diseases, throughout his 40 years of scientific career.

  3. Improvement of adhesion performance of mortar-repair interface with inducing crack path into repair

    Directory of Open Access Journals (Sweden)

    A. Satoh

    2015-10-01

    Full Text Available The most important performance for repair materials is adhesion to the substrate. The authors experimentally find out that high modulus fine aggregates in repair material enhance strength of it as well as the strength of the interface repaired with it, compared to the ordinary repair without fine aggregates. This paper elaborates the mechanisms for that with fractographic observation and FEM analysis based on the results of experiment. Also the authors discuss the ways for enhancing the strength and ductility of the repaired mortar

  4. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA......, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M...

  5. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  6. Studies on maternal repair in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mendelson, D.

    1976-01-01

    The work reported in this thesis is mainly concerned with studies on the nature of the repair mechanism(s) operating in Drosophila oocytes, and which act on chromosome damage induced by X-irradiation of post-meiotic male germ-cells. Caffeine treatment of the females has been used as an analytical tool to gain an insight into the nature of this repair mechanism and its genetic basis

  7. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    Britt, A.B.

    1996-01-01

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  8. Stripped-down DNA repair in a highly reduced parasite

    Directory of Open Access Journals (Sweden)

    Fast Naomi M

    2007-03-01

    Full Text Available Abstract Background Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair. DNA repair is essential to any living cell. A loss of these mechanisms invariably results in accumulation of mutations and/or cell death. Six major pathways of DNA repair in eukaryotes include: non-homologous end joining (NHEJ, homologous recombination repair (HRR, mismatch repair (MMR, nucleotide excision repair (NER, base excision repair (BER and methyltransferase repair. DNA polymerases are also critical players in DNA repair processes. Given the close relationship between microsporidia and fungi, the repair mechanisms present in E. cuniculi were compared to those of the yeast Saccharomyces cerevisiae to ascertain how the process of genome reduction has affected the DNA repair pathways. Results E. cuniculi lacks 16 (plus another 6 potential absences of the 56 DNA repair genes sought via BLASTP and PSI-BLAST searches. Six of 14 DNA polymerases or polymerase subunits are also absent in E. cuniculi. All of these genes are relatively well conserved within eukaryotes. The absence of genes is not distributed equally among the different repair pathways; some pathways lack only one protein, while there is a striking absence of many proteins that are components of both double strand break repair pathways. All specialized repair polymerases are also absent. Conclusion Given the large number of DNA repair genes that are absent from the double strand break repair pathways, E. cuniculi is a prime candidate for the study of double strand break repair with minimal machinery. Strikingly, all of the

  9. Trauma versus no trauma: an analysis of the effect of tear mechanism on tendon healing in 1300 consecutive patients after arthroscopic rotator cuff repair.

    Science.gov (United States)

    Tan, Martin; Lam, Patrick H; Le, Brian T N; Murrell, George A C

    2016-01-01

    Patients with rotator cuff tears often recall a specific initiating event (traumatic), whereas many cannot (nontraumatic). It is unclear how important a history of trauma is to the outcomes of rotator cuff repair. This question was addressed in a study cohort of 1300 consecutive patients who completed a preoperative questionnaire regarding their shoulder injury and had a systematic evaluation of shoulder range of motion and strength, a primary arthroscopic rotator cuff repair performed by a single surgeon, an ultrasound scan, and the same subjective and objective measurements made of their shoulder 6 months after surgery. Post hoc, this cohort was separated into 2 groups: those who reported no history of trauma on presentation (n = 489) and those with a history of traumatic injury (n = 811). The retear rate in the group with no history of trauma was 12%, whereas that of the group with a history of trauma was 14% (P = .36). Those patients with a history of shoulder trauma who waited longer than 24 months had higher retear rates (20%) than those who had their surgery earlier (13%) (P = .040). Recollection of a traumatic initiating event had little effect on the outcome of arthroscopic rotator cuff repair. Duration of symptoms was important in predicting retears if patients recalled a specific initiating event but not in patients who did not recall any specific initiating event. Patients with a history of trauma should be encouraged to have their rotator cuff tear repaired within 2 years. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. DNA mismatch repair, genome instability and cancer in zebrafish

    NARCIS (Netherlands)

    Feitsma, H.

    2008-01-01

    The objective of this study was to find out whether the zebrafish can be an appropriate model for studying DNA repair and cancer. For this purpose three fish lines were used that lack components of an important mechanism for the repair of small DNA damage: DNA mismatch repair. These fish are

  11. The time course of repair of ultraviolet-induced DNA damage; implications for the structural organization of repair

    International Nuclear Information System (INIS)

    Collins, A.; Squires, S.

    1986-01-01

    Alternative molecular mechanisms can be envisaged for the cellular repair of UV-damaged DNA. In the 'random collision' model, DNA damage distributed throughout the genome is recognised and repaired by a process of random collision between DNA damage and repair enzymes. The other model assumes a 'processive' mechanism, whereby DNA is scanned for damage by a repair complex moving steadily along its length. Random collision should result in a declining rate of repair with time as the concentration of lesions in the DNA falls; but the processive model predicts a constant rate until scanning is complete. The authors have examined the time course of DNA repair in human fibroblasts given low doses of UV light. Using 3 distinct assays, the authors find no sign of a constant repair rate after 4 J/m 2 or less, even when the first few hours after irradiation are examined. Thus DNA repair is likely to depend on random collision. (Auth.)

  12. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  13. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  14. Retinal detachment repair

    Science.gov (United States)

    ... medicines Problems breathing You may not recover full vision. ... detachments can be repaired. Failure to repair the retina always results in loss of vision to some degree. After surgery, the quality of ...

  15. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  16. This mood is familiar and I don't deserve to feel better anyway: mechanisms underlying self-esteem differences in motivation to repair sad moods.

    Science.gov (United States)

    Wood, Joanne V; Heimpel, Sara A; Manwell, Laurie A; Whittington, Elizabeth J

    2009-02-01

    Why are people with low self-esteem (LSE) less motivated than people with high self-esteem (HSE) to improve sad moods? The present research examined whether feelings of personal deservingness contribute to this difference. Four experiments with undergraduate participants involved a sad mood induction, a manipulation of personal deservingness, or both. Results suggested that (a) LSEs feel less deserving of positive outcomes and of positive moods than do HSEs, (b) feelings of personal deservingness can vary with the situation, and be lowered through reminders of social rejection and personal flaws, and (c) feeling relatively undeserving dampens LSEs', but not HSEs', motivation to repair sad moods. These results have implications for the emotion regulation, self-esteem, and social justice literatures.

  17. Investigations on the influence of radiation with variable linear energy transfer (LET) on the DNA-content and DNA-repair-mechanisms in Vicia faba

    International Nuclear Information System (INIS)

    Eckl, P.

    1981-01-01

    This study was initiated to investigate, whether there are any radiation-induced changes in DNA-content and if these changes can be repaired. Seeds of Vicia faba L. were grown in glass culture vessels. After 10 to 20 days the seedings were irradiated using a 1 C1 60 Co gammasource (90mrad/h and 33 rad/h) and a 5 mCi 252 Cf neutronsource (90 mrad/h). Both, neutron and gamma irradiation cause a reduction in nuclear DNA-content even after low doses (1 to 10 rad). The extent of depression is only depending on linear energy transfer. Parallel to the induced minimum in DNA-content, but shifted to higher doses, also the mitotic activity reaches a minimum. Whereas neutron irradiation results in a total stop after doses of 8 rad, gamma-irradiation only induces a depression of 80 %. Whith higher doses the mitotic activity increases again. The neutron-induced changes in DNA-content seem to be restored within 90 minutes after irradiation. No continuous increase could be found after low gamma-doses. Gamma-irradiation with higher dose rates ( 60 Co, 33 rad/h) causes a general decrease over the dose-range studied (100 to 1600 rad). Following doses of 100 rad the mitotic activity increases significantly. With higher doses the decrease is exponential. A dose-dependent mitotic delay could also be observed. As described by many authors, unscheduled DNA-synthesis (UDS) could not be detected in nuclei of Vicia faba. This indicates that an other system, perhaps acting in situ - at the damaged place - is responsible for the repair of radiation-induced thymine-damages. (Author)

  18. DNA Damage, Repair, and Cancer Metabolism

    Science.gov (United States)

    Turgeon, Marc-Olivier; Perry, Nicholas J. S.; Poulogiannis, George

    2018-01-01

    Although there has been a renewed interest in the field of cancer metabolism in the last decade, the link between metabolism and DNA damage/DNA repair in cancer has yet to be appreciably explored. In this review, we examine the evidence connecting DNA damage and repair mechanisms with cell metabolism through three principal links. (1) Regulation of methyl- and acetyl-group donors through different metabolic pathways can impact DNA folding and remodeling, an essential part of accurate double strand break repair. (2) Glutamine, aspartate, and other nutrients are essential for de novo nucleotide synthesis, which dictates the availability of the nucleotide pool, and thereby influences DNA repair and replication. (3) Reactive oxygen species, which can increase oxidative DNA damage and hence the load of the DNA-repair machinery, are regulated through different metabolic pathways. Interestingly, while metabolism affects DNA repair, DNA damage can also induce metabolic rewiring. Activation of the DNA damage response (DDR) triggers an increase in nucleotide synthesis and anabolic glucose metabolism, while also reducing glutamine anaplerosis. Furthermore, mutations in genes involved in the DDR and DNA repair also lead to metabolic rewiring. Links between cancer metabolism and DNA damage/DNA repair are increasingly apparent, yielding opportunities to investigate the mechanistic basis behind potential metabolic vulnerabilities of a substantial fraction of tumors. PMID:29459886

  19. Method for Qualification of Composite Repairs for Pipelines: Patch Repairs and Considerations for Cathodic Protection

    Science.gov (United States)

    2009-12-03

    While the mechanical properties of composite repairs for pipelines have been investigated extensively, the performance of the entire metal-composite system has not been addressed with regard to corrosion of the substrate, water intrusion at the compo...

  20. Large Extremity Peripheral Nerve Repair

    Science.gov (United States)

    2016-12-01

    These antimicrobial peptides are implicated in the resistance of epithelial surfaces to microbial colonisation and have been shown to be upregulated...be equivalent to standard autograft repair in rodent models. Outcomes have now been validated in a large animal (swine) model with 5 cm ulnar nerve...Goals of the Project Task 1– Determine mechanical properties, seal strength and resistance to biodegradation of candidate photochemical nerve wrap

  1. Post-Translational Regulation of Polycystin-2 Protein Expression as a Novel Mechanism of Cholangiocyte Reaction and Repair from Biliary Damage

    Science.gov (United States)

    Spirli, Carlo; Villani, Ambra; Mariotti, Valeria; Fabris, Luca; Fiorotto, Romina; Strazzabosco, Mario

    2015-01-01

    Polycystin-2 (PC2 /TRPP2), a member of the transient receptor potential channels (TRP) family, is a non-selective calcium channel. Mutations in PC2/TRPP2 are associated with Polycystic Liver Diseases. PC2-defective cholangiocytes shows increased production of cAMP, PKA-dependent activation of the ERK1/2 pathway, HIF1α-mediated VEGF production, and stimulation of cyst growth and progression. Activation of the ERK/HIF1α/VEGF pathway in cholangiocytes plays a key role during repair from biliary damage. We hypothesized that PC2 levels are modulated during biliary damage/repair, resulting in activation of the ERK/HIF1α/VEGF pathway. Results PC2 protein expression, but not its gene expression, was significantly reduced in mouse livers with biliary damage (Mdr2−/−-KO, bile duct ligation, DDC-treatment). Treatment of colangiocytes with pro-inflammatory cytokines, nitric oxide (NO) donors and ER stressors), increased ERK1/2 phosphorylation, HIF1α transcriptional activity, secretion of VEGF, VEGFR2 phosphorylation and downregulated PC2 protein expression without affecting PC2 gene expression. Expression of Herp and NEK, ubiquitin-like proteins that promote proteosomal PC2 degradation was increased. Pre-treatment with the proteasome inhibitor MG-132 restored the expression of PC2 in cells treated with cytokines but not in cells treated with NO donors or with ER stressors. In these conditions, PC2 degradation was instead inhibited by interfering with the autophagy pathway. Treatment of DDC-mice and of Mdr2−/−-mice with the proteasome inhibitor bortezomib, restored PC2 expression and significantly reduced the ductular reaction, fibrosis and p-ERK1/2. In conclusion, in response to biliary damage, PC2 expression is modulated post-translationally by the proteasome or the autophagy pathways. PC2-dowregulation is associated with activation of ERK1/2 and increase of HIF1α-mediated VEGF secretion. Treatments able to restore PC2 expression and to reduce ductular reaction

  2. Histone displacement during nucleotide excision repair

    DEFF Research Database (Denmark)

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER....

  3. Evaluation of the single radiosensitivity in patients subjected to medical exposure that show severe skin reactions; Evaluacion de la radiosensibilidad individual en pacientes sometidos a exposiciones medicas que manifiestan reacciones cutaneas severas

    Energy Technology Data Exchange (ETDEWEB)

    Di Giorgio, M; Vallerga, M B [Laboratorio de Dosimetria Biologica, Autoridad Regulatoria Nuclear, Av. Del Libertador 8250 (C1429BNP), Buenos Aires (Argentina); Portas, M [Hospital de Quemados del Gobierno de la Ciudad de Buenos Aires (Argentina); Perez, M R [Laboratorio de Radiopatologia, Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2006-07-01

    The Burnt Hospital of the Buenos Aires City Government (HQGCBA) it is a hospital of reference of the Net of Medical Responses in Radiological Emergencies of the Argentine Republic. In the mark of an agreement among the HQGCBA and the Authority Regulatory Nuclear (ARN), it is in execution a study protocol for the one boarding diagnoses and therapeutic of radioinduced cutaneous leisure. They exist individual variations that can condition the response to the ionizing radiations (IR), so much in accidental exposures as having programmed (radiotherapy, radiology interventionist). In this context, the individual radiosensitivity is evaluated in the patients signed up in this protocol that presented sharp or late cutaneous reactions, with grades of severity 3-4 (approaches EORTC/RTOG). The capacity of repair of the DNA was evaluated in outlying blood lymphocytes irradiated in vitro (2 Gy, gamma of Co-60) by means of the micronucleus techniques and comet essay in alkaline conditions. In this work two cases in those that is applied this study protocol, the therapeutic answer and its correlate with the discoveries of the radiosensitivity tests is presented. Case 1: patient of feminine sex, subjected to external radiotherapy by a breast infiltrating ductal carcinoma; developed sharp cutaneous radiotoxicity grade 3 (confluent humid epithelitis) that motivate the interruption of the treatment. Case 2: patient of masculine sex, subjected to a coronary angioplasty (interventionist radiology); developed late cutaneous radiotoxicity grade 4 (ulceration in dorsal region). Both patients were treated with topical trolamine associated to systemic administration of pentoxiphiline and antioxidants. The therapeutic answer is evaluated by means of clinical pursuit, photographic serial register and complementary exams (thermography and ultrasonography of high frequency). In the case 1 the answer was very favorable, with precocious local improvement and complete remission of symptoms and

  4. Evaluation of the single radiosensitivity in patients subjected to medical exposure that show severe skin reactions; Evaluacion de la radiosensibilidad individual en pacientes sometidos a exposiciones medicas que manifiestan reacciones cutaneas severas

    Energy Technology Data Exchange (ETDEWEB)

    Di Giorgio, M.; Vallerga, M.B. [Laboratorio de Dosimetria Biologica, Autoridad Regulatoria Nuclear, Av. Del Libertador 8250 (C1429BNP), Buenos Aires (Argentina); Portas, M. [Hospital de Quemados del Gobierno de la Ciudad de Buenos Aires (Argentina); Perez, M.R. [Laboratorio de Radiopatologia, Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)]. e-mail: mdigiorg@cae.arn.gov.ar

    2006-07-01

    The Burnt Hospital of the Buenos Aires City Government (HQGCBA) it is a hospital of reference of the Net of Medical Responses in Radiological Emergencies of the Argentine Republic. In the mark of an agreement among the HQGCBA and the Authority Regulatory Nuclear (ARN), it is in execution a study protocol for the one boarding diagnoses and therapeutic of radioinduced cutaneous leisure. They exist individual variations that can condition the response to the ionizing radiations (IR), so much in accidental exposures as having programmed (radiotherapy, radiology interventionist). In this context, the individual radiosensitivity is evaluated in the patients signed up in this protocol that presented sharp or late cutaneous reactions, with grades of severity 3-4 (approaches EORTC/RTOG). The capacity of repair of the DNA was evaluated in outlying blood lymphocytes irradiated in vitro (2 Gy, gamma of Co-60) by means of the micronucleus techniques and comet essay in alkaline conditions. In this work two cases in those that is applied this study protocol, the therapeutic answer and its correlate with the discoveries of the radiosensitivity tests is presented. Case 1: patient of feminine sex, subjected to external radiotherapy by a breast infiltrating ductal carcinoma; developed sharp cutaneous radiotoxicity grade 3 (confluent humid epithelitis) that motivate the interruption of the treatment. Case 2: patient of masculine sex, subjected to a coronary angioplasty (interventionist radiology); developed late cutaneous radiotoxicity grade 4 (ulceration in dorsal region). Both patients were treated with topical trolamine associated to systemic administration of pentoxiphiline and antioxidants. The therapeutic answer is evaluated by means of clinical pursuit, photographic serial register and complementary exams (thermography and ultrasonography of high frequency). In the case 1 the answer was very favorable, with precocious local improvement and complete remission of symptoms and

  5. Poly (ADP-Ribose) Polymerase is Involved in the Repair of DNA Damage Due to Sulfur Mustard by a Mechanism Other Than DNA Ligase I Activation

    National Research Council Canada - National Science Library

    Bhat, K. Ramachandra; Benton, Betty J; Ray, Radharaman

    2004-01-01

    Poly (ADP-ribose) polymerase (PARP) modulates several cellular functional proteins by a mechanism in which the proteins are poly-ADP-ribosylated by transferring the ADP-ribose moieties from the enzyme substrate NAD+ to the proteins...

  6. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  7. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  8. Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in uvr strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions

    International Nuclear Information System (INIS)

    Sedgwick, S.G.

    1976-01-01

    It has been previously reported that an inducible form of post-replication repair appeared to be required for UV induced mutagenesis in an uvrA strain of Escherichia coli. It is shown here that the numbers of daughter strand gaps requiring inducible repair were similar to the numbers calculated to be overlapping one another in opposite daughter chromosomes. An estimation of survival with no repair of these gaps resembled the survival predicted with mutagenesis. It is thus proposed that inducible post-replication repair causes mutagenesis by the repair of overlapping daughter strand gaps. A general model for induced mutagenesis is presented. It is proposed that (a) some DNA lesions introduced by any DNA damaging agent may be close enough to interfere with constitutive repair replication of each other, (b) these lesions induce a repair system (SOS repair) which involves the recA + . lexA + and polC + genes (c) repair, and noncomitant mutagenesis occurs during repair replication by the insertion of mismatched bases oppposite the noncoding DNA lesions

  9. Mechanical analyses of pipeline repair and reinforcement with use of composite functionally graded materials; Analise mecanica de reforco de dutos submarinos com materiais compositos com gradacao funcional

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Marcos S.M. [Sondotecnica Engenharia de Solos S.A., Rio de Janeiro, RJ (Brazil); Roehl, Deane de Mesquita [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2008-07-01

    This work presents a methodology for design of stiffener sleeve constituted by functionally graded composite materials in offshore pipelines located in extreme-deep waters, where high mechanical resistance allied to an efficient system of thermal isolation is necessary, in view of the excellent thermomechanical behavior of composites. For the case of FGMs, due to continuous variation in its featuring, is necessary to employ an adapted model, based on a model typically adopted for conventional composites (Rule of Mixture), as the model idealized by Tamura, Tomato e Ozawa, the TTO model. In this report, the influence of geometric and materials parameters in mechanical behavior of pipelines under propagating collapse is analyzed. (author)

  10. Plasma membrane wounding and repair in pulmonary diseases.

    Science.gov (United States)

    Cong, Xiaofei; Hubmayr, Rolf D; Li, Changgong; Zhao, Xiaoli

    2017-03-01

    Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases. Copyright © 2017 the American Physiological Society.

  11. Chemical repair of trypsin-histidinyl radical

    International Nuclear Information System (INIS)

    Jovanovic, S.V.; Ruvarac, I.; Jankovic, I.; Josimovic, L.

    1991-01-01

    Oxyl radicals, such as hydroxyl, alkoxyl and peroxyl, react with biomolecules to produce bioradicals. Unless chemically repaired by suitable antioxidants, these bioradicals form stable products. This leads to loss of biological function of parent biomolecules with deleterious biological results, such as mutagenesis and cancer. Consequently, the understanding of the mechanisms of oxyl radical damage to biomolecules and chemical repair of such damage is crucial for the development of strategies for anticarcinogenesis and radioprotection. In this study the chemical repair of the histidinyl radical generated upon the trichloromethylperoxyl radical reaction with trypsin vas investigated by gamma radiolysis. The trypsin histidinyl radical is a resonance-stabilized heterocyclic free radical which was found to be unreactive with oxygen. The efficacy of the chemical repair of the trypsin-histidinyl radical by endogenous antioxidants which are electron donors (e.g. 5-hydroxytryptophan, uric acid) is compared to that of antioxidants which are H-atom donors (e. g. glutathione). 9 refs., 2 figs., 1 tab

  12. Flexible Plug Repair for Shuttle Wing Leading Edge

    Science.gov (United States)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; hide

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  13. Repair-modification of radiodamaged genes

    International Nuclear Information System (INIS)

    Volpe, P.; Institute of Experimental Medicine, Rome; Eremenko, T.

    1995-01-01

    It is proposed that through repair-modification, the modified base 5mC may have facilitated the divergent evolution of coding (hypomethylated exon) and uncoding (hypermethylated promoter and intron) sequences in eukaryotic genes. The radioinduced repair patches appearing in regions lacking 5mC are fully reconstructed by excision-repair, whereas those appearing in regions containing 5mC are incompletely reconstructed by this conventional mechanism. Such a second class of repair patches may, however, become fully reconstructed, in the S phase, by repair-modification. In fact, while DNA polymerase β - which is a key enzyme of excision-repair - is active through the whole interphase. DNA methylase - which is responsible for post-synthetic DNA modification - is essentially active in S. Uncoupling of these two enzyme systems, outside S, might explain why in unsynchronised cells repair patches of non-replicating strands are hypomethylated when compared with specific methylation of replicating strands. In other words, excision-repair would always be able to re-establish the primary ATGC language of both damaged unmethylated and methylated regions, while repair-modification would be able to re-establish the modified ATGC(5mC) language of the damaged methylated regions, only in S, but not in G 1 or G 2 . In these two phases, when DNA methylation is inversely correlated with pre-mRNA transcription (as in the case of many tissue-specific genes), such demethylation might induce a silent transcriptional unit to become active. (Author)

  14. DNA Damage Induced by Alkylating Agents and Repair Pathways

    Science.gov (United States)

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  15. Snowmobile Repair. Teacher Edition.

    Science.gov (United States)

    Hennessy, Stephen S.; Conrad, Rex

    This teacher's guide contains 14 units on snowmobile repair: (1) introduction to snowmobile repair; (2) skis, front suspension, and steering; (3) drive clutch; (4) drive belts; (5) driven clutch; (6) chain drives; (7) jackshafts and axles; (8) rear suspension; (9) tracks; (10) shock absorbers; (11) brakes; (12) engines; (13) ignition and…

  16. Cellular repair and its importance for UV-induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Slamenova, D [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1975-01-01

    Current knowledge is briefly surveyed of the mechanism of the biological repair of injuries induced in DNA cells by the action of various factors, mainly ultraviolet radiation. Genetic loci determining the sensitivity of cells to UV radiation are defined and principal reparation processes are explained; excision repair is described more fully. The role of biological repair is discussed in view of UV-induced mutations in DNA cells.

  17. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  18. Human diseases associated with defective DNA repair

    International Nuclear Information System (INIS)

    Friedberg, E.C.; Ehmann, U.K.; Williams, J.I.

    1979-01-01

    The observations on xeroderma pigmentosum (XP) cells in culture were the first indications of defective DNA repair in association with human disease. Since then, a wealth of information on DNA repair in XP, and to a lesser extent in other diseases, has accumulated in the literature. Rather than clarifying the understanding of DNA repair mechanisms in normal cells and of defective DNA repair in human disease, the literature suggests an extraordinary complexity of both of the phenomena. In this review a number of discrete human diseases are considered separately. An attempt was made to systematically describe the pertinent clinical features and cellular and biochemical defects in these diseases, with an emphasis on defects in DNA metabolism, particularly DNA repair. Wherever possible observations have been correlated and unifying hypotheses presented concerning the nature of the basic defect(s) in these diseases. Discussions of the following diseases are presented: XP, ataxia telangiectasia; Fanconi's anemia; Hutchinson-Gilford progeria syndrome; Bloom's syndrome, Cockayne's syndrome; Down's syndrome; retinoblastoma; chronic lymphocytic leukemia; and other miscellaneous human diseases with possble DNA repair defects

  19. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  20. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  1. The horizontal gender segregation and its consequences in the masculinised occupation of mechanic (M/F in the subsector of motor vehicle repair garages in Spain

    Directory of Open Access Journals (Sweden)

    María del Mar Maira Vidal

    2017-07-01

    Full Text Available This paper is based on the results of two research projects of the research group “Women in men’s worlds”: the research project “Women in men’s worlds: Barriers to enter and strategies to overcome them” (Ref.: FEM2011-25228, financed by the National Plan of the Ministry of Economy and Competitiveness between January 2011 and December 2013; and the project “Women in men’s worlds: Socialisation, labour organisation, and image” (CSO2014-54339-P, also financed by the National Plan between September 2015 and September 2018. In both research projects we have analysed occupational horizontal gender segregation in masculinised occupations in Spain. In this paper we present the results of both research projects about female garage mechanics, whose training and occupation reveal a very high rate of gender-related segregation or cases of gender-related discrimination and harassment or sexual harassment.

  2. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  3. Mismatch Repair Balances Leading and Lagging Strand DNA Replication Fidelity

    Science.gov (United States)

    2012-10-11

    Rev Mol Cell Biol 7: 335–346. 7. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18: 85–98. 8. Pavlov YI, Mian IM, Kunkel TA...11: 165–170. 41. Li F, Tian L, Gu L, Li GM (2009) Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 284: 33056–33061

  4. Haemophilus influenzae does not fit theories of postreplication repair

    International Nuclear Information System (INIS)

    Setlow, J.K.; Notani, N.K.

    1980-01-01

    Studies with Escherichia coli have provided all the initial insights into the molecular bases of repair processes. It is the thesis of this article that especially if we believe that there are some general mechanisms in nature, it is important to consider more than one microorganism in arriving at an understanding of the biology of repair of DNA

  5. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  6. Mitochondrial DNA repair and association with aging- an update

    DEFF Research Database (Denmark)

    Diaz, Ricardo Gredilla; Bohr, Vilhelm; Stevnsner, Tinna V.

    2010-01-01

    in the aging process and to be particularly deleterious in post-mitotic cells. Thus, DNA repair is an important mechanism for maintenance of genomic integrity. Despite the importance of mitochondria in the aging process, it was thought for many years that mitochondria lacked an enzymatic DNA repair system...... proteins and novel DNA repair pathways, thought to be exclusively present in the nucleus, have recently been described also to be present in mitochondria. Here we review the main mitochondrial DNA repair pathways and their association with the aging process....

  7. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  8. Heterogenous mismatch-repair status in colorectal cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Veurink, Nynke; Holck, Susanne

    2014-01-01

    BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative......, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms. METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative....... CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification. VIRTUAL SLIDES: The virtual slide(s) for this article...

  9. Composite repairs qualification according to ISO/TS 24817

    Energy Technology Data Exchange (ETDEWEB)

    Meniconi, Luiz C.M.; Perrut, Valber A. [Petroleo Brasileiro S.A. (PETROBRAS/CENPES), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2009-07-01

    Composite repairs for metallic pipes from three different suppliers were evaluated according to ISO Technical Specification TS 24817. The intended application scenarios are offshore production plants, but the design methodology is also applicable to onshore pipelines and pipework. The evaluation covered all the relevant mechanical properties and established the maximum application temperatures for each repair system. The tests also considered the application of composite repair sleeves to metallic pipes with through thickness defects, by measuring the strain energy release rates of the composite-metal interfaces. The test campaigns aimed to verify the applicability of the recently published ISO document, and to implement it as the routine procedure for composite repairs evaluation within PETROBRAS. The tests also addressed the influence of metallic pipe surface preparation on the final properties of the repair sleeves, especially in relation to the long term behavior of leaking pipes repaired by means of composite materials. (author)

  10. DNA repair in ultraviolet-irradiated spores of Bacillus subtilis

    International Nuclear Information System (INIS)

    Wang, T.C.V.

    1976-01-01

    It has been shown previously by others that at least two independent repair mechanisms are present in Bacillus subtilis for removing ''spore photoproduct'' from DNA of ultraviolet (254 nm)-irradiated spores after germination. One of these, designated as ''spore repair,'' is shown in this study to restore ''spore photoproduct'' to two thymine residues, leaving the DNA backbone intact at the end of the process in vivo. The circumstances under which this repair can occur and some characteristics of its energy requirements have been clarified. The second repair process is identified as excision repair, which can excise both ''spore photoproduct'' from DNA of irradiated spores and cyclobutane-type pyrimidine dimers from DNA of irradiated vegetative cells. In this study it is shown that the gene hcr 1 affects an enzyme activity for the incision step initiating this repair, while the gene hcr 42 affects a step subsequent to incision in the mechanism. In addition a third, independent repair system, termed ''germinative excision repair,'' is discovered and shown to be specific for excising only cyclobutane-type pyrimidine dimers but not ''spore photoproduct.'' This repair system is responsible for the observed high ultraviolet-resistance and temporary capacity for host cell reactivation on recently germinated spores of Bacillus subtilis HCR - strains

  11. DNA Repair Systems

    Indian Academy of Sciences (India)

    DNA molecule which makes it ideal for storage and propagation of genetic information. ... of these errors are broadly referred to as DNA repair. DNA can ... changes occur in the human genome per day. ..... nails, frequent physical and mental.

  12. Brain aneurysm repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000123.htm Brain aneurysm repair - discharge To use the sharing features ... this page, please enable JavaScript. You had a brain aneurysm . An aneurysm is a weak area in ...

  13. Ventral hernia repair

    Science.gov (United States)

    ... incarcerated) in the hernia and become impossible to push back in. This is usually painful. The blood supply ... you are lying down or that you cannot push back in. Risks The risks of ventral hernia repair ...

  14. Omphalocele repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100033.htm Omphalocele repair - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Omphalocele is an abdominal wall defect at the base ...

  15. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  16. DNA Repair Mechanism Gene, XRCC1A (Arg194Trp) but not XRCC3 (Thr241Met) Polymorphism Increased the Risk of Breast Cancer in Premenopausal Females: A Case–Control Study in Northeastern Region of India

    Science.gov (United States)

    Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C.

    2017-01-01

    X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case–control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case–control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P India which may be beneficial for prognostic purposes. PMID:29332455

  17. From developmental biology to heart repair

    NARCIS (Netherlands)

    Campione, M.; Moorman, A. F.; Kelly, R. G.

    2007-01-01

    Advances in our understanding of cardiac development have fuelled research into cellular approaches to myocardial repair of the damaged heart. In this collection of reviews we present recent advances into the basic mechanisms of heart development and the resident and non-resident progenitor cell

  18. ROCLA robots repaired after tough times

    CERN Multimedia

    Patrice Loïezi

    2004-01-01

    The team of five welders and five mechanics, represented by Pascal Mésenge (right) and Fabrice Multon (left), worked during two week-ends to repair the two ROCLA. At the centre, Oliver Boettcher, technical manager for the robot.

  19. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniel P Kane

    Full Text Available In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.

  20. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...... landscape may be stably maintained even in the face of dramatic changes in chromatin structure....

  1. Valve radio and audio repair handbook

    CERN Document Server

    MILLER, CHAS

    2000-01-01

    This book is not only an essential read for every professional working with antique radio and gramophone equipment, but also dealers, collectors and valve technology enthusiasts the world over. The emphasis is firmly on the practicalities of repairing and restoring, so technical content is kept to a minimum, and always explained in a way that can be followed by readers with no background in electronics. Those who have a good grounding in electronics, but wish to learn more about the practical aspects, will benefit from the emphasis given to hands-on repair work, covering mechanical as

  2. Characteristics of repair following very low doses

    International Nuclear Information System (INIS)

    Braby, L.A.; Metting, N.F.; Nelson, J.M.

    1987-01-01

    The effects of ionizing radiation on living systems being with the physical processes of energy deposition and develop through many stages of chemical reaction and biological response. The modeling effort attempts to organize the available data and theories of all of these stages into self-consistent models that can be compared and tested. In some cases, important differences among models result in only small differences in cell survival within the ranges of dose and dose rate that are normally investigated. To overcome this limitation, new ways of irradiating cells at extremes of dose rate, or ways of evaluating the effects of very small doses, are developed. Mathematical modeling and cellular studies complement each other. It has recently been found that some mechanisms are not adequate to account for the interaction of dose and repair time as they affect the reproductive survival of plateau-phase Chinese hamster ovary (CHO) cells. Repair of radiation-induced cellular damage plays a central role in the survival of cells exposed to doses of 1 Gy or more. This repair is responsible for the dose rate, split-dose and delayed plating effect and can be evaluated. Because split-dose and dose-rate experiments involve repair during irradiation and delayed plating experiments involve repair after irradiation is completed, it was originally thought that different repair processes were involved. It is now clear that this is not necessarily the case. Appropriately designed models can account for observed effects at conventional doses (1 Gy or more) whether they assume all damage is lethal unless repaired or some damage is innocuous unless it interacts with additional damage. The fact that the survival following a plating delay is always less than the survival following immediate plating at low doses indicates that the damage produced is probably not potentially lethal

  3. The Bright and the Dark Sides of DNA Repair in Stem Cells

    OpenAIRE

    Frosina, Guido

    2010-01-01

    DNA repair is a double-edged sword in stem cells. It protects normal stem cells in both embryonic and adult tissues from genetic damage, thus allowing perpetuation of intact genomes into new tissues. Fast and efficient DNA repair mechanisms have evolved in normal stem and progenitor cells. Upon differentiation, a certain degree of somatic mutations becomes more acceptable and, consequently, DNA repair dims. DNA repair turns into a problem when stem cells transform and become cancerous. Tran...

  4. Repair replication in permeabilized Escherichia coli

    International Nuclear Information System (INIS)

    Masker, W.E.; Simon, T.J.; Hanawalt, P.C.

    1975-01-01

    We have examined the modes of DNA synthesis in Escherichia coli strains made permeable to nucleoside triphosphates by treatment with toluene. In this quasi in vitro system, polymerase-I-deficient mutants exhibit a nonconservative mode of synthesis with properties expected for the resynthesis step of excision-repair. This uv-stimulated DNA synthesis can be performed by either DNA polymerase II or III and it also requires the uvrA gene product. It requires the four deoxynucleoside triphosphates; but, in contrast to the semiconservative mode, the ATP requirement can be partially satisfied by other nucleoside triphosphates. The ATP-dependent recBC nuclease is not involved. The observed uv-stimulated mode of DNA synthesis may be part of an alternate excision-repair mechanism which supplements or complements DNA-polymerase-I-dependent repair in vivo

  5. Repair of damaged DNA in vivo: Final technical report

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1987-09-01

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs

  6. Structural aspects of DNA in its replication and repair

    International Nuclear Information System (INIS)

    Mitra, S.; Pal, B.C.; Foote, R.S.; Bates, R.C.; Bhattacharyya, A.; Snow, E.T.; Wobbe, C.R.; Morse, C.C.; Snyder, C.E.

    1984-01-01

    The research objective of this laboratory is to investigate the structure of DNA, the mechanism of DNA replication and its regulation, and the mechanism and role of repair of the altered DNA in the expression of heritable changes. This research has two broad aims, namely investigation of (a) the regulation of DNA replication in mammals, using parvovirus DNA as a model system and (b) the role of DNA repair in mutagenesis and carcinogenesis induced by simple alkylating mutagens

  7. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  8. Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.

    Science.gov (United States)

    Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping

    2018-04-26

    In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.

  9. DNA Repair and Genome Maintenance in Bacillus subtilis

    Science.gov (United States)

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  10. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  11. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  12. DNA damage repair and radiosensitivity

    International Nuclear Information System (INIS)

    Suzuki, Norio

    2003-01-01

    Tailored treatment is not new in radiotherapy; it has been the major subject for the last 20-30 years. Radiation responses and RBE (relative biological effectiveness) depend on assay systems, endpoints, type of tissues and tumors, radiation quality, dose rate, dose fractionation, physiological and environmental factors etc, Latent times to develop damages also differ among tissues and endpoints depending on doses and radiation quality. Recent progress in clarification of radiation induced cell death, especially of apoptotic cell death, is quite important for understanding radiosensitivity of tumor cure process as well as of tumorigenesis. Apoptotic cell death as well as dormant cells had been unaccounted and missed into a part of reproductive cell death. Another area of major progress has been made in clarifying repair mechanisms of radiation damage, i.e., non-homologous end joining (NHEJ) and homologous recombinational repair (HRR). New approaches and developments such as cDNA or protein micro arrays and so called informatics in addition to basic molecular biological analysis are expected to aid identifying molecules and their roles in signal transduction pathways, which are multi-factorial and interactive each other being involved in radiation responses. (authors)

  13. Composite Repair System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL has developed an innovative composite repair methodology known as the Composite Repair System (CRS). In this phase I effort, CRS is being developed for the...

  14. About the Collision Repair Campaign

    Science.gov (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  15. Vesicovaginal Fistula Repair During Pregnancy

    African Journals Online (AJOL)

    Vesicovaginal Fistula Repair During Pregnancy: A Case Report ... Abstract. We report a repair of Vesicovaginal fistula during pregnancy that was aimed at preventing another spontaneous ... practices that encourage teenage marriage and girl.

  16. Ship Repair Workflow Cost Model

    National Research Council Canada - National Science Library

    McDevitt, Mike

    2003-01-01

    The effects of intermittent work patterns and funding on the costs of ship repair and maintenance were modeled for the San Diego region in 2002 for Supervisor of Shipbuilding and Repair (SUPSHIP) San Diego...

  17. Social repair of relationships

    DEFF Research Database (Denmark)

    Fahnøe, Kristian Relsted

    2017-01-01

    organisations, friends and family, and communities. These social relations are viewed as the foundation of citizenship as experienced and practised. Focusing on how two dimensions of lived citizenship, namely rights-responsibilities and belonging, are affected by the social repairs, the chapter shows how...

  18. Comprehensive Small Engine Repair.

    Science.gov (United States)

    Hires, Bill; And Others

    This curriculum guide contains the basic information needed to repair all two- and four-stroke cycle engines. The curriculum covers four areas, each consisting of one or more units of instruction that include performance objectives, suggested activities for teacher and students, information sheets, assignment sheets, job sheets, visual aids,…

  19. Patent urachus repair - slideshow

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools About MedlinePlus Show Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Patent urachus repair - series—Normal anatomy URL of this ...

  20. Patent urachus repair

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools About MedlinePlus Show Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Patent urachus repair URL of this page: //medlineplus.gov/ ...

  1. DNA Repair Systems

    Indian Academy of Sciences (India)

    Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial ...

  2. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  3. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2018-01-01

    Full Text Available Bone repair materials are rapidly becoming a hot topic in the field of biomedical materials due to being an important means of repairing human bony deficiencies and replacing hard tissue. Magnesium (Mg alloys are potentially biocompatible, osteoconductive, and biodegradable metallic materials that can be used in bone repair due to their in situ degradation in the body, mechanical properties similar to those of bones, and ability to positively stimulate the formation of new bones. However, rapid degradation of these materials in physiological environments may lead to gas cavities, hemolysis, and osteolysis and thus, hinder their clinical orthopedic applications. This paper reviews recent work on the use of Mg alloy implants in bone repair. Research to date on alloy design, surface modification, and biological performance of Mg alloys is comprehensively summarized. Future challenges for and developments in biomedical Mg alloys for use in bone repair are also discussed.

  4. Evaluation of genotoxicity induced by hydrogen peroxide in the presence of ions chelator Fe2+ (2,2'-dipyridyl) and of Cu2+(neocuproine), in Escherichia coli: involvement of DNA repair mechanisms in the bacteria survival

    International Nuclear Information System (INIS)

    Almeida, Carlos Eduardo Bonacossa de

    1998-01-01

    Prior incubation of the E. coli cultures with the iron ions chelator 2,2'-dipyridyl (1 mM) caused an intensification of the lethality and the mutagenesis induced by the hydrogen peroxide, mainly at high concentrations (20 mM). It was also detected an enhancement of DNA strand breaks in this condition. The addition of the copper ions chelator neocuproine blocked partially this phenomenon. The enzymes XthA and Nfo act alternatively in the repair of the lesions induced by H 2 O 2 in the presence of 2,2'-dipyridyl. H 2 O 2 can act synergistically with neocuproine in killing E. coli, causing an enhancement in DNA strand breaks. The recombinational repair, the UvrABC excinuclease and Fpg function appeared to participate in the repair of the synergistic lesions. (author)

  5. Cleft lip and palate repair

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002979.htm Cleft lip and palate repair To use the sharing features on this ... Cheiloplasty; Cleft rhinoplasty; Palatoplasty; Tip rhinoplasty Patient Instructions Cleft lip and palate repair - discharge Images Cleft lip repair - series References ...

  6. The journey of DNA repair.

    Science.gov (United States)

    Saini, Natalie

    2015-12-01

    21 years ago, the DNA Repair Enzyme was declared "Molecule of the Year". Today, we are celebrating another "year of repair", with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  7. DNA repair: Dynamic defenders against cancer and aging

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, Jill O.; Cooper, Priscilla K.

    2006-04-01

    You probably weren't thinking about your body's cellular DNA repair systems the last time you sat on the beach in the bright sunshine. Fortunately, however, while you were subjecting your DNA to the harmful effects of ultraviolet light, your cells were busy repairing the damage. The idea that our genetic material could be damaged by the sun was not appreciated in the early days of molecular biology. When Watson and Crick discovered the structure of DNA in 1953 [1], it was assumed that DNA is fundamentally stable since it carries the blueprint of life. However, over 50 years of research have revealed that our DNA is under constant assault by sunlight, oxygen, radiation, various chemicals, and even our own cellular processes. Cleverly, evolution has provided our cells with a diverse set of tools to repair the damage that Mother Nature causes. DNA repair processes restore the normal nucleotide sequence and DNA structure of the genome after damage [2]. These responses are highly varied and exquisitely regulated. DNA repair mechanisms are traditionally characterized by the type of damage repaired. A large variety of chemical modifications can alter normal DNA bases and either lead to mutations or block transcription if not repaired, and three distinct pathways exist to remove base damage. Base excision repair (BER) corrects DNA base alterations that do not distort the overall structure of the DNA helix such as bases damaged by oxidation resulting from normal cellular metabolism. While BER removes single damaged bases, nucleotide excision repair (NER) removes short segments of nucleotides (called oligonucleotides) containing damaged bases. NER responds to any alteration that distorts the DNA helix and is the mechanism responsible for repairing bulky base damage caused by carcinogenic chemicals such as benzo [a]pyrene (found in cigarette smoke and automobile exhaust) as well as covalent linkages between adjacent pyrimidine bases resulting from the ultraviolet

  8. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  9. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J. P. [NIH, Bethesda, MD. (United States); Levine, A. S.; Woodgate, R.

    1997-12-15

    Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5. (author)

  10. Improved criteria for the repair of fabrication flaws

    International Nuclear Information System (INIS)

    Doctor, S.R.; Schuster, G.J.; Simonen, F.A.

    2003-01-01

    Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code for nuclear power plant components requires radiographic examinations (RT) of welds and requires repairs for RT indications that exceed code acceptable sizes. This paper describes research that has generated data on welding flaws, which indicated that the largest flaws occur in repaired welds. The fabrication flaws were detected in material removed from cancelled nuclear power plants using high sensitivity Nondestructive Examination (NDE) and validated by complementary NDE and destructive testing. Evidence suggests that repairs are often for small and benign RT indications at locations buried within the vessel or pipe wall. Probabilistic fracture mechanics calculations are described in this paper to predict the increases in vessel failure probabilities caused by the repair-induced flaws. Calculations address failures of embrittled vessel welds for pressurized thermal shock (PTS) transients. In this case small flaws, which are relatively common, can cause brittle fracture, such that the rarely encountered repair flaws of large sizes gave only modestly increased failure probabilities. The paper recommends the use of more discriminating ultrasonic examinations in place of RT examinations along with repair criteria based on a fitness-for-purpose approach that minimize the number of unjustified repairs. (author)

  11. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R

    2007-01-01

    -term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence...... geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long...... that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability....

  12. Chronic Degeneration Leads to Poor Healing of Repaired Massive Rotator Cuff Tears in Rats.

    Science.gov (United States)

    Killian, Megan L; Cavinatto, Leonardo M; Ward, Samuel R; Havlioglu, Necat; Thomopoulos, Stavros; Galatz, Leesa M

    2015-10-01

    Chronic rotator cuff tears present a clinical challenge, often with poor outcomes after surgical repair. Degenerative changes to the muscle, tendon, and bone are thought to hinder healing after surgical repair; additionally, the ability to overcome degenerative changes after surgical repair remains unclear. The purpose of this study was to evaluate healing outcomes of muscle, tendon, and bone after tendon repair in a model of chronic rotator cuff disease and to compare these outcomes to those of acute rotator cuff injuries and repair. The hypothesis was that degenerative rotator cuff changes associated with chronic multitendon tears and muscle unloading would lead to poor structural and mechanical outcomes after repair compared with acute injuries and repair. Controlled laboratory study. Chronic rotator cuff injuries, induced via detachment of the supraspinatus (SS) and infraspinatus (IS) tendons and injection of botulinum toxin A into the SS and IS muscle bellies, were created in the shoulders of rats. After 8 weeks of injury, tendons were surgically reattached to the humeral head, and an acute, dual-tendon injury and repair was performed on the contralateral side. After 8 weeks of healing, muscles were examined histologically, and tendon-to-bone samples were examined microscopically, histologically, and biomechanically and via micro-computed tomography. All repairs were intact at the time of dissection, with no evidence of gapping or ruptures. Tendon-to-bone healing after repair in our chronic injury model led to reduced bone quality and morphological disorganization at the repair site compared with acute injuries and repair. SS and IS muscles were atrophic at 8 weeks after repair of chronic injuries, indicating incomplete recovery after repair, whereas SS and IS muscles exhibited less atrophy and degeneration in the acute injury group at 8 weeks after repair. After chronic injuries and repair, humeral heads had decreased total mineral density and an altered

  13. Hands-on repair of component with a lowered pool water level

    International Nuclear Information System (INIS)

    Perfect, J.F.

    1984-01-01

    The repair of a broken positioner mechanism on a TRIGA Reactor neutron collimator, with a lowered pool water level, presented a unique challenge. Radiation dose measurements were made which indicated the repair could be done safely with only 3 feet of water providing shielding over the reactor core. The entire repair project went quite well, due in large part to extensive preplanning. Repair was done safely and radiation exposures were kept well below allowable levels. Savings were significant using this method of repair compared to the alternative of dismantling the facility. (author)

  14. Hands-on repair of component with a lowered pool water level

    International Nuclear Information System (INIS)

    Perfect, J.F.

    1984-01-01

    The repair of a broken positioner mechanism on a TRIGA Reactor neutron collimator, with a lowered pool water level, presented a unique challenge. Radiation dose measurements were made which indicated the repair could be done safetly with only 3 feet of water providing shielding over the reactor core. The entire repair project went quite well, due in large part to extensive preplanning. Repair was done safely and radiation exposures were kept well below allowable levels. Savings were significant using this method of repair compared to the alternative of dismantling the facility

  15. Immobilization After Rotator Cuff Repair: What Evidence Do We Have Now?

    Science.gov (United States)

    Hsu, Jason E; Horneff, John G; Gee, Albert O

    2016-01-01

    Recurrent tears after rotator cuff repair are common. Postoperative rehabilitation after rotator cuff repair is a modifiable factor controlled by the surgeon that can affect re-tear rates. Some surgeons prefer early mobilization after rotator cuff repair, whereas others prefer a period of immobilization to protect the repair site. The tendon-healing process incorporates biochemical and biomechanical responses to mechanical loading. Healing can be optimized with controlled loading. Complete load removal and chronic overload can be deleterious to the process. Several randomized clinical studies have also characterized the role of postoperative mobilization after rotator cuff repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis.

  17. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis.

  18. Scaffolds for Tendon and Ligament Repair and Regeneration

    Science.gov (United States)

    Ratcliffe, Anthony; Butler, David L; Dyment, Nathaniel A; Cagle, Paul J; Proctor, Christopher S; Ratcliffe, Seena S; Flatow, Evan L

    2015-01-01

    Enhanced tendon and ligament repair would have a major impact on orthopaedic surgery outcomes, resulting in reduced repair failures and repeat surgeries, more rapid return to function, and reduced health care costs. Scaffolds have been used for mechanical and biologic reinforcement of repair and regeneration with mixed results. This review summarizes efforts made using biologic and synthetic scaffolds using rotator cuff and ACL as examples of clinical applications, discusses recent advances that have shown promising clinical outcomes, and provides insight into future therapy. PMID:25650098

  19. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis

  20. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis

  1. Pain following the repair of an abdominal hernia

    DEFF Research Database (Denmark)

    Hansen, Mark Berner; Andersen, Kenneth Geving; Crawford, Michael Edward

    2010-01-01

    Pain and other types of discomfort are frequent symptoms following the repair of an abdominal hernia. After 1 year, the incidence of light to moderate pain following inguinal hernia repair is as high as 10% and 2% for severe disabling chronic pain. Postoperative chronic pain not only affects......, psychosocial characteristics, and surgical procedures) related to the postoperative pain conditions. Furthermore, the mechanisms for both acute and chronic pain are presented. We focus on inguinal hernia repair, which is the most frequent type of abdominal hernia surgery that leads to chronic pain. Finally...

  2. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  3. Regulation of DNA repair by parkin

    International Nuclear Information System (INIS)

    Kao, Shyan-Yuan

    2009-01-01

    Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson's disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.

  4. Base excision repair in Archaea: back to the future in DNA repair.

    Science.gov (United States)

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Repair methods for damaged pipeline beyond diving depth

    OpenAIRE

    Mohammadi, Keramat

    2011-01-01

    Master's thesis in Offshore Technology Mechanical damage of a subsea pipeline is found as one of the most severe concern in management of pipeline integrity. The need to reach and bring the hydrocarbons from the fields located in deep and ultra-deep waters, imposes the need to improve the technologies and techniques in order to repair any unacceptable damage in pipeline. The main objective of this work is to investigate various methods for repairing a subsea pipeline that has been damaged ...

  6. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

    OpenAIRE

    Perryman, Scott V; Sylvester, Karl G

    2007-01-01

    This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the conc...

  7. Biomechanical characteristics of single-row repair in comparison to double-row repair with consideration of the suture configuration and suture material

    OpenAIRE

    Baums, M. H.; Buchhorn, G. H.; Spahn, G.; Poppendieck, B.; Schultz, W.; Klinger, H.-M.

    2008-01-01

    The aim of the study was to evaluate the time zero mechanical properties of single- versus double-row configuration for rotator cuff repair in an animal model with consideration of the stitch technique and suture material. Thirty-two fresh-frozen sheep shoulders were randomly assigned to four repair groups: suture anchor single-row repair coupled with (1) braided, nonabsorbable polyester suture sized USP No. 2 (SRAE) or (2) braided polyblend polyethylene suture sized No. 2 (SRAH). The double-...

  8. Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths

    International Nuclear Information System (INIS)

    Park, Chiyong; Lee, Hweesueng; Huh, Namsu

    2014-01-01

    In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding

  9. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    International Nuclear Information System (INIS)

    Yoshimoto, Koji; Mizoguchi, Masahiro; Hata, Nobuhiro; Murata, Hideki; Hatae, Ryusuke; Amano, Toshiyuki; Nakamizo, Akira; Sasaki, Tomio

    2012-01-01

    Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  10. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, Koji; Mizoguchi, Masahiro; Hata, Nobuhiro; Murata, Hideki; Hatae, Ryusuke; Amano, Toshiyuki; Nakamizo, Akira; Sasaki, Tomio, E-mail: kyoshimo@ns.med.kyushu-u.ac.jp [Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2012-12-05

    Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  11. Aspects of DNA repair and nucleotide pool imbalance

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R.

    1985-01-01

    Evidence that optimum repair depends on adequate pools of deoxynucleotide triphosphates (dNTPs) comes from the study of pyrimidine auxotrophs of Ustilago maydis. These strains are sensitive to UV light and X-rays, and for pyr1-1 it has been shown that the intracellular concentration of dTTP is reduced about 7-fold. The survival curve of pyr1-1 after UV-treatment, and split dose experiments with wild-type cells, provide evidence for an inducible repair mechanism, which probably depends on genetic recombination. Although inducible repair saves cellular resources, it has the disadvantage of becoming ineffective at doses which are high enough to inactivate the repressed structural gene(s) for repair enzymes. It is clear that a wide variety of repair mechanisms have evolved to remove lesions which arise either spontaneously or as a result of damage from external agents. Nevertheless, it would be incorrect to assume that all species require all possible pathways of repair. It is now well established that the accuracy of DNA and protein synthesis depends on proof-reading or editing mechanisms. Optimum accuracy levels will evolve from the balance between error avoidance in macromolecular synthesis and physiological efficiency in growth and propagation.

  12. Anterior cruciate ligament repair - past, present and future.

    Science.gov (United States)

    Mahapatra, Piyush; Horriat, Saman; Anand, Bobby S

    2018-06-15

    This article provides a detailed narrative review on the history and current concepts surrounding ligamentous repair techniques in athletic patients. In particular, we will focus on the anterior cruciate ligament (ACL) as a case study in ligament injury and ligamentous repair techniques. PubMed (MEDLINE), EMBASE and Cochrane Library databases for papers relating to primary anterior cruciate ligament reconstruction were searched by all participating authors. All relevant historical papers were included for analysis. Additional searches of the same databases were made for papers relating to biological enhancement of ligament healing. The poor capacity of the ACL to heal is one of the main reasons why the current gold standard surgical treatment for an ACL injury in an athletic patient is ACL reconstruction with autograft from either the hamstrings or patella tendon. It is hypothesised that by preserving and repairing native tissues and negating the need for autograft that primary ACL repair may represent a key step change in the treatment of ACL injuries. The history of primary ACL repair will be discussed and the circumstances that led to the near-abandonment of primary ACL repair techniques will be reviewed. There has been a recent resurgence in interest with regards to primary ACL repair. Improvements in imaging now allow for identification of tear location, with femoral-sided injuries, being more suitable for repair. We will discuss in details strategies for improving the mechanical and biological environment in order to allow primary healing to occur. In particular, we will explain mechanical supplementation such as Internal Brace Ligament Augmentation and Dynamic Intraligamentary Stabilisation techniques. These are novel techniques that aim to protect the primary repair by providing a stabilising construct that connects the femur and the tibia, thus bridging the repair. In addition, biological supplementation is being investigated as an adjunct and we will

  13. Improving Aviation Depot Level Repairable (AVDLR) Inventory and Repair Management

    National Research Council Canada - National Science Library

    Baird, Dennis

    1997-01-01

    .... Additionally, research was conducted to document the management process for determining repair requirements at the Naval Inventory Control Point Philadelphia and how those requirements are accepted...

  14. When is cartilage repair successful?

    International Nuclear Information System (INIS)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S.; Schreiner, M.M.

    2017-01-01

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [de

  15. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine

    Czech Academy of Sciences Publication Activity Database

    Šebera, Jakub; Hattori, Y.; Sato, D.; Řeha, David; Nencka, Radim; Kohno, T.; Kojima, C.; Tanaka, Y.; Sychrovský, Vladimír

    2017-01-01

    Roč. 45, č. 9 (2017), s. 5231-5242 ISSN 0305-1048 R&D Projects: GA ČR GA13-27676S Institutional support: RVO:61388963 ; RVO:61388971 Keywords : 8-oxoguanine * hOGG1 * QM/MM * NMR * base-excision repair Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 10.162, year: 2016 https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkx157

  16. Cartilage repair in the degenerative ageing knee

    Science.gov (United States)

    Brittberg, Mats; Gomoll, Andreas H; Canseco, José A; Far, Jack; Lind, Martin; Hui, James

    2016-01-01

    Background and purpose Cartilage damage can develop due to trauma, resulting in focal chondral or osteochondral defects, or as more diffuse loss of cartilage in a generalized organ disease such as osteoarthritis. A loss of cartilage function and quality is also seen with increasing age. There is a spectrum of diseases ranging from focal cartilage defects with healthy surrounding cartilage to focal lesions in degenerative cartilage, to multiple and diffuse lesions in osteoarthritic cartilage. At the recent Aarhus Regenerative Orthopaedics Symposium (AROS) 2015, regenerative challenges in an ageing population were discussed by clinicians and basic scientists. A group of clinicians was given the task of discussing the role of tissue engineering in the treatment of degenerative cartilage lesions in ageing patients. We present the outcomes of our discussions on current treatment options for such lesions, with particular emphasis on different biological repair techniques and their supporting level of evidence. Results and interpretation Based on the studies on treatment of degenerative lesions and early OA, there is low-level evidence to suggest that cartilage repair is a possible treatment for such lesions, but there are conflicting results regarding the effect of advanced age on the outcome. We concluded that further improvements are needed for direct repair of focal, purely traumatic defects before we can routinely use such repair techniques for the more challenging degenerative lesions. Furthermore, we need to identify trigger mechanisms that start generalized loss of cartilage matrix, and induce subchondral bone changes and concomitant synovial pathology, to maximize our treatment methods for biological repair in degenerative ageing joints. PMID:27910738

  17. Endovascular repair of blunt popliteal arterial injuries

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Shan; Zhang, Xiquan; Chen, Zhong; Zhu, Wei; Pan, Xiaolin [Dept. of nterventional Vascular, The 148th Hospital of Chinese People' s Liberation Army, Zibo (China); Dong, Peng; Sun, Yequan [Dept. of Medical Imaging, Weifang Medical University, Weifang (China); Qi, Deming [Dept. of Medical Imaging, Qilu Medical University, Zibo (China)

    2016-09-15

    To evaluate the feasibility and effectiveness of endovascular repair for blunt popliteal arterial injuries. A retrospective analysis of seven patients with clinical suspicion of popliteal arterial injuries that were confirmed by arteriography was performed from September 2009 to July 2014. Clinical data included demographics, mechanism of injury, type of injury, location of injury, concomitant injuries, time of endovascular procedures, time interval from trauma to blood flow restoration, instrument utilized, and follow-up. All patients were male (mean age of 35.9 ± 10.3 years). The type of lesion involved intimal injury (n = 1), partial transection (n = 2), complete transection (n = 2), arteriovenous fistula (n = 1), and pseudoaneurysm (n = 1). All patients underwent endovascular repair of blunt popliteal arterial injuries. Technical success rate was 100%. Intimal injury was treated with a bare-metal stent. Pseudoaneurysm and popliteal artery transections were treated with bare-metal stents. Arteriovenous fistula was treated with bare-metal stent and coils. No perioperative death and procedure-related complication occurred. The average follow-up was 20.9 ± 2.3 months (range 18–24 months). One patient underwent intra-arterial thrombolysis due to stent thrombosis at 18 months after the procedure. All limbs were salvaged. Stent migration, deformation, or fracture was not found during the follow-up. Endovascular repair seems to be a viable approach for patients with blunt popliteal arterial injuries, especially on an emergency basis. Endovascular repair may be effective in the short-term. Further studies are required to evaluate the long-term efficacy of endovascular repair.

  18. Fatigue behaviour study on repaired aramid fiber/epoxy composites

    Directory of Open Access Journals (Sweden)

    Edson Cocchieri Botelho

    2009-06-01

    Full Text Available Aramid fiber reinforced polymer composites have been used in a wide variety of applications, such as aerospace, marine, sporting equipment and in the defense sector, due to their outstanding properties at low density. The most widely adopted procedure to investigate the repair of composites has been by repairing damages simulated in composite specimens. This work presents the structural repair influence on tensile and fatigue properties of a typical aramid fiber/epoxy composite used in the aerospace industry. According to this work, the aramid/epoxy composites with and without repair present tensile strength values of 618 and 680MPa, respectively, and tensile modulus of 26.5 and 30.1 GPa, respectively. Therefore, the fatigue results show that in loads higher than 170 MPa, both composites present a low life cycle (lower than 200,000 cycles and the repaired aramid/epoxy composite presented low fatigue resistance in low and high cycle when compared with non-repaired composite. With these results, it is possible to observe a decrease of the measured mechanical properties of the repaired composites.

  19. DNA damage and repair in human skin in situ

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  20. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  1. Engineered Heart Repair.

    Science.gov (United States)

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  2. Mini Review: Biomaterials for Enhancing Neuronal Repair

    Science.gov (United States)

    Cangellaris, Olivia V.; Gillette, Martha U.

    2018-04-01

    As they differentiate from neuroblasts, nascent neurons become highly polarized and elongate. Neurons extend and elaborate fine and fragile cellular extensions that form circuits enabling long-distance communication and signal integration within the body. While other organ systems are developing, projections of differentiating neurons find paths to distant targets. Subsequent post-developmental neuronal damage is catastrophic because the cues for reinnervation are no longer active. Advances in biomaterials are enabling fabrication of micro-environments that encourage neuronal regrowth and restoration of function by recreating these developmental cues. This mini-review considers new materials that employ topographical, chemical, electrical, and/or mechanical cues for use in neuronal repair. Manipulating and integrating these elements in different combinations will generate new technologies to enhance neural repair.

  3. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mapping of repair genes

    International Nuclear Information System (INIS)

    Hori, Tadaaki

    1985-01-01

    Chromosome mapping of repair genes involved in U.V. sensitivity is reported. Twenty-three of 25 hybrid cells were resistant to U.V. light. Survival curves of 2 U.V.-resistant cell strains, which possessed mouse chromosomes and human chromosome No.7 - 16, were similar to those of wild strain (L5178Y). On the other hand, survival curves of U.V.-sensitive hybrid cells was analogous to those of Q31. There was a definitive difference in the frequency of inducible chromosome aberrations between U.V. resistant and sensitive mouse-human hybrid cells. U.V.-resistant cell strains possessed the ability of excision repair. Analysis of karyotype in hybrid cells showed that the difference in U.V. sensitivity is dependent upon whether or not human chromosome No.13 is present. Synteny test on esterase D-determining locus confirmed that there is an agreement between the presence of chromosome No.13 and the presence of human esterase D activity. These results led to a conclusion that human genes which compensate recessive character of U.V.-sensitive mutant strain, Q31, with mouse-human hybrid cells are located on the locus of chromosome No.13. (Namekawa, K.)

  5. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (uv) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either x-ray-like (i.e., they cause damage that XP cells can repair) or uv-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed. (U.S.)

  6. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  7. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  8. DNA repair in murine embryonic stem cells and differentiated cells

    International Nuclear Information System (INIS)

    Tichy, Elisia D.; Stambrook, Peter J.

    2008-01-01

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells

  9. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  10. [Constitutional mismatch repair deficiency syndrome

    NARCIS (Netherlands)

    Jongmans, M.C.J.; Gidding, C.E.M.; Loeffen, J.; Wesseling, P.; Mensenkamp, A.; Hoogerbrugge, N.

    2015-01-01

    BACKGROUND: Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. CASE DESCRIPTION: An 8-year-old

  11. Clamp wins pipe repair prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-04-01

    This paper describes the permanent pipeline repair system, developed by Tekmar, which is powered by seawater hydraulics and is easily installed and tested by any workclass remotely operated vehicle (rov). Details are given of the two main components of the system, namely, the diverless high pressure split repair clamp and the rov-operated tool to install it.

  12. The journey of DNA repair

    OpenAIRE

    Saini, Natalie

    2015-01-01

    21 years ago, the DNA Repair Enzyme was declared “Molecule of the Year”. Today, we are celebrating another “year of repair”, with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  13. Arthroscopic Double-Row Transosseous Equivalent Rotator Cuff Repair with a Knotless Self-Reinforcing Technique

    OpenAIRE

    Mook, William R.; Greenspoon, Joshua A.; Millett, Peter J.

    2016-01-01

    Background: Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. Methods: The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construc...

  14. INDUCTION HEATING IN HISTORY AND DEVELOPMENT. APPLICATION IN MODERN TRANSPORT REPAIRING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yu. Batyhin

    2017-06-01

    Full Text Available The technologies used in repair of vehicles were analyzed in the given paper. The shortcomings of the mechanical repair methods in question can be solved by using induction heating. Analysis of the stages of development and implementation of induction heating in industries showed effective performance of this technology and its opportunities for further improvement. An alternative repair technique, which consists in using induction heating, was proposed.

  15. Procedures for maintenance and repairs

    International Nuclear Information System (INIS)

    Pickel, E.

    1981-01-01

    After a general review of the operation experience in the history of more than 12 operating years, the organization in the plant will be shown with special aspect to quality assurance, capacity of the workshops and connected groups as radiation protection, chemical laboratories etc. The number, time intervals and manpower effort for the repeating tests will be discussed. Reasons and examples for back-fitting activities in the plant are given. Besides special repair and maintenance procedures as repair of the steam generators, in-service inspection of the reactor pressure vessel, repair of a feed-water pipe and repair of the core structure in the pressure vessel, the general system to handle maintenance and repair-work in the KWO-plant will be shown. This includes also the detailed planning of the annual refueling and revision of the plant. (orig./RW)

  16. Thermo-radiosensitivity of the granulocyte and macrophage precursor cells of mice. I.-Development of the in vivo culture and effects induced by the hyperthermia; Termo-radiosensibilidad del precursor hematopoyetico que origina las series granulocitica y macrofaga de raton. I.- Desarrollo del cultivo in vivo y efectos producidos por la hipertermia

    Energy Technology Data Exchange (ETDEWEB)

    Bueren, J A; Nieto, M

    1983-07-01

    The present report shows the agar diffusion chamber technique for culturing granulocyte- macrophage precursor cells, obtained from mice bone marrow. Diffusion chambers containing the bone marrow suspension are implanted intraperitoneally Into mice and constitute a compartment which avoids the migration of cells, but allows the transit of the mouse biological fluxes, necessary for the cellular proliferation. By means of this technique, we studied the lethal effects of the hyperthermia on the precursors and their capacity to repair sublethal damage. (Author) 129 refs.

  17. Wound repair in Pocillopora

    Science.gov (United States)

    Rodríguez-Villalobos, Jenny Carolina; Work, Thierry M.; Calderon-Aguileraa, Luis Eduardo

    2016-01-01

    Corals routinely lose tissue due to causes ranging from predation to disease. Tissue healing and regeneration are fundamental to the normal functioning of corals, yet we know little about this process. We described the microscopic morphology of wound repair in Pocillopora damicornis. Tissue was removed by airbrushing fragments from three healthy colonies, and these were monitored daily at the gross and microscopic level for 40 days. Grossly, corals healed by Day 30, but repigmentation was not evident at the end of the study (40 d). On histology, from Day 8 onwards, tissues at the lesion site were microscopically indistinguishable from adjacent normal tissues with evidence of zooxanthellae in gastrodermis. Inflammation was not evident. P. damicornis manifested a unique mode of regeneration involving projections of cell-covered mesoglea from the surface body wall that anastomosed to form gastrovascular canals.

  18. Repairing Nanoparticle Surface Defects.

    Science.gov (United States)

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Prototype fast reactor steam generator unit pressure vessel repairs

    International Nuclear Information System (INIS)

    Daniels, B.D.; Green, D.; Henderson, J.D.C.

    1993-01-01

    The prototype fast reactor at Dounreay has experienced a number of unscheduled shutdowns due to leaking reheater and superheater shell welds. There was a need to determine the cracking mechanism and to design a general repair technique simultaneously. Detailed investigations revealed that the crack locations correlated with the positions of rectification welds made at the time of vessel manufacture. A creep crack growth mechanism was identified; this requires through wall residual stress for through cracks to develop. A repair technique has been devised and successfully applied to the sites of a number of leaks. (author)

  20. Outer grid strap protruding spring repair apparatus

    International Nuclear Information System (INIS)

    Widener, W.H.

    1987-01-01

    This patent describes a nuclear fuel assembly grid spring repair apparatus for repairing a spring formed on an outer strap of a fuel assembly grid and having a portion protruding outwardly beyond the strap, the apparatus comprising: (a) a support frame defining an opening and having means defining a guide channel extending along the opening in a first direction; (b) means mounted on the frame and being adjustable for attaching the frame to the outer strap of the support grid so that the frame opening is aligned with the outwardly protruding spring on the outer strap; (c) an outer slide having a passageway defined therethrough and being mounted in the guide channel for reciprocable movement along the frame opening in the first direction for aligning the passageway with the outwardly protruding portion of the spring on the outer strap. The outer slide also has means defining a guide way extending along the passageway in a second direction generally orthogonal to the first direction; (d) a spring reset mechanism being operable for resetting the protruding spring to a nonprotruding position relative to the outer strap when the mechanism is aligned with the protruding portion of the spring; and (e) an inner slide supporting the spring reset mechanism and being mounted to the guide way for reciprocable movement along the passageway of the outer slide in the second direction for aligning the spring reset mechanism with the protruding portion of the spring on the outer strap

  1. Reward optimization of a repairable system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, I.T. [Departamento de Matematicas, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad, s/n. 10071 Caceres (Spain)]. E-mail: inmatorres@unex.es; Perez-Ocon, R. [Departamento de Estadistica e Investigacion Operativa, Facultad de Ciencias, Universidad de Granada, Avenida de Severo Ochoa, s/n. 18071 Granada (Spain)]. E-mail: rperezo@ugr.es

    2006-03-15

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures.

  2. Reward optimization of a repairable system

    International Nuclear Information System (INIS)

    Castro, I.T.; Perez-Ocon, R.

    2006-01-01

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures

  3. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Peters, L.J.

    1984-01-01

    A model is proposed for cell survival after multiple doses, when the interfraction interval is insufficient for complete Elkind repair. In the limit of ever-increasing number of ever-smaller fractional doses, the model transforms into the accumulation model of survival after continuous irradiation. When adapted to describe tissue responses to isoeffective multifractionated regimens, wherein repair is incomplete, a generalization of the usually linear plot of reciprocal total dose versus dose per fraction is obtained, in which downward curvature is evident. There is an advantage in studying tissue responses to multifractionated regimens with incomplete repair in the interfraction intervals, or continuous exposures at various dose rates since, in addition to determination of repair capacity, there is an estimate of repair kinetics. Results of analyses of previously published data are presented as illustration. Estimated from the response of three acutely responding normal tissues in the mouse (jejunum, colon and bone marrow), repair halftimes ranged from 0.3-0.9 h and values of β/delta were approximately 0.1 Gy -1 . From the response of mouse lung (LD50 for pneumonitis) to multifractionated regimens with incomplete repair, the repair halftime was estimated at 1.5 h and β/delta was 0.27 Gy -1 . In the rat spinal cord β/delta was 0.7 Gy -1 and Tsub(1/2) was 1.5 h. (U.K.)

  4. Effects of Reinforcing Fiber and Microsilica on the Mechanical and Chloride Ion Penetration Properties of Latex-Modified Fiber-Reinforced Rapid-Set Cement Concrete for Pavement Repair

    Directory of Open Access Journals (Sweden)

    Woong Kim

    2018-01-01

    Full Text Available This study evaluated the influence of reinforcement fiber type and microsilica content on the performance of latex-modified fiber-reinforced roller-compacted rapid-hardening cement concrete (LMFRCRSC for a concrete pavement emergency repair. Experimental variables were the microsilica substitution ratio (1, 2, 3, and 4%, and the reinforcement fiber (jute versus macrosynthetic fiber. In the tests, compressive, flexural, and splitting tensile strength; chloride ion penetration resistance; and abrasion resistance were assessed. From the compressive and flexural strength tests with microsilica substitution, the 4-hour curing strength decreased as the microsilica substitution ratio increased. From the chloride ion penetration test, as the microsilica substitution ratio increased, chloride ion penetration decreased. The abrasion resistances increased with the substitution ratio of microsilica increase. Based on these test results, microsilica at a substitution ratio of 3% or less and macrosynthetic fiber as the reinforcement improved the performance of LMFRCRSC for a concrete pavement emergency repair and satisfied all of the target strength requirements.

  5. Laboratory and On-Site Tests for Rapid Runway Repair

    Directory of Open Access Journals (Sweden)

    Federico Leonelli

    2017-11-01

    Full Text Available The attention to rapid pavement repair has grown fast in recent decades: this topic is strategic for the airport management process for civil purposes and peacekeeping missions. This work presents the results of laboratory and on-site tests for rapid runway repair, in order to analyse and compare technical and mechanical performances of 12 different materials currently used in airport. The study focuses on site repairs, a technique adopted most frequently than repairs with modular elements. After describing mechanical and physical properties of the examined materials (2 bituminous emulsions, 5 cement mortars, 4 cold bituminous mixtures and 1 expanding resin, the study presents the results of carried out mechanical tests. The results demonstrate that the best performing material is a one-component fast setting and hardening cement mortar with graded aggregates. This material allows the runway reopening 6 h after the work. A cold bituminous mixture (bicomponent premixed cold asphalt with water as catalyst and the ordinary cement concrete allow the reopening to traffic after 18 h, but both ensure a lower service life (1000 coverages than the cement mortar (10,000 coverages. The obtained results include important information both laboratory level and field, and they could be used by airport management bodies and road agencies when scheduling and evaluating pavement repairs.

  6. Comparison between single-row and double-row rotator cuff repair: a biomechanical study.

    Science.gov (United States)

    Milano, Giuseppe; Grasso, Andrea; Zarelli, Donatella; Deriu, Laura; Cillo, Mario; Fabbriciani, Carlo

    2008-01-01

    The aim of this study was to compare the mechanical behavior under cyclic loading test of single-row and double-row rotator cuff repair with suture anchors in an ex-vivo animal model. For the present study, 50 fresh porcine shoulders were used. On each shoulder, a crescent-shaped full-thickness tear of the infraspinatus was performed. Width of the tendon tear was 2 cm. The lesion was repaired using metal suture anchors. Shoulders were divided in four groups, according the type of repair: single-row tension-free repair (Group 1); single-row tension repair (Group 2); double-row tension-free repair (Group 3); double-row tension repair (Group 4); and a control group. Specimens were subjected to a cyclic loading test. Number of cycles at 5 mm of elongation and at failure, and total elongation were calculated. Single-row tension repair showed significantly poorest results for all the variables considered, when compared with the other groups. Regarding the mean number of cycles at 5 mm of elongation and at failure, there was a nonsignificant difference between Groups 3 and 4, and both of them were significantly greater than Group 1. For mean total elongation, the difference between Groups 1, 3, and 4 was not significant, but all of them were significantly lower than the control group. A single-row repair is particularly weak when performed under tension. Double-row repair is significantly more resistant to cyclic displacement than single-row repair in both tension-free and tension repair. Double-row repair technique can be primarily considered for large, unstable rotator cuff tears to improve mechanical strength of primary fixation of tendons to bone.

  7. Surgical repair of large cyclodialysis clefts.

    Science.gov (United States)

    Gross, Jacob B; Davis, Garvin H; Bell, Nicholas P; Feldman, Robert M; Blieden, Lauren S

    2017-05-11

    To describe a new surgical technique to effectively close large (>180 degrees) cyclodialysis clefts. Our method involves the use of procedures commonly associated with repair of retinal detachment and complex cataract extraction: phacoemulsification with placement of a capsular tension ring followed by pars plana vitrectomy and gas tamponade with light cryotherapy. We also used anterior segment optical coherence tomography (OCT) as a noninvasive mechanism to determine the extent of the clefts and compared those results with ultrasound biomicroscopy (UBM) and gonioscopy. This technique was used to repair large cyclodialysis clefts in 4 eyes. All 4 eyes had resolution of hypotony and improvement of visual acuity. One patient had an intraocular pressure spike requiring further surgical intervention. Anterior segment OCT imaging in all 4 patients showed a more extensive cleft than UBM or gonioscopy. This technique is effective in repairing large cyclodialysis clefts. Anterior segment OCT more accurately predicted the extent of each cleft, while UBM and gonioscopy both underestimated the size of the cleft.

  8. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  9. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    Science.gov (United States)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  10. Surgical management of colorectal injuries: colostomy or primary repair?

    Science.gov (United States)

    Papadopoulos, V N; Michalopoulos, A; Apostolidis, S; Paramythiotis, D; Ioannidis, A; Mekras, A; Panidis, S; Stavrou, G; Basdanis, G

    2011-10-01

    Several factors have been considered important for the decision between diversion and primary repair in the surgical management of colorectal injuries. The aim of this study is to clarify whether patients with colorectal injuries need diversion or not. From 2008 to 2010, ten patients with colorectal injuries were surgically treated by primary repair or by a staged repair. The patients were five men and five women, with median age 40 years (20-55). Two men and two women had rectal injuries, while 6 patients had colon injuries. The mechanism of trauma in two patients was firearm injuries, in two patients was a stab injury, in four patients was a motor vehicle accident, in one woman was iatrogenic injury during vaginal delivery, and one case was the transanal foreign body insertion. Primary repair was possible in six patients, while diversion was necessary in four patients. Primary repair should be attempted in the initial surgical management of all penetrating colon and intraperitoneal rectal injuries. Diversion of colonic injuries should only be considered if the colon tissue itself is inappropriate for repair due to severe edema or ischemia. The role of diversion in the management of unrepaired extraperitoneal rectal injuries and in cases with anal sphincter injuries is mandatory.

  11. Differences in mutagenic and recombinational DNA repair in enterobacteria

    International Nuclear Information System (INIS)

    Sedgwick, S.G.; Goodwin, P.A.

    1985-01-01

    The incidence of recombinational DNA repair and inducible mutagenic DNA repair has been examined in Escherichia coli and 11 related species of enterobacteria. Recombinational repair was found to be a common feature of the DNA repair repertoire of at least 6 genera of enterobacteria. This conclusion is based on observations of (i) damage-induced synthesis of RecA-like proteins, (ii) nucleotide hybridization between E. coli recA sequences and some chromosomal DNAs, and (iii) recA-negative complementation by plasmids showing SOS-inducible expression of truncated E. coli recA genes. The mechanism of DNA damage-induced gene expression is therefore sufficiently conserved to allow non-E. coli regulatory elements to govern expression of these cloned truncated E. coli recA genes. In contrast, the process of mutagenic repair, which uses umuC+ umuD+ gene products in E. coli, appeared less widespread. Little ultraviolet light-induced mutagenesis to rifampicin resistance was detected outside the genus Escherichia, and even within the genus induced mutagenesis was detected in only 3 out of 6 species. Nucleotide hybridization showed that sequences like the E. coli umuCD+ gene are not found in these poorly mutable organisms. Evolutionary questions raised by the sporadic incidence of inducible mutagenic repair are discussed

  12. Advanced inspection and repair techniques for primary side components

    International Nuclear Information System (INIS)

    Elm, Ralph

    1998-01-01

    The availability of nuclear power plant mainly depends on the components of the Nuclear Steam Supply System (NSSS) such as reactor pressure vessel, core internals and steam generators. The last decade has been characterized by intensive inspection and repair work on PWR steam generators. In the future, it can be expected, that the inspection of the reactor pressure vessel and the inspection and repair of its internals, in both PWR and BWR will be one of the challenges for the nuclear community. Due to this challenge, new, advanced inspection and repair techniques for the vital primary side components have been developed and applied, taking into account such issues as: use of reliable and fast inspection methods, repair of affected components instead of costly replacement, reduction of outage time compared to conventional methods, minimized radiation exposure, acceptable costs. This paper reflects on advanced inspection and repair techniques such as: Baffle Former Bolt inspection and replacement, Barrel Former Bolt inspection and replacement, Mechanized UT and visual inspection of reactor pressure vessels, Steam Generator repair by advanced sleeving technology. The techniques described have been successfully applied in nuclear power plants and improved the operation performance of the components and the NPP. (author). 6 figs

  13. DNA repair: a changing geography? (1964-2008).

    Science.gov (United States)

    Maisonobe, Marion; Giglia-Mari, Giuseppina; Eckert, Denis

    2013-07-01

    This article aims to explain the current state of DNA Repair studies' global geography by focusing on the genesis of the community. Bibliometric data is used to localize scientific activities related to DNA Repair at the city level. The keyword "DNA Repair" was introduced first by American scientists. It started to spread after 1964 that is to say, after P. Howard-Flanders (Yale University), P. Hanawalt (Stanford University) and R. Setlow (Oak Ridge Laboratories) found evidence for Excision Repair mechanisms. It was the first stage in the emergence of an autonomous scientific community. In this article, we will try to assess to what extent the geo-history of this scientific field is determinant in understanding its current geography. In order to do so, we will localize the places where the first "DNA Repair" publications were signed fifty years ago and the following spatial diffusion process, which led to the current geography of the field. Then, we will focus on the evolution of the research activity of "early entrants" in relation to the activity of "latecomers". This article is an opportunity to share with DNA Repair scientists some research results of a dynamic field in Science studies: spatial scientometrics. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Monogenic diseases of DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bakula, Daniela; Scheibye-Knudsen, Morten

    2017-01-01

    Maintaining the stability of the genome is essential for all organisms, and it is not surprising that damage to DNA has been proposed as an explanation for multiple chronic diseases.1-5 Conserving a pristine genome is therefore of central importance to our health. To overcome the genotoxic stress...... of a growing number of human diseases. Notably, many of these monogenic DNA-repair disorders display features of accelerated aging, supporting the notion that genome maintenance is a key factor for organismal longevity. This review focuses on the physiological consequences of loss of DNA repair, particularly...... in the context of monogenic DNA-repair diseases....

  15. Repairing and Upgrading Your PC

    CERN Document Server

    Thompson, Robert

    2009-01-01

    Repairing and Upgrading Your PC delivers start-to-finish instructions, simple enough for even the most inexperienced PC owner, for troubleshooting, repairing, and upgrading your computer. Written by hardware experts Robert Bruce Thompson and Barbara Fritchman Thompson, this book covers it all: how to troubleshoot a troublesome PC, how to identify which components make sense for an upgrade, and how to tear it all down and put it back together. This book shows how to repair and upgrade all of your PC's essential components.

  16. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  17. Effect of load on the repair of osteochondral defects using a porous polymer scaffold

    NARCIS (Netherlands)

    Hannink, G.J.; de Mulder, E.L.; Tienen, T.G. van; Buma, P.

    2012-01-01

    The aim of the present study was to evaluate if a porous polymer scaffold, currently used for partial meniscal replacement in clinical practice, could initiate regeneration and repair of osteochondral defects, and if regeneration and repair were related to mechanical stimulation. Two equally sized

  18. Functions and Dynamics of DNA Repair Proteins in Mitosis and Meiosis

    NARCIS (Netherlands)

    E.J. Uringa

    2005-01-01

    textabstractMy PhD project encompassed studies on the functions of several different proteins, all involved in DNA repair, in somatic and germ-line cells. Hr6b and Rad18Sc are involved in a DNA repair mechanism called ‘Replicative Damage Bypass’ (RDB), and function as ubiquitin conjugating

  19. Testing of self-repairing composite airplane components by use of CAI and the release of the repair chemicals from carefully inserted small tubes

    Science.gov (United States)

    Dry, Carolyn

    2007-04-01

    The research on self repair of airplane components, under an SBIR phase II with Wright Patterson Air Force Base, has investigated the attributes and best end use applications for such a technology. These attributes include issues related to manufacturability, cost, potential benefits such as weight reduction, and cost reduction. The goal of our research has been to develop self-repairing composites with unique strength for air vehicles. Our revolutionary approach involves the autonomous release of repair chemicals from within the composite matrix itself. The repair agents are contained in hollow, structural fibers that are embedded within the matrix. Under stress, the composite senses external environmental factors and reacts by releasing the repair agents from within the hollow vessels. This autonomous response occurs wherever and whenever cracking, debonding or other matrix damage transpires. Superior performance over the life of the composite is achieved through this self-repairing mechanism. The advantages to the military would be safely executed missions, fewer repairs and eventually lighter vehicles. In particular the research has addressed the issues by correlating the impact of the various factors, such as 1) delivery vessel placement, shape/size and effect on composite strength, chemicals released and their effect on the matrix, release trigger and efficacy and any impact on matrix properties 2) impact of composite processing methods that involve heat and pressure on the repair vessels. Our self repairing system can be processed at temperatures of 300-350F, repairs in less than 30 seconds and does not damage the composite by repair fiber insertion or chemical release. Scaling up and manufacture of components has revealed that anticipating potential problems allowed us to avoid those associated with processing temperatures and pressures. The presentation will focus on compression after impact testing and the placement of repair fibers/tubes into prepreg

  20. Plasma membrane disruption: repair, prevention, adaptation

    Science.gov (United States)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  1. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis.

    Science.gov (United States)

    Singh, Amandeep

    2017-12-01

    The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.

  2. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    Science.gov (United States)

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  3. Combinations of resting RSA and RSA reactivity impact maladaptive mood repair and depression symptoms.

    Science.gov (United States)

    Yaroslavsky, Ilya; Bylsma, Lauren M; Rottenberg, Jonathan; Kovacs, Maria

    2013-10-01

    We examined whether the combined indices of respiratory sinus arrhythmia at rest (resting RSA) and in response to a sad film (RSA reactivity) predict effective and ineffective responses to reduce sadness (adaptive vs. maladaptive mood repair) in women with histories of juvenile-onset depression (n=74) and no history of major mental disorders (n=75). Structural equation models were used to estimate latent resting RSA, depression, and adaptive and maladaptive mood repair and to test the study hypotheses. Results indicated that combinations of resting RSA+RSA reactivity (RSA patterns) predicted maladaptive mood repair, which in turn, mediated the effects of RSA pattern on depression. Further, RSA patterns moderated the depressogenic effects of maladaptive mood repair. RSA patterns were unrelated to adaptive mood repair. Our findings suggest that mood repair is one mechanism through which physiological vulnerabilities adversely affect mental health. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Analysis of DNA double-strand break repair pathways in mice

    International Nuclear Information System (INIS)

    Brugmans, Linda; Kanaar, Roland; Essers, Jeroen

    2007-01-01

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues

  5. Innovative repair of subsidence damage

    International Nuclear Information System (INIS)

    Marino, G.G.

    1992-01-01

    In order to improve handling of subsidence damages the Illinois Mine Subsidence Insurance Fund supported the development of novel cost-effective methods of repair. The research in developing the repairs was directed towards the most common and costly damages that had been observed. As a result repair techniques were designed for structurally cracked foundations in the tension zone; structurally cracked foundations in the compression zone; and damaged or undamaged tilted foundations. When appropriate the postulated methods would result in: 1. significant cost savings (over conventional procedures); 2. a structural capacity greater than when the foundation was uncracked; and 3. an aesthetic appeal. All the postulated repair methodologies were laboratory and/or field tested. This paper will summarize the essentials of each technique developed and the test results

  6. Umbilical hernia repair - series (image)

    Science.gov (United States)

    ... treatment. The indications for umbilical hernia repair include: incarcerated (strangulated) umbilical hernia defects not spontaneously closed by 4 to 5 years of age children under 2 with very large defects unacceptable to ...

  7. Mammalian DNA Repair. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard D.

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  9. 40 CFR 63.1005 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1005 Section 63.1005... Standards for Equipment Leaks-Control Level 1 § 63.1005 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected no later than 15 calendar days after it is detected, except as...

  10. 40 CFR 63.1024 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1024 Section 63.1024... Standards for Equipment Leaks-Control Level 2 Standards § 63.1024 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical, but not later than 15 calendar...

  11. 40 CFR 65.105 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Leak repair. 65.105 Section 65.105... FEDERAL AIR RULE Equipment Leaks § 65.105 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical but not later than 15 calendar days after it is...

  12. Service water system repair/replacement guidelines: Planning and implementation

    International Nuclear Information System (INIS)

    Frederick, G.J.; Gandy, D.W.; Peterson, A.G. Jr.; Findlan, S.J.

    1993-11-01

    Service water system failures have prompted concerns related to extended power plant operating life and plant availability. Selection and procurement of materials for repair or replacement of piping and components may be the most important factors in improving service water system reliability. The authors examined factors that contribute to reduced SWS reliability. The factors include material selection inadequacies, water treatment problems, operational/maintenance practices, fabrication procedures, environmental degradation mechanisms, and coating problems. The authors investigated material selection for replacement and repair, taking into account fabrication practices, environmental concerns, and cost comparisons of materials. They examined specific components such as piping, pumps, valves, and heat exchangers with regard to material selection and fabrication practice. Although proper material selection is essential in upgrading and maintaining the designed functions of a SWS, it is critical to address SWS repair/replacement activities with a systemwide approach. Degradation of materials in SWS applications are plant specific, depending on factors unique to each site such as geographic location, existing materials, operating procedures, and environment. All these characteristics must be addressed in making repair/replacement decisions. Criteria that must be integrated for successful long-term operation of SWS include the following: Materials selection (upgrade or in-kind replacement), Evaluation of root cause or nature of the failure mechanism, Scope of the repair/replacement activities, Material compatibility of the existing materials, Operational and maintenance procedures, Code or jurisdictional requirements, Economic considerations, Water treatment programs, System design improvements or modifications

  13. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  14. Fabrication Flaw Density and Distribution in Weld Repairs

    International Nuclear Information System (INIS)

    Doctor, Steven R.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in the U. S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different cancelled reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This paper describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs which are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. Construction records where available were reviewed. It is difficult to make conclusions due to the limited number of construction records reviewed. However, the records reviewed to date show a significant change in repair frequency over the years when the components in this study were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance.

  15. Laparoscopic Repair of Inguinal Hernias

    OpenAIRE

    Carter, Jonathan; Duh, Quan-Yang

    2011-01-01

    For patients with recurrent inguinal hernia, or bilateral inguinal hernia, or for women, laparoscopic repair offers significant advantages over open techniques with regard to recurrence risk, pain, and recovery. For unilateral first-time hernias, either laparoscopic or open repair with mesh can offer excellent results. The major drawback of laparoscopy is that the technique requires a significant number of cases to master. For surgeons in group practice, it makes sense to have one surgeon in ...

  16. Repair Types, Procedures - Part 1

    Science.gov (United States)

    2010-05-01

    Affordable Combat Aircraft, AGARD - CP -600, 1997. [17] Helbling J, Grover R and Ratwani M. M “Analysis and Structural Test of Composite Reinforcement to...considered suitable for the composite patch repair of aluminum structure. Ductile adhesives such as FM- 73 are preferred over brittle adhesives Repair Types...zone. A proper cure cycle is followed as prescribed by the adhesive manufacturer. For FM- 73 adhesive cure at 2500F (1210C) for 120 minutes is

  17. Laparoscopic repair of postoperative perineal hernia.

    LENUS (Irish Health Repository)

    Ryan, Stephen

    2010-01-01

    Perineal hernias are infrequent complications following abdominoperineal operations. Various approaches have been described for repair of perineal hernias including open transabdominal, transperineal or combined abdominoperineal repairs. The use of laparoscopic transabdominal repair of perineal hernias is not well-described. We present a case report demonstrating the benefits of laparoscopic repair of perineal hernia following previous laparoscopic abdominoperineal resection (APR) using a nonabsorbable mesh to repair the defect. We have demonstrated that the use of laparoscopy with repair of the pelvic floor defect using a non absorbable synthetic mesh offers an excellent alternative with many potential advantages over open transabdominal and transperineal repairs.

  18. Overlapping sphincteroplasty and posterior repair.

    Science.gov (United States)

    Crane, Andrea K; Myers, Erinn M; Lippmann, Quinn K; Matthews, Catherine A

    2014-12-01

    Knowledge of how to anatomically reconstruct extensive posterior-compartment defects is variable among gynecologists. The objective of this video is to demonstrate an effective technique of overlapping sphincteroplasty and posterior repair. In this video, a scripted storyboard was constructed that outlines the key surgical steps of a comprehensive posterior compartment repair: (1) surgical incision that permits access to posterior compartment and perineal body, (2) dissection of the rectovaginal space up to the level of the cervix, (3) plication of the rectovaginal muscularis, (4) repair of internal and external anal sphincters, and (5) reconstruction of the perineal body. Using a combination of graphic illustrations and live video footage, tips on repair are highlighted. The goals at the end of repair are to: (1) have improved vaginal caliber, (2) increase rectal tone along the entire posterior vaginal wall, (3) have the posterior vaginal wall at a perpendicular plane to the perineal body, (4) reform the hymenal ring, and (5) not have an overly elongated perineal body. This video provides a step-by-step guide on how to perform an overlapping sphincteroplasty and posterior repair.

  19. Scarf Repair of Composite Laminates

    Directory of Open Access Journals (Sweden)

    Xie Zonghong

    2016-01-01

    Full Text Available The use of composite materials, such as carbon-fiber reinforced plastic (CFRP composites, aero-structures has led to an increased need of advanced assembly joining and repair technologies. Adhesive bonded repairs as an alternative to recover full or part of initial strength were investigated. Tests were conducted with the objective of evaluating the effectiveness of techniques used for repairing damage fiber reinforced laminated composites. Failure loads and failure modes were generated and compared with the following parameters: scarf angles, roughness of grind tool and number of external plies. Results showed that scarf angle was the critical parameter and the largest tensile strength was observed with the smallest scarf angle. Besides, the use of external plies at the outer surface could not increase the repairs efficiency for large scarf angle. Preparing the repair surfaces by sanding them with a sander ranging from 60 to 100 grit number had significant effect on the failure load. These results allowed the proposal of design principles for repairing CFRP structures.

  20. Insights on accelerated skeletal repair in Cushing's disease

    Directory of Open Access Journals (Sweden)

    So-Young Kim

    2015-06-01

    In this patient, spontaneous recovery of trabecular bone architecture was reflected by the early correction in TBS. Subsequent TPTD treatment was associated with marked improvement in BMD, presumably due to enhanced mineralization. Complete skeletal repair was achieved by this two-step mechanism in a very short time following successful surgical treatment for Cushing's disease.

  1. Fission yeast mating-type switching: programmed damage and repair

    DEFF Research Database (Denmark)

    Egel, Richard

    2005-01-01

    Mating-type switching in fission yeast follows similar rules as in budding yeast, but the underlying mechanisms are entirely different. Whilst the initiating double-strand cut in Saccharomyces cerevisiae requires recombinational repair for survival, the initial damage in Schizosaccharomyces pombe...

  2. Room Air Conditioners; Appliance Repair--Advanced: 9027.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This Quinmester course includes installations, electrical and mechanical servicing, reverse cycle air conditioning, malfunctions, troubleshooting and repair, discharge, pump down, and recharging the system. The course may be taught as a two or three Quinmester credit course. In each instance the course consists of six instructional blocks:…

  3. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  4. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goertzen, William Kirby [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  5. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  6. Repair of ultraviolet-light-induced DNA damage in Vibrio cholerae

    International Nuclear Information System (INIS)

    Das, G.; Sil, K.; Das, J.

    1981-01-01

    Repair of ultraviolet-light-induced DNA damage in a highly pathogenic Gram-negative bacterium, Vibrio cholerae, has been examined. All three strains of V. cholerae belonging to two serotypes, Inaba and Ogawa, are very sensitive to ultraviolet irradiation, having inactivation cross-sections ranging from 0.18 to 0.24 m 2 /J. Although these cells are proficient in repairing the DNA damage by a photoreactivation mechanism, they do not possess efficient dark repair systems. The mild toxinogenic strain 154 of classical Vibrios presumably lacks any excision repair mechanism and studies of irradiated cell DNA indicate that the ultraviolet-induced pyrimidine dimers may not be excised. Ultraviolet-irradiated cells after saturation of dark repair can be further photoreactivated. (Auth.)

  7. 49 CFR 1242.42 - Administration, repair and maintenance, machinery repair, equipment damaged, dismantling retired...

    Science.gov (United States)

    2010-10-01

    ... repair, equipment damaged, dismantling retired property, fringe benefits, other casualties and insurance, lease rentals, joint facility rents, other rents, depreciation, joint facility, repairs billed to others... maintenance, machinery repair, equipment damaged, dismantling retired property, fringe benefits, other...

  8. Protein damage and repair controlling seed vigor and longevity.

    Science.gov (United States)

    Ogé, Laurent; Broyart, Caroline; Collet, Boris; Godin, Béatrice; Jallet, Denis; Bourdais, Gildas; Job, Dominique; Grappin, Philippe

    2011-01-01

    The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein L: -isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.

  9. Modeling for prediction of restrained shrinkage effect in concrete repair

    International Nuclear Information System (INIS)

    Yuan Yingshu; Li Guo; Cai Yue

    2003-01-01

    A general model of autogenous shrinkage caused by chemical reaction (chemical shrinkage) is developed by means of Arrhenius' law and a degree of chemical reaction. Models of tensile creep and relaxation modulus are built based on a viscoelastic, three-element model. Tests of free shrinkage and tensile creep were carried out to determine some coefficients in the models. Two-dimensional FEM analysis based on the models and other constitutions can predict the development of tensile strength and cracking. Three groups of patch-repaired beams were designed for analysis and testing. The prediction from the analysis shows agreement with the test results. The cracking mechanism after repair is discussed

  10. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  11. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Otterlei, Marit; Pena Diaz, Javier

    2004-01-01

    Nuclear uracil-DNA glycosylase UNG2 has an established role in repair of U/A pairs resulting from misincorporation of dUMP during replication. In antigen-stimulated B-lymphocytes UNG2 removes uracil from U/G mispairs as part of somatic hypermutation and class switch recombination processes. Using......, PCNA and DNA ligase, the latter detected as activity. Short-patch repair was the predominant mechanism both in extracts and UNG2-ARC from proliferating and less BER-proficient growth-arrested cells. Repair of U/G mispairs and U/A pairs was completely inhibited by neutralizing UNG...

  12. Imaging of cartilage repair procedures

    International Nuclear Information System (INIS)

    Sanghvi, Darshana; Munshi, Mihir; Pardiwala, Dinshaw

    2014-01-01

    The rationale for cartilage repair is to prevent precocious osteoarthritis in untreated focal cartilage injuries in the young and middle-aged population. The gamut of surgical techniques, normal postoperative radiological appearances, and possible complications have been described. An objective method of recording the quality of repair tissue is with the magnetic resonance observation of cartilage repair tissue (MOCART) score. This scoring system evaluates nine parameters that include the extent of defect filling, border zone integration, signal intensity, quality of structure and surface, subchondral bone, subchondral lamina, and records presence or absence of synovitis and adhesions. The five common techniques of cartilage repair currently offered include bone marrow stimulation (microfracture or drilling), mosaicplasty, synthetic resorbable scaffold grafts, osteochondral allograft transplants, and autologous chondrocyte implantation (ACI). Complications of cartilage repair procedures that may be demonstrated on magnetic resonance imaging (MRI) include plug loosening, graft protuberance, graft depression, and collapse in mosaicplasty, graft hypertrophy in ACI, and immune response leading to graft rejection, which is more common with synthetic grafts and cadaveric allografts

  13. Reprogramming Cells for Brain Repair

    Directory of Open Access Journals (Sweden)

    Randall D. McKinnon

    2013-08-01

    Full Text Available At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair.

  14. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R. van [KemaPower Generation, Arnhem (Netherlands)

    1998-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  15. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities.

    Science.gov (United States)

    Soll, Jennifer M; Sobol, Robert W; Mosammaparast, Nima

    2017-03-01

    Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so-called 'epigenetic' adducts. Here, we discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Properties shaping and repair of selected types of cast iron

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2007-04-01

    Full Text Available The paper presents research results of twofold use of TIG - Tungsten Inert Gas also known as GTA - Gas Tungsten Arc. First is surfacing by welding on cold and hot-cold to repair chromium cast iron with chromium content about 15%. Second is remelting with electric arc of selected gray (with pearlitic matrix and ductile (with ferritic-pearlitic matrix cast iron. Repair of cast iron elements was realized in order to cut out a casting defects. Defects decrease a usability of castings for constructional application and increase a manufacturing costs. Application of surface heat treatment guarantees mechanical properties i.e. hardness and wear resistance improvement. The result of investigations show possibility of castings repair by put on defects a good quality padding welds, which have comparable properties with base material. Use of electric arc surface heat treatment resulted in increase of hardness and wear resistance, which was measured on the basis of ASTM G 65 - 00 standard.

  17. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R van [KemaPower Generation, Arnhem (Netherlands)

    1999-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  18. Repairing methods of steam turbine blades using welding procedures

    International Nuclear Information System (INIS)

    Mazur, Z.; Cristalinas, V.; Kubiak, J.

    1995-01-01

    The steam turbine blades are subjected to the natural permanent wear or damage, which may be of mechanical or metallurgical origin. The typical damage occurring during the lifetime of turbine blading may be erosion, corrosion, foreign objects damage, rubbing and cracking caused by high cycle fatigue and creep crack growth. The nozzle and diaphragm vanes (stationary blades) of the steam turbine are elements whose damage is commonly occurring and they require special repair processes. The damage of the blade trailing edge of nozzle and diaphragm vanes, due to the former causes, may be refurbished by welding deposits or stainless steel inserts welded to the blades. Both repair methods of the stationary steam turbine blades are presented. The results of the blades refurbishment are an increase of the turbine availability, reliability and efficiency, and a decrease of the risk that failure will occur. Also, the repair cost versus the spare blades cost represent significant reduction of expenditure. 7 refs

  19. Integrated technique of planning the capital repair of residential buildings and objects of transport infrastructure

    Science.gov (United States)

    Dement'eva, Marina

    2017-10-01

    The paper presents the results of a comparative analysis of two fundamentally different methods for planning capital repairs of objects of transport infrastructure and residential development. The first method was based on perspective long-term plans. Normative service life were the basis for planning the periodicity of repairs. The second method was based on the performance of repairs in fact of the onset of the malfunction. Problems of financing repair work, of the uneven aging of constructs and engineering systems, different wear mechanism in different conditions of exploitation, absence of methods of planning repairs of administrative and production buildings (depots, stations, etc.) justify the need to optimize methods of planning the repair and the relevance of this paper. The aim of the study was to develop the main provisions of an integrated technique for planning the capital repair of buildings of any functional purpose, which combines the advantages of each of the discussed planning methods. For this purpose, the consequences of technical and economic risk were analyzed of the buildings, including stations, depots, transport transfer hubs, administrative buildings, etc when choosing different planning methods. One of the significant results of the study is the possibility of justifying the optimal period of capital repairs on the basis of the proposed technical and economic criteria. The adjustment of the planned repair schedule is carried out taking into account the reliability and cost-effectiveness of the exploitation process.

  20. DNA repair in human cells: Methods for the determination of calmodulin involvement

    International Nuclear Information System (INIS)

    Charp, P.A.

    1987-01-01

    Exposure of DNA to either physical or chemical agents can result in the formation of a number of different lesions which must be repaired enzymatically in order for DNA to carry on normal replication and transcription. In most cases, the enzymes involved in this repair of damaged DNA include endonucleases, exonucleases, glycosylases, polymerases, and ligases. Each group of enzymes is involved in precise steps in DNA repair. Exposure to physical agents such as ultraviolet light (UV) at a wavelength of 254 nm is repaired by two distinct and different mechanisms. One mode of enzymatic repair of pyrimidine dimers is accomplished in situ by photoreactivation of UV-induced pyrimidine dimers by photoreactivating light. The second mode of enzymatic repair is the excision repair of pyrimidine dimers involving several different enzymes including endonuclease, exonuclease, and DNA ligase. A summary of the sequence of enzymatic steps involved is shown. It has been observed that specific drugs which bind to and alter the action of calmodulin in cells block DNA synthesis. This suggests that calmodulin may play a role both in normal DNA replication and repair. Others using an indirect method measuring the degree of DNA nucleoid sedimentation, showed that the specific anti-calmodulin agent W-13 slowed the rate of DNA repair. Others showed that DNA synthesis in T51B rat liver cells could be blocked with the addition of either chlorpromazine or trifluoperazine

  1. Specificity and completeness of inhibition of DNA repair by novobiocin and aphidicolin

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1982-01-01

    Novobiocin and aphidicolin were both potent inhibitors of excision repair of u.v.-induced damage to DNA in human embryonic fibroblasts, and both also inhibited semiconservative DNA replication even more strongly. The mechanism of action of these two drugs is, however, different. Novobiocin inhibited repair replication without accumulating single-strand breaks, but aphidicolin inhibited repair replication with the accumulation of numerous single-strand breaks. Novobiocin appears to inhibit repair at an earlier stage than aphidicolin, which may indicate that DNA topoisomerases play a role in eukaryotic DNA repair. Digestion of DNA by exonuclease III indicated that repair patches in novobiocin-treated cells contained no excess 3'OH termini, whereas up to 40% of the repaired DNA in aphidicolin-treated cells had free 3'OH termini. Therefore, although aphidicolin resulted in the accumulation of single-strand breaks, many of the repair events escaped inhibition and the number of breaks is an underestimate of the true number of repair events

  2. Functional significance of periostin in excisional skin repair: Is the devil in the detail?

    OpenAIRE

    Elliott, Christopher G.; Kim, Shawna S.; Hamilton, Douglas W.

    2012-01-01

    In the past year, three papers have been published exploring the role of the matricellular protein periostin in excisional skin repair. These papers all show a delay in wound closure and the kinetics of this delay are strikingly similar across the three reports. The similarities between these papers end, however, when each investigates the mechanism through which periostin influences skin repair. Three proposed mechanisms have been identified: (1) myofibroblast differentiation, (2) keratinocy...

  3. Assessing Worker Exposures during Composite Material and Fiberglass Repair: A Special

    Science.gov (United States)

    2015-01-01

    OEEL, without regard to the use of respirators, shall have shower facilities or other suitable decontamination available [32]. 6.4.2 Dust Removal...use mechanically fastened aluminum or stainless steel patches to repair composite material damage, or repair the composite material damage using...world CBRN environment. If the vacuum mechanism of ventilated tools becomes contaminated with radioactive particulates or chemical/biological agents

  4. Repair-oriented classification of aortic insufficiency: impact on surgical techniques and clinical outcomes.

    Science.gov (United States)

    Boodhwani, Munir; de Kerchove, Laurent; Glineur, David; Poncelet, Alain; Rubay, Jean; Astarci, Parla; Verhelst, Robert; Noirhomme, Philippe; El Khoury, Gébrine

    2009-02-01

    Valve repair for aortic insufficiency requires a tailored surgical approach determined by the leaflet and aortic disease. Over the past decade, we have developed a functional classification of AI, which guides repair strategy and can predict outcome. In this study, we analyze our experience with a systematic approach to aortic valve repair. From 1996 to 2007, 264 patients underwent elective aortic valve repair for aortic insufficiency (mean age - 54 +/- 16 years; 79% male). AV was tricuspid in 171 patients bicuspid in 90 and quadricuspid in 3. One hundred fifty three patients had type I dysfunction (aortic dilatation), 134 had type II (cusp prolapse), and 40 had type III (restrictive). Thirty six percent (96/264) of the patients had more than one identified mechanism. In-hospital mortality was 1.1% (3/264). Six patients experienced early repair failure; 3 underwent re-repair. Functional classification predicted the necessary repair techniques in 82-100% of patients, with adjunctive techniques being employed in up to 35% of patients. Mid-term follow up (median [interquartile range]: 47 [29-73] months) revealed a late mortality rate of 4.2% (11/261, 10 cardiac). Five year overall survival was 95 +/- 3%. Ten patients underwent aortic valve reoperation (1 re-repair). Freedoms from recurrent Al (>2+) and from AV reoperation at 5 years was 88 +/- 3% and 92 +/- 4% respectively and patients with type I (82 +/- 9%; 93 +/- 5%) or II (95 +/- 5%; 94 +/- 6%) had better outcomes compared to type III (76 +/- 17%; 84 +/- 13%). Aortic valve repair is an acceptable therapeutic option for patients with aortic insufficiency. This functional classification allows a systematic approach to the repair of Al and can help to predict the surgical techniques required as well as the durability of repair. Restrictive cusp motion (type III), due to fibrosis or calcification, is an important predictor for recurrent Al following AV repair.

  5. Electrosleeve process for in-situ nuclear steam generator repair

    International Nuclear Information System (INIS)

    Barton, R.A.; Moran, T.E.; Renaud, E.

    1997-01-01

    Degradation of steam generator (SG) tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced out-ages, unit de-rating, SG replacement or even the permanent shutdown of a reactor. In response to the onset of SG tubing degradation at Ontario Hydro's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for SG tubing repair and the unique properties of the advanced sleeve material. The successful installation of Electrosleeves that have been in service for more than three years in Alloy 400 SG tubing at the Pickering-5 CANDU unit, the more recent extension of the technology to Alloy 600 and its demonstration in a U.S. pressurized water reactor (PWR), is presented. A number of PWR operators have requested plant operating technical specification changes to permit Electrosleeve SG tube repair. Licensing of the Electrosleeve by the U.S. Nuclear Regulatory Commission (NRC) is expected imminently. (author)

  6. The current state of eukaryotic DNA base damage and repair.

    Science.gov (United States)

    Bauer, Nicholas C; Corbett, Anita H; Doetsch, Paul W

    2015-12-02

    DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  8. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  9. Augmentation of Rotator Cuff Repair With Soft Tissue Scaffolds

    Science.gov (United States)

    Thangarajah, Tanujan; Pendegrass, Catherine J.; Shahbazi, Shirin; Lambert, Simon; Alexander, Susan; Blunn, Gordon W.

    2015-01-01

    Background Tears of the rotator cuff are one of the most common tendon disorders. Treatment often includes surgical repair, but the rate of failure to gain or maintain healing has been reported to be as high as 94%. This has been substantially attributed to the inadequate capacity of tendon to heal once damaged, particularly to bone at the enthesis. A number of strategies have been developed to improve tendon-bone healing, tendon-tendon healing, and tendon regeneration. Scaffolds have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects but may not possess situation-specific or durable mechanical and biological characteristics. Purpose To provide an overview of the biology of tendon-bone healing and the current scaffolds used to augment rotator cuff repairs. Study Design Systematic review; Level of evidence, 4. Methods A preliminary literature search of MEDLINE and Embase databases was performed using the terms rotator cuff scaffolds, rotator cuff augmentation, allografts for rotator cuff repair, xenografts for rotator cuff repair, and synthetic grafts for rotator cuff repair. Results The search identified 438 unique articles. Of these, 214 articles were irrelevant to the topic and were therefore excluded. This left a total of 224 studies that were suitable for analysis. Conclusion A number of novel biomaterials have been developed into biologically and mechanically favorable scaffolds. Few clinical trials have examined their effect on tendon-bone healing in well-designed, long-term follow-up studies with appropriate control groups. While there is still considerable work to be done before scaffolds are introduced into routine clinical practice, there does appear to be a clear indication for their use as an interpositional graft for large and massive retracted rotator cuff tears and when repairing a poor-quality degenerative tendon. PMID:26665095

  10. Incore inspection and repairing device

    International Nuclear Information System (INIS)

    Ito, Arata; Kimura, Motohiko

    1998-01-01

    The present invention provides a device for inspecting and repairing the inside of a reactor container even if it is narrow, with no trouble by using a swimming-type operation robot. Namely, the device of the present invention conducts inspection and repairing operations for the inside of the reactor by introducing a swimming type operation robot into the reactor container. The swimming-type operation robot comprises a robot main body having a propeller, a balancer operably disposed to the robot main body and an inspection and repairing unit attached detachable to the balancer. In the device of the present invention, since the inspection and preparing unit is attached detachably to the swimming robot, a robot which transports tools is formed as a standard product. As a result, the production cost can be reduced, and the reliability of products can be improved. Appropriate operations can be conducted by using best tools. (I.S.)

  11. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  12. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  13. Pulmonary function in automobile repair workers

    Directory of Open Access Journals (Sweden)

    Chattopadhyay O

    2007-01-01

    Full Text Available Background : Automobile repair shop is a place where workers are exposed to harmful chemicals and toxic substances. Objective : To study the occurrence of obstructive and restrictive pulmonary impairment among automobile garage workers. Methods : A cross sectional study involving 151 automobile garage workers from 14 randomly selected garages of urban Kolkata. The study variables were Forced Expiratory Volume in 1 second (FEV 1 , Forced Vital Capacity (FVC, Peak Expiratory Flow Rate (PE FR, age, smoking habit, duration of work, type of work, and respiratory symptoms. The study was analysed using Regression equations, and Chi-square test. Results : All the workers were male. Obstructive impairment was seen in 25.83% of the workers whereas restrictive impairment was seen in 21.19% of the workers. Mixed obstructive and restrictive impairment was seen in 10.6% of the workers. The frequency of obstructive impairment was higher in older workers. In the age group of less than 20 years, 13.6% of the workers had obstructive impairment while 42.86% of workers above 40 years of age had obstructive impairment. Obstructive impairment was more frequently observed in battery repair workers (58.33% and spray painters (37.5% while 16.67% of the body repair workers and 30.19% of the engine mechanics had obstructive impairment. Obstructive impairment was more frequently observed in smokers (53.1 % as compared to ex-smokers (33.3% and non-smokers (6.4%. Obstructive impairment was more frequently observed in workers who had been working for a longer duration. Conclusion: Nearly 36.4% of the automobile garage workers had some form of pulmonary function impairment; obstructive and/or restrictive. The use of personal protective equipment, worker education, and discontinuation of the use of paints containing toxic pigments are recommended.

  14. Modified repair in patients with Ebstein's anomaly.

    Science.gov (United States)

    Nagdyman, Nicole; Ewert, Peter; Komoda, Takeshi; Alexi-Meskisvili, Vladimir; Weng, Yuguo; Berger, Felix; Hetzer, Roland

    2010-05-01

    Since 1988, a modified repair technique has been used at the authors' institution to treat patients with Ebstein's anomaly. This technique restructures the valve mechanism at the level of the true tricuspid annulus by using the most mobile leaflet for valve closure, without plication of the atrialized chamber. A total of 19 patients had additional attachment of the anterior right ventricular wall to the interventricular septum (Sebening's stitch) and reconstruction of the tricuspid valve as a double-orifice valve. The long-term results of the study are presented. Between 1988 and 2008, tricuspid valve repair was performed in 50 patients with Ebstein's anomaly (33 females, 17 males; median age 22 years; range: 0.6 to 60 years), at the authors' institution. The median follow up was 68 months (range: 5 to 238) months. Details of the survival rate, reoperations, NYHA class, maximal VO2, right ventricular function (velocity-time integral pulmonary artery (VTI-PA)), and tricuspid valve insufficiency were documented. No patient deaths occurred during surgery; the early mortality was 7.1%, and late mortality 2.4%. Those patients who died were all aged > 50 years, and in NYHA class III or IV. No additional patient deaths have occurred since 2004. Four reoperations were necessary. Both, the NYHA class and tricuspid valve insufficiency were improved significantly (from 3.1 to 1.8; p tricuspid repair, without plication of the right ventricle, even in cases where tricuspid valve replacement was discussed. Modifications seemed to support these results. Surgery in older patients with a progressive NYHA class seemed to carry a higher operative mortality.

  15. Repairing a steam generator tube by inserting a sheath

    International Nuclear Information System (INIS)

    Gaudin, J.P.

    1986-01-01

    According to the invention, the mechanical deformation of the sheath, realized by expansion in its end part opposite to the expanded end within the tube plate, is situated along a limited height, and the parameters of the said mechanical deformation are calculated according to the welding parameters applied consecutively. Besides, the said welding parameters are determined according to the initial mechanical deformation to obtain stress relaxation more particularly in the singular zones of the mechanical deformation. The present invention applies to the repair of PWR steam generator tubes [fr

  16. Primary unilateral cleft lip repair

    OpenAIRE

    Adenwalla, H. S.; Narayanan, P. V.

    2009-01-01

    The unilateral cleft lip is a complex deformity. Surgical correction has evolved from a straight repair through triangular and quadrilateral repairs to the Rotation Advancement Technique of Millard. The latter is the technique followed at our centre for all unilateral cleft lip patients. We operate on these at five to six months of age, do not use pre-surgical orthodontics, and follow a protocol to produce a notch-free vermillion. This is easy to follow even for trainees. We also perform clos...

  17. Deficiency of Double-Strand DNA Break Repair Does Not Impair Mycobacterium tuberculosis Virulence in Multiple Animal Models of Infection

    OpenAIRE

    Heaton, Brook E.; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C.; Glickman, Michael S.

    2014-01-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA bre...

  18. Resident enhanced repair: novel repair process action on plasmid DNA transformed into Escherichia coli K-12

    International Nuclear Information System (INIS)

    Strike, P.; Roberts, R.J.

    1982-01-01

    The survival of UV-irradiated DNA of plasmid NTP16 was monitored after its transformation into recipient cells containing an essentially homologous undamaged plasmid, pLV9. The presence of pLV9 resulted in a substantial increase in the fraction of damaged NTP16 molecules which survived in the recipient cells. This enhanced survival requires the host uvrA + and uvrB + gene products, but not the host recA + gene product. The requirement for both homologous DNA and the uvrA + gene products suggests that a novel repair process may act on plasmid DNA. Possible mechanisms for this process are considered

  19. ROCLA robots repaired after tough times

    CERN Multimedia

    2004-01-01

    The team of five welders and five mechanics, represented by Pascal Mésenge (right) and Fabrice Multon (left), worked during two week-ends to repair the two ROCLA. At the centre, Oliver Boettcher, technical manager for the robot. The two LHC magnet transport robots ROCLA have recently been repaired after cracks were found in the welds of their load-bearing structure. The Safety Commission suspended the use of one robot and limited the operation conditions of the other. These vehicles are used intensively for the transport of the LHC cryodipoles between the test and the assembly facilities SM18 and SMA18. As a consequence, a speedy solution had to be implemented to minimize the potential disruption to the LHC schedule. Appropriate CERN resources were immediately focused on the problem. As soon as TS/MME had designed a reinforced gantry support, the necessary raw material was ordered. Less than 10 days were required to get the two ROCLA robots operating again. This included 2 full weekends, many extra hours a...

  20. Outreach Materials for the Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  1. Intern's Experiences with Episiotomy and its Repair

    African Journals Online (AJOL)

    repair is inadequately done, it may leave the woman suffering from perineal pain and other long term conditions with serious impact on the .... The maternity section had an average of ... with the job of performing episiotomy repair necessitating.

  2. Nucleotide excision repair in the test tube.

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan)

    1995-01-01

    textabstractThe eukaryotic nucleotide excision-repair pathway has been reconstituted in vitro, an achievement that should hasten the full enzymological characterization of this highly complex DNA-repair pathway.

  3. Chemotherapeutic Drugs: DNA Damage and Repair in Glioblastoma.

    Science.gov (United States)

    Annovazzi, Laura; Mellai, Marta; Schiffer, Davide

    2017-05-26

    Despite improvements in therapeutic strategies, glioblastoma (GB) remains one of the most lethal cancers. The presence of the blood-brain barrier, the infiltrative nature of the tumor and several resistance mechanisms account for the failure of current treatments. Distinct DNA repair pathways can neutralize the cytotoxicity of chemo- and radio-therapeutic agents, driving resistance and tumor relapse. It seems that a subpopulation of stem-like cells, indicated as glioma stem cells (GSCs), is responsible for tumor initiation, maintenance and recurrence and they appear to be more resistant owing to their enhanced DNA repair capacity. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis and in the modulation of therapeutic treatment effects. In this review, we try to summarize the knowledge concerning the main molecular mechanisms involved in the removal of genotoxic lesions caused by alkylating agents, emphasizing the role of GSCs. Beside their increased DNA repair capacity in comparison with non-stem tumor cells, GSCs show a constitutive checkpoint expression that enables them to survive to treatments in a quiescent, non-proliferative state. The targeted inhibition of checkpoint/repair factors of DDR can contribute to eradicate the GSC population and can have a great potential therapeutic impact aiming at sensitizing malignant gliomas to treatments, improving the overall survival of patients.

  4. Skull repair materials applied in cranioplasty: History and progress

    Institute of Scientific and Technical Information of China (English)

    Qingsheng Yu; Lin Chen; Zhiye Qiu; Yuqi Zhang; Tianxi Song; Fuzhai Cui

    2017-01-01

    The skull provides protection and mechanical support, and acts as a container for the brain and its accessory organs. Some defects in the skull can fatally threaten human life. Many efforts have been taken to repair defects in the skull, among which cranioplasty is the most prominent technique. To repair the injury, numerous natural and artificial materials have been adopted by neurosurgeons. Many cranioprostheses have been tried in the past decades, from autoplast to bioceramics. Neurosurgeons have been evaluating their advantages andshortages through clinical practice. Among those prostheses, surgeons gradually prefer bionic ones due to their marvelous osteoconductivity, osteoinductivity, biocompatibility,and biodegradability. Autogeneic bone has been widely recognized as the"gold standard" for renovating large-sized bone defects. However, the access to this technique is restricted by limited availability and complications associated with its use. Many metal and polymeric materials with mechanical characteristics analogous to natural bones were consequently applied to cranioplasty. But most of them were unsatisfactory concerning osteoconductiion and biodegradability owe to their intrinsic properties. With the microstructures almost identical to natural bones, mineralized collagen hasbiological performance nearly identical to autogeneic bone, such as osteoconduction. Implants made of mineralized collagen can integrate themselves into the newly formed bones through a process called"creeping substitution". In this review, the authors retrospect the evolution of skull repair material applied in cranioplasty. The ultimate skull repair material should have microstructure and bioactive qualities that enable osteogenesis induction and intramembranous ossification.

  5. A model for investigating developmental eye repair in Xenopus laevis.

    Science.gov (United States)

    Kha, Cindy X; Son, Philip H; Lauper, Julia; Tseng, Kelly Ai-Sun

    2018-04-01

    Vertebrate eye development is complex and requires early interactions between neuroectoderm and surface ectoderm during embryogenesis. In the African clawed frog, Xenopus laevis, individual eye tissues such as the retina and lens can undergo regeneration. However, it has been reported that removal of either the specified eye field at the neurula stage or the eye during tadpole stage does not induce replacement. Here we describe a model for investigating Xenopus developmental eye repair. We found that tailbud embryos can readily regrow eyes after surgical removal of over 83% of the specified eye and lens tissues. The regrown eye reached a comparable size to the contralateral control by 5 days and overall animal development was normal. It contained the expected complement of eye cell types (including the pigmented epithelium, retina and lens), and is connected to the brain. Our data also demonstrate that apoptosis, an early mechanism that regulates appendage regeneration, is also required for eye regrowth. Treatment with apoptosis inhibitors (M50054 or NS3694) blocked eye regrowth by inhibiting caspase activation. Together, our findings indicate that frog embryos can undergo successful eye repair after considerable tissue loss and reveals a required role for apoptosis in this process. Furthermore, this Xenopus model allows for rapid comparisons of productive eye repair and developmental pathways. It can also facilitate the molecular dissection of signaling mechanisms necessary for initiating repair. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Regression Models for Repairable Systems

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2015-01-01

    Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

  7. Microwave Oven Repair. Teacher Edition.

    Science.gov (United States)

    Smreker, Eugene

    This competency-based curriculum guide for teachers addresses the skills a technician will need to service microwave ovens and to provide customer relations to help retain the customer's confidence in the product and trust in the service company that performs the repair. The guide begins with a task analysis, listing 20 cognitive tasks and 5…

  8. Pure robotic retrocaval ureter repair

    Directory of Open Access Journals (Sweden)

    Ashok k. Hemal

    2008-12-01

    Full Text Available PURPOSE: To demonstrate the feasibility of pure robotic retrocaval ureter repair. MATERIALS AND METHODS: A 33 year old female presented with right loin pain and obstruction on intravenous urography with the classical "fish-hook" appearance. She was counseled on the various methods of repair and elected to have a robot assisted repair. The following steps are performed during a pure robotic retrocaval ureter repair. The patient is placed in a modified flank position, pneumoperitoneum created and ports inserted. The colon is mobilized to expose the retroperitoneal structures: inferior vena cava, right gonadal vein, right ureter, and duodenum. The renal pelvis and ureter are mobilized and the renal pelvis transected. The ureter is transposed anterior to the inferior vena cava and a pyelopyelostomy is performed over a JJ stent. RESULTS: This patient was discharged on postoperative day 3. The catheter and drain tube were removed on day 1. Her JJ stent was removed at 6 weeks postoperatively. The postoperative intravenous urography at 3 months confirmed normal drainage of contrast medium. CONCLUSION: Pure robotic retrocaval ureter is a feasible procedure; however, there does not appear to be any great advantage over pure laparoscopy, apart from the ergonomic ease for the surgeon as well the simpler intracorporeal suturing.

  9. Discrete time analysis of a repairable machine

    OpenAIRE

    Alfa, Attahiru Sule; Castro, I. T.

    2002-01-01

    We consider, in discrete time, a single machine system that operates for a period of time represented by a general distribution. This machine is subject to failures during operations and the occurrence of these failures depends on how many times the machine has previously failed. Some failures are repairable and the repair times may or may not depend on the number of times the machine was previously repaired. Repair times also have a general distribution. The operating times...

  10. Repair of steam turbines by welding

    International Nuclear Information System (INIS)

    Bohnstedt, H.J.; Loebert, P.

    1987-01-01

    In some cases, turbine parts can be repaired by welding, even rotating parts such as the shaft or the blades. Practical examples of successful repair work are explained, as for instance: welding of the last web of the turbine wheel of two MD-rotors, repair of erosion damage on turbine blades, of solid-matter erosion on a medium-pressure blading, or welding repair of a high-pressure turbine casing. (DG) [de

  11. DNA Damage Repair System in Plants: A Worldwide Research Update.

    Science.gov (United States)

    Gimenez, Estela; Manzano-Agugliaro, Francisco

    2017-10-30

    Living organisms are usually exposed to various DNA damaging agents so the mechanisms to detect and repair diverse DNA lesions have developed in all organisms with the result of maintaining genome integrity. Defects in DNA repair machinery contribute to cancer, certain diseases, and aging. Therefore, conserving the genomic sequence in organisms is key for the perpetuation of life. The machinery of DNA damage repair (DDR) in prokaryotes and eukaryotes is similar. Plants also share mechanisms for DNA repair with animals, although they differ in other important details. Plants have, surprisingly, been less investigated than other living organisms in this context, despite the fact that numerous lethal mutations in animals are viable in plants. In this manuscript, a worldwide bibliometric analysis of DDR systems and DDR research in plants was made. A comparison between both subjects was accomplished. The bibliometric analyses prove that the first study about DDR systems in plants (1987) was published thirteen years later than that for other living organisms (1975). Despite the increase in the number of papers about DDR mechanisms in plants in recent decades, nowadays the number of articles published each year about DDR systems in plants only represents 10% of the total number of articles about DDR. The DDR research field was done by 74 countries while the number of countries involved in the DDR & Plant field is 44. This indicates the great influence that DDR research in the plant field currently has, worldwide. As expected, the percentage of studies published about DDR systems in plants has increased in the subject area of agricultural and biological sciences and has diminished in medicine with respect to DDR studies in other living organisms. In short, bibliometric results highlight the current interest in DDR research in plants among DDR studies and can open new perspectives in the research field of DNA damage repair.

  12. Arthroscopic Double-Row Transosseous Equivalent Rotator Cuff Repair with a Knotless Self-Reinforcing Technique.

    Science.gov (United States)

    Mook, William R; Greenspoon, Joshua A; Millett, Peter J

    2016-01-01

    Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears.

  13. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair

    DEFF Research Database (Denmark)

    Smeenk, Godelieve; Mailand, Niels

    2016-01-01

    accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms...... for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance....... In this review, we provide a comprehensive account of how DSB-induced histone ubiquitylation is sensed, decoded and modulated by an elaborate array of repair factors and regulators. We discuss how these mechanisms impact DSB repair pathway choice and functionality for optimal protection of genome integrity...

  14. DNA replication and post-replication repair in U.V.-sensitive mouse neuroblastoma cells

    International Nuclear Information System (INIS)

    Lavin, M.F.; McCombe, P.; Kidson, C.

    1976-01-01

    Mouse neuroblastoma cells differentiated when grown in the absence of serum; differentiation was reversed on the addition of serum. Differentiated cells were more sensitive to U.V.-radiation than proliferating cells. Whereas addition of serum to differentiated neuroblastoma cells normally resulted in immediate, synchronous entry into S phase, irradiation just before the addition of serum resulted in a long delay in the onset of DNA replication. During this lag period, incorporated 3 H-thymidine appeared in the light density region of CsCl gradients, reflecting either repair synthesis or abortive replication. Post-replication repair (gap-filling) was found to be present in proliferating cells and at certain times in differentiated cells. It is suggested that the sensitivity of differentiated neuroblastoma cells to U.V.-radiation may have been due to ineffective post-replication repair or to deficiencies in more than one repair mechanism, with reduction in repair capacity beyond a critical threshold. (author)

  15. Role of repair saturation in the response of plateau-phase Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Braby, L.A.; Nelson, J.M.; Metting, N.F.

    1987-01-01

    Two repair rates are seen in split-dose experiments on starved plateau-phase CHO cells. It has been assumed that this indicates two different processes repairing two distinct types of sublethal damage. However results of experiments at different dose levels are not consistent with models that assume that the damage is entirely sublethal. Another hypothesis that has been considered is the saturation of a repair mechanism having a limited pool of repair enzymes. Such saturation phenomena have been observed in biochemical repair studies and have thus formed the basis for a model of cellular response, which was shown to be capable of producing dose response curves in good agreement with experimental observations. This model can be extended to account for both dose-rate and split-dose effects

  16. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.

    1988-01-01

    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  17. 30 CFR 56.6801 - Vehicle repair.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Vehicle repair. 56.6801 Section 56.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Vehicle repair. Vehicles containing explosive material and oxidizers shall not be taken into a repair...

  18. The two faces of plan repair

    NARCIS (Netherlands)

    Van der Krogt, R.P.J.; De Weerdt, M.M.

    2004-01-01

    Plan repair has two faces. Alternately, a plan repair method looks like a planning method, or looks like a method that does exactly the opposite, i.e., removing actions from a plan. We propose a general framework for plan repair that shows the relation between these two alternating steps. Any plan

  19. 30 CFR 57.14104 - Tire repairs.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tire repairs. 57.14104 Section 57.14104 Mineral... Devices and Maintenance Requirements § 57.14104 Tire repairs. (a) Before a tire is removed from a vehicle for tire repair, the valve core shall be partially removed to allow for gradual deflation and then...

  20. 30 CFR 56.14104 - Tire repairs.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tire repairs. 56.14104 Section 56.14104 Mineral... Devices and Maintenance Requirements § 56.14104 Tire repairs. (a) Before a tire is removed from a vehicle for tire repair, the valve core shall be partially removed to allow for gradual deflation and then...

  1. Augmentation with a reinforced acellular fascia lata strip graft limits cyclic gapping of supraspinatus repairs in a human cadaveric model.

    Science.gov (United States)

    Milks, Ryan A; Kolmodin, Joel D; Ricchetti, Eric T; Iannotti, Joseph P; Derwin, Kathleen A

    2018-06-01

    A reinforced biologic strip graft was designed to mechanically augment the repair of rotator cuff tears that are fully reparable by arthroscopic techniques yet have a likelihood of failure. This study assessed the extent to which augmentation of human supraspinatus repairs with a reinforced fascia strip can reduce gap formation during in vitro cyclic loading. The supraspinatus tendon was sharply released from the proximal humerus and repaired back to its insertion with anchors in 9 matched pairs of human cadaveric shoulders. One repair from each pair was also augmented with a reinforced fascia strip. All repairs were subjected to cyclic mechanical loading of 5 to 180 N for 1000 cycles. All augmented and nonaugmented repair constructs completed 1000 cycles of loading. Augmentation with a reinforced fascia strip graft significantly decreased the amount of gap formation compared with nonaugmented repairs. The average gap formation of augmented repairs was 1.5 ± 0.7 mm after the first cycle vs. 3.0 ± 1.2 mm for nonaugmented repairs (P = .003) and 5.0 ± 1.5 mm after 1000 cycles of loading, which averaged 24% ± 21% less than the gap formation of nonaugmented repairs (7.0 ± 2.8 mm, P = .014). Cadaveric human supraspinatus repairs augmented with a reinforced fascia strip have significantly less initial stroke elongation and gap formation than repairs without augmentation. Augmentation limited gap formation to the greatest extent early in the testing protocol. Human studies are necessary to confirm the appropriate indications and effectiveness of augmentation scaffolds for rotator cuff repair healing in the clinical setting. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  3. Improving left ventricular outflow tract obstruction repair in common atrioventricular canal defects.

    Science.gov (United States)

    Myers, Patrick O; del Nido, Pedro J; Marx, Gerald R; Emani, Sitaram; Mayer, John E; Pigula, Frank A; Baird, Christopher W

    2012-08-01

    Left ventricular outflow tract obstruction (LVOTO) is the second most frequent reason for reoperation after atrioventricular canal (AVC) defect repair. Limited data are available on the mechanisms of LVOTO, their treatment, and outcomes. Between 1998 and 2010, 56 consecutive children with AVC underwent 68 LVOTO procedures. The AVC was partial in 4, transitional in 9, and complete in 43. The LVOTO procedure was required in 21 patients at the primary AVC repair, and the initial LVOTO procedure in 35 patients was a late reoperation after AVC repair. During a mean follow-up of 50±41 months, 5 patients (24%) with LVOTO repair at AVC repair required a reoperation for LVOTO, and 7 patients (20%) whose initial LVOTO repair was a reoperation required a second reoperation for LVOTO repair. Overall freedom from LVOTO reoperation was 98.5% at 1 year, 92.5% at 3 years, 81% at 5 years, 72.2% at 7 years, and 52.5% at 10 and 12 years. The freedom from reoperation was neither significantly different between partial, transitional, and complete AVC (p=0.78) nor between timing of the LVOT procedure (p=0.49). Modified single-patch AVC repair was associated with a higher LVOTO reoperation rate (p=0.04). Neither the mechanisms leading to LVOTO nor the surgical techniques used were independent predictors of reoperation. LVOTO in AVC is a complex and multifactorial disease. Aggressive surgical repair has improved late outcomes; however, risk factors for reoperation and the ideal approach for repair remain to be defined. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. The role of DNA repair in herpesvirus pathogenesis.

    Science.gov (United States)

    Brown, Jay C

    2014-10-01

    In cells latently infected with a herpesvirus, the viral DNA is present in the cell nucleus, but it is not extensively replicated or transcribed. In this suppressed state the virus DNA is vulnerable to mutagenic events that affect the host cell and have the potential to destroy the virus' genetic integrity. Despite the potential for genetic damage, however, herpesvirus sequences are well conserved after reactivation from latency. To account for this apparent paradox, I have tested the idea that host cell-encoded mechanisms of DNA repair are able to control genetic damage to latent herpesviruses. Studies were focused on homologous recombination-dependent DNA repair (HR). Methods of DNA sequence analysis were employed to scan herpesvirus genomes for DNA features able to activate HR. Analyses were carried out with a total of 39 herpesvirus DNA sequences, a group that included viruses from the alpha-, beta- and gamma-subfamilies. The results showed that all 39 genome sequences were enriched in two or more of the eight recombination-initiating features examined. The results were interpreted to indicate that HR can stabilize latent herpesvirus genomes. The results also showed, unexpectedly, that repair-initiating DNA features differed in alpha- compared to gamma-herpesviruses. Whereas inverted and tandem repeats predominated in alpha-herpesviruses, gamma-herpesviruses were enriched in short, GC-rich initiation sequences such as CCCAG and depleted in repeats. In alpha-herpesviruses, repair-initiating repeat sequences were found to be concentrated in a specific region (the S segment) of the genome while repair-initiating short sequences were distributed more uniformly in gamma-herpesviruses. The results suggest that repair pathways are activated differently in alpha- compared to gamma-herpesviruses. Copyright © 2014. Published by Elsevier Inc.

  5. Chromosome End Repair and Genome Stability in Plasmodium falciparum.

    Science.gov (United States)

    Calhoun, Susannah F; Reed, Jake; Alexander, Noah; Mason, Christopher E; Deitsch, Kirk W; Kirkman, Laura A

    2017-08-08

    The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here, we show that parasites utilize a competitive balance between de novo telomere addition, also called "telomere healing," and HR to stabilize chromosome ends. Products of both repair pathways were observed in response to DSBs that occurred spontaneously during routine in vitro culture or resulted from experimentally induced DSBs, demonstrating that both pathways are active in repairing DSBs within subtelomeric regions and that the pathway utilized was determined by the DNA sequences immediately surrounding the break. In combination, these two repair pathways enable parasites to efficiently maintain chromosome stability while also contributing to the generation of genetic diversity. IMPORTANCE Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric

  6. Some important advances in DNA repair study on the mammalian cells

    International Nuclear Information System (INIS)

    Xia Shouxuan.

    1991-01-01

    In the recent years the study of DNA damage and repair in the mammalian cells has gone deeply at gene level and got the following advances: (1) For a long time DNA has been considered to be an uniform unit in case of damage and repair. Now this concept should be replaced by the non-random distribution of damage and heterogenous repair in the genome. These would allow us to study cellular mutagenesis, carcinogenesis, aging and dying processes in great detail, and would be beneficial to the elucidation of mechanisms of radiation sickness and chemical toxicology. (2) The advent of new techniques in molecular biology has made it possible to isolate and clone the human DNA repair genes. Up to now more than ten human DNA repair genes have been cloned and these works would have an important impact on the theoretical and practical study in this field. Because DNA repair system is very complicate, voluminous work should be done in the future. (3) The technique of gene transfer has been efficiently used in the study of DNA repair in mammalian cells and has made great contribution in the cellular engineering. It could modify the genetic behavior of the gene-accepting cells, and enhance the DNA repair ability to physical and chemical damages. Human gene therapy for DNA deficient diseases is now on the day

  7. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair

  8. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-12

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair.

  9. Is laparoscopic inguinal hernia repair more effective than open repair

    International Nuclear Information System (INIS)

    Aly, O.; Green, A.; Joy, M.; Wong, C.H.; Malik, M

    2011-01-01

    To systematically review randomized controlled trials, (RCT) evidence comparing Lichtenstein to total extraperitoneal (TEP) hernia repair in terms of clinical and cost effectiveness. Study Design: Case series. Place and Duration of Study: The study was conducted at University of Abderdeen, U.K. Methodology: A comprehensive online literature search was undertaken using databases such as MEDLINE, PubMed, EMBASE and Springerlink. Studies were then short listed according to the selection criteria (RCT with over 100 subject and English language publications from 1995 onwards) and appraised using the SIGN Methodology Checklist. A meta analysis of the data was also performed using RevMan software. Results: Analysis of reported data shows that TEP has less postoperative pain and return to work than Lichtenstein method. Operation time is shown to be longer in the TEP but this difference is shortened with increasing surgeon experience. The meta-analysis of the data on complications shows that there are no significant differences between the two types of procedures. TEP causes more short-term recurrences which are attributed to the learning curve effect. Long term recurrence rates on the other hand show no significant differences. At present TEP is slightly more expensive than Lichtenstein repair. Conclusion: Both TEP and Lichtenstein repair are clinically effective procedures. The choice between them should be made on a case-by-case basis; which depends on the patient's preference and characteristics such as age, work and health status. (author)

  10. The effect of double-row fixation on initial repair strength in rotator cuff repair: a biomechanical study.

    Science.gov (United States)

    Meier, Steven W; Meier, Jeffrey D

    2006-11-01

    The purpose of this study was to compare the initial mechanical strength of 3 rotator cuff repair techniques. A total of 30 fresh-frozen cadaveric shoulders were prepared, and full-thickness supraspinatus tears were created. Specimens were randomized and placed into 3 groups: (1) transosseous suture technique (group I: TOS, n = 10, 6F/4M), (2) single-row suture anchor fixation (group II: SRSA, n = 10, 6F/4M), and (3) double-row suture anchor fixation (group III: DRSA, n = 10, 6F/4M). Each specimen underwent cyclic load testing from 5 N to 180 N at a rate of 33 mm/sec. The test was stopped when complete failure (repair site gap of 10 mm) or a total of 5,000 cycles was attained. Group I (TOS) failed at an average of 75.3 +/- 22.49 cycles, and group II (SRSA) at an average of 798.3 +/- 73.28 cycles; group III (DRSA) had no failures because all samples were stopped when 5,000 cycles had been completed. Fixation strength of the DRSA technique proved to be significantly greater than that of SRSA (P row suture anchor fixation was significantly stronger than was single-row repair. Therefore, double-row fixation may be superior to other techniques in that it provides a substantially stronger repair that could lead to improved biologic healing. A high incidence of incomplete healing occurs in rotator cuff repair. Use of double-row fixation may help the clinician to address some deficiencies in current methods by increasing the strength of the repair, potentially leading to improved healing rates.

  11. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ)

  12. A Review of the Labor Market, Manpower Characteristics and Training of Motor Vehicle Repair Personnel. Final Report.

    Science.gov (United States)

    McCutcheon, R. W.; And Others

    To determine whether current automotive mechanic training programs provide adequate exposure to the knowledge and skills needed to properly service and repair motor vehicles, data were gathered on the tasks, service and repair establishments, job market, labor force, and training programs. Primary sources of data are reports prepared by various…

  13. Stalled repair of lesions when present within a clustered DNA damage site

    International Nuclear Information System (INIS)

    Lomax, M.E.; Cunniffe, S.; O'Neill, P.

    2003-01-01

    Ionising radiation produces clustered DNA damages (two or more lesions within one or two helical turns of the DNA) which could challenge the repair mechanism(s) of the cell. Using purified base excision repair (BER) enzymes and synthetic oligonucleotides a number of recent studies have established the excision of a lesion within clustered damage sites is compromised. Evidence will be presented that the efficiency of repair of lesions within a clustered DNA damage site is reduced, relative to that of the isolated lesions, since the lifetime of both lesions is extended by up to four fold. Simple clustered damage sites, comprised of single-strand breaks, abasic sites and base damages, one or five bases 3' or 5' to each other, were synthesised in oligonucleotides and repair carried out in mammalian cell nuclear extracts. The rate of repair of the single-strand break/abasic site within these clustered damage sites is reduced, mainly due to inhibition of the DNA ligase. The mechanism of repair of the single-strand break/abasic site shows some asymmetry. Repair appears to be by the short-patch BER pathway when the lesions are 5' to each other. In contrast, when the lesions are 3' to each other repair appears to proceed along the long-patch BER pathway. The lesions within the cluster are processed sequentially, the single-strand break/abasic site being repaired before excision of 8-oxoG, limiting the formation of double-strand breaks to <2%. Stalled processing of clustered DNA damage extends the lifetime of the lesions to an extent that could have biological consequences, e.g. if the lesions are still present during transcription and/or at replication mutations could arise

  14. Repair of model compounds of photoinduced lesions in DNA. Electrochemical approaches

    International Nuclear Information System (INIS)

    Boussicault, F.

    2006-09-01

    The goal of this work is to better understand the repair mechanism of photoinduced lesions in DNA (cyclobutane dimers and pyrimidine (6-4) pyrimidone adducts) by photolyase redox enzymes, using tools and concepts of molecular electrochemistry. Thanks to the study of model compounds of cyclobutane lesions by cyclic voltametry, we have been able to mimic the key step of the enzymatic repair (dissociative electron transfer) and to monitor the repair of model compounds by Escherichia coli DNA photolyase. From these results, we have discussed the repair mechanism, especially the stepwise or concerted character of the process. Repair mechanism of (6-4) adducts is not known now, but a possible pathway implies an electron transfer coupled to the cleavage of two bonds in the closed form of the lesions (oxetanes). Voltammetric study of reduction and oxidation of model oxetanes and their repair by E. coli DNA photolyase gave some experimental evidence confirming the proposed mechanism and allowing a better understanding of it. (author)

  15. Metabolic modulation of mammalian DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, T.J.

    1988-01-01

    First, ultraviolet light (UVL)- and dimethylsulfate (DMS)-induced excision repair was examined in quiescent and lectin-stimulated bovine lymphocytes. Upon mitogenic stimulation, UVL-induced repair increased by a factor of 2 to 3, and reached this maximum 2 days before the onset of DNA replication. However, DMS-induced repair increased sevenfold in parallel with DNA replication. Repair patch sizes were smaller for DMS-induced damage reflecting patches of 7 nucleotides in quiescent lymphocytes compared to 20 nucleotides induced by UVL. The patch size increased during lymphocyte stimulation until one day prior to the peak of DNA replication when patch sizes of 45 and 35 nucleotides were produced in response to UVL- and DMS-induced damage, respectively. At the peak of DNA replication, the patch sizes were equal for both damaging agents at 34 nucleotides. In the second study, a small amount of repair replication was observed in undamaged quiescent and concanavalin A-stimulated bovine lymphocytes as well as in human T98G glioblastoma cells. Repair incorporation doubled in the presence of hydroxyurea. Thirdly, the enhanced repair replication induced by the poly (ADP-ribose) polymerase inhibitor, 3-aminobenzamide, (3-AB), could not be correlated either with an increased rate of repair in the presence of 3-AB or with the use of hydroxyurea in the repair protocol. Finally, treatment of unstimulated lymphocytes with hyperthermia was accompanied by decreased repair replication while the repair patches remained constant at 20 nucleotides.

  16. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  17. Current Biomechanical Concepts for Rotator Cuff Repair

    Science.gov (United States)

    2013-01-01

    For the past few decades, the repair of rotator cuff tears has evolved significantly with advances in arthroscopy techniques, suture anchors and instrumentation. From the biomechanical perspective, the focus in arthroscopic repair has been on increasing fixation strength and restoration of the footprint contact characteristics to provide early rehabilitation and improve healing. To accomplish these objectives, various repair strategies and construct configurations have been developed for rotator cuff repair with the understanding that many factors contribute to the structural integrity of the repaired construct. These include repaired rotator cuff tendon-footprint motion, increased tendon-footprint contact area and pressure, and tissue quality of tendon and bone. In addition, the healing response may be compromised by intrinsic factors such as decreased vascularity, hypoxia, and fibrocartilaginous changes or aforementioned extrinsic compression factors. Furthermore, it is well documented that torn rotator cuff muscles have a tendency to atrophy and become subject to fatty infiltration which may affect the longevity of the repair. Despite all the aforementioned factors, initial fixation strength is an essential consideration in optimizing rotator cuff repair. Therefore, numerous biomechanical studies have focused on elucidating the strongest devices, knots, and repair configurations to improve contact characteristics for rotator cuff repair. In this review, the biomechanical concepts behind current rotator cuff repair techniques will be reviewed and discussed. PMID:23730471

  18. Involvement of DNA repair in telomere maintenance and chromosomal instability in human cells

    International Nuclear Information System (INIS)

    Ayouaz, Ali

    2008-01-01

    Telomeres are a major actor of cell immortalization, precursor of a carcinogenesis process. Thus, it appears that the maintenance of telomeres is crucial in the implementation of carcinogenesis process. Due to their structures and under some conditions, telomeres can be assimilated in some respects to chromosomal breakages. Within this perspective, this research thesis aims at determining under which circumstances telomeres can be taken as targets by DNA repair mechanisms. More precisely, the author addressed the respective contributions of two repair mechanisms (the Non-Homologous End-Joining or NHEJ, and Homologous Recombination or HR) in the maintenance of telomere integrity. The author first discusses knowledge related to the interaction between chromosomal extremities and repair mechanisms. Then, he defines the behaviour of these mechanisms with respect to telomeres. He shows that, in absence of recombination mechanisms, the integrity of telomeres is not affected. Finally, he reports the attempt to determine their respective contributions in telomeric homeostasis [fr

  19. Absence of specificity in inhibition of DNA repair replication by DNA-binding agents, cocarcinogens, and steroids in human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Painter, R.B.

    1975-01-01

    Although many chemicals, including cocarcinogens, DNA-binding agents, and steroids, inhibit repair replication of ultraviolet-induced damage to DNA in human lymphocytes and proliferating cells in culture, none of these chemicals is specific. Our results show that all the chemicals we tested inhibit normal DNA synthesis as much as or more than they inhibit repair replication. There is thus no evidence in our results to support the hypothesis that cocarcinogens are specific inhibitors of DNA repair or that any of the chemicals studied might be useful adjuncts to tumor therapy merely because of specific inhibition of radiation repair mechanisms

  20. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  1. Motorcycle Mechanic. Teacher Edition.

    Science.gov (United States)

    Baugus, Mickey; Fulkerson, Dan, Ed.

    These teacher's materials are for a 19-unit competency-based course on entry-level motorcycle mechanics at the secondary and postsecondary levels. The 19 units are: (1) introduction to motorcycle repair; (2) general safety; (3) tools and equipment; (4) metric measurements; (5) fasteners; (6) service department operations; (7) motorcycle engines;…

  2. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    Science.gov (United States)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  3. Inducible error-prone repair in B. subtilis. Progress report, September 1, 1981-April 30, 1983

    International Nuclear Information System (INIS)

    Yasbin, R.E.

    1982-12-01

    Considerable progress has been made on determining the mechanisms of mutagenesis in B. subtilis and on elucidating the interactions between DNA repair systems and mutagenesis in this bacterium. Specifically, the B. subtilis W-reactivation system has been shown to involve a damage-specific (pyrimidine dimer) repair mechanism which may or may not be error-free. On the other hand, error-prone repair (as defined by the ability of cells to be mutated by low doses of uv) has been definitively established in this bacterium. The investigation of the genes controlling the error-prone repair system has revealed that uv mutagenesis is significantly decreased in cells carrying the recG13 mutation. In addition, cells lacking a functional excision repair system are hypermutable to EMS, although these cells are not hypersensitive to the killing activity of EMS. Both EMS and uv generate the same spectrum of mutants (reversions vs suppressors); however, cells lacking a functional excision repair system apparently generate more suppressor mutations when exposed to uv as compared to the other strains tested. A genomic library for B. subtilis has been established. This library will be specifically used to isolate a cloned fragment of DNA which codes for the major subunit of the Bacillus DNA polymerase III. However, this bank can also be used to isolate Bacillus genes which control most of the repair functions. Furthermore, we have begun the process of cloning the E. coli phr + gene in to B. subtilis

  4. Coordinating repair of oxidative DNA damage with transcription and replication

    International Nuclear Information System (INIS)

    Cooper, P.K.

    2003-01-01

    Transcription-coupled repair (TCR) preferentially removes DNA lesions from template strands of active genes. Defects in TCR, which acts both on lesions removed by nucleotide excision repair (NER) and on oxidative lesions removed by base excision repair (BER), underlie the fatal developmental disorder Cockayne syndrome. Although its detailed mechanism remains unknown, TCR involves recognition of a stalled RNA polymerase (RNAP), removal or remodeling of RNAP to allow access to the lesion, and recruitment of repair enzymes. At a minimum, these early steps require a non-enzymatic function of the multifunctional repair protein XPG, the CSB protein with ATP-dependent chromatin remodeling activity, and the TFIIH complex (including the XPB and XPD helicases) that is also required for basal transcription initiation and NER. XPG exists in the cell in a complex with TFIIH, and in vitro evidence has suggested that it interacts with CSB. To address the mechanism of TCR, we are characterizing protein-DNA and protein-protein interactions of XPG. We show that XPG preferentially binds to double-stranded DNA containing bubbles resembling in size the unpaired regions associated with transcription. Two distinct domains of XPG are required for the observed strong binding specificity and stability. XPG both interacts directly with CSB and synergistically binds with it to bubble DNA, and it strongly stimulates the bubble DNA-dependent ATPase activity of CSB. Significantly for TCR, XPG also interacts directly with RNAP II, binds both the protein and nucleic acid components (the R-loop) of a stalled RNA polymerase, and forms a ternary complex with CSB and the stalled RNAP. These results are consistent with the model that XPG and CSB jointly interact with the DNA/chromatin structure in the vicinity of the stalled transcriptional apparatus and with the transcriptional machinery itself to remodel the chromatin and either move or remodel the blocked RNA polymerase to expose the lesion

  5. AREVA NP Liner Repair Strategy with Adhesive Technology

    International Nuclear Information System (INIS)

    Georg, Kraemer; Revoirard, Sebastien; McCann, James-E.

    2012-09-01

    AREVA has developed a repair method for sealing leakages in austenitic stainless steel liners, especially in nuclear power plants. This technology is either a repair, when applied after failures already occurred, or a prophylaxis, when applied before failures occurred. Leakages of stainless steel pool liners can be classified into basically four mechanisms: Mechanical impact, mechanical stress, weld failures and corrosion. Damage from mechanical impact like dropping tools or equipment can be usually recognized and localized immediately. In such situations no extensive leak detection needs to be performed. Contrary to the mechanical damage, it is more difficult to localize damages due to mechanical stress, such as load changes or thermal stress. Load changes occur when a stainless steel pool is repeatedly filled and drained, thermal stress occurs when a pool is exposed to temperature gradients. Those two preconditions are given in reactor cavities (RC). Mechanical stress usually promotes other pre-existing defects. According to the experience of AREVA the weld failures are not a common root cause for leakages, found after several years of operation. They are due to the standard testing procedure in which all weld seams are checked (with e.g. Penetrate Testing (PT) for example). If failures are detected, they are repaired during the commissioning. The main root cause for leakages found after several years of operation is corrosion. Corrosion failures themselves are mainly caused by stress corrosion cracking (SCC). SCC needs certain preconditions to initiate: Mechanical stress must exist; a corrosion initiating element (e.g. chlorine) above a limiting concentration is necessary as well as a heat affected zone (HAZ). In the HAZ, which is exists near weld seams, the microstructure of the stainless steel has changed. This leads to a higher susceptibility to SCC. Those preconditions for SCC cannot be found at the front side of the liner (water side), because the water

  6. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    Science.gov (United States)

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  7. [Constitutional mismatch repair deficiency syndrome].

    Science.gov (United States)

    Jongmans, Marjolijn C; Gidding, Corrie E; Loeffen, Jan; Wesseling, Pieter; Mensenkamp, Arjen; Hoogerbrugge, Nicoline

    2015-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. An 8-year-old girl was diagnosed with CMMR-D syndrome after she developed a brain tumour at the age of 4 and a T-cell non-Hodgkin lymphoma at the age of 6. She had multiple hyperpigmented skin lesions and died of myelodysplastic syndrome at the age of 11. In children with cancer CMMR-D syndrome can be recognized particularly if there are multiple primary malignancies and skin hyperpigmentations and hypopigmentations. The parents of these children are at high risk for colorectal and endometrial cancer (Lynch syndrome), amongst others.

  8. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...... glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene...

  9. Repair welding and online radiography

    International Nuclear Information System (INIS)

    Nuding, W.; Grimm, R.; Link, R.; Schroeder, P.; Schroeder, G.

    1990-01-01

    The status of a joint project is reported, which is to develop a computerized testing and welding system for repair work in turbine blades. An X-ray radiographic testing device consisting of microfocus tube, manipulator and image processing system, is modified for this purpose so as to offer a greater number of image points scanned for image processing, and to thus achieve a better resolution for reliable detection of even very small defects. The consistency of the X-ray tube performance, which is a pre-requisite for automation, is to be achieved by a wa tercooled, high-duty tube head. The recording of defect coordinates in the repair zone is done for input into a welding robot to be developed by other partners in the project, so as to allow automated welding work. (orig.) [de

  10. Primary unilateral cleft lip repair.

    Science.gov (United States)

    Adenwalla, H S; Narayanan, P V

    2009-10-01

    The unilateral cleft lip is a complex deformity. Surgical correction has evolved from a straight repair through triangular and quadrilateral repairs to the Rotation Advancement Technique of Millard. The latter is the technique followed at our centre for all unilateral cleft lip patients. We operate on these at five to six months of age, do not use pre-surgical orthodontics, and follow a protocol to produce a notch-free vermillion. This is easy to follow even for trainees. We also perform closed alar dissection and extensive primary septoplasty in all these patients. This has improved the overall result and has no long-term deleterious effect on the growth of the nose or of the maxilla. Other refinements have been used for prevention of a high-riding nostril, and correction of the vestibular web.

  11. Primary unilateral cleft lip repair

    Directory of Open Access Journals (Sweden)

    Adenwalla H

    2009-10-01

    Full Text Available The unilateral cleft lip is a complex deformity. Surgical correction has evolved from a straight repair through triangular and quadrilateral repairs to the Rotation Advancement Technique of Millard. The latter is the technique followed at our centre for all unilateral cleft lip patients. We operate on these at five to six months of age, do not use pre-surgical orthodontics, and follow a protocol to produce a notch-free vermillion. This is easy to follow even for trainees. We also perform closed alar dissection and extensive primary septoplasty in all these patients. This has improved the overall result and has no long-term deleterious effect on the growth of the nose or of the maxilla. Other refinements have been used for prevention of a high-riding nostril, and correction of the vestibular web.

  12. Repair capability of mammalian cell fractions demonstrated using infectivity of bacteriophage DNA

    International Nuclear Information System (INIS)

    Lai, S.P.; Lytle, C.D.; Benane, S.G.

    1976-01-01

    Extracts of Potoroo kidney cells (PtK2) were examined for ability to provide a repair function in vitro. The biological activity (infectivity) of uv-irradiated replicative form (RF) DNA of bacteriophage phiX174 was restored during incubation of the DNA with a nuclear extract but not with a cytoplasmic extract. The infectivity of the RF-DNA was determined in spheroplasts of E. coli C/sub s/, which is HCR - . This system for biological assay of uv-irradiated DNA repaired in vitro may be used to complement biochemical and biophysical investigations of molecular repair mechanisms in mammalian cells

  13. DNA repair and longevity in three species of cold-blooded vertebrates. [uv, turtle, fish

    Energy Technology Data Exchange (ETDEWEB)

    Woodhead, A.D.; Setlow, R.B.; Grist, E.

    1980-01-01

    The error catastrophe mechanism of ageing proposes that senescence results from the progressive accumulation of unrepaired damage to DNA throughout the life span. Studies of the changes in DNA repair capability in ageing cells both in vivo and in vitro have given ambiguous results, but a clear relation has been demonstrated in mammals between the DNA repair capacity and potential longevity. We have found no difference in excision repair capacity in cultured cells from three species of cold-blooded vertebrates, the long-lived turtle, with a potential life span of 118+ yr, the rainbow trout, 8 yr, and Amazon molly, with 3 yr.

  14. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-01-01

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs

  15. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    Science.gov (United States)

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.

  16. Application of Interfacial Propagation and Kinking Crack Concept to ECC/Concrete Overlay Repair System

    Directory of Open Access Journals (Sweden)

    Yaw ChiaHwan

    2014-01-01

    Full Text Available Research on the application of ultraductile engineered cementitious composite (ECC as overlay in the repair of deteriorated concrete structures is performed in this paper. Also, interfacial crack kinking and trapping mechanism experimentally observed in ECC/concrete overlay repair system are described by comparison of toughness and energy release rate. The mechanism involves cycles of extension, kinking, and arrest of interfacial crack into the overlay. Experimental testing of overlay repair system reveals significant improvements in load carrying capacity and ductility over conventional concrete overlay. The commonly observed overlay system failure mode of delamination or spalling is eliminated when ECC is applied. These failure modes are suppressed when ECC is used as an ideal and durable candidate overlay repair material.

  17. Repair of EL4 leaks

    International Nuclear Information System (INIS)

    1985-03-01

    The reactor shutdown was decided on the 15th of November 1984, because the evolution of the carbon dioxide quantity in the helium blanket of the heavy water. Leaks have been localized on three different channels. Repairs have been made in hard conditions taking into account the reactor state (materials strongly irradiated). The restart has been authorized on the 24th of January 1985 [fr

  18. Fanconi anemia (cross)linked to DNA repair.

    Science.gov (United States)

    Niedernhofer, Laura J; Lalai, Astrid S; Hoeijmakers, Jan H J

    2005-12-29

    Fanconi anemia is characterized by hypersensitivity to DNA interstrand crosslinks (ICLs) and susceptibility to tumor formation. Despite the identification of numerous Fanconi anemia (FANC) genes, the mechanism by which proteins encoded by these genes protect a cell from DNA interstrand crosslinks remains unclear. The recent discovery of two DNA helicases that, when defective, cause Fanconi anemia tips the balance in favor of the direct involvement of the FANC proteins in DNA repair and the bypass of DNA lesions.

  19. Mutagenic DNA repair in enterobacteria

    International Nuclear Information System (INIS)

    Sedgwick, S.G.; Chao Ho; Woodgate, R.

    1991-01-01

    Sixteen species of enterobacteria have been screened for mutagenic DNA repair activity. In Escherichia coli, mutagenic DNA repair is encoded by the umuDC operon. Synthesis of UmuD and UmuC proteins is induced as part of the SOS response to DNA damage, and after induction, the UmuD protein undergoes an autocatalytic cleavage to produce the carboxy-terminal UmuD' fragment needed for induced mutagenesis. The presence of a similar system in other species was examined by using a combined approach of inducible-mutagenesis assays, cross-reactivity to E. coli UmuD and UmuD' antibodies to test for induction and cleavage of UmuD-like proteins, and hybridization with E. coli and Salmonella typhimurium u mu DNA probes to map umu-like genes. The results indicate a more widespread distribution of mutagenic DNA repair in other species than was previously thought. They also show that umu loci can be more complex in other species than in E. coli. Differences in UV-induced mutability of more than 200-fold were seen between different species of enteric bacteria and even between multiple natural isolates of E. coli, and yet some of the species which display a poorly mutable phenotype still have umu-like genes and proteins. It is suggested that umuDC genes can be curtailed in their mutagenic activities but that they may still participate in some other, unknown process which provides the continued stimulus for their retention

  20. Mutation induction in repair-deficient strains of Drosophila

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.

    1980-01-01

    Experimental evidence indicates a polygenic control of mutagenesis in Drosophila melanogaster. In oocytes chromosome aberrations detected as half-translocations or dominant lethals depend on a repair system which in a number of genetically nonrelated strains shows different repair capacities. Sister chromatid exchanges are easily studied as ring chromosome losses. They develop through a genotype controlled mechanism from, premutational lesions. Stocks with particular pairs of third chromosomes were discovered in which increased sensitivity of larvae to the toxic effects of a monofunctional alkylating agent correlates with high frequencies of x-ray induced SCE's. Sex-linked mutagen-sensitive mutants could be shown to control mutation fixation: pronounced maternal effects were found when sperm carrying particular types of premutational lesions were introduced into different types of mutant oocytes. The mutant mus(1)101D1 was found to be unable to process lesions induced by the crosslinking agent nitrogen mustard into point mutations. Alkylation damage leads to increased point mutation frequencies in the excision repair deficient mutant mei-9L1, but to reduced frequencies in the post-replication repair deficient mutant mei-41D5. It became clear that the study of maternal effects on mutagenized sperm represents an efficient tool to analyze the gentic control of mutagenesis in the eukaryotic genome of Drosophila melanogaster