WorldWideScience

Sample records for repair gene rad6

  1. Synergistic interactions between RAD5, RAD16, and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

    International Nuclear Information System (INIS)

    Glassner, B.J.; Mortimer, R.K.

    1994-01-01

    Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MO1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene plays a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16, and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways. 49 refs., 6 figs., 2 tabs

  2. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway

    International Nuclear Information System (INIS)

    Schiestl, R.H.; Prakash, S.; Prakash, L.

    1990-01-01

    rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, the authors have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6Δ) mutations and show that they also suppress the γ-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of γ-ray sensitivity. The six suppressor mutations they isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. They show that suppression of rad6Δ is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6Δ SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed

  3. Roles for the yeast RAD18 and RAD52 DNA repair genes in UV mutagenesis.

    Science.gov (United States)

    Armstrong, J D; Chadee, D N; Kunz, B A

    1994-11-01

    Experimental evidence indicates that although the Saccharomyces cerevisiae RAD18 and RAD52 genes are not required for nucleotide excision repair, they function in the processing of UV-induced DNA damage in yeast. Conflicting statements regarding the UV mutability of strains deleted for RAD18 prompted us to re-examine the influence of RAD18, and RAD52, on UV mutagenesis. To do so, we characterized mutations induced by UV in SUP4-o, a yeast suppressor tRNA gene. SUP4-o was maintained on a plasmid in isogenic strains that either carried one of two different rad18 deletions (rad18 delta) or had RAD52 disrupted. Both rad18 deletions decreased the frequency of UV-induced SUP4-o mutations to levels close to those for spontaneous mutagenesis in the rad18 delta backgrounds, and prevented a net increase in mutant yield. A detailed analysis of mutations isolated after UV irradiation of one of the rad18 delta strains uncovered little evidence of the specificity features typical for UV mutagenesis in the isogenic repair-proficient (RAD) parent (e.g., predominance of G.C-->A.T transitions). Evidently, UV induction of SUP4-o mutations is highly dependent on the RAD18 gene. Compared to the RAD strain, disruption of RAD52 reduced the frequency and yield of UV mutagenesis by about two-thirds. Closer inspection revealed that 80% of this reduction was due to a decrease in the frequency of G.C-->A.T transitions. In addition, there were differences in the distributions and site specificities of single base-pair substitutions. Thus, RAD52 also participates in UV mutagenesis of a plasmid-borne gene in yeast, but to a lesser extent than RAD18.

  4. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Guzder, S.N.; Sung, P.; Prakash, S.; Prakash, L.

    1993-01-01

    Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A--G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. The authors have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. They also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair. 37 refs., 4 figs

  5. RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates

    International Nuclear Information System (INIS)

    Reynolds, P.; Weber, S.; Prakash, L.

    1985-01-01

    The RAD6 gene of Saccharomyces cerevisiae is required for postreplication repair of UV-damaged DNA, for induced mutagenesis, and for sporulation. The authors have mapped the transcripts and determined the nucleotide sequence of the cloned RAD6 gene. The RAD6 gene encodes two transcripts of 0.98 and 0.86 kilobases which differ only in their 3' termini. The transcribed region contains an open reading frame of 516 nucleotides. The rad6-1 and rad6-3 mutant alleles, which the authors have cloned and sequenced, introduce amber and ochre nonsense mutations, respectively into the open reading frame, proving that it encodes the RAD6 protein. The RAD6 protein predicted by the nucleotide sequence is 172 amino acids long, has a molecular weight of 19,704, and contains 23.3% acidic and 11.6% basic residues. Its most striking feature is the highly acidic carboxyl terminus: 20 of the 23 terminal amino acids are acidic, including 13 consecutive aspartates. RAD6 protein thus resembles high mobility group proteins HMG-1 and HMG-2, which each contain a carboxyl-proximal tract of acidic amino acids. 48 references, 6 figures

  6. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.

    NARCIS (Netherlands)

    D.F.R. Muris; O.Y. Bezzubova (Olga); J-M. Buerstedde; K. Vreeken; A.S. Balajee; C.J. Osgood; C. Troelstra (Christine); J.H.J. Hoeijmakers (Jan); K. Ostermann; H. Schmidt (Henning); A.T. Natarajan; J.C.J. Eeken; P.H.M. Lohmann (Paul); A. Pastink (Albert)

    1994-01-01

    textabstractThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were

  7. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J. P. [NIH, Bethesda, MD. (United States); Levine, A. S.; Woodgate, R.

    1997-12-15

    Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5. (author)

  8. Studies of DNA repair in Saccharomyces cerevisiae. I. Characterization of a new allele of RAD6. II. Investigation of events in the first cell cycle after DNA damage

    International Nuclear Information System (INIS)

    Dolthwright-Fasse, J.A.

    1980-01-01

    Studies in two independent, but related, areas of DNA repair have been carried out in the eucaryotic yeast, Saccharomyces cerevisiae. The first is the characterization of a new allele in the RAD6 gene suggesting that the gene is multifunctional. The second is the utilization of photoreactivation as a probe of events occurring during the first cell cycle after DNA damage. Strains carrying the new allele, designated rad6-4, of the RAD6 locus are about as sensitive to uv and ionizing radiation as those carrying rad6-1 or rad6-3. Although rad6-4 may well be a missense mutation, the data suggest that the RAD6 gene is multifunctional. One function is necessary to recover from DNA damage in an error-free manner, and the other is concerned with mutagenic processes and sporulation. The loss of photoreversibility (LOP) of ultraviolet induced mutations to arginine independence in an excision defective strain carrying arg4-17 examines the events occurring in the first cell cycle. The post uv protein synthesis causes pyrimidine dimmers to become inaccessible to the photoreactivating enzyme in some unknown manner. There is no evidence indicating whether the normal function of the protein is involved in excision repair, or in one of the two repair processes believed to be inducible; induced mutagenesis or recombinational repair

  9. RAD24 (=R1/sup S/) gene product of Saccharomyces cerevisiae participates in two different pathways of DNA repair

    International Nuclear Information System (INIS)

    Eckardt-Schupp, F.; Siede, W.; Game, J.C.

    1987-01-01

    The moderately UV- and X-ray-sensitive mutant of Saccharomyces cerevisiae originally designated r 1 /sup s/ complements all rad and mms mutants available. Therefore, the new nomination rad24-1 according to the RAD nomenclature is suggested. RAD24 maps on chromosome V, close to RAD3 (1.3 cM). In order to associate the RAD24 gene with one of the three repair pathways, double mutants of rad24 and various representative genes of each pathway were constructed. The UV and X-ray sensitivities of the double mutants compared to the single mutants indicate that RAD24 is involved in excision repair of UV damage (RAD3 epistasis group), as well as in recombination repair of UV and X-ray damage (RAD52 epistasis group). Properties of the mutant are discussed which hint at the control of late steps in the pathways

  10. Studies of DNA repair in saccharomyces cerevisiae. I. Characterization of a new allele of RAD6. II. Investigation of events in the first cell cycle after DNA damage

    International Nuclear Information System (INIS)

    Douthwright-Fasse, J.A.

    1979-01-01

    Studies in two independent, but related, areas of DNA repair have been carried out in Saccharomyces cerevisiae; characterization of a new allele in the RAD6 gene which suggests that the gene is multifunctional, and utilization of photoreactivation as a probe of events occurring during the first cell cycle after DNA damage. Strains carrying the new allele, designated rad6-4, are as sensitive to uv and ionizing radiation as those carrying rad6-1 or rad6-3 but, unlike them, are capable of induced mutagenesis and sporulation. Although rad6-4 may well be a missense mutation, the evidence shows that it is unlikely that this phenotype is due to leakiness. Instead, the data suggest that the RAD6 gene is multifunctional. One function is necessary to recover from DNA damage in an error-free manner, and the other is concerned with mutagenic processes and sporulation. Rad6-1 and rad6-3 strains are deficient in both of these functions, while rad6-4 strains are deficient only in the error-free function. The loss of photoreversibility (LOP) of ultraviolet induced mutations to arginine independence in an excision defective strain carrying arg4-17 examines the events occurring in the first cell cycle after DNA damage. LOP is dependent upon de novo protein synthesis. LOP begins immediately after UV irradiation, before semiconservative DNA synthesis takes place, and is complete after four hours in growth medium.There is no evidence indicating whether the normal function of the protein is involved in excision repair, or in one of the two repair processes believed to be inducible; induced mutagenesis or recombinational repair

  11. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment.

    Science.gov (United States)

    Eyboulet, Fanny; Cibot, Camille; Eychenne, Thomas; Neil, Helen; Alibert, Olivier; Werner, Michel; Soutourina, Julie

    2013-12-01

    Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3' endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.

  12. Comparison of clastogen-induced gene expression profiles in wild-type and DNA repair-deficient Rad54/Rad54B cells

    Directory of Open Access Journals (Sweden)

    van Benthem Jan

    2010-01-01

    Full Text Available Abstract Background Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC as compared to wild-type (WT cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM and γ-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU and vehicle were taken as controls. Results Most exposures resulted in an induction of DNA damage signaling and apoptosis genes and a reduced expression of cell division genes in cells of both genotypes. As expected, responses to N-ac-AAF were very similar in both genotypes. ENU exposure did not lead to significant gene expression changes in cells of both genotypes, presumably due to its short half-life. Gene expression responses to clastogens, however, showed a genotype-dependent effect for BLM and MMC. MMC treated Rad54/Rad54B MEFs showed no induction of p53-signaling, DNA damage response and apoptosis as seen for all the other treatments. Conclusion These data support our finding that different types of clastogens exist and that responses to these types depend on the DNA repair status of the cells.

  13. Regulation of homologous recombination repair protein Rad51 by Ku70

    International Nuclear Information System (INIS)

    Du Liqing; Liu Qiang; Wang Yan; Xu Chang; Cao Jia; Fu Yue; Chen Fenghua; Fan Feiyue

    2013-01-01

    Objective: To explore the regulative effect of non-homologous end joining (NHEJ)protein Ku70 on homologous recombination repair protein Rad51, and to investigate the synergistic mechanism of homologous recombination repair in combination with NHEJ. Methods: Observed Rad51 protein expression after transfect Ku70 small interfering RNA or Ku70 plasmid DNA into tumor cells using Western blot. Results: Expression of Rad51 was obviously reduced after pretreated with Ku70 small interfering RNA. And with the increasing expression of Ku70 protein after transfection of Ku70 plasmid DNA PGCsi3.0-hKu70 into tumor cell lines, the Rad51 protein expression was increased. Conclusion: Ku70 protein has regulating effect on gene expression of Rad51, and it might participate in the collaboration between homologous recombination repair and NHEJ. (authors)

  14. Characterization of RAD4 gene required for ultraviolet-induced excision repair of Saccharomyces cerevisiae propagated in Escherichia coli without inactivation

    International Nuclear Information System (INIS)

    Choi, I.S.; Kim, J.B.; Lee, K.N.; Park, S.D.

    1990-01-01

    The previously isolated RAD4 gene designated as pPC1 from the genomic library of Saccharomyces cerevisiae appeared to propagate in Escherichia coli and yet retained its complementing activity of rad4 mutants without inactivation. The subcloned RAD4 gene was found to be localized within a 2.5 kb DNA fragment flanking Bg/II and BamHI sites in the insert DNA, and was shown to have the same restriction map as a yeast chromosomal DNA, as determined by Southern hybridization. Tetrad analysis and pulse-field chromosome mapping have revealed that the cloned RAD4 gene can be mapped and integrated into the yeast chromosome V, the actual site of this gene. DNA-tRNA hybridization has shown that the isolated RAD4 gene did not contain a suppressor tRNA gene. These results have indicated that the pPC1 is a functional RAD4 gene playing a unique role involved in the nucleotide excision repair of yeast without any genetic change during amplification in E. coli. (author)

  15. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    Science.gov (United States)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  17. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions

    International Nuclear Information System (INIS)

    Sung, P.; Prakash, S.; Prakash, L.

    1990-01-01

    The RAD6 gene of Saccharomyces cerevisiae is required for DNA repair, DNA damage-induced mutagenesis, and sporulation. RAD6 protein is a ubiquitin-conjugating enzyme (E2) that has been shown to attach multiple molecules of ubiquitin to histones H2A and H2B. We have now examined whether the E2 activity of RAD6 is involved in its various biological functions. Since the formation of a thioester adduct between E2 and ubiquitin is necessary for E2 activity, the single cysteine residue (Cys-88) present in RAD6 was changed to alanine or valine. The mutant proteins were overproduced in yeast cells and purified to near homogeneity. We show that the rad6 Ala-88 and rad6 Val-88 mutant proteins lack the capacity for thioester formation with ubiquitin and, as a consequence, are totally devoid of any E2 activity. The rad6 Ala-88 and rad6 Val-88 mutations confer a defect in DNA repair, mutagenesis, and sporulation equivalent to that in the rad6 null allele. We suggest that the biological functions of RAD6 require its E2 activity. (author)

  18. Molecular cloning and characterization of genes required for nucleotide excision repair in yeast

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-01-01

    Nucleotide excision repair in the yeast S. cerevisiae is a complex process which involves a large number of genes. At least five of these genes (RAD1, RAD2, RAD3, RAD4 and RAD10) are absolutely required for this process and mutations in any of these genes result in no detectable excision repair in vivo. In order to understand the function of these genes in DNA repair, the authors isolated a number of them by screening a yeast genomic library for recombinant plasmids which complement the phentoype of sensitivity to ultraviolet (UV) radiation imparted to mutant strains. A plasmid containing the RAD4 gene was isolated by an alternative strategy which will be discussed. The cloned genes have been extensively characterized. It has been determined that the RAD3 gene is essential for the viability of haploid yeast cells in the absence of DNA damage. The RAD2 gene is inducible by treatment of cells with a variety of DNA-damaging agents, including UV radiation and ionizing radiation. The RAD10 gene shares considerable amino acid sequence homology with a cloned gene involved in nucleotide excision repair in human cells. Yeast is a particularly versatile organism for studying gene function by molecular and genetic approaches and emphasis is placed on many of the techniques used in the present studies

  19. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation

    Science.gov (United States)

    Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard

    2011-01-01

    Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552

  20. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14, and MMS19

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L; Prakash, S

    1979-01-01

    The ability to remove ultraviolet (uv)-induced pyrimidine dimers from the nuclear DNA of yeast was examined in two radiation-sensitive (rad) mutants and one methyl methanesulfonate-sensitive (mms) mutant of the yeast Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by an endonuclease activity prepared from crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad7, rad14, and mms19 mutants were found to be defective in their ability to remove uv-induced dimers from nuclear DNA. All three mutants belong to the same episatic group as the other mutants involved in excision-repair. All three mutants show enhanced uv-induced mutations. The rad 14 mutant also shows epistatic interactions with genes in the other two uv repair pathways.

  1. Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6, and rad9 of Saccharomyces cerevisiae. [nicking

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). Dept. of Radiation Biology and Biophysics; Rochester Univ., N.Y. (USA). School of Medicine and Dentistry)

    1977-10-01

    The ability to remove ultraviolet-induced pyrimidine dimers was examined in four radiation-sensitive mutants of Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by either the T4 uv-endonuclease or an endonuclease activity found in crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad3 and rad4 mutants are shown to be defective in dimer excision whereas the rad6 and rad9 mutants are proficient in dimer excision.

  2. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA

    Science.gov (United States)

    Tsabar, Michael; Mason, Jennifer M.; Chan, Yuen-Ling; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1ATR/Tel1ATM-dependent DNA damage response or caffeine's inhibition of 5′ to 3′ resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2's Rad51 filament dismantling activity or Rad51's ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments. PMID:26019181

  3. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  4. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in mammals

    International Nuclear Information System (INIS)

    McKay, Michael J.; Spek, Peter van der; Kanaar, Roland; Smit, Bep; Bootsma, Dirk; Hoeijmakers, Jan H. J.

    1996-01-01

    Purpose/Objective: Genetic factors are likely to be major determinants of human cellular ionizing radiation sensitivity. DNA double strand breaks (dsbs) are significant ionizing radiation-induced lesions; cellular DNA dsb processing is also important in a number of other contexts. To further the understanding of DNA dsb processing in mammalian cells, we cloned and sequenced mammalian homologs of the rad21 Schizosaccharomyces pombe DNA dsb repair gene. Materials and Methods: The genes were cloned by evolutionary walking, exploiting sequence homology between the yeast and mammalian genes. Results: No major motifs indicative of a particular function were present in the predicted amino acid sequences of the mammalian genes. Alignment of the Rad21 amino acid sequence with its putative homologs showed that similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21 sp (mouse homolog ofR ad21, S. pombe) and hHR21 sp (humanh omolog of Rad21, S. pombe) predicted proteins were 96% identical, whereas the human and S. pombe proteins were 25% identical and 47% similar. RNA blot analysis showed that mHR21 sp mRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1kb mRNA transcript in all tissues, an additional 2.2kb transcript was present at a high level in post-meiotic spermatids, white expression of the 3.1kb mRNA in testis was confined to the meiotic compartment. hHR21 sp mRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level of hHR21 sp transcripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation. In situ hybridization showed mHR21 sp resided on chromosome 15D3, whereashHR21 sp localized to the syntenic 8q24 region. Conclusion: Cloning these novel mammalian genes and characterization of their protein products should contribute to the understanding of cellular

  6. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    Science.gov (United States)

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Interactions of checkpoint-genes RAD9, RAD17, RAD24 and RAD53 determining radioresistance of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Nikulushkina, Yu.V.; Roshchina, M.P.; Devin, A.B.

    2007-01-01

    The mechanisms of genetic control of progress through the division cell cycle (checkpoint-control) in yeast Saccharomyces cerevisiae have been studied intensively. To investigate the role of checkpoint-genes RAD9, RAD17, RAD24, RAD53 in cell radioresistance we have investigated cell sensitivity of double mutants to γ-ray. Double mutants involving various combinations with rad9Δ show epistatic interactions, i.e. the sensitivity of the double mutants to γ-ray was no greater than that of more sensitive of the two single mutants. This suggests that all these genes govern the same pathway. This group of genes was named RAD9-epistasis group. It is interesting to note that the genes RAD9 and RAD53 have positive effect but RAD17 and RAD24 have negative effect on radiosensitivity of yeast cells. Interactions between mutations may differ depending on the agent γ-ray or UV-light, for example mutations rad9Δ and rad24Δ show additive effect for γ-ray and epistatic effect for UV-light

  8. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  9. Function of Rad51 paralogs in eukaryotic homologous recombinational repair

    International Nuclear Information System (INIS)

    Liu, N.; Skowronek, K.

    2003-01-01

    Full text: Homologous recombinational repair (HRR) is an important mechanism for maintaining genetic integrity and cancer prevention by accurately repair of DNA double strand breaks induced by environmental insults or occurred in DNA replication. A critical step in HRR is the polymerization of Rad51 on single stranded DNA to form nuclear protein filaments, the later conduct DNA strand paring and exchange between homologous strands. A number of proteins, including replication protein A (RPA), Rad52 and Rad51 paralogs, are suggested to modulate or facilitate the process of Rad51 filament formation. Five Rad51 paralogs, namely XRCC2, XRCC3, Rad51B, Rad51C and Rad51D have been identified in eucaryotic cells. These proteins show distant protein sequence identity to Rad51, to yeast Rad51 paralogs (Rad55 and Rad57) and to each other. Hamster or chicken mutants of Rad51 paralogs exhibit hypersensitivity to a variety of DNA damaging agents, especially cross-linking agents, and are defective in assembly of Rad51 onto HRR site after DNA damage. Recent data from our and other labs showed that Rad51 paralogs constitute two distinct complexes in cell extracts, one contains XRCC2, Rad51B, Rad51C and Rad51D, and the other contains Rad51C and XRCC3. Rad51C is involved in both complexes. Our results also showed that XRCC3-Rad51C complex interacts with Rad51 in vivo. Furthermore, overexpression of Rad52 can partially suppress the hypersensitivity of XRCC2 mutant irs1 to ionizing radiation and corrected the defects in Rad51 focus formation. These results suggest that XRCC2 and other Rad51 paralogs play a mediator function to Rad51 in the early stage of HRR

  10. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; Sunjevaric, Ivana; De Piccoli, Giacomo

    2007-01-01

    at an extranucleolar site. The nucleolar exclusion of Rad52 recombination foci entails Mre11 and Smc5-Smc6 complexes and depends on Rad52 SUMO (small ubiquitin-related modifier) modification. Remarkably, mutations that abrogate these activities result in the formation of Rad52 foci within the nucleolus and cause r...

  11. The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells

    DEFF Research Database (Denmark)

    de Souza-Pinto, Nadja C; Maynard, Scott; Hashiguchi, Kazunari

    2009-01-01

    number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic...... knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1...... to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities....

  12. Identification of cloned genes that complement the rad50-1, rad51-1, rad54-3 and rad55-3 mutations in yeast

    International Nuclear Information System (INIS)

    Calderon, I.L.; Contopoulou, C.R.; Mortimer, R.K.

    1982-01-01

    Plasmids that complement the rad50-1, rad51-1, rad54-3 and rad55-3 mutations in yeast, have been isolated. They were obtained by transforming strains, carrying the leu2-112 leu2-3 alleles and the particular rad mutation, with YEp13 plasmids containing near random yeast DNA inserts. Rad + clones were identified among the Leu + transformants. Integration by targeting into the RAD55 locus showed that the rad55-3 complementing plasmid contained the actual RAD55 gene. BamHI fragments from each of the plasmids that complement rad50-1, rad51-1 and rad54-3, all of which lacked Rad + activity, were subcloned into the integrating plasmid YIp5 and the hybrid plasmids were used to transform a Rad + Ura - strain to Ura + . By genetic mapping, the rad51 and rad54 subclones were shown to integrate at their respective loci. However, the rad50 subclones integrated at a site unlinked to the RAD50 locus. This suggests that no homology exists between this BamHI fragment and the RAD50 gene. Integration at the RAD54 locus of the rad54 subclone made the host cell Ura + but Rad - ; excision of the plasmid was shown to be x-ray inducible and to restore the Ura - Rad + phenotype. These results indicate that the BamHI fragment of the RAD54 plasmid is internal to the RAD54 gene. We can conclude also that the RAD54 gene is not essential as cells bearing a disrupted copy of this gene are able to survive. Additionally, a plasmid carrying an amber suppressor has been isolated and characterized

  13. Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Steffensen, Ane Y; Jønson, Lars

    2015-01-01

    for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been...

  14. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.S.; Prakash, L. (Univ. of Rochester School of Medicine, NY (USA)); Weber, S. (Kodak Research Park, Rochester, NY (USA))

    1988-07-25

    The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. The authors have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a calculated molecular weight of 55,512. The RAD18 protein contains three potential zinc finger domains for nucleic acid binding, and a putative nucleotide binding sequence that is present in many proteins that bind and hydrolyze ATP. The DNA binding and nucleotide binding activities could enable the RAD18 protein to bind damaged sites in the template DNA with high affinity. Alternatively, or in addition, RAD18 protein may be a transcriptional regulator. The RAD18 deletion mutation resembles the previously described point mutations in its effects on viability, DNA repair, UV mutagenesis, and sporulation.

  15. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    Science.gov (United States)

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  16. Roles of Rad51 protein in homologous recombination in mammalian cells: relation with repair, replication and cell cycle

    International Nuclear Information System (INIS)

    Lambert, S.

    2001-01-01

    Homologous recombination (HR) is a fundamental process, allowing a faithful repair. In mammalian, MmRAD51, which is the homologue of Saccharomyces cerevisiae ScRAD51 key protein for HR, is an essential gene. This work is based on the characterisation of viable hyper and hypo-recombinant cell lines specifically affected in the Rad51 pathway. By expressing wild type and dominant negative forms of MmRad51, we demonstrated that Rad51 pathway participates to the repair by HR to induced DNA damages. However, inhibition of the Rad 51 pathway does not affect cell viability, spontaneously or after irradiation, whereas, radiation induced HR is inhibited. In the presence of DNA damages during late S and G2/M phase, inhibition of Rad51 pathway induced chromosomal aberrations, leading to a transient arrest in mitosis. This arrest is associated with an increased of cell death. However, a fraction of cells can escape from this transient arrest by forming tetraploid cells, associated with an absence of chromalid separation. Thus, in response to impaired Rad51 pathway, mitotic checkpoints seems to play an essential role. In line with this, we showed that the essential function of Rad51 is p53-dependent, which is in agreement with the role of p53 in tetraploidy inhibition. Our results suggest that the Rad51 protein could participate to the control of mitotic checkpoints and thus to the maintenance of genetic stability. This function could involve other Rad51 partners such as the tumour suppressors BRCA1, BRCA2 and p53. (author) [fr

  17. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  18. Rad52 forms DMA repair and recombination centers during S phase

    DEFF Research Database (Denmark)

    Lisby, M.; Rothstein, R.; Mortensen, Uffe Hasbro

    2001-01-01

    fluorescent protein (GFP) is fully functional in DNA repair and recombination. After induction of DNA double-strand breaks by gamma -irradiation, meiosis, or the HO endonuclease, Rad52-GFP relocalizes from a diffuse nuclear distribution to distinct foci. Interestingly, Rad52 foci are formed almost exclusively...

  19. Lack of chemically induced mutation in repair-deficient mutants of yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1974-01-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), β-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents. (auth)

  20. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    Science.gov (United States)

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  1. Arabidopsis rad23-4 gene is required for pollen development under ...

    African Journals Online (AJOL)

    Nucleotide excision repair (NER) is a highly conserved DNA repair pathway for correcting DNA lesions that cause distortion of the double helical structure. The protein heterodimer Rad23 is involved in recognition and binding to such lesions. Here, we showed that rad23-4 (AT5g38470) was expressed in the roots, mature ...

  2. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Christensen, R.B.

    1979-01-01

    Dominant mutations at two newly identified loci, designated SRS1 and SRS2, that metabolically suppress the trimethoprim sensitivity of rad6 and rad18 strains, have been isolated from trimethorprim-resistant mutants arising spontaneously in rad6-1 rad18-2 strains of the yeast Saccharomyces cerevisiae. The SRS2 mutations also efficiently suppress the ultraviolet light sensitivity of the parent strains. They do not, however, suppress their sensitivity to ionizing radiation or their deficiency with respect to induced mutagenesis and sporulation. Such observations support the hypothesis that RAD6-dependent activities can be separated into two functionally distinct groups: a group of error-free repair activities that are responsible for a large amount of the radiation resistance of wild-type strains and also for their resistance to trimethoprim, and a group of error-prone activities that are responsible for induced mutagenesis and are also important in sporulation, but which account at best for only a very small amount of wild-type recovery

  3. Characterization of new radiation-sensitive mutant, Escherichia coli K-12 radC102

    International Nuclear Information System (INIS)

    Felzenszwalb, I.; Sargentini, N.J.; Smith, K.C.

    1984-01-01

    A new radiation-sensitive mutant, radC, has been isolated. The radC gene is located at 81.0 min on the Escherichia coli K-12 linkage map. The radC mutation sensitized cells to uv radiation, but unlike most DNA repair mutations, sensitization to X rays was observed only for rich medium-grown cells. For cells grown in rich medium, the radC mutant was normal for γ radiation mutagenesis, but showed less uv-radiation mutagenesis than the wild-type strain; it showed normal amount of X- and uv-radiation-induced DNA degradation, and it wasapprox. =60% deficient in recombination ability. The radC strain was normal for host cell reactivation of γ and uv-irradiated bacteriophage the radC mutation did not sensitize a recA strain, but did sensitize a radA and a polA strain to X and uv radiation and a uvrA strain to uv radiation. Therefore, it is suggested that the radC gene product plays a role in the growth medium-dependent, recA gene-dependent repair of DNA single-strand breaks after X irradiation, and in postreplication repair after uv irradiation

  4. Functional analysis of the RAD50/MRE11 protein complex through targeted disruption of the murine RAD50 genomic locus: implications for DNA double strand break repair. An astro research fellowship presentation

    International Nuclear Information System (INIS)

    Yao, Michelle S.; Bladl, Anthony R.; Petrini, John H.J.

    1997-01-01

    Purpose/Objective: The products of the S. cerevisiae genes ScRAD50 and ScMRE11 act in a protein complex and are required for non-homologous end-joining, the predominant mechanism of DNA double strand break (dsb) repair in mammalian cells. Mutation of these genes results in sensitivity to ionizing radiation (IR), a defect in initiation of meiosis, increased and error-prone recombination during mitosis, and overall genomic instability. This resultant phenotype is reminiscent of that seen in mammalian syndromes of genomic instability such as ataxia-telangiectasia and Bloom syndrome, hallmarks of which are radiation sensitivity and predisposition to malignancy. The murine homologues to ScRAD50 and ScMRE11 have recently been identified; both demonstrate impressive primary sequence conservation with their yeast counterparts, and are expected to mediate conserved functions. The roles of muRAD50 in genomic maintenance and in dsb repair will be examined in two parts. The first will include a determination of normal muRAD50 expression patterns. Second, the effects of disruption of the muRAD50 gene will be assessed. A specific targeting event has introduced a conditional murad50 null mutation into the genome of murine embryonic stem (ES) cells. These mutant ES cells are being used to create mutant mice, thus allowing functional characterization of muRAD50 on both the cellular and organismic levels. Such analyses will contribute to the delineation of the mammalian dsb repair pathway and to the cellular response to IR, and will serve as a mammalian model system for genomic instability. Materials and Methods: Wild-type tissue expression patterns and protein-protein interactions were determined by standard biochemical techniques, including immunoprecipitation, polyacrylamide gel electrophoresis, and Western blotting. Molecular cloning techniques were used to create the gene targeting vectors, which were designed to result in either a deletion of exon 1 (equivalent to a null

  5. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair or recombination phenotypes

    International Nuclear Information System (INIS)

    Cole, G.M.; Mortimer, R.K.

    1989-01-01

    The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae

  6. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage

    International Nuclear Information System (INIS)

    Goricar, Katja; Erculj, Nina; Zadel, Maja; Dolzan, Vita

    2012-01-01

    Homologous recombination (HR) repair is an important mechanism involved in repairing double-strand breaks in DNA and for maintaining genomic stability. Polymorphisms in genes coding for enzymes involved in this pathway may influence the capacity for DNA repair. The aim of this study was to select tag single nucleotide polymorphisms (SNPs) in specific genes involved in HR repair, to determine their allele frequencies in a healthy Slovenian population and their influence on DNA damage detected with comet assay. In total 373 individuals were genotyped for nine tag SNPs in three genes: XRCC3 722C>T, XRCC3 -316A>G, RAD51 -98G>C, RAD51 -61G>T, RAD51 1522T>G, NBS1 553G>C, NBS1 1197A>G, NBS1 37117C>T and NBS1 3474A>C using competitive allele-specific amplification (KASPar assay). Comet assay was performed in a subgroup of 26 individuals to determine the influence of selected SNPs on DNA damage. We observed that age significantly affected genotype frequencies distribution of XRCC3 -316A>G (P = 0.039) in healthy male blood donors. XRCC3 722C>T (P = 0.005), RAD51 -61G>T (P = 0.023) and NBS1 553G>C (P = 0.008) had a statistically significant influence on DNA damage. XRCC3 722C>T, RAD51 -61G>T and NBS1 553G>C polymorphisms significantly affect the repair of damaged DNA and may be of clinical importance as they are common in Slovenian population

  7. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  8. Evidence for three types of x-ray damage repair in yeast and sensitivity of totally repair deficient strains to sunlight

    International Nuclear Information System (INIS)

    Game, J.C.; Schild, D.; Mortimer, R.K.

    1987-01-01

    Mutants of yeast that confer sensitivity to x-rays are known to fall into two epistasis groups, called here the RAD51 and RAD18 groups, which are each thought to control a different type of x-ray repair. They examine here the role of genes in a third repair pathways in x-ray repair. RAD1 and RAD3 are known to be important in the repair of pyrimidine dimers after uv-irradiation. They find that these genes can also play an important role in x-ray repair, but that this role is only exposed when both the other pathways of x-ray repair are blocked. Double mutants blocked in the RAD51 and RAD18 pathways are significantly less x-ray sensitive than triple mutants blocked in these pathways but also mutant in either the RAD1 or RAD3 genes. In a related experiment, they tested the importance of DNA repair in nature by determining the sensitivity to natural unfiltered sunlight of a strain lacking all known DNA repair pathways. They constructed a quadruple mutant strain containing RAD1-1, RAD18-2, RAD51-1 and PHR1-1. The latter mutation blocks the cell's ability to photoreactivate uv damage. They found that this strain was so sensitive to sunlight that less than three seconds' exposure would cause an average of one lethal hit per cell, and survival was less than 2% after ten seconds' exposure. Wild type yeast at sea level showed no killing after thirty minutes. the quadruple mutant is approximately one thousand times more sensitive to sunlight than the related wild type

  9. Control of radiation sensitivity of mammalian cells. Regulation of expression of DNA repair genes

    International Nuclear Information System (INIS)

    Yoshida, Kayo; Morita, Takashi

    2003-01-01

    This review describes authors' investigations concerning regulation of expression of DNA repair genes for the purpose of control of radiosensitivity of mammalian cells for cancer radiotherapy. One of their experiments concerns the enhancement of sensitivity to radiation and anti-tumor agents by suppressing the expression of mammalian Rad51 gene which playing a central role in recombination repair against DNA double-strand break, by RNA interference (RNAi). Described are the mode of action of RNAi, mechanism of suppression of Rad51 gene expression by it, enhancing effect in radiosensitivity, stable suppression and enhancement by hairpin RNA and its possible usefulness in cancer therapy. The other concerns the histone H2AX gene, which delivering the repair signal post phosphorylation in chromatin against the double-strand break. Experimental results of suppression of the histone H2AX gene by tet-off system, enhancement of radiosensitivity by the suppression and functional recovery by the gene transfer are described, and the radiosensitivity can be thus artificially controlled by tetracycline in authors' F9 2AX (tet/tet) cells. (N.I.)

  10. A miR-590/Acvr2a/Rad51b Axis Regulates DNA Damage Repair during mESC Proliferation

    Directory of Open Access Journals (Sweden)

    Qidong Liu

    2014-12-01

    Full Text Available Embryonic stem cells (ESCs enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF, which maintains the self-renewal capability of mouse ESCs (mESCs, significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB and double-strand break (DSB damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal.

  11. Influence of different inhibitors on the activity of the RAD54 dependent step of DNA repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Siede, W.; Obermaier, S.; Eckhardt, F.

    1985-01-01

    The recombinagenic pathway of DNA repair in yeast was characterized by the effect of different inhibitors on the temperature-dependent survival after ..gamma..-irradiation in haploid cells of the thermoconditional mutant rad54-3. Blocking protein synthesis with cycloheximide in replicating cells caused partial inhibition of the RAD54 dependent function but some repair activity remained detectable. This indicates that ..gamma..-rays can induce RAD54 activity above some constitutive level of function. Inhibition of DNA replication by hydroxyurea efficiently blocked the RAD54 dependent function in stationary-phase cells but not in logarithmic-phase cells. In logarithmic-phase cells, the authors found a strong inhibitory effect of caffeine on the RAD54 mediated repair process.

  12. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    Science.gov (United States)

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  13. RADTRAN 6/RadCat 6 user guide.

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Ruth F.; Hinojosa, Daniel; Heames, Terence John; Farnum, Cathy Ottinger; Kalinina, Elena Arkadievna

    2013-09-01

    This document provides a detailed discussion and a guide for the use of the RadCat 6.0 Graphical User Interface input file generator for the RADTRAN code, Version 6. RadCat 6.0 integrates the newest analysis capabilities of RADTRAN 6.0, including an economic model, updated loss-of-lead shielding model, a new ingestion dose model, and unit conversion. As of this writing, the RADTRAN version in use is RADTRAN 6.02.

  14. MMS2, Encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway

    International Nuclear Information System (INIS)

    Broomfield, S.; Chow, B.L.; Xiao, W.

    1998-01-01

    Among the three Saccharomyces cerevisiae DNA repair epistasis groups, the RAD6 group is the most complicated and least characterized, primarily because it consists of two separate repair pathways: an error-free postreplication repair pathway, and a mutagenesis pathway. The rad6 and rad18 mutants are defective in both pathways, and the rev3 mutant affects only the mutagenesis pathway, but a yeast gene that is involved only in error-free postreplication repair has not been reported. We cloned the MMS2 gene from a yeast genomic library by functional complementation of the mms2-1 mutant [Prakash, L. and Prakash, S. (1977) Genetics 86, 33-55]. MMS2 encodes a 137-amino acid, 15.2-kDa protein with significant sequence homology to a conserved family of ubiquitin-conjugating (Ubc) proteins. However, Mms2 does not appear to possess Ubc activity. Genetic analyses indicate that the mms2 mutation is hypostatic to rad6 and rad18 but is synergistic with the rev3 mutation, and the mms2 mutant is proficient in UV-induced mutagenesis. These phenotypes are reminiscent of a pol30-46 mutant known to be impaired in postreplication repair. The mms2 mutant also displayed a REV3-dependent mutator phenotype, strongly suggesting that the MMS2 gene functions in the error-free postreplication repair pathway, parallel to the REV3 mutagenesis pathway. Furthermore, with respect to UV sensitivity, mms2 was found to be hypostatic to the rad6 delta 1-9 mutation, which results in the absence of the first nine amino acids of Rad6. On the basis of these collective results, we propose that the mms2 null mutation and two other allele-specific mutations, rad6 delta 1-9 and pol30-46, define the error-free mode of DNA postreplication repair, and that these mutations may enhance both spontaneous and DNA damage-induced mutagenesis

  15. Unique DNA repair gene variations and potential associations with the primary antibody deficiency syndromes IgAD and CVID.

    Directory of Open Access Journals (Sweden)

    Steven M Offer

    Full Text Available BACKGROUND: Despite considerable effort, the genetic factors responsible for >90% of the antibody deficiency syndromes IgAD and CVID remain elusive. To produce a functionally diverse antibody repertoire B lymphocytes undergo class switch recombination. This process is initiated by AID-catalyzed deamination of cytidine to uridine in switch region DNA. Subsequently, these residues are recognized by the uracil excision enzyme UNG2 or the mismatch repair proteins MutSalpha (MSH2/MSH6 and MutLalpha (PMS2/MLH1. Further processing by ubiquitous DNA repair factors is thought to introduce DNA breaks, ultimately leading to class switch recombination and expression of a different antibody isotype. METHODOLOGY/PRINCIPAL FINDINGS: Defects in AID and UNG2 have been shown to result in the primary immunodeficiency hyper-IgM syndrome, leading us to hypothesize that additional, potentially more subtle, DNA repair gene variations may underlie the clinically related antibody deficiencies syndromes IgAD and CVID. In a survey of twenty-seven candidate DNA metabolism genes, markers in MSH2, RAD50, and RAD52 were associated with IgAD/CVID, prompting further investigation into these pathways. Resequencing identified four rare, non-synonymous alleles associated with IgAD/CVID, two in MLH1, one in RAD50, and one in NBS1. One IgAD patient carried heterozygous non-synonymous mutations in MLH1, MSH2, and NBS1. Functional studies revealed that one of the identified mutations, a premature RAD50 stop codon (Q372X, confers increased sensitivity to ionizing radiation. CONCLUSIONS: Our results are consistent with a class switch recombination model in which AID-catalyzed uridines are processed by multiple DNA repair pathways. Genetic defects in these DNA repair pathways may contribute to IgAD and CVID.

  16. A human repair gene ERCC5 is involved in group G xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Shiomi, Tadahiro

    1994-01-01

    In E. coli, ultraviolet-induced DNA damage is removed by the coordinated action of UVR A, B, C, and D proteins (1). In Saccharomyces cerevisiae, more than ten genes have been reported to be involved in excision repair (2). The nucleotide excision repair pathway has been extensively studied in these organisms. To facilitate studying nucleotide excision repair in mammalian cells. Ultraviolet-sensitive rodent cell mutants have been isolated and classified into 11 complementation groups (9,10). The human nucleotide excision repair genes which complement the defects of the mutants have been designated as the ERCC (excision repair cross-complementing) genes; a number is added to refer to the particular rodent complementation group that is corrected by the gene. Recently, several human DNA repair genes have been cloned using rodent cell lines sensitive to ultraviolet. These include ERCC2 (3), ERCC3 (4), and ERCC6 (5), which correspond to the defective genes in the ultraviolet-sensitive human disorders xeroderma pigmentosum (XP) group D (6) and group B (4), and Cockayne's syndrome (CS) group B (7), respectively. The human excision repair gene ERCC5 was cloned after DNA-mediated gene transfer of human HeLa cell genomic DNA into the ultraviolet-sensitive mouse mutant XL216, a member of rodent complementation group 5 (11,12) and the gene was mapped on human chromosome 13q32.3-q33.1 by the replication R-banding fluorescence in situ hybridization method (13). The ERCC5 cDNA encodes a predicted 133 kDa nuclear protein that shares some homology with product of the yeast DNA repair gene RAD 2. Transfection with mouse ERCC5 cDNA restored normal levels of ultraviolet-resistance to XL216 cells. Microinjection of ERCC5 cDNA specifically restored the defect of XP group G cells (XP-G) as measured by unscheduled DNA synthesis (UDS), and XP-G cells stably transformed with ERCC5 cDNA showed nearly normal ultraviolet resistance. (J.P.N.)

  17. Rad54 and Mus81 cooperation promotes DNA damage repair and restrains chromosome missegregation

    DEFF Research Database (Denmark)

    Ghamrasni, S El; Cardoso, R; Li, L

    2016-01-01

    . The inefficient repair of DNA double-strand breaks (DSBs) in Rad54(-/-)Mus81(-/-) cells was accompanied by elevated levels of chromosome missegregation and cell death. Perhaps as a consequence, tumor incidence in Rad54(-/-)Mus81(-/-) mice remained comparable to that in Mus81(-/-) mice. Our study highlights...

  18. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination.

    NARCIS (Netherlands)

    J. Essers (Jeroen); R.W. Hendriks (Rudi); S.M.A. Swagemakers (Sigrid); C. Troelstra (Christine); J. de Wit (Jan); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    1997-01-01

    textabstractDouble-strand DNA break (DSB) repair by homologous recombination occurs through the RAD52 pathway in Saccharomyces cerevisiae. Its biological importance is underscored by the conservation of many RAD52 pathway genes, including RAD54, from fungi to humans. We have analyzed the phenotype

  19. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  20. nuvA, an Aspergillus nidulans gene involved in DNA repair and recombination, is a homologue of Saccharomyces cerevisiae RAD18 and Neurospora crassa uvs-2.

    Science.gov (United States)

    Iwanejko, L; Cotton, C; Jones, G; Tomsett, B; Strike, P

    1996-03-01

    A 40 kb genomic clone and 2.3 kb EcoRI subclone that rescued the DNA repair and recombination defects of the Aspergillus nidulans nuvA11 mutant were isolated and the subclone sequenced. The subclone hybridized to a cosmid in a chromosome-specific library confirming the assignment of nuvA to linkage group IV and indicating its closeness to bimD. Amplification by PCR clarified the relative positions of nuvA and bimD. A region identified within the subclone, encoding a C3HC4 zinc finger motif, was used as a probe to retrieve a cDNA clone. Sequencing of this clone showed that the nuvA gene has an ORF of 1329 bp with two introns of 51 bp and 60 bp. Expression of nuvA appears to be extremely low. The putative NUVA polypeptide has two zinc finger motifs, a molecular mass of 48906 Da and has 39% identity with the Neurospora crassa uvs-2 and 25% identity with the Saccharomyces cerevisiae RAD18 translation products. Although mutations in nuvA, uvs-2 and RAD18 produce similar phenotypes, only the nuvA11 mutation affects meiotic recombination. A role for nuvA in both DNA repair and genetic recombination is proposed.

  1. Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    Gascoyne Randy D

    2009-11-01

    Full Text Available Abstract Background Translocations are hallmarks of non-Hodgkin lymphoma (NHL genomes. Because lymphoid cell development processes require the creation and repair of double stranded breaks, it is not surprising that disruption of this type of DNA repair can cause cancer. The members of the MRE11-RAD50-NBS1 (MRN complex and BLM have central roles in maintenance of DNA integrity. Severe mutations in any of these genes cause genetic disorders, some of which are characterized by increased risk of lymphoma. Methods We surveyed the genetic variation in these genes in constitutional DNA of NHL patients by means of gene re-sequencing, then conducted genetic association tests for susceptibility to NHL in a population-based collection of 797 NHL cases and 793 controls. Results 114 SNPs were discovered in our sequenced samples, 61% of which were novel and not previously reported in dbSNP. Although four variants, two in RAD50 and two in NBS1, showed association results suggestive of an effect on NHL, they were not significant after correction for multiple tests. Conclusion These results suggest an influence of RAD50 and NBS1 on susceptibility to diffuse large B-cell lymphoma and marginal zone lymphoma. Larger association and functional studies could confirm such a role.

  2. Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2014-01-01

    Full Text Available Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.

  3. The Molecular Basis of Double-Strand DNA Break Repair: The Critical Structure of the RAD52/RPA Complex

    National Research Council Canada - National Science Library

    Jackson, Dobra

    2001-01-01

    .... RAD52 has specific interactions with RAD51, RPA and DNA (1,2,3). The binding of RAD52 to ends of double-strand breaks has been found to be a key initiation step to DNA repair by homologous recombination...

  4. Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Essers, Jeroen; Rakt, Mandy W.M.M. van de; Odijk, Hanny; Pastink, Albert; Zdzienicka, MaIgorzata Z.; Paulusma, Coen C.; Kanaar, Roland

    2005-01-01

    Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response

  5. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Krishna, Malini

    2012-01-01

    The effect of fractionated doses of γ-irradiation (2 Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2 Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10 Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene.

  6. Preferential binding of yeast Rad4-Rad23 complex to damaged DNA

    International Nuclear Information System (INIS)

    Jansen, L.E.T.; Verhage, R.A.; Brouwer, J.

    1998-01-01

    The yeast Rad4 and Rad23 proteins form a complex that is involved in nucleotide excision repair (NER). Their function in this process is not known yet, but genetic data suggest that they act in an early step in NER. We have purified an epitope-tagged Rad4.Rad23 (tRad4. Rad23) complex from yeast cells, using a clone overproducing Rad4 with a hemagglutinin-tag at its C terminus. tRad4.Rad23 complex purified by both conventional and immuno-affinity chromatography complements the in vitro repair defect of rad4 and rad23 mutant extracts, demonstrating that these proteins are functional in NER. Using electrophoretic mobility shift assays, we show preferential binding of the tRad4.Rad23 complex to damaged DNA in vitro. UV-irradiated, as well as N-acetoxy-2-(acetylamino)fluorene-treated DNA, is efficiently bound by the protein complex. These data suggest that Rad4.Rad23 interacts with DNA damage during NER and may play a role in recognition of the damage

  7. Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of 16 different genes (rad) conferring radiation sensitivity on chemically induced reversion in the yeast Saccharomyces cerevisiae was determined. The site of reversion used was a well-defined chain initiation mutant mapping in the structural gene coding for iso-1-cytochrome c. High doses of EMS and HNO 2 resulted in decreased reversion of cyc1-131 in rad6, rad9 and rad15 strains compared to the normal RAD + strains. In addition, rad52 greatly decreased EMS reversion of cyc1-131 but had no effect on HNO 2 -induced reversion; rad18, on the other hand, increased HNO 2 -induced reversion but did not alter EMS-induced reversion. When NQO was used as the mutagen, every rad gene tested, except for rad18, had an effect on reversion; rad6, rad9, rad15, rad17, rad18, rad22, rev1, rev2, and rev3 lowered NQO reversion while rad1, rad2, rad3, rad4, rad10, rad12, and rad16 increased it compared to the RAD + strain. The effect of rad genes on chemical mutagenesis is discussed in terms of their effect on uv mutagenesis. It is concluded that although the nature of the repair pathways may differ for uv- and chemically-induced mutations in yeast, a functional repair system is required for the induction of mutation by the chemical agents NQO, EMS, and HNO 2

  8. OsRAD51C Is Essential for Double Strand Break Repair in Rice Meiosis

    Directory of Open Access Journals (Sweden)

    Ding eTang

    2014-05-01

    Full Text Available RAD51C is one of the RAD51 paralogs that plays an important role in DNA double-strand break repair by homologous recombination. Here, we identified and characterized OsRAD51C, the rice homolog of human RAD51C. The Osrad51c mutant plant is normal in vegetative growth but exhibits complete male and female sterility. Cytological investigation revealed that homologous pairing and synapsis were severely disrupted. Massive chromosome fragmentation occurred during metaphase I in Osrad51c meiocytes, and was fully suppressed by the CRC1 mutation. Immunofluorescence analysis showed that OsRAD51C localized onto the chromosomes from leptotene to early pachytene during prophase I, and that normal loading of OsRAD51C was dependent on OsREC8, PAIR2, and PAIR3. Additionally, ZEP1 did not localize properly in Osrad51c, indicating that OsRAD51C is required for synaptonemal complex assembly. Our study also provided evidence in support of a functional divergence in RAD51C among organisms.

  9. The tumor suppressor homolog in fission yeast, myh1+, displays a strong interaction with the checkpoint gene rad1+

    International Nuclear Information System (INIS)

    Jansson, Kristina; Warringer, Jonas; Farewell, Anne; Park, Han-Oh; Hoe, Kwang-Lae; Kim, Dong-Uk; Hayles, Jacqueline; Sunnerhagen, Per

    2008-01-01

    The DNA glycosylase MutY is strongly conserved in evolution, and homologs are found in most eukaryotes and prokaryotes examined. This protein is implicated in repair of oxidative DNA damage, in particular adenine mispaired opposite 7,8-dihydro-8-oxoguanine. Previous investigations in Escherichia coli, fission yeast, and mammalian cells show an association of mutations in MutY homologs with a mutator phenotype and carcinogenesis. Eukaryotic MutY homologs physically associate with several proteins with a role in replication, DNA repair, and checkpoint signaling, specifically the trimeric 9-1-1 complex. In a genetic investigation of the fission yeast MutY homolog, myh1 + , we show that the myh1 mutation confers a moderately increased UV sensitivity alone and in combination with mutations in several DNA repair genes. The myh1 rad1, and to a lesser degree myh1 rad9, double mutants display a synthetic interaction resulting in enhanced sensitivity to DNA damaging agents and hydroxyurea. UV irradiation of myh1 rad1 double mutants results in severe chromosome segregation defects and visible DNA fragmentation, and a failure to activate the checkpoint. Additionally, myh1 rad1 double mutants exhibit morphological defects in the absence of DNA damaging agents. We also found a moderate suppression of the slow growth and UV sensitivity of rhp51 mutants by the myh1 mutation. Our results implicate fission yeast Myh1 in repair of a wider range of DNA damage than previously thought, and functionally link it to the checkpoint pathway

  10. Comprehensive Pathway-Based Association Study of DNA Repair Gene Variants and the Risk of Nasopharyngeal Carcinoma

    Science.gov (United States)

    Qin, Hai-De; Shugart, Yin Yao; Bei, Jin-Xin; Pan, Qing-Hua; Chen, Lina; Feng, Qi-Sheng; Chen, Li-Zhen; Huang, Wei; Liu, Jian Jun; Jorgensen, Timothy J.; Zeng, Yi-Xin; Jia, Wei-Hua

    2011-01-01

    DNA repair plays a central role in protecting against environmental carcinogenesis, and genetic variants of DNA repair genes have been reported to be associated with several human malignancies. To assess whether DNA gene variants were associated with nasopharyngeal carcinoma (NPC) risk, a candidate gene association study was conducted among the Cantonese population within the Guangdong Province, China --the ethnic group with the highest risk for NPC. A two-stage study design was utilized. In the discovery stage, 676 tagging SNPs covering 88 DNA repair genes were genotyped in a matched case-control study (cases/controls = 755/755). Eleven SNPs with Ptrend Cantonese population (cases/controls = 1,568/1,297). Two of the SNPs (rs927220 and rs11158728) – both in RAD51L1 – remained strongly associated with NPC. The SNP rs927220 had a significant Pcombined of 5.55 × 10−5, with OR = 1.20 (95%CI = 1.10 to 1.30), Bonferroni corrected P = 0.0381. The other SNP (rs11158728), which is in strong LD with rs927220 (r2 = 0.7), had a significant Pcombined of 2.0 × 10−4, Bonferroni corrected P = 0.1372. Gene-environment interaction analysis suggested that the exposures of salted-fish consumption and cigarette smoking had potential interactions with DNA repair gene variations, but need to be further investigated. Our findings support the notion that DNA repair genes, in particular RAD51L1, play a role in NPC etiology and development. PMID:21368091

  11. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish.

    Science.gov (United States)

    Botthof, Jan Gregor; Bielczyk-Maczyńska, Ewa; Ferreira, Lauren; Cvejic, Ana

    2017-05-30

    RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.

  12. Human RAD18 interacts with ubiquitylated chromatin components and facilitates RAD9 recruitment to DNA double strand breaks.

    Directory of Open Access Journals (Sweden)

    Akiko Inagaki

    Full Text Available RAD18 is an ubiquitin ligase involved in replicative damage bypass and DNA double-strand break (DSB repair processes. We found that RPA is required for the dynamic pattern of RAD18 localization during the cell cycle, and for accumulation of RAD18 at sites of γ-irradiation-induced DNA damage. In addition, RAD18 colocalizes with chromatin-associated conjugated ubiquitin and ubiquitylated H2A throughout the cell cycle and following irradiation. This localization pattern depends on the presence of an intact, ubiquitin-binding Zinc finger domain. Using a biochemical approach, we show that RAD18 directly binds to ubiquitylated H2A and several other unknown ubiquitylated chromatin components. This interaction also depends on the RAD18 Zinc finger, and increases upon the induction of DSBs by γ-irradiation. Intriguingly, RAD18 does not always colocalize with regions that show enhanced H2A ubiquitylation. In human female primary fibroblasts, where one of the two X chromosomes is inactivated to equalize X-chromosomal gene expression between male (XY and female (XX cells, this inactive X is enriched for ubiquitylated H2A, but only rarely accumulates RAD18. This indicates that the binding of RAD18 to ubiquitylated H2A is context-dependent. Regarding the functional relevance of RAD18 localization at DSBs, we found that RAD18 is required for recruitment of RAD9, one of the components of the 9-1-1 checkpoint complex, to these sites. Recruitment of RAD9 requires the functions of the RING and Zinc finger domains of RAD18. Together, our data indicate that association of RAD18 with DSBs through ubiquitylated H2A and other ubiquitylated chromatin components allows recruitment of RAD9, which may function directly in DSB repair, independent of downstream activation of the checkpoint kinases CHK1 and CHK2.

  13. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  14. The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana.

    Science.gov (United States)

    Klemm, Tobias; Mannuß, Anja; Kobbe, Daniela; Knoll, Alexander; Trapp, Oliver; Dorn, Annika; Puchta, Holger

    2017-08-01

    Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error-free branch of post-replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication-associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single-strand break repair (AtPARP1), as well as microhomology-mediated double-strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM-mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Physical interaction between components of DNA mismatch repair and nucleotide excision repair

    International Nuclear Information System (INIS)

    Bertrand, P.; Tishkoff, D.X.; Filosi, N.; Dasgupta, R.; Kolodner, R.D.

    1998-01-01

    Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as 'bait,' and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes

  16. Regulation of Rad51-Mediated Homologous Recombination by BRCA2, DSS1 and RAD52

    DEFF Research Database (Denmark)

    Rants, Louise Olthaver Juhl

    Homologous recombination (HR) provides a mechanism to restore integrity and maintain stability of the genetic material. HR is a major pathway for repair of DNA double-strand breaks (DSB), recovery of broken replication forks and generation of meiotic crossovers. The defining step in HR is homolog......Homologous recombination (HR) provides a mechanism to restore integrity and maintain stability of the genetic material. HR is a major pathway for repair of DNA double-strand breaks (DSB), recovery of broken replication forks and generation of meiotic crossovers. The defining step in HR...... is homologous strand exchange directed by the RecA-related recombinase Rad51. BRCA2 participates in HR by mediating Rad51 homology-directed repair. Both BRCA2 and Rad51 are essential for HR, DNA repair, and the maintenance of genome stability. In the present study, we seek to understand the mechanism of BRCA2...... with RAD52-mediated repair at sites of CPT-induced DNA damage. The synthetic lethality approach using RAD52 small molecule inhibitors in brca-deficient cancers is a promising therapeutic strategy for cancer treatment....

  17. Plate assay for chemical- and radiation-induced mutagenesis of CAN1 in yeast as a function of post-treatment DNA replication: The effect of rad6-1

    International Nuclear Information System (INIS)

    Lemontt, J.F.; Lair, S.V.

    1982-01-01

    An agar post-treatment method was used to monitor levels of ultraviolet light- and hydrazine-induced mutagenesis at CAN1 in Saccharomyces cerevisiae as a function of post-treatment cell division prior to selection for canavanine-resistant mutants with a top-agar overlay containing canavanine. The advantage of this method is that its permits reliable measurements of mutation induction during the early period before, during, and after the first round of post-treatment DNA replication. In strains that are wild-type for DNA repair, ultraviolet light mutagenesis appears to be a pre-replicative phenomenon, while mutation by hydrazine involves a replicative or post-replicative mechanism. Most chemical mutagenesis in yeast requires a functional RAD6 gene. Hydrazine mutability is also reduced by rad6-1, suggesting a possible misrepair mechanism. (orig.)

  18. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1979-01-01

    Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced, and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Intra- and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the hisl-1/hisl-315 and trp5-2/trp5-48 heteroalleles. Gene-centromere recombination was also not observed in rad52/rad52 diploids. No γ-ray-induced intragenic mitotic recombination is seen in rad52/rad52 diploids and uv-induced intragenic recombination is greatly reduced. However, spontaneous mitotic recombination is not similarly affected. The RAD52 gene thus functions in recombination in meiosis and in γ-ray and uv-induced mitotic recombination but not in spontaneous mitotic recombination

  19. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1980-01-01

    Effects of the rad 52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the his1-1/his1-315 and trp-5-2/trp5-48 heteroalleles. Gene-centromere recombination also was not observed in rad/52/rad52 diploids. No γ-ray- or uv-induced intragenic mitotic recombination is seen in rad52/rad52 diploids. The rate of spontaneous mitotic recombination is lowered five-fold at the his1-1/his1-315 and leu1-c/leu1-12 heteroalleles. Spontaneous reversion rates of both his1-1 and his1-315 were elevated 10 to 20 fold in rad52/rad52 diploids. The RAD52 gene function is required for spontaneous mitotic recombination, uv- and γ-ray-induced mitotic recombination and mitotic recombination

  20. The tumor suppressor homolog in fission yeast, myh1{sup +}, displays a strong interaction with the checkpoint gene rad1{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Kristina; Warringer, Jonas; Farewell, Anne [Department of Cell and Molecular Biology, Lundberg Laboratory, Goeteborg University, P.O. Box 462, Goeteborg SE-405 30 (Sweden); Park, Han-Oh [Bioneer Corporation, 49-3, Munpyeong-dong, Daedeok-gu, Daejon 306-220 (Korea, Republic of); Hoe, Kwang-Lae; Kim, Dong-Uk [Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong, Daejeon (Korea, Republic of); Hayles, Jacqueline [Cell Cycle Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln' s Inn Fields, London WC2A 3PX (United Kingdom); Sunnerhagen, Per [Department of Cell and Molecular Biology, Lundberg Laboratory, Goeteborg University, P.O. Box 462, Goeteborg SE-405 30 (Sweden)], E-mail: per.sunnerhagen@cmb.gu.se

    2008-09-26

    The DNA glycosylase MutY is strongly conserved in evolution, and homologs are found in most eukaryotes and prokaryotes examined. This protein is implicated in repair of oxidative DNA damage, in particular adenine mispaired opposite 7,8-dihydro-8-oxoguanine. Previous investigations in Escherichia coli, fission yeast, and mammalian cells show an association of mutations in MutY homologs with a mutator phenotype and carcinogenesis. Eukaryotic MutY homologs physically associate with several proteins with a role in replication, DNA repair, and checkpoint signaling, specifically the trimeric 9-1-1 complex. In a genetic investigation of the fission yeast MutY homolog, myh1{sup +}, we show that the myh1 mutation confers a moderately increased UV sensitivity alone and in combination with mutations in several DNA repair genes. The myh1 rad1, and to a lesser degree myh1 rad9, double mutants display a synthetic interaction resulting in enhanced sensitivity to DNA damaging agents and hydroxyurea. UV irradiation of myh1 rad1 double mutants results in severe chromosome segregation defects and visible DNA fragmentation, and a failure to activate the checkpoint. Additionally, myh1 rad1 double mutants exhibit morphological defects in the absence of DNA damaging agents. We also found a moderate suppression of the slow growth and UV sensitivity of rhp51 mutants by the myh1 mutation. Our results implicate fission yeast Myh1 in repair of a wider range of DNA damage than previously thought, and functionally link it to the checkpoint pathway.

  1. RAD9, RAD17; RAD24, and RAD53 control one pathway of resistance to γ irradiation in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Nikulushkina, Yu.V.; Roshina, M.P.; Devin, A.B.

    2009-01-01

    Mechanisms for the genetic control of the cell cycle transition (checkpoint control) have been studied in more detail in yeast Saccharomyces cerevisiae. To clarify tho role of the RAD9, RAD17, RAD24, and RAD53 checkpoint genes in cell radioresistance, diploid double mutants were analyzed for cell sensitivity to ionizing radiation. All mutations in combination with rad9Δ were shown to manifest the epistatic type of interaction. Our results suggest that the RAD9, RAD17, RAD24, and RAD53 checkpoint genes belong to a single epistasis group called the RAD9 group and participate in the same pathway. RAD9 and RAD53 have a positive effect on sensitivity to γ irradiation, whereas RAD17 and RAD24 have a negative effect. For haploid interactions between mutations may differ in the case of γ or UV irradiation, mutations - for example, rad9Δ and rad24Δ - were shown to have an additive effect in the first case and epistatic - in the second. The analyzed genes can also participate in minor mechanisms of radioresistance that are relatively independent of the above major mechanism

  2. Germline RAD51B truncating mutation in a family with cutaneous melanoma

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Aoude, Lauren G; Golmard, Lisa

    2015-01-01

    Known melanoma predisposition genes only account for around 40% of high-density melanoma families. Other rare mutations are likely to play a role in melanoma predisposition. RAD51B plays an important role in DNA repair through homologous recombination, and inactivation of RAD51B has been implicated...... in tumorigenesis. Thus RAD51B is a good candidate melanoma susceptibility gene, and previously, a germline splicing mutation in RAD51B has been identified in a family with early-onset breast cancer. In order to find genetic variants associated with melanoma predisposition, whole-exome sequencing was carried out...... on blood samples from a three-case cutaneous melanoma family. We identified a novel germline RAD51B nonsense mutation, and we demonstrate reduced expression of RAD51B in melanoma cells indicating inactivation of RAD51B. This is only the second report of a germline truncating RAD51B mutation. While...

  3. Correlation of RAD51 and radiosensitization of methotrexate

    International Nuclear Information System (INIS)

    Du Liqing; Bai Jianqiang; Liu Qiang; Wang Yan; Zhao Peng; Chen Fenghua; Wang Hong; Fan Feiyue

    2012-01-01

    Objective: To evaluate the correlation between homologous recombination repair protein RAD51 and methotrexate-enhanced radiosensitivity. Methods: Western blot and RT-PCR assays were used to detect RAD51 expression in HOS osteosarcoma cells exposed to γ-ray irradiation alone and in combination with methotrexate. Colony formation assay was used to test the survival fraction of HOS cells exposed to γ-rays and methotrexate. Results: Methotrexate inhibited both protein and RNA expressions of RAD51, and the combination of radiation and methotrexate enhanced the inhibition of RAD51 expression. Moreover, transfection of cells with RAD51 gene decreased cellular sensitivity to methotrexate and γ-rays. The sensitizer enhancement ratios after irradiation in combination with methotrexate were 1.51 and 0.99, respectively. Methotrexate was a preferred radiosensitizer to HOS cell. Conclusions: RAD51 might be involved in the methotrexate-enhanced radiosensitivity. (authors)

  4. C. elegans ring finger protein RNF-113 is involved in interstrand DNA crosslink repair and interacts with a RAD51C homolog.

    Directory of Open Access Journals (Sweden)

    Hyojin Lee

    Full Text Available The Fanconi anemia (FA pathway recognizes interstrand DNA crosslinks (ICLs and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans. Here we report that RNF-113, a ubiquitin ligase, is required for RAD-51 focus formation after inducing ICLs in C. elegans. However, the formation of foci of RPA-1 or FCD-2/FANCD2 in the FA pathway was not affected by depletion of RNF-113. Nevertheless, the RPA-1 foci formed did not disappear with time in the depleted worms, implying serious defects in ICL repair. As a result, RNF-113 depletion increased embryonic lethality after ICL treatment in wild-type worms, but it did not increase the ICL-induced lethality of rfs-1/rad51C mutants. In addition, the persistence of RPA-1 foci was suppressed in doubly-deficient rnf-113;rfs-1 worms, suggesting that there is an epistatic interaction between the two genes. These results lead us to suggest that RNF-113 and RFS-1 interact to promote the displacement of RPA-1 by RAD-51 on single-stranded DNA derived from ICLs.

  5. Olaparib in Treating Patients With Metastatic or Advanced Urothelial Cancer With DNA-Repair Defects

    Science.gov (United States)

    2018-06-14

    Abnormal DNA Repair; ATM Gene Mutation; ATR Gene Mutation; BAP1 Gene Mutation; BARD1 Gene Mutation; BLM Gene Mutation; BRCA1 Gene Mutation; BRCA2 Gene Mutation; BRIP1 Gene Mutation; CHEK1 Gene Mutation; CHEK2 Gene Mutation; FANCC Gene Mutation; FANCD2 Gene Mutation; FANCE Gene Mutation; FANCF Gene Mutation; MEN1 Gene Mutation; Metastatic Urothelial Carcinoma; MLH1 Gene Mutation; MSH2 Gene Mutation; MSH6 Gene Mutation; MUTYH Gene Mutation; NPM1 Gene Mutation; PALB2 Gene Mutation; PMS2 Gene Mutation; POLD1 Gene Mutation; POLE Gene Mutation; PRKDC Gene Mutation; RAD50 Gene Mutation; RAD51 Gene Mutation; SMARCB1 Gene Mutation; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; STK11 Gene Mutation; Urothelial Carcinoma

  6. Schizosaccharomyces pombe Rad22A and Rad22B have similar biochemical properties and form multimeric structures

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Femke A.T. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Zonneveld, Jose B.M. [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Groot, Anton J. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Koning, Roman I. [Department of Molecular Cell Biology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert A. van [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Pastink, Albert [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)]. E-mail: A.Pastink@lumc.nl

    2007-02-03

    The Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination. In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange. Schizosaccharomyces pombe has two Rad52 homologues, Rad22A and Rad22B. Whereas rad22A deficient strains exhibit severe defects in repair and recombination, rad22B mutants have a much less severe phenotype. To better understand the role of Rad22A and Rad22B in double-strand break repair, both proteins were purified to near homogeneity. Using gel retardation and filter binding assays, binding of Rad22A and Rad22B to short single-stranded DNAs was demonstrated. Binding of Rad22A to double-stranded oligonucleotides or linearized plasmid molecules containing blunt ends or short single-stranded overhangs could not be detected. Rad22B also does not bind efficiently to short duplex oligonucleotides but binds readily to DNA fragments containing 3'-overhangs. Rad22A as well as Rad22B efficiently promote annealing of complementary single-stranded DNAs. In the presence of Rad22A annealing of complementary DNAs is almost 90%. Whereas in reactions containing Rad22B the maximum level of annealing is 60%, most likely due to inhibition of the reaction by duplex DNA. Gel-filtration experiments and electron microscopic analyses indicate self-association of Rad22A and Rad22B and the formation of multimeric structures as has been observed for Rad52 in yeast and man.

  7. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Madura, K.; Prakash, S.

    1986-01-01

    The authors determined the nucleotide sequence, mapped the 5' and 3' nRNA termini, and examined the regulation of the RAD2 gene of Saccharomyces cerevisiae. A long open reading frame within the RAD2 transcribed region encodes a protein of 1031 amino acids with a calculated molecular weight of 117,847. A disruption of the RAD2 gene that deletes the 78 carboxyl terminal codons results in loss of RAD2 function. The 5' ends of RAD2 mRNA show considerable heterogeneity, mapping 5 to 62 nucleotides upstream of the first ATG codon of the long RAD2 open reading frame. The longest RAD2 transcripts also contain a short open reading frame of 37 codons that precedes and overlaps the 5' end of the long RAD2 open reading frame. The RAD2 3' nRNA end maps 171 nucleotides downstream of the TAA termination codon and 20 nucleotides downstream from a 12-base-pair inverted repeat that might function in transcript termination. Northern blot analysis showed a ninefold increase in steady-state levels of RAD2 mRNA after treatment of yeast cells with UV light. The 5' flanking region of the RAD2 gene contains several direct and inverted repeats and a 44-nuclotide-long purine-rich tract. The sequence T G G A G G C A T T A A found at position - 167 to -156 in the RAD2 gene is similar to at sequence present in the 5' flanking regions of the RAD7 and RAD10 genes

  8. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  9. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high

  10. Defective thymine dimer excision in radiation-sensitive mutants rad10 and rad16 of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). School of Medicine and Dentistry

    1977-04-01

    Two rad mutants of yeast, rad10 and rad16, are shown to be defective in the removal of UV-induced pyrimidine dimers since DNAs obtained from irradiated cells following a post-irradiation incubation in the dark still retain UV-endonuclease-sensitive sites. Both rad10 and rad16 mutants are in the same pathway of excision-repair as the rad1, rad2, rad3, and rad4 mutants.

  11. Principles of ubiquitin and SUMO modifications in DNA repair

    NARCIS (Netherlands)

    Bergink, Steven; Jentsch, Stefan

    2009-01-01

    With the discovery in the late 1980s that the DNA-repair gene RAD6 encodes a ubiquitin-conjugating enzyme, it became clear that protein modification by ubiquitin conjugation has a much broader significance than had previously been assumed. Now, two decades later, ubiquitin and its cousin SUMO are

  12. Lingering single-strand breaks trigger Rad51-independent homology-directed repair of collapsed replication forks in the polynucleotide kinase/phosphatase mutant of fission yeast.

    Directory of Open Access Journals (Sweden)

    Arancha Sanchez

    2017-09-01

    Full Text Available The DNA repair enzyme polynucleotide kinase/phosphatase (PNKP protects genome integrity by restoring ligatable 5'-phosphate and 3'-hydroxyl termini at single-strand breaks (SSBs. In humans, PNKP mutations underlie the neurological disease known as MCSZ, but these individuals are not predisposed for cancer, implying effective alternative repair pathways in dividing cells. Homology-directed repair (HDR of collapsed replication forks was proposed to repair SSBs in PNKP-deficient cells, but the critical HDR protein Rad51 is not required in PNKP-null (pnk1Δ cells of Schizosaccharomyces pombe. Here, we report that pnk1Δ cells have enhanced requirements for Rad3 (ATR/Mec1 and Chk1 checkpoint kinases, and the multi-BRCT domain protein Brc1 that binds phospho-histone H2A (γH2A at damaged replication forks. The viability of pnk1Δ cells depends on Mre11 and Ctp1 (CtIP/Sae2 double-strand break (DSB resection proteins, Rad52 DNA strand annealing protein, Mus81-Eme1 Holliday junction resolvase, and Rqh1 (BLM/WRN/Sgs1 DNA helicase. Coupled with increased sister chromatid recombination and Rad52 repair foci in pnk1Δ cells, these findings indicate that lingering SSBs in pnk1Δ cells trigger Rad51-independent homology-directed repair of collapsed replication forks. From these data, we propose models for HDR-mediated tolerance of persistent SSBs with 3' phosphate in pnk1Δ cells.

  13. Cohesin Rad21 Mediates Loss of Heterozygosity and Is Upregulated via Wnt Promoting Transcriptional Dysregulation in Gastrointestinal Tumors

    Directory of Open Access Journals (Sweden)

    Huiling Xu

    2014-12-01

    Full Text Available Summary: Loss of heterozygosity (LOH of the adenomatous polyposis coli (APC gene triggers a series of molecular events leading to intestinal adenomagenesis. Haploinsufficiency of the cohesin Rad21 influences multiple initiating events in colorectal cancer (CRC. We identify Rad21 as a gatekeeper of LOH and a β-catenin target gene and provide evidence that Wnt pathway activation drives RAD21 expression in human CRC. Genome-wide analyses identified Rad21 as a key transcriptional regulator of critical CRC genes and long interspersed element (LINE-1 or L1 retrotransposons. Elevated RAD21 expression tracks with reactivation of L1 expression in human sporadic CRC, implicating cohesin-mediated L1 expression in global genomic instability and gene dysregulation in cancer. : Rad21 holds the cohesin complex together as part of its role in chromosome partitioning and DNA repair. Xu et al. identify Rad21 as a key mediator of Apc gene heterozygous loss, the event initiating intestinal tumorigenesis. The subsequent activation of the Wnt pathway further induces Rad21, global gene dysregulation, chromosome instability, and pervasive retrotransposon activation.

  14. Brca2 C-terminus interacts with Rad51 and contributes to nuclear forcus formation in double-strand break repair of DNA

    International Nuclear Information System (INIS)

    Ochiai, Kazuhiko; Morimatsu, Masami; Yoshikawa, Yasunaga; Syuto, Bunei; Hashizume, Kazuyoshi

    2004-01-01

    In humans and mice, the interaction between the breast cancer susceptibility protein, Brca2, and Rad51 recombinase is essential for DNA repair by homologous recombination, the failure of this process can predispose to cancer. Cells with mutated Brca2 are hypersensitive to ionizing radiation (IR) and exhibit defective DNA repair. Using yeast and mammalian two-hybrid assays, we demonstrate that canine Rad51 protein interacts specifically with the C-terminus of canine Brca2. In support of the biological significance of this interaction, we found that radiation-induced focus formation of Rad51 in COS-7 cells was compromised by forced expression of the C-terminus of canine Brca2. A similar result was obtained for the murine C-terminus. These data suggest that the C-terminal domain of canine Brca2 functions to bind Rad51 and that this domain contributes to the IR-induced assembly of the Rad51 complex in vivo. (author)

  15. Homologous Recombination Repair Signaling in Chemical Carcinogenesis: Prolonged Particulate Hexavalent Chromium Exposure Suppresses the Rad51 Response in Human Lung Cells

    Science.gov (United States)

    Qin, Qin; Xie, Hong; Wise, Sandra S.; Browning, Cynthia L.; Thompson, Kelsey N.; Holmes, Amie L.; Wise, John Pierce

    2014-01-01

    The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI). PMID:25173789

  16. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang, Z.; Wu, X.; Friedberg, E.C.

    1993-01-01

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg 2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  17. Role of Rad54, Rad54b and Snm1 in DNA damage repair

    NARCIS (Netherlands)

    J. Wesoly (Joanna)

    2003-01-01

    textabstractThe aim of this thesis is to investigate the function of a number of genes involved in mammalian DNA damage repair, in particular in repair of DNA double-strand breaks (DSBs). Among a large number of different damages that can be introduced to DNA, DSBs are especially toxic. If

  18. RAD51C germline mutations in breast and ovarian cancer cases from high-risk families.

    Directory of Open Access Journals (Sweden)

    Jessica Clague

    Full Text Available BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5' UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001. Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.

  19. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia

    International Nuclear Information System (INIS)

    Mosor, Maria; Ziółkowska-Suchanek, Iwona; Nowicka, Karina; Dzikiewicz-Krawczyk, Agnieszka; Januszkiewicz–Lewandowska, Danuta; Nowak, Jerzy

    2013-01-01

    The MRE11, RAD50, and NBN genes encode proteins of the MRE11-RAD50-NBN (MRN) complex involved in cellular response to DNA damage and the maintenance of genome stability. In our previous study we showed that the germline p.I171V mutation in NBN may be considered as a risk factor in the development of childhood acute lymphoblastic leukemia (ALL) and some specific haplotypes of that gene may be associated with childhood leukemia. These findings raise important questions about the role of mutations in others genes of the MRN complex in childhood leukemia. The aim of this study was to answer the question whether MRE11 and RAD50 alterations may be associated with childhood ALL or AML. We estimated the frequency of constitutional mutations and polymorphisms in selected regions of MRE11, RAD50, and NBN in the group of 220 children diagnosed with childhood leukemias and controls (n=504/2200). The analysis was performed by specific amplification of region of interest by PCR and followed by multi-temperature single-strand conformation polymorphism (PCR-MSSCP) technique. We performed two molecular tests to examine any potential function of the detected the c.551+19G>A SNP in RAD50 gene. To our knowledge, this is the first analysis of the MRE11, RAD50 and NBN genes in childhood leukemia. The frequency of either the AA genotype or A allele of RAD50-rs17166050 were significantly different in controls compared to leukemia group (ALL+AML) (p<0.0019 and p<0.0019, respectively). The cDNA analysis of AA or GA genotypes carriers has not revealed evidence of splicing abnormality of RAD50 pre-mRNA. We measured the allelic-specific expression of G and A alleles at c.551+19G>A and the statistically significant overexpression of the G allele has been observed. Additionally we confirmed the higher incidence of the p.I171V mutation in the leukemia group (7/220) than among controls (12/2400) (p<0.0001). The formerly reported sequence variants in the RAD50 and MRE11 gene may not constitute a

  20. The induction of rho'- mutants by UV or γ-rays is independent of the nuclear recombinational repair pethway in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Heude, M

    1988-01-01

    In order to discover whether the nuclear recombinational repair pathway also acts on lesions induced in mitochondrial DNA (mtDNA), the possible role of the RAD50, -51, -55 and -56 genes on the induction of rho - mutants by radiations was studied. Such induction appeared to be independent of this pathway. Nevertheless, an efficient induction of respiration-deficient mutants was observed in γ-irradiated rad52 diploids. We demonstrate that these mutants do not result from a lack of mtDNA repair, but from chromosome losses induced by γ-rays. Such an impairment of the respiratory ability of diploids by chromosome lossed was effectively observed in the aneuploid progeny of unirradiated RAD + cdc6 diploids incubated at the restrictive temperature. (author). 60 refs.; 3 figs.; 6 tabs

  1. Recruitment of RecA homologs Dmc1p and Rad51p to the double-strand break repair site initiated by meiosis-specific endonuclease VDE (PI-SceI).

    Science.gov (United States)

    Fukuda, Tomoyuki; Ohya, Yoshikazu

    2006-02-01

    During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.

  2. Compensatory role for Rad52 during recombinational repair in Ustilago maydis

    DEFF Research Database (Denmark)

    Kojic, Milorad; Mao, Ninghui; Zhou, Qingwen

    2008-01-01

    A single Rad52-related protein is evident by blast analysis of the Ustilago maydis genome database. Mutants created by disruption of the structural gene exhibited few discernible defects in resistance to UV, ionizing radiation, chemical alkylating or cross-linking agents. No deficiency was noted...

  3. The association of folate pathway and DNA repair polymorphisms with susceptibility to childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Goričar, Katja; Erčulj, Nina; Faganel Kotnik, Barbara; Debeljak, Maruša; Hovnik, Tinka; Jazbec, Janez; Dolžan, Vita

    2015-05-15

    Genetic factors may play an important role in susceptibility to childhood acute lymphoblastic leukemia (ALL). The aim of our study was to evaluate the associations of genetic polymorphisms in folate pathway and DNA repair genes with susceptibility to ALL. In total, 121 children with ALL and 184 unrelated healthy controls of Slovenian origin were genotyped for 14 polymorphisms in seven genes of folate pathway, base excision repair and homologous recombination repair (TYMS, MTHFR, OGG1, XRCC1, NBN, RAD51, and XRCC3). In addition, the exon 6 of NBN was screened for the presence of mutations using denaturing high performance liquid chromatography. Twelve polymorphisms were in Hardy-Weinberg equilibrium in controls and their genotype frequencies were in agreement with those reported in other Caucasian populations. Among the investigated polymorphisms and mutations, NBN Glu185Gln significantly decreased susceptibility to B-cell ALL (p=0.037), while TYMS 3R allele decreased susceptibility to T-cell ALL (p=0.011). Moreover, significantly decreased susceptibility to ALL was observed for MTHFR TA (p=0.030) and RAD51 GTT haplotypes (p=0.016). Susceptibility to ALL increased with the increasing number of risk alleles (ptrend=0.007). We also observed significant influence of hOGG-RAD51 and NBN-RAD51 interactions on susceptibility to ALL. Our results suggest that combination of several polymorphisms in DNA repair and folate pathways may significantly affect susceptibility to childhood ALL. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy

    International Nuclear Information System (INIS)

    Chang, Lihong; Huang, Jiancong; Wang, Kai; Li, Jingjia; Yan, Ruicheng; Zhu, Ling; Ye, Jin; Wu, Xifu; Zhuang, Shimin; Li, Daqing; Zhang, Gehua

    2016-01-01

    The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR. A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo. Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo. Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption. The online version of this article (doi:10.1186/s12885-016-2190-8) contains supplementary material, which is available to

  5. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Reinardy, Helena C.; Syrett, James R. [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Jeffree, Ross A. [Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Henry, Theodore B., E-mail: ted.henry@plymouth.ac.uk [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996. USA (United States); Jha, Awadhesh N. [School of Biomedical and Biological Sciences, The University of Plymouth (United Kingdom)

    2013-01-15

    Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. {sup 60}Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC{sub 50}) in larval zebrafish exposed (96 h) to 0-50 mg l{sup -1} Co was 35.3 {+-} 1.1 (95% C.I.) mg l{sup -1} Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l{sup -1}) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l{sup -1}) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l{sup -1}). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l{sup -1} Co relative to controls. Induction of 4.0 {+-} 0.9, 2.5 {+-} 0.7, and 3.1 {+-} 0.7-fold change (mean {+-} S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l{sup -1}). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success.

  6. Inhibition of potential lethal damage repair and related gene expression after carbon-ion beam irradiation to human lung cancer grown in nude mice

    International Nuclear Information System (INIS)

    Yashiro, Tomoyasu; Fujisawa, Takehiko; Koyama-Saegusa, Kumiko; Imai, Takashi; Miyamoto, Tadaaki

    2007-01-01

    Using cultured and nude mouse tumor cells (IA) derived from a human lung cancer, we previously demonstrated their radiosensitivity by focusing attention on the dynamics of tumor clonogens and the early and rapid survival recovery (potential lethal damage repair: PLD repair) occurring after X-ray irradiation. To the authors' knowledge, this is the first study demonstrating gene expression in association with PLD repair after carbon-ion beam or X-ray irradiation to cancer cells. In this study we tried to detect the mechanism of DNA damage and repair of the clonogens after X-ray or carbon-ion beam irradiation. At first, colony assay method was performed after irradiation of 12 Gy of X-ray or 5 Gy of carbon-ion beam to compare the time dependent cell survival of the IA cells after each irradiation pass. Second, to search the genes causing PLD repair after irradiation of X-ray or carbon-ion beam, we evaluated gene expressions by using semi-quantitative RT-PCR with the selected 34 genes reportedly related to DNA repair. The intervals from the irradiation were 0, 6, 12 and 24 hr for colony assay method, and 0, 3, 18 hr for RT-PCR method. From the result of survival assays, significant PLD repair was not observed in carbon-ion beam as compared to X-ray irradiation. The results of RT-PCR were as follows. The gene showing significantly higher expressions after X-ray irradiation than after carbon-ion beam irradiation was PCNA. The genes showing significantly lower expressions after X-ray irradiation rather than after carbon-ion beam irradiation were RAD50, BRCA1, MRE11A, XRCC3, CHEK1, MLH1, CCNB1, CCNB2 and LIG4. We conclude that PCNA could be a likely candidate gene for PLD repair. (author)

  7. Functional roles for Rad9 in prostate cancer

    International Nuclear Information System (INIS)

    Lieberman, H.B.; Broustas, C.G.

    2012-01-01

    The goal of this work is to understand the mechanistic relationship between high levels of Rad9 protein and prostate cancer. The study is based on several findings suggesting a role for Rad9 in this disease. Rad9 has all the hallmark features of an oncogene or tumor suppressor. It regulates genomic stability, multiple cell cycle checkpoints, apoptosis and DNA repair. In addition, it can transactivate downstream target genes via direct interaction with promoter DNA sequences. We found Rad9 protein levels were very high in prostate cancer cell lines. Furthermore, we examined 52 primary normal prostate and 339 prostate cancer specimens for Rad9 protein by immunohistochemical staining. Statistical significance for Rad9 positive staining versus cancer, and stain intensity versus Stage were tested. We get a p-value of <0.001 when comparing percentage positive by cancer Stage, or stain intensity by cancer Stage. Based on these data, we sought to define the nature of the relationship between Rad9 and prostate cancer. We demonstrate that Rad9 acts as an oncogene in prostate cancer by playing a critical role in tumor formation in a mouse xenograph model. We also show that Rad9 is important for cellular phenotypes essential for metastasis, including tumor cell migration, invasion and resistance to programmed cell death after detachment from extracellular matrix. Therefore, Rad9 is critical for several aspects of prostate tumor progression, and could serve as a novel target for anti-cancer therapy

  8. Pir51, a Rad51-interacting protein with high expression in aggressive lymphoma, controls mitomycin C sensitivity and prevents chromosomal breaks

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Sarah E. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Tsai, Shih-Chang [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Malone, Cindy Sue [Department of Biology, California State University Northridge, Northridge, CA 91330 (United States); Soghomonian, Shahe V. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Ouyang, Yan [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Wall, Randolph [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Marahrens, York [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States) and Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)]. E-mail: YMarahrens@mednet.ucla.edu; Teitell, Michael A. [Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States) and Department of Pathology and Laboratory Medicine, California NanoSystems Institute, and Institute for Stem Cell Biology and Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States)]. E-mail: mteitell@ucla.edu

    2006-10-10

    Pir51, a protein of unknown function that interacts with Rad51, was identified in a screen for genes that were highly expressed in aggressive mantle cell lymphoma (MCL) versus indolent small lymphocytic lymphoma (SLL) patient samples. We show that Pir51 is a nuclear protein expressed in a variety of cell types and that its expression is regulated during the cell cycle in a pattern nearly identical to Rad51. Also similar to Rad51, Pir51 levels did not change in response to a variety of DNA damaging agents. siRNA depletion of Pir51 did not reduce homologous recombination repair (HRR), but sensitized cells to mitomycin C (MMC)-induced DNA crosslinking and resulted in elevated levels of double-strand breaks (DSBs) in metaphase chromosome spreads and reduced colony formation. Therefore, Pir51 maintains genomic integrity and potentially connects the early response to DNA crosslinks, orchestrated by the ATR kinase and Fanconi Anemia (FA) proteins, to later stages of Rad51-dependent repair. Our results provide the first example of a Rad51-binding protein that influences DNA crosslink repair without affecting homologous recombination repair.

  9. Pir51, a Rad51-interacting protein with high expression in aggressive lymphoma, controls mitomycin C sensitivity and prevents chromosomal breaks

    International Nuclear Information System (INIS)

    Henson, Sarah E.; Tsai, Shih-Chang; Malone, Cindy Sue; Soghomonian, Shahe V.; Ouyang, Yan; Wall, Randolph; Marahrens, York; Teitell, Michael A.

    2006-01-01

    Pir51, a protein of unknown function that interacts with Rad51, was identified in a screen for genes that were highly expressed in aggressive mantle cell lymphoma (MCL) versus indolent small lymphocytic lymphoma (SLL) patient samples. We show that Pir51 is a nuclear protein expressed in a variety of cell types and that its expression is regulated during the cell cycle in a pattern nearly identical to Rad51. Also similar to Rad51, Pir51 levels did not change in response to a variety of DNA damaging agents. siRNA depletion of Pir51 did not reduce homologous recombination repair (HRR), but sensitized cells to mitomycin C (MMC)-induced DNA crosslinking and resulted in elevated levels of double-strand breaks (DSBs) in metaphase chromosome spreads and reduced colony formation. Therefore, Pir51 maintains genomic integrity and potentially connects the early response to DNA crosslinks, orchestrated by the ATR kinase and Fanconi Anemia (FA) proteins, to later stages of Rad51-dependent repair. Our results provide the first example of a Rad51-binding protein that influences DNA crosslink repair without affecting homologous recombination repair

  10. Coordination of Rad1-Rad10 interactions with Msh2-Msh3, Saw1 and RPA is essential for functional 3' non-homologous tail removal.

    Science.gov (United States)

    Eichmiller, Robin; Medina-Rivera, Melisa; DeSanto, Rachel; Minca, Eugen; Kim, Christopher; Holland, Cory; Seol, Ja-Hwan; Schmit, Megan; Oramus, Diane; Smith, Jessica; Gallardo, Ignacio F; Finkelstein, Ilya J; Lee, Sang Eun; Surtees, Jennifer A

    2018-04-06

    Double strand DNA break repair (DSBR) comprises multiple pathways. A subset of DSBR pathways, including single strand annealing, involve intermediates with 3' non-homologous tails that must be removed to complete repair. In Saccharomyces cerevisiae, Rad1-Rad10 is the structure-specific endonuclease that cleaves the tails in 3' non-homologous tail removal (3' NHTR). Rad1-Rad10 is also an essential component of the nucleotide excision repair (NER) pathway. In both cases, Rad1-Rad10 requires protein partners for recruitment to the relevant DNA intermediate. Msh2-Msh3 and Saw1 recruit Rad1-Rad10 in 3' NHTR; Rad14 recruits Rad1-Rad10 in NER. We created two rad1 separation-of-function alleles, rad1R203A,K205A and rad1R218A; both are defective in 3' NHTR but functional in NER. In vitro, rad1R203A,K205A was impaired at multiple steps in 3' NHTR. The rad1R218A in vivo phenotype resembles that of msh2- or msh3-deleted cells; recruitment of rad1R218A-Rad10 to recombination intermediates is defective. Interactions among rad1R218A-Rad10 and Msh2-Msh3 and Saw1 are altered and rad1R218A-Rad10 interactions with RPA are compromised. We propose a model in which Rad1-Rad10 is recruited and positioned at the recombination intermediate through interactions, between Saw1 and DNA, Rad1-Rad10 and Msh2-Msh3, Saw1 and Msh2-Msh3 and Rad1-Rad10 and RPA. When any of these interactions is altered, 3' NHTR is impaired.

  11. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  12. The C-terminal region of Rad52 is essential for Rad52 nuclear and nucleolar localization, and accumulation at DNA damage sites immediately after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Manabu, E-mail: m_koike@nirs.go.jp [DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yutoku, Yasutomo [DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Koike, Aki [DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-05-31

    Highlights: •Rad52 might play a key role in the repair of DSB immediately after irradiation. •EYFP-Rad52 accumulates rapidly at DSB sites and colocalizes with Ku80. •Accumulation of Rad52 at DSB sites is independent of the core NHEJ factors. •Localization and recruitment of Rad52 to DSB sites are dependent on the Rad52 CTR. •Basic amino acids in Rad52 CTR are highly conserved among vertebrate species. -- Abstract: Rad52 plays essential roles in homologous recombination (HR) and repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae. However, in vertebrates, knockouts of the Rad52 gene show no hypersensitivity to agents that induce DSBs. Rad52 localizes in the nucleus and forms foci at a late stage following irradiation. Ku70 and Ku80, which play an essential role in nonhomologous DNA-end-joining (NHEJ), are essential for the accumulation of other core NHEJ factors, e.g., XRCC4, and a HR-related factor, e.g., BRCA1. Here, we show that the subcellular localization of EYFP-Rad52(1–418) changes dynamically during the cell cycle. In addition, EYFP-Rad52(1–418) accumulates rapidly at microirradiated sites and colocalizes with the DSB sensor protein Ku80. Moreover, the accumulation of EYFP-Rad52(1–418) at DSB sites is independent of the core NHEJ factors, i.e., Ku80 and XRCC4. Furthermore, we observed that EYFP-Rad52(1–418) localizes in nucleoli in CHO-K1 cells and XRCC4-deficient cells, but not in Ku80-deficient cells. We also found that Rad52 nuclear localization, nucleolar localization, and accumulation at DSB sites are dependent on eight amino acids (411–418) at the end of the C-terminal region of Rad52 (Rad52 CTR). Furthermore, basic amino acids on Rad52 CTR are highly conserved among mammalian, avian, and fish homologues, suggesting that Rad52 CTR is important for the regulation and function of Rad52 in vertebrates. These findings also suggest that the mechanism underlying the regulation of subcellular localization of Rad52 is

  13. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification.

    NARCIS (Netherlands)

    J. van Klaveren; J. de Wit (Jan); C.G. van Gurp; M.H.M. Koken (Marcel); M. Vermey; J.H. van Roijen (Jan Herman); J.T.M. Vreeburg (Jan); W.M. Baarends (Willy); D. Bootsma (Dirk); J.A. Grootegoed (Anton); J.H.J. Hoeijmakers (Jan); H.P. Roest (Henk)

    1996-01-01

    textabstractThe ubiquitin-conjugating yeast enzyme RAD6 and its human homologs hHR6A and hHR6B are implicated in postreplication repair and damage-induced mutagenesis. The yeast protein is also required for sporulation and may modulate chromatin structure via histone ubiquitination. We report the

  14. Simultaneous ATM/BRCA1/RAD51 expression variations associated with prognostic factors in Iranian sporadic breast cancer patients.

    Science.gov (United States)

    Hallajian, Zeinab; Mahjoubi, Frouzandeh; Nafissi, Nahid

    2017-07-01

    DNA double-strand breaks (DSBs) as a serious lesion are repaired by non-homologous end-joining and homologous recombination pathways. ATM, BRCA1, RAD51 genes are involved in HR pathways. While some studies have revealed individual expression changes of these genes in different types of cancer, there are limited studies attempting to evaluate correlation of expression variations of these genes in breast cancer pathogenesis. This study aimed to determine RAD51, ATM and BRCA1 gene expression level and its association with clinicopathological factors in fresh breast cancer tissues. Moreover, this study evaluates potential correlations among expression levels of these genes. 50 breast cancer tissues were collected and examined for BRCA1, RAD51 and ATM gene expression by Real Time PCR. Expression changes were analyzed with REST software version 2009. mRNA expression was reduced in all these three genes when compared with β-Actin as a control gene (P value  ATM, BRCA1 and RAD51 gene down expression (P value  ATM with stage (P value  < 0.05), necrosis (P value  < 0.05), perineural invasion (P value  < 0.05), vascular invasion (P value  < 0.01), malignancy (P value  ≤ 0.001), PR (P value  < 0.05) and ER status (P value  < 0.01). In addition, there was a significant association between down expression of BRCA1 with Ki67 (P value  ≤ 0.001). Moreover, there was a significant association between down expression of RAD51 with lymph node involvement (P value  < 0.01), auxiliary lymph node metastasis (P value  = 0.01), age (P = 0.001), grade (P value  < 0.05) and PR status (P value  < 0.05). This study suggests association between expression changes in several DSB repair genes in a common functional pathway in breast cancer and the significant association between abnormal expression of these genes and important clinical prognostic factors.

  15. Prolonged exposure to particulate chromate inhibits RAD51 nuclear import mediator proteins.

    Science.gov (United States)

    Browning, Cynthia L; Wise, John Pierce

    2017-09-15

    Particulate hexavalent chromium (Cr(VI)) is a human lung carcinogen and a human health concern. The induction of structural chromosome instability is considered to be a driving mechanism of Cr(VI)-induced carcinogenesis. Homologous recombination repair protects against Cr(VI)-induced chromosome damage, due to its highly accurate repair of Cr(VI)-induced DNA double strand breaks. However, recent studies demonstrate Cr(VI) inhibits homologous recombination repair through the misregulation of RAD51. RAD51 is an essential protein in HR repair that facilitates the search for a homologous sequence. Recent studies show prolonged Cr(VI) exposure prevents proper RAD51 subcellular localization, causing it to accumulate in the cytoplasm. Since nuclear import of RAD51 is crucial to its function, this study investigated the effect of Cr(VI) on the RAD51 nuclear import mediators, RAD51C and BRCA2. We show acute (24h) Cr(VI) exposure induces the proper localization of RAD51C and BRCA2. In contrast, prolonged (120h) exposure increased the cytoplasmic localization of both proteins, although RAD51C localization was more severely impaired. These results correlate temporally with the previously reported Cr(VI)-induced RAD51 cytoplasmic accumulation. In addition, we found Cr(VI) does not inhibit interaction between RAD51 and its nuclear import mediators. Altogether, our results suggest prolonged Cr(VI) exposure inhibits the nuclear import of RAD51C, and to a lesser extent, BRCA2, which results in the cytoplasmic accumulation of RAD51. Cr(VI)-induced inhibition of nuclear import may play a key role in its carcinogenic mechanism since the nuclear import of many tumor suppressor proteins and DNA repair proteins is crucial to their function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mismatch repair genes in Lynch syndrome: a review

    Directory of Open Access Journals (Sweden)

    Felipe Cavalcanti Carneiro da Silva

    Full Text Available Lynch syndrome represents 1-7% of all cases of colorectal cancer and is an autosomal-dominant inherited cancer predisposition syndrome caused by germline mutations in deoxyribonucleic acid (DNA mismatch repair genes. Since the discovery of the major human genes with DNA mismatch repair function, mutations in five of them have been correlated with susceptibility to Lynch syndrome: mutS homolog 2 (MSH2; mutL homolog 1 (MLH1; mutS homolog 6 (MSH6; postmeiotic segregation increased 2 (PMS2; and postmeiotic segregation increased 1 (PMS1. It has been proposed that one additional mismatch repair gene, mutL homolog 3 (MLH3, also plays a role in Lynch syndrome predisposition, but the clinical significance of mutations in this gene is less clear. According to the InSiGHT database (International Society for Gastrointestinal Hereditary Tumors, approximately 500 different LS-associated mismatch repair gene mutations are known, primarily involving MLH1 (50% and MSH2 (40%, while others account for 10%. Much progress has been made in understanding the molecular basis of Lynch Syndrome. Molecular characterization will be the most accurate way of defining Lynch syndrome and will provide predictive information of greater accuracy regarding the risks of colon and extracolonic cancer and enable optimal cancer surveillance regimens.

  17. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  18. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein

    International Nuclear Information System (INIS)

    Rodriguez, K.; Talamantez, J.; Huang, W.; Reed, S.H.; Wang, Z.; Chen, L.; Feaver, W.J.; Friedberg, E.C.; Tomkinson, A.E.

    1998-01-01

    The nucleotide excision repair (NER) pathway of eukaryotes involves approximately 30 polypeptides. Reconstitution of this pathway with purified components is consistent with the sequential assembly of NER proteins at the DNA lesion. However, recent studies have suggested that NER proteins may be pre-assembled in a high molecular weight complex in the absence of DNA damage. To examine this model further, we have constructed a histidine-tagged version of the yeast DNA damage recognition protein Rad14. Affinity purification of this protein from yeast nuclear extracts resulted in the co-purification of Rad1, Rad7, Rad10, Rad16, Rad23, RPA, RPB1, and TFIIH proteins, whereas none of these proteins bound to the affinity resin in the absence of recombinant Rad14. Furthermore, many of the co-purifying proteins were present in approximately equimolar amounts. Co-elution of these proteins was also observed when the nuclear extract was fractionated by gel filtration, indicating that the NER proteins were associated in a complex with a molecular mass of >1000 kDa prior to affinity chromatography. The affinity purified NER complex catalyzed the incision of UV-irradiated DNA in an ATP-dependent reaction. We conclude that active high molecular weight complexes of NER proteins exist in undamaged yeast cells

  19. UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast.

    Science.gov (United States)

    Lawrence, C W; O'Brien, T; Bond, J

    1984-01-01

    The UV-induced reversion of two his4 frameshift alleles was much reduced in rad6 mutants of Saccharomyces cerevisiae, an observation that is consistent with the hypothesis that RAD6 function is required for the induction of all types of genetic alteration in misrepair mutagenesis. The reversion of these his4 alleles, together with two others of the same type, was also reduced in rev1 and rev3 mutant strains; in these, however, the extent of the reduction varied considerably with test allele used, in a manner analogous to the results in these strains for base repair substitution test alleles. The general features of UV-induced frameshift and substitution mutagenesis therefore appear quite similar, indicating that they may depend on related processes. If this conclusion is correct, greater attention must be given to integrating models which account for the production of nucleotide additions and deletions into those concerning misrepair mutagenesis.

  20. HHR23A, a human homolog of Saccharomyces cerevisiae Rad23, regulates xeroderma pigmentosum C protein and is required for nucleotide excision repair

    International Nuclear Information System (INIS)

    Hsieh, Hui-Chuan; Hsieh, Yi-Hsuan; Huang, Yu-Hsin; Shen, Fan-Ching; Tsai, Han-Ni; Tsai, Jui-He; Lai, Yu-Ting; Wang, Yu-Ting; Chuang, Woei-Jer; Huang, Wenya

    2005-01-01

    HHR23A and hHR23B are the human homologs of Saccharomyces cerevisiae Rad23. hHR23B is associated with the nucleotide excision repair (NER) factor xeroderma pigmentosum C (XPC) protein and is required for global genome repair. The function of hHR23A is not yet clear. In this study, the potential function of the hHR23A protein was investigated using RNA interference techniques. The hHR23A knock-down (KD) construct diminished the RNA level of hHR23A protein by approximately 60%, and it did not interfere with expression of the hHR23B gene. Based on Southwestern immunoblot and host-cell reactivation assays, hHR23A KD cells were found to be deficient in DNA repair activity against the DNA damage caused by UVC irradiation. In these hHR23A KD cells, the XPC gene was not normally induced by UVC irradiation, indicating that the hHR23A protein is involved in NER through regulation of the DNA damage recognition protein XPC. Co-immunoprecipitation experiments revealed that hHR23A was associated with a small portion of hHR23B and the majority of p53 protein, indicating that hHR23A regulates the function of XPC by its association with the NER activator p53

  1. A novel interation of nucleolin with Rad51

    International Nuclear Information System (INIS)

    De, Ananya; Donahue, Sarah L.; Tabah, Azah; Castro, Nancy E.; Mraz, Naomi; Cruise, Jennifer L.; Campbell, Colin

    2006-01-01

    Nucleolin associates with various DNA repair, recombination, and replication proteins, and possesses DNA helicase, strand annealing, and strand pairing activities. Examination of nuclear protein extracts from human somatic cells revealed that nucleolin and Rad51 co-immunoprecipitate. Furthermore, purified recombinant Rad51 associates with in vitro transcribed and translated nucleolin. Electroporation-mediated introduction of anti-nucleolin antibody resulted in a 10- to 20-fold reduction in intra-plasmid homologous recombination activity in human fibrosarcoma cells. Additionally, introduction of anti-nucleolin antibody sensitized cells to death induced by the topoisomerase II inhibitor, amsacrine. Introduction of anti-Rad51 antibody also reduced intra-plasmid homologous recombination activity and induced hypersensitivity to amsacrine-induced cell death. Co-introduction of anti-nucleolin and anti-Rad51 antibodies did not produce additive effects on homologous recombination or on cellular sensitivity to amsacrine. The association of the two proteins raises the intriguing possibility that nucleolin binding to Rad51 may function to regulate homologous recombinational repair of chromosomal DNA

  2. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis

    DEFF Research Database (Denmark)

    Adelman, Carrie A.; Lolo, Rafal L.; Birkbak, Nicolai Juul

    2013-01-01

    Repair of interstrand crosslinks (ICLs) requires the coordinated action of the intra-S-phase checkpoint and the Fanconi anaemia pathway, which promote ICL incision, translesion synthesis and homologous recombination (reviewed in refs 1, 2). Previous studies have implicated the 3'-5' superfamily 2......, phenotype than the null, indicative of haploinsufficiency. We establish that HELQ interacts directly with the RAD51 paralogue complex BCDX2 and functions in parallel to the Fanconi anaemia pathway to promote efficient homologous recombination at damaged replication forks. Thus, our results reveal a critical...

  3. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  4. Characterization of the linkage disequilibrium structure and identification of tagging-SNPs in five DNA repair genes

    International Nuclear Information System (INIS)

    Allen-Brady, Kristina; Camp, Nicola J

    2005-01-01

    Characterization of the linkage disequilibrium (LD) structure of candidate genes is the basis for an effective association study of complex diseases such as cancer. In this study, we report the LD and haplotype architecture and tagging-single nucleotide polymorphisms (tSNPs) for five DNA repair genes: ATM, MRE11A, XRCC4, NBS1 and RAD50. The genes ATM, MRE11A, and XRCC4 were characterized using a panel of 94 unrelated female subjects (47 breast cancer cases, 47 controls) obtained from high-risk breast cancer families. A similar LD structure and tSNP analysis was performed for NBS1 and RAD50, using publicly available genotyping data. We studied a total of 61 SNPs at an average marker density of 10 kb. Using a matrix decomposition algorithm, based on principal component analysis, we captured >90% of the intragenetic variation for each gene. Our results revealed that three of the five genes did not conform to a haplotype block structure (MRE11A, RAD50 and XRCC4). Instead, the data fit a more flexible LD group paradigm, where SNPs in high LD are not required to be contiguous. Traditional haplotype blocks assume recombination is the only dynamic at work. For ATM, MRE11A and XRCC4 we repeated the analysis in cases and controls separately to determine whether LD structure was consistent across breast cancer cases and controls. No substantial difference in LD structures was found. This study suggests that appropriate SNP selection for an association study involving candidate genes should allow for both mutation and recombination, which shape the population-level genomic structure. Furthermore, LD structure characterization in either breast cancer cases or controls appears to be sufficient for future cancer studies utilizing these genes

  5. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  6. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    International Nuclear Information System (INIS)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-01-01

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  7. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  8. Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Plate, Iben; Albertsen, Line; Lisby, Michael

    2008-01-01

    Rad52 is essential for all homologous recombination and DNA double strand break repair events in Saccharomyces cerevisiae. This protein is multifunctional and contains several domains that allow it to interact with DNA as well as with different repair proteins. However, it has been unclear how Rad...

  9. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  10. Transfer of Chinese hamster DNA repair gene(s) into repair-deficient human cells (Xeroderma pigmentosum)

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1985-01-01

    Transfer of repair genes by DNA transfection into repair-deficient Xeroderma pigmentosum (XP) cells has thus far been unsuccessful, presenting an obstacle to cloning XP genes. The authors chose an indirect route to transfer repair genes in chromosome fragments. DNA repair-competent (UV resistant) hybrid cell lines were established by PEG-mediated fusions of DNA repair-deficient (UV sensitive) human fibroblasts (XP12RO) with wild type Chinese hamster (CHO) cells (AA8). CHO cells were exposed to 5 Krad X-rays prior to fusions, predisposing hybrid cells to lose CHO chromosome fragments preferentially. Repair-competent hybrids were selected by periodic exposures to UV light. Secondary and tertiary hybrid cell lines were developed by fusion of X-irradiated hybrids to XP12RO. The hybrid cell lines exhibit resistance to UV that is comparable to that of CHO cells and they are proficient at repair replication after UV exposure. Whole cell DNA-DNA hybridizations indicate that the hybrids have greater homology to CHO DNA than is evident between XP12RO and CHO. These observations indicate that CHO DNA sequences which can function in repair of UV-damaged DNA in human cells have been transferred into the genome of the repair-deficient XP12RO cells

  11. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23 0 )> rad51-1(30 0 )> rad54-3(36 0 ). At 36 0 , rad54-3 cells cannot repair double-strand breaks, while 23 0 , they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36 0 shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation

  12. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Spang-Thomsen, Mogens

    2003-01-01

    Etoposide (VP16) is a potent inducer of DNA double-strand breaks (DSBs) and is efficiently used in small cell lung cancer (SCLC) therapy. However, acquired VP16 resistance remains an important barrier to effective treatment. To understand the underlying mechanisms for VP16 resistance in SCLC, we...... investigated DSB repair and cellular VP16 sensitivity of SCLC cells. VP16 sensitivity and RAD51, DNA-PK(cs), topoisomerase IIalpha and P-glycoprotein protein levels were determined in 17 SCLC cell lines. In order to unravel the role of RAD51 in VP16 resistance, we cloned the human RAD51 gene, transfected SCLC...... cells with RAD51 sense or antisense constructs and measured the VP16 resistance. Finally, we measured VP16-induced DSBs in the 17 SCLC cell lines. Two cell lines exhibited a multidrug-resistant phenotype. In the other SCLC cell lines, the cellular VP16 resistance was positively correlated with the RAD51...

  13. Genetic analysis of γ-ray mutagenesis in yeast. Vol. 3

    International Nuclear Information System (INIS)

    McKee, R.H.; Lawrence, C.W.

    1980-01-01

    Comparisons between the 60 Co γ-ray survival curves of diploid strains of the yeast Saccharomyces cerevisiae that are homozygous for two non-allelic radiation-sensitive mutations and the corresponding single-mutant diploids suggest that there are two main types of repair of ionizing radiation damage in this organism. The first, which is defined by the rad52 epistasis group, depends on the activities of the RAD50 through RAD57 genes and is responsible for repairing the larger amount of lethal damage. Previous work [22] shows that this type of repair is essentially error-free. The second, defined by the rad6 epistasis group, depends on the activities of the RAD6, RAD9, RAD18, REV1 and REV3 genes and repairs a smaller, though still substantial, amount of lethal damage. It is also responsible for induced mutagenesis [22,23]. Data for survival and mutation induction after irradiation in air and partial anoxia show that oxygen-dependent damage can be repaired by either of these two pathways. They also show similar oxygen-enhancement ratios for survival and mutagenesis. (orig.)

  14. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  15. Effect of exposure to 2.45 GHz microwave on DNA repair genes transcription in cultured cells

    International Nuclear Information System (INIS)

    Perrin, A.; Bachelet, C.; Fournier, C.; Peinnequin, A.; Leveque, P.; Collin, A.

    2006-01-01

    . Interactions between the electromagnetic fields and the Plexiglas multi -blade structure of the incubator have to be considered. The S.A.R. distribution and the temperature depends on the petri dishes positions. The exposure power level was controlled and did not induce temperature increases in the cell culture medium. First, the genes implicated in DNA repair after 4-N.Q.O. treatment were screened using thematic human DNA repair GEArrayTM (SuperArray). Four targets dramatically modified at the transcriptional level were chosen: A.P.E.X., R.A.D. 54, R.A.D.52, M.S.H.6. The expression of these genes normalised using geometric average of three internal control genes (P.P.I.A., A.C.T.B. and H.P.R.T.) was assessed using a LightCycler real -time P.C.R. device. Each experiment was reproducibly repeated 3 times. Other family of genes are studied and the analysis, if completed at the date of the meeting, will be also presented. Currently, in our experimental conditions, after the R.T.-P.C.R. quantification of the target genes expression, no effect of C.W. and P.W. 2.45 GHz microwave was observed on the reactivity of the cell DNA repair system induced by the treatment with a known mutagenic agent. (authors)

  16. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks

    Science.gov (United States)

    Schär, Primo; Herrmann, Gernot; Daly, Graham; Lindahl, Tomas

    1997-01-01

    Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4. Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of the LIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitize cdc9 or rad52 mutant cells. In contrast, lig4 mutant cells have a 1000-fold reduced capacity for correct recircularization of linearized plasmids by illegitimate end-joining after transformation. Moreover, homozygous lig4 mutant diploids sporulate less efficiently than isogenic wild-type cells, and show retarded progression through meiotic prophase I. Spore viability is normal, but lig4 mutants appear to produce a higher proportion of tetrads with only three viable spores. The mutant phenotypes are consistent with functions of LIG4 in an illegitimate DNA end-joining pathway and ensuring efficient meiosis. PMID:9271115

  17. Non-canonical CRL4A/4B(CDT2 interacts with RAD18 to modulate post replication repair and cell survival.

    Directory of Open Access Journals (Sweden)

    Sarah Sertic

    Full Text Available The Cullin-4(CDT2 E3 ubiquitin ligase plays an essential role in DNA replication origin licensing directing degradation of several licensing factors at the G1/S transition in order to prevent DNA re-replication. Recently a RAD18-independent role of Cullin-4(CDT2 in PCNA monoubiquitylation has been proposed. In an effort to better understand the function of Cullin-4(CDT2 E3 ubiquitin ligase in mammalian Post-Replication Repair during an unperturbed S-phase, we show that down-regulation of Cullin-4(CDT2 leads to two distinguishable independent phenotypes in human cells that unveil at least two independent roles of Cullin-4(CDT2 in S-phase. Apart from the re-replication preventing activity, we identified a non-canonical Cullin-4(CDT2 complex, containing both CUL4A and CUL4B, associated to the COP9 signalosome, that controls a RAD18-dependent damage avoidance pathway essential during an unperturbed S-phase. Indeed, we show that the non-canonical Cullin-4A/4B(CDT2 complex binds to RAD18 and it is required to modulate RAD18 protein levels onto chromatin and the consequent dynamics of PCNA monoubiquitylation during a normal S-phase. This function prevents replication stress, ATR hyper-signaling and, ultimately, apoptosis. A very similar PRR regulatory mechanism has been recently described for Spartan. Our findings uncover a finely regulated process in mammalian cells involving Post-Replication Repair factors, COP9 signalosome and a non-canonical Cullin4-based E3 ligase which is essential to tolerate spontaneous damage and for cell survival during physiological DNA replication.

  18. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    NARCIS (Netherlands)

    H.B. Beverloo (Berna); R.D. Johnson (Roger); M. Jasin (Maria); R. Kanaar (Roland); J.H.J. Hoeijmakers (Jan); M.L.G. Dronkert (Mies)

    2000-01-01

    textabstractCells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we

  19. TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Valentine Mosbach

    2018-02-01

    Full Text Available Trinucleotide repeat expansions involving CTG/CAG triplets are responsible for several neurodegenerative disorders, including myotonic dystrophy and Huntington’s disease. Because expansions trigger the disease, contracting repeat length could be a possible approach to gene therapy for these disorders. Here, we show that a TALEN-induced double-strand break was very efficient at contracting expanded CTG repeats in yeast. We show that RAD51, POL32, and DNL4 are dispensable for double-strand break repair within CTG repeats, the only required genes being RAD50, SAE2, and RAD52. Resection was totally abolished in the absence of RAD50 on both sides of the break, whereas it was reduced in a sae2Δ mutant on the side of the break containing the longest repeat tract, suggesting that secondary structures at double-strand break ends must be removed by the Mre11-Rad50 complex and Sae2. Following the TALEN double-strand break, single-strand annealing occurred between both sides of the repeat tract, leading to repeat contraction.

  20. RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients.

    Science.gov (United States)

    Fan, Cong; Zhang, Juan; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2018-05-04

    RAD50 is a highly conserved DNA double-strand break (DSB) repair gene. However, the associations between RAD50 germline mutations and the survival and risk of breast cancer have not been fully elucidated. Here, we aimed to investigate the clinical impact of RAD50 germline mutations in a large cohort of unselected breast cancer patients. In this study, RAD50 germline mutations were determined using next-generation sequencing in 7657 consecutive unselected breast cancer patients without BRCA1/2 mutations. We also screened for RAD50 recurrent mutations (L719fs, K994fs, and H1269fs) in 5000 healthy controls using Sanger sequencing. We found that 26 out of 7657 (0.34%) patients had RAD50 pathogenic mutations, and 16 patients carried one of the three recurrent mutations (L719fs, n=6 cases; K994fs, n=5 cases; and H1269fs, n=5 cases); the recurrent mutation rate was 0.21%. The frequency of the three recurrent mutations in the 5000 healthy controls was 0.18% (9/5000). These mutations did not confer an increased risk of breast cancer in the studied patients [odds ratios (OR), 1.16; 95% confidence interval (CI), 0.51-2.63; P = 0.72]. Nevertheless, multivariate analysis revealed that RAD50 pathogenic mutations were an independent unfavourable predictor of recurrence-free survival (RFS) [adjusted hazard ratio (HR) 2.66; 95% CI, 1.18-5.98; P=0.018] and disease-specific survival (DSS) (adjusted HR 4.36; 95% CI, 1.58-12.03; P=0.004) in the entire study cohort. Our study suggested that RAD50 germline mutations are not associated with an increased risk of breast cancer, but patients with RAD50 germline mutations have unfavourable survival compared with patients without these mutations. This article is protected by copyright. All rights reserved. © 2018 UICC.

  1. Enhancement of the RAD51 Recombinase Activity by the Tumor Suppressor PALB2

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Etchin, Julia; Wiese, Claudia; Saro, Dorina; Williams, Gareth J.; Hammel, Michal; Yu, Xiong; Galkin, Vitold E.; Liu, Dongqing; Tsai, Miaw-Sheue; Sy, Shirley M-H.; Egelman, Edward; Chen, Junjie; Sung, Patrick; Schild, D.

    2010-08-24

    Homologous recombination mediated by the RAD51 recombinase helps eliminate chromosomal lesions, such as DNA double-stranded breaks induced by radiation or arising from injured DNA replication forks. The tumor suppressors BRCA2 and PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. Here we document a new function of PALB2 in the enhancement of RAD51's ability to form the D-loop. We show that PALB2 binds DNA and physically interacts with RAD51. Importantly, while PALB2 alone stimulates D-loop formation, a cooperative effect is seen with RAD51AP1, an enhancer of RAD51. This stimulation stems from PALB2's ability to function with RAD51 and RAD51AP1 to assemble the synaptic complex. Our results help unveil a multi-faceted role of PALB2 in chromosome damage repair. Since PALB2 mutations can cause breast and other tumors or lead to Fanconi anemia, our findings are important for understanding the mechanism of tumor suppression in humans.

  2. Rad50S alleles of the Mre11 complex: questions answered and questions raised.

    Science.gov (United States)

    Usui, Takehiko; Petrini, John H J; Morales, Monica

    2006-08-15

    We find that Rad50S mutations in yeast and mammals exhibit constitutive PIKK (PI3-kinase like kinase)-dependent signaling [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-4354.]. The signaling depends on Mre11 complex functions, consistent with its role as a DNA damage sensor. Rad50S is distinct from hypomorphic mutations of Mre11 and Nbs1 in mammals [M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-3054.; J.P. Carney, R.S. Maser, H. Olivares, E.M. Davis, Le M. Beau, J.R. Yates, III, L. Hays, W.F. Morgan, J.H. Petrini, The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93 (1998) 477-486.; G.S. Stewart, R.S. Maser, T. Stankovic, D.A. Bressan, M.I. Kaplan, N.G. Jaspers, A. Raams, P.J. Byrd, J.H. Petrini, A.M. Taylor, The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99 (1999) 577-587.; B.R. Williams, O.K. Mirzoeva, W.F. Morgan, J. Lin, W. Dunnick, J.H. Petrini, A murine model of nijmegen breakage syndrome. Curr. Biol. 12 (2002) 648-653.; J.W. Theunissen, M.I. Kaplan, P.A. Hunt, B.R. Williams, D.O. Ferguson, F.W. Alt, J.H. Petrini, Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell 12 (2003) 1511-1523.] and the Mre11 complex deficiency in yeast [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response

  3. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    International Nuclear Information System (INIS)

    Imura, Yoshiyuki; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D.

    2015-01-01

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase

  4. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  5. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    Science.gov (United States)

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  6. Present status of DNA repair mechanisms in uv irradiated yeast taken as a model eukaryotic system

    International Nuclear Information System (INIS)

    Moustacchi, E.; Waters, R.; Heude, M.; Chanet, R.

    1975-01-01

    The repair mechanisms of altered DNA are generally less well understood for eukaryotes than they are for prokaryotes and bacteriophages. For mammalian cell lines cultured in vitro the specific labelling of DNA has allowed the biochemical analysis of some of the steps of the repair processes whereas the determination of their genetic controls is, with a few exceptions, obviously difficult. On the other hand, with fungi and more specifically with yeast taken as a model unicellular eukaryotic system, the genetic approach has been extensively explored: radiosensitive mutants are readily detected and genetically analyzed, double and multiple mutants can be constructed and from their responses to irradiation the number of repair pathways involved can be suggested. The lack of thymidine kinase in these organisms has hampered for a certain time the biochemical analysis of repair. However, the recent isolation of yeast strains capable of taking up and incorporating thymidine 5'-monophosphate into their DNA opens new possibilities for the future. In spite of this difficulty, attempts to measure the induction and removal of uv-induced pyrimidine dimers were performed by several groups during the last three years. The two main repair pathways described for E. coli, i.e., the excision-resynthesis and post-replicative recombinational repair pathways, do exist in yeast. The existence of the former pathway is supported not only by indirect evidence but also by biochemical analysis. The rad 1 and rad 2 mutants for instance have been shown to be blocked in the excision of uv-induced pyrimidine dimers. Other loci are epistatic to rad 1 and rad 2 (rad 3 , rad 4 ) and are likely to act on this excision pathway. The genetic control of the mitochondrial response to a uv treatment involves nuclear genes and mitochondrial determinants

  7. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Pawel Domagala

    Full Text Available This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs and to poly(ADP-ribose polymerase (PARP inhibitors.Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.Thirty five (22.2% of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7% of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%, and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%. In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined were identified in the hereditary non-triple-negative group.Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.

  8. Structure of a hexameric form of RadA recombinase from Methanococcus voltae

    International Nuclear Information System (INIS)

    Du, Liqin; Luo, Yu

    2012-01-01

    Hexameric rings of RadA recombinase from M. voltae have been crystallized. Structural comparisons suggest that homologues of RadA tend to form double-ringed assemblies. Archaeal RadA proteins are close homologues of eukaryal Rad51 and DMC1 proteins and are remote homologues of bacterial RecA proteins. For the repair of double-stranded breaks in DNA, these recombinases promote a pivotal strand-exchange reaction between homologous single-stranded and double-stranded DNA substrates. This DNA-repair function also plays a key role in the resistance of cancer cells to chemotherapy and radiotherapy and in the resistance of bacterial cells to antibiotics. A hexameric form of a truncated Methanococcus voltae RadA protein devoid of its small N-terminal domain has been crystallized. The RadA hexamers further assemble into two-ringed assemblies. Similar assemblies can be observed in the crystals of Pyrococcus furiosus RadA and Homo sapiens DMC1. In all of these two-ringed assemblies the DNA-interacting L1 region of each protomer points inward towards the centre, creating a highly positively charged locus. The electrostatic characteristics of the central channels can be utilized in the design of novel recombinase inhibitors

  9. CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans".

    Science.gov (United States)

    Turcotte, Carolyn A; Andrews, Nicolas P; Sloat, Solomon A; Checchi, Paula M

    2016-11-01

    The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion. Copyright © 2016 by the Genetics Society of America.

  10. Repair-modification of radiodamaged genes

    International Nuclear Information System (INIS)

    Volpe, P.; Institute of Experimental Medicine, Rome; Eremenko, T.

    1995-01-01

    It is proposed that through repair-modification, the modified base 5mC may have facilitated the divergent evolution of coding (hypomethylated exon) and uncoding (hypermethylated promoter and intron) sequences in eukaryotic genes. The radioinduced repair patches appearing in regions lacking 5mC are fully reconstructed by excision-repair, whereas those appearing in regions containing 5mC are incompletely reconstructed by this conventional mechanism. Such a second class of repair patches may, however, become fully reconstructed, in the S phase, by repair-modification. In fact, while DNA polymerase β - which is a key enzyme of excision-repair - is active through the whole interphase. DNA methylase - which is responsible for post-synthetic DNA modification - is essentially active in S. Uncoupling of these two enzyme systems, outside S, might explain why in unsynchronised cells repair patches of non-replicating strands are hypomethylated when compared with specific methylation of replicating strands. In other words, excision-repair would always be able to re-establish the primary ATGC language of both damaged unmethylated and methylated regions, while repair-modification would be able to re-establish the modified ATGC(5mC) language of the damaged methylated regions, only in S, but not in G 1 or G 2 . In these two phases, when DNA methylation is inversely correlated with pre-mRNA transcription (as in the case of many tissue-specific genes), such demethylation might induce a silent transcriptional unit to become active. (Author)

  11. Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity.

    Directory of Open Access Journals (Sweden)

    Volker Hable

    Full Text Available The recruitment kinetics of double-strand break (DSB signaling and repair proteins Mdc1, 53BP1 and Rad52 into radiation-induced foci was studied by live-cell fluorescence microscopy after ion microirradiation. To investigate the influence of damage density and complexity on recruitment kinetics, which cannot be done by UV laser irradiation used in former studies, we utilized 43 MeV carbon ions with high linear energy transfer per ion (LET = 370 keV/µm to create a large fraction of clustered DSBs, thus forming complex DNA damage, and 20 MeV protons with low LET (LET = 2.6 keV/µm to create mainly isolated DSBs. Kinetics for all three proteins was characterized by a time lag period T(0 after irradiation, during which no foci are formed. Subsequently, the proteins accumulate into foci with characteristic mean recruitment times τ(1. Mdc1 accumulates faster (T(0 = 17 ± 2 s, τ(1 = 98 ± 11 s than 53BP1 (T(0 = 77 ± 7 s, τ(1 = 310 ± 60 s after high LET irradiation. However, recruitment of Mdc1 slows down (T(0 = 73 ± 16 s, τ(1 = 1050 ± 270 s after low LET irradiation. The recruitment kinetics of Rad52 is slower than that of Mdc1, but exhibits the same dependence on LET. In contrast, the mean recruitment time τ(1 of 53BP1 remains almost constant when varying LET. Comparison to literature data on Mdc1 recruitment after UV laser irradiation shows that this rather resembles recruitment after high than low LET ionizing radiation. So this work shows that damage quality has a large influence on repair processes and has to be considered when comparing different studies.

  12. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament.

    Science.gov (United States)

    Ma, Chu Jian; Gibb, Bryan; Kwon, YoungHo; Sung, Patrick; Greene, Eric C

    2017-01-25

    Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Dihydrocoumarin, an HDAC Inhibitor, Increases DNA Damage Sensitivity by Inhibiting Rad52

    Directory of Open Access Journals (Sweden)

    Chin-Chuan Chen

    2017-12-01

    Full Text Available Effective DNA repair enables cancer cells to survive DNA damage induced by chemotherapeutic or radiotherapeutic treatments. Therefore, inhibiting DNA repair pathways is a promising therapeutic strategy for increasing the efficacy of such treatments. In this study, we found that dihydrocoumarin (DHC, a flavoring agent, causes deficiencies in double-stand break (DSB repair and prolonged DNA damage checkpoint recovery in yeast. Following DNA damage, Rad52 recombinase was revealed to be inhibited by DHC, which results in deficiencies in DSB repair and prolonged DNA damage checkpoint recovery. The deletion of RPD3, a class I histone deacetylase (HDAC, was found to mimic DHC-induced suppression of Rad52 expression, suggesting that the HDAC inhibitor activity of DHC is critical to DSB repair and DNA damage sensitivity. Overall, our findings delineate the regulatory mechanisms of DHC in DSB repair and suggest that it might potentially be used as an inhibitor of the DNA repair pathway in human cells.

  14. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids

    Directory of Open Access Journals (Sweden)

    Ogata Hiroyuki

    2011-09-01

    Full Text Available Abstract Background The Mre11/Rad50 complex and the homologous SbcD/SbcC complex in bacteria play crucial roles in the metabolism of DNA double-strand breaks, including DNA repair, genome replication, homologous recombination and non-homologous end-joining in cellular life forms and viruses. Here we investigated the amino acid sequence of the Mimivirus R555 gene product, originally annotated as a Rad50 homolog, and later shown to have close homologs in marine microbial metagenomes. Results Our bioinformatics analysis revealed that R555 protein sequence is constituted from the fusion of an N-terminal Mre11-like domain with a C-terminal Rad50-like domain. A systematic database search revealed twelve additional cases of Mre11/Rad50 (or SbcD/SbcC fusions in a wide variety of unrelated organisms including unicellular and multicellular eukaryotes, the megaplasmid of a bacterium associated to deep-sea hydrothermal vents (Deferribacter desulfuricans and the plasmid of Clostridium kluyveri. We also showed that R555 homologs are abundant in the metagenomes from different aquatic environments and that they most likely belong to aquatic viruses. The observed phyletic distribution of these fusion proteins suggests their recurrent creation and lateral gene transfers across organisms. Conclusions The existence of the fused version of protein sequences is consistent with known functional interactions between Mre11 and Rad50, and the gene fusion probably enhanced the opportunity for lateral transfer. The abundance of the Mre11/Rad50 fusion genes in viral metagenomes and their sporadic phyletic distribution in cellular organisms suggest that viruses, plasmids and transposons played a crucial role in the formation of the fusion proteins and their propagation into cellular genomes.

  15. High levels of BRC4 induced by a Tet-On 3G system suppress DNA repair and impair cell proliferation in vertebrate cells.

    Science.gov (United States)

    Abe, Takuya; Branzei, Dana

    2014-10-01

    Transient induction or suppression of target genes is useful to study the function of toxic or essential genes in cells. Here we apply a Tet-On 3G system to DT40 lymphoma B cell lines, validating it for three different genes. Using this tool, we then show that overexpression of the chicken BRC4 repeat of the tumor suppressor BRCA2 impairs cell proliferation and induces chromosomal breaks. Mechanistically, high levels of BRC4 suppress double strand break-induced homologous recombination, inhibit the formation of RAD51 recombination repair foci, reduce cellular resistance to DNA damaging agents and induce a G2 damage checkpoint-mediated cell-cycle arrest. The above phenotypes are mediated by BRC4 capability to bind and inhibit RAD51. The toxicity associated with BRC4 overexpression is exacerbated by chemotherapeutic agents and reversed by RAD51 overexpression, but it is neither aggravated nor suppressed by a deficit in the non-homologous end-joining pathway of double strand break repair. We further find that the endogenous BRCA2 mediates the cytotoxicity associated with BRC4 induction, thus underscoring the possibility that BRC4 or other domains of BRCA2 cooperate with ectopic BRC4 in regulating repair activities or mitotic cell division. In all, the results demonstrate the utility of the Tet-On 3G system in DT40 research and underpin a model in which BRC4 role on cell proliferation and chromosome repair arises primarily from its suppressive role on RAD51 functions. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    Energy Technology Data Exchange (ETDEWEB)

    Henrique Barreta, Marcos [Universidade Federal de Santa Catarina, Campus Universitario de Curitibanos, Curitibanos, SC (Brazil); Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Ferreira, Rogerio [Centro de Educacao Superior do Oeste-Universidade do Estado de Santa Catarina, Chapeco, SC (Brazil); Oliveira, Joao Francisco de; Goncalves, Paulo Bayard Dias [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Bordignon, Vilceu, E-mail: vilceu.bordignon@mcgill.ca [Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC (Canada)

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  17. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    International Nuclear Information System (INIS)

    Henrique Barreta, Marcos; Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de; Ferreira, Rogério; Oliveira, João Francisco de; Gonçalves, Paulo Bayard Dias; Bordignon, Vilceu

    2012-01-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  18. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D

    2016-01-01

    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis...... replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective...

  19. Differential expression and requirements for Schizosaccharomyces pombe RAD52 homologs in DNA repair and recombination

    OpenAIRE

    van den Bosch, Michael; Zonneveld, José B. M.; Vreeken, Kees; de Vries, Femke A. T.; Lohman, Paul H. M.; Pastink, Albert

    2002-01-01

    In fission yeast two RAD52 homologs have been identified, rad22A+ and rad22B+. Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B+ in mitotically dividing cells is very low in comparison with rad22A+ but is strongly enhanced after induction of me...

  20. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  1. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6

    Science.gov (United States)

    Ratliff, Hunter N.; Smith, Michael B. R.; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 μGy/day while RAD measured 233 μGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 μSv/day while RAD reported 710 μSv/day.

  2. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  3. The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells.

    Science.gov (United States)

    Yang, Yun-Gui; Herceg, Zdenko; Nakanishi, Koji; Demuth, Ilja; Piccoli, Colette; Michelon, Jocelyne; Hildebrand, Gabriele; Jasin, Maria; Digweed, Martin; Wang, Zhao-Qi

    2005-10-01

    Fanconi anemia (FA) cells exhibit hypersensitivity to DNA interstrand cross-links (ICLs) and high levels of chromosome instability. FA gene products have been shown to functionally or physically interact with BRCA1, RAD51 and the MRE11/RAD50/NBS1 complex, suggesting that the FA complex may be involved in the repair of DNA double-strand breaks (DSBs). Here, we have investigated specifically the function of the FA group A protein (FANCA) in the repair of DSBs in mammalian cells. We show that the targeted deletion of Fanca exons 37-39 generates a null for Fanca in mice and abolishes ubiquitination of Fancd2, the downstream effector of the FA complex. Cells lacking Fanca exhibit increased chromosomal aberrations and attenuated accumulation of Brca1 and Rad51 foci in response to DNA damage. The absence of Fanca greatly reduces gene-targeting efficiency in mouse embryonic stem (ES) cells and compromises the survival of fibroblast cells in response to ICL agent treatment. Fanca-null cells exhibit compromised homology-directed repair (HDR) of DSBs, particularly affecting the single-strand annealing pathway. These data identify the Fanca protein as an integral component in the early step of HDR of DSBs and thereby minimizing the genomic instability.

  4. Loss of heterozygosity and DNA damage repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Daigaku, Yasukazu [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Endo, Kingo [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Watanabe, Eri [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Ono, Tetsuya [Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan); Yamamoto, Kazuo [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan)]. E-mail: yamamot@mail.tains.tohoku.ac.jp

    2004-11-22

    Loss of heterozygosity (LOH) of tumor suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Understanding how LOH events arise may provide an opportunity for the prevention or early intervention of cancer development. In an effort to investigate the source of LOH events, we constructed MAT{alpha} can1{delta}::LEU2 and MATa CAN1 haploid yeast strains and examined canavanine-resistance mutations in a MATa CAN1/MAT{alpha} can1{delta}::LEU2 heterozygote formed by mating UV-irradiated and nonirradiated haploids. An increase in LOH was observed when the irradiated CAN1 haploid was mated with nonirradiated can1{delta}::LEU2, while reversed irradiation only marginally increased LOH. In the rad51{delta} background, allelic crossover type LOH increased following UV irradiation but not gene conversion. In the rad52{delta} background, neither type of LOH increased. The chromosome structure following LOH and the requirement for Rad51 and Rad52 proteins indicated the involvement of gene conversion, allelic crossover and break-induced replication. We argued that LOH events could have occurred during the repair of double-strand breaks on a functional (damaged) but not nonfunctional (undamaged) chromosome through recombination.

  5. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    Science.gov (United States)

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD)

    OpenAIRE

    Ramchander, N. C.; Ryan, N. A. J.; Crosbie, E. J.; Evans, D. G.

    2017-01-01

    BackgroundConstitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of th...

  7. Assay for Human Rad51-Mediated DNA Displacement Loop Formation

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Steven Raynard and Patrick Sung Corresponding author ([]()) ### INTRODUCTION Homologous recombination is an important mechanism for the repair of damaged chromosomes, for preventing the demise of damaged replication forks, and for several other aspects of chromosome metabolism and maintenance. The homologous recombination reaction is mediated by the Rad51 recombinase. In the presence of ATP, Rad51 polymerizes on single-stranded D...

  8. Lysine residue 185 of Rad1 is a topological but not a functional counterpart of lysine residue 164 of PCNA.

    Directory of Open Access Journals (Sweden)

    Niek Wit

    Full Text Available Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNA(K164 is a highly conserved, DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits translesion synthesis (TLS polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1, K185 of Rad1 (Rad1(K185 was identified as the only topological equivalent of PCNA(K164. To investigate a potential role of posttranslational modifications of Rad1(K185 in DNA damage management, we here generated a mouse model with a conditional deletable Rad1(K185R allele. The Rad1(K185 residue was found to be dispensable for Chk1 activation, DNA damage survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1(K185 is not a functional counterpart of PCNA(K164.

  9. Functions and Dynamics of DNA Repair Proteins in Mitosis and Meiosis

    NARCIS (Netherlands)

    E.J. Uringa

    2005-01-01

    textabstractMy PhD project encompassed studies on the functions of several different proteins, all involved in DNA repair, in somatic and germ-line cells. Hr6b and Rad18Sc are involved in a DNA repair mechanism called ‘Replicative Damage Bypass’ (RDB), and function as ubiquitin conjugating

  10. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.

    Science.gov (United States)

    Wong, J M; Ingles, C J

    2001-02-01

    Nucleotide excision repair is the major pathway responsible for removing UV-induced DNA damage, and is therefore essential for cell survival following exposure to UV radiation. In this report, we have assessed the contributions of some components of the RNA polymerase II (Pol II) transcription machinery to UV resistance in Saccharomyces cerevisiae. Deletion of the gene encoding the Pol II elongation factor TFIIS (SII) resulted in enhanced UV sensitivity, but only in the absence of global genome repair dependent on the RAD7 and RAD16 genes, a result seen previously with deletions of RAD26 and RAD28, yeast homologs of the human Cockayne syndrome genes CSB and CSA, respectively. A RAD7/16-dependent reduction in survival after UV irradiation was also seen in the presence of mutations in RNA Pol II that confer a defect in its response to SII, as well as with other mutations which reside in regions of the largest subunit of Pol II not involved in SII interactions. Indeed, an increase in UV sensitivity was achieved by simply decreasing the steadystate level of RNA Pol II. Truncation of the C-terminal domain and other RNA Pol II mutations conferred sensitivity to the ribonucleotide reductase inhibitor hydroxyurea and induction of RNR1 and RNR2 mRNAs after UV irradiation was attenuated in these mutant cells. That UV sensitivity can be a consequence of mutations in the RNA Pol II machinery in yeast cells suggests that alterations in transcriptional programs could underlie some of the pathophysiological defects seen in the human disease Cockayne syndrome.

  11. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, June 1, 1992 - June 30, 1993

    International Nuclear Information System (INIS)

    1998-01-01

    The most interesting discovery made over the past year derives from sequence analysis of cDNAs from the putative mus308 gene. The theoretical translation product of this gene contains a DNA polymerase domain near the carboxy terminus and DNA/RNA helicase motifs near the amino terminus. There is currently no precedent in the literature for a single polypeptide containing both of these domains. The protein appears to be a novel DNA repair enzyme which should be fruitful ground for future enzymological analysis. The authors have identified two ORFs by sequence analysis of the transforming fragment containing the mei-41 gene and of corresponding cDNAs. ORF 1 includes the P element insertion sites and encodes a peptide of 757 amino acids. ORF 2 starts 900 base pairs downstream of ORF 1 and encodes a peptide of 1,037 amino acids. This putative peptide shows homology to the yeast DNA repair genes, rad50 of S. cerevisiae and rad3 of S. pombe

  12. Mouse Rad9b is essential for embryonic development and promotes resistance to DNA damage

    Science.gov (United States)

    Leloup, Corinne; Hopkins, Kevin M.; Wang, Xiangyuan; Zhu, Aiping; Wolgemuth, Debra J.; Lieberman, Howard B.

    2010-01-01

    RAD9 participates in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, apoptosis, embryogenesis, and regulation of transcription. A paralogue of RAD9 (named RAD9B) has been identified. To define the function of mouse Rad9b (Mrad9b), embryonic stem (ES) cells with a targeted gene deletion were constructed and used to generate Mrad9b mutant mice. Mrad9b−/− embryos are resorbed after E7.5 while some of the heterozygotes die between E12.5 and a few days after birth. Mrad9b is expressed in embryonic brain and Mrad9b+/− embryos exhibit abnormal neural tube closure. Mrad9b−/− mouse embryonic fibroblasts are not viable. Mrad9b−/− ES cells are more sensitive to gamma rays and mitomycin C than Mrad9b+/+ controls, but show normal gamma-ray-induced G2/M checkpoint control. There is no evidence of spontaneous genomic instability in Mrad9b−/− cells. Our findings thus indicate that Mrad9b is essential for embryonic development and mediates resistance to certain DNA damaging agents. PMID:20842695

  13. Two pathways of DNA double-strand break repair in G1 cells of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.

    1988-01-01

    The G1 cells of the diploid yeast Saccharomyces cerevislae are known to be capable of a slow repair of DNA double-strand breaks (DSB) during holding the cells in a non-nutrient medium. In the present paper, it has been shown that S. cerevislae cells γ-irradiated in the G1 phase of cell cycle are capable of fast repair of DNA DSB; this process is completed within 30-40 min of holding the cells in water at 28 deg C. For this reason, the kinetics of DNA DSB repair during holding the cells in a non-nutrient medium are biphasic, i.e., the first, ''fast'' phase is completed within 30-40 min; wheras the second, ''slow'' one, within 48 h. Mutations rad51, rad52, rad54 and rad55 inhibit the fast repair of DNA DSB, whereas mutations rad50, rad53 and rad57 do not practically influence this process. It has been shown that the observed fast and slow repair of DNA DSB in the G1 diploid cells of S, cerevislae are separate pathways of DNA DSB repair in yeast

  14. Bacteriophage T4 gene 32 participates in excision repair as well as recombinational repair of UV damages

    International Nuclear Information System (INIS)

    Mosig, G.

    1985-01-01

    Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA- hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wild-type T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins

  15. A reliability-risk modelling of nuclear rad-waste facilities

    International Nuclear Information System (INIS)

    Lehmann, P.H.; El-Bassioni, A.A.

    1975-01-01

    Rad-waste disposal systems of nuclear power sites are designed and operated to collect, delay, contain, and concentrate radioactive wastes from reactor plant processes such that on-site and off-site exposures to radiation are well below permissible limits. To assist the designer in achieving minimum release/exposure goals, a computerized reliability-risk model has been developed to simulate the rad-waste system. The objectives of the model are to furnish a practical tool for quantifying the effects of changes in system configuration, operation, and equipment, and for the identification of weak segments in the system design. Primarily, the model comprises a marriage of system analysis, reliability analysis, and release-risk assessment. Provisions have been included in the model to permit the optimization of the system design subject to constraints on cost and rad-releases. The system analysis phase involves the preparation of a physical and functional description of the rad-waste facility accompanied by the formation of a system tree diagram. The reliability analysis phase embodies the formulation of appropriate reliability models and the collection of model parameters. Release-risk assessment constitutes the analytical basis whereupon further system and reliability analyses may be warranted. Release-risk represents the potential for release of radioactivity and is defined as the product of an element's unreliability at time, t, and the radioactivity available for release in time interval, Δt. A computer code (RARISK) has been written to simulate the tree diagram of the rad-waste system. Reliability and release-risk results have been generated for cases which examined the process flow paths of typical rad-waste systems, the effects of repair and standby, the variations of equipment failure and repair rates, and changes in system configurations. The essential feature of this model is that a complex system like the rad-waste facility can be easily decomposed into its

  16. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6.

    Science.gov (United States)

    Ratliff, Hunter N; Smith, Michael B R; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 µGy/day while RAD measured 233 µGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 µSv/day while RAD reported 710 µSv/day. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Moore, Destaye M; Karlin, Justin; González-Barrera, Sergio

    2009-01-01

    In the yeast Saccharomyces cerevisiae, the Rad1-Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1-Rad10 endonuclease cleaves 3' branches of DNA and aberrant 3' DNA ends that are refractory to other 3' processing enzymes. ...

  18. FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells

    DEFF Research Database (Denmark)

    Simandlova, Jitka; Zagelbaum, Jennifer; Payne, Miranda J

    2013-01-01

    Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD......51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences...... filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under...

  19. Epigenetic changes of DNA repair genes in cancer.

    Science.gov (United States)

    Lahtz, Christoph; Pfeifer, Gerd P

    2011-02-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  20. Repair of radiation damage caused by cyclotron-produced neutrons

    International Nuclear Information System (INIS)

    Martins, B.I.

    1979-01-01

    Hall et al. present experimental data on repair of sublethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 60 Co γ rays. Hall and Kraljevic present experimental data on repair of potentially lethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 210 kVp x rays. These results of Hall et al. are very difficult to explain from basic concepts in radiobiology. Contrary to Rossi, these data do not support his thesis that repair of radiation damage is dose-dependent and linear energy transfer independent. Nor do these results meet the expectations of multitarget-single hit theory which would require dose-independent repair equal to n. The observation of the same extrapolation number for neutrons and for x rays is also surprising. From the point of view of radiotherapy, the doses of interest are about 140 rad for neutrons and about 300 rad for x rays. There are no data for repair of potentially lethal damage below 800 rad for x rays and 400 rad for neutrons. The difference in survival between single and split dose is negligible up to a total of about 600 rad of x rays or of neutrons. These data of Hall et al. therefore have little significance to radiotherapists and are an enigma to radiobiologists

  1. The Aspergillus uvsH gene encodes a product homologous to yeast RAD18 and Neurospora UVS-2.

    Science.gov (United States)

    Yoon, J H; Lee, B J; Kang, H S

    1995-07-28

    The uvsH DNA repair gene of Aspergillus nidulans has been cloned by complementation of the uvsH77 mutation with a cosmid library containing genomic DNA inserts from a wild-type strain. Methylmethane sulfonate (MMS)-resistant transformants were obtained on medium containing 0.01% MMS, to which uvsH mutants exhibit high sensitivity. Retransformation of uvsH77 mutants with the rescued cosmids from the MMS-resistant transformants resulted in restoration of both UV and MMS resistance to wild-type levels. Nucleotide sequence analysis of the genomic DNA and cDNA of the uvsH gene shows that it has an open reading frame (ORF) of 1329 bp, interrupted by two introns of 51 and 61 bp. A 2.4 kb transcript of the uvsH gene was detected by Northern blot analysis. Primer extension analysis revealed that transcription starts at 31 bp upstream from the translation initiation codon. This gene encodes a predicted polypeptide of 443 amino acids, which has two unique zinc finger motifs. The proposed polypeptide displays 39% identity to the Neurospora crassa UVS-2 protein and 24% identity to the Saccharomyces cerevisiae RAD18 protein. The sequence similarity is particularly high in three domains. One zinc finger (RING finger) motif is located in the first domain close to the N-terminus. The other zinc finger motif is in the second domain. In the third domain, the mutation sites in both the uvsH77 and uvsH304 alleles were identified.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.

    Science.gov (United States)

    Haruta, Nami; Kubota, Yoshino; Hishida, Takashi

    2012-09-01

    UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.

  3. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  4. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations

    NARCIS (Netherlands)

    Sijmons, Rolf H.; Hofstra, Robert M. W.

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive

  5. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yawei; Spitz, Margaret R.; Guo Zhaozheng; Hadeyati, Mohammad; Grossman, Lawrence; Kraemer, Kenneth H.; Wei Qingyi

    2002-11-30

    As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.

  6. The gene dosage effect of the rad52 mutation on X-ray survival curves of tetraploid yeast strains

    International Nuclear Information System (INIS)

    Ho, K.S.Y.

    1975-01-01

    The mutation rad52 in the yeast Saccharomyces cerevisiae confers sensitivity to X-rays. The gene dosage effect of this mutation on X-ray survival curves of tetraploid yeast strains is shown. With increasing number of rad52 alleles, both a decrease in the survival for a given dose and a decrease in the survival curve shoulder width are observed. The generation of such a family of survival curves using three different mathematical models is discussed

  7. Mechanisms of uv mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Christensen, R.; Schwartz, A.

    1982-01-01

    The uv mutagenesis in yeast depends on the function of the RAD6 locus, a gene that is also responsible for a substantial fraction of wild-type resistance, suggesting that this eukaryote may possess a misrepair mechanism analogous to that proposed for Escherichia coli. The molecular mechanism responsible for RAD6 repair or recovery is not yet known, but it is different from either excision or recombination-dependent repair, processes carried out by the other two main repair pathways in yeast. RAD6-dependent mutagenesis has been found to have the following characteristics. It is associated at best with only a small fraction of RAD6-dependent repair, the majority of the sensitivity of rad6 mutants being due to their lack of nonmutagenic repair. SRS2 metabolic suppressors restore a substantial fraction of uv resistance to rad6 mutants but do not restore their uv mutability. Strains containing mutations at loci (rev, umr) that are probably more directly involved in mutagenesis are only mildly sensitive, and there is a poor correlation between their sensitivity and mutational deficiency. The uv mutagenesis appears to require a large number of gene functions, perhaps ten or more. Where examined in detail, these genes have been found to be concerned in the production of only a specific range of mutational events, not all of them. Mating experiments have shown that a substantial fraction, probably 40% or more, of uv-induced mutations are untargeted, that is, occur in lesion-free regions of DNA. The uv irradiation, therefore, produces a general reduction in the normally high fidelity with which DNA is replicated on undamaged templates. It does not appear to be necessary for the causal lesion to be present in the same chromosome as the mutation it induces. The reduction in fidelity may be the consequence of the production of a diffusible factor in uv-irradiated cells, but definite evidence supporting this proposal has not yet been obtained

  8. Physical mapping and cloning of RAD56

    DEFF Research Database (Denmark)

    Mathiasen, David P; Gallina, Irene; Germann, Susanne Manuela

    2013-01-01

    Here we report the physical mapping of the rad56-1 mutation to the NAT3 gene, which encodes the catalytic subunit of the NatB N-terminal acetyltransferase in Saccharomyces cerevisiae. Mutation of RAD56 causes sensitivity to X-rays, methyl methanesulfonate, zeocin, camptothecin and hydroxyurea...

  9. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies.

    Science.gov (United States)

    Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H Eka D; de Craen, Anton J M; Westendorp, Rudi G J; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A; Slagboom, P Eline; Nebel, Almut; Vaupel, James W; Christensen, Kaare; McGue, Matt; Christiansen, Lene

    2012-05-01

    Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (ppolymorphisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Inducible nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers in the cell cycle of the budding yeast Saccharomyces cerevisiae: evidence that inducible NER is confined to the G1 phase of the mitotic cell cycle

    International Nuclear Information System (INIS)

    Scott, A.D.; Waters, R.

    1997-01-01

    We previously reported on an inducible component of nucleotide excision repair in Saccharomyces cerevisiae that is controlled by the RAD16 gene. Here we describe a study of this event at the MAT alpha and HML alpha mating-type loci and on the transcribed (TS) and nontranscribed (NTS) strands of the RAD16 gene. Events were examined at various stages of the mitotic cycle in cells synchronised by centrifugal elutriation. Repair of cyclobutane pyrimidine dimers (CPDs) following a single UV dose does not vary significantly in different stages of the mitotic cell cycle. CPDs are removed more rapidly from the transcriptionally active MAT alpha locus than from the silent HML alpha locus, and the TS of RAD16 is repaired faster than the NTS in all stages of the cycle following a single UV irradiation. Enhanced excision of CPDs at MAT alpha and HML alpha can be induced only in the G1 and early S stages of the cell cycle. Here prior irradiation of cells with 25 J/m 2 enhances the removal of CPDs following a second UV dose of 70 J/m 2 . The level of enhancement of repair does not differ significantly between MAT alpha and HML alpha in G1. Enhanced removal of CPDs is absent when cells receive the inducing dose in late S or G2/M. Repair of CPDs in both strands of RAD16 is similarly enhanced only if cells receive the initial irradiation in G1 and early S. The level of enhanced removal of CPDs is not significantly different in the TS and NTS of RAD16 either in asynchronous cells or in cells preirradiated in G1 and early S. It has been shown by others that UV-induced expression of RAD16 remains at high levels if cells are held in G1 by treatment with alpha factor. Therefore the increase in RAD16 transcript levels in G1 may be responsible for the ability to enhance NER solely in this stage of the cell cycle

  12. Cloning of a postreplication repair gene in Drosophila

    International Nuclear Information System (INIS)

    Banga, S.S.; Yamamoto, A.H.; Mason, J.M.; Boyd, J.B.

    1987-01-01

    Mutants at the mei-41 locus in Drosophila are strongly hypersensitive to each of eight tested mutagens. Mutant flies exhibit reduced meiotic recombination and elevated levels of chromosomal aberrations. In analogy with the defect in xeroderma pigmentosum variant cells, mei-41 cells are strongly defective in postreplication repair following UV radiation. In preparation for cloning that gene they have performed complementation studies between chromosomal aberrations and mei-41 mutants. That study has localized the mei-41 gene to polytene chromosome bands 14C4-6. A chromosomal walk conducted in that region has recovered about 65 kb of contiguous DNA sequence. The position of the mei-41 gene within that region has been established with the aid of a mutation in that gene which was generated by the insertion of a transposable element. Transcription mapping is being employed to define the complete coding region of the gene in preparation for investigations of gene function

  13. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

    Science.gov (United States)

    Wriessnegger, Tamara; Moser, Sandra; Emmerstorfer-Augustin, Anita; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Pichler, Harald

    2016-04-01

    Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. RAD18 mediates resistance to ionizing radiation in human glioma cells

    International Nuclear Information System (INIS)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi; Yue, Wu

    2014-01-01

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM

  15. Dynamic regulation of cerebral DNA repair genes by psychological stress

    DEFF Research Database (Denmark)

    Forsberg, Kristin; Aalling, Nadia; Wörtwein, Gitta

    2015-01-01

    Neuronal genotoxic insults from oxidative stress constitute a putative molecular link between stress and depression on the one hand, and cognitive dysfunction and dementia risk on the other. Oxidative modifications to DNA are repaired by specific enzymes; a process that plays a critical role...... restraint stress (6h/day) or daily handling (controls), and sacrificed after 1, 7 or 21 stress sessions. The mRNA expression of seven genes (Ogg1, Ape1, Ung1, Neil1, Xrcc1, Ercc1, Nudt1) involved in the repair of oxidatively damaged DNA was determined by quantitative real time polymerase chain reaction...

  16. Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells.

    Science.gov (United States)

    Choi, Eui-Hwan; Yoon, Seobin; Hahn, Yoonsoo; Kim, Keun P

    2017-02-01

    Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

  17. Genes involved in yeast survival after irradiation with fast neutrons

    International Nuclear Information System (INIS)

    Bozin, D.; Milosevic, M.J.

    2001-01-01

    Life on the Earth has evolved against a continuous background of ionizing radiation. It would be expected, therefore, that all possible mutations have been produced at some time or another; man-made radiation from medical or industrial sources will not result in any new types of mutation but will simply increase the whole spectrum of mutations that occur spontaneously. Any such lesion can be mutagenic and, in principle, lethal. To counteract the consequences of DNA damage, evolution has equipped all living cells with an intricate network of defense and repair systems. Together, these systems act as a kind of nuclear 'immune system' that is able to recognize and eliminate many types of DNA lesions. In the case of the yeast Saccharomyces cerevisiae, in these processes over 30 RAD genes participate. We tested the survival of haploid and diploid rad1 yeast mutant strains at a dose of 15 Gy of γ or fast neutron radiation. We demonstrated that the lethality of rad1 mutants both haploid and diploid are significantly higher after fast neutron irradiation. The results indicate to the role and position of these genes in the DNA repair of damages specifically induced by fast neutrons. (authors)

  18. Human RAD50 makes a functional DNA-binding complex.

    Science.gov (United States)

    Kinoshita, Eri; van Rossum-Fikkert, Sari; Sanchez, Humberto; Kertokalio, Aryandi; Wyman, Claire

    2015-06-01

    The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Use of orthogonal field alternational gel electrophoresis (OFAGE) for studying DNA double strand breakage and repair

    International Nuclear Information System (INIS)

    Contopoulou, C.R.; Cook, V.; Mortimer, R.K.

    1987-01-01

    The study of DNA double strand breakage and repair has normally been carried by using neutral sucrose gradient or neutral elution techniques. The authors have applied OFAGE procedures to study x-ray induced double strand breaks and repair. Breakage of chromosomes is seen by a decrease in intensity of individual chromosome bands; as expected, this decrease becomes more pronounced as chromosome size increases. The fragments of broken chromosomes appears as a broad smear in the size range 100 kb to 1000 kb. Following repair, these fragments partially disappear and the chromosomal bands increase in intensity. In four repair deficient mutants, rad51, rad52, rad54, rad55, no increase in chromosomal band intensity was seen. These results have been confirmed by blotting for a specific chromosome

  20. First ultrasound diagnosis of BI-RADS 3 lesions in young patients: Can 6-months follow-up be sufficient to assess stability?

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Magda, E-mail: magda.marcon@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (Switzerland); Frauenfelder, Thomas, E-mail: thomas.frauenfelder@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (Switzerland); Becker, Anton S., E-mail: anton.becker@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (Switzerland); Dedes, Konstantin J., E-mail: Konstantin.dedes@usz.ch [Department of Gynecology, University Hospital Zurich (Switzerland); Boss, Andreas, E-mail: andreas.boss@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (Switzerland)

    2017-04-15

    Objectives: To evaluate the outcome of repeated short-term follow-up with ultrasound in no high-risk young patients with a BI-RADS3 lesion at first examination. Methods: In this IRB-approved study 492 women, aged 18–34 years (mean ± standard deviation, 28 ± 4.5 years) with first breast ultrasound examination in 2012–2014 were retrospectively evaluated. Inclusion criteria were: at least one BI-RADS3 lesion and (a) biopsy/surgical excision or (b) follow-up of at least 18 months (including a 6-month follow-up). BI-RADS category assigned during follow-up and pathologic findings in cases undergoing biopsy/surgical excision were collected. At the 6- and 18-month follow-up the recommended biopsy rates (RBR) and the corresponding positive predictive value (PPV) were calculated. Results: In 97 patients, 151 BI-RADS3 lesions were identified. Biopsy/surgical excision was initially performed in 25/151 (16.5%) lesions. After 6-month, category was downgraded to BI-RADS1/2 in 23/126 (15.3%) and upgraded to BI-RADS4 in 9/126 lesions (7.1%). Pathological diagnosis of these lesions was fibroadenoma in 5 and benign phyllodes tumor in 4 cases (RBR 7%, PPV{sub bio} 44.4%). After 18-month one lesion was classified BI-RADS4 and pathological diagnosis was fibroadenoma (RBR 1.1%, PPV{sub bio} 0%). Conclusions: Our preliminary data show that follow-up imaging performed after 18 months from a first BI-RADS3 diagnosis does not affect clinical treatment and 6-month follow-up may be sufficient to assess the stability of probably benign lesions.

  1. First ultrasound diagnosis of BI-RADS 3 lesions in young patients: Can 6-months follow-up be sufficient to assess stability?

    International Nuclear Information System (INIS)

    Marcon, Magda; Frauenfelder, Thomas; Becker, Anton S.; Dedes, Konstantin J.; Boss, Andreas

    2017-01-01

    Objectives: To evaluate the outcome of repeated short-term follow-up with ultrasound in no high-risk young patients with a BI-RADS3 lesion at first examination. Methods: In this IRB-approved study 492 women, aged 18–34 years (mean ± standard deviation, 28 ± 4.5 years) with first breast ultrasound examination in 2012–2014 were retrospectively evaluated. Inclusion criteria were: at least one BI-RADS3 lesion and (a) biopsy/surgical excision or (b) follow-up of at least 18 months (including a 6-month follow-up). BI-RADS category assigned during follow-up and pathologic findings in cases undergoing biopsy/surgical excision were collected. At the 6- and 18-month follow-up the recommended biopsy rates (RBR) and the corresponding positive predictive value (PPV) were calculated. Results: In 97 patients, 151 BI-RADS3 lesions were identified. Biopsy/surgical excision was initially performed in 25/151 (16.5%) lesions. After 6-month, category was downgraded to BI-RADS1/2 in 23/126 (15.3%) and upgraded to BI-RADS4 in 9/126 lesions (7.1%). Pathological diagnosis of these lesions was fibroadenoma in 5 and benign phyllodes tumor in 4 cases (RBR 7%, PPV bio 44.4%). After 18-month one lesion was classified BI-RADS4 and pathological diagnosis was fibroadenoma (RBR 1.1%, PPV bio 0%). Conclusions: Our preliminary data show that follow-up imaging performed after 18 months from a first BI-RADS3 diagnosis does not affect clinical treatment and 6-month follow-up may be sufficient to assess the stability of probably benign lesions.

  2. Interdependence of the rad50 hook and globular domain functions.

    Science.gov (United States)

    Hohl, Marcel; Kochańczyk, Tomasz; Tous, Cristina; Aguilera, Andrés; Krężel, Artur; Petrini, John H J

    2015-02-05

    Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1.

    Directory of Open Access Journals (Sweden)

    Ida Nielsen

    Full Text Available The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS induced damage and compare this with the genetic interaction between SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to MMS-induced damage. Specifically, we show a strong synergistic functionality between SGS1 and RAD9 for recovery from MMS induced damage and for suppression of gross chromosomal rearrangements, which is not the case for SGS1 and RAD24. Intriguingly, it is a Rad53 independent function of Rad9, which becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU-induced checkpoint responses with relation to the requirement of the Sgs1 interacting partner Topoisomerase III (Top3. Thus, whereas earlier studies have documented a Top3-independent role of Sgs1 for an HU-induced checkpoint response, we show here that upon MMS treatment, Sgs1 and Top3 together define a minor but parallel pathway to that of Rad9.

  4. Pleiotropic role of growth arrest-specific gene 6 in atherosclerosis

    NARCIS (Netherlands)

    Tjwa, Marc; Moons, Lieve; Lutgens, Esther

    2009-01-01

    Growth arrest-specific gene 6 (Gas6) belongs to the family of vitamin K-dependent coagulation proteins, but in contrast to its other members, has only a limited role in hemostasis. Instead, Gas6 plays a prominent role in conditions of injury, inflammation and repair. Gas6 amplifies the activation of

  5. Mapping of repair genes

    International Nuclear Information System (INIS)

    Hori, Tadaaki

    1985-01-01

    Chromosome mapping of repair genes involved in U.V. sensitivity is reported. Twenty-three of 25 hybrid cells were resistant to U.V. light. Survival curves of 2 U.V.-resistant cell strains, which possessed mouse chromosomes and human chromosome No.7 - 16, were similar to those of wild strain (L5178Y). On the other hand, survival curves of U.V.-sensitive hybrid cells was analogous to those of Q31. There was a definitive difference in the frequency of inducible chromosome aberrations between U.V. resistant and sensitive mouse-human hybrid cells. U.V.-resistant cell strains possessed the ability of excision repair. Analysis of karyotype in hybrid cells showed that the difference in U.V. sensitivity is dependent upon whether or not human chromosome No.13 is present. Synteny test on esterase D-determining locus confirmed that there is an agreement between the presence of chromosome No.13 and the presence of human esterase D activity. These results led to a conclusion that human genes which compensate recessive character of U.V.-sensitive mutant strain, Q31, with mouse-human hybrid cells are located on the locus of chromosome No.13. (Namekawa, K.)

  6. A Database to Support the Interpretation of Human Mismatch Repair Gene Variants

    NARCIS (Netherlands)

    Ou, Jianghua; Niessen, Renee C.; Vonk, Jan; Westers, Helga; Hofstra, Robert M. W.; Sijmons, Rolf H.

    Germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2 can cause Lynch syndrome. This syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is an autosomal dominantly-inherited disorder predominantly characterized by colorectal and endometrial cancer.

  7. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  8. Screening of the DNA mismatch repair genes MLH1, MSH2 and MSH6 in a Greek cohort of Lynch syndrome suspected families

    International Nuclear Information System (INIS)

    Thodi, Georgia; Fountzilas, George; Yannoukakos, Drakoulis; Fostira, Florentia; Sandaltzopoulos, Raphael; Nasioulas, George; Grivas, Anastasios; Boukovinas, Ioannis; Mylonaki, Maria; Panopoulos, Christos; Magic, Mirjana Brankovic

    2010-01-01

    Germline mutations in the DNA mismatch repair genes predispose to Lynch syndrome, thus conferring a high relative risk of colorectal and endometrial cancer. The MLH1, MSH2 and MSH6 mutational spectrum reported so far involves minor alterations scattered throughout their coding regions as well as large genomic rearrangements. Therefore, a combination of complete sequencing and a specialized technique for the detection of genomic rearrangements should be conducted during a proper DNA-testing procedure. Our main goal was to successfully identify Lynch syndrome families and determine the spectrum of MLH1, MSH2 and MSH6 mutations in Greek Lynch families in order to develop an efficient screening protocol for the Greek colorectal cancer patients' cohort. Forty-two samples from twenty-four families, out of which twenty two of Greek, one of Cypriot and one of Serbian origin, were screened for the presence of germline mutations in the major mismatch repair genes through direct sequencing and MLPA. Families were selected upon Amsterdam criteria or revised Bethesda guidelines. Ten deleterious alterations were detected in twelve out of the twenty-four families subjected to genetic testing, thus our detection rate is 50%. Four of the pathogenic point mutations, namely two nonsense, one missense and one splice site change, are novel, whereas the detected genomic deletion encompassing exon 6 of the MLH1 gene has been described repeatedly in the LOVD database. The average age of onset for the development of both colorectal and endometrial cancer among mutation positive families is 43.2 years. The mutational spectrum of the MMR genes investigated as it has been shaped by our analysis is quite heterogeneous without any strong indication for the presence of a founder effect

  9. Rad9 contribution to radiosensitivity and the G2 checkpoint in a DT40 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Tomoyasu [Kanazawa Univ. (Japan). Graduate School of Medical Science

    2002-12-01

    In fission yeast, the rad9 (radiation sensitive) gene was cloned from a mutant that is sensitive to ionizing radiation, ultraviolet and hydroxyurea. This gene has also been shown to be required for a DNA damage checkpoint. Orthologues of the rad9 gene have recently been identified in higher eukaryote cells including human. Here we generated Rad9 knockout (Rad9-/-) cells from the chicken B lymphocyte line DT40 to examine the role of Rad9 in higher eukaryotes. First we isolated a part of the chicken Rad9 gene which was 54% identical with human Rad9 at the amino acid sequence level. Next we isolated genomic clones, determined exons and introns, and constructed targeting vectors designed to disrupt exon 1-3 of the chicken Rad9 gene by replacement with a drug-resistant gene. Successful targeted integration was verified by Southern blot analysis and the disruption of the Rad9 gene was confirmed by reverse transcription polymerase chain reaction (RT-PCR). To analyze the radiosensitivity of these Rad9-/- cells, we monitored the clonogenic survival after various degrees of X-ray irradiation. Rad9-/- cells were more sensitive to X-rays than wild type cells at all dosages. However, these cells were less sensitive than ATM knockout (ATM-/-) cells that are known to be X-ray sensitive and that showed a defective checkpoint control. In contrast, Rad9-/- cells were markedly more sensitive to ultraviolet and hydroxyruea. In addition, we assessed the G2 checkpoint by measurement of the mitotic index that is the fraction of the accumulating number of cells in mitosis at various times after X-ray irradiation. While the number of mitotic wild type cells did not increase until 2 hrs after X-ray irradiation, the number of mitotic Rad9-/- cells showed an increase similar to that of ATM-/- cells. These results suggest that just as in fission yeast, in higher eukaryotes Rad9 also contributes to X-ray, ultraviolet and hydroxyurea sensitivity, and plays an important role in the G2 checkpoint

  10. Rad9 contribution to radiosensitivity and the G2 checkpoint in a DT40 cell line

    International Nuclear Information System (INIS)

    Kumano, Tomoyasu

    2002-01-01

    In fission yeast, the rad9 (radiation sensitive) gene was cloned from a mutant that is sensitive to ionizing radiation, ultraviolet and hydroxyurea. This gene has also been shown to be required for a DNA damage checkpoint. Orthologues of the rad9 gene have recently been identified in higher eukaryote cells including human. Here we generated Rad9 knockout (Rad9-/-) cells from the chicken B lymphocyte line DT40 to examine the role of Rad9 in higher eukaryotes. First we isolated a part of the chicken Rad9 gene which was 54% identical with human Rad9 at the amino acid sequence level. Next we isolated genomic clones, determined exons and introns, and constructed targeting vectors designed to disrupt exon 1-3 of the chicken Rad9 gene by replacement with a drug-resistant gene. Successful targeted integration was verified by Southern blot analysis and the disruption of the Rad9 gene was confirmed by reverse transcription polymerase chain reaction (RT-PCR). To analyze the radiosensitivity of these Rad9-/- cells, we monitored the clonogenic survival after various degrees of X-ray irradiation. Rad9-/- cells were more sensitive to X-rays than wild type cells at all dosages. However, these cells were less sensitive than ATM knockout (ATM-/-) cells that are known to be X-ray sensitive and that showed a defective checkpoint control. In contrast, Rad9-/- cells were markedly more sensitive to ultraviolet and hydroxyruea. In addition, we assessed the G2 checkpoint by measurement of the mitotic index that is the fraction of the accumulating number of cells in mitosis at various times after X-ray irradiation. While the number of mitotic wild type cells did not increase until 2 hrs after X-ray irradiation, the number of mitotic Rad9-/- cells showed an increase similar to that of ATM-/- cells. These results suggest that just as in fission yeast, in higher eukaryotes Rad9 also contributes to X-ray, ultraviolet and hydroxyurea sensitivity, and plays an important role in the G2 checkpoint

  11. Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population

    DEFF Research Database (Denmark)

    Lagerstedt-Robinson, Kristina; Rohlin, Anna; Aravidis, Christos

    2016-01-01

    Lynch syndrome caused by constitutional mismatch‑repair defects is one of the most common hereditary cancer syndromes with a high risk for colorectal, endometrial, ovarian and urothelial cancer. Lynch syndrome is caused by mutations in the mismatch repair (MMR) genes i.e., MLH1, MSH2, MSH6 and PMS2...... Lynch syndrome families. These mutations affected MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families. A large variety of mutations were identified with splice site mutations being the most common mutation type in MLH1 and frameshift mutations predominating in MSH2 and MSH6. Large...... deletions of one or several exons accounted for 21% of the mutations in MLH1 and MSH2 and 22% in PMS2, but were rare (4%) in MSH6. In 66% of the Lynch syndrome families the variants identified were private and the effect from founder mutations was limited and predominantly related to a Finnish founder...

  12. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    Science.gov (United States)

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-05-27

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.

  13. RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis.

    Science.gov (United States)

    Lee, Jibak; Hirano, Tatsuya

    2011-01-24

    Cohesins are multi-subunit protein complexes that regulate sister chromatid cohesion during mitosis and meiosis. Here we identified a novel kleisin subunit of cohesins, RAD21L, which is conserved among vertebrates. In mice, RAD21L is expressed exclusively in early meiosis: it apparently replaces RAD21 in premeiotic S phase, becomes detectable on the axial elements in leptotene, and stays on the axial/lateral elements until mid pachytene. RAD21L then disappears, and is replaced with RAD21. This behavior of RAD21L is unique and distinct from that of REC8, another meiosis-specific kleisin subunit. Remarkably, the disappearance of RAD21L at mid pachytene correlates with the completion of DNA double-strand break repair and the formation of crossovers as judged by colabeling with molecular markers, γ-H2AX, MSH4, and MLH1. RAD21L associates with SMC3, STAG3, and either SMC1α or SMC1β. Our results suggest that cohesin complexes containing RAD21L may be involved in synapsis initiation and crossover recombination between homologous chromosomes.

  14. Differential RPA-1 and RAD-51 recruitment in vivo throughout the C. elegans germline, as revealed by laser microirradiation.

    Science.gov (United States)

    Koury, Emily; Harrell, Kailey; Smolikove, Sarit

    2018-01-25

    Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline. Through this method we observed the sequential kinetics of the recruitment of ssDNA binding proteins RPA-1 and RAD-51 in vivo. We analyze these kinetics throughout different regions of the germline, and thus throughout a range of developmental stages of mitotic and meiotic nuclei. Our analysis demonstrates a largely conserved timing of recruitment of ssDNA binding proteins to DSBs throughout the germline, with a delay of RAD-51 recruitment at mid-pachytene nuclei. Microirradiated nuclei are viable and undergo a slow kinetics of resolution. We observe RPA-1 and RAD-51 colocalization for hours post-microirradiation throughout the germline, suggesting that there are mixed RPA-1/RAD-51 filaments. Finally, through live imaging analysis we observed RAD-51 foci movement with low frequency of coalescence. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Repair of DNA damage in the human metallothionein gene family

    International Nuclear Information System (INIS)

    Leadon, S.A.; Snowden, M.M.

    1987-01-01

    In order to distinguish enhanced repair of a sequence due to its transcriptional activity from enhanced repair due to chromatin alterations brought about by integration of a sequence into the genome, we have investigated the repair of damage both in endogenous genes and in cell lines that contain an integrated gene with an inducible promoter. The endogenous genes we are studying are the metallothioneins (MTs), a multigene family in man consisting of about 10-12 members. Cultured cells were exposed to 10-J/m 2 uv light and allowed to repair in the presence of bromodeoxyuridine. The DNA was then isolated, digested with Eco RI, and fully hybrid density DNA made by semiconservative synthesis was separated from unreplicated DNA by centrifugation in CsCl density gradients. Unreplicated, parental-density DNA was then reacted with a monoclonal antibody against bromouracil. 1 ref., 1 fig., 1 tab

  16. Genetic analysis of gamma-ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains

    International Nuclear Information System (INIS)

    McKee, R.H.; Lawrence, C.W.

    1979-01-01

    The frequency of revertants induced by 60 Co γ rays of the ochre allele, cyc1-9, has been measured in radiation-sensitive strains carrying one of 19 nonallelic mutations and in wild-type strains. The results indicate that ionizing radiation mutagenesis depends on the activity of the RAD6 group of genes and that the gene functions employed are very similar, but probably not identical, to those that mediate uv mutagenesis. Repair activities dependent on the functions of the RAD50 through RAD57 loci, the major pathway for the repair of damage caused by ionizing radiation, do not appear to play any part in mutagenesis. A comparison between the γ-ray data and those obtained previously with uv and chemical mutagens suggests that the RAD6 mutagenic pathway is in fact composed of a set of processes, some of which are concerned with error-prone, and some with error-free, recovery activities

  17. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Jun-ichiro, E-mail: junkom@med.tohoku.ac.jp [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Ikehata, Hironobu [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Mori, Toshio [Radioisotope Research Center, Nara Medical University, Kashihara, Nara 634-8521 (Japan); Ono, Tetsuya [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan)

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  18. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    International Nuclear Information System (INIS)

    Komura, Jun-ichiro; Ikehata, Hironobu; Mori, Toshio; Ono, Tetsuya

    2012-01-01

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: ► Global genome repair of (6-4) photoproducts is fully active in mitotic cells. ► DNA in condensed mitotic chromatin does not seem inaccessible or inert. ► Mitotic transcriptional repression may impair transcription-coupled repair.

  19. Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas

    DEFF Research Database (Denmark)

    Berntsson, Shala Ghaderi; Wibom, Carl; Sjöström, Sara

    2011-01-01

    different DNA repair genes (ATM, NEIL1, NEIL2, ERCC6 and RPA4) which were associated with survival. Finally, these eight genetic variants were adjusted for treatment, malignancy grade, patient age and gender, leaving one variant, rs4253079, mapped to ERCC6, with a significant association to survival (OR 0...

  20. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira.

    Science.gov (United States)

    Martins-Pinheiro, Marinalva; Schons-Fonseca, Luciane; da Silva, Josefa B; Domingos, Renan H; Momo, Leonardo Hiroyuki Santos; Simões, Ana Carolina Quirino; Ho, Paulo Lee; da Costa, Renata M A

    2016-04-01

    Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.

  1. Polymorphisms of Selected DNA Repair Genes and Lung Cancer in Chromium Exposure.

    Science.gov (United States)

    Halasova, E; Matakova, T; Skerenova, M; Krutakova, M; Slovakova, P; Dzian, A; Javorkova, S; Pec, M; Kypusova, K; Hamzik, J

    2016-01-01

    Chromium is a well-known mutagen and carcinogen involved in lung cancer development. DNA repair genes play an important role in the elimination of genetic changes caused by chromium exposure. In the present study, we investigated the polymorphisms of the following DNA repair genes: XRCC3, participating in the homologous recombination repair, and hMLH1 and hMSH2, functioning in the mismatch repair. We focused on the risk the polymorphisms present in the development of lung cancer regarding the exposure to chromium. We analyzed 106 individuals; 45 patients exposed to chromium with diagnosed lung cancer and 61 healthy controls. Genotypes were determined by a PCR-RFLP method. We unravelled a potential for increased risk of lung cancer development in the hMLH1 (rs1800734) AA genotype in the recessive model. In conclusion, gene polymorphisms in the DNA repair genes underscores the risk of lung cancer development in chromium exposed individuals.

  2. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  3. Polymorphic variations in the FANCA gene in high‐risk non‐BRCA1/2 breast cancer individuals from the French Canadian population

    OpenAIRE

    Litim, Nadhir; Labrie, Yvan; Desjardins, Sylvie; Ouellette, Geneviève; Plourde, Karine; Belleau, Pascal; Durocher, Francine

    2012-01-01

    The majority of genes associated with breast cancer susceptibility, including BRCA1 and BRCA2 genes, are involved in DNA repair mechanisms. Moreover, among the genes recently associated with an increased susceptibility to breast cancer, four are Fanconi Anemia (FA) genes: FANCD1/BRCA2, FANCJ/BACH1/BRIP1, FANCN/PALB2 and FANCO/RAD51C. FANCA is implicated in DNA repair and has been shown to interact directly with BRCA1. It has been proposed that the formation of FANCA/G (dependent upon the phos...

  4. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-Dependent DNA Transactions in Breast Tumor Suppression

    Science.gov (United States)

    2011-07-01

    human DNA repair proteins at a unique double-strand break in vivo, EMBO J 25, 222-231. 19. Berkovich, E., Monnat, R. J., Jr., and Kastan, M. B...structures around DNA as SMC complexes do. Rad50 exhibits ATPase activity in vitro, which is required for DNA repair and meiosis (3, 57). The rad50S...151). Exo1 expression is induced dur- ing meiosis , suggesting a role in meiotic DSB resection (149). Studies in the dmc1 mutant, which exhibits hyper

  5. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  6. Recombinational DNA repair and human disease

    International Nuclear Information System (INIS)

    Thompson, Larry H.; Schild, David

    2002-01-01

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities

  7. The AtRAD21.1 and AtRAD21.3 Arabidopsis cohesins play a synergistic role in somatic DNA double strand break damage repair

    Czech Academy of Sciences Publication Activity Database

    da Costa-Nunes, J.A.; Capitao, C.; Kozák, Jaroslav; Costa-Nunes, P.; Ducasa, G.M.; Pontes, O.; Angelis, Karel

    2014-01-01

    Roč. 14, DEC 16 2014 (2014) ISSN 1471-2229 R&D Projects: GA MŠk(CZ) LD13006; GA ČR GA13-06595S Institutional support: RVO:61389030 Keywords : Arabidopsis * AtRAD21.1 * AtRAD21.3 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.813, year: 2014

  8. Methotrexate induces DNA damage and inhibits homologous recombination repair in choriocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Xie L

    2016-11-01

    Full Text Available Lisha Xie,1,* Tiancen Zhao,1,2,* Jing Cai,1 You Su,1 Zehua Wang,1 Weihong Dong1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 2Department of Obstetrics and Gynecology, Central Hospital of Wuhan, Wuhan, China *These authors contributed equally to this work Objective: The objective of this study was to investigate the mechanism of sensitivity to methotrexate (MTX in human choriocarcinoma cells regarding DNA damage response. Methods: Two choriocarcinoma cancer cell lines, JAR and JEG-3, were utilized in this study. An MTX-sensitive osteosarcoma cell line MG63, an MTX-resistant epithelial ovarian cancer cell line A2780 and an MTX-resistant cervical adenocarcinoma cell line Hela served as controls. Cell viability assay was carried out to assess MTX sensitivity of cell lines. MTX-induced DNA damage was evaluated by comet assay. Quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of BRCA1, BRCA2, RAD51 and RAD52. The protein levels of γH2AX, RAD 51 and p53 were analyzed by Western blot. Results: Remarkable DNA strand breaks were observed in MTX-sensitive cell lines (JAR, JEG-3 and MG63 but not in MTX-resistant cancer cells (A2780 and Hela after 48 h of MTX treatment. Only in the choriocarcinoma cells, the expression of homologous recombination (HR repair gene RAD51 was dramatically suppressed by MTX in a dose- and time-dependent manner, accompanied with the increase in p53. Conclusion: The MTX-induced DNA strand breaks accompanied by deficiencies in HR repair may contribute to the hypersensitivity to chemotherapy in choriocarcinoma. Keywords: choriocarcinoma, chemotherapy hypersensitivity, DNA double-strand break, RAD51, p53

  9. UV-induced mitotic recombination and its dependence on photoreactivation and liquid holding in the rad6-1 mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Haladus, E.; Zuk, J.

    1980-01-01

    Spontaneous and UV-induced mitotic recombination was compared in diploids homozygous for rad6-1 mutation and in the wild-type strain carrying heterozygous markers for detecting gene conversion (hom 2-1, hom 2-2) and crossing over (ade 1, ade 2). Diploids homozygous for rad6-1 mutation were characterised by an elevated level of spontaneous and UV-induced mitotic recombination, particularly the intergenic events. Exposure of UV-irradiated strains to visible light resulted in an increased survival and decreased level of mitotic recombination. Liquid holding (LH) differentially affected frequency of mitotic intergenic and intragenic recombination in mutant and wild-type strains, being without any significant effect on cell survival. In a mutant strain intragenic recombination is significantly increased, intergenic only slightly. In the wild-type strain intragenic recombination is slightly decreased but intergenic is not changed by LH. Visible light applied after LH had no effect on survival and mitotic recombination in the wild type, while in the mutant strain photoreactivability of survival was fully preserved and accompanied by a decrease in the frequency of intragenic and intergenic recombination. The results suggest that metabolic pathways responsible for restoring cell survival are independent of or only partly overlapping with those concerning recombination events. (orig.) [de

  10. MicroRNA-Related DNA Repair/Cell-Cycle Genes Independently Associated With Relapse After Radiation Therapy for Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gee, Harriet E., E-mail: harriet.gee@sydney.edu.au [The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW (Australia); The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); Central Clinical School, Sydney Medical School, University of Sydney, NSW (Australia); Buffa, Francesca M.; Harris, Adrian L. [Department of Medical Oncology, The University of Oxford, Oxford (United Kingdom); Toohey, Joanne M.; Carroll, Susan L. [The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); Cooper, Caroline L. [Central Clinical School, Sydney Medical School, University of Sydney, NSW (Australia); Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW (Australia); Beith, Jane [The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); McNeil, Catriona [The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW (Australia); The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); Carmalt, Hugh; Mak, Cindy; Warrier, Sanjay [The Chris O' Brien Lifehouse, Missenden Road, Camperdown, NSW (Australia); Holliday, Anne [The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW (Australia); Selinger, Christina; Beckers, Rhiannon [Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW (Australia); Kennedy, Catherine [Central Clinical School, Sydney Medical School, University of Sydney, NSW (Australia); Graham, Peter [Department of Radiation Oncology, Cancer Care Centre, St. George Hospital, Kogarah, NSW (Australia); Swarbrick, Alexander [The Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW (Australia); St Vincent' s Clinical School, Faculty of Medicine, University of NSW, Kensington, NSW (Australia); and others

    2015-12-01

    Purpose: Local recurrence and distant failure after adjuvant radiation therapy for breast cancer remain significant clinical problems, incompletely predicted by conventional clinicopathologic markers. We had previously identified microRNA-139-5p and microRNA-1274a as key regulators of breast cancer radiation response in vitro. The purpose of this study was to investigate standard clinicopathologic markers of local recurrence in a contemporary series and to establish whether putative target genes of microRNAs involved in DNA repair and cell cycle control could better predict radiation therapy response in vivo. Methods and Materials: With institutional ethics board approval, local recurrence was measured in a contemporary, prospectively collected series of 458 patients treated with radiation therapy after breast-conserving surgery. Additionally, independent publicly available mRNA/microRNA microarray expression datasets totaling >1000 early-stage breast cancer patients, treated with adjuvant radiation therapy, with >10 years of follow-up, were analyzed. The expression of putative microRNA target biomarkers—TOP2A, POLQ, RAD54L, SKP2, PLK2, and RAG1—were correlated with standard clinicopathologic variables using 2-sided nonparametric tests, and to local/distant relapse and survival using Kaplan-Meier and Cox regression analysis. Results: We found a low rate of isolated local recurrence (1.95%) in our modern series, and that few clinicopathologic variables (such as lymphovascular invasion) were significantly predictive. In multiple independent datasets (n>1000), however, high expression of RAD54L, TOP2A, POLQ, and SKP2 significantly correlated with local recurrence, survival, or both in univariate and multivariate analyses (P<.001). Low RAG1 expression significantly correlated with local recurrence (multivariate, P=.008). Additionally, RAD54L, SKP2, and PLK2 may be predictive, being prognostic in radiation therapy–treated patients but not in untreated matched

  11. The role of Candida albicans homologous recombination factors Rad54 and Rdh54 in DNA damage sensitivity

    Directory of Open Access Journals (Sweden)

    White Theodore C

    2011-09-01

    Full Text Available Abstract Background The fungal pathogen Candida albicans is frequently seen in immune suppressed patients, and resistance to one of the most widely used antifungals, fluconazole (FLC, can evolve rapidly. In recent years it has become clear that plasticity of the Candida albicans genome contributes to drug resistance through loss of heterozygosity (LOH at resistance genes and gross chromosomal rearrangements that amplify gene copy number of resistance associated genes. This study addresses the role of the homologous recombination factors Rad54 and Rdh54 in cell growth, DNA damage and FLC resistance in Candida albicans. Results The data presented here support a role for homologous recombination in cell growth and DNA damage sensitivity, as Candida albicans rad54Δ/rad54Δ mutants were hypersensitive to MMS and menadione, and had an aberrant cell and nuclear morphology. The Candida albicans rad54Δ/rad54Δ mutant was defective in invasion of Spider agar, presumably due to the altered cellular morphology. In contrast, mutation of the related gene RDH54 did not contribute significantly to DNA damage resistance and cell growth, and deletion of either Candida albicans RAD54 or Candida albicans RDH54 did not alter FLC susceptibility. Conclusions Together, these results support a role for homologous recombination in genome stability under nondamaging conditions. The nuclear morphology defects in the rad54Δ/rad54Δ mutants show that Rad54 performs an essential role during mitotic growth and that in its absence, cells arrest in G2. The viability of the single mutant rad54Δ/rad54Δ and the inability to construct the double mutant rad54Δ/rad54Δ rdh54Δ/rdh54Δ suggests that Rdh54 can partially compensate for Rad54 during mitotic growth.

  12. Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients with Gastric Cancer

    Science.gov (United States)

    Sahasrabudhe, Ruta; Lott, Paul; Bohorquez, Mabel; Toal, Ted; Estrada, Ana P.; Suarez, John J.; Brea-Fernández, Alejandro; Cameselle-Teijeiro, José; Pinto, Carla; Ramos, Irma; Mantilla, Alejandra; Prieto, Rodrigo; Corvalan, Alejandro; Norero, Enrique; Alvarez, Carolina; Tapia, Teresa; Carvallo, Pilar; Gonzalez, Luz M.; Cock-Rada, Alicia; Solano, Angela; Neffa, Florencia; Valle, Adriana Della; Yau, Chris; Soares, Gabriela; Borowsky, Alexander; Hu, Nan; He, Li-Ji; Han, Xiao-You; Taylor, Philip R.; Goldstein, Alisa M.; Torres, Javier; Echeverry, Magdalena; Ruiz-Ponte, Clara; Teixeira, Manuel R.; Carvajal Carmona, Luis G.

    2016-01-01

    Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer. PMID:28024868

  13. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination

    DEFF Research Database (Denmark)

    Gao, Min; Wei, Wei; Li, Ming Hua

    2014-01-01

    resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs...

  14. Triple negative breast cancers have a reduced expression of DNA repair genes.

    Directory of Open Access Journals (Sweden)

    Enilze Ribeiro

    Full Text Available DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia in paraffin embedded samples of triple negative breast cancer (TNBC compared to luminal A breast cancer (LABC. Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects.

  15. Challenges in biotechnology at LLNL: from genes to proteins; TOPICAL

    International Nuclear Information System (INIS)

    Albala, J S

    1999-01-01

    This effort has undertaken the task of developing a link between the genomics, DNA repair and structural biology efforts within the Biology and Biotechnology Research Program at LLNL. Through the advent of the I.M.A.G.E. (Integrated Molecular Analysis of Genomes and their Expression) Consortium, a world-wide effort to catalog the largest public collection of genes, accepted and maintained within BBRP, it is now possible to systematically express the protein complement of these to further elucidate novel gene function and structure. The work has ensued in four phases, outlined as follows: (1) Gene and System selection; (2) Protein expression and purification; (3) Structural analysis; and (4) biological integration. Proteins to be expressed have been those of high programmatic interest. This includes, in particular, proteins involved in the maintenance of genome integrity, particularly those involved in the repair of DNA damage, including ERCC1, ERCC4, XRCC2, XRCC3, XRCC9, HEX1, APN1, p53, RAD51B, RAD51C, and RAD51. Full-length cDNA cognates of selected genes were isolated, and cloned into baculovirus-based expression vectors. The baculoviral expression system for protein over-expression is now well-established in the Albala laboratory. Procedures have been successfully optimized for full-length cDNA clining into expression vectors for protein expression from recombinant constructs. This includes the reagents, cell lines, techniques necessary for expression of recombinant baculoviral constructs in Spodoptera frugiperda (Sf9) cells. The laboratory has also generated a high-throughput baculoviral expression paradigm for large scale expression and purification of human recombinant proteins amenable to automation

  16. Platinum sensitivity and DNA repair in a recently established panel of patient-derived ovarian carcinoma xenografts

    Science.gov (United States)

    Guffanti, Federica; Fratelli, Maddalena; Ganzinelli, Monica; Bolis, Marco; Ricci, Francesca; Bizzaro, Francesca; Chilà, Rosaria; Sina, Federica Paola; Fruscio, Robert; Lupia, Michela; Cavallaro, Ugo; Cappelletti, Maria Rosa; Generali, Daniele; Giavazzi, Raffaella; Damia, Giovanna

    2018-01-01

    A xenobank of patient-derived (PDX) ovarian tumor samples has been established consisting of tumors with different sensitivity to cisplatin (DDP), from very responsive to resistant. As the DNA repair pathway is an important driver in tumor response to DDP, we analyzed the mRNA expression of 20 genes involved in the nucleotide excision repair, fanconi anemia, homologous recombination, base excision repair, mismatch repair and translesion repair pathways and the methylation patterns of some of these genes. We also investigated the correlation with the response to platinum-based therapy. The mRNA levels of the selected genes were evaluated by Real Time-PCR (RT-PCR) with ad hoc validated primers and gene promoter methylation by pyrosequencing. All the DNA repair genes were variably expressed in all 42 PDX samples analyzed, with no particular histotype-specific pattern of expression. In high-grade serous/endometrioid PDXs, the CDK12 mRNA expression levels positively correlated with the expression of TP53BP1, PALB2, XPF and POLB. High-grade serous/endometrioid PDXs with TP53 mutations had significantly higher levels of POLQ, FANCD2, RAD51 and POLB than high-grade TP53 wild type PDXs. The mRNA levels of CDK12, PALB2 and XPF inversely associated with the in vivo DDP antitumor activity; higher CDK12 mRNA levels were associated with a higher recurrence rate in ovarian patients with low residual tumor. These data support the important role of CDK12 in the response to a platinum based therapy in ovarian patients. PMID:29872499

  17. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function

    DEFF Research Database (Denmark)

    Ahlskog, Johanna K; Larsen, Brian D; Achanta, Kavya

    2016-01-01

    DNA damage activates the ATM and ATR kinases that coordinate checkpoint and DNA repair pathways. An essential step in homology-directed repair (HDR) of DNA breaks is the formation of RAD51 nucleofilaments mediated by PALB2-BRCA2; however, roles of ATM and ATR in this critical step of HDR are poor...... function, as the PALB2-dependent checkpoint response is normal in cells expressing the phospho-deficient PALB2 mutant. Collectively, our findings highlight a critical importance of PALB2 phosphorylation as a novel regulatory step in genome maintenance after genotoxic stress....

  18. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). Dept. of Radiation Biology and Biophysics

    1975-01-01

    The repair of damage induced by ultraviolet light has been examined in both the nuclear and mitochondrial DNA of the yeast Saccharomyces cerevisiae. The sensitive assay used in this study is based on the capacity of the bacteriophage T4 u.v. endonuclease to produce single-strand breaks in DNA that contains pyrimidine dimers, thus permitting the use of low fluences (doses) of u.v. The results demonstrate that virtually all of the dimers induced in the nuclear DNA of a repair-proficient strain (RAD+) are removed following dark incubation for four hours in growth medium. In contrast, the dimers induced in mitochondrial DNA by the same u.v. fluence are retained under the same conditions. In the excision-deficient mutant, rad1-2, no evidence was obtained for removal of pyrimidine dimers from nuclear DNA. Photoreactivation of both RAD + and rad1-2 cultures resulted in decreases of dimers from both nuclear and mitochondrial DNA. It is concluded that an excision-repair mechanism operates on nuclear but not mitochondrial DNA in repair-proficient yeast, and that the rad1-2 mutant is defective in this process.

  19. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  20. SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis.

    Science.gov (United States)

    Valdisser, Paula Arielle M R; Pappas, Georgios J; de Menezes, Ivandilson P P; Müller, Bárbara S F; Pereira, Wendell J; Narciso, Marcelo G; Brondani, Claudio; Souza, Thiago L P O; Borba, Tereza C O; Vianello, Rosana P

    2016-06-01

    Researchers have made great advances into the development and application of genomic approaches for common beans, creating opportunities to driving more real and applicable strategies for sustainable management of the genetic resource towards plant breeding. This work provides useful polymorphic single-nucleotide polymorphisms (SNPs) for high-throughput common bean genotyping developed by RAD (restriction site-associated DNA) sequencing. The RAD tags were generated from DNA pooled from 12 common bean genotypes, including breeding lines of different gene pools and market classes. The aligned sequences identified 23,748 putative RAD-SNPs, of which 3357 were adequate for genotyping; 1032 RAD-SNPs with the highest ADT (assay design tool) score are presented in this article. The RAD-SNPs were structurally annotated in different coding (47.00 %) and non-coding (53.00 %) sequence components of genes. A subset of 384 RAD-SNPs with broad genome distribution was used to genotype a diverse panel of 95 common bean germplasms and revealed a successful amplification rate of 96.6 %, showing 73 % of polymorphic SNPs within the Andean group and 83 % in the Mesoamerican group. A slightly increased He (0.161, n = 21) value was estimated for the Andean gene pool, compared to the Mesoamerican group (0.156, n = 74). For the linkage disequilibrium (LD) analysis, from a group of 580 SNPs (289 RAD-SNPs and 291 BARC-SNPs) genotyped for the same set of genotypes, 70.2 % were in LD, decreasing to 0.10 %in the Andean group and 0.77 % in the Mesoamerican group. Haplotype patterns spanning 310 Mb of the genome (60 %) were characterized in samples from different origins. However, the haplotype frameworks were under-represented for the Andean (7.85 %) and Mesoamerican (5.55 %) gene pools separately. In conclusion, RAD sequencing allowed the discovery of hundreds of useful SNPs for broad genetic analysis of common bean germplasm. From now, this approach provides an excellent panel

  1. Location of RAD51-like protein during meiotic prophase in Eimeria tenella.

    Science.gov (United States)

    Del Cacho, Emilio; Gallego, Margarita; Pagés, Marc; Barbero, José Luís; Monteagudo, Luís; Sánchez-Acedo, Caridad

    2011-05-31

    This study focuses on reporting events in Eimeria tenella oocysts from early to late prophase I in terms of RAD51 protein in association with the synaptonemal complex formed between homologous chromosomes. The aim of the study was the sequential localization of RAD51 protein, which is involved in the repair of double-strand breaks (DSBs) on the eimerian chromosomes as they synapse and desynapse. Structural Maintenance of Chromosome protein SMC3, which plays a role in synaptonemal complex formation, was labeled to identify initiation and progress of chromosome synapsis and desynapsis in parallel with the appearance and disappearance of RAD51 foci. Antibodies directed against RAD51 and cohesin subunit SMC3 proteins were labeled with either fluorescence or colloidal gold to visualize RAD51 protein foci and synaptonemal complexes. RAD51 protein localization during prophase I was studied on meiotic chromosomes spreads obtained from oocysts at different points in time after the start of sporulation. The present findings showed that foci detected with the antibody directed against RAD51 protein first appeared at the pre-leptotene stage before homologous chromosomes began pairing. Subsequently, the foci were detected in association with the lateral elements at the precise sites where synapsis were in progress. These findings lead us to suggest that in E. tenella, homologous chromosome pairing was a DSB-dependent mechanism and reinforced the participation of RAD51 protein in meiotic homology search, alignment and pairing of chromosomes. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Lymphoid irradiation in intractable rheumatoid arthritis. A double-blind, randomized study comparing 750-rad treatment with 2,000-rad treatment

    International Nuclear Information System (INIS)

    Hanly, J.G.; Hassan, J.; Moriarty, M.; Barry, C.; Molony, J.; Casey, E.; Whelan, A.; Feighery, C.; Bresnihan, B.

    1986-01-01

    Twenty patients with intractable rheumatoid arthritis were treated with 750-rad or 2,000-rad lymphoid irradiation in a randomized double-blind comparative study. Over a 12-month followup period, there was a significant improvement in 4 of 7 and 6 of 7 standard parameters of disease activity following treatment with 750 rads and 2,000 rads, respectively. Transient, short-term toxicity was less frequent with the lower dose. In both groups, there was a sustained peripheral blood lymphopenia, a selective depletion of T helper (Leu-3a+) lymphocytes, and reduced in vitro mitogen responses. These changes did not occur, however, in synovial fluid. These results suggest that 750-rad lymphoid irradiation is as effective as, but less toxic than, that with 2,000 rads in the management of patients with intractable rheumatoid arthritis

  3. RadCat 3.0 user guide.

    Energy Technology Data Exchange (ETDEWEB)

    Hinojosa, Daniel; Penisten, Janelle J.; Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John; Marincel, Michelle K.

    2009-05-01

    RADTRAN is an internationally accepted program and code for calculating the risks of transporting radioactive materials. The first versions of the program, RADTRAN I and II, were developed for NUREG-0170 (USNRC, 1977), the first environmental statement on transportation of radioactive materials. RADTRAN and its associated software have undergone a number of improvements and advances consistent with improvements in both available data and computer technology. The version of RADTRAN currently bundled with RadCat is RADTRAN 6.0. This document provides a detailed discussion and a guide for the use of the RadCat 3.0 Graphical User Interface input file generator for the RADTRAN code. RadCat 3.0 integrates the newest analysis capabilities of RADTRAN 6.0 which includes an economic model, updated loss-of-lead shielding model, and unit conversion. As of this writing, the RADTRAN version in use is RADTRAN 6.0.

  4. Sensitization of Tumor to 212Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    International Nuclear Information System (INIS)

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2013-01-01

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using 212 Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by 212 Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with 212 Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). 212 Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. 212 Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of 212 Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling

  5. Genetic polymorphisms in DNA double-strand break repair genes XRCC5, XRCC6 and susceptibility to hepatocellular carcinoma.

    Science.gov (United States)

    Li, Rui; Yang, Yuan; An, Yu; Zhou, Yun; Liu, Yanhong; Yu, Qing; Lu, Daru; Wang, Hongyang; Jin, Li; Zhou, Weiping; Qian, Ji; Shugart, Yin Yao

    2011-04-01

    Environmental risk factors cause DNA damages. Imprecise DNA repair leads to chromosome aberrations, genome destabilization and hepatocarcinogenesis. Ku is a key DNA double-strand break repair protein. We hypothesized that the genetic variants in Ku subunits encoding genes, XRCC5/XRCC6, may contribute to hepatocellular carcinoma (HCC) susceptibility. We genotyped 13 common single nucleotide polymorphisms (SNPs) in XRCC5 and XRCC6 and evaluated their associations with HCC risk in 689 pathologically confirmed cases and 690 cancer-free controls from a Chinese population. We found that a significantly reduced risk for HCC was associated with XRCC5 rs16855458 [odds ratio (OR)=0.59; 95% confidence interval (CI)=0.43-0.81; CA+AA versus CC] and a significantly increased risk for HCC was associated with XRCC5 rs9288516 (OR=2.02; 95% CI=1.42-2.86; TA+AA versus TT) even after Bonferroni correction (Pcorrected=0.026 and 0.002, respectively). The effects of rs16855458 (OR=0.57; 95% CI=0.37-0.86, P=0.008) and rs9288516 (OR=1.86; 95% CI=1.19-2.90, P=0.007) were more significant in hepatitis B surface antigen-infected subjects than non-infected subjects. The haplotype-based analysis revealed that in XRCC5, AA in block 1 (OR=0.63; 95% CI=0.48-0.83) and CGGTT in block 2 (OR=0.52; 95% CI=0.39-0.69) were associated with decreased HCC risk (Pcorrected=0.013 and analysis. In conclusion, XRCC5 variants may play a role in determining individual's HCC susceptibility, which warranted validation in larger studies.

  6. Analysis of mutagenic DNA repair in a thermoconditional repair mutant of Saccharomyces cerevisiae. Pt. 2

    International Nuclear Information System (INIS)

    Siede, W.; Eckardt, F.; Brendel, M.

    1983-01-01

    The time course of REV2 dependent recovery from prelethal UV damage and UV-induced locus-specific reversion of the his5-2 allele was determined in temperature-shift experiments by use of a thermoconditional allele of the rev2 gene (rad5-8, rev2sup(ts)). In UV-irradiated, exponentially growing rev2sup(ts) cells the REV2 dependent repair acitivity persists for up to 8 h at permissive temperature (23 0 C), while the REV2 dependent mutagenic process is mostly completed within 2 h. The REV2 dependent process in exponentially growing cells is highly impaired by inhibition of protein synthesis. However, a REV2 dependent repair activity independent of de novo synthesis is detectable, even in the presence of up to 200 μg/ml cycloheximide, a response not found in stationary phase cells. Thus, the REV2 dependent process seems to be partially constitutive in exponentially growing cells. Additionally, exponentially growing rev2sup(ts) cells were considerably more UV-sensitive at restrictive temperature (36 0 C) than were stationary phase cells. (orig.)

  7. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination.

    Science.gov (United States)

    Wiese, Claudia; Hinz, John M; Tebbs, Robert S; Nham, Peter B; Urbin, Salustra S; Collins, David W; Thompson, Larry H; Schild, David

    2006-01-01

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  8. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    Science.gov (United States)

    Scarbrough, Peter M; Weber, Rachel Palmieri; Iversen, Edwin S; Brhane, Yonathan; Amos, Christopher I; Kraft, Peter; Hung, Rayjean J; Sellers, Thomas A; Witte, John S; Pharoah, Paul; Henderson, Brian E; Gruber, Stephen B; Hunter, David J; Garber, Judy E; Joshi, Amit D; McDonnell, Kevin; Easton, Doug F; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A; Schildkraut, Joellen M

    2016-01-01

    DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. We identified three susceptibility DNA repair genes, RAD51B (P cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. ©2015 American Association for Cancer Research.

  9. Base excision repair of both uracil and oxidatively damaged bases contribute to thymidine deprivation-induced radiosensitization

    International Nuclear Information System (INIS)

    Allen, Bryan G.; Johnson, Monika; Marsh, Anne E.; Dornfeld, Kenneth J.

    2006-01-01

    Purpose: Increased cellular sensitivity to ionizing radiation due to thymidine depletion is the basis of radiosensitization with fluoropyrimidine and methotrexate. The mechanism responsible for cytotoxicity has not been fully elucidated but appears to involve both the introduction of uracil into, and its removal from, DNA. The role of base excision repair of uracil and oxidatively damaged bases in creating the increased radiosensitization during thymidine depletion is examined. Methods and Materials: Isogenic strains of S. cerevisiae differing only at loci involved in DNA repair functions were exposed to aminopterin and sulfanilamide to induce thymidine deprivation. Cultures were irradiated and survival determined by clonogenic survival assay. Results: Strains lacking uracil base excision repair (BER) activities demonstrated less radiosensitization than the parental strain. Mutant strains continued to show partial radiosensitization with aminopterin treatment. Mutants deficient in BER of both uracil and oxidatively damaged bases did not demonstrate radiosensitization. A recombination deficient rad52 mutant strain was markedly sensitive to radiation; addition of aminopterin increased radiosensitivity only slightly. Radiosensitization observed in rad52 mutants was also abolished by deletion of the APN1, NTG1, and NTG2 genes. Conclusion: These data suggest radiosensitization during thymidine depletion is the result of BER activities directed at both uracil and oxidatively damaged bases

  10. Early Postoperative Low Expression of RAD50 in Rectal Cancer Patients Associates with Disease-Free Survival

    Directory of Open Access Journals (Sweden)

    Vincent Ho

    2017-11-01

    Full Text Available Background: Molecular biomarkers have the potential to predict response to the treatment of rectal cancer. In this study, we aimed to evaluate the prognostic and clinicopathological implication of RAD50 (DNA repair protein RAD50 homolog expression in rectal cancer. Methods: A total of 266 rectal cancer patients who underwent surgery and received chemo- and radiotherapy between 2000 and 2011 were involved in the study. Postoperative RAD50 expression was determined by immunohistochemistry in surgical samples (n = 266. Results: Using Kaplan–Meier survival analysis, we found that low RAD50 expression in postoperative samples was associated with worse disease free survival (p = 0.001 and overall survival (p < 0.001 in early stage/low-grade tumors. In a comparison of patients with low vs. high RAD50 expression, we found that low levels of postoperative RAD50 expression in rectal cancer tissues were significantly associated with perineural invasion (p = 0.002. Conclusion: Expression of RAD50 in rectal cancer may serve as a prognostic biomarker for long-term survival of patients with perineural invasion-positive tumors and for potential use in early stage and low-grade rectal cancer assessment.

  11. Radioresistance of chordoma cells is associated with the ATM/ATR pathway, in which RAD51 serves as an important downstream effector.

    Science.gov (United States)

    Zhang, Chao; Wang, Bing; Li, Lei; Li, Yawei; Li, Pengzhi; Lv, Guohua

    2017-09-01

    Surgery followed by radiotherapy is the standard treatment for chordomas, which are a rare but low-grade type of bone cancer arising from remnants of the embryonic notochord. However, disease recurrence following radiotherapy is common, most likely due to endogenous DNA repair mechanisms that promote cell survival upon radiation strikes. The ataxia telangiectasia mutated/ataxia telangiectasia mutated and Rad3 related (ATM/ATR)-mediated pathway has a critical role in DNA repair mechanisms; however, it has rarely been investigated in chordomas. In the present study, the expression of signal molecules related to the ATM/ATR pathway in chordoma tissues and adjacent normal tissues were initially examined using immunohistochemistry and western blot analysis. Chordoma U-CH1 and U-CH2 cells were subsequently used to investigate cell responses to ionizing radiation and the potential protective actions mediated by the ATM/ATR pathway. Phosphorylated (p)-ATM, p-ATR, γ-H2A histone family, member X (H2AX) and RAD51 were significantly upregulated in chordoma tissues relative to adjacent normal tissues (PATM, γ-H2AX and RAD51 expression in U-CH1 cells (PATM, p-ATR and RAD51 levels in U-CH2 cells (PATM/ATR pathway, in which RAD51 serves as an important downstream effector. Thus, RAD51 presents a promising therapeutic target for improving the outcome of radiotherapy treatment in chordomas.

  12. The role of the Mre11–Rad50–Nbs1 complex in double-strand break repair—facts and myths

    International Nuclear Information System (INIS)

    Takeda, Shunichi; Hoa, Nguyen Ngoc; Sasanuma, Hiroyuki

    2016-01-01

    Homologous recombination (HR) initiates double-strand break (DSB) repair by digesting 5′-termini at DSBs, the biochemical reaction called DSB resection, during which DSBs are processed by nucleases to generate 3′ single-strand DNA. Rad51 recombinase polymerizes along resected DNA, and the resulting Rad51–DNA complex undergoes homology search. Although DSB resection by the Mre11 nuclease plays a critical role in HR in Saccharomyces cerevisiae, it remains elusive whether DSB resection by Mre11 significantly contributes to HR-dependent DSB repair in mammalian cells. Depletion of Mre11 decreases the efficiency of DSB resection only by 2- to 3-fold in mammalian cells. We show that although Mre11 is required for efficient HR-dependent repair of ionizing-radiation–induced DSBs, Mre11 is largely dispensable for DSB resection in both chicken DT40 and human TK6 B cell lines. Moreover, a 2- to 3-fold decrease in DSB resection has virtually no impact on the efficiency of HR. Thus, although a large number of researchers have reported the vital role of Mre11-mediated DSB resection in HR, the role may not explain the very severe defect in HR in Mre11-deficient cells, including their lethality. We here show experimental evidence for the additional roles of Mre11 in (i) elimination of chemical adducts from DSB ends for subsequent DSB repair, and (ii) maintaining HR intermediates for their proper resolution

  13. Resolving RAD51C function in late stages of homologous recombination

    Directory of Open Access Journals (Sweden)

    Kuznetsov Sergey G

    2007-06-01

    Full Text Available Abstract DNA double strand breaks are efficiently repaired by homologous recombination. One of the last steps of this process is resolution of Holliday junctions that are formed at the sites of genetic exchange between homologous DNA. Although various resolvases with Holliday junctions processing activity have been identified in bacteriophages, bacteria and archaebacteria, eukaryotic resolvases have been elusive. Recent biochemical evidence has revealed that RAD51C and XRCC3, members of the RAD51-like protein family, are involved in Holliday junction resolution in mammalian cells. However, purified recombinant RAD51C and XRCC3 proteins have not shown any Holliday junction resolution activity. In addition, these proteins did not reveal the presence of a nuclease domain, which raises doubts about their ability to function as a resolvase. Furthermore, oocytes from infertile Rad51C mutant mice exhibit precocious separation of sister chromatids at metaphase II, a phenotype that reflects a defect in sister chromatid cohesion, not a lack of Holliday junction resolution. Here we discuss a model to explain how a Holliday junction resolution defect can lead to sister chromatid separation in mouse oocytes. We also describe other recent in vitro and in vivo evidence supporting a late role for RAD51C in homologous recombination in mammalian cells, which is likely to be resolution of the Holliday junction.

  14. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.

    Science.gov (United States)

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong

    2017-11-30

    Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.

  15. RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells

    DEFF Research Database (Denmark)

    Sleeth, Kate M; Sørensen, Claus Storgaard; Issaeva, Natalia

    2007-01-01

    The replication protein A (RPA) is involved in most, if not all, nuclear metabolism involving single-stranded DNA. Here, we show that RPA is involved in genome maintenance at stalled replication forks by the homologous recombination repair system in humans. Depletion of the RPA protein inhibited...... the formation of RAD51 nuclear foci after hydroxyurea-induced replication stalling leading to persistent unrepaired DNA double-strand breaks (DSBs). We demonstrate a direct role of RPA in homology directed recombination repair. We find that RPA is dispensable for checkpoint kinase 1 (Chk1) activation...... and that RPA directly binds RAD52 upon replication stress, suggesting a direct role in recombination repair. In addition we show that inhibition of Chk1 with UCN-01 decreases dissociation of RPA from the chromatin and inhibits association of RAD51 and RAD52 with DNA. Altogether, our data suggest a direct role...

  16. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Directory of Open Access Journals (Sweden)

    Vasieva Olga

    2011-01-01

    Full Text Available Abstract Background The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes, for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties. Results The main patterns discovered by the classification methods are as follows: (a the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO annotations; (c GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d interaction with the XRCC5 (Ku80 protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related. Conclusions The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.

  17. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    Science.gov (United States)

    Callender, Tracy L; Laureau, Raphaelle; Wan, Lihong; Chen, Xiangyu; Sandhu, Rima; Laljee, Saif; Zhou, Sai; Suhandynata, Ray T; Prugar, Evelyn; Gaines, William A; Kwon, YoungHo; Börner, G Valentin; Nicolas, Alain; Neiman, Aaron M; Hollingsworth, Nancy M

    2016-08-01

    During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.

  18. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    Directory of Open Access Journals (Sweden)

    Tracy L Callender

    2016-08-01

    Full Text Available During meiosis, programmed double strand breaks (DSBs are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i phosphorylation of Rad54 by Mek1 and (ii binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.

  19. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Science.gov (United States)

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C

    2013-10-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1

  20. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Directory of Open Access Journals (Sweden)

    Ricardo Mouro Pinto

    2013-10-01

    Full Text Available The Huntington's disease gene (HTT CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111 than on a 129 background (129.Hdh(Q111 . Linkage mapping in (B6x129.Hdh(Q111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3 complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3. The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest

  1. p53 is involved in clearance of ionizing radiation-induced RAD51 foci in a human colon cancer cell line

    International Nuclear Information System (INIS)

    Orre, Lukas M.; Stenerloew, Bo; Dhar, Sumeer; Larsson, Rolf; Lewensohn, Rolf; Lehtioe, Janne

    2006-01-01

    We have investigated p53-related differences in cellular response to DNA damaging agents, focusing on p53s effects on RAD51 protein level and sub-cellular localization post exposure to ionizing radiation. In a human colon cancer cell line, HCT116 and its isogenic p53-/- subcell line we show here p53-independent RAD51 foci formation but interestingly the resolution of RAD51 foci showed clear p53 dependence. In p53 wt cells, but not in p53-/- cells, RAD51 protein level decreased 48 h post irradiation and fluorescence immunostaining showed resolution of RAD51 foci and relocalization of RAD51 to nucleoli at time points corresponding to the decrease in RAD51 protein level. Both cell lines rejoined DNA double strand breaks efficiently with similar kinetics and p53 status did not influence sensitivity to DNA damaging agents. We suggest that p53 has a role in RAD51 clearance post DSB repair and that nucleoli might be sites of RAD51 protein degradation

  2. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro Santos, Erika Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Silva Junior, Wilson Araujo da [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Carraro, Dirce Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Rossi, Benedito Mauro; Valentin, Mev Dominguez [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Carneiro, Felipe [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Oliveira, Ligia Petrolini de [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Nakagawa, Wilson Toshihiko [Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Gomy, Israel [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Faria Ferraz, Victor Evangelista de [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil)

    2012-02-09

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  3. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    International Nuclear Information System (INIS)

    Monteiro Santos, Erika Maria; Silva Junior, Wilson Araujo da; Carraro, Dirce Maria; Rossi, Benedito Mauro; Valentin, Mev Dominguez; Carneiro, Felipe; Oliveira, Ligia Petrolini de; Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar; Nakagawa, Wilson Toshihiko; Gomy, Israel; Faria Ferraz, Victor Evangelista de

    2012-01-01

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models

  4. Yeast Interacting Proteins Database: YPL022W, YLR135W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available repair; cleaves branched structures in a complex with Slx1p; involved in Rad1p/Rad10p-dependent removal of ... Prey gene name SLX4 Prey description Endonuclease involved in processing DNA during recombination and repair; cleaves branched struc...tures in a complex with Slx1p; involved in Rad1p/Rad10p-dependent removal of 3'-non

  5. DNA repair-related genes in sugarcane expressed sequence tags (ESTs

    Directory of Open Access Journals (Sweden)

    R.M.A. Costa

    2001-12-01

    Full Text Available There is much interest in the identification and characterization of genes involved in DNA repair because of their importance in the maintenance of the genome integrity. The high level of conservation of DNA repair genes means that these genetic elements may be used in phylogenetic studies as a source of information on the genetic origin and evolution of species. The mechanisms by which damaged DNA is repaired are well understood in bacteria, yeast and mammals, but much remains to be learned as regards plants. We identified genes involved in DNA repair mechanisms in sugarcane using a similarity search of the Brazilian Sugarcane Expressed Sequence Tag (SUCEST database against known sequences deposited in other public databases (National Center of Biotechnology Information (NCBI database and the Munich Information Center for Protein Sequences (MIPS Arabidopsis thaliana database. This search revealed that most of the various proteins involved in DNA repair in sugarcane are similar to those found in other eukaryotes. However, we also identified certain intriguing features found only in plants, probably due to the independent evolution of this kingdom. The DNA repair mechanisms investigated include photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, non-homologous end joining, homologous recombination repair and DNA lesion tolerance. We report the main differences found in the DNA repair machinery in plant cells as compared to other organisms. These differences point to potentially different strategies plants employ to deal with DNA damage, that deserve further investigation.A identificação e caracterização de genes envolvidos com reparo de DNA são de grande interesse, dada a sua importância na manutenção da integridade genômica. Além disso, a alta conservação dos genes de reparo de DNA faz com que possam ser utilizados como fonte de informação no que diz respeito à origem e evolução das esp

  6. Sensitization of Tumor to {sup 212}Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Brechbiel, Martin W., E-mail: martinwb@mail.nih.gov [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-03-15

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using {sup 212}Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by {sup 212}Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with {sup 212}Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. {sup 212}Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling.

  7. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination

    International Nuclear Information System (INIS)

    Mudgett, J.S.; MacInnes, M.A.

    1990-01-01

    The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal

  8. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation

    Science.gov (United States)

    Zelensky, Alex N.; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E.; Essers, Jeroen; Wyman, Claire; Kanaar, Roland

    2013-01-01

    Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair. PMID:23666627

  9. Pathological assessment of mismatch repair gene variants in Lynch syndrome

    DEFF Research Database (Denmark)

    Rasmussen, Lene Juel; Heinen, Christopher D; Royer-Pokora, Brigitte

    2012-01-01

    Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose...

  10. The Mechanism of Nucleotide Excision Repair-Mediated UV-Induced Mutagenesis in Nonproliferating Cells

    Science.gov (United States)

    Kozmin, Stanislav G.; Jinks-Robertson, Sue

    2013-01-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. PMID:23307894

  11. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  12. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.

    Directory of Open Access Journals (Sweden)

    Ewelina Bolcun-Filas

    2009-02-01

    Full Text Available In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.

  13. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    International Nuclear Information System (INIS)

    Wilding, Craig S.; Relton, Caroline L.; Rees, Gwen S.; Tarone, Robert E.; Whitehouse, Caroline A.; Tawn, E. Janet

    2005-01-01

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC] n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC] n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations

  14. Sequence homology and expression profile of genes associated with DNA repair pathways in Mycobacterium leprae.

    Science.gov (United States)

    Sharma, Mukul; Vedithi, Sundeep Chaitanya; Das, Madhusmita; Roy, Anindya; Ebenezer, Mannam

    2017-01-01

    Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. T he genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%), 11 hypothetical proteins (18%), and 14 pseudogenes (23%). All these genes have homologs in M. tuberculosis and 49 (80.32%) in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. leprae which was obtained from the signal intensities of 60bp probes, tiling the entire genome with 10bp overlaps. It was noted that transcripts corresponding to all the 61 genes were identified in the transcriptome data with varying expression levels ranging from 0.18 to 2.47 fold (normalized with 16SrRNA). The mRNA expression levels of a representative set of seven genes ( four annotated and three hypothetical protein coding genes) were analyzed using quantitative Polymerase Chain Reaction (qPCR) assays with RNA extracted from skin biopsies of 10 newly diagnosed, untreated leprosy cases. It was noted that RNA expression levels were higher for genes involved in homologous recombination whereas the genes with a low level of expression are involved in the direct repair pathway. This study provided

  15. Identification of Region-Specific Myocardial Gene Expression Patterns in a Chronic Swine Model of Repaired Tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Sabine Charron

    Full Text Available Surgical repair of Tetralogy of Fallot (TOF is highly successful but may be complicated in adulthood by arrhythmias, sudden death, and right ventricular or biventricular dysfunction. To better understand the molecular and cellular mechanisms of these delayed cardiac events, a chronic animal model of postoperative TOF was studied using microarrays to perform cardiac transcriptomic studies. The experimental study included 12 piglets (7 rTOF and 5 controls that underwent surgery at age 2 months and were further studied after 23 (+/- 1 weeks of postoperative recovery. Two distinct regions (endocardium and epicardium from both ventricles were analyzed. Expression levels from each localization were compared in order to decipher mechanisms and signaling pathways leading to ventricular dysfunction and arrhythmias in surgically repaired TOF. Several genes were confirmed to participate in ventricular remodeling and cardiac failure and some new candidate genes were described. In particular, these data pointed out FRZB as a heart failure marker. Moreover, calcium handling and contractile function genes (SLN, ACTC1, PLCD4, PLCZ, potential arrhythmia-related genes (MYO5B, KCNA5, and cytoskeleton and cellular organization-related genes (XIRP2, COL8A1, KCNA6 were among the most deregulated genes in rTOF ventricles. To our knowledge, this is the first comprehensive report on global gene expression profiling in the heart of a long-term swine model of repaired TOF.

  16. Genetic polymorphisms in 85 DNA repair genes and bladder cancer risk.

    Science.gov (United States)

    Michiels, Stefan; Laplanche, Agnès; Boulet, Thomas; Dessen, Philippe; Guillonneau, Bertrand; Méjean, Arnaud; Desgrandchamps, François; Lathrop, Mark; Sarasin, Alain; Benhamou, Simone

    2009-05-01

    Several defense mechanisms have been developed and maintained during the evolution to protect human cells against damage produced from exogenous or endogenous sources. We examined the associations between bladder cancer and a panel of 652 polymorphisms from 85 genes involved in maintenance of genetic stability [base excision repair, nucleotide excision repair, double-strand break repair (DSBR) and mismatch repair, as well as DNA synthesis and cell cycle regulation pathways] in 201 incident bladder cancer cases and 326 hospital controls. Score statistics were used to test differences in haplotype frequencies between cases and controls in an unconditional logistic regression model. To account for multiple testing, we associated to each P-value the expected proportion of false discoveries (q-value). Haplotype analysis revealed significant associations (P genes (POLB and FANCA) with an associated q-value of 24%. A permutation test was also used to determine whether, in each pathway analyzed, there are more variants whose allelic frequencies are different between cases and controls as compared with what would be expected by chance. Differences were found for cell cycle regulation (P = 0.02) and to a lesser extent for DSBR (P = 0.05) pathways. These results hint to a few potential candidate genes; however, our study was limited by the small sample size and therefore low statistical power to detect associations. It is anticipated that genome-wide association studies will open new perspectives for interpretation of the results of extensive candidate gene studies such as ours.

  17. Rad9 Has a Functional Role in Human Prostate Carcinogenesis

    Science.gov (United States)

    Zhu, Aiping; Zhang, Charles Xia; Lieberman, Howard B.

    2013-01-01

    Prostate cancer is currently the most common type of neoplasm found in American men, other than skin cancer, and is the second leading cause of cancer death in males. Because cell cycle checkpoint proteins stabilize the genome, the relationship of one such protein, Rad9, to prostate cancer was investigated. We found that four prostate cancer cell lines (CWR22, DU145, LNCaP, and PC-3), relative to PrEC normal prostate cells, have aberrantly high levels of Rad9 protein. The 3′-end region of intron 2 of Rad9 in DU145 cells is hypermethylated at CpG islands, and treatment with 5′-aza-2′-deoxycytidine restores near-normal levels of methylation and reduces Rad9 protein abundance. Southern blot analyses indicate that PC-3 cells contain an amplified Rad9 copy number. Therefore, we provide evidence that Rad9 levels are high in prostate cancer cells due at least in part to aberrant methylation or gene amplification. The effectiveness of small interfering RNA to lower Rad9 protein levels in CWR22, DU145, and PC-3 cells correlated with reduction of tumorigenicity in nude mice, indicating that Rad9 actively contributes to the disease. Rad9 protein levels were high in 153 of 339 human prostate tumor biopsy samples examined and detectable in only 2 of 52 noncancerous prostate tissues. There was a strong correlation between Rad9 protein abundance and cancer stage. Rad9 protein level can thus provide a biomarker for advanced prostate cancer and is causally related to the disease, suggesting the potential for developing novel diagnostic, prognostic, and therapeutic tools based on detection or manipulation of Rad9 protein abundance. PMID:18316588

  18. Germ line mutations of mismatch repair genes in hereditary nonpolyposis colorectal cancer patients with small bowel cancer: International Society for Gastrointestinal Hereditary Tumours Collaborative Study

    DEFF Research Database (Denmark)

    Park, Jae-Gahb; Kim, Duck-Woo; Hong, Chang Won

    2006-01-01

    PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members of the Internatio......PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members...... of the International Society for Gastrointestinal Hereditary Tumours, requesting information regarding patients with HNPCC-associated SBC and germ line mismatch repair gene mutations. RESULTS: The study population consisted of 85 HNPCC patients with identified mismatch repair gene mutations and SBCs. SBC was the first...... HNPCC-associated malignancy in 14 of 41 (34.1%) patients for whom a personal history of HNPCC-associated cancers was available. The study population harbored 69 different germ line mismatch repair gene mutations, including 31 mutations in MLH1, 34 in MSH2, 3 in MSH6, and 1 in PMS2. We compared...

  19. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    Science.gov (United States)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  20. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK)

    NARCIS (Netherlands)

    Pijpe, Anouk; Andrieu, Nadine; Easton, Douglas F.; Kesminiene, Ausrele; Cardis, Elisabeth; Noguès, Catherine; Gauthier-Villars, Marion; Lasset, Christine; Fricker, Jean-Pierre; Peock, Susan; Frost, Debra; Evans, D. Gareth; Eeles, Rosalind A.; Paterson, Joan; Manders, Peggy; van Asperen, Christi J.; Ausems, Margreet G. E. M.; Meijers-Heijboer, Hanne; Thierry-Chef, Isabelle; Hauptmann, Michael; Goldgar, David; Rookus, Matti A.; van Leeuwen, Flora E.; Fourme, Emmanuelle; Lidereau, Rosette; Stevens, Denise; Stoppa-Lyonnet, Dominique; Chompret, Agnès; Berthet, Pascaline; Luporsi, Elisabeth; Bonadona, Valérie; Gauducheau, René; de Sienne, Catherine; Lortholary, Alain; Frénay, Marc; Faivre, Laurence; Sobol, Hagay; Huiart, Laetitia; Longy, Michel; Nguyen, Tan Dat; Gladieff, Laurence; Guimbaud, Rosine; Gesta, Paul; Vennin, Philippe; Adenis, Claude; Chevrier, Annie; Rossi, Annick; Perrin, Jean; Bignon, Yves-Jean; Limacher, Jean-Marc; Dugast, Catherine; Courlancy, Polyclinique; Demange, Liliane; Zattara-Cannoni, Hélène; Dreyfus, Hélène; Noruzinia, Mehrdad; Venat-Bouvet, Laurence; Cook, Margaret; Oliver, Clare; Gregory, Helen; Cole, Trevor; Burgess, Lucy; Rogers, Mark; Hughes, Lisa; Brewer, Carole; Davidson, Rosemarie; Bradshaw, Nicola; Izatt, Louise; Pichert, Gabriella; Langman, Caroline; Chu, Carol; Miller, Julie; Evans, Gareth; Lalloo, Fiona; Shenton, Andrew; Side, Lucy; Bancroft, Elizabeth; Page, Elizabeth; Castro, Elena; Houlston, Richard; Rahman, Nazneen; Shanley, Susan; Cook, Jackie; Baxter, Lauren; Hodgson, Shirley; Goff, Sheila; Eccles, Diana; Verhoef, Senno; Brohet, Richard; Hogervorst, Frans; van 't Veer, Laura; van Leeuwen, Flora; Rookus, Matti; Collée, Margriet; van den Ouweland, Ans; Kriege, Mieke; Schutte, Mieke; Hooning, Maartje; Seynaeve, Caroline; Tollenaar, Rob; van Asperen, Christi; Wijnen, Juul; Devilee, Peter; Ligtenberg, Marjolijn; Ausems, Margreet; van der Luijt, Rob; Aalfs, Cora; van Os, Theo; Gille, Hans; Gomez-Garcia, Encarna; Blok, Rien; Oosterwijk, Jan; van der Hout, Annemiek; Vasen, Hans; van Leeuwen, Inge

    2012-01-01

    To estimate the risk of breast cancer associated with diagnostic radiation in carriers of BRCA1/2 mutations. Retrospective cohort study (GENE-RAD-RISK). Three nationwide studies (GENEPSO, EMBRACE, HEBON) in France, United Kingdom, and the Netherlands, 1993 female carriers of BRCA1/2 mutations

  1. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  2. The role of Rad 51 protein in radioresistance of spheroid model of Du 145 prostate carcinoma cell line

    International Nuclear Information System (INIS)

    Taghizadeh, M.; Khoei, S.; Nikoofar, A. R.; Ghamsari, L.; Goliaei, B.

    2009-01-01

    Rad 51 is a protein with critical role in double strand break repair. Down-regulation of this protein has a significant effect in radiosensitivity of some cell lines like prostate carcinoma. Compared to monolayer cell culture model, the spheroids are more resistant to radiation. The aim of the current study was to determine the Rad 51 protein level in Du 145 spheroids, and monolayer cells before and after exposure to gamma irradiation. Materials and Methods: In the present study, western blot was used to determine the level of Rad 51 protein in Du 145 cell line grown as monolayer and spheroid. Results: Western blot analysis showed that in the spheroid cells, Rad 51 had an elevated level before and after radiation in comparison with monolayer cells. Higher doses of radiation induced elevated expression of Rad 51 protein in both culture models.The level of at protein after exposure to gamma rays had been time-dependent. Conclusion: Rad 51 might act as a mediator of radiation resistance in tumor cells. Repression of Rad 51 activity could be a prominent strategy to overcome radiation resistance of tumors.

  3. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Schild, David; Wiese, Claudia

    2009-10-15

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or comediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic restabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51.

  4. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases.

    Science.gov (United States)

    Yang, Diane; Scavuzzo, Marissa A; Chmielowiec, Jolanta; Sharp, Robert; Bajic, Aleksandar; Borowiak, Malgorzata

    2016-02-18

    Efficient gene editing is essential to fully utilize human pluripotent stem cells (hPSCs) in regenerative medicine. Custom endonuclease-based gene targeting involves two mechanisms of DNA repair: homology directed repair (HDR) and non-homologous end joining (NHEJ). HDR is the preferred mechanism for common applications such knock-in, knock-out or precise mutagenesis, but remains inefficient in hPSCs. Here, we demonstrate that synchronizing synchronizing hPSCs in G2/M with ABT phase increases on-target gene editing, defined as correct targeting cassette integration, 3 to 6 fold. We observed improved efficiency using ZFNs, TALENs, two CRISPR/Cas9, and CRISPR/Cas9 nickase to target five genes in three hPSC lines: three human embryonic stem cell lines, neural progenitors and diabetic iPSCs. neural progenitors and diabetic iPSCs. Reversible synchronization has no effect on pluripotency or differentiation. The increase in on-target gene editing is locus-independent and specific to the cell cycle phase as G2/M phase enriched cells show a 6-fold increase in targeting efficiency compared to cells in G1 phase. Concurrently inhibiting NHEJ with SCR7 does not increase HDR or improve gene targeting efficiency further, indicating that HR is the major DNA repair mechanism after G2/M phase arrest. The approach outlined here makes gene editing in hPSCs a more viable tool for disease modeling, regenerative medicine and cell-based therapies.

  5. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA.

    Science.gov (United States)

    Rand, Lucinda; Hinds, Jason; Springer, Burkhard; Sander, Peter; Buxton, Roger S; Davis, Elaine O

    2003-11-01

    In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.

  6. The effects of gamma irradiation on growth and expression of genes encoding DNA repair-related proteins in Lombardy poplar (Populus nigra var. italica).

    Science.gov (United States)

    Nishiguchi, Mitsuru; Nanjo, Tokihiko; Yoshida, Kazumasa

    2012-07-01

    In this study, to elucidate the mechanisms of adaptation and tolerance to ionizing radiation in woody plants, we investigated the various biological effects of γ-rays on the Lombardy poplar (Populus nigra L. var. italica Du Roi). We detected abnormal leaf shape and color, fusion, distorted venation, shortened internode, fasciation and increased axillary shoots in γ-irradiated poplar plants. Acute γ-irradiation with a dose of 100Gy greatly reduced the height, stem diameter and biomass of poplar plantlets. After receiving doses of 200 and 300Gy, all the plantlets stopped growing, and then most of them withered after 4-10 weeks of γ-irradiation. Comet assays showed that nuclear DNA in suspension-cultured poplar cells had been damaged by γ-rays. To determine whether DNA repair-related proteins are involved in the response to γ-rays in Lombardy poplars, we cloned the PnRAD51, PnLIG4, PnKU70, PnXRCC4, PnPCNA and PnOGG1 cDNAs and investigated their mRNA expression. The PnRAD51, PnLIG4, PnKU70, PnXRCC4 and PnPCNA mRNAs were increased by γ-rays, but the PnOGG1 mRNA was decreased. Moreover, the expression of PnLIG4, PnKU70 and PnRAD51 was also up-regulated by Zeocin known as a DNA cleavage agent. These observations suggest that the morphogenesis, growth and protective gene expression in Lombardy poplars are severely affected by the DNA damage and unknown cellular events caused by γ-irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Non-functional genes repaired at the RNA level.

    Science.gov (United States)

    Burger, Gertraud

    2016-01-01

    Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Rad51-Rad52 mediated maintenance of centromeric chromatin in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Sreyoshi Mitra

    2014-04-01

    Full Text Available Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI proximal to an early replicating centromere (CEN7 in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4 in vivo. Thus, the HR proteins Rad51 and Rad52

  9. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  10. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    Science.gov (United States)

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  11. Sequence homology and expression profile of genes associated with dna repair pathways in Mycobacterium leprae

    Directory of Open Access Journals (Sweden)

    Mukul Sharma

    2017-01-01

    Full Text Available Background: Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. Methods: T he genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%, 11 hypothetical proteins (18%, and 14 pseudogenes (23%. All these genes have homologs in M. tuberculosis and 49 (80.32% in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. leprae which was obtained from the signal intensities of 60bp probes, tiling the entire genome with 10bp overlaps. Results: It was noted that transcripts corresponding to all the 61 genes were identified in the transcriptome data with varying expression levels ranging from 0.18 to 2.47 fold (normalized with 16SrRNA. The mRNA expression levels of a representative set of seven genes ( four annotated and three hypothetical protein coding genes were analyzed using quantitative Polymerase Chain Reaction (qPCR assays with RNA extracted from skin biopsies of 10 newly diagnosed, untreated leprosy cases. It was noted that RNA expression levels were higher for genes involved in homologous recombination whereas the genes with a low level of expression are involved in the

  12. DNA repair synthesis dependent on the uvrA,B gene products

    International Nuclear Information System (INIS)

    Moses, R.E.; Moody, E.E.M.

    1975-01-01

    Ultraviolet irradiation of toluene-treated Escherichia coli causes an inhibition of replicative DNA synthesis. This is followed by the appearance of nonconservative DNA repair synthesis which does not require either the polymerase or 5' → 3' exonucleolytic activities of DNA polymerase I. The repair synthesis may be catalyzed by DNA polymerase III activity but does not require a functional DNA polymerase II. The ultraviolet-induced synthesis requires ATP and is dependent on a functional uvrA and uvrB gene product. However, other uvr gene products are not required for the synthesis. The recB function is also not required

  13. Expression of DNA repair genes in ovarian cancer samples: biological and clinical considerations.

    Science.gov (United States)

    Ganzinelli, M; Mariani, P; Cattaneo, D; Fossati, R; Fruscio, R; Corso, S; Ricci, F; Broggini, M; Damia, G

    2011-05-01

    The purpose of this study was to investigate retrospectively the mRNA expression of genes involved in different DNA repair pathways implicated in processing platinum-induced damage in 171 chemotherapy-naïve ovarian tumours and correlate the expression of the different genes with clinical parameters. The expression of genes involved in DNA repair pathways (PARP1, ERCC1, XPA, XPF, XPG, BRCA1, FANCA, FANCC, FANCD2, FANCF and PolEta), and in DNA damage transduction (Chk1 and Claspin) was measured by RT-PCR in 13 stage I borderline and 77 stage I and 88 III ovarian carcinomas. ERCC1, XPA, XPF and XPG genes were significantly less expressed in stage III than in stage I carcinoma; BRCA1, FANCA, FANCC, FANCD2 gene expressions were low in borderline tumours, higher in stage I carcinomas and lower in stage III samples. High levels of ERCC1, XPA, FANCC, XPG and PolEta correlated with an increase in Overall Survival (OS) and Progression Free Survival (PFS), whilst high BRCA1 levels were associated with PFS on univariate analysis. With multivariate analyses no genes retained an association when adjusted by stage, grade and residual tumour. A tendency towards a better PFS was observed in patients with the highest level of ERCC1 and BRCA1 after platinum-based therapy than those given both platinum and taxol. The expression of DNA repair genes differed in borderline stage I, stage I and stage III ovarian carcinomas. The role of DNA repair genes in predicting the response in ovarian cancer patients seems far from being established. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes

    DEFF Research Database (Denmark)

    Zhang, Changyi; Tian, Bin; Li, Suming

    2013-01-01

    Recently, a novel gene-deletion method was developed for the crenarchaeal model Sulfolobus islandicus, which is a suitable tool for addressing gene essentiality in depth. Using this technique, we have investigated functions of putative DNA repair genes by constructing deletion mutants and studying...

  15. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Directory of Open Access Journals (Sweden)

    Monteiro Santos Erika

    2012-02-01

    Full Text Available Abstract Background Lynch syndrome (LS is the most common form of inherited predisposition to colorectal cancer (CRC, accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1, mutS homolog 2 (MSH2, postmeiotic segregation increased 1 (PMS1, post-meiotic segregation increased 2 (PMS2 and mutS homolog 6 (MSH6. Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Methods Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Results Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846, Barnetson (0.850, MMRpro (0.821 and Wijnen (0.807 models did not present significant statistical difference. The Myriad model presented lower AUC (0.704 than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad and 0.87 (Wijnen and specificity ranged from 0 (Myriad to 0.38 (Barnetson. Conclusions The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  16. Differential hRad17 expression by histologic subtype of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Young Jennifer L

    2011-03-01

    Full Text Available Abstract Background In the search for unique ovarian cancer biomarkers, ovarian specific cDNA microarray analysis identified hRad17, a cell cycle checkpoint protein, as over-expressed in ovarian cancer. The aim of this study was to validate this expression. Methods Immunohistochemistry was performed on 72 serous, 19 endometrioid, 10 clear cell, and 6 mucinous ovarian cancers, 9 benign ovarian tumors, and 6 normal ovarian tissue sections using an anti-hRad17 antibody. Western blot analysis and quantitative PCR were performed using cell lysates and total RNA prepared from 17 ovarian cancer cell lines and 6 normal ovarian epithelial cell cultures (HOSE. Results Antibody staining confirmed upregulation of hRad17 in 49.5% of ovarian cancer cases. Immunohistochemistry demonstrated that only 42% of serous and 47% of endometrioid subtypes showed overexpression compared to 80% of clear cell and 100% of mucinous cancers. Western blot confirmed overexpression of hRad17 in cancer cell lines compared to HOSE. Quantitative PCR demonstrated an upregulation of hRad17 RNA by 1.5-7 fold. hRad17 RNA expression differed by subtype. Conclusions hRad17 is over-expressed in ovarian cancer. This over-expression varies by subtype suggesting a role in the pathogenesis of these types. Functional studies are needed to determine the potential role of this protein in ovarian cancer.

  17. Prediction of radiotherapy induced normal tissue adverse reactions: the role of double-strand break repair

    International Nuclear Information System (INIS)

    Rao, B.S. Satish; Mumbrekar, K.D.; Goutham, H.V.; Donald, J.F.; Vadhiraja, M.B.; Satyamoorthy, K.

    2016-01-01

    We aimed at evaluating the predictive potential of DSB repair kinetics (using γH2AX foci assay) in lymphocytes and analysed the genetic variants in the selected radioresponsive candidate genes like XRCC3, LIG4, NBN, CD44, RAD9A, LIG3, SH3GL1, BAXS, XRCC1, MAD2L2 on the individual susceptibility to radiotherapy (RT) induced acute skin reactions among the head and neck cancer (HNC), and breast cancer (BC) patients. All the 183 HNC and 132 BC patients were treated by a 3-dimensional conformal RT technique

  18. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway.

    Science.gov (United States)

    Mu, Hong; Geacintov, Nicholas E; Min, Jung-Hyun; Zhang, Yingkai; Broyde, Suse

    2017-06-19

    The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N 2 -dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the "pre-flipped" base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [ Mu , H. , ( 2015 ) Biochemistry , 54 ( 34 ), 5263 - 7 ]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER.

  19. Distinct roles of FANCO/RAD51C in DNA damage signaling and repair: implications for fanconi anemia and breast cancer susceptibility

    International Nuclear Information System (INIS)

    Nagaraju, G.; Somyajit, K.; Subramanya, S.

    2012-01-01

    Unrepaired or misrepaired chromosomal double-strand breaks (DSBs) can cause gross chromosomal rearrangements which eventually can lead to tumorigenesis through inactivation of tumor suppressor genes or activation of oncogenes. There are two major mechanisms of DSB repair: non-homologous end joining (NHEJ) and homologous recombination (HR). DSBs that are generated during S and G2 phase of the cell are preferentially repaired by sister chromatid recombination (SCR), an HR pathway that utilizes neighboring sister chromatid as a template. Since the copied information is accurate, SCR is potentially an error-free pathway. HR also plays a critical role in the repair of daughter strand gaps (DSGs) that arise as a result of replication fork stalling and facilitates replication fork recovery. Furthermore, in collaboration with nucleotide excision repair and translesion synthesis, HR is involved in the repair of DNA interstrand cross-links (ICLs). Thus, HR is important for the maintenance of genome integrity and its dysfunction can lead to various genetic disorders and cancer

  20. Differences in mutagenic and recombinational DNA repair in enterobacteria

    International Nuclear Information System (INIS)

    Sedgwick, S.G.; Goodwin, P.A.

    1985-01-01

    The incidence of recombinational DNA repair and inducible mutagenic DNA repair has been examined in Escherichia coli and 11 related species of enterobacteria. Recombinational repair was found to be a common feature of the DNA repair repertoire of at least 6 genera of enterobacteria. This conclusion is based on observations of (i) damage-induced synthesis of RecA-like proteins, (ii) nucleotide hybridization between E. coli recA sequences and some chromosomal DNAs, and (iii) recA-negative complementation by plasmids showing SOS-inducible expression of truncated E. coli recA genes. The mechanism of DNA damage-induced gene expression is therefore sufficiently conserved to allow non-E. coli regulatory elements to govern expression of these cloned truncated E. coli recA genes. In contrast, the process of mutagenic repair, which uses umuC+ umuD+ gene products in E. coli, appeared less widespread. Little ultraviolet light-induced mutagenesis to rifampicin resistance was detected outside the genus Escherichia, and even within the genus induced mutagenesis was detected in only 3 out of 6 species. Nucleotide hybridization showed that sequences like the E. coli umuCD+ gene are not found in these poorly mutable organisms. Evolutionary questions raised by the sporadic incidence of inducible mutagenic repair are discussed

  1. Laparoscopic inguinal hernia repair: review of 6 years experience.

    Science.gov (United States)

    Vanclooster, P; Smet, B; de Gheldere, C; Segers, K

    2001-01-01

    Since 6 years, the totally extraperitoneal laparoscopic hernia repair has become our procedure of choice to manage inguinal hernia in adult patients, especially for bilateral hernias and recurrences after classical anterior repair. Between March 1993 and March 1999, 976 patients underwent 1259 hernia repairs by an endoscopic total extraperitoneal approach. A large polypropylene prosthesis (15 x 15 cm) is placed and covers all potential defects. Follow-up on patients ranged from 6 to 79 months (mean, 39 months). Per- and postoperative morbidity and complications were acceptable (8.4%) and included conversion to open surgery (0.4%), bleedings (0.3%), urinary retention (4.2%), seromas (2.7%), neuralgias (0.2%), vague persistent groin discomfort (0.4%), orchitis (0.08%) and sigmoido-cutaneous fistula (0.08%). Recurrence rate so far is 0.1%. This retrospective study shows that the totally extraperitoneal repair for inguinal hernia should have a promising future because of low morbidity and low recurrence rate.

  2. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  3. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    International Nuclear Information System (INIS)

    Dupuy, Aurélie; Sarasin, Alain

    2015-01-01

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients

  4. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability

    DEFF Research Database (Denmark)

    Galanos, Panagiotis; Pappas, George; Polyzos, Alexander

    2018-01-01

    . Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break...

  5. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2016-01-01

    Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings

  6. Non-homologous end-joining genes are not inactivated in human radiation-induced sarcomas with genomic instability

    International Nuclear Information System (INIS)

    Lefevre, S.H.; Coquelle, A.; Gonin-Laurent, N.

    2005-01-01

    DNA double-strand break (DSB) repair pathways are implicated in the maintenance of genomic stability. However the alterations of these pathways, as may occur in human tumor cells with strong genomic instability, remain poorly characterized. We analyzed the loss of heterozygosity (LOH) and the presence of mutations for a series of genes implicated in DSB repair by non-homologous end-joining in five radiation-induced sarcomas devoid of both active Tp53 and Rb1. LOH was recurrently observed for 8 of the 9 studied genes (KU70, KU80, XRCC4, LIG4, Artemis, MRE11, RAD50, NBS1) but not for DNA-PKcs. No mutation was found in the remaining allele of the genes with LOH and the mRNA expression did not correlate with the allelic status. Our findings suggest that non-homologous end-joining repair pathway alteration is unlikely to be involved in the high genomic instability observed in these tumors. (author)

  7. Structured reporting platform improves CAD-RADS assessment.

    Science.gov (United States)

    Szilveszter, Bálint; Kolossváry, Márton; Karády, Júlia; Jermendy, Ádám L; Károlyi, Mihály; Panajotu, Alexisz; Bagyura, Zsolt; Vecsey-Nagy, Milán; Cury, Ricardo C; Leipsic, Jonathon A; Merkely, Béla; Maurovich-Horvat, Pál

    2017-11-01

    Structured reporting in cardiac imaging is strongly encouraged to improve quality through consistency. The Coronary Artery Disease - Reporting and Data System (CAD-RADS) was recently introduced to facilitate interdisciplinary communication of coronary CT angiography (CTA) results. We aimed to assess the agreement between manual and automated CAD-RADS classification using a structured reporting platform. Five readers prospectively interpreted 500 coronary CT angiographies using a structured reporting platform that automatically calculates the CAD-RADS score based on stenosis and plaque parameters manually entered by the reader. In addition, all readers manually assessed CAD-RADS blinded to the automatically derived results, which was used as the reference standard. We evaluated factors influencing reader performance including CAD-RADS training, clinical load, time of the day and level of expertise. Total agreement between manual and automated classification was 80.2%. Agreement in stenosis categories was 86.7%, whereas the agreement in modifiers was 95.8% for "N", 96.8% for "S", 95.6% for "V" and 99.4% for "G". Agreement for V improved after CAD-RADS training (p = 0.047). Time of the day and clinical load did not influence reader performance (p > 0.05 both). Less experienced readers had a higher total agreement as compared to more experienced readers (87.0% vs 78.0%, respectively; p = 0.011). Even though automated CAD-RADS classification uses data filled in by the readers, it outperforms manual classification by preventing human errors. Structured reporting platforms with automated calculation of the CAD-RADS score might improve data quality and support standardization of clinical decision making. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair

    Energy Technology Data Exchange (ETDEWEB)

    Siede, W.; Eckardt, F.

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction (mutation kinetics) at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  9. DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway

    International Nuclear Information System (INIS)

    Dresser, M.E.; Ewing, D.J.; Conrad, M.N.; Dominguez, A.M.; Barstead, R.; Jiang, H.; Kodadek, T.

    1997-01-01

    Meiotic recombination in the yeast Saccharomyces cerevisiae requires two similar recA-like proteins, Dmc1p and Rad51p. A screen for dominant meiotic mutants provided DMC1-G126D, a dominant allele mutated in the conserved ATP-binding site (specifically, the A-loop motif) that confers a null phenotype. A recessive null allele, dmc1-K69E, was isolated as an intragenic suppressor of DMC1-G126D. Dmc1-K69Ep, unlike Dmc1p, does not interact homotypically in a two-hybrid assay, although it does interact with other fusion proteins identified by two-hybrid screen with Dmc1p. Dmc1p, unlike Rad51p, does not interact in the two-hybrid assay with Rad52p or Rad54p. However, Dmc1p does interact with Tid1p, a Rad54p homologue, with Tid4p, a Rad16p homologue, and with other fusion proteins that do not interact with Rad51p, suggesting that Dmc1p and Rad51p function in separate, though possibly overlapping, recombinational repair complexes. Epistasis analysis suggests that DMC1 and RAD51 function in separate pathways responsible for meiotic recombination. Taken together, our results are consistent with a requirement for DMC1 for meiosis-specific entry of DNA double-strand break ends into chromatin. Interestingly, the pattern on CHEF gels of chromosome fragments that result from meiotic DNA double-strand break formation is different in DMC1 mutant strains from that seen in rad50S strains. (author)

  10. Polymorphism and mutation analysis of genomic DNA on cancer

    International Nuclear Information System (INIS)

    Ohta, Tsutomu

    2003-01-01

    DNA repair is a universal process in living cells that maintains the structural integrity of chromosomal DNA molecules in face of damage. A deficiency in DNA damage repair is associated with an increased cancer risk by increasing a mutation frequency of cancer-related genes. Variation in DNA repair capacity may be genetically determined. Therefore, we searched single-nucleotide polymorphisms (SNPs) in major DNA repair genes. This led to the finding of 600 SNPs and mutations including many novel SNPs in Japanese population. Case-control studies to explore the contribution of the SNPs in DNA repair genes to the risk of lung cancer revealed that five SNPs are associated with lung carcinogenesis. One of these SNPs is found in RAD54L gene, which is involved in double-strand DNA repair. We analyzed and reported activities of Rad54L protein with SNP and mutations. (authors)

  11. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    Directory of Open Access Journals (Sweden)

    Leclerc Xavier

    2009-04-01

    Full Text Available Abstract Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1. Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.

  12. Dosimetric properties of the pocket alarm dosimeter type Alnor RAD 21L, RAD 21H, RAD 22

    International Nuclear Information System (INIS)

    Hauser, M.; Burgkhardt, B.; Piesch, E.

    1981-02-01

    In personnel monitoring pocket dosimeters with build-in alarm devices are increasingly in use. The report presents results of a test performed at Karlsruhe for the pocket dose and alarm meter type Alnor RAD 21L, RAD 21H, RAD 22. The properties investigated are above all linearity and reproducibility of the dose reading as well as of the acoustic alarm indication, dependence of the dose reading on the photon energy, the direction of the radiation incidence, the dose rate, the temperature, operational characteristic of the batteries. (orig.) [de

  13. Congenital Mirror Movements Due to RAD51: Cosegregation with a Nonsense Mutation in a Norwegian Pedigree and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Oriane Trouillard

    2016-11-01

    Full Text Available Background: Autosomal dominant congenital mirror movements (CMM is a neurodevelopmental disorder characterized by early onset involuntary movements of one side of the body that mirror intentional movements on the contralateral side; these persist throughout life in the absence of other neurological symptoms. The main culprit genes responsible for this condition are RAD51 and DCC. This condition has only been reported in a few families, and the molecular mechanisms linking RAD51 mutations and mirror movements (MM are poorly understood. Methods: We collected demographic, clinical, and genetic data of a new family with CMM due to a truncating mutation of RAD51. We reviewed the literature to identify all reported patients with CMM due to RAD51 mutations. Results: We identified a heterozygous nonsense mutation c.760C>T (p.Arg254∗ in eight subjects: four with obvious and disabling MM, and four with a mild phenotype. Including our new family, we identified 32 patients from 6 families with CMM linked to RAD51 variants. Discussion: Our findings further support the involvement of RAD51 in CMM pathogenesis. Possible molecular mechanisms involved in CMM pathogenesis are discussed.

  14. PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms

    International Nuclear Information System (INIS)

    Binkova, Blanka; Chvatalova, Irena; Lnenickova, Zdena; Milcova, Alena; Tulupova, Elena; Farmer, Peter B.; Sram, Radim J.

    2007-01-01

    levels (r = 0.368, P < 0.001) and negative association between DNA adduct and vitamin C levels (r = -0.290, P = 0.004) was found. The results of multivariate regression analysis showed smoking, vitamin C, polymorphisms of XPD repair gene in exon 23 and GSTM1 gene as significant predictors for total DNA adduct levels. Exposure to ambient air pollution, smoking, and polymorphisms of XPD repair gene in exon 6 were significant predictors for B[a]P-'like' DNA adduct. To sum up, this study suggests that polymorphisms of DNA repair genes involved in nucleotide excision repair may modify aromatic DNA adduct levels and may be useful biomarkers to identify individuals susceptible to DNA damage resulting from c-PAHs exposure

  15. DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/β-catenin signaling pathway genes

    Czech Academy of Sciences Publication Activity Database

    Farkas, S. A.; Vymetálková, Veronika; Vodičková, Ludmila; Vodička, Pavel; Torbjörn, K. N.

    2014-01-01

    Roč. 6, č. 2 (2014), s. 179-191 ISSN 1750-1911 R&D Projects: GA ČR GPP304/11/P715; GA ČR(CZ) GAP304/12/1585; GA MZd NT14329 Institutional support: RVO:68378041 Keywords : CpG * DNA repair genes * sporadic colorectal cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.649, year: 2014

  16. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Mullins, D'Anna N; Crawford, Erin L; Khuder, Sadik A; Hernandez, Dawn-Alita; Yoon, Youngsook; Willey, James C

    2005-01-01

    Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC. The putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals. CEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals. We conclude that CEBPG is the transcription factor primarily responsible for regulating

  17. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents.

    Science.gov (United States)

    Christmann, M; Kaina, B

    2000-11-17

    Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gene activity. Cells expressing the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), thus having the ability to repair O(6)-methylguanine, showed no translocation of MutSalpha, whereas inhibition of MGMT by O(6)-benzylguanine provoked the translocation. The results demonstrate that O(6)-methylguanine lesions are involved in triggering nuclear accumulation of MSH2 and MSH6. The finding that treatment of cells with O(6)-methylguanine-generating mutagens results in an increase of MutSalpha and GT binding activity in the nucleus indicates a novel type of genotoxic stress response.

  18. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  19. Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes.

    Science.gov (United States)

    Gayarre, Javier; Martín-Gimeno, Paloma; Osorio, Ana; Paumard, Beatriz; Barroso, Alicia; Fernández, Victoria; de la Hoya, Miguel; Rojo, Alejandro; Caldés, Trinidad; Palacios, José; Urioste, Miguel; Benítez, Javier; García, María J

    2017-09-26

    Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation. To define a functional-analysis prioritisation criteria, we used outputs for the known functionally confirmed deleterious and benign RAD51C missense changes from nine pathogenicity prediction algorithms. The p.Arg312Trp variant failed to correct mitomycin and olaparib hypersensitivity and to complement abnormal RAD51C foci formation according to functional assays, which altogether with LOH and segregation data demonstrated deleteriousness. Prioritisation criteria were based on the number of predictors providing a deleterious output, with a minimum of 5 to qualify for testing and a PredictProtein score greater than 33 to assign high-priority indication. Our study points to a non-negligible number of RAD51C missense variants likely to impair protein function, provides a guideline to prioritise and encourage their selection for functional analysis and anticipates that reference laboratories should have available resources to conduct such assays.

  20. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  1. Effect of specific enzyme inhibitors on replication, total genome DNA repair and on gene-specific DNA repair after UV irradiation in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.C.; Stevsner, Tinna; Bohr, Vilhelm A. (National Cancer Institute, NIH, Bethesda, MD (USA). Division of Cancer Treatment, Laboratory of Molecular Pharmacology); Mattern, M.R. (Smith Kline Beecham Pharmaceuticals, King of Prussia, PA (USA). Department of Biomolecular Discovery)

    1991-09-01

    The effects were studied of some specific enzyme inhibitors on DNA repair and replication after UV damage in Chinese hamster ovary cells. The DNA repair was studied at the level of the average, overall genome and also in the active dihydrofolate reductase gene. Replication was measured in the overall genome. The inhibitors were tested of DNA poly-merase {alpha} and {delta} (aphidicolin), of poly(ADPr) polymerase (3-aminobenzamide), of ribonucleotide reductase (hydroxyurea), of topo-isomerase I (camptothecin), and of topoisomerase II (merbarone, VP-16). In addition, the effects were tested of the potential topoisomerase I activator, {beta}-lapachone. All of these compounds inhibited genome replication and all topoisomerase inhibitors affected the overall genome repair; {beta}-lapachone stimulated it. None of these compounds had any effect on the gene-specific repair. (author). 36 refs.; 3 figs.; 2 tabs.

  2. Detection and characterization of polymorphisms in XRCC DNA repair genes in human population

    International Nuclear Information System (INIS)

    Staynova, A.; Hadjidekova, V.; Savov, A.

    2004-01-01

    Human population is continuously exposed to low levels of ionizing radiation. The main contribution gives the exposure due to medical applications. Nevertheless, most of the damage induced is repaired shortly after exposure by cellular repair systems. The review is focused on the development and application of methods to estimate the character of polymorphisms in repair genes (XRCC1, APE1), involved in single strand breaks repair which is corresponding mainly to the repair of X-ray induced DNA damage. Since, DSB are major factor for chromosomal aberrations formation, the assays described in this review might be useful for the assessment of the radiation risk for human population. (authors)

  3. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas.

    Science.gov (United States)

    Felsberg, Jörg; Thon, Niklas; Eigenbrod, Sabina; Hentschel, Bettina; Sabel, Michael C; Westphal, Manfred; Schackert, Gabriele; Kreth, Friedrich Wilhelm; Pietsch, Torsten; Löffler, Markus; Weller, Michael; Reifenberger, Guido; Tonn, Jörg C

    2011-08-01

    Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care. Copyright © 2011 UICC.

  4. Contribution of a caffeine-sensitive recombinational repair pathway to survival and mutagenesis in UV-irradiated Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Gentner, N.E.; Werner, M.M.; Hannan, M.A.; Nasim, A.

    1978-01-01

    Cells of wild-type Schizosacharomyces pombe exposed to UV radiation in either G1 or G2 phase show enhanced inactivation of colony-forming ability if plated in the presence of caffeine. This UV-sensitization by caffeine is abolished in both G1 an G2 phase cells by the radlmutation; since both caffeine and the radl mutation markedly reduce recombinational events, this suggests that a recombinational repair process is active in cells irradiated either in G1 or G2 phase. Caffeine-sensitive repair begins immediately and is completed before resumption of DNA synthesis. Caffeine-sensitive repair of UV-damage in G1 cells displays a considerable lag and then occurs concomitantly with DNA synthesis. UV-induced mutagenesis was examined in wild-type and rad mutants using a forward mutation system. Rad mutants which show higher UV-induced mutation rates than wild-type retain the recombinational mechanism. In contrast, rad strains which are relatively UV-immutable compared to wild-type do not possess the caffeine-sensitive UV-repair process. The recombinational process therefore may be the major pathway responsible for UV-induced mutation. (orig./AJ) [de

  5. RFWD3-Mediated Ubiquitination Promotes Timely Removal of Both RPA and RAD51 from DNA Damage Sites to Facilitate Homologous Recombination.

    Science.gov (United States)

    Inano, Shojiro; Sato, Koichi; Katsuki, Yoko; Kobayashi, Wataru; Tanaka, Hiroki; Nakajima, Kazuhiro; Nakada, Shinichiro; Miyoshi, Hiroyuki; Knies, Kerstin; Takaori-Kondo, Akifumi; Schindler, Detlev; Ishiai, Masamichi; Kurumizaka, Hitoshi; Takata, Minoru

    2017-06-01

    RFWD3 is a recently identified Fanconi anemia protein FANCW whose E3 ligase activity toward RPA is essential in homologous recombination (HR) repair. However, how RPA ubiquitination promotes HR remained unknown. Here, we identified RAD51, the central HR protein, as another target of RFWD3. We show that RFWD3 polyubiquitinates both RPA and RAD51 in vitro and in vivo. Phosphorylation by ATR and ATM kinases is required for this activity in vivo. RFWD3 inhibits persistent mitomycin C (MMC)-induced RAD51 and RPA foci by promoting VCP/p97-mediated protein dynamics and subsequent degradation. Furthermore, MMC-induced chromatin loading of MCM8 and RAD54 is defective in cells with inactivated RFWD3 or expressing a ubiquitination-deficient mutant RAD51. Collectively, our data reveal a mechanism that facilitates timely removal of RPA and RAD51 from DNA damage sites, which is crucial for progression to the late-phase HR and suppression of the FA phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Regulation of DNA Damage Response by Estrogen Receptor β-Mediated Inhibition of Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2015-04-01

    Full Text Available Accumulating evidence suggests that ubiquitin E3 ligases are involved in cancer development as their mutations correlate with genomic instability and genetic susceptibility to cancer. Despite significant findings of cancer-driving mutations in the BRCA1 gene, estrogen receptor (ER-positive breast cancers progress upon treatment with DNA damaging-cytotoxic therapies. In order to understand the underlying mechanism by which ER-positive breast cancer cells develop resistance to DNA damaging agents, we employed an estrogen receptor agonist, Erb-041, to increase the activity of ERβ and negatively regulate the expression and function of the estrogen receptor α (ERα in MCF-7 breast cancer cells. Upon Erb-041-mediated ERα down-regulation, the transcription of an ERα downstream effector, BCA2 (Breast Cancer Associated gene 2, correspondingly decreased. The ubiquitination of chromatin-bound BCA2 was induced by ultraviolet C (UVC irradiation but suppressed by Erb-041 pretreatment, resulting in a blunted DNA damage response. Upon BCA2 silencing, DNA double-stranded breaks increased with Rad51 up-regulation and ataxia telangiectasia mutated (ATM activation. Mechanistically, UV-induced BCA2 ubiquitination and chromatin binding were found to promote DNA damage response and repair via the interaction of BCA2 with ATM, γH2AX and Rad51. Taken together, this study suggests that Erb-041 potentiates BCA2 dissociation from chromatin and co-localization with Rad51, resulting in inhibition of homologous recombination repair.

  7. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells

    International Nuclear Information System (INIS)

    Rao, B.S.S.; Tano, Kaori; Utsumi, Hiroshi; Takeda, Shunichi

    2007-01-01

    To understand the role of proteins involved in double strand breaks (DSB) repair modulating sublethal damage (SLD) recovery, chicken B lymphoma (DT 40) cell lines either proficient or deficient in RAD52, XRCC2, XRCC3, RAD51C and RAD51D were subjected to fractionated irradiation and their survival curves charted. Survival curves of both WT DT40 and RAD52 -/- cells had a big shoulder while all the other cells exhibited small shoulders. However, at the higher doses of radiation, RAD51C -/- cells displayed hypersensitivity comparable to the data obtained for the homologous recombination deficient RAD54 -/- cells. Repair of SLD was measured as an increase in survival after a split dose irradiation with an interval of incubation between the radiation doses. All the cell lines (parental DT40 and genetic knockout cell lines viz., RAD52 -/- , XRCC2 -/- XRCC3 -/- RAD51C -/- and RAD51D -/- ) used in this study demonstrated a typical split-dose recovery capacity with a specific peak, which varied depending on the cell type. The maximum survival of WT DT40 and RAD52 -/- was reached at about 1-2 hours after the first dose of radiation and then decreased to a minimum thereafter (5 h). The increase in the survival peaked once again by about 8 hours. The survival trends observed in XRCC2 -/- , XRCC3 -/- , RAD51C -/- and RAD51D -/- knockout cells were also similar, except for the difference in the initial delay of a peak survival for RAD51D -/- and lower survival ratios. The second phase of increase in the survival in these cell lines was much slower in XRCC2 -/- , XRCC3 -/- , RAD51C -/- nd RAD51D -/- and further delayed when compared with that of RAD52 -/- and parental DT40 cells suggesting a dependence on their cell cycle kinetics. This study demonstrates that the participation of RAD52, XRCC2, XRCC3, RAD51C and RAD51D in the DSB repair via homologous recombination is of less importance in comparison to RAD54, as RAD54 deficient cells demonstrated complete absence of SLD recovery

  8. The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility.

    Science.gov (United States)

    Rey, Thomas; Bonhomme, Maxime; Chatterjee, Abhishek; Gavrin, Aleksandr; Toulotte, Justine; Yang, Weibing; André, Olivier; Jacquet, Christophe; Schornack, Sebastian

    2017-12-16

    The roots of most land plants are colonized by symbiotic arbuscular mycorrhiza (AM) fungi. To facilitate this symbiosis, plant genomes encode a set of genes required for microbial perception and accommodation. However, the extent to which infection by filamentous root pathogens also relies on some of these genes remains an open question. Here, we used genome-wide association mapping to identify genes contributing to colonization of Medicago truncatula roots by the pathogenic oomycete Phytophthora palmivora. Single-nucleotide polymorphism (SNP) markers most significantly associated with plant colonization response were identified upstream of RAD1, which encodes a GRAS transcription regulator first negatively implicated in root nodule symbiosis and recently identified as a positive regulator of AM symbiosis. RAD1 transcript levels are up-regulated both in response to AM fungus and, to a lower extent, in infected tissues by P. palmivora where its expression is restricted to root cortex cells proximal to pathogen hyphae. Reverse genetics showed that reduction of RAD1 transcript levels as well as a rad1 mutant are impaired in their full colonization by AM fungi as well as by P. palmivora. Thus, the importance of RAD1 extends beyond symbiotic interactions, suggesting a general involvement in M. truncatula microbe-induced root development and interactions with unrelated beneficial and detrimental filamentous microbes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. PMS2 gene mutation results in DNA mismatch repair system failure in a case of adult granulosa cell tumor.

    Science.gov (United States)

    Wang, Wen-Chung; Lee, Ya-Ting; Lai, Yen-Chein

    2017-03-27

    Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable indolent growth with malignant potential and late recurrence. Approximately 95% are of adult type. Recent molecular studies have characterized the FOXL2 402C > G mutation in adult granulosa cell tumor. Our previous case report showed that unique FOXL2 402C > G mutation and defective DNA mismatch repair system are associated with the development of adult granulosa cell tumor. In this study, the DNA sequences of four genes, MSH2, MLH1, MSH6, and PMS2, in the DNA mismatch repair system were determined via direct sequencing to elucidate the exact mechanism for the development of this granulosa cell tumor. The results showed that two missense germline mutations, T485K and N775L, inactivate the PMS2 gene. The results of this case study indicated that although FOXL2 402C > G mutation determines the development of granulosa cell tumor, PMS2 mutation may be the initial driver of carcinogenesis. Immunohistochemistry-based tumor testing for mismatch repair gene expression may be necessary for granulosa cell tumors to determine their malignant potential or if they are part of Lynch syndrome.

  10. Hsp90: A New Player in DNA Repair?

    Directory of Open Access Journals (Sweden)

    Rosa Pennisi

    2015-10-01

    Full Text Available Heat shock protein 90 (Hsp90 is an evolutionary conserved molecular chaperone that, together with Hsp70 and co-chaperones makes up the Hsp90 chaperone machinery, stabilizing and activating more than 200 proteins, involved in protein homeostasis (i.e., proteostasis, transcriptional regulation, chromatin remodeling, and DNA repair. Cells respond to DNA damage by activating complex DNA damage response (DDR pathways that include: (i cell cycle arrest; (ii transcriptional and post-translational activation of a subset of genes, including those associated with DNA repair; and (iii triggering of programmed cell death. The efficacy of the DDR pathways is influenced by the nuclear levels of DNA repair proteins, which are regulated by balancing between protein synthesis and degradation as well as by nuclear import and export. The inability to respond properly to either DNA damage or to DNA repair leads to genetic instability, which in turn may enhance the rate of cancer development. Multiple components of the DNA double strand breaks repair machinery, including BRCA1, BRCA2, CHK1, DNA-PKcs, FANCA, and the MRE11/RAD50/NBN complex, have been described to be client proteins of Hsp90, which acts as a regulator of the diverse DDR pathways. Inhibition of Hsp90 actions leads to the altered localization and stabilization of DDR proteins after DNA damage and may represent a cell-specific and tumor-selective radiosensibilizer. Here, the role of Hsp90-dependent molecular mechanisms involved in cancer onset and in the maintenance of the genome integrity is discussed and highlighted.

  11. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes.

    Science.gov (United States)

    Chang, Wing Y; Andrews, Joseph; Carter, David E; Dagnino, Lina

    2006-08-01

    E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.

  12. BLM has early and late functions in homologous recombination repair in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Chu, W K; Hanada, K; Kanaar, R

    2010-01-01

    function of BLM remains unclear. Multiple roles have been proposed for BLM in the homologous recombination (HR) repair pathway, including 'early' functions, such as the stimulation of resection of DNA double-strand break ends or displacement of the invading strand of DNA displacement loops, and 'late......' roles, such as dissolution of double Holliday junctions. However, most of the evidence for these putative roles comes from in vitro biochemical data. In this study, we report the characterization of mouse embryonic stem cells with disruption of Blm and/or Rad54 genes. We show that Blm has roles both...

  13. Plasmid pKM101 mediated sensitization of Escherichia coli cells to ionizing radiation effect of the plasmid on viability and induced mutability

    International Nuclear Information System (INIS)

    Aleshkin, G.I.; Samojlenko, I.I.; Skavronskaya, A.G.

    1981-01-01

    Diploid wild yeast Saccharomyces cerevisae has a powerful system of dark repair of DNA single-strand breaks (SSB) induced by gamma-irradiation of cells. Mutations in RAD 54 gene of the yeast diploid cells do not practically change their ability to eliminate the damages to DNA. To repair the gamma-irradiation induced DNA double-strand breaks (DSB) in the wild yeast cells, an additional aeration is required. The haploid wild cells do not repair the DNA DSB under conditions in question. The DNA DSB repair in the yeast cells is suppressed by caffein during the 40 h incubation if the irradiated cells in phosphate buffer, which indicates that the recombination system participates in the process. Diploid yeast of a radiosensitive mutant RAD 54 strain does not repair the DNA DSB induced by gamma-irradiation of cells, which allows one to suppose that the mutation in RAD 54 gene involves the recombination system

  14. DNA repair and cytokines: TGF-beta, IL-6, and thrombopoietin as different biomarkers of radioresistance

    Directory of Open Access Journals (Sweden)

    Francesca Bianca Aiello

    2016-07-01

    Full Text Available Double strand breaks (DSBs induced by radiotherapy are highly cytotoxic lesions, leading to chromosomal aberrations and cell death. ATM-dependent DNA-damage response, non-homologous end joining, and homologous recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. It is known that the expression of DSB repair genes is increased in tumors which is one of the main reasons for radioresistance. The inhibition of DSB repair pathways may be useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, known to be the most radioresistant tumor components. Commonly overexpressed in neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of various cytokines displaying these effects, including transforming growth factor-beta and interlukin-6. Recently the capabilities of these cytokines to support DNA repair pathways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, essential for megakaryopoiesis and very important for hematopoietic stem cell homeostasis, has also been found to promote DNA repair in a highly selective manner. These findings reveal a novel mechanism underlying cytokine-related radioresistance, which may be clinically relevant. Therapies targeting specific cytokines may be used to improve radiosensitivity. Specific inhibitors may be chosen in consideration of different tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-induced loss of hematopoietic stem cells.

  15. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    Science.gov (United States)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  16. CD133 positive U87 glioma stem cell radiosensitivity and DNA double-strand break repair

    International Nuclear Information System (INIS)

    Li Ping; Zong Tianzhou; Ji Xiaoqin; Lu Xueguan

    2013-01-01

    Objective: To explore the radiosensitivity and DNA double-strand break repair of CD133 + U87 glioma stem cell. Methods: CD133 + and CD133 - cells were isolated from glioma U87 cell lines by flow cytometry sorter system. After irradiated vertically by 4 Gy X-rays, the radiosensitivity of cells was determined by clonogenic assay. The radiation-induced DNA double-strand break repair of CD133 + and CD133 - cells was determined by the neutral comet assay,and the expression of phosphorylated histone H2AX (γ-H2AX) and Rad51 foci were measured by immunofluorescence. Results: The clone forming rate of CD133 + cells was higher than CD133 - cells (t=3.66, P<0.01) with no radiation. The clone forming rate of CD133 + cells irradiated by 4 Gy X-rays has no significant changes compared to that of the non-irradiation cells (t=0.71, P>0.05), but for CD133 - cells, it decreased compared to non-irradiation cells (t=2.91, P<0.05). The tailmoment between CD133 + cells and CD133 - cells had no difference at 0.5 h after irradiation (t=1.44, P>0.05); the tailmoment of CD133 + cells was lower than CD133 - cells at 6 and 24 h after irradiation,respectively (t=5.31 and 8.09, P<0.01). There was no significant difference in the expression of γ-H2AX foci between CD133 + and CD133 - cells at 0.5 and 6 h after irradiation (t=0.12 and 0.99, P>0.05), γ-H2AX foci of CD133 + cells was significantly decreased compared to CD133 - cells at 24 h after irradiation (t=4.99, P<0.01). For Rad 51 foci, there was no difference between CD133 + and CD133 - cells at 0.5 h after irradiation (t=1.12, P>0.05). The expression of Rad 51 foci of CD133 - cells was decreased compared to that of CD133 + cells at 6 and 24 h after irradiation,respectively (t=22.88 and 12.43, P<0.01). And the expression of Rad51 foci of CD133 + cells had no significant changes at 6-24 h after irradiation. Conclusions: Glioma stem cells is more radioresistive than glioma non-stem cells. The probable mechanism is that the DNA double

  17. Stripped-down DNA repair in a highly reduced parasite

    Directory of Open Access Journals (Sweden)

    Fast Naomi M

    2007-03-01

    Full Text Available Abstract Background Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair. DNA repair is essential to any living cell. A loss of these mechanisms invariably results in accumulation of mutations and/or cell death. Six major pathways of DNA repair in eukaryotes include: non-homologous end joining (NHEJ, homologous recombination repair (HRR, mismatch repair (MMR, nucleotide excision repair (NER, base excision repair (BER and methyltransferase repair. DNA polymerases are also critical players in DNA repair processes. Given the close relationship between microsporidia and fungi, the repair mechanisms present in E. cuniculi were compared to those of the yeast Saccharomyces cerevisiae to ascertain how the process of genome reduction has affected the DNA repair pathways. Results E. cuniculi lacks 16 (plus another 6 potential absences of the 56 DNA repair genes sought via BLASTP and PSI-BLAST searches. Six of 14 DNA polymerases or polymerase subunits are also absent in E. cuniculi. All of these genes are relatively well conserved within eukaryotes. The absence of genes is not distributed equally among the different repair pathways; some pathways lack only one protein, while there is a striking absence of many proteins that are components of both double strand break repair pathways. All specialized repair polymerases are also absent. Conclusion Given the large number of DNA repair genes that are absent from the double strand break repair pathways, E. cuniculi is a prime candidate for the study of double strand break repair with minimal machinery. Strikingly, all of the

  18. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Jae-Sung [Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Bo-Mi; Kim, Ryeo-Ok [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Jung Soo [Pathology Team, National Fisheries Research and Development Institute, Busan 619-902 (Korea, Republic of); Kim, Il-Chan [Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon 406-840 (Korea, Republic of); Lee, Young-Mi, E-mail: ymlee70@smu.ac.kr [Department of Green Life Science, College of Convergence, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac.kr [Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-09-15

    Highlights: •Novel identification of DNA repair-related genes in fish. •Investigation of whole expression profiling of DNA repair genes upon gamma radiation. •Analysis of effects of gamma radiation on antioxidant system and cell stress proteins. •Usefulness of verification of pathway-based profiling for mechanistic understanding. -- Abstract: To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4 Gy of radiation, and biochemical and molecular damage became substantial from 8 Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6 Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae.

  19. DNA repair gene polymorphisms and risk of cutaneous melanoma: a systematic review and meta-analysis.

    Science.gov (United States)

    Mocellin, Simone; Verdi, Daunia; Nitti, Donato

    2009-10-01

    Polymorphisms of DNA repair-related genes might modulate cancer predisposition. We performed a systematic review and meta-analysis of the available evidence regarding the relationship between these polymorphisms and the risk of developing cutaneous melanoma. Relevant studies were searched using PubMed, Medline, Embase, Cancerlit, Cochrane and ISI Web of Knowledge databases. Data were gathered according to the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. The model-free approach was adopted to perform the meta-analysis of the retrieved data. We identified 20 original reports that describe the relationship between melanoma risk and the single-nucleotide polymorphisms (SNPs) of 16 genes (cases = 4195). For seven SNPs considered in at least two studies, the findings were heterogeneous. Data were suitable for meta-analysis only in the case of the XPD/ERCC2 SNP rs13181 (cases = 2308, controls = 3698) and demonstrated that the variant C allele is associated with increased melanoma risk (odds ratio = 1.12, 95% confidence interval = 1.03-1.21, P = 0.01; population attributable risk = 9.6%). This is the first meta-analysis suggesting that XPD/ERCC2 might represent a low-penetrance melanoma susceptibility gene. Much work is still to be done before definitive conclusions can be drawn on the role of DNA repair alterations in melanomagenesis since for the other genes involved in this highly complex process, the available information is scarce or null.

  20. Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break.

    Directory of Open Access Journals (Sweden)

    M Scott Brown

    2015-12-01

    Full Text Available The Eukaryotic RecA-like proteins Rad51 and Dmc1 cooperate during meiosis to promote recombination between homologous chromosomes by repairing programmed DNA double strand breaks (DSBs. Previous studies showed that Rad51 and Dmc1 form partially overlapping co-foci. Here we show these Rad51-Dmc1 co-foci are often arranged in pairs separated by distances of up to 400 nm. Paired co-foci remain prevalent when DSBs are dramatically reduced or when strand exchange or synapsis is blocked. Super-resolution dSTORM microscopy reveals that individual foci observed by conventional light microscopy are often composed of two or more substructures. The data support a model in which the two tracts of ssDNA formed by a single DSB separate from one another by distances of up to 400 nm, with both tracts often bound by one or more short (about 100 nt Rad51 filaments and also by one or more short Dmc1 filaments.

  1. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  2. Identification of Rad23-4 gene required for pollen development in ...

    African Journals Online (AJOL)

    雨林木风

    2012-05-31

    May 31, 2012 ... in ultraviolet (UV)-B–treated rad23-4 mutants. Compared with the wild type ... discovered in yeast (Guzder et al., 1998). Recent studies showed that ... UV-B irradiation can induce accumulations of anthocyanin in the plants.

  3. Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients

    International Nuclear Information System (INIS)

    Kibitel, J.T.; Yee, V.; Yarosh, D.B.

    1991-01-01

    The phage T4 denV gene, coding for the pyrimidine-dimer specific T4 endonuclease V, was transfected into human repair-proficient fibroblasts, repair-deficient xeroderma pigmentosum fibroblasts, and wild type CHO hamster cells. Transfectants maintained denV DNA and expressed denV mRNA. Purified T4 endonuclease V encapsulated in liposomes was also used to treat repair-proficient and -deficient human cells. The denV transfected clones and liposome-treated cells showed increased unscheduled DNA synthesis and enhanced removal of pyrimidine dimers compared to controls. Both denV gene transfection and endonuclease V liposome treatment enhanced post-UV survival in xeroderma pigmentosum cells but had no effect on survival in repair-proficient human or hamster cells. The results demonstrate that an exogenous DNA repair enzyme can correct the DNA repair defect in xeroderma pigmentosum cells and enhance DNA repair in normal cells. (author)

  4. Protein phosphatase 5 is necessary for ATR-mediated DNA repair

    International Nuclear Information System (INIS)

    Kang, Yoonsung; Cheong, Hyang-Min; Lee, Jung-Hee; Song, Peter I.; Lee, Kwang-Ho; Kim, Sang-Yong; Jun, Jae Yeoul; You, Ho Jin

    2011-01-01

    Research highlights: → Serine/threonine protein phosphatase 5 (PP5) has been shown to participate in ataxia telangiectasia-mutated (ATM)- and ATR (ATM- and Rad3-related)-mediated checkpoint pathways, which plays an important role in the DNA damage response and maintenance of genomic stability. → However, it is not clear exactly how PP5 participates in this process. → Our results indicate that PP5 is more closely related with ATR-mediated pathway than ATM-mediated pathway in DNA damage repair. -- Abstract: Several recent studies have shown that protein phosphatase 5 (PP5) participates in cell cycle arrest after DNA damage, but its roles in DNA repair have not yet been fully characterized. We investigated the roles of PP5 in the repair of ultraviolet (UV)- and neocarzinostatin (NCS)-induced DNA damage. The results of comet assays revealed different repair patterns in UV- and NCS-exposed U2OS-PS cells. PP5 is only essential for Rad3-related (ATR)-mediated DNA repair. Furthermore, the phosphorylation of 53BP1 and BRCA1, important mediators of DNA damage repair, and substrates of ATR and ATM decreased in U2OS-PS cells exposed to UV radiation. In contrast, the cell cycle arrest proteins p53, CHK1, and CHK2 were normally phosphorylated in U2OS and U2OS-PS cells exposed to UV radiation or treated with NCS. In view of these results, we suggest that PP5 plays a crucial role in ATR-mediated repair of UV-induced DNA damage.

  5. Role of gene 59 of bacteriophage T4 in repair of uv-irradiated and alkylated DNA in vivo

    International Nuclear Information System (INIS)

    Wu, R.; Wu, J.L.; Yeh, Y.C.

    1975-01-01

    Nonsense mutants in gene 59 (amC5, am HL628) were used to study the role of this gene in the repair of uv-damaged and alkylated DNA of bacteriophage T4 in vivo. The higher sensitivity to uv irradiation and alkylation of gene 59 mutants after exposure to these agents was established by a comparison of the survival fractions with wild type. Zonal centrifugal analysis of both parental and nascent mutant intracellular DNA molecules after uv irradiation showed that immediately after exposure the size of single-stranded DNA fragments was the same as the wild-type intracellular DNA. However, the capability of rejoining fragmented intracellular DNA was greatly reduced in the mutant. In contrast, the wild-type-infected cells under the same condition resumed DNA replication and repaired its DNA to normal size. Methyl methanesulfonate induced more randomly fragmented intracellular DNA, when compared to uv irradiation. The rate of rejoining under these conditions as judged from their sedimentation profiles was also greatly reduced in mutant-infected cells. Further evidence is presented that uv repair is not a simple consequence of arrested DNA replication, which is a phenotype of the mutant when infected in a nonpermissive host, Escherichia coli B(su - ), but rather that the DNA repair function of gene 59 is independent of the replication function. These and other data presented indicate that a product(s) of gene 59 is essential for both repair of uv lesions and repair of alkylation damage of DNA in vivo. It is suggested that gene 59 may have two functions during viral development: DNA replication and replication repair of DNA molecules

  6. TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2007-12-01

    Full Text Available Abstract Background Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L. Ph2 (Pairing homoeologous locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family. Results Sequencing of the three MSH7 genes, located on the short arms of wheat chromosomes 3A, 3B and 3D, has revealed no significant sequence divergence at the amino acid level suggesting conservation of function across the homoeogroups. Functional analysis of MSH7 through the use of RNAi loss-of-function transgenics was undertaken in diploid barley (Hordeum vulgare L.. Quantitative real-time PCR revealed several T0 lines with reduced MSH7 expression. Positive segregants from two T1 lines studied in detail showed reduced MSH7 expression when compared to transformed controls and null segregants. Expression of MSH6, another member of the mismatch repair family which is most closely related to the MSH7 gene, was not significantly reduced in these lines. In both T1 lines, reduced seed set in positive segregants was observed. Conclusion Results presented here indicate, for the first time, a distinct functional role for MSH7 in vivo and show that expression of this gene is necessary for wild-type levels of fertility. These observations suggest that MSH7 has an important function during meiosis and as such remains a candidate for Ph2.

  7. Hereditary Ovarian Cancer: Not Only BRCA 1 and 2 Genes

    Directory of Open Access Journals (Sweden)

    Angela Toss

    2015-01-01

    Full Text Available More than one-fifth of ovarian tumors have hereditary susceptibility and, in about 65–85% of these cases, the genetic abnormality is a germline mutation in BRCA genes. Nevertheless, several other suppressor genes and oncogenes have been associated with hereditary ovarian cancers, including the mismatch repair (MMR genes in Lynch syndrome, the tumor suppressor gene, TP53, in the Li-Fraumeni syndrome, and several other genes involved in the double-strand breaks repair system, such as CHEK2, RAD51, BRIP1, and PALB2. The study of genetic discriminators and deregulated pathways involved in hereditary ovarian syndromes is relevant for the future development of molecular diagnostic strategies and targeted therapeutic approaches. The recent development and implementation of next-generation sequencing technologies have provided the opportunity to simultaneously analyze multiple cancer susceptibility genes, reduce the delay and costs, and optimize the molecular diagnosis of hereditary tumors. Particularly, the identification of mutations in ovarian cancer susceptibility genes in healthy women may result in a more personalized cancer risk management with tailored clinical and radiological surveillance, chemopreventive approaches, and/or prophylactic surgeries. On the other hand, for ovarian cancer patients, the identification of mutations may provide potential targets for biologic agents and guide treatment decision-making.

  8. Polymorphisms in human DNA repair genes and head and neck ...

    Indian Academy of Sciences (India)

    Abstract. Genetic polymorphisms in some DNA repair proteins are associated with a number of malignant transformations like head and ... Such studies may benefit from analysis of multiple genes or polymorphisms and from the ... low survival and high morbidity when diagnosed in advanced ...... racial and/or ethnic cohort.

  9. RadConEd: A Graphical Data Editor for the Radiological Consequences Model, RadCon

    International Nuclear Information System (INIS)

    Crawford, J.; Domel, R.U.

    2000-05-01

    This document describes the application, RadConEd, which has been designed and implemented to enable users of the RadCon system to update these parameter files. The RadCon system is written in the Java programming language, and as such provides portability across computer platforms. The software described in this report was developed in line with the portability requirements of RadCon, thus providing a uniform user interface across computer platforms and bypassing the need of using system editors. In addition a number of data integrity measures were implemented

  10. Both caffeine-induced lethality and the negative liquid holding effect, in UV- or γ-irradiated wild-type Schizosaccharomyces pombe, are consequences of interference with a recombinational repair process

    International Nuclear Information System (INIS)

    Gentner, N.E.

    1981-01-01

    UV-or γ-irradiated G2 phase cells of rad + Schizosac charonmyces pombe show increased inactivation if incubated postirradiation, in liquid growth medium containing caffeine, before being plated on normal agar medium. The following however, do not show such caffeine-induced lethality: G1 phase rad + cells; ascospores of a rad + strain; either G2 or G1 phase cells of the recombination-deficient rad1 strain; unirradiated rad + cells. Of the above, only the G2 phase rad + cells possess, at the time of radiation exposure, the capability for recombination. Similarly, the negative liquid holding effect is manifested only in G2 phase rad + cells. Both the negative liquid holding effect and caffeine-induced lethality therefore are seen only in cells which fulfill all of the following conditions: (a) they must be genetically recombination-proficient; (b) they must possess at the time of irradiation the necessary two DNA copies with which to perform recombinational repair (for a haploid cell, this means they must be in G2 phase); (c) their DNA must be damaged, such as by UV or γ-ray exposure, thus requiring that recombinational repair capability be exercised in order to maintain viability; and (d) they must be incubated under conditions that fail to support the normal progress of recombinational repair. (orig./AJ) [de

  11. Allele and Genotype Distributions of DNA Repair Gene Polymorphisms in South Indian Healthy Population

    Directory of Open Access Journals (Sweden)

    Katiboina Srinivasa Rao

    2014-01-01

    Full Text Available Various DNA repair pathways protect the structural and chemical integrity of the human genome from environmental and endogenous threats. Polymorphisms of genes encoding the proteins involved in DNA repair have been found to be associated with cancer risk and chemotherapeutic response. In this study, we aim to establish the normative frequencies of DNA repair genes in South Indian healthy population and compare with HapMap populations. Genotyping was done on 128 healthy volunteers from South India, and the allele and genotype distributions were established. The minor allele frequency of Xeroderma pigmentosum group A ( XPA G23A, Excision repair cross-complementing 2 ( ERCC2 /Xeroderma pigmentosum group D ( XPD Lys751Gln, Xeroderma pigmentosum group G ( XPG His46His, XPG Asp1104His, and X-ray repair cross-complementing group 1 ( XRCC1 Arg399Gln polymorphisms were 49.2%, 36.3%, 48.0%, 23.0%, and 34.0% respectively. Ethnic variations were observed in the frequency distribution of these polymorphisms between the South Indians and other HapMap populations. The present work forms the groundwork for cancer association studies and biomarker identification for treatment response and prognosis.

  12. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51.

    Science.gov (United States)

    van Heemst, D; Swart, K; Holub, E F; van Dijk, R; Offenberg, H H; Goosen, T; van den Broek, H W; Heyting, C

    1997-05-01

    We have cloned the uvsC gene of Aspergillus nidulans by complementation of the A. nidulans uvsC114 mutant. The predicted protein UVSC shows 67.4% sequence identity to the Saccharomyces cerevisiae Rad51 protein and 27.4% sequence identity to the Escherichia coli RecA protein. Transcription of uvsC is induced by methyl-methane sulphonate (MMS), as is transcription of RAD51 of yeast. Similar levels of uvsC transcription were observed after MMS induction in a uvsC+ strain and the uvsC114 mutant. The coding sequence of the uvsC114 allele has a deletion of 6 bp, which results in deletion of two amino acids and replacement of one amino acid in the translation product. In order to gain more insight into the biological function of the uvsC gene, a uvsC null mutant was constructed, in which the entire uvsC coding sequence was replaced by a selectable marker gene. Meiotic and mitotic phenotypes of a uvsC+ strain, the uvsC114 mutant and the uvsC null mutant were compared. The uvsC null mutant was more sensitive to both UV and MMS than the uvsC114 mutant. The uvsC114 mutant arrested in meiotic prophase-I. The uvsC null mutant arrested at an earlier stage, before the onset of meiosis. One possible interpretation of these meiotic phenotypes is that the A. nidulans homologue of Rad51 of yeast has a role both in the specialized processes preceding meiosis and in meiotic prophase I.

  13. A Preliminary Study: Human Fibroid Stro-1+/CD44+ Stem Cells Isolated From Uterine Fibroids Demonstrate Decreased DNA Repair and Genomic Integrity Compared to Adjacent Myometrial Stro-1+/CD44+ Cells.

    Science.gov (United States)

    Prusinski Fernung, Lauren E; Al-Hendy, Ayman; Yang, Qiwei

    2018-01-01

    Although uterine fibroids (UFs) continue to place a major burden on female reproductive health, the mechanisms behind their origin remain undetermined. Normal myometrial stem cells may be transformed into tumor-initiating stem cells, causing UFs, due to unknown causes of somatic mutations in MED12, found in up to 85% of sporadically formed UFs. It is well established in other tumor types that defective DNA repair increases the risk of such tumorigenic somatic mutations, mechanisms not yet studied in UFs. To examine the putative cause(s) of this stem cell transformation, we analyzed DNA repair within stem cells from human UFs compared to those from adjacent myometrium to determine whether DNA repair in fibroid stem cells is compromised. Human fibroid (F) and adjacent myometrial (Myo) stem cells were isolated from fresh tissues, and gene expression relating to DNA repair was analyzed. Fibroid stem cells differentially expressed DNA repair genes related to DNA double- (DSBs) and single-strand breaks. DNA damage was measured using alkaline comet assay. Additionally, DNA DSBs were induced in these stem cells and DNA DSB repair evaluated (1) by determining changes in phosphorylation of DNA DSB-related proteins and (2) by determining differences in γ-H2AX foci formation and relative DNA repair protein RAD50 expression. Overall, F stem cells demonstrated increased DNA damage and altered DNA repair gene expression and signaling, suggesting that human F stem cells demonstrate impaired DNA repair. Compromised F stem cell DNA repair may contribute to further mutagenesis and, consequently, further growth and propagation of UF tumors.

  14. ATM is required for the repair of Topotecan-induced replication-associated double-strand breaks

    International Nuclear Information System (INIS)

    Köcher, Sabrina; Spies-Naumann, Anja; Kriegs, Malte; Dahm-Daphi, Jochen; Dornreiter, Irena

    2013-01-01

    Purpose: DNA replication is a promising target for anti-cancer therapies. Therefore, the understanding of replication-associated DNA repair mechanisms is of great interest. One key factor of DNA double-strand break (DSB) repair is the PIK kinase Ataxia-Telangiectasia Mutated (ATM) but it is still unclear whether ATM is involved in the repair of replication-associated DSBs. Here, we focused on the involvement of ATM in homology-directed repair (HDR) of indirect DSBs associated with replication. Material and methods: Experiments were performed using ATM-deficient and -proficient human cells. Replication-associated DSBs were induced with Topotecan (TPT) and compared with γ-irradiation (IR). Cell survival was measured by clonogenic assay. Overall DSB repair and HDR were evaluated by detecting residual γH2AX/53BP1 and Rad51 foci, respectively. Cell cycle distribution was analysed by flow cytometry and protein expression by Western blot. Results: ATM-deficiency leads to enhanced numbers of residual DSBs, resulting in a pronounced S/G2-block and decreased survival upon TPT-treatment. In common with IR, persisting Rad51 foci were detected following TPT-treatment. Conclusions: These results demonstrate that ATM is essentially required for the completion of HR-mediated repair of TPT-induced DSBs formed indirectly at replication forks

  15. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis

    International Nuclear Information System (INIS)

    Burkovics, Peter; Sebesta, Marek; Kolesar, Peter; Sisakova, Alexandra; Marini, Victoria; Plault, Nicolas; Szukacsov, Valeria; Pinter, Lajos; Haracska, Lajos; Robert, Thomas; Kolesar, Peter; Gangloff, Serge; Krejci, Lumir

    2013-01-01

    Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. (authors)

  17. Rad52 SUMOylation affects the efficiency of the DNA repair

    DEFF Research Database (Denmark)

    Altmannova, Veronika; Eckert-Boulet, Nadine; Arneric, Milica

    2010-01-01

    Homologous recombination (HR) plays a vital role in DNA metabolic processes including meiosis, DNA repair, DNA replication and rDNA homeostasis. HR defects can lead to pathological outcomes, including genetic diseases and cancer. Recent studies suggest that the post-translational modification by ...

  18. PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Binkova, Blanka [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Chvatalova, Irena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Lnenickova, Zdena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Milcova, Alena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Tulupova, Elena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Farmer, Peter B. [Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Sram, Radim J. [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic)]. E-mail: sram@biomed.cas.cz

    2007-07-01

    .003). A significant difference in both the total (P < 0.05) and the B[a]P-'like' DNA adducts (P < 0.01) between smokers and nonsmokers within both groups was observed. A significant positive association between DNA adduct and cotinine levels (r = 0.368, P < 0.001) and negative association between DNA adduct and vitamin C levels (r = -0.290, P = 0.004) was found. The results of multivariate regression analysis showed smoking, vitamin C, polymorphisms of XPD repair gene in exon 23 and GSTM1 gene as significant predictors for total DNA adduct levels. Exposure to ambient air pollution, smoking, and polymorphisms of XPD repair gene in exon 6 were significant predictors for B[a]P-'like' DNA adduct. To sum up, this study suggests that polymorphisms of DNA repair genes involved in nucleotide excision repair may modify aromatic DNA adduct levels and may be useful biomarkers to identify individuals susceptible to DNA damage resulting from c-PAHs exposure.

  19. Identification of a deoxyribonuclease controlled by the rad52 gene of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chow, T.Y.K.; Resnick, M.A.

    1983-01-01

    We have examined deoxyribonuclease levels in extracts of wild-type and rad52 mutants and have observed no significant differences. However, major differences were observed when we employed anti-serum raised against a purified single strand DNA-binding endoexonuclease from Neurospora crassa. As much as sixty percent of the alkaline deoxyribonuclease in wild-type extracts exhibited immunocrossreactivity, whereas none was found in extracts from rad52 strains. This DNase activity was also followed through meiosis; maximum activity was observed in wild-type cells, at a time corresponding to an early stage of premeiotic DNA-synthesis and commitment to recombination. 14 references, 4 figures, 1 table

  20. A mutation (radA100) in Escherichia coli that selectively sensitizes cells grown in rich medium to X- or U.V.-radiation, or methyl methanesulphonate

    International Nuclear Information System (INIS)

    Diver, W.P.; Sargentini, N.J.; Smith, K.C.

    1982-01-01

    The radA100 mutant was isolated from Escherichia coli K-12 after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine and selection for gamma radiation sensitivity. The radA100 mutation sensitized stationary phase cells to X-rays if they had been grown in glucose-supplemented rich medium, but not if they had been grown in nonsupplemented rich medium (indicating a defect in glucose-induced resistance). Similarly, logarithmic phase cells were sensitized to X-rays, U.V. radiation and methyl methanesulphonate if they had been grown in rich medium, but not if they had been grown in minimal medium (indicating a defect in medium-dependent resistance). Relative to the wild-type strain, the radA100 mutant was deficient in the repair of X-ray-induced DNA single-strand breaks when grown to logarithmic phase in rich medium, but not when grown in minimal medium. This is a novel mutation amongst the known DNA repair defects in that it did not sensitize logarithmic phase cells, grown in minimal medium, to either X- or U.V.-radiation. (author)

  1. Analysis list: RAD21 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ncedbc.jp/kyushu-u/hg19/target/RAD21.1.tsv http://dbarchive.biosciencedbc.jp/kyushu...-u/hg19/target/RAD21.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/RAD21.10.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/RAD21.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/RAD21.Breast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/RAD21.Dige...stive_tract.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/RAD21.Liver.tsv,http://dbarchive.bioscience

  2. Requirement of Sequences outside the Conserved Kinase Domain of Fission Yeast Rad3p for Checkpoint Control

    Science.gov (United States)

    Chapman, Carolyn Riley; Evans, Sarah Tyler; Carr, Antony M.; Enoch, Tamar

    1999-01-01

    The fission yeast Rad3p checkpoint protein is a member of the phosphatidylinositol 3-kinase-related family of protein kinases, which includes human ATMp. Mutation of the ATM gene is responsible for the disease ataxia-telangiectasia. The kinase domain of Rad3p has previously been shown to be essential for function. Here, we show that although this domain is necessary, it is not sufficient, because the isolated kinase domain does not have kinase activity in vitro and cannot complement a rad3 deletion strain. Using dominant negative alleles of rad3, we have identified two sites N-terminal to the conserved kinase domain that are essential for Rad3p function. One of these sites is the putative leucine zipper, which is conserved in other phosphatidylinositol 3-kinase-related family members. The other is a novel motif, which may also mediate Rad3p protein–protein interactions. PMID:10512862

  3. Frequency of intrachromosomal homologous recombination induced by UV radiation in normally repairing and excision repair-deficient human cells

    International Nuclear Information System (INIS)

    Tsujimura, T.; Maher, V.M.; McCormick, J.J.; Godwin, A.R.; Liskay, R.M.

    1990-01-01

    To investigate the role of DNA damage and nucleotide excision repair in intrachromosomal homologous recombination, a plasmid containing duplicated copies of the gene coding for hygromycin resistance was introduced into the genome of a repair-proficient human cell line, KMST-6, and two repair-deficient lines, XP2OS(SV) from xeroderma pigmentosum complementation group A and XP2YO(SV) from complementation group F. Neither hygromycin-resistance gene codes for a functional enzyme because each contains an insertion/deletion mutation at a unique site, but recombination between the two defective genes can yield hygromycin-resistant cells. The rates of spontaneous recombination in normal and xeroderma pigmentosum cell strains containing the recombination substrate were found to be similar. The frequency of UV-induced recombination was determined for three of these cell strains. At low doses, the group A cell strain and the group F cell strain showed a significant increase in frequency of recombinants. The repair-proficient cell strain required 10-to 20-fold higher doses of UV to exhibit comparable increases in frequency of recombinants. These results suggest that unexcised DNA damage, rather than the excision repair process per se, stimulates such recombination

  4. IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis.

    Science.gov (United States)

    Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun

    2017-03-01

    Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.

  5. The RadAssessor manual

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Sharon L.

    2007-02-01

    THIS manual will describe the functions and capabilities that are available from the RadAssessor database and will demonstrate how to retrieve and view its information. You’ll learn how to start the database application, how to log in, how to use the common commands, and how to use the online help if you have a question or need extra guidance. RadAssessor can be viewed from any standard web browser. Therefore, you will not need to install any special software before using RadAssessor.

  6. Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing.

    Directory of Open Access Journals (Sweden)

    Nilesh V Khade

    Full Text Available Yeast Rad52 (yRad52 has two important functions at homologous DNA recombination (HR; annealing complementary single-strand DNA (ssDNA molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity. Its human homolog (hRAD52 has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51 onto ssDNA complexed with yeast RPA in vitro. This is biochemically equivalent to mediator activity because it depends on the C-terminal Rad51-binding region of yRad52 and on functional Rad52-RPA interaction. It has been reported that the N-terminal two thirds of both yRad52 and hRAD52 is essential for binding to and annealing ssDNA. Although a second DNA binding region has been found in the C-terminal region of yRad52, its role in ssDNA annealing is not clear. In this paper, we also show that the C-terminal region of yRad52, but not of hRAD52, is involved in ssDNA annealing. This suggests that the second DNA binding site is required for the efficient ssDNA annealing by yRad52. We propose an updated model of Rad52-mediated ssDNA annealing.

  7. TLR9 agonists oppositely modulate DNA repair genes in tumor versus immune cells and enhance chemotherapy effects.

    Science.gov (United States)

    Sommariva, Michele; De Cecco, Loris; De Cesare, Michelandrea; Sfondrini, Lucia; Ménard, Sylvie; Melani, Cecilia; Delia, Domenico; Zaffaroni, Nadia; Pratesi, Graziella; Uva, Valentina; Tagliabue, Elda; Balsari, Andrea

    2011-10-15

    Synthetic oligodeoxynucleotides expressing CpG motifs (CpG-ODN) are a Toll-like receptor 9 (TLR9) agonist that can enhance the antitumor activity of DNA-damaging chemotherapy and radiation therapy in preclinical mouse models. We hypothesized that the success of these combinations is related to the ability of CpG-ODN to modulate genes involved in DNA repair. We conducted an in silico analysis of genes implicated in DNA repair in data sets obtained from murine colon carcinoma cells in mice injected intratumorally with CpG-ODN and from splenocytes in mice treated intraperitoneally with CpG-ODN. CpG-ODN treatment caused downregulation of DNA repair genes in tumors. Microarray analyses of human IGROV-1 ovarian carcinoma xenografts in mice treated intraperitoneally with CpG-ODN confirmed in silico findings. When combined with the DNA-damaging drug cisplatin, CpG-ODN significantly increased the life span of mice compared with individual treatments. In contrast, CpG-ODN led to an upregulation of genes involved in DNA repair in immune cells. Cisplatin-treated patients with ovarian carcinoma as well as anthracycline-treated patients with breast cancer who are classified as "CpG-like" for the level of expression of CpG-ODN modulated DNA repair genes have a better outcome than patients classified as "CpG-untreated-like," indicating the relevance of these genes in the tumor cell response to DNA-damaging drugs. Taken together, the findings provide evidence that the tumor microenvironment can sensitize cancer cells to DNA-damaging chemotherapy, thereby expanding the benefits of CpG-ODN therapy beyond induction of a strong immune response.

  8. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    Directory of Open Access Journals (Sweden)

    Mei Yu

    Full Text Available We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB and the upper hair sheaths (HS including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.

  9. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  10. Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin.

    Directory of Open Access Journals (Sweden)

    De-Tao Yin

    Full Text Available DNA damage response (DDR is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili(-/- MEFs were defective in cyclobutane pyrimidine dimers (CPD repair after UV treatment. As a result, the UV-treated mili(-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose polymerase (PARP and Bik. The impaired DNA repair in the mili(-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine-guanine (Pt-[GG] and double strand break (DSB repair were also defective in the mili(-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR, respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis.

  11. Cyclic Testing of the 6-Strand Tang and Modified Lim-Tsai Flexor Tendon Repair Techniques.

    Science.gov (United States)

    Kang, Gavrielle Hui-Ying; Wong, Yoke-Rung; Lim, Rebecca Qian-Ru; Loke, Austin Mun-Kitt; Tay, Shian-Chao

    2018-03-01

    In this study, we compared the Tang repair technique with the 6-strand modified Lim-Tsai repair technique under cyclic testing conditions. Twenty fresh-frozen porcine flexor tendons were randomized into 2 groups for repair with either the modified Lim-Tsai or the Tang technique using Supramid 4-0 core sutures and Ethilon 6-0 epitendinous running suture. The repaired tendons were subjected to 2 stage cyclic loading. The survival rate and gap formation at the repair site were recorded. Tendons repaired by the Tang technique achieved an 80% survival rate. None of the modified Lim-Tsai repairs survived. The mean gap formed at the end of 1000 cycles was 1.09 mm in the Tang repairs compared with 4.15 mm in the modified Lim-Tsai repairs. The Tang repair is biomechanically stronger than the modified Lim-Tsai repair under cyclic loading. The Tang repair technique may exhibit a higher tolerance for active mobilization after surgery with less propensity for gap formation. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment

    International Nuclear Information System (INIS)

    Zhang Liyuan; Chen Liesong; Sun Rui; Ji Shengjun; Ding Yanyan; Wu Jia; Tian Ye

    2013-01-01

    Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5 and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, id est (i.e.) DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway. (author)

  13. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.

    Science.gov (United States)

    Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R

    2017-04-01

    Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Radiation-induced apoptosis of chicken lymphocyte B-cell line DT40

    International Nuclear Information System (INIS)

    Furusawa, Y.; Aoki, M.; Takakura, K.

    2003-01-01

    Full text: Ionizing radiation causes lesions of DNA, cell cycle arrest, induced cell death, and apoptosis in the irradiated cells. Then it is easy to expect that those events would be increased in a cell line which is defective in DNA repair system. However, induction of apoptosis by irradiation takes so complicated process when the cells are defective of DNA repair system. Indeed by many recent studies it has been clarified that DNA repair gene is also concerned with apoptotic event and some study shows the contrary data. Thus, the relationship between the genetics of apoptosis and that of DNA repair is still unclear. In this study two kinds of DNA repair proteins, Rad54 and Ku70, were focused. Proteins of Rad54 and Ku70 have important role at two type of DNA repair systems called homologous recombination repair and non-homologous end joining repair, respectively. 4 phenotypes of DT40, parent type, ku70-/-, rad54-/- and ku70-/-/rad54-/- were used to study the radiation-induced apoptosis (Previous study shows that survival fraction of 4 phenotypes of DT40 is decreased in the cell line, in which DNA repair gene is defective). From the results in this study, two things are clarifies. One is that the dependence of apoptotic index on phenotypes is so different between at low dose and at high dose irradiation. The other is that Ku70 has effective role to induce apoptosis in DT40 irradiated with high dose X-rays

  15. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase

    Science.gov (United States)

    Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.

    2014-01-01

    O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506

  16. Immunohistochemical and DNA sequencing analysis on human mismatch repair gene MLH1 in cervical squamous cell carcinoma with LOH of this gene

    NARCIS (Netherlands)

    Hu, X.; Guo, Z.; Pang, T.; Li, Q.; Afink, G.; Pontén, J.

    2000-01-01

    BACKGROUND: The human MLH1 gene (hMLH1) is one of the DNA mismatch repair genes. Defects in these genes are believed to be the underlying cause of microsatellite instability (MSI). MSI has been demonstrated in many human cancers such as colon cancer and some female-specific tumors. The hMLH1 gene

  17. Regeneration of CFUs in the marrow of mice exposed to 300 rads after having recovered from 950 rads

    International Nuclear Information System (INIS)

    Kedo, A.; Barone, J.; Fried, W.

    1976-01-01

    Exposure to 950 rads 60 Co radiation has been reported to cause long-lasting damage to the hematopoietic stroma (HS), although the size of the CFUs population recovers to pre-irradiation levels. In these studies HS damage was detected only after subcutaneously implanting the femurs of the irradiated mice into syngeneic hosts. To exclude the possibility that what was considered to be HS damage was merely caused by artifacts due to the process of implantation in a new host, the rate of regeneration of CFUs in mice which had recovered from 950 rads prior to receiving 300 rads 60 Co radiation (950 + 300 rads group) was compared with that of mice which received only 300 rads (0 + 300 rads group). The CFUs population in the 950 + 300 rads group grew exponentially for 2 weeks at a rate which did not differ significantly from that of CFUs in the 0 + 300 rads group. However, the rate of CFUs growth reached a plateau before full recovery was achieved in contrast to that in the 0 + 300 rads mice. It was therefore concluded that the incomplete regeneration of CFUs in the marrows of 950 + 300 rads mice was most likely caused by X-irradiation-induced damage to the HS rather than damage to the inherent repopulation potential of the CFUs per se. (author)

  18. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  19. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage.

    Science.gov (United States)

    Potter, M; Sanford, K K; Parshad, R; Tarone, R E; Price, F M; Mock, B; Huppi, K

    1988-04-01

    Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and the other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.

  20. Zebrafish: swimming towards a role for fanconi genes in DNA repair.

    Science.gov (United States)

    Scata, Kimberly A; El-Deiry, Wafik S

    2004-06-01

    The zebrafish, Danio rerio, has become a favorite model organism for geneticists and developmental biologists. Recently cancer biologists have turned to this tiny fish to help them unravel the mysteries of conserved pathways such as the Fanconi Anemia (FA) pathway. Although a relatively rare disease, the genes involved in FA are part of a large network of DNA damage response/repair genes. Liu and colleagues have recapitulated some of the clinical manifestations of human FA by knocking down the zebrafish FANC-D2 gene thereby providing a new model for probing the underlying causes of these phenotypes.

  1. Rad and Mubad in Shahnameh of Ferdowsi

    Directory of Open Access Journals (Sweden)

    z Delpazir

    2011-09-01

    However, the important points overlooked by explicators are the relationship between Rad and Mubad (Zoroastrian priest and the reason why these two words have co-occurred so frequently in Shahnameh, the most famous Persian national epic. It seems that Rad in Shahnameh, based on Avesta and Pahlavi texts, is often construed as Sadane or Dastoor that was a high position in ancient Iran’s religious hierarchy. Thus, Rads and Mubads were both considered members of religious communities. This study tries to investigate the role and position of Rads and Mubads and their relationship with one another, based on Shahnameh of Ferdowsi, in three chapters: The etymology of Rad Rad in Shahnameh The relationship between Rads and Mubads.

  2. Proteasome inhibitors block DNA repair and radiosensitize non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Kyle R Cron

    Full Text Available Despite optimal radiation therapy (RT, chemotherapy and/or surgery, a majority of patients with locally advanced non-small cell lung cancer (NSCLC fail treatment. To identify novel gene targets for improved tumor control, we performed whole genome RNAi screens to identify knockdowns that most reproducibly increase NSCLC cytotoxicity. These screens identified several proteasome subunits among top hits, including the topmost hit PSMA1, a component of the core 20 S proteasome. Radiation and proteasome inhibition showed synergistic effects. Proteasome inhibition resulted in an 80-90% decrease in homologous recombination (HR, a 50% decrease in expression of NF-κB-inducible HR genes BRCA1 and FANCD2, and a reduction of BRCA1, FANCD2 and RAD51 ionizing radiation-induced foci. IκBα RNAi knockdown rescued NSCLC radioresistance. Irradiation of mice with NCI-H460 xenografts after inducible PSMA1 shRNA knockdown markedly increased murine survival compared to either treatment alone. Proteasome inhibition is a promising strategy for NSCLC radiosensitization via inhibition of NF-κB-mediated expression of Fanconi Anemia/HR DNA repair genes.

  3. The PCNA interaction protein box sequence in Rad54 is an integral part of its ATPase domain and is required for efficient DNA repair and recombination

    DEFF Research Database (Denmark)

    Burgess, Rebecca C; Sebesta, Marek; Sisakova, Alexandra

    2013-01-01

    Rad54 is an ATP-driven translocase involved in the genome maintenance pathway of homologous recombination (HR). Although its activity has been implicated in several steps of HR, its exact role(s) at each step are still not fully understood. We have identified a new interaction between Rad54...... and the replicative DNA clamp, proliferating cell nuclear antigen (PCNA). This interaction was only mildly weakened by the mutation of two key hydrophobic residues in the highly-conserved PCNA interaction motif (PIP-box) of Rad54 (Rad54-AA). Intriguingly, the rad54-AA mutant cells displayed sensitivity to DNA damage...

  4. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice.

    Science.gov (United States)

    Withers, Catherine N; Brown, Drew M; Byiringiro, Innocent; Allen, Matthew R; Condon, Keith W; Satin, Jonathan; Andres, Douglas A

    2017-10-01

    The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca 2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad -/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The rad2 mutation affects the molecular nature of UV and acridine-mustard-induced mutations in the ADE2 gene of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ivanov, E.L.; Kovaltzova, S.V.; Kassinova, G.V.; Gracheva, L.M.; Korolev, V.G.; Zakharov, I.A.

    1986-01-01

    The authors have studied the molecular nature of ade2 mutations induced by UV light and bifunctional acridine-mustard (BAM) in wild-type (RAD) and in excision-deficient (rad2) strains of the yeast, Saccharomyces cerevisiae. In the RAD strain, UV causes 45% GC → AT transitions among all mutations; in the rad2 strain this value is 77%. BAM was shown to be highly specific for frameshift mutagenesis: 60% frameshifts in the RAD strain, and as many as 84% frameshifts in the rad2 strain were induced. Therefore, the rad2 mutation affects the specificity of UV- and BAM-induced mutagenesis in yeast. Experimental data agree with the view that the majority of mutations in the RAD strain are induced by a prereplicative mechanism, whereas mutations in the rad2 strain are predominantly postreplicative events. (Auth.)

  6. Two mutations which confer temperature-sensitive radiation sensitivity in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ho, K.S.Y.; Mortimer, R.K.

    1975-01-01

    X-ray survival curves for two mutations, rad54 and rad55, in the yeast Saccharomyces cerevisiae are presented. These mutations confer temperature sensitive X-ray sensitivity; that is, rad54 and rad55 strains display a wild type X-ray survival response at permissive temperatures and a radiosensitive X-ray survival response at restrictive temperatures. The survival response of cells which were shifted from a permissive to a restrictive temperature or vice versa at various post-irradiation times indicates that repair and fixation of X-ray induced lesions is largely complete three hours after X-irradiation. Experiments to determine the utilization sequence of the rad54 and rad55 gene products in the repair of X-ray induced damage suggest that the two products are required in an interdependent manner

  7. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  8. DNA-PK. The major target for wortmannin-mediated radiosensitization by the inhibition of DSB repair via NHEJ pathway

    International Nuclear Information System (INIS)

    Hashimoto, Mitsumasa; Rao, S.; Tokuno, Osamu; Utsumi, Hiroshi; Takeda, Shunichi

    2003-01-01

    The effect of wortmannin posttreatment was studied in cells derived from different species (hamster, mouse, chicken, and human) with normal and defective DNA-dependent protein kinase (DNA-PK) activity, cells with and without the ataxia telangiectasia mutated (ATM) gene, and cells lacking other regulatory proteins involved in the DNA double-strand break (DSB) repair pathways. Clonogenic assays were used to obtain all results. Wortmannin radiosensitization was observed in Chinese hamster cells (V79-B310H, CHO-K1), mouse mammary carcinoma cells (SR-1), transformed human fibroblast (N2KYSV), chicken B lymphocyte wild-type cells (DT40), and chicken Rad54 knockout cells (Rad54 -/- ). However, mouse mammary carcinoma cells (SX9) with defects in the DNA-PK and chicken DNA-PK catalytic subunit (DNA-PKcs) knockout cells (DNA-PKcs -/-/- ) failed to exhibit wortmannin radiosensitization. On the other hand, severe combined immunodeficiency (SCID) mouse cells (SC3VA2) exposed to wortmannin exhibited significant increases in radiosensitivity, possibly because of some residual function of DNA-PKcs. Moreover, the transformed human cells derived from AT patients (AT2KYSV) and chicken ATM knockout cells (ATM -/- ) showed pronounced wortmannin radiosensitization. These studies demonstrate confirm that the mechanism underlying wortmannin radiosensitization is the inhibition of DNA-PK, but not of ATM, thereby resulting in the inhibition of DSB repair via nonhomologous endjoining (NHEJ). (author)

  9. Up-regulation of mismatch repair genes MSH6, PMS2 and MLH1 parallels development of genetic instability and is linked to tumor aggressiveness and early PSA recurrence in prostate cancer.

    Science.gov (United States)

    Wilczak, Waldemar; Rashed, Semin; Hube-Magg, Claudia; Kluth, Martina; Simon, Ronald; Büscheck, Franziska; Clauditz, Till Sebastian; Grupp, Katharina; Minner, Sarah; Tsourlakis, Maria Christina; Möller-Koop, Christina; Graefen, Markus; Adam, Meike; Haese, Alexander; Wittmer, Corinna; Sauter, Guido; Izbicki, Jakob Robert; Huland, Hartwig; Schlomm, Thorsten; Steurer, Stefan; Krech, Till; Lebok, Patrick

    2017-01-01

    DNA mismatch repair (MMR) is integral to the maintenance of genetic stability. We aimed to evaluate the clinical impact of MMR gene expression in prostate cancer. The MMR genes MSH6, MLH1 and PMS2 were analyzed by immunohistochemistry on a tissue microarray containing 11152 prostate cancer specimens. Results were compared with ETS-related gene status and deletions of PTEN, 3p13, 5q21 and 6q15. MSH6, MLH1 and PMS2 expression was detectable in 89.5%, 85.4% and 85.0% of cancers and was particularly strong in cancers with advanced pathological tumor stage (P < 0.0001 each), high Gleason grade (P < 0.0001 each), nodal metastasis (P ≤ 0.0083) and early biochemical recurrence (P < 0.0001). High levels of MMR gene expression paralleled features of genetic instability, such as the number of genomic deletions per cancer; strong expression of all three MMR genes was found in 24%, 29%, 30%, 33% and 42% of cancers with no, one, two, three or four to five deletions (P < 0.0001). The prognostic value of the analyzed MMR genes was largely driven by the subset of cancers lacking ERG fusion (P < 0.0001), while the prognostic impact of MMR gene overexpression was only marginal in ERG-positive cancers. Multivariate analyses suggested an independent prognostic relevance of MMR genes in ERG-negative prostate cancers when compared with prognostic parameters available at the time of initial biopsy. In conclusion, MMR overexpression is common in prostate cancer and is linked to poor outcome as well as features indicating genetic instability. ERG fusion should be analyzed along with MMR gene expression in potential clinical tests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Investigation of centers sensitive to S1-nuclease in the genoma of the yeast S. cerevisiae after in-vivo exposure to gamma radiation

    International Nuclear Information System (INIS)

    Geigl, E.M.

    1987-09-01

    The structure, distribution and repair of basal damage in DNS after exposure to 60 Co gamma radiation were investigated in S. cerevisiae cells. Small DNS regions with mispaired or unpaired bases of rather high stability were found whose rate of incidence and linear dose dependence appear to be similar to those of double strand breaks. In contrast to double strand breaks, they showed no statistical' distribution pattern across the genoma. Liquid holding experiments showed that centers sensitive to S1-nuclease will be repaired in S. cerevisiae by a combined process of recombination and postreplication repair; the gene products of the genes RAD50 and RAD18 are involved. (orig./AJ) [de

  11. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  12. Expression in mammalian cells of the Escherichia coli O6 alkylguanine-DNA-alkyltransferase gene ogt reduces the toxicity of alkylnitrosoureas.

    Science.gov (United States)

    Harris, L. C.; Margison, G. P.

    1993-01-01

    V79 Chinese hamster cells expressing either the O6-alkylguanine-DNA-alkyltransferase (ATase) encoded by the E. coli ogt gene or a truncated version of the E. coli ada gene have been exposed to various alkylnitrosoureas to investigate the contribution of ATase repairable lesions to the toxicity of these compounds. Both ATases are able to repair O6-alkylguanine (O6-AlkG) and O4-alkylthymine (O4-AlkT) but the ogt ATase is more efficient in the repair of O4-methylthymine (O4-MeT) and higher alkyl derivatives of O6-AlkG than is the ada ATase. Expression of the ogt ATase provided greater protection against the toxic effects of the alkylating agents then the ada ATase particularly with N-ethyl-N-nitrosourea (ENU) and N-butyl-N-nitrosourea (BNU) to which the ada ATase expressing cells were as sensitive as parent vector transfected cells. Although ogt was expressed at slightly higher levels than the truncated ada in the transfected cells, this could not account for the differential protection observed. For-N-methyl-N-nitrosourea (MNU) the increased protection in ogt-transfected cells is consistent with O4-MeT acting as a toxic lesion. For the longer chain alkylating agents and chloroethylating agents, the protection afforded by the ogt protein may be a consequence of the more efficient repair of O6-AlkG, O4-AlkT or both of these lesions in comparison with the ada-encoded ATase. Images Figure 2 Figure 3 PMID:8512805

  13. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    International Nuclear Information System (INIS)

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita; Begg, Adrian C.

    2006-01-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficient line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity

  14. RAD51B in Familial Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Liisa M Pelttari

    Full Text Available Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC that were genotyped on a custom chip (iCOGS. We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259 and population controls (n = 3586 from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR: 1.15, 95% confidence interval (CI: 1.11-1.19, P = 8.88 x 10-16 and among familial cases (OR: 1.24, 95% CI: 1.16-1.32, P = 6.19 x 10-11, compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk.

  15. RAD51B in Familial Breast Cancer

    Science.gov (United States)

    Pelttari, Liisa M.; Khan, Sofia; Vuorela, Mikko; Kiiski, Johanna I.; Vilske, Sara; Nevanlinna, Viivi; Ranta, Salla; Schleutker, Johanna; Winqvist, Robert; Kallioniemi, Anne; Dörk, Thilo; Bogdanova, Natalia V.; Figueroa, Jonine; Pharoah, Paul D. P.; Schmidt, Marjanka K.; Dunning, Alison M.; García-Closas, Montserrat; Bolla, Manjeet K.; Dennis, Joe; Michailidou, Kyriaki; Wang, Qin; Hopper, John L.; Southey, Melissa C.; Rosenberg, Efraim H.; Fasching, Peter A.; Beckmann, Matthias W.; Peto, Julian; dos-Santos-Silva, Isabel; Sawyer, Elinor J.; Tomlinson, Ian; Burwinkel, Barbara; Surowy, Harald; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E.; Nordestgaard, Børge G.; Benitez, Javier; González-Neira, Anna; Neuhausen, Susan L.; Anton-Culver, Hoda; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K.; Brauch, Hiltrud; Brüning, Thomas; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Hartikainen, Jaana M.; Chenevix-Trench, Georgia; Van Dyck, Laurien; Janssen, Hilde; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Peterlongo, Paolo; Hallberg, Emily; Olson, Janet E.; Giles, Graham G.; Milne, Roger L.; Haiman, Christopher A.; Schumacher, Fredrick; Simard, Jacques; Dumont, Martine; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Grip, Mervi; Andrulis, Irene L.; Glendon, Gord; Devilee, Peter; Seynaeve, Caroline; Hooning, Maartje J.; Collée, Margriet; Cox, Angela; Cross, Simon S.; Shah, Mitul; Luben, Robert N.; Hamann, Ute; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Couch, Fergus J.; Yannoukakos, Drakoulis; Orr, Nick; Swerdlow, Anthony; Darabi, Hatef; Li, Jingmei; Czene, Kamila; Hall, Per; Easton, Douglas F.; Mattson, Johanna; Blomqvist, Carl; Aittomäki, Kristiina; Nevanlinna, Heli

    2016-01-01

    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk. PMID:27149063

  16. Biological effects and repair of damage photoinduced by a derivative of psoralen substituted at the 3,4 reaction site

    International Nuclear Information System (INIS)

    Averbeck, D.; Moustacchi, E.; Bisagni, E.

    1978-01-01

    A newly-synthesized linear psoralen derivative, 3-carbethoxypsoralen is shown to bind to yeast nucleic acids after 365-nm light treatment. As compared to 8-methoxypsoralen, a well-known bifunctional furocoumarin, 3-carbethoxypsoralen exhibits a high photoaffinity for DNA in vivo. Both compounds bind and photoreact more efficiently in vivo than in vitro. In contrast to 8-methoxypsoralen, 3-carbethoxypsoralen does not form cross-links in yeast DNA as demonstrated by heat denaturation-reassociation studies at least in the ranges of doses used. Thus 3-carbethoxypsoralen reacts as a monofunctional compound. Wild-type cells of Saccharomyces cerevisiae are 6 times more resistant to 3-carbethoxypsoralen than to 8-methoxypsoralen plus 365 nm light treatment in terms of lethal effect. In comparison to angelicin, another monofunctional (but angular) furocoumarin, 3-carbethoxypsoralen is more photoreactive. When the photoaffinity for DNA of 8-methoxypsoralen and 3-carbethoxypsoralen are considered in relation to photoinduced cell killing, it is clear that monoadducts are very efficiently repaired in wild-type cells. In contrast to the additivity obtained with 8-methoxypsoralen, a synergistic interaction of the two different repair pathways blocked by the rad 2 and the rad 9 mutation is observed after 3-carbethoxypsoralen plus 365 nm light. Dark holding experiments show that the excision repair function which is present in wild-type and radsub(9-4) cells is important for dark recovery. (Auth.)

  17. The toxic effects of flame retardants: a gene expression study in elucidating their carcinogenicity

    Science.gov (United States)

    Vagula, Mary; Al-Dhumani, Ali; Al-Dhumani, Sajaad; Mastro, Alexandra

    2013-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are flame retardants widely used in many commercial products, including building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams, and textiles. Although the specific toxic action of these chemicals is not clear, it is reported that they can cause serious damage to the nervous, reproductive, and endocrine systems. These chemicals are branded as "probable carcinogens" by Environmental Protection Agency (EPA). Therefore, this study is taken up to investigate the expression of genes namely, TP-53, RAD1, CRADD, and ATM, which are involved in apoptosis, DNA repair and cell cycle regulation. For this study human umbilical vein endothelial cells (HUVEC) are exposed to 5 μM of BDE-85 (a penta-BDE) and BDE-209 (deca-BDE). The results of this report reveal significant alteration in all the genes under investigation in BDE-85 and BDE-209 exposed cells. The BDE-85 induced responses are significantly more than BDE-209. These results emphasize the congener specific action of PBDEs on the expression of genes relevant to DNA repair and cell division of HUVEC cells.

  18. Positive Predictive Value of BI-RADS Categorization in an Asian Population

    Directory of Open Access Journals (Sweden)

    Yah-Yuen Tan

    2004-07-01

    Full Text Available The Breast Imaging Reporting And Data System (BI-RADS categorization of mammograms is useful in estimating the risk of malignancy, thereby guiding management decisions. However, in Asian women, in whom breast density is increased, the sensitivity of mammography is correspondingly lower. We sought to determine the positive predictive value of BI-RADS categorization for malignancy in our Asian population and, hence, its value in helping us to choose between the various modalities for breast biopsy. We retrospectively reviewed all patients with occult breast lesions detected on mammography or ultrasound who underwent needle-localization open breast biopsy (NLOB in our institution over a 6-year period. There were 470 biopsies in 427 patients; 16% of lesions were malignant. The positive predictive value of BI-RADS 4 and 5 lesions for cancer was 0.27 and 0.84, respectively. While most BI-RADS 5 mass lesions were invasive cancers, the majority of calcifications in this category were in situ carcinomas. We conclude that BI-RADS remains useful in aiding decision-making for biopsy in our Asian population. Based on positive predictive values, we recommend percutaneous breast biopsy for initial evaluation of lesions categorized as BI-RADS 4 or less. For BI-RADS 5 lesions with microcalcifications, open surgical biopsy as a diagnostic and therapeutic procedure may be more appropriate. In the case of a BI-RADS 5 lesion associated with a mass, initial percutaneous biopsy may be useful for diagnosis, followed by a planned single-stage surgical procedure as necessary.

  19. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  20. Inducible DNA-repair systems in yeast: competition for lesions.

    Science.gov (United States)

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate

  1. RAD25(SSL2), a yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability.

    NARCIS (Netherlands)

    E. Park (Robert); S.N. Guzder; M.H.M. Koken (Marcel); I. Jaspers-Dekker (Iris); G. Weeda (Geert); J.H.J. Hoeijmakers (Jan); S. Prakash; L. Prakash

    1992-01-01

    textabstractXeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified.

  2. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD).

    Science.gov (United States)

    Ramchander, N C; Ryan, N A J; Crosbie, E J; Evans, D G

    2017-04-05

    Constitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of the founder PMS2 mutation - NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11 and its associated cancers in this family. The proband is 30 years old and is alive today. She is of Pakistani ethnic origin and a product of consanguinity. She initially presented aged 24 with painless bleeding per-rectum from colorectal polyps and was referred to clinical genetics. Clinical examination revealed two café-au-lait lesions, lichen planus, and a dermoid cyst. Her sister had been diagnosed in childhood with an aggressive brain tumour followed by colorectal cancer. During follow up, the proband developed 37 colorectal adenomatous polyps, synchronous ovarian and endometrial adenocarcinomas, and ultimately a metachronous gastric adenocarcinoma. DNA sequencing of peripheral lymphocytes revealed a bi-allelic inheritance of the PMS2 mutation NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11. Ovarian tumour tissue demonstrated low microsatellite instability. To date, she has had a total abdominal hysterectomy, bilateral salpingo-oophorectomy, and a total gastrectomy. Aspirin and oestrogen-only hormone replacement therapy provide some chemoprophylaxis and manage postmenopausal symptoms, respectively. An 18-monthly colonoscopy surveillance programme has led to the excision of three high-grade dysplastic colorectal tubular adenomatous polyps. The proband's family pedigree displays multiple relatives with cancers including a likely case of 'true' Turcot syndrome. Constitutional mismatch repair

  3. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  4. SwissProt search result: AK120785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120785 J023010H23 (O12944) DNA repair and recombination protein RAD54-like (EC 3....6.1.-) (RAD54 homolog) (Putative recombination factor GdRad54) (Fragment) RAD54_CHICK 2e-24 ...

  5. SwissProt search result: AK122019 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK122019 J033111M24 (O12944) DNA repair and recombination protein RAD54-like (EC 3....6.1.-) (RAD54 homolog) (Putative recombination factor GdRad54) (Fragment) RAD54_CHICK 3e-15 ...

  6. SwissProt search result: AK111184 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111184 002-177-G09 (O12944) DNA repair and recombination protein RAD54-like (EC 3....6.1.-) (RAD54 homolog) (Putative recombination factor GdRad54) (Fragment) RAD54_CHICK 1e-110 ...

  7. SwissProt search result: AK109505 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109505 002-100-A02 (O12944) DNA repair and recombination protein RAD54-like (EC 3....6.1.-) (RAD54 homolog) (Putative recombination factor GdRad54) (Fragment) RAD54_CHICK 2e-15 ...

  8. Cloning of the DNA Repair Gene, Uvsf, by Transformation of Aspergillus Nidulans

    OpenAIRE

    Oza, K.; Kafer, E.

    1990-01-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr(+) uvs(+) cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when ...

  9. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation.

    Science.gov (United States)

    Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing

    2007-11-01

    Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.

  10. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    + rad group. Metallothionein is involved in the regulation of physiological metals and also has antioxidant activities. Among the drug metabolism genes examined, ATP binding cassette subfamily B (Abcb1b) gene expression increased more than 10-fold in both groups that received radiation treatments. This increased expression was also seen at the protein level. This ABC transporter carries many different compounds across cell membranes, including administered medications. The cytochrome P450 2E1 enzyme, a mixed-function oxidase that deactivates some medications and activates others, showed about a 2-fold increase in gene expression in both radiation-treated groups, with a trend toward increased expression at the protein level. Expression of epoxide hydrolase, which detoxifies polycyclic aromatic hydrocarbons, showed similar 2-fold increases. Among the DNA repair genes examined, expression of RAD51 was significantly down regulated (1.5 fold) in the radiation treated group. RAD51 is involved in repair of double-stranded DNA breaks. CONCLUSION This experiment used 2 different sources of physiological oxidative stress, administered separately and together, and examined their impacts on liver gene and protein expression. It is clear that significant changes occurred in expression of several genes and proteins in the radiation-treated animals. If the results from this ground analog of portions of the spaceflight environment hold true for the spaceflight environment itself, the physiological roles of the affected enzymes (drug transport and metabolism, redox homeostasis) could mean consequences in redox homeostasis or the pharmacokinetics of administered medications

  11. Genetic control of mitotic crossing over in yeast. 2. Influence of UV irradiation

    International Nuclear Information System (INIS)

    Zakharov, I.A.; Marfin, S.V.; Koval'tsova, S.V.; Kasinova, G.V.

    1982-01-01

    UV-induced crossing-over and general mitotic segregation of the following strains of Saccharomyces cerevisiae yeasts were studied: a wild-type diploid, diploids homozygous with respect to the radiosensitivity of rad 2, rad 15, rad 54, xrs 4, rad 2 rad 54, rad 15 rad 54. Wild-type diploids rad 2 and rad 15 have a high frequency of the induced mitotic crossing-over. Diploids rad 15, rad 54 can not cause UV-induced mitotic crossing-over. Reddish-pink and reddish-pink-white colonies ratio (the first appear if the crossing-over occurs during the first after the irradiation division, the second - during the second division) is 4.8:1 for the wild type, 1.6:1 for rad 2, and 1.1:1 for rad 15. Nonreciprocal mitotic segregation of high frequency was observed for the wild type rad 2, rad 15, xrs 4, and diploids rad 54, rad 2 rad 54, rad 15 rad 54 had a lower frequency. We suppose that after UV-irradiation there exist at least three types of repair in yeast diploid cells: excision repair, prereplication recombinating repair after the excision of dimers, and post-replication recombinating repair. Rad 2 and rad 15 mutations blow the first and second types, rad 54 mutation partially block the second and third parths. It seems that xrs 4 mutation does not block the recombinating capability but somehow changes the process of recombination in such a way that much nonreciprocal products recorded as seqregants are produced [ru

  12. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    2017-05-01

    Full Text Available Defective mismatch repair (MMR in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6, which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1, which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3 recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.

  13. Radiobiological basis of total body irradiation with different dose rate and fractionation: repair capacity of hemopoietic cells

    International Nuclear Information System (INIS)

    Song, C.W.; Kim, T.H.; Khan, F.M.; Kersey, J.H.; Levitt, S.H.

    1981-01-01

    Total body irradiation (TBI) followed by bone marrow transplantation is being used in the treatment of malignant or non-malignant hemopoietic disorders. It has been believed that the ability of hemopoietic cells to repair sublethal radiation damage is negligible. Therefore, several schools of investigators suggested that TBI in a single exposure at extremely low dose rate (5 rad/min) over several hours, or in several fractions in 2-3 days, should yield a higher therapeutic gain, as compared with a single exposure at a high dose rate (26 rad/min). We reviewed the existing data in the literature, in particular, the response of hemopoietic cells to fractionated doses of irradiation and found that the repair capacity of both malignant and non-malignant hemopoietic cells might be greater than has been thought. It is concluded that we should not underestimate the ability of hemopoietic cells to repair sublethal radiation damage in using TBI

  14. Genetic variation in a DNA double strand break repair gene in saudi population: a comparative study with worldwide ethnic groups.

    Science.gov (United States)

    Areeshi, Mohammed Yahya

    2013-01-01

    DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

  15. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma.

    Science.gov (United States)

    Hall, Geoffrey; Clarkson, Adele; Shi, Amanda; Langford, Eileen; Leung, Helen; Eckstein, Robert P; Gill, Anthony J

    2010-01-01

    Currently, testing for mismatch repair deficiency in colorectal cancers is initiated by performing immunohistochemistry with four antibodies (MLH1, PMS2, MSH2 and MSH6). If any one of these stains is negative the tumour is considered microsatellite unstable and, if clinical circumstances warrant it, the patient is offered genetic testing for Lynch's syndrome. Due to the binding properties of the mismatch repair heterodimer complexes, gene mutation and loss of MLH1 and MSH2 invariably result in the degradation of PMS2 and MSH6, respectively, but the converse is not true. We propose that staining for PMS2 and MSH6 alone will be sufficient to detect all cases of mismatch repair deficiency and should replace routine screening with all four antibodies. The electronic database of the department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia, was searched for all colorectal carcinomas on which a four panel immunohistochemical microsatellite instability screen was performed. An audit of the slides for concordant loss of MLH1-PMS2 and MSH2-MSH6 was then undertaken. Unusual or discordant cases were reviewed and, in some cases, re-stained to confirm the staining pattern. Of 344 cases of colorectal cancer which underwent four antibody immunohistochemistry, 104 displayed loss of at least one mismatch repair protein. Of these, 100 showed concordant mismatch repair loss (i.e., loss of MLH1 and PMS2 or loss of MSH2 and MSH6). The four discordant cases comprised two single negative cases (1 MSH6 negative/MSH2 positive case, 1 PMS2 negative/MLH1 positive) and two triple negative (both MLH1/PMS2/MSH6 negative). The microsatellite instability (MSI) group showed a relatively high median age (69.3 years) due to the departmental policy of testing all cases with possible MSI morphology regardless of age. The sensitivity and specificity of a two panel test comprised of PMS2 and MSH6, compared to a four panel test, is 100%. No false negatives or positives were

  16. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice.

    Directory of Open Access Journals (Sweden)

    Yulong Liang

    2010-01-01

    Full Text Available BRIT1 protein (also known as MCPH1 contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1(-/- mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1(-/- mice and mouse embryonic fibroblasts (MEFs were hypersensitive to gamma-irradiation. BRIT1(-/- MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1(-/- mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice.

  17. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    Science.gov (United States)

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-08

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    International Nuclear Information System (INIS)

    Yang, Hyun Suk; Park, Seong-Wook; Lee, Heuiran; Kim, Sung Jin; Lee, Won Woo; Yang, You-Jung; Moon, Dae Hyuk

    2004-01-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by 99m TcO 4 - scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10 7 , 2 x 10 8 or 1 x 10 9 plaque forming units (pfu)] or β-galactosidase gene (Rad-CMV-LacZ 1 x 10 9 pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of 99m TcO 4 - (1.85 MBq). An additional two rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS underwent 99m TcO 4 - scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of 99m TcO 4 - and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by 99m TcO 4 - scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of 99m TcO 4 - was retained in the liver (p 9 pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS (p 9 pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that 99m TcO 4 - scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in skeletal muscle of rats, non-invasively and quantitatively. (orig.)

  19. RadCat 2.0 User Guide.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.; Weiner, Ruth F.; Mills, George Scott; Hamp, Steve C.; O' Donnell, Brandon, M.; Orcutt, David J.; Heames, Terence J.; Hinojosa, Daniel

    2005-01-01

    This document provides a detailed discussion and a guide for the use of the RadCat 2.0 Graphical User Interface input file generator for the RADTRAN 5.5 code. The differences between RadCat 2.0 and RadCat 1.0 can be attributed to the differences between RADTRAN 5 and RADTRAN 5.5 as well as clarification for some of the input parameters. 3

  20. Tissue repair genes: the TiRe database and its implication for skin wound healing

    OpenAIRE

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.

    2016-01-01

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that ...

  1. Microsatellite Instability Use in Mismatch Repair Gene Sequence Variant Classification

    Directory of Open Access Journals (Sweden)

    Bryony A. Thompson

    2015-03-01

    Full Text Available Inherited mutations in the DNA mismatch repair genes (MMR can cause MMR deficiency and increased susceptibility to colorectal and endometrial cancer. Microsatellite instability (MSI is the defining molecular signature of MMR deficiency. The clinical classification of identified MMR gene sequence variants has a direct impact on the management of patients and their families. For a significant proportion of cases sequence variants of uncertain clinical significance (also known as unclassified variants are identified, constituting a challenge for genetic counselling and clinical management of families. The effect on protein function of these variants is difficult to interpret. The presence or absence of MSI in tumours can aid in determining the pathogenicity of associated unclassified MMR gene variants. However, there are some considerations that need to be taken into account when using MSI for variant interpretation. The use of MSI and other tumour characteristics in MMR gene sequence variant classification will be explored in this review.

  2. Modulation of radiation-induced base excision repair pathway gene expression by melatonin

    Directory of Open Access Journals (Sweden)

    Saeed Rezapoor

    2017-01-01

    Full Text Available Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162 were divided into 27 groups (n = 6 in each group including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1, Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05 in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.

  3. Molecular and functional characterization of a human ATM gene analogue at Arabidopsis thaliana; Caracterisation moleculaire et Fonctionnelle d'un Homologue du gene humain ATM chez Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, V.

    2001-12-15

    The human ATM gene, whose inactivation is responsible for the human disease ataxia telangiectasia is conserved throughout the Eukaryotes and plays an important role in the cellular responses to DNA damage, in particular to DNA double-strand breaks (DSBs). Here we describe the identification of an Arabidopsis thaliana homologue of ATM (AtATM), and the molecular and cytological characterization of plants, hereafter called atm, carrying a disrupting T-DNA insertion in this gene. AtATM covers a 32 kb region on chromosome 3. The AtATM transcript has a complex structure, is 12 kb long and formed by 79 exons. The transcriptional level of AtATM is very low in all the tissues tested, and does not vary after exposure to ionizing radiations (IR). In atm plants, the protein is not detected suggesting the mutants are null. The atm mutants are partially sterile. Aberrant segregation of chromosomes during meiosis I on both male and female sides account for this sterility. However, meiotic recombination frequency is normal. Mutant plants are also hypersensitive to gamma rays and methyl methane sulfonate, but not to UV-B, pointing to a specific defect of atm mutants in the response to DNA DSBs. In plants, ionizing radiations induce a strong, rapid and transient transcriptional activation of genes involved in the cellular response to or the repair of DSBs. This transcriptional regulation of AtRAD51, AtPARP1, atGR1 and AtL1G4 is lost in the atm mutants . The absence of AtRAD51 induction associated with ionizing radiation sensitivity suggest that AtAtm play an important function in DSB repair by homologous recombination. In addition we show that homologous intra-chromosomal recombination frequency is elevated in the mutant comparing to wild-type, with or without gamma irradiation. These results show the implication of AtAtm in the genomic stability. (author)

  4. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5′-DNA end

    Science.gov (United States)

    Sato, Koichi; Shimomuki, Mayo; Katsuki, Yoko; Takahashi, Daisuke; Kobayashi, Wataru; Ishiai, Masamichi; Miyoshi, Hiroyuki; Takata, Minoru; Kurumizaka, Hitoshi

    2016-01-01

    The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork. PMID:27694619

  5. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Tanaka, K.; Satokata, I.; Ogita, Z.; Uchida, T.; Okada, Y.

    1989-01-01

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene

  6. Molecular cloning and gene expression analysis of Ercc6l in Sika deer (Cervus nippon hortulorum.

    Directory of Open Access Journals (Sweden)

    Yupeng Yin

    Full Text Available BACKGROUND: One important protein family that functions in nucleotide excision repair (NER factors is the SNF2 family. A newly identified mouse ERCC6-like gene, Ercc6l (excision repair cross-complementing rodent repair deficiency, complementation group 6-like, has been shown to be another developmentally related member of the SNF2 family. METHODOLOGY/PRINCIPAL FINDINGS: In this study, Sika deer Ercc6l cDNA was first cloned and then sequenced. The full-length cDNA of the Sika deer Ercc6l gene is 4197 bp and contains a 3732 bp open reading frame that encodes a putative protein of 1243 amino acids. The similarity of Sika deer Ercc6l to Bos taurus Ercc6l is 94.05% at the amino acid sequence level. The similarity, however, is reduced to 68.42-82.21% when compared to Ercc6l orthologs in other mammals and to less than 50% compared to orthologs in Gallus gallus and Xenopus. Additionally, the expression of Ercc6l mRNA was investigated in the organs of fetal and adult Sika deer (FSD and ASD, respectively by quantitative RT-PCR. The common expression level of Ercc6l mRNA in the heart, liver, spleen, lung, kidney, and stomach from six different developmental stages of 18 Sika deer were examined, though the expression levels in each organ varied among individual Sika deer. During development, there was a slight trend toward decreased Ercc61 mRNA expression. The highest Ercc6l expression levels were seen at 3 months old in every organ and showed the highest level of detection in the spleen of FSD. The lowest Ercc6l expression levels were seen at 3 years old. CONCLUSIONS/SIGNIFICANCE: We are the first to successfully clone Sika deer Ercc6l mRNA. Ercc6l transcript is present in almost every organ. During Sika deer development, there is a slight trend toward decreased Ercc61 mRNA expression. It is possible that Ercc6l has other roles in embryonic development and in maintaining the growth of animals.

  7. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  8. RadCon: A Radiological Consequences Model

    International Nuclear Information System (INIS)

    Crawford, J.; Domel, R.U.

    2000-05-01

    RadCon estimates the dose received by user selected groups in the population from an accidental release of radionuclides to the environment. The exposure pathways considered are external exposure from the cloud and ground and internal exposure from inhalation and ingestion of contaminated food. Atmospheric dispersion modelling is carried out externally to RadCon.Given a two dimensional time varying air and ground concentration of radioactive elements, RadCon allows the user to: view the air and ground concentration over the affected area, select optional parameters and calculate the dose to people,display the results to the user, and change the parameter values. RadCon offers two user interfaces: 1) the standard graphical user interface which is started using Java DoseApp at the command line, or by setting up a shortcut to this command (particularly when RadCon is installed on a PC) and 2) the text based interface used to generate information for the model inter-comparison exercise . This is initiated using Java BIOMASS at the command line, or an equivalent shortcut. The text based interface was developed for research purposes and is not generally available. Appendices A, B and C provide a summary of instructions on setting up RadCon. This will generally be carried out by the computer support personnel

  9. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    Weeda, G.; van Ham, R.C.; Masurel, R.; Westerveld, A.; Odijk, H.; de Wit, J.; Bootsma, D.; van der Eb, A.J.; Hoeijmakers, J.H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  10. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg; Dziegielewski, Jaroslaw

    2005-01-01

    repair (HRR) system. Abrogation of Chk1 function with small interfering RNA or chemical antagonists inhibits HRR, leading to persistent unrepaired DNA double-strand breaks (DSBs) and cell death after replication inhibition with hydroxyurea or DNA-damage caused by camptothecin. After hydroxyurea treatment......-depleted cells failed to form RAD51 nuclear foci after exposure to hydroxyurea, and cells expressing a phosphorylation-deficient mutant RAD51(T309A) were hypersensitive to hydroxyurea. These results highlight a crucial role for the Chk1 signalling pathway in protecting cells against lethal DNA lesions...

  11. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta.

    Science.gov (United States)

    Patil, Shrikant; Moeys, Sara; von Dassow, Peter; Huysman, Marie J J; Mapleson, Daniel; De Veylder, Lieven; Sanges, Remo; Vyverman, Wim; Montresor, Marina; Ferrante, Maria Immacolata

    2015-11-14

    Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestral loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. Our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.

  12. Restoration of u.v.-induced excision repair in Xeroderma D cells transfected with the denV gene of bacteriophage T4

    International Nuclear Information System (INIS)

    Arrand, J.E.; Squires, S.; Bone, N.M.; Johnson, R.T.

    1987-01-01

    The heritable DNA repair defect in human Xeroderma D cells, resulting in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for dominant marker plus resistance to killing by u.v. light, were shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation were correlated with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. Results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell. (author)

  13. PI-RADS v2: Current standing and future outlook.

    Science.gov (United States)

    Smith, Clayton P; Türkbey, Barış

    2018-05-01

    The Prostate Imaging-Reporting and Data System (PI-RADS) was created in 2012 to establish standardization in prostate multiparametric magnetic resonance imaging (mpMRI) acquisition, interpretation, and reporting. In hopes of improving upon some of the PI-RADS v1 shortcomings, the PI-RADS Steering Committee released PI-RADS v2 in 2015. This paper reviews the accuracy, interobserver agreement, and clinical outcomes of PI-RADS v2 and comments on the limitations of the current literature. Overall, PI-RADS v2 shows improved sensitivity and similar specificity compared to PI-RADS v1. However, concerns exist regarding interobserver agreement and the heterogeneity of the study methodology.

  14. Impact of DNA repair genes polymorphism (XPD and XRCC1) on the risk of breast cancer in Egyptian female patients.

    Science.gov (United States)

    Hussien, Yousry Mostafa; Gharib, Amal F; Awad, Hanan A; Karam, Rehab A; Elsawy, Wael H

    2012-02-01

    The genes involved in DNA repair system play a crucial role in the protection against mutations. It has been hypothesized that functional deficiencies in highly conserved DNA repair processes resulting from polymorphic variation may increase genetic susceptibility to breast cancer (BC). The aim of the present study was to evaluate the association of genetic polymorphisms in 2 DNA repair genes, XPD (Asp312Asn) and XRCC1 (A399G), with BC susceptibility. We further investigated the potential combined effect of these DNA repair variants on BC risk. Both XPD (xeroderma pigmentosum group D) and XRCC1 (X-ray repair cross-complementing group 1) polymorphisms were characterized in 100 BC Egyptian females and 100 healthy women who had no history of any malignancy by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) method and PCR with confronting two-pair primers (PCR-CTPP), using DNA from peripheral blood in a case control study. Our results revealed that the frequencies of AA genotype of XPD codon 312 polymorphism were significantly higher in the BC patients than in the normal individuals (P ≤ 0.003), and did not observe any association between the XRCC1 Arg399Gln polymorphism and risk of developing BC. Also, no association between both XPD Asp312Asn and XRCC1 A399G polymorphisms and the clinical characteristics of disease. Finally, the combination of AA(XPD) + AG(XRCC1) were significantly associated with BC risk. Our results suggested that, XPD gene is an important candidate gene for susceptibility to BC. Also, gene-gene interaction between XPD(AA) + XRCC1(AG) polymorphism may be associated with increased risk of BC in Egyptian women.

  15. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy.

    Directory of Open Access Journals (Sweden)

    Ming Yin

    Full Text Available The repair of DNA double-strand breaks (DSBs is the major mechanism to maintain genomic stability in response to irradiation. We hypothesized that genetic polymorphisms in DSB repair genes may affect clinical outcomes among non-small cell lung cancer (NSCLC patients treated with definitive radio(chemotherapy. We genotyped six potentially functional single nucleotide polymorphisms (SNPs (i.e., RAD51 -135G>C/rs1801320 and -172G>T/rs1801321, XRCC2 4234G>C/rs3218384 and R188H/rs3218536 G>A, XRCC3 T241M/rs861539 and NBN E185Q/rs1805794 and estimated their associations with overall survival (OS and radiation pneumonitis (RP in 228 NSCLC patients. We found a predictive role of RAD51 -135G>C SNP in RP development (adjusted hazard ratio [HR] = 0.52, 95% confidence interval [CI], 0.31-0.86, P = 0.010 for CG/CC vs. GG. We also found that RAD51 -135G>C and XRCC2 R188H SNPs were independent prognostic factors for overall survival (adjusted HR = 1.70, 95% CI, 1.14-2.62, P = 0.009 for CG/CC vs. GG; and adjusted HR = 1.70; 95% CI, 1.02-2.85, P = 0.043 for AG vs. GG, respectively and that the SNP-survival association was most pronounced in the presence of RP. Our study suggests that HR genetic polymorphisms, particularly RAD51 -135G>C, may influence overall survival and radiation pneumonitis in NSCLC patients treated with definitive radio(chemotherapy. Large studies are needed to confirm our findings.

  16. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Dss1 interaction with Brh2 as a regulatory mechanism for recombinational repair

    DEFF Research Database (Denmark)

    Zhou, Qingwen; Kojic, Milorad; Cao, Zhimin

    2007-01-01

    Brh2, the BRCA2 ortholog in Ustilago maydis, enables recombinational repair of DNA by controlling Rad51 and is in turn regulated by Dss1. Interplay with Rad51 is conducted via the BRC element located in the N-terminal region of the protein and through an unrelated domain, CRE, at the C terminus....... Mutation in either BRC or CRE severely reduces functional activity, but repair deficiency of the brh2 mutant can be complemented by expressing BRC and CRE on different molecules. This intermolecular complementation is dependent upon the presence of Dss1. Brh2 molecules associate through the region...... overlapping with the Dss1-interacting domain to form at least dimer-sized complexes, which in turn, can be dissociated by Dss1 to monomer. We propose that cooperation between BRC and CRE domains and the Dss1-provoked dissociation of Brh2 complexes are requisite features of Brh2's molecular mechanism...

  18. denV gene of bacteriophage T4 restores DNA excision repair to mei-9 and mus201 mutants of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Banga, S.S.; Boyd, J.B.; Valerie, K.; Harris, P.V.; Kurz, E.M.; de Riel, J.K.

    1989-01-01

    The denV gene of bacteriophage T4 was fused to a Drosophila hsp70 (70-kDa heat shock protein) promoter and introduced into the germ line of Drosophila by P-element-mediated transformation. The protein product of that gene (endonuclease V) was detected in extracts of heat-shocked transformants with both enzymological and immunoblotting procedures. That protein restores both excision repair and UV resistance to mei-9 and mus201 mutants of this organism. These results reveal that the denV gene can compensate for excision-repair defects in two very different eukayotic mutants, in that the mus201 mutants are typical of excision-deficient mutants in other organisms, whereas the mei-9 mutants exhibit a broad pleiotropism that includes a strong meiotic deficiency. This study permits an extension of the molecular analysis of DNA repair to the germ line of higher eukaryotes. It also provides a model system for future investigations of other well-characterized microbial repair genes on DNA damage in the germ line of this metazoan organism

  19. Low dose radiation effects: an integrative european approach (Risc-Rad Project) coordinated by the Cea

    International Nuclear Information System (INIS)

    Sabatier, L.

    2006-01-01

    RISC-RAD (Radiosensitivity of Individuals and Susceptibility to Cancer induced by ionizing Radiations) is an Integrated Project funded by the European Commission under 6. Framework Programme / EURATOM. RISC-RAD started on 1. January 2004 for a duration of four years. Coordinated by Cea (Dr Laure Sabatier), it involves 11 European countries (Austria, Denmark, Finland, France, Germany, Ireland, Italy, the Netherlands, Spain, Sweden and the United Kingdom) and 29 research institutions. Objectives: Exposures to low and protracted doses of ionizing radiation are very frequent in normal living environment, at work places, in industry and in medicine. Effects of these exposures on human health cannot be reliably assessed by epidemiological methods, nor is thoroughly understood by biologists. RISC-RAD project proposes to help bridging the gap of scientific knowledge about these effects. To achieve this goal, a necessary key step is to understand the basic mechanisms by which radiation induces cancer. Studying this multistage process in an integrated way, the project offers a new biological approach characterised by and clear-cut and objective-driven scientific policy: the project is focused on the effects of low doses (less than 100 mSv) and protracted doses of radiation. It aims at identifying new parameters that take into account the differences in radiation responses between individuals. A group of modelers works closely with the experimental teams in order to better quantify the risks associated with low and protracted doses. Research work is divided into five work packages interacting closely with each other. WP1 is dedicated to DNA damage. Ionizing Radiation (IR) produce a broad spectrum of base modifications and DNA strand breaks of different kinds, among which double-strand breaks and 'clustered damage' which is thought to be a major feature in biological effectiveness of IR. The aim of Work Package 1 is to improve understanding of the initial DNA damage induced by

  20. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    Directory of Open Access Journals (Sweden)

    Emad A. Ahmed

    2015-12-01

    Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  1. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    International Nuclear Information System (INIS)

    Fonseca, A S; Magalhães, L A G; Mencalha, A L; Geller, M; Paoli, F

    2014-01-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA. (paper)

  2. RadVel: The Radial Velocity Modeling Toolkit

    Science.gov (United States)

    Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan

    2018-04-01

    RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.

  3. Regulation of rDNA stability by sumoylation

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2009-01-01

    Repair of DNA lesions by homologous recombination relies on the copying of genetic information from an intact homologous sequence. However, many eukaryotic genomes contain repetitive sequences such as the ribosomal gene locus (rDNA), which poses a risk for illegitimate recombination. Therefore, t......6 complex and sumoylation of Rad52, which directs DNA double-strand breaks in the rDNA to relocalize from within the nucleolus to the nucleoplasm before association with the recombination machinery. The relocalization before repair is important for maintaining rDNA stability. The focus...

  4. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Toyota, M; Sanchez-Cespedes, M; Capella, G; Peinado, M A; Watkins, D N; Issa, J P; Sidransky, D; Baylin, S B; Herman, J G

    2000-05-01

    O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that removes mutagenic and cytotoxic adducts from the O6 position of guanine. O6-methylguanine mispairs with thymine during replication, and if the adduct is not removed, this results in conversion from a guanine-cytosine pair to an adenine-thymine pair. In vitro assays show that MGMT expression avoids G to A mutations and MGMT transgenic mice are protected against G to A transitions at ras genes. We have recently demonstrated that the MGMT gene is silenced by promoter methylation in many human tumors, including colorectal carcinomas. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of K-ras mutations, we studied 244 colorectal tumor samples for MGMT promoter hypermethylation and K-ras mutational status. Our results show a clear association between the inactivation of MGMT by promoter hypermethylation and the appearance of G to A mutations at K-ras: 71% (36 of 51) of the tumors displaying this particular type of mutation had abnormal MGMT methylation, whereas only 32% (12 of 37) of those with other K-ras mutations not involving G to A transitions and 35% (55 of 156) of the tumors without K-ras mutations demonstrated MGMT methylation (P = 0.002). In addition, MGMT loss associated with hypermethylation was observed in the small adenomas, including those that do not yet contain K-ras mutations. Hypermethylation of other genes such as p16INK4a and p14ARF was not associated with either MGMT hypermethylation or K-ras mutation. Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to a particular genetic change in human cancer, specifically G to A transitions in the K-ras oncogene.

  5. Comparison of the reversibility of loci pet23 and lys2 after UV irradiation in the standard and UV-sensitive strains of Saccharomyces

    International Nuclear Information System (INIS)

    Vlckova, V.; Kovacova, V.

    1984-01-01

    Reversibility of the respiration-deficient locus pet23 and auxotrophic locus lys2 was followed in the standard (RAD1) and UV sensitive (rad1 to 2) strains of Saccharomyces cerevisiae, both after identical doses of UV radiation and at identical survival. By comparison of reversibility after treatment with identical doses of UV radiation a much higher reversibility of both loci in strain rad1 to 2 could be detected. A comparison of reversibility of the loci at identical survival of both strains showed that the reversibility of the pet23 locus is much higher in strain rad1 to 2, whereas reversibility of the lys2 locus is roughly identical in the two strains. Thus, the function of gene RAD1 in repair processes is apparently associated with ''error-free'' repair, both at low and high doses of ultraviolet radiation. (author)

  6. Molecular cloning and analysis of DNA repair gene from the radioresistant bacterium deinococcus radiodurans

    International Nuclear Information System (INIS)

    Du Zeji; Wang Mingsuo

    1998-12-01

    Deinococcus radiodurans (Dr) possesses a prominent ability to repair DNA injury induced by various DNA-damaging agents including mitomycin C (MC), ultraviolet light (UV) and ionizing radiation. A DNA repair mutant Dr KH3111 is a streptomycin resistant (Sm R ) derivative of KH311 which is generated by treatment with nitrosoguanidine and is sensitive to MC, 8-trimethyl-psoralen, UV and γ-ray irradiation. Gene affected by a mutation in the mutant is identified and its nucleotide sequence is determined. A complete open reading frame (ORF) which encompassed the KH3111 mutation region is found and tentatively designated as orf144b. The deduced amino acid (aa) sequence of orf144b consists of 284 aa and has no significant homology to other known proteins. The exact KH3111 mutation site is one nucleotide altered (G to A) in the sequence of orf144b in the mutant. The KH3111 mutation causes the substitution of Gly for Glu at aa position 149 of Orf144b. Survival measurements of a revertant KH3112 which was produced by transforming with DNA containing a part of the orf144b gene of KD8301 showed that the resistances to MC, UV and γ-ray in the revertant were fully restored at a level equal to the wild type. Thus, the orf144b gene required for the multiple-DNA-damaging agent resistance of Dr was designated with the name of pprA (Pleiotropic gene promoting DNA repair). This new gene can express in E. coli at very high level, and make the host E. coli resistant to MC, UV and γ-ray. The pprA gene does not express in normal Dr, but it can be induced to express by treatment with MC, UV and γ-ray. It was thought that the PprA polypeptide is a cytoplasmic protein because of the absence of characteristics found in the aa sequence of membrane proteins

  7. RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response

    International Nuclear Information System (INIS)

    Ghandhi, Shanaz A; Ponnaiya, Brian; Panigrahi, Sunil K; Hopkins, Kevin M; Cui, Qingping; Hei, Tom K; Amundson, Sally A; Lieberman, Howard B

    2014-01-01

    Radiation induced bystander effects are an important component of the overall response of cells to irradiation and are associated with human health risks. The mechanism responsible includes intra-cellular and inter-cellular signaling by which the bystander response is propagated. However, details of the signaling mechanism are not well defined. We measured the bystander response of Mrad9 +/+ and Mrad9 −/− mouse embryonic stem cells, as well as human H1299 cells with inherent or RNA interference-mediated reduced RAD9 levels after exposure to 1 Gy α particles, by scoring chromosomal aberrations and micronuclei formation, respectively. In addition, we used microarray gene expression analyses to profile the transcriptome of directly irradiated and bystander H1299 cells. We demonstrated that Mrad9 null enhances chromatid aberration frequency induced by radiation in bystander mouse embryonic stem cells. In addition, we found that H1299 cells with reduced RAD9 protein levels showed a higher frequency of radiation induced bystander micronuclei formation, compared with parental cells containing inherent levels of RAD9. The enhanced bystander response in human cells was associated with a unique transcriptomic profile. In unirradiated cells, RAD9 reduction broadly affected stress response pathways at the mRNA level; there was reduction in transcript levels corresponding to genes encoding multiple members of the UVA-MAPK and p38MAPK families, such as STAT1 and PARP1, suggesting that these signaling mechanisms may not function optimally when RAD9 is reduced. Using network analysis, we found that differential activation of the SP1 and NUPR1 transcriptional regulators was predicted in directly irradiated and bystander H1299 cells. Transcription factor prediction analysis also implied that HIF1α (Hypoxia induced factor 1 alpha) activation by protein stabilization in irradiated cells could be a negative predictor of the bystander response, suggesting that local hypoxic stress

  8. Molecular and functional characterization of a human ATM gene analogue at Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Garcia, V.

    2001-12-01

    The human ATM gene, whose inactivation is responsible for the human disease ataxia telangiectasia is conserved throughout the Eukaryotes and plays an important role in the cellular responses to DNA damage, in particular to DNA double-strand breaks (DSBs). Here we describe the identification of an Arabidopsis thaliana homologue of ATM (AtATM), and the molecular and cytological characterization of plants, hereafter called atm, carrying a disrupting T-DNA insertion in this gene. AtATM covers a 32 kb region on chromosome 3. The AtATM transcript has a complex structure, is 12 kb long and formed by 79 exons. The transcriptional level of AtATM is very low in all the tissues tested, and does not vary after exposure to ionizing radiations (IR). In atm plants, the protein is not detected suggesting the mutants are null. The atm mutants are partially sterile. Aberrant segregation of chromosomes during meiosis I on both male and female sides account for this sterility. However, meiotic recombination frequency is normal. Mutant plants are also hypersensitive to gamma rays and methyl methane sulfonate, but not to UV-B, pointing to a specific defect of atm mutants in the response to DNA DSBs. In plants, ionizing radiations induce a strong, rapid and transient transcriptional activation of genes involved in the cellular response to or the repair of DSBs. This transcriptional regulation of AtRAD51, AtPARP1, atGR1 and AtL1G4 is lost in the atm mutants . The absence of AtRAD51 induction associated with ionizing radiation sensitivity suggest that AtAtm play an important function in DSB repair by homologous recombination. In addition we show that homologous intra-chromosomal recombination frequency is elevated in the mutant comparing to wild-type, with or without gamma irradiation. These results show the implication of AtAtm in the genomic stability. (author)

  9. Genomics and radical mediated DNA damage: major differences between ionizing radiation and DNA-cleaving enediynes

    International Nuclear Information System (INIS)

    Cosgrove, J.P.; Begley, T.J.; Samson, L.D.; Dedon, P.C.

    2003-01-01

    While the evidence is strong for radical-mediated oxidative processes in the pathophysiology of cancer and aging, the mechanisms by which cells respond to oxidative stress have eluded definition. To this end, we have undertaken genomic studies comparing the response of S. cerevisiae to DNA-specific oxidizing agents, the enediynes calicheamicin (CAL), esperamicin (ESP), and neocarzinostatin (NCS), and the non-specific gamma-radiation (RAD). While RAD results in relatively indiscriminate oxidation of cellular molecules, the enediynes are highly specific to DNA and produce damage by a common mechanism involving radical-mediated oxidation of deoxyribose. Transcriptional profiling in response to these agents (80% survival; 15 min exposure; Affymetrix) revealed unexpected differences between RAD and the enediynes and among the three enediynes. Only 2 genes responded in common to all agents, while 9 genes were regulated in common for the 3 enediynes (no DNA repair genes altered in common). The limited common gene expression changes for the 3 enediynes may result from differences in deoxyribose oxidation chemistry, DNA and chromatin targets or the proportions of single- and double-strand DNA lesions. RAD produced a more robust response than the enediynes, altering expression of 195 and 52 genes by more than 2- and 5-fold, respectively, compared to 16-44 and *2 genes, respectively, for the enediynes. This suggests that the transcriptional response varies in intensity according to the number of cellular features affected by the toxin. Genes showing the strongest up-regulation with RAD: ribonucleotide reductase, multidrug resistance, DS break repair/RAD51, GSH transferase; strongly reduced gene expression: TEL1 (damage signaling), NAT2 (acetyltransferase). Genomic phenotyping studies, using a subset of the Research Genetics deletion library, revealed that loss of apn1, the major AP endonuclease, caused resistance to NCS, possibly due to reduced formation of protein-DNA cross

  10. New polymorphisms of Xeroderma Pigmentosum DNA repair genes in myelodysplastic syndrome.

    Science.gov (United States)

    Santiago, Sabrina Pinheiro; Junior, Howard Lopes Ribeiro; de Sousa, Juliana Cordeiro; de Paula Borges, Daniela; de Oliveira, Roberta Taiane Germano; Farias, Izabelle Rocha; Costa, Marília Braga; Maia, Allan Rodrigo Soares; da Nóbrega Ito, Mayumi; Magalhães, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2017-07-01

    The association between Xeroderma Pigmentosum DNA repair genes (XPA rs1800975, XPC rs2228000, XPD rs1799793 and XPF rs1800067) polymorphisms and myelodysplastic syndrome (MDS) have not been reported. To assess the functional role between these polymorphisms and MDS, we evaluated 189 samples stratified in two groups: 95 bone marrow samples from MDS patients and 94 from healthy elderly volunteers used as controls. Genotypes for all polymorphisms were identified in DNA samples in an allelic discrimination experiment by real-time polymerase chain reaction (qPCR). We also studied the mRNA expression of XPA and XPC genes to evaluate if its polymorphisms were functional in 53 RNAm MDS patients by qPCR methodologies. To the rs2228000 polymorphism, the CT and TT polymorphic genotype were associated with increased odds ratio (OR) of more profound cytopenia (hemoglobin and neutrophils count). To the rs1799793 polymorphism, we found that the GG homozygous wild-type genotype was associated with a decreased chance of developing MDS. We observed low expression of XPA in younger patients, in hypoplastic MDS and patients with abnormal karyotype when presented AG or AA polymorphic genotypes. We also found that there was a statistically significant interaction between the presence of micromegakaryocyte on down regulation of XPC regarding the CT heterozygous genotype of the rs1800975 polymorphism. Our results suggest that new functional polymorphisms of Xeroderma Pigmentosum DNA repair genes in MDS are related to its pathogenesis and prognosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. II-1 General regulatory guide for staff on duty; II-1 Opsti pravilnik za rad dezurnog osoblja

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    Personnel responsible for RA reactor operation is working in shifts. This regulatory guide describes in detail rights, tasks and responsibilities of each staff member in duty when operating the reactor under regular conditions, during start-up, during shutdown, during repair and maintenance shutdown periods. Rad reaktora odvija se po smenama. Ovaj pravilnik regulise prava, duznosti i odgovornost svakog od clanova tima u smeni pojedinacno u regularnim uslovima rada, prilikom remonta, u toku stajanja, dostizanja nominalne snage, zaustavljanja rada reaktora.

  12. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H

    2012-02-22

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  13. Long Term RadNet Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  14. Variations in mismatch repair genes and colorectal cancer risk and clinical outcome

    Czech Academy of Sciences Publication Activity Database

    Vymetálková, Veronika; Pardini, B.; Rosa, F.; Di Gaetano, C.; Novotný, J.; Levý, M.; Buchler, T.; Slyšková, Jana; Vodičková, Ludmila; Naccarati, Alessio; Vodička, Pavel

    2014-01-01

    Roč. 29, č. 4 (2014), s. 259-265 ISSN 0267-8357 R&D Projects: GA ČR GPP304/11/P715; GA ČR GAP304/10/1286; GA MZd NT12025 Institutional support: RVO:68378041 Keywords : colorectal cancer , , * mismatch repair genes * miRNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.793, year: 2014

  15. Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast.

    Directory of Open Access Journals (Sweden)

    Thomas A Ward

    Full Text Available Fanconi anemia (FA is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6. Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5'-3' exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA-related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair.

  16. Influence on DNA repair inhibitors on dominant lethal factors after gamma irradiation

    International Nuclear Information System (INIS)

    Engl, D.

    1978-01-01

    Experiments were performed in order to test the hypothesis of a correlation between ionizing radiation and DNA repair inhibition under in vivo conditions. In a biometrically planned dominant lethal test on mice, the repair inhibition on the male gametes by butazolidine, TWEEN 80 and vitamin A was studied after gamma irradiation at 20 rad/10 min. No effect was observed in the case of butazolidine and TWEEN 80, whereas the influence of a high concentration of vitamin A (1 million IE/kg) was just at the statistical significancy threshold. (G.G.)

  17. RadGenomics project

    Energy Technology Data Exchange (ETDEWEB)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu [National Inst. of Radiological Sciences, Chiba (Japan). Frontier Research Center] [and others

    2002-06-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  18. RadGenomics project

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu

    2002-01-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  19. A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes

    Science.gov (United States)

    Hansen, Maren F; Neckmann, Ulrike; Lavik, Liss A S; Vold, Trine; Gilde, Bodil; Toft, Ragnhild K; Sjursen, Wenche

    2014-01-01

    The purpose of this study was to develop a massive parallel sequencing (MPS) workflow for diagnostic analysis of mismatch repair (MMR) genes using the GS Junior system (Roche). A pathogenic variant in one of four MMR genes, (MLH1, PMS2, MSH6, and MSH2), is the cause of Lynch Syndrome (LS), which mainly predispose to colorectal cancer. We used an amplicon-based sequencing method allowing specific and preferential amplification of the MMR genes including PMS2, of which several pseudogenes exist. The amplicons were pooled at different ratios to obtain coverage uniformity and maximize the throughput of a single-GS Junior run. In total, 60 previously identified and distinct variants (substitutions and indels), were sequenced by MPS and successfully detected. The heterozygote detection range was from 19% to 63% and dependent on sequence context and coverage. We were able to distinguish between false-positive and true-positive calls in homopolymeric regions by cross-sample comparison and evaluation of flow signal distributions. In addition, we filtered variants according to a predefined status, which facilitated variant annotation. Our study shows that implementation of MPS in routine diagnostics of LS can accelerate sample throughput and reduce costs without compromising sensitivity, compared to Sanger sequencing. PMID:24689082

  20. Double silencing of relevant genes suggests the existence of the direct link between DNA replication/repair and central carbon metabolism in human fibroblasts.

    Science.gov (United States)

    Wieczorek, Aneta; Fornalewicz, Karolina; Mocarski, Łukasz; Łyżeń, Robert; Węgrzyn, Grzegorz

    2018-04-15

    Genetic evidence for a link between DNA replication and glycolysis has been demonstrated a decade ago in Bacillus subtilis, where temperature-sensitive mutations in genes coding for replication proteins could be suppressed by mutations in genes of glycolytic enzymes. Then, a strong influence of dysfunctions of particular enzymes from the central carbon metabolism (CCM) on DNA replication and repair in Escherichia coli was reported. Therefore, we asked if such a link occurs only in bacteria or it is a more general phenomenon. Here, we demonstrate that effects of silencing (provoked by siRNA) of expression of genes coding for proteins involved in DNA replication and repair (primase, DNA polymerase ι, ligase IV, and topoisomerase IIIβ) on these processes (less efficient entry into the S phase of the cell cycle and decreased level of DNA synthesis) could be suppressed by silencing of specific genes of enzymes from CMM. Silencing of other pairs of replication/repair and CMM genes resulted in enhancement of the negative effects of lower expression levels of replication/repair genes. We suggest that these results may be proposed as a genetic evidence for the link between DNA replication/repair and CMM in human cells, indicating that it is a common biological phenomenon, occurring from bacteria to humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hybridization Capture Using RAD Probes (hyRAD, a New Tool for Performing Genomic Analyses on Collection Specimens.

    Directory of Open Access Journals (Sweden)

    Tomasz Suchan

    Full Text Available In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD or performing size selection of the resulting fragments (in the case of single-digest RAD. Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD. In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites

  2. DNA repair in Mycobacterium tuberculosis revisited.

    Science.gov (United States)

    Dos Vultos, Tiago; Mestre, Olga; Tonjum, Tone; Gicquel, Brigitte

    2009-05-01

    Our understanding of Mycobacterium tuberculosis DNA repair mechanisms is still poor compared with that of other bacterial organisms. However, the publication of the first complete M. tuberculosis genome sequence 10 years ago boosted the study of DNA repair systems in this organism. A first step in the elucidation of M. tuberculosis DNA repair mechanisms was taken by Mizrahi and Andersen, who identified homologs of genes involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes required for nucleotide excision repair, base excision repair, recombination, and SOS repair and mutagenesis were identified. Notably, no homologs of genes involved in mismatch repair were identified. Novel characteristics of the M. tuberculosis DNA repair machinery have been found over the last decade, such as nonhomologous end joining, the presence of Mpg, ERCC3 and Hlr - proteins previously presumed to be produced exclusively in mammalian cells - and the recently discovered bifunctional dCTP deaminase:dUTPase. The study of these systems is important to develop therapeutic agents that can counteract M. tuberculosis evolutionary changes and to prevent adaptive events resulting in antibiotic resistance. This review summarizes our current understanding of the M. tuberculosis DNA repair system.

  3. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H; Frykholm, Karolin; Reymer, Anna; Renodon-Corniè re, Axelle; Takahashi, Masayuki; Nordé n, Bengt

    2012-01-01

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated

  4. Using a butterflyfish genome as a general tool for RAD-Seq studies in specialized reef fish

    KAUST Repository

    DiBattista, Joseph; Saenz Agudelo, Pablo; Piatek, Marek J.; Wang, Xin; Aranda, Manuel; Berumen, Michael L.

    2017-01-01

    Data from a large-scale restriction site associated DNA (RAD-Seq) study of nine butterflyfish species in the Red Sea and Arabian Sea provided a means to test the utility of a recently published draft genome (Chaetodon austriacus) and assess apparent bias in this method of isolating nuclear loci. We here processed double-digest restriction-site (ddRAD) associated DNA sequencing data to identify single nucleotide polymorphism (SNP) markers and their associated function with and without our reference genome to see if it improves the quality of RAD-Seq markers. Our analyses indicate (1) a modest gap between the number of non-annotated versus annotated SNPs across all species, (2) an advantage of using genomic resources for closely related but not distantly related butterflyfish species based on the ability to assign putative gene function to SNPs, and (3) an enrichment of genes among sister butterflyfish taxa related to calcium transmembrane transport and binding. The latter result highlights the potential for this approach to reveal insights into adaptive mechanisms in populations inhabiting challenging coral reef environments such as the Red Sea, Arabian Sea, and Arabian Gulf with further study.

  5. Using a butterflyfish genome as a general tool for RAD-Seq studies in specialized reef fish

    KAUST Repository

    DiBattista, Joseph

    2017-02-25

    Data from a large-scale restriction site associated DNA (RAD-Seq) study of nine butterflyfish species in the Red Sea and Arabian Sea provided a means to test the utility of a recently published draft genome (Chaetodon austriacus) and assess apparent bias in this method of isolating nuclear loci. We here processed double-digest restriction-site (ddRAD) associated DNA sequencing data to identify single nucleotide polymorphism (SNP) markers and their associated function with and without our reference genome to see if it improves the quality of RAD-Seq markers. Our analyses indicate (1) a modest gap between the number of non-annotated versus annotated SNPs across all species, (2) an advantage of using genomic resources for closely related but not distantly related butterflyfish species based on the ability to assign putative gene function to SNPs, and (3) an enrichment of genes among sister butterflyfish taxa related to calcium transmembrane transport and binding. The latter result highlights the potential for this approach to reveal insights into adaptive mechanisms in populations inhabiting challenging coral reef environments such as the Red Sea, Arabian Sea, and Arabian Gulf with further study.

  6. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    -PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor......-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA......, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA...

  7. Ultrasonographic characteristics and BI-RADS-US classification of BRCA1 mutation-associated breast cancer in Guangxi, China.

    Science.gov (United States)

    Li, Cheng; Liu, Junjie; Wang, Sida; Chen, Yuanyuan; Yuan, Zhigang; Zeng, Jian; Li, Zhixian

    2015-01-01

    To retrospectively analyze and compare the ultrasonographic characteristics and BI-RADS-US classification between patients with BRCA1 mutation-associated breast cancer and those without BRCA1 gene mutation in Guangxi, China. The study was performed in 36 lesions from 34 BRCA1 mutation-associated breast cancer patients. A total of 422 lesions from 422 breast cancer patients without BRCA1 mutations served as control group. The comparison of the ultrasonographic features and BI-RADS-US classification between two the groups were reviewed. More complex inner echo was disclosed in BRCA1 mutation-associated breast cancer patients (x(2) = 4.741, P = 0.029). The BI-RADS classification of BRCA1 mutation-associated breast cancer was lower (U = 6094.0, P = 0.022). BRCA1 mutation-associated breast cancer frequently displays as microlobulated margin and complex echo. It also shows more benign characteristics in morphology, and the BI-RADS classification is prone to be underestimated.

  8. Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma.

    Science.gov (United States)

    Stark, Andreas M; Doukas, Alexander; Hugo, Heinz-Herrmann; Hedderich, Jürgen; Hattermann, Kirsten; Maximilian Mehdorn, H; Held-Feindt, Janka

    2015-02-01

    Methylated O6-methylguanin-DNA-methytransferase (MGMT) promoter methylation is associated with survival in patients with glioblastoma. Current evidence suggests that further mismatch repair genes play a pivotal role in the tumor response to treatment. Candidate genes are MLH1, MSH2, and MSH6. Formerly, we found evidence of prognostic impact of MLH1 and MSH6 immunohistochemical expression in a small series of patients with initial glioblastoma. Two hundred and eleven patients were included who underwent macroscopically total removal of primary glioblastoma and at least one re-craniotomy for recurrence. Immunohistochemical staining was performed on paraffin-embedded specimens of initial tumors with specific antibodies against MLH1, MSH2, and MSH6. RESULTS were compared to the Ki67 proliferation index and patient survival. Additionally, fresh frozen samples from 16 paired initial and recurrent specimens were examined using real-time reverse transcription polymerase chain reaction (RT-PCR) with specific primers against MLH1, MSH2, and MSH6. RESULTS were compared to MGMT status and survival. (1) Immunohistochemical expression of MSH6 was significantly associated with the Ki67 proliferation index (PMLH1, MLH2, and MSH6 over treatment combined with lacking MGMT methylation. In another two patients, decreased MLH1, MSH2, and MSH6 expression was observed in combination with MGMT promoter methylation. Our data indicate that there may be glioblastoma patient subgroups characterized by MMR-expression changes beyond MGMT promoter methylation. The immunohistochemical expression of MLH1, MSH2, and MSH6 in initial glioblastoma is not associated with patient survival.

  9. Stem Cells and Gene Therapy for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, surgeons try to promote a natural fibrocartilaginous response by using marrow stimulating techniques, such as microfracture, abrasion arthroplasty, and Pridie drilling, with the aim of reducing swelling and pain and improving joint function of the patients. These procedures have demonstrated to be clinically useful and are usually considered as first-line treatment for focal cartilage defects. However, fibrocartilage presents inferior mechanical and biochemical properties compared to normal hyaline articular cartilage, characterized by poor organization, significant amounts of collagen type I, and an increased susceptibility to injury, which ultimately leads to premature osteoarthritis (OA. Therefore, the aim of future therapeutic strategies for articular cartilage regeneration is to obtain a hyaline-like cartilage repair tissue by transplantation of tissues or cells. Further studies are required to clarify the role of gene therapy and mesenchimal stem cells for management of cartilage lesions.

  10. Performance of the RAD-57 pulse CO-oximeter compared with standard laboratory carboxyhemoglobin measurement.

    Science.gov (United States)

    Touger, Michael; Birnbaum, Adrienne; Wang, Jessica; Chou, Katherine; Pearson, Darion; Bijur, Polly

    2010-10-01

    We assess agreement between carboxyhemoglobin levels measured by the Rad-57 signal extraction pulse CO-oximeter (RAD), a Food and Drug Administration-approved device for noninvasive bedside measurement, and standard laboratory arterial or venous measurement in a sample of emergency department (ED) patients with suspected carbon monoxide poisoning. The study was a cross-sectional cohort design using a convenience sample of adult and pediatric ED patients in a Level I trauma, burn, and hyperbaric oxygen referral center. Measurement of RAD carboxyhemoglobin was performed simultaneously with blood sampling for laboratory determination of carboxyhemoglobin level. The difference between the measures for each patient was calculated as laboratory carboxyhemoglobin minus carboxyhemoglobin from the carbon monoxide oximeter. The limits of agreement from a Bland-Altman analysis are calculated as the mean of the differences between methods ±1.96 SDs above and below the mean. Median laboratory percentage carboxyhemoglobin level was 2.3% (interquartile range 1 to 8.5; range 0% to 38%). The mean difference between laboratory carboxyhemoglobin values and RAD values was 1.4% carboxyhemoglobin (95% confidence interval [CI] 0.2% to 2.6%). The limits of agreement of differences of measurement made with the 2 devices were -11.6% and 14.4% carboxyhemoglobin. This range exceeded the value of ±5% carboxyhemoglobin defined a priori as clinically acceptable. RAD correctly identified 11 of 23 patients with laboratory values greater than 15% carboxyhemoglobin (sensitivity 48%; 95% CI 27% to 69%). There was one case of a laboratory carboxyhemoglobin level less than 15%, in which the RAD device gave a result greater than 15% (specificity of RAD 96/97=99%; 95% CI 94% to 100%). In the range of carboxyhemoglobin values measured in this sample, the level of agreement observed suggests RAD measurement may not be used interchangeably with standard laboratory measurement. Copyright © 2010 American

  11. Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study

    International Nuclear Information System (INIS)

    Conde, João; Silva, Susana N; Azevedo, Ana P; Teixeira, Valdemar; Pina, Julieta Esperança; Rueff, José; Gaspar, Jorge F

    2009-01-01

    MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility. We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls) to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH). Using unconditional logistic regression we found that MLH3 (L844P, G>A) polymorphism GA (Leu/Pro) and AA (Pro/Pro) genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95) (p = 0.03) and OR = 0.62 (0.41-0.94) (p = 0.03), respectively. Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: MSH3 Ala1045Thr/MSH6 Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83), p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49), p = 0.01], GG/AA [OR = 2.11 (1.12-3,98), p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15), p = 0.02] all associated with an increased risk for breast cancer. It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results

  12. Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study

    Directory of Open Access Journals (Sweden)

    Pina Julieta

    2009-09-01

    Full Text Available Abstract Background MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility. Methods We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH. Results Using unconditional logistic regression we found that MLH3 (L844P, G>A polymorphism GA (Leu/Pro and AA (Pro/Pro genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95 (p = 0.03 and OR = 0.62 (0.41-0.94 (p = 0.03, respectively. Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: MSH3 Ala1045Thr/MSH6 Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83, p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49, p = 0.01], GG/AA [OR = 2.11 (1.12-3,98, p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15, p = 0.02] all associated with an increased risk for breast cancer. Conclusion It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results.

  13. Association between polymorphisms at promoters of XRCC5 and XRCC6 genes and risk of breast cancer.

    Science.gov (United States)

    Rajaei, Mehrdad; Saadat, Iraj; Omidvari, Shahpour; Saadat, Mostafa

    2014-04-01

    Variation in DNA repair genes is one of the mechanisms that may lead to variation in DNA repair capacity. Ku, a heterodimeric DNA-binding complex, is directly involved in repair of DNA double-strand breaks. Ku consists of two subunits, Ku70 and Ku80, which are encoded by the XRCC6 and XRCC5 genes, respectively. In the present study, we investigated whether common genetic variant in variable number of tandem repeats (VNTR) XRCC5 and T-991C XRCC6 was associated with an altered risk of breast cancer. The present study included 407 females with breast cancer and 395 age frequency-matched controls which were randomly selected from the healthy female blood donors. The XRCC5 and XRCC6 polymorphisms were determined using PCR-based methods. For XRCC5 polymorphism, in comparison with the 1R/1R genotype, the 0R/0R genotype increased breast cancer risk (OR 9.55, 95%CI 1.19-76.64, P = 0.034). The 1R/3R genotype compared with 1R/1R genotype decreased the risk of breast cancer (Fisher's exact test P = 0.015). There was no association between T-991C polymorphism of XRCC6 and breast cancer risk. Mean of age at diagnosis of breast cancer for 0, 1, 2, 3, and >4 repeat in XRCC5 were 39.2, 41.9, 44.3, 45.8, and 47.3 years, respectively. The Kaplan-Meier survival analysis revealed that the number of repeat was associated with age at diagnosis of breast cancer (log rank statistic = 13.90, df = 4, P = 0.008). The findings of the present study revealed that either breast cancer risk or age at diagnosis of breast cancer was associated with the VNTR polymorphism at promoter region of XRCC5.

  14. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, W.; Kleijer, W.J.; Bootsma, D.; Hoeijmakers, J.H.J.; Weeda, G. (Erasmus Univ., Rotterdam (Netherlands)); Scott, R.J.; Rodgers, S.; Mueller, H.J. (Univ. Hospital, Basel (Switzerland)); Cole, J.; Arlett, C.F. (Univ. of Sussex, Brighton (United Kingdom))

    1994-02-01

    The human DNA excision repair gene ERCC3 specifically corrects the nucleotide excision repair (NER) defect of xeroderma pigmentosum (XP) complementation group B. In addition to its function in NER, the ERCC3 DNA helicase was recently identified as one of the components of the human BTF2/TFIIH transcription factor complex, which is required for initiation of transcription of class II genes. To date, a single patient (XP11BE) has been assigned to this XP group B (XP-B), with the remarkable conjunction of two autosomal recessive DNA repair deficiency disorders: XP and Cockayne syndrome (CS). The intriguing involvement of the ERCC3 protein in the vital process of transcription may provide an explanation for the rarity, severity, and wide spectrum of clinical features in this complementation group. Here the authors report the identification of two new XP-B patients: XPCS1BA and XPCS2BA (siblings), by microneedle injection of the cloned ERCC3 repair gene as well as by cell hybridization. Molecular analysis of the ERCC3 gene in both patients revealed a single base substitution causing a missense mutation in a region that is completely conserved in yeast, Drosophila, mouse, and human ERCC3. As in patient XP11BE, the expression of only one allele (paternal) is detected. The mutation causes a virtually complete inactivation of the NER function of the protein. Despite this severe NER defect, both patients display a late onset of neurologic impairment, mild cutaneous symptoms, and a striking absence of skin tumors even at an age of >40 years. Analysis of the frequency of hprt[sup [minus

  15. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. (Argonne National Lab., IL (United States)); Libertin, C.R. (Loyola Univ., Maywood, IL (United States))

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  16. Decreased uv mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Hinkle, D.; Prakash, S.

    1978-01-01

    A DNA replication mutant of yeast, cdc8, was found to decrease uv-induced reversion of lys2-1, arg4-17, tryl and ural. This effect was observed with all three alleles of cdc8 tested. Survival curves obtained following uv irradiation in cdc8 rad double mutants show that cdc8 is epistatic to rad6, as well as to rad1; cdc8 rad51 double mutants seem to be more sensitive than the single mutants. Since uv-induced reversion in cdc8 rad1 and cdc8 rad51 double mutants is like that of the cdc8 single mutants, we conclude that CDC8 plays a direct role in error-prone repair. To test whether CDC8 codes for a DNA polymerase, we have purified both DNA polymerase I and DNA polymerase II from cdc8 and CDC+ cells. The purified DNA polymerases from cdc8 were no more heat labile than those from CDC+, suggesting that CDC8 is not a structural gene for either enzyme

  17. Development and application of the Chinese adult female computational phantom Rad-HUMAN

    International Nuclear Information System (INIS)

    Wu, Yican; Cheng, Mengyun; Wang, Wen; Fan, Yanchang; Zhao, Kai; He, Tao; Pei, Xi; Shang, Leiming; Chen, Chaobin; Long, Pengcheng; Cao, Ruifen; Wang, Guozhong; Zhou, Shaoheng; Yu, Shengpeng; Hu, Liqin; Zeng, Q.

    2013-01-01

    Rad-HUMAN is a whole-body numerical phantom of a Chinese adult woman which contains 46 organs and tissues and was created by MCAM6 software using the color photographs of the Chinese Visible Human dataset. This dataset was obtained from a 22-year old Chinese female cadaver judged to represent normal human anatomy as much as possible. The density and elemental composition recommended in the ICRP Publication 89 and in the ICRU report 44 were assigned to the organ and tissue in Rad-HUMAN for radiation protection purpose. The last step was to implement the anatomical data into a Monte Carlo code. Rad-HUMAN contains more than 28.8 billion tiny volume units, which produces an accurately whole-body numerical phantom of a Chinese adult female

  18. Assessment of single nucleotide polymorphisms in screening 52 DNA repair and cell cycle control genes in Fanconi anemia patients

    Directory of Open Access Journals (Sweden)

    Petrović Sandra

    2015-01-01

    Full Text Available Fanconi anemia (FA is a rare genetically heterogeneous disorder associated with bone marrow failure, birth defects and cancer susceptibility. Apart from the disease- causing mutations in FANC genes, the identification of specific DNA variations, such as single nucleotide polymorphisms (SNPs, in other candidate genes may lead to a better clinical description of this condition enabling individualized treatment with improvement of the prognosis. In this study, we have assessed 95 SNPs located in 52 key genes involved in base excision repair (BER, nucleotide excision repair (NER, mismatch repair (MMR, double strand break (DSB repair and cell cycle control using a DNA repair chip (Asper Biotech, Estonia which includes most of the common variants for the candidate genes. The SNP genotyping was performed in five FA-D2 patients and in one FA-A patient. The polymorphisms studied were synonymous (n=10, nonsynonymous (missense (n=52 and in non-coding regions of the genome (introns and 5 ‘and 3’ untranslated regions (UTR (n=33. Polymorphisms found at the homozygous state are selected for further analysis. Our results have shown a significant inter-individual variability among patients in the type and the frequency of SNPs and also elucidate the need for further studies of polymorphisms located in ATM, APEX APE 1, XRCC1, ERCC2, MSH3, PARP4, NBS1, BARD1, CDKN1B, TP53 and TP53BP1 which may be of great importance for better clinical description of FA. In addition, the present report recommends the use of SNPs as predictive and prognostic genetic markers to individualize therapy of FA patients. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  19. Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings

    Science.gov (United States)

    Hassler, Donald M.; Norbury, John W.; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) (Hassler et al., 2012; Zeitlin et al., 2016) onboard the Mars Science Laboratory (MSL) Curiosity rover (Grotzinger et al., 2012) is a sophisticated charged and neutral particle radiation analyzer developed by an international team of scientists and engineers from Southwest Research Institute in Boulder, Colorado as the leading institution, the University of Kiel and the German Aerospace Center in Cologne, Germany. RAD is a compact, powerful instrument capable of distinguishing between ionizing particles and neutral particles and providing neutron, gamma, and charged particle spectra from protons to iron as well as absorbed dose measurements in tissue-equivalent material. During the 6 month cruise to Mars, inside the MSL spacecraft, RAD served as a proxy to validate models of the radiation levels expected inside a spacecraft that future astronauts might experience (Zeitlin et al., 2013). RAD was turned on one day after the landing on August 7, 2012, exactly 100 years to the day after the discovery of cosmic rays on Earth by Victor Hess. These measurements are the first of their kind on the surface of another planet (Hassler et al., 2014), and the radiation data collected by RAD on the surface of Mars will inform projections of crew health risks and the design of protective surface habitats and other countermeasures for future human missions in the coming decades.

  20. Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer

    International Nuclear Information System (INIS)

    Carles, Joan; Monzo, Mariano; Amat, Marta; Jansa, Sonia; Artells, Rosa; Navarro, Alfons; Foro, Palmira; Alameda, Francesc; Gayete, Angel; Gel, Bernat; Miguel, Maribel; Albanell, Joan; Fabregat, Xavier

    2006-01-01

    Purpose: Polymorphisms in DNA repair genes can influence response to radiotherapy. We analyzed single-nucleotide polymorphisms (SNP) in nine DNA repair genes in 108 patients with head-and-neck cancer (HNSCC) who had received radiotherapy only. Methods and Materials: From May 1993 to December 2004, patients with Stage I and II histopathologically confirmed HNSCC underwent radiotherapy. DNA was obtained from paraffin-embedded tissue, and SNP analysis was performed using a real-time polymerase chain reaction allelic discrimination TaqMan assay with minor modifications. Results: Patients were 101 men (93.5%) and 7 (6.5%) women, with a median age of 64 years (range, 40 to 89 years). Of the patients, 76 (70.4%) patients were Stage I and 32 (29.6%) were Stage II. The XPF/ERCC1 SNP at codon 259 and XPG/ERCC5 at codon 46 emerged as significant predictors of progression (p 0.00005 and 0.049, respectively) and survival (p = 0.0089 and 0.0066, respectively). Similarly, when variant alleles of XPF/ERCC1, XPG/ERCC5 and XPA were examined in combination, a greater number of variant alleles was associated with shorter time to progression (p = 0.0003) and survival (p 0.0002). Conclusions: Genetic polymorphisms in XPF/ERCC1, XPG/ERCC5, and XPA may significantly influence response to radiotherapy; large studies are warranted to confirm their role in HNSCC

  1. Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins

    International Nuclear Information System (INIS)

    Krawczyk, P. M.; Stap, C.; Van Oven, C.; Hoebe, R.; Aten, J. A.

    2006-01-01

    For efficient repair of DNA double strand breaks (DSBs) cells rely on a process that involves the Mre11/Rad50/Nbs1 complex, which may help to protect non-repaired DNA ends from separating until they can be rejoined by DNA repair proteins. It has been observed that as a secondary effect, this process can lead to unintended clustering of multiple, initially separate, DSB-containing chromosome domains. This work demonstrates that neither inactivation of the major repair proteins XRCC3 and the DNA-dependent protein kinase (DNA-PK) nor inhibition of DNA-PK by vanillin influences the aggregation of DSB-containing chromosome domains. (authors)

  2. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage

    International Nuclear Information System (INIS)

    Park, Jung Wook; Nickel, Kwangok P.; Torres, Alexandra D.; Lee, Denis; Lambert, Paul F.; Kimple, Randall J.

    2014-01-01

    Background and purpose: Patients with human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV−) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV− HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. Material and methods: Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. Results: HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. Conclusions: Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV− HNC

  3. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2-ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Ko, Jen-Chung; Tsai, Min-Shao; Weng, Shao-Hsing; Kuo, Ya-Hsun; Chiu, Yu-Fan; Lin, Yun-Wei

    2011-01-01

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC) cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: → Curcumin downregulates MKK-ERK-mediated Rad51 expression. → Curcumin enhances mitomycin C-induced cytotoxicity. → Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. → Rad51 inhibition enhances the chemosensitization of

  4. Photodetachment and UV-Vis spectral properties of Cl2rad -·nHO clusters: Extrapolation to bulk

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2008-03-01

    Vertical detachment energy (VDE) and UV-Vis spectra of Cl2rad -·nHO clusters ( n = 1-11) are reported based on first principle electronic structure calculations. VDE of the hydrated clusters are calculated following second order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311++G(d,p) set of basis function. The excess electron in these hydrated clusters is mainly localized over the solute Cl atoms. A linear relationship is obtained for VDE vs. ( n + 2.6) -1/3 and bulk VDE of Cl2rad - aqueous solution is calculated as 10.61 eV at CCSD(T) level of theory. UV-Vis spectra of these hydrated clusters are calculated applying CI with single electron (CIS) excitation procedure. Simulated UV-Vis spectra of Cl2rad -·10HO cluster is noted to be in excellent agreement with the reported spectra of Cl2rad - (aq) system, λmax for Cl2rad -·11HO system is calculated to be red shifted though.

  5. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  6. RadWorks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The RadWorks project's overarching objective is the maturation and demonstration of affordable, enabling solutions to the radiation-related challenges presented to...

  7. Postreplication repair gap filling in an Escherichia coli strain deficient in dnaB gene product

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1975-01-01

    Gaps in daughter-strand DNA synthesized after exposure of Escherichia coli E279 to ultraviolet light are filled during reincubation at 30 0 C for 20 min. Escherichia coli E279 is phenotypically DnaB - when incubated at 43 0 C. Cells incubated at 43 0 C were tested for their ability to complete postreplication repair gap filling. It is concluded that the dnaB gene product is essential for postreplication repair gap filling and that the inhibition seen is not initially the result of degradation

  8. A comparison of the radiosensitivity of stationary, exponential and G1 phase wild type and repair deficient yeast cultures: supporting evidence for stationary phase yeast cells being in G0

    International Nuclear Information System (INIS)

    Tippins, R.S.; Parry, J.M.

    1982-01-01

    The main points to emerge from this comparison of the radiosensitivity of stationary, exponential and G 1 phase yeast cultures were: (1) In wild type yeast cultures, G 1 cells were the most sensitive to the lethal effects of X-rays, exponential phase cells were the most resistant and stationary phase cells were intermediate in sensitivity. (2) With the excision-repair-defective strain D61-3 (rad 3) stationary phase cells were more resistant than exponential cells with G 1 cells again being most sensitive. (3) The rad 50 gene present in JD50 had a marked effect on the X-ray inactivation response of this strain. In the presence of the defective rad 50 allele, exponential phase cells were as sensitive as G 1 phase cells, with stationary phase cells being more resistant than either. (4) There were marked differences in sensitivity between stationary phase and G 1 phase cells. These differences, along with other physiological differences reported by other workers, lead the authors to suggest that stationary phase cells can be better described as being in G 0 phase, i.e. a stage which is outside the normal mitotic cell cycle of an exponential culture. (author)

  9. A expressão de genes reparadores do DNA nos tumores sincrônicos de câncer colorretal esporádico DNA repair gene expression in synchronic tumors of sporadic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Igor Proscurshim

    2007-03-01

    Full Text Available RACIONAL: Um dos mecanismos genéticos presentes em aproximadamente 80% dos pacientes com síndrome hereditária não-polipóide do câncer colorretal (HNPCC são os defeitos nos genes reparadores de DNA, como o MSH2, MSH6 e MLH1, onde os tumores sincrônicos são relativamente freqüentes. Já no câncer colorretal esporádico as lesões sincrônicas são raras. OBJETIVO: Verificar se o mesmo mecanismo genético presente no HNPCC está presente no câncer colorretal esporádico que apresentam com lesões sincrônicas. MÉTODOS: Foram incluídos no estudo todos os pacientes com câncer colorretal sincrônico não HNPCC. Imunoistoquímica com anticorpos para MSH2,MSH6, e MLH1 foi realizada para cada tumor. RESULTADOS: Todos os pacientes apresentaram expressão normal de MSH2 e MLH1. O único gene com imunoexpressão alterada foi o MSH6. CONCLUSÃO: Possivelmente outro mecanismo genético seja responsável pelo surgimento de dois tumores sincrônicos no câncer colorretal esporádico.BACKGROUND: Mismatch repair genes (such as MSH2, MLH1 and MSH6 mutations are present in over 80% of hereditary non-polyposis colorectal cancer (HNPCC tumors, which frequently exhibit synchronous lesions. Sporadic colorectal cancer is rarely associated with synchronous lesions. AIM: To investigate the role of mismatch repair gene mutation in synchronous sporadic colorectal cancer. METHODS: Patients with sporadic synchronous colorectal adenocarcinomas were included in the study. Immunohistochemistry was performed using MSH2, MLH1 and MSH6 antibodies. RESULTS: All patients had two synchoronous lesions. None of them had altered MSH2 or MLH1 expression. One patient had altered MSH6 expression in both tumors. CONCLUSION: Possibly, other molecular mechanisms are involved in carcinogenesis of sporadic synchronous colorectal cancer.

  10. HiRadMat: materials under scrutiny

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    CERN's new facility, HiRadMat (High Radiation to Materials), which is designed to test materials for the world's future particle accelerators, should be operational and welcoming its first experiments by the end of the year.   The HiRadMat facility, located in the TNC tunnel. The materials used in the LHC and its experiments are exposed to very high-energy particles. The LHC machine experts obviously didn't wait for the first collisions in the world's most powerful accelerator to put the materials through their paces - the equipment was validated following a series of stringent tests. And these tests will get even tougher now, with the arrival of HiRadMat. The tunnel that formerly housed the West Area Neutrino Facility (WANF) has been completely revamped to make way for CERN's latest facility, HiRadMat. Supported by the Radioprotection service, a team from the Engineering (EN) Department handled the dismantling operations from October 2009 to December 2010. "We could only work on disman...

  11. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich.

    Science.gov (United States)

    Marubodee, Rusama; Ogiso-Tanaka, Eri; Isemura, Takehisa; Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.

  12. Effects of post-treatment incubation on recombinogenesis in incision-proficient and incision-deficient strains of saccharomyces cerevisiae, 2

    International Nuclear Information System (INIS)

    Saeki, Tetsuya; Machida, Isamu

    1991-01-01

    After the photoaddition of mono- and bifunctional furocoumarins to G1 phase cells, most gene conversion and crossing-over occurred without post-irradiation incubation of these cells in incision-proficient strains. In contrast, incision-deficient cells showed marked induction of both recombinational events only after treated cells had been incubated for several hours before selection. These results indicate that when furocoumarins are photoadded to G1 cells, initiation of recombinational events occurs during the same G1 phase in the incision-proficient cells; whereas, it occurs only after post-irradiation DNA replication in incision-deficient cells. The action of the PSO2 gene product specific for the repair of DNA crosslinks in recombination induction is discussed and compared to the actions of the excision repair genes RAD1 and RAD2. (author)

  13. Participation of different genes in the ruptures repair of double chain in Escherichia coli stumps exposed to gamma radiation

    International Nuclear Information System (INIS)

    Serment G, J. H.; Martinez M, E.; Alcantara D, D.

    2013-01-01

    All living organisms are naturally exposed to radiation from different sources. Ionizing radiation produces a plethora of lesions upon DNA that can be categorized as single and double strand breaks and base damage. Among them, unrepaired double strand breaks (Dbs) have the greatest biological significance, since they are responsible of cell death. In Escherichia coli this kind of lesions are repaired mostly by homologous recombination. In this work the participation of some recombination genes in the repair of Dbs is evaluated. Escherichia coli defective strains were exposed to gamma radiation and incubated for different periods in ideal conditions. Both micro electrophoresis and pulse field gel electrophoresis techniques were used to evaluate the kinetics of repair of such lesions, reflecting the importance of each defective gene in the process. (Author)

  14. Efficacy of DNA double-strand breaks repair in breast cancer is decreased in carriers of the variant allele of the UBC9 gene c.73G>A polymorphism

    International Nuclear Information System (INIS)

    Synowiec, Ewelina; Krupa, Renata; Morawiec, Zbigniew; Wasylecka, Maja; Dziki, Lukasz; Morawiec, Jan; Blasiak, Janusz; Wozniak, Katarzyna

    2010-01-01

    UBC9 (E2) SUMO conjugating enzyme plays an important role in the maintenance of genome stability and integrity. In the present work we examined the association between the c.73G>A (Val25Met) polymorphism of the UBC9 gene (rs11553473) and efficacy of DNA double-strand breaks (DSBs) repair (DRE) in breast cancer patients. We determined the level of endogenous (basal) and exogenous (induced by γ-irradiation) DSBs and efficacy of their repair in peripheral blood lymphocytes of 57 breast cancer patients and 70 healthy individuals. DNA damage and repair were studied by neutral comet assay. Genotypes were determined in DNA from peripheral blood lymphocytes by allele-specific PCR (ASO-PCR). We also correlated genotypes with the clinical characteristics of breast cancer patients. We observed a strong association between breast cancer occurrence and the variant allele carried genotypes in patients with elevated level of basal as well as induced DNA damage (OR 6.74, 95% CI 2.27-20.0 and OR 5.33, 95% CI 1.81-15.7, respectively). We also found statistically significant (p A polymorphism of the UBC9 gene in breast cancer patients. Carriers of variant allele have decreased DNA DRE as compared to wild type genotype carriers. We did not find any association with the UBC9 gene polymorphism and estrogen and progesterone receptor status. The variant allele of the UBC9 gene polymorphism was strongly inversely related to HER negative breast cancer patients (OR 0.03, 95% CI 0.00-0.23). Our results suggest that the c.73G>A polymorphism of the UBC9 gene may affect DNA DSBs repair efficacy in breast cancer patients.

  15. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  16. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Yang Shuhua; Shao Zengwu; Yuan Quan; Pan Zhengqi; Tang Shuo; Liu Kai; Quan Daping

    2006-01-01

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-β 1 ) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-β 1 that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-β 1 gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA 3 -TGF-β 1 gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA 3 gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The

  17. Genetic variation in DNA repair gene XRCC7 (G6721T) and susceptibility to breast cancer.

    Science.gov (United States)

    Nasiri, Meysam; Saadat, Iraj; Omidvari, Shahpour; Saadat, Mostafa

    2012-08-15

    The human XRCC7 is a DNA double-strand break (DSBs) repair gene, involved in non-homologous end joining (NHEJ). It is speculated that DNA DSBs repair have an important role during development of breast cancer. The human XRCC7 is a NHEJ DSBs repair gene. Genetic variation G6721T of XRCC7 (rs7003908) is located in the intron 8 of the gene. This polymorphism may regulate splicing and cause mRNA instability. In the present study, we specifically investigated whether common G6721T genetic variant of XRCC7 was associated with an altered risk of breast cancer. The present study included 362 females with breast cancer. Age frequency-matched controls (362 persons) were randomly selected from the healthy female blood donors, according to the age distribution of the cases. Using RFLP-PCR based method, the polymorphism of XRCC7 was determined. The TG (OR=1.20, 95% CI: 0.83-1.74, P=0.320) and TT (OR=1.01, 95% CI: 0.67-1.53, P=0.933) genotypes had no significant effect on risk of breast cancer, in comparison with the GG genotype. Our present findings indicate that the TT and TG genotypes were not associated with an altered breast cancer risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. RadNet Air Quality (Fixed Station) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet is a national network of monitoring stations that regularly collect air for analysis of radioactivity. The RadNet network, which has stations in each State,...

  19. X-ray repair replication in L1210 leukemia cells

    International Nuclear Information System (INIS)

    Lee, Y.C.; Byfield, J.E.; Bennett, L.R.; Chan, P.Y.M.

    1974-01-01

    Repair replication has been studied in detail in mouse L1210 leukemia cells. A method of identifying and quantitating repair replication using a pre- and postradiation block of normal replication with cytosine arabinoside is illustrated. The method derived does not require isolation of DNA per se and appears to be satisfactory for screening for inhibitors of repair replication. Repair replication can be demonstrated at doses in the 1000-rad range in bromouridine deoxyriboside-substituted cells and at slightly higher doses in nonsubstituted cells. Drugs that are known to bind to DNA inhibit this x-ray-induced repair replication. Drugs with these properties may be identified by the methods described and compared quantitatively in their ability to inhibit this type of x-ray damage. Since these phenomena can be demonstrated for low radiation doses and at drug concentrations attainable in vivo during human cancer chemotherapy this class of anticancer agent may be worthy of closer study. Application to the L1210 leukemia system should permit comparison of in vitro and in vivo drug effects in the context of the extensive in vivo pharmacological data already available for L1210 cells. (U.S.)

  20. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)