WorldWideScience

Sample records for repair gene ercc1

  1. Evolution and mutagenesis of the mammalian excision repair gene ERCC-1

    NARCIS (Netherlands)

    M. van Duin (Mark); J. van den Tol; P. Warmerdam (Peter); H. Odijk (Hanny); D.N. Meijer (Dies); A. Westerveld (Andries); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe human DNA excision repair protein ERCC-1 exhibits homology to the yeast RADIO repair protein and its longer C-terminus displays similarity to parts of the E.coli repair proteins uvrA and uvrC. To study the evolution of this 'mosaic' ERCC-1 gene we have isolated the mouse homologue.

  2. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1.

    Science.gov (United States)

    Sargent, R G; Rolig, R L; Kilburn, A E; Adair, G M; Wilson, J H; Nairn, R S

    1997-11-25

    Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RADIO gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1- and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT- cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT- products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1- cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1- cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1- cells are repaired by illegitimate recombination.

  3. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance.

    Science.gov (United States)

    Wang, Shuai; Liu, Feng; Zhu, Jingyan; Chen, Peng; Liu, Hongxing; Liu, Qi; Han, Junqing

    2016-06-12

    BACKGROUND Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. MATERIAL AND METHODS NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. RESULTS ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). CONCLUSIONS ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway.

  4. Conserved pattern of antisense overlapping transcription in the homologous ERCC-1 and yeast RAD10 DNA repair gene regions.

    NARCIS (Netherlands)

    M. van Duin (Mark); J. van den Tol; J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk); I.P. Rupp; P. Reynolds (Paul); L. Prakash; S. Prakash

    1989-01-01

    textabstractWe report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is

  5. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions

    NARCIS (Netherlands)

    C.E. Schrader; J. Vardo; E. Linehan; M.Z. Twarog; L.J. Niedernhofer (Laura); J. Stavnezer; J.H.J. Hoeijmakers (Jan)

    2004-01-01

    textabstractThe structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3' single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a

  6. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and aminoacid homology with the yeast DNA repair gene RAD10.

    NARCIS (Netherlands)

    M. van Duin (Mark); J. de Wit (Jan); H. Odijk (Hanny); A. Westerveld (Andries); A. Yasui (Akira); M.H.M. Koken (Marcel); J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1986-01-01

    textabstractThe human excision repair gene ERCC-7 was cloned after DNA mediated gene transfer to the CHO mutant 43-38, which is sensitive to ultraviolet light and mitomycin-C. We describe the cloning and sequence analysis of the ERCC-7 cDNA and partial characterization of the gene. ERCC.1 has a size

  7. Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group 2 mutants.

    NARCIS (Netherlands)

    M. van Duin (Mark); J.H. Janssen; J. de Wit (Jan); J.H.J. Hoeijmakers (Jan); L.H. Thompson; D. Bootsma (Dirk); A. Westerveld (Andries)

    1988-01-01

    textabstractThe human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In ord

  8. Mice with DNA repair gene Ercc1 deficiency in a neural crest lineage are a model for late-onset Hirschsprung disease.

    Science.gov (United States)

    Selfridge, Jim; Song, Liang; Brownstein, David G; Melton, David W

    2010-06-04

    The Ercc1 gene is essential for nucleotide excision repair and is also important in recombination repair and the repair of interstrand crosslinks. We have previously used a floxed Ercc1 allele with a keratinocyte-specific Cre recombinase transgene to inactivate Ercc1 in the epidermal layer of the skin and so generate a mouse model for UV-induced non-melanoma skin cancer. Now, in an attempt to generate a model for UV-induced melanoma, we have used the floxed Ercc1 allele in combination with a Cre transgene under the control of the tyrosinase gene promoter to produce mice with Ercc1-deficient melanocytes that are hypersensitive to UV irradiation. These animals developed normally, but died when 4-6 months old with severe colonic obstruction. Melanocytes are derived from the neural crest and the tyrosinase promoter is also expressed in additional neural crest-derived lineages, including the progenitors of the parasympathetic nervous system that innervates the gastrointestinal tract and controls gut peristalsis. A functional enteric nervous system developed in floxed Ercc1 mice with the tyrosinase Cre transgene, but was found to have degenerated in the colons of affected mice. We suggest that accumulating unrepaired endogenous DNA damage in the Ercc1-deficient colonic parasympathetic ganglia leads to the degeneration of this network and results in a colonic obstructive disorder that resembles late-onset Hirschsprung disease in man.

  9. Cloning and characterization of the human DNA-excision repair gene ERCC-1

    NARCIS (Netherlands)

    M. van Duin (Michel)

    1988-01-01

    textabstractIt is the aim of the work described in this thesis to isolate and characterize human genes involved DNA excision repair. This will facilitate the understanding of the mechanism of this repair process whereas it also provides an important step to better understand the relationship

  10. Cloning and characterization of the human DNA-excision repair gene ERCC-1

    NARCIS (Netherlands)

    M. van Duin (Michel)

    1988-01-01

    textabstractIt is the aim of the work described in this thesis to isolate and characterize human genes involved DNA excision repair. This will facilitate the understanding of the mechanism of this repair process whereas it also provides an important step to better understand the relationship between

  11. The cerebro-oculo-facio-skeletal syndrome point mutation F231L in the ERCC1 DNA repair protein causes dissociation of the ERCC1-XPF complex

    NARCIS (Netherlands)

    M. Faridounnia (Maryam); H. Wienk (Hans); L. Kovačič (Lidija); G.E. Folkers (Gert); N.G.J. Jaspers (Nicolaas); R. Kaptein (Robert); J.H.J. Hoeijmakers (Jan); R. Boelens (Rolf)

    2015-01-01

    textabstractThe ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and

  12. ERCC1-XPF endonuclease facilitates DNA double-strand break repair.

    Science.gov (United States)

    Ahmad, Anwaar; Robinson, Andria Rasile; Duensing, Anette; van Drunen, Ellen; Beverloo, H Berna; Weisberg, David B; Hasty, Paul; Hoeijmakers, Jan H J; Niedernhofer, Laura J

    2008-08-01

    ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and gammaH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1(-/-) Ku86(-/-) fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3' overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.

  13. ERCC1-XPF endonuclease facilitates DNA double-strand break repair

    NARCIS (Netherlands)

    R.A. Ahmad (Riris); A.R. Robinson (Andria Rasile); A. Duensing (Anette); E. van Drunen (Ellen); H.B. Beverloo (Berna); D.B. Weisberg (David); P. Hasty (Paul); J.H.J. Hoeijmakers (Jan); L.J. Niedernhofer (Laura)

    2008-01-01

    textabstractERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyce

  14. Influence of polymorphisms in DNA repair genes ERCC1 and XRCC1 on curative effect of three-dimen-sional conformal radiotherapy for esophageal squamous cell carcinoma%ERCC1和XRCC1基因多态性与食管鳞癌发病及接受三维适形放疗疗效的关系

    Institute of Scientific and Technical Information of China (English)

    淳彩璞; 朱劲松; 连文勇; 高海霞; 张锋利; 袁伟军

    2015-01-01

    癌三维适形放疗的疗效。%Objective To investigate the association between the risk of esophageal squamous cell carcinoma(ESCC) and polymorphisms in DNA repair genes ERCC1 and XRCC1 as well as the influence of polymorphisms on curative effect of three⁃dimen⁃sional conformal radiotherapy( 3D⁃CRT) for ESCC. Methods The peripheral blood samples from 218 ESCC patients were assigned as disease group and 230 cases of healthy normal people were assigned as control group. The PCR method was used to amplify the target gene fragment. The single nucleotide polymorphisms(SNP) of ERCC1 rs3212986, ERCC1 rs11615, XRCC1 rsl799782 and XRCC1 rs25487 were detected by direct sequencing. The distribution of different genotypes and alleles as well as their correlation with the risk of ESCC were analyzed. According to the RECIST 1�1, the 154 cases treated with 3D⁃CRT for advanced ESCC were divided into effec⁃tive group and ineffective group, and the relationship between the above SNP loci and curative effects of 3D⁃CRT for ESCC were further analyzed. Results The genotype distributions of the 4 SNP loci were consistent with the Hardy⁃Weinberg equilibrium in both groups. The distribution of ERCC1 rs3212986, ERCC1 rs11615 genotype and allele, and XRCC1 rs25487 allele in the disease group was sig⁃nificantly different from those of the control group( P<0�05) . When the wide homozygous of XRCC1 rs3212986, XRCC1 rs11615 and ERCC1 rs25487 were used as reference, the risk of mutant homozygous for ESCC was elevated. When the wide allele gene of 4 SNP lo⁃ci were used as reference, the risk of mutant allele for ESCC was higher( P<0�05) . Among 154 patients, 113 cases were divided into effective group(35 CR+78 PR) and 41 groups and the ineffective group(24 SD+17 PD). There were significant differences in the effi⁃ciency of different genotypes and allele of 4 SNP loci( P<0�05) . When the wide homozygous were used as reference, the risk of invalid radiotherapy in mutant homozygous was higher

  15. Prediction of response to chemotherapy by ERCC1 immunohistochemistry and ERCC1 polymorphism in ovarian cancer

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, M.; Jeppesen, Ulla

    2007-01-01

    The response of tumor cells to platinum-based chemotherapy involves DNA repair mechanisms. Excision repair cross-complementation group 1 (ercc1) is one of the leading genes involved in DNA repair, and several studies have linked ercc1 to platinum resistance in cell lines and in human cancers....... A common single nucleotide polymorphism (SNP) of ercc1 at codon 118 has been proposed to impair ercc1 translation and reduce ERCC1 protein expression and consequently influence the response to platinum-based chemotherapy. The primary aim of the present study was to evaluate ERCC1 expression and ercc1 codon...... 118 polymorphism in epithelial ovarian cancer (EOC) and their possible predictive value in patients treated with platinum-based chemotherapy. Formalin-fixed, paraffin-embedded tissue sections from 159 patients with advanced EOC were used for immunohistochemistry. Ercc1 codon 118 SNP genotyping...

  16. The structure-specific endonuclease Ercc1–Xpf is required for targeted gene replacement in embryonic stem cells

    Science.gov (United States)

    Niedernhofer, Laura J.; Essers, Jeroen; Weeda, Geert; Beverloo, Berna; de Wit, Jan; Muijtjens, Manja; Odijk, Hanny; Hoeijmakers, Jan H.J.; Kanaar, Roland

    2001-01-01

    The Ercc1–Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1–Xpf incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1–Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1–Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1–Xpf in making the recipient genomic locus receptive for gene replacement. PMID:11707424

  17. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1

    OpenAIRE

    Sargent, R. Geoffrey; Rolig, Rhonda L.; Kilburn, April E.; Adair, Gerald M.; Wilson, John H.; Nairn, Rodney S.

    1997-01-01

    Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogeno...

  18. Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients.

    Directory of Open Access Journals (Sweden)

    Anwaar Ahmad

    2010-03-01

    Full Text Available Xeroderma pigmentosum (XP is caused by defects in the nucleotide excision repair (NER pathway. NER removes helix-distorting DNA lesions, such as UV-induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPF(R153P were compared to an XP-causing mutation (XPF(R799W in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPF(R153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPF(R153P-ERCC1 into the nucleus of XPF-deficient human cells restored nucleotide excision repair of UV-induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially

  19. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex*

    Science.gov (United States)

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E.; Jaspers, Nicolaas G. J.; Kaptein, Robert; Hoeijmakers, Jan H. J.; Boelens, Rolf

    2015-01-01

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation. PMID:26085086

  20. The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex.

    Science.gov (United States)

    Faridounnia, Maryam; Wienk, Hans; Kovačič, Lidija; Folkers, Gert E; Jaspers, Nicolaas G J; Kaptein, Robert; Hoeijmakers, Jan H J; Boelens, Rolf

    2015-08-14

    The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation.

  1. Synaptic proteome changes in a DNA repair deficient Ercc1 mouse model of accelerated aging

    NARCIS (Netherlands)

    M.J. Végh (Marlene); M.C. de Waard (Monique); I. van der Pluijm (Ingrid); Y. Ridwan (Yanto); M.J.M. Sassen (Marion J.); P. van Nierop (Pim); R.C. van der Schors (Roel); K.W. Li (Ka Wan); J.H.J. Hoeijmakers (Jan); A.B. Smit (August); R.E. van Kesteren (Ronald)

    2012-01-01

    textabstractCognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of

  2. Prediction of response to chemotherapy by ERCC1 immunohistochemistry and ERCC1 polymorphism in ovarian cancer

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, Marianne; Jeppesen, Ulla;

    -complementation group 1 (ERCC1) is one of the genes that encode the proteins of the NER complex and several studies have linked ERCC1 to platinum resistance in cell lines and in human cancers. Cells with a high repair capacity, e.g. high level of ERCC1 expression may therefore be resistant to platinum......Background: The response of tumor cells to platinum-based drugs involves DNA repair mechanisms. Platinum-DNA adducts are repaired by nucleotide excision repair (NER) enzymes that recognize the DNA damage and excise the platinum-DNA adducts from the injured DNA strand. Excision repair cross...... the response to platinum based chemotherapy. The aim of this study was to evaluate ERCC1 expression and ERCC1 118 polymorphism in epithelial ovarian cancer and the potential association with response to platinum-based chemotherapy. Methods: Formalin-fixed, paraffin-embedded tissue sections from 159 patients...

  3. Identification of small molecule inhibitors of ERCC1-XPF that inhibit DNA repair and potentiate cisplatin efficacy in cancer cells.

    Science.gov (United States)

    Arora, Sanjeevani; Heyza, Joshua; Zhang, Hao; Kalman-Maltese, Vivian; Tillison, Kristin; Floyd, Ashley M; Chalfin, Elaine M; Bepler, Gerold; Patrick, Steve M

    2016-11-15

    ERCC1-XPF heterodimer is a 5'-3' structure-specific endonuclease which is essential in multiple DNA repair pathways in mammalian cells. ERCC1-XPF (ERCC1-ERCC4) repairs cisplatin-DNA intrastrand adducts and interstrand crosslinks and its specific inhibition has been shown to enhance cisplatin cytotoxicity in cancer cells. In this study, we describe a high throughput screen (HTS) used to identify small molecules that inhibit the endonuclease activity of ERCC1-XPF. Primary screens identified two compounds that inhibit ERCC1-XPF activity in the nanomolar range. These compounds were validated in secondary screens against two other non-related endonucleases to ensure specificity. Results from these screens were validated using an in vitro gel-based nuclease assay. Electrophoretic mobility shift assays (EMSAs) further show that these compounds do not inhibit the binding of purified ERCC1-XPF to DNA. Next, in lung cancer cells these compounds potentiated cisplatin cytotoxicity and inhibited DNA repair. Structure activity relationship (SAR) studies identified related compounds for one of the original Hits, which also potentiated cisplatin cytotoxicity in cancer cells. Excitingly, dosing with NSC16168 compound potentiated cisplatin antitumor activity in a lung cancer xenograft model. Further development of ERCC1-XPF DNA repair inhibitors is expected to sensitize cancer cells to DNA damage-based chemotherapy.

  4. RNA干扰抑制ERCC1对非小细胞肺癌化疗敏感性的影响%The effect of RNA interference-mediated ERCC1 gene on the chemo-treatment sensitivity of non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    宋志雨; 周航

    2011-01-01

    目的 探讨利用RNA干扰技术沉默切除修复交叉互补基因组1(ERCC1)表达对非小细胞肺癌耐药细胞株顺铂化疗敏感性的影响.方法 设计并合成3段靶向人的ERCC1基因的小分子干扰RNA(siRNA),构建携带ERCC1-shRNA的重组质粒表达载体,采用脂质体Lipofectamine 2000转染入人肺癌细胞株A549/DDP,荧光镜下观察并测定转染效率;应用逆转录聚合酶链反应(RT-PCR)检测转染前后ERCC1 mRNA的表达情况;应用四甲基偶氮唑蓝比色法(MTT)检测干扰ERCC1后A549/DDP细胞对顺铂敏感性的变化.结果 转染针对ERCC1的siRNA后,转染组A549/DDP细胞内ERCC1 mRNA表达均下降,转染后肺癌A549/DDP细胞对顺铂敏感性增加.结论 利用RNA干扰技术能够筛选出高效的特异阻断ERCC1基因表达的siRNA;ERCC1基因表达下调能够增加肺癌A549/DDP细胞对顺铂的敏感性,部分逆转耐药.%Objective To investigate changes of platinum-based chemotherapy sensitivity of silencing excision repair cross complementation 1(ERCC1) gene expression by using RNA interference in non-small-cell lung cancer ( NSCLC) drug resistance cell lines. Methods Three siRNA sequences targeting ERCC1 gene were designed and synthesized. Recombinant plasmid expression vector which carrying ERCCl-shRNA was constructed and transfected into A54 9/DDP cells with Lipofectamine 2000. Transfection efficiency was measured in the fluorescent microscope. The expression of ERCC1 Mrna was detected by reverse transcription-poly-merase chain reaction(RT-PCR). The change of cisplatin sensitivity after interference was test by MTT assay. Results After transfection of ERCCl-siRNA,the ERCC1 Mrna expressions in A549/DDP cells were all reduced. The sensitivity to cisplatin of A549/ DDP cell line was increased after transfection. The sensitivity to cisplatin of A54 9/DDP cell line was increased after transfection. Conclusion Highly effective and specific siRNA targeting ERCC1 gene can be successfully

  5. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression

    Directory of Open Access Journals (Sweden)

    Kaina Bernd

    2010-09-01

    Full Text Available Abstract Background Cisplatin based chemotherapy cures over 80% of metastatic testicular germ cell tumours (TGCT. In contrast, almost all other solid cancers in adults are incurable once they have spread beyond the primary site. Cell lines derived from TGCTs are hypersensitive to cisplatin reflecting the clinical response. Earlier findings suggested that a reduced repair capacity might contribute to the cisplatin hypersensitivity of testis tumour cells (TTC, but the critical DNA damage has not been defined. This study was aimed at investigating the formation and repair of intrastrand and interstrand crosslinks (ICLs induced by cisplatin in TTC and their contribution to TTC hypersensitivity. Results We observed that repair of intrastrand crosslinks is similar in cisplatin sensitive TTC and resistant bladder cancer cells, whereas repair of ICLs was significantly reduced in TTC. γH2AX formation, which serves as a marker of DNA breaks formed in response to ICLs, persisted in cisplatin-treated TTC and correlated with sustained phosphorylation of Chk2 and enhanced PARP-1 cleavage. Expression of the nucleotide excision repair factor ERCC1-XPF, which is implicated in the processing of ICLs, is reduced in TTC. To analyse the causal role of ERCC1-XPF for ICL repair and cisplatin sensitivity, we over-expressed ERCC1-XPF in TTC by transient transfection. Over-expression increased ICL repair and rendered TTC more resistant to cisplatin, which suggests that ERCC1-XPF is rate-limiting for repair of ICLs resulting in the observed cisplatin hypersensitivity of TTC. Conclusion Our data indicate for the first time that the exceptional sensitivity of TTC and, therefore, very likely the curability of TGCT rests on their limited ICL repair due to low level of expression of ERCC1-XPF.

  6. Gene expression profiles of ERCC1, TYMS, RRM1, TUBB3 and EGFR in tumor tissue from non-small cell lung cancer patients

    Institute of Scientific and Technical Information of China (English)

    Yu Daping; Li Jie; Han Yi; Liu Shuku; Xiao Ning; Li Yunsong; Sun Xiaojun

    2014-01-01

    Background Personalized medicine becomes essential in lung cancer treatment,however lung-cancer-related gene expression profiles in Chinese patients remain unknown.In this study,the correlation of gene expression profiles and clinical characteristics in non-small-cell lung cancer (NSCLC) was investigated.Methods Seventy-six Chinese patients with NSCLC were enrolled in the study to investigate mRNA expression profiles of excision repair cross complement group 1 (ERCC1),thymidylate synthetase (TYMS),ribonucleotide reductase (RRM1),class Ⅲ β-tubulin (TUBB3),and epidermal growth factor receptor (EGFR) genes and their correlation with patient clinical characteristics.A novel liquidchip technology was used to detect mRNA expression levels in formalin fixed paraffin embedded tumor pathology samples.The relationships between gene expression and clinical characteristics were assessed using the Mann-Whitney test.Results ERCC1 mRNA levels were higher in tumors from patients with metastatic disease than patients with nonmetastatic disease (P=0.021),and higher in adenocarcinomas than squamous cell carcinomas (P=0.006).Increased TUBB3 mRNA expression levels were found in patients with performance status (PS) 1 in comparison with PS 0 (P=0.049),with poorly differentiated tumors in comparison with tumors that were moderately and well differentiated (P ≤0.000 1),and with advanced stage in comparison with early stage disease (P≤0.000 1).Conclusions ERCC1 mRNA levels were higher in metastatic adenocarcinoma NSCLC; TUBB3 mRNA levels were significantly higher in poody differentiated tumors and in advanced stage NSCLC,which indicates the poor prognosis.

  7. 非小细胞肺癌组织中EML4-ALK融合基因与ERCC1和RRM1 mRNA表达的关系%The relations of EML4-ALK fusion gene and the mRNA expression of ERCC1 and RRM1 in NSCLC tissue

    Institute of Scientific and Technical Information of China (English)

    田宁; 张侠; 高文斌; 许春伟; 张玉萍

    2013-01-01

    目的:探讨NSCLC组织中棘皮动物微管样蛋白4-间变淋巴瘤激酶(EML4-ALK)融合基因与切除修复交叉互补蛋白1(ERCC1)和核苷酸还原酶亚单位M1(RRM1)mRNA表达的关系。方法应用实时荧光定量PCR方法检测257例NSCLC组织中EML4-ALK基因以及ERCC1和RRM1 mRNA的表达。结果 NSCLC组织中EML4-ALK融合基因阳性率占4.28%(11/257),在不吸烟患者中较高(P<0.05);ERCC1 mRNA 高表达占47.47%(122/257),RRM1 mRNA 高表达占61.87%(159/257)。与未检测到EML4-ALK融合基因阳性的NSCLC患者比较,EML4-ALK融合基因阳性与ERCC1 mRNA表达水平无关(P>0.05);NSCLC组织中,EML4-ALK融合基因阳性与RRM1 mRNA表达水平无关(P>0.05);但ERCC1 mRNA表达水平与RRM1 mRNA表达水平相关(P<0.05)。结论 NSCLC组织中EML4-ALK融合基因阳性患者不能从以铂类和他滨类一线化疗药中获益,因此仍需进一步探索更有效的个体化治疗方案,特别是对EML4-ALK融合基因选择性抑制剂克唑替尼原发或继发耐药部分患者的个体化治疗方案。%Objective To study the relationship of echinoderm microtubule-like protein 4-anaplastic Lymphoma kinase (echinoderm microtubule associated protein like 4-anaplastic Lymphoma kinase, EML4-ALK) integration and excision repair cross complement protein 1 gene (excision repair cross-complementation Group 1, ERCC1) and nucleotide reductase subunits M1 (ribonucleotide reductase subunit, M1) mRNA expression in NSCLC tissue. Methods Application of real-time fluorescent quantitative PCR method to detected the EML4-ALK gene in 257 patients and the expression of ERCC1 and RRM1mRNA. Results EML4-ALK fusion gene-positive rate was 4.28%(11/257),not in smokers was higher (P0.05); in NSCLC tissue, EML4-ALK fusion gene-positive had nothing to do with the level of RRM1mRNA expression (P>0.05), and also the level of expression of RRM1mRNA and ERCC1mRNA (P<0.05). Conclusion EML

  8. Expression of hENTl and ERCC1 genes in tumor tissues non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Jia-Jia Wu; Shun-Chang Jiao

    2013-01-01

    Objective:To investigate the expression of hENTl andERCC1 genes in tumor tissues non-small cell lung cancer(NSCLC).Methods:Fresh non-small lung cancer specimens were transplanted into nude mice.Twenty mice were randomized into two groups: experimental group receiving gemcitabine plus cisplatin and control group receiving0.9% physiological saline.The expressions of hENTl andERCC1 mRNA in tumor tissue were detected by real-time fluorescent quantitative PCR.The volume of tumor, the weight of nude mice and tumor volume were respectively measured and calculated2-3 times per week.Tissue samples were collected fromNSCLC mice treated with gemcitabine plus carboplatin.Results:The histological examination showed that many tumor cells were well preserved in nude mice.The rate of transplanted tumor cells was 86.7%.The concomitant treatment study showed that the rate ofTV,RTV,T/C inGEM+DDP group was the lowest.LBP+DOC,DDP+DOC obviously influenced the body weight.Compared with NS group,DDP group,GEM group, the survival period and the level of hENTl ofDDP+GEM group increased obviously, the level ofERCC1 decreased significantly(P<0.05).Conclusions:The expression of hENT1 andERCC1 genes in tumor tissues were closely correlated with the response to chemotherapy and prognosis of patients withNSCLC treated with gemcitabine plus cisplatin.

  9. Correlation analysis and prognostic impact of {sup 18}F-FDG PET and excision repair cross-complementation group 1 (ERCC-1) expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hyu; Lee, Choong Kun; Jo, Kwan Hyeong; Hwang, Sang Hyun; Cha, Jong Tae; Lee, Jeong Won; Yun, Mi Jin; Cho, Arthur [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    The aim of this study was to determine the relationship between [{sup 18}]-2-fluoro-2-deoxy-D-glucose (FDG) uptake and excision repair cross-complementation group 1 (ERCC-1) expression and to evaluate the prognostic effect of these two factors in resectable non-small cell lung cancer (NSCLC) patients. We retrospectively reviewed 212 patients with resectable NSCLC who underwent FDG positron emission tomography/computed tomography (PET/CT) scan for cancer staging and ERCC-1 expression analysis between January 2008 to December 2011. All patients were then followed-up for survival analysis. Semiquantitative evaluation of ERCC-1 was performed with the H-scoring system and was correlated with maximum standardized uptake value (SUV{sub max}) of NSCLC. Univariate and multivariate analyses were performed to evaluate for FDG uptake and ERCC-1 expression predicting overall survival. In 212 patients (139 male, median age 68 ± 9.11), 112 patients had ERCC-positive tumors and 100 patients had ERCC-negative tumors. There was no significant difference in SUV{sub max} between ERCC-1-positive tumors (8.02 ±5.40) and ERCC-1-negative tumors (7.57 ± 6.56, p = 0.584). All patients were followed-up for a median of 40.5 months (95 % confidence interval [CI], 38.5–42.2 months). Univariate analysis and multivariate analysis for all patients showed that both ERCC-1 expression (hazard ratio [HR], 2.78; 95 % CI, 1.20–6.47) and FDG uptake (HR, 4.50; 95 % CI, 2.07–9.77) independently predicted overall survival. We have found no statistical correlation between FDG uptake and ERCC-1 expression in NSCLC. However, both higher FDG uptake and positive ERCC-1 expression are independent predictive markers of prognosis, suggesting that both should be obtained during patient workup.

  10. ERCC1 and the efficacy of cisplatin in patients with resected non-small cell lung cancer.

    Science.gov (United States)

    Li, Chunhong; Liu, Meiyan; Yan, An; Liu, Wei; Hou, Junjun; Cai, Li; Dong, Xiaoqun

    2014-12-01

    Excision repair cross-complementing gene 1 (ERCC1) protein is proposed as a predictor for cisplatin efficacy in patients with non-small cell lung cancer (NSCLC). However, recent studies declare that ERCC1 is not associated with the response of platinum-based chemotherapy or clinical outcomes. The purpose of this study is to assess whether ERCC1 expression level is linked to cisplatin sensitivity and clinical outcomes in resected NSCLC patients. Paraffin-embedded cancer samples from 112 patients were used for immunohistochemical staining. Cancer cells isolated from fresh tumor tissues were used to determine the sensitivity to cisplatin by MTT assay. The association between ERCC1 expression and cisplatin sensitivity was tested by Spearman's rho test. The correlation of ERCC1 expression with clinicopathologic parameters was evaluated by the chi-square tests. The relationship between variables and survival was assessed by log-rank test. Overall survival (OS) and disease-free survival (DFS) curves were plotted by the Kaplan-Meier method. Cox proportional hazards model was used for multivariate analysis of survival. ERCC1 expression was significantly correlated with the sensitivity of cisplatin in vitro (p < 0.01, r = 0.37). ERCC1 was not associated with OS (p = 0.17) or DFS (p = 0.13) in patients with resected NSCLC. ERCC1 is not a sensible marker for the choice of treatment in clinical patients with resected NSCLC.

  11. DNA structural elements required for ERCC1-XPF endonuclease activity

    NARCIS (Netherlands)

    W.L. de Laat (Wouter); E. Appeldoorn (Esther); J.H.J. Hoeijmakers (Jan); N.G.J. Jaspers (Nicolaas)

    1998-01-01

    textabstractThe heterodimeric complex ERCC1-XPF is a structure-specific endonuclease responsible for the 5' incision during mammalian nucleotide excision repair (NER). Additionally, ERCC1-XPF is thought to function in the repair of interstrand DNA cross-links and, by analogy to the

  12. Evaluation of correlation between CT image features and ERCC1 protein expression in assessing lung cancer prognosis

    Science.gov (United States)

    Tan, Maxine; Emaminejad, Nastaran; Qian, Wei; Sun, Shenshen; Kang, Yan; Guan, Yubao; Lure, Fleming; Zheng, Bin

    2014-03-01

    Stage I non-small-cell lung cancers (NSCLC) usually have favorable prognosis. However, high percentage of NSCLC patients have cancer relapse after surgery. Accurately predicting cancer prognosis is important to optimally treat and manage the patients to minimize the risk of cancer relapse. Studies have shown that an excision repair crosscomplementing 1 (ERCC1) gene was a potentially useful genetic biomarker to predict prognosis of NSCLC patients. Meanwhile, studies also found that chronic obstructive pulmonary disease (COPD) was highly associated with lung cancer prognosis. In this study, we investigated and evaluated the correlations between COPD image features and ERCC1 gene expression. A database involving 106 NSCLC patients was used. Each patient had a thoracic CT examination and ERCC1 genetic test. We applied a computer-aided detection scheme to segment and quantify COPD image features. A logistic regression method and a multilayer perceptron network were applied to analyze the correlation between the computed COPD image features and ERCC1 protein expression. A multilayer perceptron network (MPN) was also developed to test performance of using COPD-related image features to predict ERCC1 protein expression. A nine feature based logistic regression analysis showed the average COPD feature values in the low and high ERCC1 protein expression groups are significantly different (p study indicates that CT phenotype features are associated with the genetic tests, which may provide supplementary information to help improve accuracy in assessing prognosis of NSCLC patients.

  13. Mitotic regulator Nlp interacts with XPA/ERCC1 complexes and regulates nucleotide excision repair (NER) in response to UV radiation.

    Science.gov (United States)

    Ma, Xiao-Juan; Shang, Li; Zhang, Wei-Min; Wang, Ming-Rong; Zhan, Qi-Min

    2016-04-10

    Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER.

  14. Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells.

    Science.gov (United States)

    Arora, Sanjeevani; Kothandapani, Anbarasi; Tillison, Kristin; Kalman-Maltese, Vivian; Patrick, Steve M

    2010-07-01

    Bulky cisplatin lesions are repaired primarily by nucleotide excision repair (NER), in which the structure specific endonuclease XPF-ERCC1 is a critical component. It is now known that the XPF-ERCC1 complex has repair functions beyond NER and plays a role in homologous recombination (HR). It has been suggested that expression of ERCC1 correlates with cisplatin drug resistance in non-small cell lung cancer (NSCLC). In our study, using NSCLC, ovarian, and breast cancer cells, we show that the XPF-ERCC1 complex is a valid target to increase cisplatin cytotoxicity and efficacy. We targeted XPF-ERCC1 complex by RNA interference and assessed the repair capacity of cisplatin intrastrand and interstrand crosslinks by ELISA and alkaline comet assay, respectively. We also assessed the repair of cisplatin-ICL-induced double-strand breaks (DSBs) by monitoring gamma-H2AX focus formation. Interestingly, XPF protein levels were significantly reduced following ERCC1 downregulation, but the converse was not observed. The transcript levels were unaffected suggesting that XPF protein stability is likely affected. The repair of both types of cisplatin-DNA lesions was decreased with downregulation of XPF, ERCC1 or both XPF-ERCC1. The ICL-induced DSBs persist in the absence of XPF-ERCC1. The suppression of the XPF-ERCC1 complex significantly decreases the cellular viability which correlates well with the decrease in DNA repair capacity. A double knockdown of XPF-ERCC1 displays the greatest level of cellular cytotoxicity when compared with XPF or ERCC1 alone. The difference in cytotoxicity observed is likely due to the level of total protein complex remaining. These data demonstrate that XPF-ERCC1 is a valid target to enhance cisplatin efficacy in cancer cells by affecting cisplatin-DNA repair pathways.

  15. The prognostic and predictive value of excision repair cross-complementation group 1 (ERCC1) protein in 1288 patients with head and neck squamous cell carcinoma treated with platinum-based therapy: a meta-analysis.

    Science.gov (United States)

    Bišof, Vesna; Zajc Petranović, Matea; Rakušić, Zoran; Samardžić, Kristina Ruža; Juretić, Antonio

    2016-09-01

    Excision repair cross-complementation group 1 (ERCC1) protein has been extensively investigated as a prognostic and predictive factor for platinum-based treatment in head and neck squamous cell carcinoma (HNSCC) but with inconsistent results. We performed the present meta-analysis to better elucidate this issue in advanced HNSCC. A literature search was conducted using the PubMed and Web of Science databases. The inclusion criteria were head and neck cancer patients with platinum-based treatment and evaluation of the correlation between ERCC1 expression and clinical outcomes [objective response rate (ORR), progression-free survival (PFS), and overall survival (OS), both unadjusted and adjusted estimates]. In high vs. low pooled analyses, high ERCC1 expression was associated with unfavorable OS [hazard ratio (HR) = 1.95, 95 % confidence interval (CI) 1.18-3.21, p = 0.009], PFS (HR = 2.39, 95 % CI 1.74-3.28, p = 0.000) and ORR (odds ratio = 0.48, 95 % CI 0.23-0.98, p = 0.044). In the subgroup analysis of adjusted OS estimates, ERCC1 was a predictor of shorter survival in Asians (HR = 3.13, 95 % CI 2.09-4.70, p = 0.000) and Caucasians (HR = 2.02, 95 % CI 1.32-3.07, p = 0.001) but of longer survival in South Americans (HR = 0.17, 95 % CI 0.07-0.40, p = 0.000). Immunohistochemistry proved to be of predictive value irrespective of used antibody (p = 0.009). In the stratified analysis according to the tumor site, ERCC1 expression was associated with OS in nasopharyngeal cancer (HR = 2.72, 95 % CI 1.79-4.13, p = 0.000). ERCC1 has a potential to become predictive and prognostic factor enabling treatment tailoring in HNSCC patients.

  16. Virtual screening and biological evaluation of inhibitors targeting the XPA-ERCC1 interaction.

    Directory of Open Access Journals (Sweden)

    Khaled H Barakat

    Full Text Available BACKGROUND: Nucleotide excision repair (NER removes many types of DNA lesions including those induced by UV radiation and platinum-based therapy. Resistance to platinum-based therapy correlates with high expression of ERCC1, a major element of the NER machinery. The interaction between ERCC1 and XPA is essential for a successful NER function. Therefore, one way to regulate NER is by inhibiting the activity of ERCC1 and XPA. METHODOLOGY/PRINCIPAL FINDINGS: Here we continued our earlier efforts aimed at the identification and characterization of novel inhibitors of the ERCC1-XPA interaction. We used a refined virtual screening approach combined with a biochemical and biological evaluation of the compounds for their ability to interact with ERCC1 and to sensitize cells to UV radiation. Our findings reveal a new validated ERCC1-XPA inhibitor that significantly sensitized colon cancer cells to UV radiation indicating a strong inhibition of the ERCC1-XPA interaction. CONCLUSIONS: NER is a major factor in acquiring resistance to platinum-based therapy. Regulating the NER pathway has the potential of improving the efficacy of platinum treatments. One approach that we followed is to inhibit the essential interaction between the two NER elements, ERCC1 and XPA. Here, we performed virtual screening against the ERCC1-XPA interaction and identified novel inhibitors that block the XPA-ERCC1 binding. The identified inhibitors significantly sensitized colon cancer cells to UV radiation indicating a strong inhibition of the ERCC1-XPA interaction.

  17. ERCC1 and histopathology in advanced NSCLC patients randomized in a large multicenter phase III trial

    DEFF Research Database (Denmark)

    Vilmar, Adam Christian; Santoni-Rugiu, E; Sørensen, J B

    2010-01-01

    Customized chemotherapy is likely to improve outcome in patients with advanced non-small-cell lung cancer (NSCLC). Excision repair cross-complementation group 1 (ERCC1) is a promising biomarker; however, current evidence is inadequate. Impact of ERCC1 status was evaluated among patients participa......Customized chemotherapy is likely to improve outcome in patients with advanced non-small-cell lung cancer (NSCLC). Excision repair cross-complementation group 1 (ERCC1) is a promising biomarker; however, current evidence is inadequate. Impact of ERCC1 status was evaluated among patients...

  18. Association studies of ERCC1 polymorphisms with lung cancer susceptibility: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jinhong Zhu

    Full Text Available BACKGROUND: Excision repair cross-complimentary group 1 (ERCC1 is an essential component of the nucleotide excision repair system that is responsible for repairing damaged DNA. Functional genetic variations in the ERCC1 gene may alter DNA repair capacity and modulate cancer risk. The putative roles of ERCC1 gene polymorphisms in lung cancer susceptibility have been widely investigated. However, the results remain controversial. OBJECTIVES: An updated meta-analysis was conducted to explore whether lung cancer risk could be attributed to the following ERCC1 polymorphisms: rs11615 (T>C, rs3212986 (C>A, rs3212961 (A>C, rs3212948 (G>C, rs2298881 (C>A. METHODS: Several major databases (MEDLINE, EMBASE and Scopus and the Chinese Biomedical database were searched for eligible studies. Crude odds ratios (ORs with 95% confidence intervals (CIs were used to measure the strength of associations. RESULTS: Sixteen studies with 10,106 cases and 13,238 controls were included in this meta-analysis. Pooled ORs from 11 eligible studies (8,215 cases vs. 11,402 controls suggested a significant association of ERCC1 rs11615 with increased risk for lung cancer (homozygous: CC versus TT, OR = 1.24, 95% CI: 1.04-1.48, P = 0.02. However, such an association was disproportionately driven by a single study. Removal of that study led to null association. Moreover, initial analyses suggested that ERCC1 rs11615 exerts a more profound effect on the susceptibility of non-smokers to lung cancer than that of smokers. Moreover, no statistically significant association was found between remaining ERCC1 polymorphisms of interest and lung cancer risk, except for rs3212948 variation (heterozygous: CG vs.GG, OR = 0.78, 95% CI: 0.67-0.90, P = 0.001; dominant: CG/CC vs.GG, OR = 0.79, 95% CI: 0.69-0.91, P = 0.001. CONCLUSION: Overall, this meta-analysis suggests that ERCC1 rs3212948 G>C, but not others, is a lung cancer risk-associated polymorphism. Carefully

  19. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene.

    NARCIS (Netherlands)

    P.B.G.M. Belt; M.F. van Oostenrijk; H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1991-01-01

    textabstractAntisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair efficient HeLa cells by means of an Epstein-Barr-virus derived CDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating

  20. Removal of reactive oxygen species induced 3’-blocked ends by XPF-ERCC1

    OpenAIRE

    Fisher, Laura A.; Samson, Laura; Bessho, Tadayoshi

    2011-01-01

    XPF-ERCC1 is a structure-specific endonuclease that is essential for nucleotide excision repair and DNA interstrand cross-link repair in mammalian cells. The yeast counterpart of XPF-ERCC1, Rad1-Rad10, plays multiple roles in DNA repair. Rad1-Rad10 is implicated to be involved in the repair of oxidative DNA damage. To explore the role(s) of XPF-ERCC1 in the repair of DNA damage induced by reactive oxygen species (ROS), cellular sensitivity of the XPF-deficient Chinese hamster ovary cell-line ...

  1. ERCC1-XPF Endonuclease Facilitates DNA Double-Strand Break Repair▿ †

    Science.gov (United States)

    Ahmad, Anwaar; Robinson, Andria Rasile; Duensing, Anette; van Drunen, Ellen; Beverloo, H. Berna; Weisberg, David B.; Hasty, Paul; Hoeijmakers, Jan H. J.; Niedernhofer, Laura J.

    2008-01-01

    ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and γH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1−/− Ku86−/− fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3′ overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent. PMID:18541667

  2. ERCC1 and histopathology in advanced NSCLC patients randomized in a large multicenter phase III trial

    DEFF Research Database (Denmark)

    Vilmar, Adam Christian; Santoni-Rugiu, E; Sørensen, J B

    2010-01-01

    Customized chemotherapy is likely to improve outcome in patients with advanced non-small-cell lung cancer (NSCLC). Excision repair cross-complementation group 1 (ERCC1) is a promising biomarker; however, current evidence is inadequate. Impact of ERCC1 status was evaluated among patients participa...

  3. ERCC1/XPF protects short telomeres from homologous recombination in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Vannier

    2009-02-01

    Full Text Available Many repair and recombination proteins play essential roles in telomere function and chromosome stability, notwithstanding the role of telomeres in "hiding" chromosome ends from DNA repair and recombination. Among these are XPF and ERCC1, which form a structure-specific endonuclease known for its essential role in nucleotide excision repair and is the subject of considerable interest in studies of recombination. In contrast to observations in mammalian cells, we observe no enhancement of chromosomal instability in Arabidopsis plants mutated for either XPF (AtRAD1 or ERCC1 (AtERCC1 orthologs, which develop normally and show wild-type telomere length. However, in the absence of telomerase, mutation of either of these two genes induces a significantly earlier onset of chromosomal instability. This early appearance of telomere instability is not due to a general acceleration of telomeric repeat loss, but is associated with the presence of dicentric chromosome bridges and cytologically visible extrachromosomal DNA fragments in mitotic anaphase. Such extrachromosomal fragments are not observed in later-generation single-telomerase mutant plants presenting similar frequencies of anaphase bridges. Extensive FISH analyses show that these DNAs are broken chromosomes and correspond to two specific chromosome arms. Analysis of the Arabidopsis genome sequence identified two extensive blocks of degenerate telomeric repeats, which lie at the bases of these two arms. Our data thus indicate a protective role of ERCC1/XPF against 3' G-strand overhang invasion of interstitial telomeric repeats. The fact that the Atercc1 (and Atrad1 mutants dramatically potentiate levels of chromosome instability in Attert mutants, and the absence of such events in the presence of telomerase, have important implications for models of the roles of recombination at telomeres and is a striking illustration of the impact of genome structure on the outcomes of equivalent recombination

  4. Removal of reactive oxygen species induced 3’-blocked ends by XPF-ERCC1

    Science.gov (United States)

    Fisher, Laura A.; Samson, Laura; Bessho, Tadayoshi

    2011-01-01

    XPF-ERCC1 is a structure-specific endonuclease that is essential for nucleotide excision repair and DNA interstrand cross-link repair in mammalian cells. The yeast counterpart of XPF-ERCC1, Rad1-Rad10, plays multiple roles in DNA repair. Rad1-Rad10 is implicated to be involved in the repair of oxidative DNA damage. To explore the role(s) of XPF-ERCC1 in the repair of DNA damage induced by reactive oxygen species (ROS), cellular sensitivity of the XPF-deficient Chinese hamster ovary cell-line UV41 to ROS was investigated. The XPF-deficient UV41 showed sensitivity to hydrogen peroxide, bleomycin and paraquat. Furthermore, XPF-ERCC1 showed an ability to remove 3’-blocked ends such as 3’-phosphoglycolate from the 3’-end of DNA in vitro. These data suggest that XPF-ERCC1 plays a role in the repair of ROS-induced DNA damage by trimming 3’-blocked ends. The accumulation of various types of DNA damage, including ROS-induced DNA damage due to defects in multiple XPF-ERCC1-mediated DNA repair pathways, could contribute to the accelerated aging phenotypes observed in an XPF-ERCC1 deficient patient. PMID:22007867

  5. ERCC1 and ERCC2 variants predict survival in gastric cancer patients.

    Directory of Open Access Journals (Sweden)

    Yangkai Li

    Full Text Available PURPOSE: ERCC1 and ERCC2 play critical roles in the nucleotide excision repair pathway that effectively repairs DNA damage induced by chemotherapeutic agents. Therefore, functional single nucleotide polymorphisms (SNPs in these genes could have an impact on clinical outcomes in cancer patients who received chemotherapy. However, few studies have simultaneously investigated the roles of ERCC1 and ERCC2 SNPs in clinical outcomes in gastric cancer patients. EXPERIMENTAL DESIGN: We genotyped by the TaqMan assay three common, potentially functional ERCC1 (rs3212986 and ERCC2 SNPs (rs13181 and rs1799793 in 360 gastric cancer patients. We used both Kaplan-Meier tests and Cox proportional hazards models to evaluate the effects of ERCC1 and ERCC2 genotypes and haplotypes on clinical outcomes. RESULTS: We found that, compared with ERCC2 rs1799793 GG+AG genotypes, the homozygous variant AA genotype was associated with significantly poorer overall survival (OS (AA vs. GG+AG, log-rank P=0.012 and significantly higher risk of death (AA vs. GG+AG, Adjusted hazards ratio [HR] 2.13; 95% CI, 1.28 to 3.56; P=0.004. In combined analyses, patients with any one of the three unfavorable genotypes (i.e. ERCC1 rs3212986 TT, ERCC2 rs13181 GG and rs1799793 AA had statistically significant hazards of poor prognosis (Adjusted HR, 1.54; 95% CI, 1.06 to 2.25; P=0.025, compared with those without any unfavorable genotypes. Furthermore, the haplotype A-G-G (rs1799793/rs13181/rs3212986 had a significant impact on OS (Adjusted HR, 1.57; 95% CI, 1.11 to 2.21; P=0.011, compared with the common haplotype G-T-G. CONCLUSION: ERCC1 and ERCC2 functional SNPs may jointly affect OS in Caucasian gastric cancer patients. Additional large prospective studies are essential to confirm our findings.

  6. Measuring ERCC1 protein expression in cancer specimens

    DEFF Research Database (Denmark)

    Smith, David Hersi; Fiehn, Anne-Marie Kanstrup; Fogh, Louise

    2014-01-01

    Platinum chemotherapy remains part of standard therapies in the management of a variety of cancers. Severe side effects and a high degree of resistance to platinum drugs have led numerous researchers to search for predictive biomarkers, which could aid in identifying patients that are the most...... likely to respond to therapy. The ERCC1-ERCC4 endonuclease plays a critical role in the repair of platinum-DNA damage and has widely been studied in relation to sensitivity to platinum chemotherapy. The standard method to evaluate ERCC1 protein expression is through the use of immunohistochemistry...

  7. ERCC1 and telomere status in breast tumours treated with neoadjuvant chemotherapy and their association with patient prognosis

    Science.gov (United States)

    Gay‐Bellile, Mathilde; Romero, Pierre; Cayre, Anne; Véronèse, Lauren; Privat, Maud; Singh, Shalini; Combes, Patricia; Kwiatkowski, Fabrice; Abrial, Catherine; Bignon, Yves‐Jean; Vago, Philippe; Penault‐Llorca, Frédérique

    2016-01-01

    Abstract Dysfunctional telomeres and DNA damage repair (DDR) play important roles in cancer progression. Studies have reported correlations between these factors and tumour aggressiveness and clinical outcome in breast cancer. We studied the characteristics of telomeres and expression of ERCC1, a protein involved in a number of DNA repair pathways and in telomere homeostasis, to assess their prognostic value, alone or in combination, in 90 residual breast tumours after treatment with neoadjuvant chemotherapy (NCT). ERCC1 status was investigated at different molecular levels (protein and gene expression and gene copy‐number variations) by immunohistochemistry, qRT‐PCR and quantitative multiplex fluorescent‐PCR (QMF‐PCR). A comprehensive analysis of telomere characteristics was performed using qPCR for telomere length and qRT‐PCR for telomerase (hTERT), tankyrase 1 (TNKS) and shelterin complex (TRF1, TRF2, POT1, TPP1, RAP1 and TIN2) gene expression. Short telomeres, high hTERT and TNKS expression and low ERCC1 protein expression were independently associated with worse survival outcome. Interestingly, ERCC1 gains and losses correlated with worse disease‐free (p = 0.026) and overall (p = 0.043) survival as compared to survival of patients with normal gene copy‐numbers. Unsupervised hierarchical clustering of all ERCC1 and telomere parameters identified four subgroups with distinct prognosis. In particular, a cluster combining low ERCC1, ERCC1 gene alterations, dysfunctional telomeres and high hTERT and a cluster with high TNKS and shelterin expression correlated with poor disease‐free (HR= 5.41, p= 0.0044) and overall survival (HR= 6.01, p= 0.0023) irrespective of tumour stage and grade. This comprehensive study demonstrates that telomere dysfunction and DDR can contribute synergistically to tumour progression and chemoresistance. These parameters are predictors of clinical outcome in breast cancer patients treated with NCT and could be useful

  8. ERCC1 Expression in Metastatic Triple Negative Breast Cancer Patients Treated with Platinum-Based Chemotherapy

    Science.gov (United States)

    EL Baiomy, Mohamed Ali; El Kashef, Wagdi F

    2017-02-01

    Background: Possible targeted therapies for metastatic triple negative breast cancer (TNBC) include cytotoxic chemotherapy that causes interstrand breaks (platinum-based drugs). The excision repair cross-complementation 1 (ERCC1) enzyme plays an essential role in the nucleotide excision repair pathway, removing platinum-induced DNA adducts and contributing to cisplatin resistance. Detecting ERCC1 overexpression is important in considering treatment options for metastatic TNBC, including individualized approaches to therapy, and may facilitate improved responses or reduction of unnecessary toxicity. We hypothesized that assigning cisplatin based on pretreatment ERCC1 expression would improve response and survival. This study was conducted to assess the impact of ERCC1 expression on PFS, OS and response rates in metastatic triple negative breast cancer patients treated with platinum-based chemotherapy. Methods: From June 2012 to November 2013, 52 metastatic triple negative breast cancer patients were enrolled. ERCC1 protein expression was detected from pretreatment biopsies by Immunohistochemistry. All patients received cisplatin plus paclitaxel. The primary end point was the impact of ERCC1 expression on PFS and OS. Results: 34 patients (65.4%) showed positive ERCC1 expression while 18 (34.6%) proved negative. Positive ERCC1 expression was associated with short PFS (median, 5 months vs. 7 months; P = 0.043), short OS (median, 9 months vs. 11 months; P = 0.033) and poor response to cisplatin based chemotherapy (P = 0.046). Conclusions: This prospective study further validated ERCC1 as a reliable biomarker for customized chemotherapy in metastatic triple negative breast cancer patients. High expression of ERCC1 was thereby fond to be significantly associated with poor outcome in patients treated with platinum based chemotherapy.

  9. Loss of Ercc1 Results in a Time- and Dose-Dependent Reduction of Proliferating Early Hematopoietic Progenitors

    Directory of Open Access Journals (Sweden)

    Judith H. E. Verhagen-Oldenampsen

    2012-01-01

    Full Text Available The endonuclease complex Ercc1/Xpf is involved in interstrand crosslink repair and functions downstream of the Fanconi pathway. Loss of Ercc1 causes hematopoietic defects similar to those seen in Fanconi Anemia. Ercc1−/− mice die 3-4 weeks after birth, which prevents long-term follow up of the hematopoietic compartment. We used alternative Ercc1 mouse models to examine the effect of low or absent Ercc1 activity on hematopoiesis. Tie2-Cre-driven deletion of a floxed Ercc1 allele was efficient (>80% in fetal liver hematopoietic cells. Hematopoietic stem and progenitor cells (HSPCs with a deleted allele were maintained in mice up to 1 year of age when harboring a wt allele, but were progressively outcompeted when the deleted allele was combined with a knockout allele. Mice with a minimal Ercc1 activity expressed by 1 or 2 hypomorphic Ercc1 alleles have an extended life expectancy, which allows analysis of HSPCs at 10 and 20 weeks of age. The HSPC compartment was affected in all Ercc1-deficient models. Actively proliferating multipotent progenitors were most affected as were myeloid and erythroid clonogenic progenitors. In conclusion, lack of Ercc1 results in a severe competitive disadvantage of HSPCs and is most deleterious in proliferating progenitor cells.

  10. Broad segmental progeroid changes in short-lived Ercc1 −/Δ7 mice

    Directory of Open Access Journals (Sweden)

    Martijn E.T. Dollé

    2011-06-01

    Full Text Available Genome maintenance is considered a prime longevity assurance mechanism as apparent from many progeroid human syndromes that are caused by genome maintenance defects. The ERCC1 protein is involved in three genome maintenance systems: nucleotide excision repair, interstrand cross-link repair, and homologous recombination. Here we describe in-life and post-mortem observations for a hypomorphic Ercc1 variant, Ercc1 −/Δ7, which is hemizygous for a single truncated Ercc1 allele, encoding a protein lacking the last seven amino acids. Ercc1 −/Δ7 mice were much smaller and median life span was markedly reduced compared to wild-type siblings: 20 and 118 weeks, respectively. Multiple signs and symptoms of aging were found to occur at an accelerated rate in the Ercc1 −/Δ7 mice as compared to wild-type controls, including a decline in weight of both whole body and various organs, numerous histopathological lesions, and immune parameters. Together they define a segmental progeroid phenotype of the Ercc1 −/Δ7 mouse model.

  11. Thymidylate synthase, dihydropyrimidine dehydrogenase, ERCC1, and thymidine phosphorylase gene expression in primary and metastatic gastrointestinal adenocarcinoma tissue in patients treated on a phase I trial of oxaliplatin and capecitabine

    Directory of Open Access Journals (Sweden)

    Danenberg Kathleen D

    2008-12-01

    Full Text Available Abstract Background Over-expression of thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD in tumor tissue is associated with insensitivity to 5-fluorouracil (5-FU. Over-expression of ERCC1 correlates with insensitivity to oxaliplatin (OX therapy, while high thymidine phosphorylase (TP levels predict for increased sensitivity to capecitabine (Xel. Methods Biopsies of metastatic tumor were taken before OX (130 mg/m2 day 1 given with Xel (1200–3000 mg/m2 in two divided doses days 1–5 and 8–12 every 3-weeks. Micro-dissected metastatic and primary tumors were analyzed for relative gene expression by real-time quantitative polymerase chain reaction. The clinical protocol prospectively identified the molecular targets of interest that would be tested. Endpoints for the molecular analyses were correlation of median, first and third quartiles for relative gene expression of each target with response, time to treatment failure (TTF, and survival. Results Among 91 patients participating in this trial; 97% had colorectal cancer. The median number of prior chemotherapy regimens was 2, and most had prior 5-FU and irinotecan. In paired samples, median mRNA levels were significantly higher in metastatic versus primary tumor (-fold: TS (1.9, DPD (3.8, ERCC1 (2.1 and TP (1.6. A strong positive correlation was noted between DPD and TP mRNA levels in both primary (r = 0.693, p Conclusion Target gene expression in primary tumor was significantly lower than that in paired metastatic tissue. High ERCC1 mRNA levels in metastatic tumor was associated with a shorter TTF. Lower expression of TS mRNA correlated with a lower chance of early PD with XelOX therapy and improved overall survival.

  12. Predictive value of BRCA1, ERCC1, ATP7B, PKM2, TOPOI, TOPΟ-IIA, TOPOIIB and C-MYC genes in patients with small cell lung cancer (SCLC) who received first line therapy with cisplatin and etoposide.

    Science.gov (United States)

    Karachaliou, Niki; Papadaki, Chara; Lagoudaki, Eleni; Trypaki, Maria; Sfakianaki, Maria; Koutsopoulos, Anastasios; Mavroudis, Dimitris; Stathopoulos, Efstathios; Georgoulias, Vassilis; Souglakos, John

    2013-01-01

    The aim of the study was to evaluate the predictive value of genes involved in the action of cisplatin-etoposide in Small Cell Lung Cancer (SCLC). 184 SCLC patients' primary tumour samples were analyzed for ERCCI, BRCA1, ATP7B, PKM2 TOPOI, TOPOIIA, TOPOIIB and C-MYC mRNA expression. All patients were treated with cisplatin-etoposide. The patients' median age was 63 years and 120 (65%) had extended stage, 75 (41%) had increased LDH serum levels and 131 (71%) an ECOG performance status was 0-1. Patients with limited stage, whose tumours expressed high ERCC1 (p=0.028), PKM2 (p=0.046), TOPOI (p=0.008), TOPOIIA (p=0.002) and TOPOIIB (p<0.001) mRNA had a shorter Progression Free Survival (PFS). In limited stage patients, high expression of ERCC1 (p=0.014), PKM2 (p=0.026), TOPOIIA (p=0.021) and TOPOIIB (p=0.019) was correlated with decreased median overall survival (mOS) while in patients with extended stage, only high TOPOIIB expression had a negative impact on Os (p=0.035). The favorable expression signature expression signature (low expression of ERCC1, PKM2, TOPOIIA and TOPOIIB) was correlated with significantly better PFS and Os in both LS-SCLC (p<0.001 and p=0.007, respectively) and ES-SCLC (p=0.007 and (p=0.011, respectively) group. The unfavorable expression signature was an independent predictor for poor PFS (HR: 3.18; p=0.002 and HR: 3.14; p=0.021) and Os (HR: 4.35; p=0.001and HR: 3.32; p=0.019) in both limited and extended stage, respectively. Single gene's expression analysis as well as the integrated analysis of ERCC1, PKM2, TOPOIIA and TOPOIIB may predict treatment outcome in patients with SCLC. These findings should be further validated in a prospective study.

  13. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice

    NARCIS (Netherlands)

    W.P. Vermeij (Wilbert); M. Dollé (MartijnE.T.); E. Reiling (Erwin); D. Jaarsma (Dick); C. Payan-Gomez; C.R. Bombardieri (Cíntia R.); Wu, H.; A.J.M. Roks (Anton); S.M. Botter (Sander); B.C.J. van der Eerden (Bram); S.A. Youssef (Sameh Ahmed); R. Kuiper (Ruud); B. Nagarajah (Bhawani); C.T.M. van Oostrom (Conny); R.M.C. Brandt (Renata); S. Barnhoorn (Sander); S. Imholz (Sandra); J.L.A. Pennings (Jeroen L.A.); A. de Bruin (Alain); Gyenis, Á.; J. Pothof (Joris); J. Vijg (Jan); H. van Steeg (Harry); J.H.J. Hoeijmakers (Jan)

    2016-01-01

    textabstractMice deficient in the DNA excision-repair gene Ercc1 (Ercc1Δ/-) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing

  14. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice

    NARCIS (Netherlands)

    Vermeij, W. P.; Dolle, M. E. T.; Reiling, E.; Jaarsma, D.; Payan-Gomez, C.; Bombardieri, C. R.; Wu, H.; Roks, A. J. M.; Botter, S. M.; van der Eerden, B. C.; Youssef, S. A.; Kuiper, R. V.; Nagarajah, B.; van Oostrom, C. T.; Brandt, R. M. C.; Barnhoorn, S.; Imholz, S.; Pennings, J. L. A.; de Bruin, A.; Gyenis, A.; Pothof, J.; Vijg, J.; van Steeg, H.; Hoeijmakers, J. H. J.

    2016-01-01

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1(Delta/-)) show numerous accelerated ageing features that limit their lifespan to 4-6 months(1-4). They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing

  15. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice

    NARCIS (Netherlands)

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D|info:eu-repo/dai/nl/323051928; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V|info:eu-repo/dai/nl/305415042; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A|info:eu-repo/dai/nl/304837261; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-01-01

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1(∆/-)) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response

  16. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio- skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); A. Raams (Anja); M.C. Silengo; N. Wijgers (Nils); L.J. Niedernhofer (Laura); A.R. Robinson (Andria Rasile); G. Giglia-Mari (Giuseppina); D. Hoogstraten (Deborah); W.J. Kleijer (Wim); J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim)

    2007-01-01

    textabstractNucleotide excision repair (NER) is a genome caretaker mechanism responsible for removing helix-distorting DNA lesions, most notably ultraviolet photodimers. Inherited defects in NER result in profound photosensitivity and the cancer-prone syndrome xeroderma pigmentosum (XP) or two

  17. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio- skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); A. Raams (Anja); M.C. Silengo; N. Wijgers (Nils); L.J. Niedernhofer (Laura); A.R. Robinson (Andria Rasile); G. Giglia-Mari (Giuseppina); D. Hoogstraten (Deborah); W.J. Kleijer (Wim); J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim)

    2007-01-01

    textabstractNucleotide excision repair (NER) is a genome caretaker mechanism responsible for removing helix-distorting DNA lesions, most notably ultraviolet photodimers. Inherited defects in NER result in profound photosensitivity and the cancer-prone syndrome xeroderma pigmentosum (XP) or two proge

  18. An explorative analysis of ERCC1-19q13 copy number aberrations in a chemonaive stage III colorectal cancer cohort

    DEFF Research Database (Denmark)

    Smith, David Hersi; Christensen, Ib Jarle; Jensen, Niels Frank

    2013-01-01

    investigation is to determine the presence, frequency and prognostic impact of ERCC1 or ERCC4 gene copy number alterations in colorectal cancer (CRC). Methods: Fluorescent in situ hybridization probes directed at ERCC1 and ERCC4 with relevant reference probes were constructed. Probes were tested in a CRC cell...... line panel and in tumor sections from 152 stage III CRC chemonaive patients. Relationships between biomarker status and clinical endpoints (overall survival, time to recurrence, and local recurrence in rectal cancer) were analyzed by survival statistics. Results: ERCC1-19q13 copy number alterations...... were observed in a single cell line metaphase (HT29). In patient material, ERCC1-19q13 copy number gains (ERCC1-19q13/CEN-2 ≥ 1.5) were detected in 27.0% of specimens, whereas ERCC1-19q13 deletions (ERCC1-19q13/CEN-2

  19. ERCC1和XRCC3基因多态性在接受含铂方案化疗NSCLC中的疗效预测作用%Predictive Role of ERCC1 and XRCC3 Gene Polymorphism on Response of Platinum-based Chemotherapy in Advanced NSCLC

    Institute of Scientific and Technical Information of China (English)

    任胜祥; 周彩存; 周崧雯; 张玲; 苏春霞; 张增利; 邓沁芳; 张颉

    2009-01-01

    型C/T或T/T患者的生存时间显著延长(P=0.003).Cox多因素分析显示,ERCC1 118基困型C/T或T/T以及化疗有效患者的生存期显著延长.[结论]DNA修复基冈ERCC1 118基凶型C/T或T/T多态性可以延长NSCLC患者铂类治疗后的生存时间.

  20. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B

    2017-06-13

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  1. The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Waldstrøm, Marianne; Jakobsen, Anders

    2009-01-01

    : Formalin-fixed, paraffin-embedded tissue sections from 101 patients with newly diagnosed ovarian cancer were used for immunohistochemical staining for the ERCC1 protein. All patients received carboplatin-paclitaxel combination chemotherapy. RESULTS: Excision repair cross-complementation group 1 enzyme...

  2. ERCC1 mRNA levels can predict the response to cisplatin-based concurrent chemoradiotherapy of locally advanced cervical squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Bai Zhou-lan

    2012-12-01

    Full Text Available Abstract Background The purpose of this study was to investigate whether the excision repair cross-complementation group 1 (ERCC1 mRNA expression could predict treatment response of patients with locally advanced cervical squamous cell carcinoma (LACSCC who underwent cisplatin-based concurrent chemoradiotherapy (CCCRT. Methods A total of sixty LACSCC patients, treated with radical CCCRT from a single institution were evaluated. ERCC1 mRNA expression was determined by quantitative real-time RT-PCR in pre-treatment tumor tissues. The association of ERCC1 status with clinicopathological characteristics (age, histological grade, tumor size, parametrial invasion, lymph node metastasis and FIGO stage and treatment response were analyzed. Results No significant association between ERCC1 mRNA expression and clinicopathological characteristics were observed. Patients with low ERCC1 mRNA level had a significantly higher rate of complete response (86.21% than patients with high level of ERCC1 expression (19.36%; p P  Conclusions This is the first analysis of the association between ERCC1 mRNA levels and treatment response in patients with LACSCC. Low ERCC1 mRNA level appears to be a highly specific predictor of response to CCCRT in LACSCC.

  3. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks.

    Science.gov (United States)

    Niedernhofer, Laura J; Odijk, Hanny; Budzowska, Magda; van Drunen, Ellen; Maas, Alex; Theil, Arjan F; de Wit, Jan; Jaspers, N G J; Beverloo, H Berna; Hoeijmakers, Jan H J; Kanaar, Roland

    2004-07-01

    Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.

  4. ERCC2, ERCC1 polymorphisms and haplotypes, cooking oil fume and lung adenocarcinoma risk in Chinese non-smoking females

    Directory of Open Access Journals (Sweden)

    Li Xuelian

    2009-12-01

    Full Text Available Abstract Background Excision repair cross-complementing group 1 (ERCC1 and group 2 (ERCC2 proteins play important roles in the repair of DNA damage and adducts. Single nucleotide polymorphisms (SNPs of DNA repair genes are suspected to influence the risk of lung cancer. This study aimed to investigate the association between the ERCC2 751, 312 and ERCC1 118 polymorphisms and the risk of lung adenocarcinoma in Chinese non-smoking females. Methods A hospital-based case-control study of 285 patients and 285 matched controls was conducted. Information concerning demographic and risk factors was obtained for each case and control by a trained interviewer. After informed consent was obtained, each person donated 10 ml blood for biomarker testing. Three polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method. Results This study showed that the individuals with the combined ERCC2 751AC/CC genotypes were at an increased risk for lung adenocarcinoma compared with those carrying the AA genotype [adjusted odds ratios (OR 1.64, 95% confidence interval (CI 1.06-2.52]. The stratified analysis suggested that increased risk associated with ERCC2 751 variant genotypes (AC/CC was more pronounced in individuals without exposure to cooking oil fume (OR 1.98, 95%CI 1.18-3.32 and those without exposure to fuel smoke (OR 2.47, 95%CI 1.46-4.18. Haplotype analysis showed that the A-G-T and C-G-C haplotypes were associated with increased risk of lung adenocarcinoma among non-smoking females (ORs were 1.43 and 2.28, 95%CIs were 1.07-1.91 and 1.34-3.89, respectively. Conclusion ERCC2 751 polymorphism may be a genetic risk modifier for lung adenocarcinoma in non-smoking females in China.

  5. ERCC2, ERCC1 polymorphisms and haplotypes, cooking oil fume and lung adenocarcinoma risk in Chinese non-smoking females

    Science.gov (United States)

    2009-01-01

    Background Excision repair cross-complementing group 1 (ERCC1) and group 2 (ERCC2) proteins play important roles in the repair of DNA damage and adducts. Single nucleotide polymorphisms (SNPs) of DNA repair genes are suspected to influence the risk of lung cancer. This study aimed to investigate the association between the ERCC2 751, 312 and ERCC1 118 polymorphisms and the risk of lung adenocarcinoma in Chinese non-smoking females. Methods A hospital-based case-control study of 285 patients and 285 matched controls was conducted. Information concerning demographic and risk factors was obtained for each case and control by a trained interviewer. After informed consent was obtained, each person donated 10 ml blood for biomarker testing. Three polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results This study showed that the individuals with the combined ERCC2 751AC/CC genotypes were at an increased risk for lung adenocarcinoma compared with those carrying the AA genotype [adjusted odds ratios (OR) 1.64, 95% confidence interval (CI) 1.06-2.52]. The stratified analysis suggested that increased risk associated with ERCC2 751 variant genotypes (AC/CC) was more pronounced in individuals without exposure to cooking oil fume (OR 1.98, 95%CI 1.18-3.32) and those without exposure to fuel smoke (OR 2.47, 95%CI 1.46-4.18). Haplotype analysis showed that the A-G-T and C-G-C haplotypes were associated with increased risk of lung adenocarcinoma among non-smoking females (ORs were 1.43 and 2.28, 95%CIs were 1.07-1.91 and 1.34-3.89, respectively). Conclusion ERCC2 751 polymorphism may be a genetic risk modifier for lung adenocarcinoma in non-smoking females in China. PMID:20003391

  6. Low ERCC1 expression in malignant pleural mesotheliomas treated with cisplatin and vinorelbine predicts prolonged progression-free survival

    DEFF Research Database (Denmark)

    Zimling, Zarah Glad; Sørensen, Jens Benn; Gerds, Thomas Alexander;

    2012-01-01

    The relationship between excision repair cross-complementation group 1 (ERCC1) expression and outcome, in patients with malignant pleural mesothelioma (MPM), treated with cisplatin/vinorelbine combination-therapy, was retrospectively evaluated in a patient population from a previously published...

  7. 维吾尔民族非小细胞肺癌组织中的ERCC1、BRCA1的表达及预后关系的研究%Expression of ERCC1, BRCA1 and prognosis in non-small cell lung cancer of Uygur patients

    Institute of Scientific and Technical Information of China (English)

    穆清爽; 韩利梅

    2011-01-01

    Objective:To investigate the relationship of expression of ERCC1 and BRCA1 and prognostic in advanced non-small cell lung cancer (NSCLC) of Uygur patients. Methods: The formalin-fixed biopsy speciments of 80 cases of NSCLC Uygur patient from January 2004 to December 2008 are reviewed.We detect the expression of ERCC1 and BRCAl by immunohistochemical method. Then we analyze the relationship of these two genes and prognostic of the patients. Results: In these 80 cases, positive expression rates of ERCC1 was 38.6%(31/80),and this gene is no correlation with age,gender,clinical stage and pathology,but is correlation with smoking and PS score.Positive expression rates of BRCA1 was 88.8%(71/80) ,and this gene is no correlation with age.gender, smoking,clinical stage and pathology,but is correlation with PS score.The expression of ERCC1 and BRCA1 to median survival weeks is analyzed by Univariate analysis in Kaplan-Meier method,which display the difference is no statistically significant (P>0.05).The negative expression of ERCC1 has longer life than the positive ones, and the difference in survival rate of 1 year is statistically significant (P=0.035). But in overall survival the difference is no statistically significant. Conclusion: The negative expression of ERCC1 could help to predict the prognosis and survival time in advanced non-small cell lung cancer of Uygur patients.The expression of BRCA1 was no statistically significant in NSCLC of Uygur patients temporarily .The result of this study may provide new sight for clinical therapy and prognosis to individual NSCLC Uygur patients.%目的:研究探讨维吾尔民族非小细胞肺癌组织中DNA切除修复交叉互补基因1(Excision repair cross-complementing 1,ERCC1)、乳腺癌易感基因1(Brest cancer susceptibility gene 1,BRCA1)的表达与患者预后及生存的关系.方法:收集2004年1月-2008年12月间的80例维吾尔族NSCLC病灶活检的福尔马林固定标本,采用免疫组化方法检测ERCC1

  8. ERCC1 and XRCC1 but not XPA single nucleotide polymorphisms correlate with response to chemotherapy in endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Chen L

    2016-11-01

    Full Text Available Liang Chen,1 Mei-Mei Liu,1 Hui Liu,1 Dan Lu,2 Xiao-Dan Zhao,3 Xue-Jing Yang4 1Department of Gynecology and Obstetrics, 2Department of Oncology, 3Department of Clinical Laboratory, The 2nd Affiliated Hospital, Harbin Medical University, 4Nursing Department, Harbin Chest Hospital, Harbin, People’s Republic of China Abstract: Our study aimed to investigate the correlation between single nucleotide polymorphisms of ERCC1/XRCC1/XPA genes and postoperative chemotherapy efficacy and prognosis of endometrial carcinoma. Our study included 108 patients with endometrial carcinoma and 100 healthy participants. ERCC1 rs11615/XRCC1 rs25487/XPA rs1800975 gene polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism. Then the chemotherapy efficacy and toxic effects of the patients were assessed. The genotype and allele frequency of ERCC1 rs11615/XRCC1 rs25487 in the case group were significantly different from that in the control group (all P<0.05. The patients with AA + GA in ERCC1 rs11615 had an increased risk of endometrial carcinoma than those with GG, and the risk of endometrial carcinoma for patients with AA + GA was also higher in comparison with patients with GG genotype in XRCC1 rs25487 (all P<0.05. GG on both ERCC1 rs11615/XRCC1 rs25487 had a higher effective rate of chemotherapy than GA + AA (all P<0.05. ERCC1 rs11615/XRCC1 rs25487 gene polymorphisms were linked with toxic effects in liver, kidney, and nervous system. ERCC1 rs11615/XRCC1 rs25487, muscular invasion, and tumor stage were independent risk factors for the prognosis of endometrial carcinoma (all P<0.05. However, no significant associations were observed between XPA rs1800975 polymorphism and chemotherapy efficacy and prognosis of endometrial carcinoma (all P>0.05. These results indicated that ERCC1 and XRCC1 but not XPA polymorphisms correlate with response to chemotherapy in endometrial carcinoma. Keywords: ERCC1, XRCC1, XPA, single nucleotide

  9. ERCC1 and TS Expression as Prognostic and Predictive Biomarkers in Metastatic Colon Cancer.

    Directory of Open Access Journals (Sweden)

    Michel B Choueiri

    Full Text Available In patients with metastatic colon cancer, response to first line chemotherapy is a strong predictor of overall survival (OS. Currently, oncologists lack diagnostic tests to determine which chemotherapy regimen offers the greatest chance for response in an individual patient. Here we present the results of gene expression analysis for two genes, ERCC1 and TS, measured with the commercially available ResponseDX: Colon assay (Response Genetics, Los Angeles, CA in 41 patients with de novo metastatic colon cancer diagnosed between July 2008 and August 2013 at the University of California, San Diego. In addition ERCC1 and TS expression levels as determined by RNAseq and survival data for patients in TCGA were downloaded from the TCGA data portal. We found that patients with low expression of ERCC1 (n = 33 had significantly longer median OS (36.0 vs. 10.1 mo, HR 0.29, 95% CI .095 to .84, log-rank p = 9.0x10-6 and median time to treatment to failure (TTF following first line chemotherapy (14.1 vs. 2.4 mo, HR 0.17, 95% CI 0.048 to 0.58, log-rank p = 5.3x10-4 relative to those with high expression (n = 4. After accounting for the covariates age, sex, tumor grade and ECOG performance status in a Cox proportional hazard model the association of low ERCC1 with longer OS (HR 0.18, 95% CI 0.14 to 0.26, p = 0.0448 and TTF (HR 0.16, 95% CI 0.14 to 0.21, p = 0.0053 remained significant. Patients with low TS expression (n = 29 had significantly longer median OS (36.0 vs. 14.8 mo, HR 0.25, 95% CI 0.074 to 0.82, log-rank p = 0.022 relative to those with high expression (n = 12. The combined low expression of ERCC1/TS was predictive of response in patients treated with FOLFOX (40% vs. 91%, RR 2.3, Fisher's exact test p = 0.03, n = 27, but not with FOLFIRI (71% vs. 71%, RR 1.0, Fisher's exact test p = 1, n = 14. Overall, these findings suggest that measurement of ERCC1 and TS expression has potential clinical utility in managing patients with metastatic colorectal

  10. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia.

    Science.gov (United States)

    Kashiyama, Kazuya; Nakazawa, Yuka; Pilz, Daniela T; Guo, Chaowan; Shimada, Mayuko; Sasaki, Kensaku; Fawcett, Heather; Wing, Jonathan F; Lewin, Susan O; Carr, Lucinda; Li, Tao-Sheng; Yoshiura, Koh-ichiro; Utani, Atsushi; Hirano, Akiyoshi; Yamashita, Shunichi; Greenblatt, Danielle; Nardo, Tiziana; Stefanini, Miria; McGibbon, David; Sarkany, Robert; Fassihi, Hiva; Takahashi, Yoshito; Nagayama, Yuji; Mitsutake, Norisato; Lehmann, Alan R; Ogi, Tomoo

    2013-05-02

    Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. ERCC1 and Ki67 in Small Cell Lung Carcinoma and Other Neuroendocrine Tumors of the Lung Distribution and Impact on Survival

    DEFF Research Database (Denmark)

    Skov, Birgit Guldhammer; Holm, B.; Erreboe, A.

    2010-01-01

    Background: Excision repair cross-complementation group 1 (ERCC1) is a key component of the platinum-DNA repair mechanism. Ki67 is associated with the clinical course of several malignancies. The associations of ERCC1 and Ki67, clinical features and survival in small cell lung carcinoma (SCLC......), typical carcinoid (TC), atypical carcinoid (AC), and large cell neuroendocrine carcinoma (LCNEC) were determined. Materials and Methods: We included a consecutive series of 186 patients with SCLC treated with platinum-based chemotherapy and surgically treated patients with TC (n = 48), AC (n = 15...

  12. Polymorphisms in DNA Repair Genes and Susceptibility to Glioma in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Jun-Hong Guan

    2013-02-01

    Full Text Available The excision repair cross-complementing rodent repair deficiency complementation group 1 (ERCC1, and X-ray repair cross-complementing group 1 (XRCC1 genes appear to protect mammalian cells from the harmful effects of ionizing radiation. We conducted a large case-control study to investigate the association of polymorphisms in ERCC1 C118T, ERCC1 C8092A, XRCC1 A194T, XRCC1 A194T, and XRCC3 C241T, with glioma risk in a Chinese population. Five single nucleotide polymorphisms (SNPs were genotyped, using the MassARRAY IPLEX platform, in 443 glioma cases and 443 controls. Association analyses based on an χ2 test and binary logistic regression were performed to determine the odds ratio (OR and a 95% confidence interval (95% CI for each SNP. For XRCC1 Arg194Trp, the variant genotype T/T was strongly associated with a lower risk of glioma cancer when compared with the wild type C/C (OR = 2.45, 95% CI = 1.43–4.45. Individuals carrying the XRCC1 399A allele had an increased risk of glioma (OR = 1.33, 95% CI = 1.02–1.64. The XRCC3 241T/T genotype was associated with a strong increased glioma risk (OR = 3.78, 95% CI = 1.86–9.06. Further analysis of the interactions of two susceptibility-associated SNPs, XRCC1 Arg194Trp and XRCC3 Thr241Met, showed that the combination of the XRCC1 194T and XRCC3 241T alleles brought a large increase in glioma risk (OR = 2.75, 95% CI = 1.54–4.04. XRCC1 Arg194Trp, XRCC1 Arg399Gln, and XRCC3 C241T, appear to be associated with susceptibility to glioma in a Chinese population.

  13. Excision repair cross-complementation group 1 (ERCC1) in platinum-based treatment of non-small cell lung cancer with special emphasis on carboplatin: a review of current literature

    DEFF Research Database (Denmark)

    Vilmar, A.; Sorensen, J.B.

    2009-01-01

    BACKGROUND: Patients diagnosed with advanced non-small cell lung cancer have a dismal prognosis and are often relative resistant to chemotherapy. A need for markers has emerged based on tumour biology in order to predict which patients will respond to treatment. Excision repair cross-complementat...

  14. Defective transcription initiation causes postnatal growth failure in a mouse model of nucleotide excision repair (NER) progeria

    Science.gov (United States)

    Kamileri, Irene; Karakasilioti, Ismene; Sideri, Aria; Kosteas, Theodoros; Tatarakis, Antonis; Talianidis, Iannis; Garinis, George A.

    2012-01-01

    Nucleotide excision repair (NER) defects are associated with cancer, developmental disorders and neurodegeneration. However, with the exception of cancer, the links between defects in NER and developmental abnormalities are not well understood. Here, we show that the ERCC1-XPF NER endonuclease assembles on active promoters in vivo and facilitates chromatin modifications for transcription during mammalian development. We find that Ercc1−/− mice demonstrate striking physiological, metabolic and gene expression parallels with Taf10−/− animals carrying a liver-specific transcription factor II D (TFIID) defect in transcription initiation. Promoter occupancy studies combined with expression profiling in the liver and in vitro differentiation cell assays reveal that ERCC1-XPF interacts with TFIID and assembles with POL II and the basal transcription machinery on promoters in vivo. Whereas ERCC1-XPF is required for the initial activation of genes associated with growth, it is dispensable for ongoing transcription. Recruitment of ERCC1-XPF on promoters is accompanied by promoter-proximal DNA demethylation and histone marks associated with active hepatic transcription. Collectively, the data unveil a role of ERCC1/XPF endonuclease in transcription initiation establishing its causal contribution to NER developmental disorders. PMID:22323595

  15. High ERCC1 expression predicts cisplatin-based chemotherapy resistance and poor outcome in unresectable squamous cell carcinoma of head and neck in a betel-chewing area

    Directory of Open Access Journals (Sweden)

    Chien Chih-Yen

    2011-03-01

    Full Text Available Abstract Background This study was to evaluate the effect of excision repair cross-complementation group 1(ERCC1 expression on response to cisplatin-based induction chemotherapy (IC followed by concurrent chemoradiation (CCRT in locally advanced unresectable head and neck squamous cell carcinoma (HNSCC patients. Methods Fifty-seven patients with locally advanced unresectable HNSCC who received cisplatin-based IC followed by CCRT from January 1, 2006 through January 1, 2008. Eligibility criteria included presence of biopsy-proven HNSCC without a prior history of chemotherapy or radiotherapy. Immunohistochemistry was used to assess ERCC1 expression in pretreatment biopsy specimens from paraffin blocks. Clinical parameters, including smoking, alcohol consumption and betel nuts chewing, were obtained from the medical records. Results The 12-month progression-free survival (PFS and 2-year overall survival (OS rates of fifty-seven patients were 61.1% and 61.0%, respectively. Among these patients, thirty-one patients had low ERCC1 expression and forty-one patients responded to IC followed by CCRT. Univariate analyses showed that patients with low expression of ERCC1 had a significantly higher 12-month PFS rates (73.3% vs. 42.3%, p Conclusions Our study suggest that a high expression of ERCC1 predict a poor response and survival to cisplatin-based IC followed by CCRT in patients with locally advanced unresectable HNSCC in betel nut chewing area.

  16. Augmentation of protein production by a combination of the T7 RNA polymerase system and ubiquitin fusion: Overproduction of the human DNA repair protein, ERCC1, as a ubiquitin fusion protein in Escherichia coli.

    NARCIS (Netherlands)

    M.H.M. Koken (Marcel); J.H. Odijk; M. van Duin (Mark); M.W.J. Fornerod (Maarten); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1993-01-01

    textabstractThis article presents the development of a set of new expression vectors for overproduction of proteins in Escherichia coli. The vectors, pETUBI-ES1, 2 and 3, allow in-frame cloning of any sequence with the ubiquitin gene driven by the strong T7f10 promoter. Combination of the T7 express

  17. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Yui Terayama

    Full Text Available Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC. C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection.

  18. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation.

    Science.gov (United States)

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection.

  19. Nucleotide excision repair: ERCC1 and TFIIH complexes

    NARCIS (Netherlands)

    A.J. van Vuuren (Hanneke)

    1995-01-01

    textabstractDNA is the carrier of genetic information in living organisms. The information stored in the nucleotide sequence of DNA is transmitted to the offspring by generating identical copies of the parental DNA molecules. Damage in DNA can cause loss of genetic information. Nevertheless, the DNA

  20. Supplementation with Lactobacillus plantarum WCFS1 prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1-/Δ7 Mice

    Directory of Open Access Journals (Sweden)

    Adriaan A Van Beek

    2016-10-01

    Full Text Available Although it is clear that probiotics improve intestinal barrier function, little is known about the effects of probiotics on the aging intestine. We investigated effects of 10-wk bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old accelerated aging Ercc1-/Δ7 mice, which have a median lifespan of ~20wk, and their wild-type littermates. The colonic barrier in Ercc1-/Δ7 mice was characterized by a thin (<10µm mucus layer. L. plantarum prevented this decline in mucus integrity in Ercc1-/Δ7 mice, whereas B. breve exacerbated it. Bacterial supplementations affected the expression of immune-related genes, including Toll-like receptor 4. Regulatory T cell frequencies were increased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated Ercc1-/Δ7 mice. L. plantarum- and L. casei-treated Ercc1-/Δ7 mice showed increased specific antibody production in a T cell-dependent immune response in vivo. By contrast, the effects of bacterial supplementation on wild-type control mice were negligible. Thus, supplementation with L. plantarum – but not with L. casei and B. breve – prevented the decline in the mucus barrier in Ercc1-/Δ7 mice. Our data indicate that age is an important factor influencing beneficial or detrimental effects of candidate probiotics. These findings also highlight the need for caution in translating beneficial effects of probiotics observed in young animals or humans to the elderly.

  1. Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1−/Δ7 Mice

    Science.gov (United States)

    van Beek, Adriaan A.; Sovran, Bruno; Hugenholtz, Floor; Meijer, Ben; Hoogerland, Joanne A.; Mihailova, Violeta; van der Ploeg, Corine; Belzer, Clara; Boekschoten, Mark V.; Hoeijmakers, Jan H. J.; Vermeij, Wilbert P.; de Vos, Paul; Wells, Jerry M.; Leenen, Pieter J. M.; Nicoletti, Claudio; Hendriks, Rudi W.; Savelkoul, Huub F. J.

    2016-01-01

    Although it is clear that probiotics improve intestinal barrier function, little is known about the effects of probiotics on the aging intestine. We investigated effects of 10-week bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old accelerated aging Ercc1−/Δ7 mice, which have a median lifespan of ~20 weeks, and their wild-type littermates. The colonic barrier in Ercc1−/Δ7 mice was characterized by a thin (< 10 μm) mucus layer. L. plantarum prevented this decline in mucus integrity in Ercc1−/Δ7 mice, whereas B. breve exacerbated it. Bacterial supplementations affected the expression of immune-related genes, including Toll-like receptor 4. Regulatory T cell frequencies were increased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated Ercc1−/Δ7 mice. L. plantarum- and L. casei-treated Ercc1−/Δ7 mice showed increased specific antibody production in a T cell-dependent immune response in vivo. By contrast, the effects of bacterial supplementation on wild-type control mice were negligible. Thus, supplementation with L. plantarum – but not with L. casei and B. breve – prevented the decline in the mucus barrier in Ercc1−/Δ7 mice. Our data indicate that age is an important factor influencing beneficial or detrimental effects of candidate probiotics. These findings also highlight the need for caution in translating beneficial effects of probiotics observed in young animals or humans to the elderly. PMID:27774093

  2. The Expression and Prognostic Significance of ERCC1 and GST-pi in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yunpeng LIU

    2010-03-01

    Full Text Available Background and objective It has been known that the expression levels of ERCC1 and GST-pi were correlated with tumorigenesis and prognosis. The aim of this study is to investigate the relationship between expression levels of ERCC1 and GST-pi, and clinicopathologic parameters and survival in patients with lung cancer. Methods The expression levels of ERCC1 and GST-pi were detected by immunohistochemical staining on tissue micro-array sections made of 148 cases of lung cancer and 7 cases of normal lung samples. The results were compared with relevant clinical and pathologic data. Results Positive rates of ERCC1 and GST-pi were 36.2% and 73.6%, respectively. None of normal lung samples was positive staining. Positive expression of ERCC1 was significantly higher in group of non-small cell lung cancer (NSCLC, highly differentiated and the smokers less than 400 (P < 0.05, positive expression of GST-pi was significantly higher in group of non-smokers and NSCLC (P < 0.05. There were significant correlations between expression of ERCC1 and GST-pi (r=0.253, P=0.001. The 5 years survival rate was higher in positive expression of ERCC1. There was significant correlations between expression of ERCC1 and survival (P=0.037. There was no significant correlations between expression of GST-pi and survival (P=0.614. Multivariate analysis using Cox regression model showed that expression levels of ERCC1 and GST-pi were not the important independent prognostic factors for survival. Conclusion ERCC1 and GST-pi are aberrant highly expressed in NSCLC with positive correlation, which indicate they might act synergistically in tumorigenesis of NSCLC. The positive expression of ERCC1 have better survival and may have effect on prognosis.

  3. RRM1, ERCC1 and TS1 Immunofluorescence Expression in Leiomyosarcoma: A Tissue Microarray Study with Clinical Outcome Correlation Analysis.

    Science.gov (United States)

    Zheng, Sam D; Bui, Katherine; Chiappori, Alberto; Bepler, Gerold; Bui, Marilyn M

    2016-07-01

    ERCC1, RRM1 and TS1 are reportedly linked to chemotherapy resistance in lung and other cancers. However, there are currently no studies reporting the relationship between these genes and clinical parameters in leiomyosarcomas. This study investigated the expression pattern of ERCC1, RRM1 and TS1 in forty-four leiomyosarcoma samples by the use of tissue microarray (TMA), immunofluorescence and AQUA methods. The results were then analyzed for expression level and correlations were made with clinical outcome to determine their potential prognostic value in leiomyosarcoma. In the forty-four samples studied, the expression level of these three proteins can be well quantified in the AQUA system and reflected by the AQUA score. RRM1 and ERCC1 expression levels did not show any relationship with overall survival. However, a correlation was found between TS1 expression in the cytoplasm and overall survival. The high expression group had a shorter overall survival time (log-rank p = 0.0498). This trend was confirmed by the Cox proportional hazards model. The poor overall survival of leiomyosarcoma is linked to TS1 cytoplasm expression which may be useful in predicting prognoses of this tumor, methods targeting expression of TS1 may lead to improved overall survival in leiomyosarcoma, though more detailed information regarding treatment information and a larger sample size is needed to confirm this phenomenon.

  4. RT-PCR versus immunohistochemistry for correlation and quantification of ERCC1, BRCA1, TUBB3 and RRM1 in NSCLC

    DEFF Research Database (Denmark)

    Garcia-Foncillas, J; Huarriz, M; Santoni-Rugiu, E;

    2012-01-01

    Customized chemotherapy is increasingly used in the management of patients with advanced non-small cell lung cancer (NSCLC). However, the most reliable methodology to determine biomarker status is neither fully elucidated nor agreed upon. Accordingly, we evaluated the predictive efficiency of qRT......RT-PCR and immunohistochemical analysis (IHC) on excision cross complementation group 1 (ERCC1), breast cancer susceptibility gene 1 (BRCA1), ribonucleotide reductase subunit M1 (RRM1) and class III ß-tubulin (TUBB3)....

  5. 切除修复交叉互补基因1基因多态性与肺癌易感性meta分析%ERCC1 polymorphism and lung cancer risk: a meta analysis and systematic review

    Institute of Scientific and Technical Information of China (English)

    陈晓林

    2015-01-01

    目的 探讨切除修复交叉互补基因1(ERCC-1)rs3212986位点多态性与肺癌易感性的关系.方法 使用PubMed数据库检索2013年5月以前相关文献,按纳入标准搜索研究ERCC-1rs3212986C/T多态性与肺癌易感性相关的文献,采用STATA软件进行统计分析.结果 共有5 009例肿瘤患者和5 542名对照个体被纳入荟萃分析.分析表明ERCC-1 rs3212986 C/T多态性与肺癌易感性有统计学相关性(等位基因比P=0.043,OR =0.90,95%CI:0.81~0.99).结论 ERCC-1rs3212986C/T多态性与肺癌易感性存在一定的相关性,等位基因T可能会增加肺癌的易感性.%Objective To determine the association of excision repair cross completion 1 (ERCC1) rs3212986 C>T polymorphism and lung cancer risk.Methods Pubmed database was utilized to search the literatures about association of ERCC1 rs3212986 C>T polymorphism and lung cancer risk.All the statistical analysis was performed by STATA software.Results 5 009 lung cancer cases and 5 542 controls were included in this meta analysis.The results revealed that ERCC-1 rs3212986 polymorphism was statistically associated with lung caner risk (allelic contrast P =0.043,OR =0.90,95% CI:0.81-0.99).Conclusions ERCC-1 rs3212986 polymorphism is correlated to lung cancer risk,carrying T allele may increase the risk of lung cancer.

  6. The structure of the XPF-ssDNA complex underscores the distinct roles of the XPF and ERCC1 helix- hairpin-helix domains in ss/ds DNA recognition.

    Science.gov (United States)

    Das, Devashish; Folkers, Gert E; van Dijk, Marc; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J; Kaptein, Robert; Boelens, Rolf

    2012-04-01

    Human XPF/ERCC1 is a structure-specific DNA endonuclease that nicks the damaged DNA strand at the 5' end during nucleotide excision repair. We determined the structure of the complex of the C-terminal domain of XPF with 10 nt ssDNA. A positively charged region within the second helix of the first HhH motif contacts the ssDNA phosphate backbone. One guanine base is flipped out of register and positioned in a pocket contacting residues from both HhH motifs of XPF. Comparison to other HhH-containing proteins indicates a one-residue deletion in the second HhH motif of XPF that has altered the hairpin conformation, thereby permitting ssDNA interactions. Previous nuclear magnetic resonance studies showed that ERCC1 in the XPF-ERCC1 heterodimer can bind dsDNA. Combining the two observations gives a model that underscores the asymmetry of the human XPF/ERCC1 heterodimer in binding at an ss/ds DNA junction.

  7. ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency

    Science.gov (United States)

    Mohni, Kareem N.; Kavanaugh, Gina M.; Cortez, David

    2014-01-01

    The DNA damage response kinase ATR and its effector kinase CHEK1 are required for cancer cells to survive oncogene-induced replication stress. ATR inhibitors exhibit synthetic lethal interactions with deficiencies in the DNA damage response enzymes ATM and XRCC1 and with overexpression of the cell cycle kinase Cyclin E. Here we report a systematic screen to identify synthetic lethal interactions with ATR-pathway targeted drugs, rationalized by their predicted therapeutic utility in the oncology clinic. We found that reduced function in the ATR pathway itself provided the strongest synthetic lethal interaction. In addition, we found that loss of the structure specific-endonuclease ERCC1-XPF (ERCC4) is synthetic lethal with ATR pathway inhibitors. ERCC1-deficient cells exhibited elevated levels of DNA damage, which was increased further by ATR inhibition. When treated with ATR or CHEK1 inhibitors, ERCC1-deficient cells arrested in S phase and failed to complete cell cycle transit even after drug removal. Notably, triple-negative breast cancer cells and non-small cell lung cancer cells depleted of ERCC1 exhibited increased sensitivity to ATR-pathway targeted drugs. Overall, we concluded that ATR pathway-targeted drugs may offer particular utility in cancers with reduced ATR pathway function or reduced levels of ERCC4 activity. PMID:24662920

  8. Association of ERCC1 protein expression to platinum resistance in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, Marianne; Jakobsen, Anders

    was to investigate if immunohistochemical expression of ERCC1 protein was associated with resistance to standard combination carboplatin and paclitaxel chemotherapy in newly diagnosed ovarian cancer patients. Methods: Formalin-fixed, paraffin-embedded tissue sections from 101 patients with newly diagnosed ovarian...

  9. IDH1、ERCC1和MGMT在脑胶质瘤组织中的表达及意义%Expression and clinical significance of IDH1,ERCC1,MGMT in brain glioma

    Institute of Scientific and Technical Information of China (English)

    高超; 王佳; 梁振; 孟庆印

    2014-01-01

    目的 研究IDH1、ERCC1和MGMT在脑胶质瘤组织中的表达及其相关性.方法 运用免疫组织化学法观察84例胶质瘤IDH1、ERCC1和MGMT的表达.结果 IDH1和ERCC1在胶质瘤细胞中表达随病理级别增加而升高,差异有统计学意义,IDH1在胶质瘤样本中的表达分别与ERCC1和MGMT有相关性,而ERCC1和MGMT之间无相关性.结论 IDH1、ERCC1的检测可判断胶质瘤恶性程度,并可以将其作为判断预后的重要指标,检测ERCC1和MGMT可针对性选用化疗药物,对制定个性化化疗方案有重要参考价值.

  10. RRM1和ERCC1在非小细胞肺癌中的表达及意义%Expression and prognostic significance of ERCC1 and RRM1 in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    胡跃云; 张献波; 董英辉; 乞国艳; 张燕; 刘津来

    2012-01-01

    Objective To investigate the expressions of ERCC1 and RRM1 in patients with non-small cell lung cancer ( NSCLC) as well as their clinical prognostic significance. Methods ERCC1 and RRM1 in 30 cases of ⅢB/IV non-small cell cancer were detected by PV-9000 immunohistochemistry. The chi-square test, Fishers test, rank correlation, Kaplan-Meier survival curve were used for statistical analysis. Results There was no significant difference between the RRM1 or ERCC1 expression and sex, age, pathological type or TNM stage (all P >0. 05). There was a positive correlation between ERCC1 and RRM1 expressions (P =0.015). The ERCC1 negative group on overall survival and progression-free survival time were significantly longer than those in positive group, the RRM1 negative group on overall survival and progression-free survival time were significantly longer than those in positive group. Conclusions There was a correlation between ERCC1 and RRM1 expression in NSCLC. The lower expression of ERCC1 and RRM1 were related with the longer survival time- and quality-dependent mode. The expressions of ERCC1 and RRM1 can be predicted with gemcitabine for advanced non-small cell lung cancer effects of chemotherapy. Chemotherapy can be used as the selection of individual chemotherapy at the time of reference.%目的 探讨DNA修复基因家族成员ERCC1、RRM1在非小细胞肺癌(NSCLC)中的表达及意义.方法 应用免疫组织化学PV-9000法对30例NSCLC患者肿瘤组织中的ERCC1、RRM1蛋白表达进行检测.用χ2检验、相关分析、Kaplan-Meier生存曲线进行统计分析.结果 NSCLC患者肿瘤组织中,ERCC1和RRM1表达与患者性别、年龄、分期、病理类型、是否吸烟等参数无明显相关;ERCC1和RRM1的表达呈正相关(r=0.439,P=0.027);ERCC1阴性组的总生存期和无疾病进展生存期均明显长于ERCC1阳性组,RRM1阴性组的总生存期和无疾病进展生存期均明显长于RRM1阳性组(P<0.05或<0.01).结论 ERCC1

  11. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    Directory of Open Access Journals (Sweden)

    Mei Yu

    Full Text Available We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB and the upper hair sheaths (HS including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.

  12. Deletion of genes implicated in protecting the integrity of male germ cells has differential effects on the incidence of DNA breaks and germ cell loss.

    Directory of Open Access Journals (Sweden)

    Catriona Paul

    Full Text Available BACKGROUND: Infertility affects approximately 20% of couples in Europe and in 50% of cases the problem lies with the male partner. The impact of damaged DNA originating in the male germ line on infertility is poorly understood but may increase miscarriage. Mouse models allow us to investigate how deficiencies in DNA repair/damage response pathways impact on formation and function of male germ cells. We have investigated mice with deletions of ERCC1 (excision repair cross-complementing gene 1, MSH2 (MutS homolog 2, involved in mismatch repair pathway, and p53 (tumour suppressor gene implicated in elimination of germ cells with DNA damage. PRINCIPAL FINDINGS: We demonstrate for the first time that depletion of ERCC1 or p53 from germ cells results in an increased incidence of unrepaired DNA breaks in pachytene spermatocytes and increased numbers of caspase-3 positive (apoptotic germ cells. Sertoli cell-only tubules were detected in testes from mice lacking expression of ERCC1 or MSH2 but not p53. The number of sperm recovered from epididymes was significantly reduced in mice lacking testicular ERCC1 and 40% of sperm contained DNA breaks whereas the numbers of sperm were not different to controls in adult Msh2 -/- or p53 -/- mice nor did they have significantly compromised DNA. CONCLUSIONS: These data have demonstrated that deletion of Ercc1, Msh2 and p53 can have differential but overlapping affects on germ cell function and sperm production. These findings increase our understanding of the ways in which gene mutations can have an impact on male fertility.

  13. Associations of polymorphisms in DNA repair genes and MDR1 gene with chemotherapy response and survival of non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yan Du

    Full Text Available OBJECTIVES: We aimed to determine the associations of genetic polymorphisms of excision repair cross-complementation group 1 (ERCC1 rs11615, xeroderma pigmentosum group D (XPD/ERCC2 rs13181, X-ray repair cross complementing group 1 (XRCC1 rs25487, XRCC3 rs1799794, and breast cancer susceptibility gene 1 (BRCA1 rs1799966 from the DNA repair pathway and multiple drug resistance 1 (MDR1/ABCB1 rs1045642 with response to chemotherapy and survival of non-small cell lung cancer (NSCLC in a Chinese population. MATERIALS AND METHODS: A total of 352 NSCLC patients were enrolled to evaluate the associations of the six SNPs with response to chemotherapy and overall survival. Logistic regressions were applied to test the associations of genetic polymorphisms with response to chemotherapy in 161 advanced NSCLC patients. Overall survival was analyzed in 161 advanced and 156 early stage NSCLC patients using the Kaplan-Meier method with log-rank test, respectively. Multivariate Cox proportional hazards model was performed to determine the factors independently associated with NSCLC prognosis. RESULTS: BRCA1 rs1799966 minor allele C (TC+CC vs. TT, OR = 0.402, 95% CI = 0.204-0.794, p = 0.008 and MDR1/ABCB1 rs1045642 minor allele A (GA +AA vs. GG, OR = 0.478, 95% CI = 0.244-0.934, p = 0.030 were associated with a better response to chemotherapy in advanced NSCLC patients. Survival analyses indicated that BRCA1 rs1799966 TC+CC genotypes were associated with a decreased risk of death (HR = 0.617, 95% CI = 0.402-0.948, p = 0.028 in advanced NSCLC patients, and the association was still significant after the adjustment for covariates. Multivariate Cox regression analysis showed that ERCC1 rs11615 AA genotype (P = 0.020 and smoking (p = 0.037 were associated with increased risks of death in early stage NSCLC patients after surgery. CONCLUSIONS: Polymorphisms of genes in DNA repair pathway and MDR1 could contribute to chemotherapy response and survival of patients with

  14. Effects of polymorphisms in ERCC1, ASE-1 and RAI on the risk of colorectal carcinomas and adenomas: a case control study

    Directory of Open Access Journals (Sweden)

    Wallin Håkan

    2006-07-01

    Full Text Available Abstract Background The risk of sporadic colorectal cancer is mainly associated with lifestyle factors and may be modulated by several genetic factors of low penetrance. Genetic variants represented by single nucleotide polymorphisms in genes encoding key players in the adenoma carcinoma sequence may contribute to variation in susceptibility to colorectal cancer. In this study, we aimed to evaluate whether the recently identified haplotype encompassing genes of DNA repair and apoptosis, is associated with increased risk of colorectal adenomas and carcinomas. Methods We used a case-control study design (156 carcinomas, 981 adenomas and 399 controls to test the association between polymorphisms in the chromosomal region 19q13.2-3, encompassing the genes ERCC1, ASE-1 and RAI, and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR and 95% confidence interval (CI were estimated by binary logistic regression model adjusting for age and gender. Results The ASE-1 polymorphism was associated with an increased risk of adenomas, OR of 1.39 (95% CI 1.06–1.81, which upon stratification was apparent among women only, OR of 1.66 (95% CI 1.15–2.39. The RAI polymorphism showed a trend towards risk reduction for both adenomas (OR of 0.70, 95% CI 0.49–1.01 and carcinomas (OR of 0.49, 95% CI 0.21–1.13 among women, although not significant. Women who were homozygous carriers of the high risk haplotype had an increased risk of colorectal cancer, OR of 2.19 (95% CI 0.95–5.04 compared to all non-carriers although the estimate was not statistically significant. Conclusion We found no evidence that the studied polymorphisms were associated with risk of adenomas or colorectal cancer among men, but we found weak indications that the chromosomal region may influence risk of colorectal cancer and adenoma development in women.

  15. The association of ERCC1 and Pim -1 with chemotherapeutic effectiveness in NSCLC%ERCC1和 Pim -1表达与非小细胞肺癌化疗疗效的相关性

    Institute of Scientific and Technical Information of China (English)

    梁绪中; 刘合代; 倪裕丰; 丁昭珩; 姜峰; 李文霞; 丁罡

    2015-01-01

    目的:探讨非小细胞肺癌(non -small cell lung cancer,NSCLC )患者肺癌组织标本中 ERCC1和Pim -1的表达与临床特征及化疗疗效的相关性。方法:对我院病理确诊的70例 NSCLC 患者肿瘤组织,通过实时定量荧光 PCR 法检测 ERCC1和 Pim -1基因 mRNA 表达水平,回顾性分析 ERCC1和Pim -1基因表达与临床病理关系、铂类化疗疗效和总生存情况。结果:70例 NSCLC 患者肿瘤组织中 ERCC1和 Pim -1高表达患者比率分别为37.14%(26/70)和61.43%(43/70),ERCC1高表达与性别、吸烟史、组织类型、TNM 分期均无关(P >0.05),Pim -1高表达与性别、吸烟史相关(P <0.05),而与组织类型、TNM分期无关(P >0.05)。ERCC1和 Pim -1共同高表达率为20.00%(14/70)。ERCC1高表达组患者化疗有效率(19.23%,5/26)显著低于低表达组患者(47.73%,21/44)(P <0.05)。Pim -1高表达组患者化疗有效率(34.88%,15/43)和低表达组患者(40.74%,11/27)无统计学差异(P >0.05)。ERCC1和 Pim -1高表达组的中位生存期(median survival time,MST)为27个月和24个月低于低表达组的33个月和27个月,但无统计学差异(P >0.05)。结论:NSCLC 患者中 ERCC1低表达组患者化疗有效率和存活率高,是化疗受益的指标。%Objective:To investigate the relationship of the expression of ERCC1 and Pim -1 with the clinical fac-tors and chemotherapeutic efficacy in patients with NSCLC.Methods:Seventy cases with NSCLC pathologically proven were analyzed retrospectively.The mRNA expressions of ERCC1 and Pim -1 were detected by Real -time quantita-tive PCR(RT -QPCR).The clinical factors and platinum -based chemotherapeutic efficacy in lung canser patients were observed.Results:The expression rates of ERCC1 and Pim -1 in patients with NSCLC were 37.14%(26 /70) and 61.43%(43 /70).The

  16. Polymorphisms in the genes ERCC2, XRCC3 and CD3EAP influence treatment outcome in multiple myeloma patients undergoing autologous bone marrow transplantation

    DEFF Research Database (Denmark)

    Vangsted, Annette; Gimsing, Peter; Klausen, Tobias W

    2007-01-01

    ) of polymorphism in the DNA repair genes ERCC1, ERCC2 and XRCC3, and in the apoptotic genes PPP1R13L and CD3EAP in 348 patients with multiple myeloma undergoing autologous bone marrow transplantation. Carriers of the variant C-allele of ERCC2 K751Q, the variant T-allele of XRCC3 T241M and the variant A...

  17. Targeted gene repair – in the arena

    OpenAIRE

    2003-01-01

    The development of targeted gene repair is under way and, despite some setbacks, shows promise as an alternative form of gene therapy. This approach uses synthetic DNA molecules to activate and direct the cell’s inherent DNA repair systems to correct inborn errors. The progress of this technique and its therapeutic potential are discussed in relation to the treatment of genetic diseases.

  18. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.; Prakash, L. (Univ. of Rochester School of Medicine, NY (United States)); Guzder, S.N.; Prakash, S. (Univ. of Rochester, NY (United States)); Koken, M.H.M.; Jaspers-Dekker, I.; Weeda, G.; Hoeijmakers, H.J. (Erasmus Univ., Rotterdam (Netherlands))

    1992-12-01

    Xeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified. Homologs of human excision repair genes ERCC1, XPDC/ERCC2, and XPAC have been identified in the yeast Saccharomyces cerevisiae. Since no homolog of human XPBC/ERCC3 existed among the known yeast genes, we cloned the yeast homolog by using XPBC cDNA as a hybridization probe. The yeast homolog, RAD25 (SSL2), encodes a protein of 843 amino acids (M[sub r] 95,356). The RAD25 (SSL2)- and XPCX-encoded proteins share 55% identical and 72% conserved amino acid residues, and the two proteins resemble one another in containing the conserved DNA helicase sequence motifs. A nonsense mutation at codon 799 that deletes the 45 C-terminal amino acid residues in RAD25 (SSL2) confers UV sensitivity. This mutation shows epistasis with genes in the excision repair group, whereas a synergistic increase in UN sensitivity occurs when it is combined with mutations in genes in other DNA repair pathways, indicating that RAD25 (SSL2) functions in excision repair but not in other repair pathways. We also show that RAD25 (SSL2) is an essential gene. A mutation of the Lys[sup 392] residue to arginine in the conserved Walker type A nucleotide-binding motif is lethal, suggesting an essential role of the putative RAD 25 (SSL2) ATPase/DNA helicase activity in viability. 40 refs., 3 figs., 1 tab.

  19. Influence of nucleotide excision repair on N-hydroxy-2-acetylaminofluorene-induced mutagenesis studied in λlacZ-transgenic mice

    NARCIS (Netherlands)

    Frijhoff, A.F.W.; Krul, C.A.M.; Vries, A. de; Kelders, M.C.J.M.; Weeda, G.; Steeg, H. van; Baan, R.A.

    1998-01-01

    To study the influence of nucleotide excision repair (NER) on mutagenesis in vivo, ERCC1+/-, XPA-/-, and wild-type (ERCC1+/+ and XPA+/+, respectively) λlacZ-transgenic mice were treated i.p. with N-hydroxy-2-acetylaminofluorene (N-OH-AAF) and lacZ mutant frequencies were determined in liver. No sign

  20. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    Science.gov (United States)

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p laser, but increase in muscle tissue (p  0.05), but ERCC2 mRNA expression decreases in skin (p laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.

  1. Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice

    NARCIS (Netherlands)

    M.C. de Waard (Monique); I. van der Pluijm (Ingrid); N. Zuiderveen Borgesius (Nils); L.H. Comley (Laura); E.D. Haasdijk (Elize); Y.M. Rijksen (Yvonne); Y. Ridwan (Yanto); G. Zondag (Gerben); J.H.J. Hoeijmakers (Jan); Y. Elgersma (Ype); T.H. Gillingwater (Thomas); D. Jaarsma (Dick)

    2010-01-01

    textabstractDegeneration of motor neurons contributes to senescence-associated loss of muscle function and underlies human neurodegenerative conditions such as amyotrophic lateral sclerosis and spinal muscular atrophy. The identification of genetic factors contributing to motor neuron vulnerability

  2. DNA repair genes in the Megavirales pangenome.

    Science.gov (United States)

    Blanc-Mathieu, Romain; Ogata, Hiroyuki

    2016-06-01

    The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.

  3. Different impact of excision repair cross-complementation group 1 on survival in male and female patients with inoperable non-small-cell lung cancer treated with carboplatin and gemcitabine

    DEFF Research Database (Denmark)

    Holm, Bente; Mellemgaard, Anders; Skov, Torsten;

    2009-01-01

    PURPOSE: The excision repair cross-complementation group 1 (ERCC1) status was assessed in patients receiving carboplatin and gemcitabine for inoperable non-small-cell lung cancer (NSCLC). We analyzed the association between the ERCC1 status and the overall survival after the chemotherapy. PATIENTS...

  4. Transactivation of repair genes by BRCA1.

    Science.gov (United States)

    El-Deiry, Wafik S

    2002-01-01

    Recent studies have identified a link between the BRCA1 tumor suppressor and transcriptional regulation of a group of genes involved in nucleotide excision repair. There is some controversy regarding the precise mechanism of upregulation of XPE DDB2 or XPC by BRCA1, with some evidence suggesting that p53 is involved in their regulation. Some evidence suggests BRCA1 may stabilize p53 and direct regulation of DNA repair genes, although how BRCA1 stabilizes p53 remains unclear and whether BRCA1 can upregulate DNA repair genes in a p53-independent manner remains a possibility. A transcriptional component to the action of BRCA1 and involvement of XP genes brings up new and interesting questions about breast cancer development and therapy.

  5. Low-dose radiation enhances susceptibility to cisplatin in resistant ovarian cancer cells via downregulation of ERCC1 and Bcl-2

    Institute of Scientific and Technical Information of China (English)

    Xiaoran Liu; Donghai Liang; Tao Jiang; Qing Dong; Hongsheng Yu 

    2016-01-01

    Objective Ovarian cancer is one of the leading causes of mortality in patients with malignant gyneco-logical tumors. After surgical intervention for ovarian cancer, cisplatin (DDP)-based chemotherapy is the first-line treatment. However, a major chal enge to treating ovarian cancer is the development of chemore-sistance. Thus, the first aim of this study was to determine whether low-dose radiation could enhance the susceptibility of resistant ovarian cancer cel s to DDP. The second aim was to provide new strategies for treating DDP-resistant ovarian cancer by examining its mechanism. Methods A cel counting kit-8 (CCK8) assay was performed to measure cel proliferation. Flow cytometry was utilized to quantify the apoptosis of DDP-resistant ovarian cancer cel s (SKOV3/DDP) using Annexin V and propidium iodide staining. Real-time quantitative (qPCR) was used to analyze the messenger RNA (mRNA) expression levels of excision repair cross complementing-group 1 (ERCC1) and B-cel lymphoma 2 (Bcl-2) in SKOV3/DDP. Results The IC50 values of the control, conventional-dose, and low-dose groups were 9.367 ± 0.16, 9.289 ± 0.16, and 3.847 ± 0.15, respectively (P Conclusion Low-dose radiation enhanced the sensitivity of resistant ovarian cancer cel s to DDP, pos-sibly by decreasing the DNA repair capacity of tumor cel s and promoting apoptosis.

  6. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  7. Evaluation of cell proliferation, apoptosis, and DNA-repair genes as potential biomarkers for ethanol-induced CNS alterations.

    Science.gov (United States)

    Hicks, Steven D; Lewis, Lambert; Ritchie, Julie; Burke, Patrick; Abdul-Malak, Ynesse; Adackapara, Nyssa; Canfield, Kelly; Shwarts, Erik; Gentile, Karen; Meszaros, Zsuzsa Szombathyne; Middleton, Frank A

    2012-10-25

    Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal gyrus and

  8. Correlation of genes associated with drug response to prognosis of large cell lung carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cheng Chen; Xiang-Li Jiang; Cui-Cui Zhang; Kai Li

    2011-01-01

    Platinum-based chemotherapy remains the main treatment of advanced lung cancer. However,platinum resistance has become a major treatment obstacle. Novel therapies, particularly tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKI) and agents that target vascular endothelial growth factor (VEGF), have improved the treatment. Both chemotherapy and targeted therapy have their molecular mechanisms. This study aimed to determine the mutation, amplification, or expression status and interrelationships of the epidermal growth factor receptor (EGFR), K-Ras proto-oncogene, excision repair cress-complementation group 1 (ERCC1), and VEGF genes as well as their correlations to prognosis of large cell lung carcinoma (LCLC) after EGFR-targeted therapy, chemotherapy, and antiVEGF therapy. EGFR and K-Ras mutations in 60 specimens of LCLC were detected by direct DNA sequencing. EGFR, ERCC1, and VEGF protein expression was detected by immunohistochemistry (IHC).EGFR gene copy number was detected by fluorescence in situ hybridization (FISH). One (1.7%) patient had an EGFR L858M point mutation in exon 21, 3 (5.0%) had K-Ras mutations, and 10 (19.6%) had EGFR amplification (FISH positive). Positive rates of EGFR, ERCC1, and VEGF proteins were 38.3%,56.7%, and 70.0%, respectively. EGFR amplification was positively correlated to EGFR protein expression (r = 0.390, P = 0.005). The positive rate of VEGF protein was significantly higher in patients with lymph node metastasis than in those without (84.6% vs. 58.8%, P = 0.046). No significant correlations were observed among the EGFR, K-Ras, ERCC1, and VEGF genes. EGFR gene amplification and the low rate of EGFR mutation suggest that patients with LCLC are likely to obtain little benefit from anti-EGFR therapies.

  9. Gene Therapy for Fracture Repair

    Science.gov (United States)

    2007-05-01

    case, the external catheter hub is visible (D), though the internal tubing cannot be visualized by X-Ray. 11 MLV-based vector with BMP-2/4...catheter) injection. Top: A fluoroscope was used to visualize a radio- opaque contrast dye during a percutaneous injection from the lateral aspect...analysis was performed using ImaGene software (BioDiscovery, El Segundo, CA), that used an internal statistical analysis of the signal intensity of

  10. Excision repair cross-complementation group 1 codon 118 polymorphism, micro ribonucleic acid and protein expression, clinical outcome of the advanced gastric cancer response to first-line FOLFOX-4 in Qinghai-Tibetan plateau population

    Directory of Open Access Journals (Sweden)

    Yu-Juan Qi

    2013-01-01

    Full Text Available Context: The excision repair cross-complementation group 1 (ERCC1 codon 118 C/T polymorphism has been associated with clinical outcome in cancer patients treated with platinum chemotherapy. Ethnic differences in the frequency of this polymorphism have been observed in Caucasian and African populations. Aim: The aim of this study was to evaluate the frequency and survival benefit of the ERCC1 codon 118 C/T polymorphism in a high-altitude population with advanced gastric cancer. Materials and Methods: Polymerase chain reaction-restriction fragment length polymorphism was used to determine the frequency of ERCC1 118 codon C/T polymorphism in 206 advanced gastric cancer patients residing in the high-altitude Qinghai-Tibetan plateau. The influence of the ERCC1 codon 118 C/T polymorphism on its micro ribonucleic acid (mRNA and protein expression, clinicopathological features; response to the platinum-based combination chemotherapy, and the outcome was evaluated. Statistical Analysis: The Kaplan-Meier method was used for survival analysis. The correlation of ERCC1 codon 118 polymorphism with ERCC1 mRNA and protein expression, clinicopathological characteristics, and first-line oxaliplatin, 5-fluorouracil, and leucovorin (FOLFOX-4 response was determined by χ2 -test. Results and Conclusions: ERCC1 codon 118 C/T polymorphism was not associated with ERCC1 mRNA and protein expression, FOLFOX-4 response, and progression-free survival (PFS or overall survival (OS. High ERCC1 mRNA and protein expression levels were associated with significantly lower FOLFOX-4 responses, PFS, and OS. ERCC1 codon 118 C/T polymorphism is not an important prognostic marker for advanced gastric cancer. Determination of ERCC1 mRNA and protein levels may be beneficial in predicting the response and outcome of FOLFOX-4 therapy in gastric cancer.

  11. Relationship between the expression of ERCC1, XRCC1 and efficacy of adjuvant oxaliplatin-based chemotherapy in the patients with gastric cancer%胃癌中ERCC1、XRCC1表达与奥沙利铂化疗疗效之间的关系

    Institute of Scientific and Technical Information of China (English)

    陈鑫; 郑晓库; 哈敏文

    2011-01-01

    Objective To detect the expression of ERCC1, XRCC1, and to investigate the correlation between the ERCC1 , XRCC1 expression with the efficacy of adjuvant oxaliplatin-based chemotherapy in gastric cancer patients.Methods The expression levels of ERCCI and XRCC1 in cancer tissues of 80 gastric cancer patients were detected by immunohistochemical method after surgery, and all of the patients received adjuvant FLO-FOX chemotherapy.The expression of ERCC1 , XRCC1 and its relationship with adjuvant oxaliplatin-based chemotherapy were analysed with chisquare test, Logrank test and Cox regression model risk.Results ERCC1 and XRCC1 were expressed in gastric cancer tissues with the positive rate of 72.50% and 45.00% , respectively.Cox regression model risk analysis showed that the ERCC1 expression level, XRCC1 expression level, histological type and vessel tumor thrombus were independent prognostic facts in the patients.Conclusion The levels of ERCCI and XRCC1 in gastric cancer correlate with the efficacy of adjuvant oxaliplatinbased chemotherapy.%目的 观察胃癌组织中ERCC1、XRCC1的表达变化,探讨其与奥沙利铂化疗疗效的关系.方法 采用免疫组化SP法检测80例胃癌患者术后胃癌组织中ERCC1、XRCC1的表达水平,患者术后全部采用FLO-FOX化疗方案,并采用X检验、Log-rank分析和Cox风险模型分析ERCC1、XRCC1在胃癌中的表达及其对奥沙利铂化疗疗效的影响.结果 胃癌组织中ERCC1、XRCC1阳性率分别是72.50%(58/80)、45.00%(36/80).Cox比例风险模型分析显示,胃癌组织中ERCC1表达、XRCC1表达、组织学分型和有无脉管癌栓是影响患者预后的独立因素.结论 胃癌组织中的ERCC1、XRCC1表达水平与奥沙利铂化疗疗效有关.

  12. A haplotype of polymorphisms in ASE-1, RAI and ERCC1 and the effects of tobacco smoking and alcohol consumption on risk of colorectal cancer: a danish prospective case-cohort study

    Directory of Open Access Journals (Sweden)

    Wallin Håkan

    2008-02-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most frequent type of genetic variation in the human genome, and are of interest for the study of susceptibility to and protection from diseases. The haplotype at chromosome 19q13.2-3 encompassing the three SNPs ASE-1 G-21A, RAI IVS1 A4364G and ERCC1 Asn118Asn have been associated with risk of breast cancer and lung cancer. Haplotype carriers are defined as the homozygous carriers of RAI IVS1 A4364GA, ERCC1 Asn118AsnT and ASE-1 G-21AG. We aimed to evaluate whether the three polymorphisms and the haplotype are associated to risk of colorectal cancer, and investigated gene-environment associations between the polymorphisms and the haplotype and smoking status at enrolment, smoking duration, average smoking intensity and alcohol consumption, respectively, in relation to risk of colorectal cancer. Methods Associations between the three individual polymorphisms, the haplotype and risk of colorectal cancer were examined, as well as gene-environment interaction, in a Danish case-cohort study including 405 cases and a comparison group of 810 persons. Incidence rate ratio (IRR were estimated by the Cox proportional hazards model stratified according to gender, and two-sided 95% confidence intervals (CI and p-values were calculated based on robust estimates of the variance-covariance matrix and Wald's test of the Cox regression parameter. Results No consistent associations between the three individual polymorphisms, the haplotype and risk of colorectal cancer were found. No statistically significant interactions between the genotypes and the lifestyle exposures smoking or alcohol consumption were observed. Conclusion Our results suggest that the ASE-1 G-21A, RAI IVS1 A4364G and ERCC1 Asn118Asn polymorphisms and the previously identified haplotype are not associated with risk of colorectal cancer. We found no evidence of gene-environment interaction between the three polymorphisms and the

  13. A haplotype of polymorphisms in ASE-1, RAI and ERCC1 and the effects of tobacco smoking and alcohol consumption on risk of colorectal cancer: a Danish prospective case-cohort study

    DEFF Research Database (Denmark)

    Hansen, Rikke D; Sørensen, Mette; Tjønneland, Anne

    2008-01-01

    cancer, and investigated gene-environment associations between the polymorphisms and the haplotype and smoking status at enrolment, smoking duration, average smoking intensity and alcohol consumption, respectively, in relation to risk of colorectal cancer. METHODS: Associations between the three...... of colorectal cancer were found. No statistically significant interactions between the genotypes and the lifestyle exposures smoking or alcohol consumption were observed. CONCLUSION: Our results suggest that the ASE-1 G-21A, RAI IVS1 A4364G and ERCC1 Asn118Asn polymorphisms and the previously identified...... haplotype are not associated with risk of colorectal cancer. We found no evidence of gene-environment interaction between the three polymorphisms and the haplotype and smoking intensity and alcohol consumption, respectively, in relation to the risk of colorectal cancer. Udgivelsesdato: 2008-null...

  14. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    DEFF Research Database (Denmark)

    Vogel, Ulla; Daneshvar, Bahram; Autrup, Herman;

    2003-01-01

    was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in liver...... supplemented with 0, 3, 10 or 30% w/w lard. After 3 weeks, the mutation frequency, DNA repair gene expression, DNA damage and oxidative markers were determined in liver, colon and plasma. The mutation frequency of the lambda gene cII did not increase with increased fat or energy intake in colon or liver....... The DNA-adduct level measured by 32P-postlabelling decreased in both liver and colon with increased fat intake. In liver, this was accompanied by a 2-fold increase of the mRNA level of nucleotide excision repair (NER) gene ERCC1. In colon, a non-statistically significant increase in the ERCC1 mRNA levels...

  15. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    DEFF Research Database (Denmark)

    Vogel, Ulla Birgitte; Danesvar, B.; Autrup, H.;

    2003-01-01

    was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in liver...... supplemented with 0, 3, 10 or 30% w/w lard. After 3 weeks, the mutation frequency, DNA repair gene expression, DNA damage and oxidative markers were determined in liver, colon and plasma. The mutation frequency of the lambda gene cII did not increase with increased fat or energy intake in colon or liver....... The DNA-adduct level measured by P-32-postlabelling decreased in both liver and colon with increased fat intake. In liver, this was accompanied by a 2-fold increase of the mRNA level of nucleotide excision repair (NER) gene ERCC1. In colon, a non-statistically significant increase in the ERCC1 mRNA levels...

  16. Advancement of the relationship ERCC1 and platinum resistance in digestive system malignant tumors%切除修复交叉互补基因1与消化系统肿瘤铂类耐药的关系研究进展

    Institute of Scientific and Technical Information of China (English)

    李笑秋; 胡冰

    2010-01-01

    消化系统肿瘤由于其相对较高的发病率及死亡率,危害日益突出,故对消化道肿瘤治疗的研究具有相当的意义.铂类药物广泛用于恶性肿瘤的化疗,是消化系统肿瘤化疗的传统药物之一,但耐药性的产生严重影响其疗效,目前认为核苷酸切除修复(nucleotide excision repair,NER)是铂类药物耐药的重要机制之一,因其导致耐药的主要机理为清除大规模铂类化舍物所致DNA螺旋扭曲.其中核苷酸切除修复交叉互补基因1(excision repair cross comple/mentatiorl group 1,ERCC1)在NER过程中发挥着重要作用,ERCC1在消化系统肿瘤外周血及组织中的表达差异与含铂方案化疗的疗效存在着密切的联系.本文就ERCC1的研究进展与消化系统肿瘤顺铂化疗疗效之间的关系进行综述.

  17. The HhH domain of the human DNA repair protein XPF forms stable homodimers.

    Science.gov (United States)

    Das, Devashish; Tripsianes, Konstantinos; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2008-03-01

    The human XPF-ERCC1 protein complex plays an essential role in nucleotide excision repair by catalysing positioned nicking of a DNA strand at the 5' side of the damage. We have recently solved the structure of the heterodimeric complex of the C-terminal domains of XPF and ERCC1 (Tripsianes et al., Structure 2005;13:1849-1858). We found that this complex comprises a pseudo twofold symmetry axis and that the helix-hairpin-helix motif of ERCC1 is required for DNA binding, whereas the corresponding domain of XPF is functioning as a scaffold for complex formation with ERCC1. Despite the functional importance of heterodimerization, the C-terminal domain of XPF can also form homodimers in vitro. We here compare the stabilities of homodimeric and heterodimeric complexes of the C-terminal domains of XPF and ERCC1. The higher stability of the XPF HhH complexes under various experimental conditions, determined using CD and NMR spectroscopy and mass spectrometry, is well explained by the structural differences that exist between the HhH domains of the two complexes. The XPF HhH homodimer has a larger interaction interface, aromatic stacking interactions, and additional hydrogen bond contacts as compared to the XPF/ERCC1 HhH complex, which accounts for its higher stability.

  18. Epigenetic changes of DNA repair genes in cancer

    Institute of Scientific and Technical Information of China (English)

    Christoph Lahtz; Gerd P. Pfeifer

    2011-01-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  19. New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy.

    Science.gov (United States)

    Gentile, Francesco; Tuszynski, Jack A; Barakat, Khaled H

    2016-04-01

    Many cancer chemotherapy agents act by targeting the DNA of cancer cells, causing substantial damage within their genome and causing them to undergo apoptosis. An effective DNA repair pathway in cancer cells can act in a reverse way by removing these drug-induced DNA lesions, allowing cancer cells to survive, grow and proliferate. In this context, DNA repair inhibitors opened a new avenue in cancer treatment, by blocking the DNA repair mechanisms from removing the chemotherapy-mediated DNA damage. In particular, the nucleotide excision repair (NER) involves more than thirty protein-protein interactions and removes DNA adducts caused by platinum-based chemotherapy. The excision repair cross-complementation group 1 (ERCC1)-xeroderma pigmentosum, complementation group A (XPA) protein (XPA-ERCC1) complex seems to be one of the most promising targets in this pathway. ERCC1 is over expressed in cancer cells and the only known cellular function so far for XPA is to recruit ERCC1 to the damaged point. Here, we build upon our recent advances in identifying inhibitors for this interaction and continue our efforts to rationally design more effective and potent regulators for the NER pathway. We employed in silico drug design techniques to: (1) identify compounds similar to the recently discovered inhibitors, but more effective at inhibiting the XPA-ERCC1 interactions, and (2) identify different scaffolds to develop novel lead compounds. Two known inhibitor structures have been used as starting points for two ligand/structure-hybrid virtual screening approaches. The findings described here form a milestone in discovering novel inhibitors for the NER pathway aiming at improving the efficacy of current platinum-based therapy, by modulating the XPA-ERCC1 interaction.

  20. Dynamic regulation of cerebral DNA repair genes by psychological stress

    DEFF Research Database (Denmark)

    Forsberg, Kristin; Aalling, Nadia; Wörtwein, Gitta

    2015-01-01

    for maintaining genomic integrity. The aim of the present study was to characterize the pattern of cerebral DNA repair enzyme regulation after stress through the quantification of a targeted range of gene products involved in different types of DNA repair. 72 male Sprague-Dawley rats were subjected to either...... was seen in HC, but with overall smaller effects and without the induction after acute stress. Nuclear DNA damage from oxidation as measured by the comet assay was unaffected by stress in both regions. We conclude that psychological stress have a dynamic influence on brain DNA repair gene expression...

  1. Polymorphisms in DNA-repair genes in a cohort of prostate cancer patients from different areas in Spain: heterogeneity between populations as a confounding factor in association studies.

    Directory of Open Access Journals (Sweden)

    Luis Alberto Henríquez-Hernández

    Full Text Available BACKGROUND: Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. OBJECTIVE: To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. DESIGN SETTING AND PARTICIPANTS: A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782, ERCC2 (rs13181, ERCC1 (rs11615, LIG4 (rs1805388, rs1805386, ATM (rs17503908, rs1800057 and P53 (rs1042522. The SNP genotyping was made in a Biotrove OpenArray® NT Cycler. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. RESULTS AND LIMITATIONS: We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. CONCLUSION: Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack

  2. 非小细胞肺癌患者外周血ERCC1单核苷酸多态性与顺铂化疗疗效的相关性%Relationship between SNPs of ERCC1 in peripheral blood of NSCLC and effects of cisplatin-based chemotherapy

    Institute of Scientific and Technical Information of China (English)

    李晓惠; 蒋蔚峰; 张贺龙; 张菊

    2010-01-01

    目的:探讨非小细胞肺癌(NSCLC)患者外周血中ERCC1第118位密码子单核苷酸多态性(SNPs)及与顺铂化疗疗效的相关性.方法:应用荧光偏振(FP)法检测60例NSCLC患者外周血ERCC1118位密码子SNPs,并分析其与顺铂化疗疗效的关系.结果:ERCC1第118位密码子SNPs与NSCLC患者年龄(P=0.25)、性别(P=0.95)、吸烟史(P=0.75)、TNM分期(P=0.45)及组织学类型(P=0.70)无关.GP、NP、DP三种铂类基础化疗方案化疗疗效组问差异无统计学意义,P=0.99.ERCC1第118位密码子C/C基因型组的化疗有效率为48.6%(17/35),而变异型C/T+T/T有效率仅为20%(5/25),X2=5.27 P=0.02.结论:ERCC1 118位密码予SNPs与顺铂化疗疗效相关.

  3. Tumour Regression and ERCC1 Nuclear Protein Expression Predict Clinical Outcome in Patients with Gastro-Oesophageal Cancer Treated with Neoadjuvant Chemotherapy%肿瘤缓解分级和ERCC1核蛋白表达可以预测胃食管肿瘤患者新辅助化疗的临床效果

    Institute of Scientific and Technical Information of China (English)

    徐建明; 刘建化

    2011-01-01

    @@ 1 文献来源 Fareed KR,Al-Attar A,Soomro IN,et al.Tumour regression and ERCC1 nuclear protein expression predict clinical outcome in patients with gastro-oesophageal cancer treated with neoadjuvant chemotherapy [J].Br J Cancer,2010,102(11):1600-1607. 2 证据水平 1a. 3 背景

  4. Control of gene editing by manipulation of DNA repair mechanisms.

    Science.gov (United States)

    Danner, Eric; Bashir, Sanum; Yumlu, Saniye; Wurst, Wolfgang; Wefers, Benedikt; Kühn, Ralf

    2017-04-03

    DNA double-strand breaks (DSBs) are produced intentionally by RNA-guided nucleases to achieve genome editing through DSB repair. These breaks are repaired by one of two main repair pathways, classic non-homologous end joining (c-NHEJ) and homology-directed repair (HDR), the latter being restricted to the S/G2 phases of the cell cycle and notably less frequent. Precise genome editing applications rely on HDR, with the abundant c-NHEJ formed mutations presenting a barrier to achieving high rates of precise sequence modifications. Here, we give an overview of HDR- and c-NHEJ-mediated DSB repair in gene editing and summarize the current efforts to promote HDR over c-NHEJ.

  5. ERCC1和XPD基因SNPs与晚期NSCLC含铂类药物化疗敏感性的关系%Association between polymorphisms of ERCC1 and XPD and sensitivity to platinum-based chemotherapy in advanced non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    张胜利; 张增利; 施敏骅

    2013-01-01

    Objective To investigate whether SNPs of ERCCKC118T) and XPD(Lys751Gln) were associated with the sensitivity of non-small-cell lung cancer ( NSCLC) to platinum-based chemotherapy in the patients with advanced NSCLC. Methods Polymorphisms of ERCC1 and XPD were detected by PCR-restrictive fragment length polymorphism (PCR-RFLP) method in 78 cases. Results No association was detected between polymorphisms of ERCC1 and XPD and age, sex, histologic type,ECOG performance status,smoking history and clinical stage of tumor. The difference of clinical response was not found among age, sex, ECOG performance status and smoking history (P>0. 05). The polymorphic genotypes of ERCCl (C118T) were related to the sensitivity to platinum-based chemotherapy. Conclusion The patients carrying at least 1 T allele(T/T+C/T) may be taken as a marker to predict the sensitivity of NSCLC to platinum-based chemotherapy.%目的 探讨切除修复交叉互补基因1(ERCC1)第118位密码子(C118T)和着色性干皮病基因D(XPD)第751位密码子(Lys751Gln)的单核苷酸多态性(SNPs)与晚期非小细胞肺癌(NSCLC)患者含铂类药物化疗疗效的关系.方法 用PCR-限制性片段长度多态性(PCR-RFLP)技术检测78例NSCLC患者的ERCC1 (C118T)和XPD(Lys751Gln)基因型.结果 ERCC1(C118T)、XPD(Lys751Gln) SNPs不受年龄、性别、吸烟史、临床分期、体力状况评分(ECOG)和病理类型影响;ERCC1 (C118T)中不同的年龄、性别、吸烟史和ECOG评分之间化疗疗效差异无统计学意义.ERCC1(C118T) SNPs与含铂类药物化疗疗效有关.结论 含有T等位基因可作为预测晚期NSCLC患者铂类药物化疗敏感性的预测指标.

  6. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest.

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish K; Jeevarajan, Antony S; Pierson, Duane L; Wu, Honglu

    2008-11-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in regulating DSB repair and cell cycle progression. In this study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequency of micronuclei (MN) formation and chromosome aberrations were measured to determine efficiency of cytogenetic repair, especially DSB repair. In response to IR, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that

  7. Targeted gene repair: the ups and downs of a promising gene therapy approach.

    Science.gov (United States)

    de Semir, David; Aran, Josep M

    2006-08-01

    As a novel form of molecular medicine based on direct actions over the genes, targeted gene repair has raised consideration recently above classical gene therapy strategies based on genetic augmentation or complementation. Targeted gene repair relies on the local induction of the cell's endogenous DNA repair mechanisms to attain a therapeutic gene conversion event within the genome of the diseased cell. Successful repair has been achieved both in vitro and in vivo with a variety of corrective molecules ranging from oligonucleotides (chimeraplasts, modified single-stranded oligonucleotides, triplex-forming oligonucleotides), to small DNA fragments (small fragment homologous replacement (SFHR)), and even viral vectors (AAV-based). However, controversy on the consistency and lack of reproducibility of early experiments regarding frequencies and persistence of targeted gene repair, particularly for chimeraplasty, has flecked the field. Nevertheless, several hurdles such as inefficient nuclear uptake of the corrective molecules, and misleading assessment of targeted repair frequencies have been identified and are being addressed. One of the key bottlenecks for exploiting the overall potential of the different targeted gene repair modalities is the lack of a detailed knowledge of their mechanisms of action at the molecular level. Several studies are now focusing on the assessment of the specific repair pathway(s) involved (homologous recombination, mismatch repair, etc.), devising additional strategies to increase their activity (using chemotherapeutic drugs, chimeric nucleases, etc.), and assessing the influence of the cell cycle in the regulation of the repair process. Until therapeutic correction frequencies for single gene disorders are reached both in cellular and animal models, precision and undesired side effects of this promising gene therapy approach will not be thoroughly evaluated.

  8. Molecular cloning of the human excision repair gene ERCC-6.

    NARCIS (Netherlands)

    C. Troelstra (Christine); H. Odijk (Hanny); J. de Wit (Jan); A. Westerveld (Andries); L.H. Thompson; D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1990-01-01

    textabstractThe UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5

  9. 基于PDTX模型研究原发性肺癌顺铂耐药与ERCC1 IGFBP5表达水平的关系%Relationship between cisplatin resistance of primary lung cancer and expression levels of ERCC1 and IGFBP5 in patient-derived tumor xenograft models

    Institute of Scientific and Technical Information of China (English)

    展丙香; 程龙强; 罗朋; 章菊; 王保龙

    2015-01-01

    Objective:To establish a lung cancer model of patient-derived tumor xenografts (PDTX) and to explore the relation-ship between primary cisplatin resistance and ERCC1 and IGFBP5 expression levels. Methods:Lung cancer tissues from 84 patients who underwent surgery were collected and implanted into nude mice. Patient characteristics for the first generation xenografts that were and were not engrafted were compared. Passage 3 xenografts were treated with cisplatin. The expression levels of ERCC1 and IGFBP5 in cisplatin-resistant and cisplatin-sensitive groups were detected using immunohistochemistry assay. Results:The model success rates were 32.14%(27/84) in first-generation xenografts, 88.89%(24/27) in second-generation xenografts, and 95.83%(23/24) in third-gener-ation xenografts. The tumorigenicity of first-generation xenografts was correlated with size, differentiation, clinical stage, and histologi-cal type. PDTX tumors maintain the histological type of parental tumors through serial passage in nude mice. ERCC1 expression level was significantly higher in the cisplatin-resistant group than in the cisplatin-sensitive group, whereas the IGFBP5 expression level was lower in the cisplatin-resistant group than in the cisplatin-sensitive group. Conclusion:Lung cancer PDTX models were successfully es-tablished, and histological characteristics of the primary cancers were retained. Therefore, the models may serve a function in preclini-cal research of lung tumor biology and for exploring the drug resistance mechanism of tumors. The cisplatin resistance of primary lung cancer may be correlated with the expression level of ERCC1 and IGFBP5 in lung carcinoma.%目的:构建PDTX(patient-derived tumor xenografts)肺癌模型,探索ERCC1、IGFBP5的表达水平与原发性肺癌顺铂耐药的关系.方法:取新鲜切除的84例肺癌组织移植于裸鼠(BALB/c)的皮下,构建PDTX模型,分析一代成瘤率与临床病理参数关系.三代移植瘤接受顺铂化疗,采

  10. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Chikako Kiyohara, Kouichi Yoshimasu

    2007-01-01

    Full Text Available Various DNA alterations can be caused by exposure to environmental and endogenous carcinogens. Most of these alterations, if not repaired, can result in genetic instability, mutagenesis and cell death. DNA repair mechanisms are important for maintaining DNA integrity and preventing carcinogenesis. Recent lung cancer studies have focused on identifying the effects of single nucleotide polymorphisms (SNPs in candidate genes, among which DNA repair genes are increasingly being studied. Genetic variations in DNA repair genes are thought to modulate DNA repair capacity and are suggested to be related to lung cancer risk. We identified a sufficient number of epidemiologic studies on lung cancer to conduct a meta-analysis for genetic polymorphisms in nucleotide excision repair pathway genes, focusing on xeroderma pigmentosum group A (XPA, excision repair cross complementing group 1 (ERCC1, ERCC2/XPD, ERCC4/XPF and ERCC5/XPG. We found an increased risk of lung cancer among subjects carrying the ERCC2 751Gln/Gln genotype (odds ratio (OR = 1.30, 95% confidence interval (CI = 1.14 - 1.49. We found a protective effect of the XPA 23G/G genotype (OR = 0.75, 95% CI = 0.59 - 0.95. Considering the data available, it can be conjectured that if there is any risk association between a single SNP and lung cancer, the risk fluctuation will probably be minimal. Advances in the identification of new polymorphisms and in high-throughput genotyping techniques will facilitate the analysis of multiple genes in multiple DNA repair pathways. Therefore, it is likely that the defining feature of future epidemiologic studies will be the simultaneous analysis of large samples.

  11. Mismatch-mediated error prone repair at the immunoglobulin genes.

    Science.gov (United States)

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-12-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.

  12. MMP9 but Not EGFR, MET, ERCC1, P16, and P-53 Is Associated with Response to Concomitant Radiotherapy, Cetuximab, and Weekly Cisplatin in Patients with Locally Advanced Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    George Fountzilas

    2009-01-01

    Full Text Available Concomitant administration of radiotherapy with cisplatin or radiotherapy with cetuximab appear to be the treatment of choice for patients with locally advanced head and neck cancer. In the present retrospective analysis, we investigated the predictive role of several biomarkers in an unselected cohort of patients treated with concomitant radiotherapy, weekly cisplatin, and cetuximab (CCRT. We identified 37 patients treated with this approach, of which 13 (35% achieved a complete response and 10 (27% achieved a partial response. Severe side effects were mainly leucopenia, dysphagia, rash, and anemia. Tumor EGFR, MET, ERCC1, and p-53 protein and/or gene expression were not associated with treatment response. In contrast, high MMP9 mRNA expression was found to be significantly associated with objective response. In conclusion, CCRT is feasible and active. MMP9 was the only biomarker tested that appears to be of predictive value in cetuximab treated patients. However, this is a hypothesis generating study and the results should not be viewed as definitive evidence until they are validated in a larger cohort.

  13. DNA repair and gene therapy: implications for translational uses.

    Science.gov (United States)

    Limp-Foster, M; Kelley, M R

    2000-01-01

    Gene therapy has been proposed to have implications in the treatment of cancer. By genetically manipulating the hematopoietic stem cell compartment with genes that confer resistance to chemotherapeutic agents, the dose escalation that is necessary to effectively treat the cancers could potentially be achieved. DNA repair genes are some of the potential candidates to confer increased resistance to chemotherapeutic agents. Although initial focus in this area has been on the direct reversal protein (MGMT), its protective ability is limited to those agents that produce O(6)-methylGuanine cross-links-agents that are not extensively used clinically (e.g., nitrosoureas). Furthermore, most alkylating agents attack more sites in DNA other than O(6)-methylGuanine, such that the protections afforded by MGMT may prevent the initial cytotoxicity, but at a price of increased mutational burden and potential secondary leukemias. Therefore, some of the genes that are being tested as candidates for gene transfer are base excision repair (BER) genes. We and others have found that overexpression of selective BER genes confers resistance to chemotherapeutic agents such as thiotepa, ionizing radiation, bleomycin, and other agents. As these "proof of concept" analyses mature, many more clinically relevant chemotherapeutic agents can be tested for BER protective ability.

  14. ERCC1和XPD基因SNPs与NSCLC含铂类药物化疗敏感相关性分析%Relationship of ERCC1 and XPD SNPs with sensitivity to platinum-based chemotherapy in advanced non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    张胜利; 张增利; 施敏骅

    2013-01-01

    目的:探讨切除修复交叉互补基因1 (ERCC1)第118位密码子(C118T)和着色性干皮病基因D(XPD)第751位密码子(Lys751Gln)的单核苷酸多态性(SNPs),与晚期非小细胞肺癌(NSCLC)患者对含铂类药物化疗疗效的关系.方法:聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)技术检测78例NSCLC患者的ERCC1 (C118T)和XPD(Lys751Gln)基因型.结果:ERCC1 (C118T) SNPs与铂类化疗疗效有关,P<0.05.C/C型化疗有效者7例(8.9%),C/T型为11例(14.1%),T/T型2例(2.6%);C/C化疗无效41例(52.6%),C/T型17例(21.8%),T/T型0;两组差异有统计学意义,P=0.003.T等位基因(T/T+C/T)型与C等位基因(C/C)型的化疗疗效差异亦有统计学意义,P=0.005,比值比(OR) =0.223,95%的可信区间(CI)为0.076~0.657;XPD(Lys751gln) SNPs与含铂类药物化疗疗效无关.ERCC1(C118T)、XPD(Lys751Gln) SNPs分布与年龄、性别、吸烟史、临床分期、体力状况评分(ECOG)和病理类型无关,P>0.05.结论:ERCC1(C118T)含有T等位基因,可作为预测晚期NSCLC患者铂类药物化疗敏感性的预测指标.

  15. Gene therapy and peripheral nerve repair: a perspective

    Directory of Open Access Journals (Sweden)

    Stefan A. Hoyng

    2015-07-01

    Full Text Available Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan’s, Parkinson’s and Alzheimer’s disease, retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral vectors (AAV and the first AAV-based therapeutic, a vector encoding lipoprotein lipase, is now marketed in Europe under the name Glybera. These remarkable advances may become relevant to translational research on gene therapy to promote peripheral nervous system (PNS repair. This short review first summarizes the results of gene therapy in animal models for peripheral nerve repair. Secondly, we identify key areas of future research in the domain of PNS-gene therapy. Finally, a perspective is provided on the path to clinical translation of PNS gene therapy for traumatic nerve injuries. In the latter section we discuss the route and mode of delivery of the vector to human patients, the efficacy and safety of the vector, and the choice of the patient population for a first possible proof-of-concept clinical study.

  16. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  17. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  18. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells

    OpenAIRE

    Johnson, Roger D.; Jasin, Maria

    2000-01-01

    In mammalian cells, repair of DNA double-strand breaks (DSBs) occurs by both homologous and non-homologous mechanisms. By definition, homologous recombination requires a template with sufficient sequence identity to the damaged molecule in order to direct repair. We now show that the sister chromatid acts as a repair template in a substantial proportion of DSB repair events. The outcome of sister chromatid repair is primarily gene conversion unassociated with reciprocal exchange. This contras...

  19. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    Science.gov (United States)

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-05-25

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle.

  20. Clinical values of detecting excision repair cross complementing 1 and top-oisomerase I in individualized therapies of metastatic colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    邱继刚

    2014-01-01

    Objective To explore the clinical values of detecting drug related molecules excision repair cross complementing 1(ERCC1)and top-oisomeraseⅠ(TOPOⅠ)in individualized therapies of metastatic colorectal cancer.Methods From June 2009 to December 2011,90 patients at Huadong Hospital with metastatic colorectal cancer were randomly

  1. Predictive and Prognostic Value of Ribonucleotide Reductase Regulatory Subunit M1 and Excision Repair Cross-Complementation Group 1 in Advanced Urothelial Carcinoma (UC Treated with First-Line Gemcitabine Plus Platinum Combination Chemotherapy.

    Directory of Open Access Journals (Sweden)

    Miso Kim

    Full Text Available Preclinical and clinical studies have suggested that expression of ribonucleotide reductase regulatory subunit M1 (RRM1 and excision repair cross-complementation group 1 (ERCC1 is associated with resistance to gemcitabine and cisplatin, respectively. We evaluated the significance of RRM1 and ERCC1 expression to predict tumor response to gemcitabine plus platinum chemotherapy (GP and survival in advanced UC. We retrospectively collected tumor samples and reviewed clinical data of 53 patients with unresectable or metastatic UC, who were treated with first-line GP. RRM1 and ERCC1 expression were measured by immunohistochemistry. Among 53 patients, 12 (22.6% and 26 (49.1% patients had tumors that demonstrated a high expression for RRM1 and ERCC1, respectively. Twenty-nine (70.7% of 41 patients with low RRM1 expression achieved a clinical response (complete + partial responses, but only 3 (25.0% of 12 patients with high RRM1 expression achieved a clinical response after GP (P=0.007. Nineteen (70.4% of 27 patients with low ERCC1 expression achieved a clinical response, while 13 (50.0% of 26 patients with high ERCC1 expression achieved a clinical response (P=0.130. High RRM1 expression was associated with shorter progression free survival and overall survival (PFS P=0.006, OS P=0.006. Multivariate analysis confirmed that patients with high RRM1 expression had a significantly greater risk of progression and death than those with low RRM1 expression. ERCC1 status was not a significant predictor for PFS and OS. RRM1 expression was predictive and prognostic of clinical outcome in advanced UC treated with gemcitabine plus platinum combination chemotherapy.

  2. Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation

    OpenAIRE

    Leng, Shuguang; Stidley, Christine A.; Willink, Randy; Bernauer, Amanda; Do, Kieu; Picchi, Maria A.; Sheng, Xin; Frasco, Melissa, A.; Berg, David Van Den; Gilliland, Frank D.; Zima, Christopher; Crowell, Richard E.; Belinsky, Steven A.

    2008-01-01

    Gene promoter hypermethylation in sputum is a promising biomarker for predicting lung cancer. Identifying factors that predispose smokers to methylation of multiple gene promoters in the lung could impact strategies for early detection and chemoprevention. This study evaluated the hypothesis that double-strand break repair capacity and sequence variation in genes in this pathway are associated with a high methylation index in a cohort of current and former cancer-free smokers. A 50% reduction...

  3. Simulated microgravity influenced the expression of DNA damage repair genes

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  4. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Wojcik

    2014-10-01

    Full Text Available Keratoconus (KC is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER. Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1 were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1 nor the c.2285T>C polymorphism of the poly(ADP-ribose polymerase-1 (PARP-1 was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease.

  5. Excision Repair Cross-complementation Group 1 is a Prognostic Biomarker in Patients with Colorectal Cancer Receiving Chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Mu-Xing Li; Xin-Yu Bi; Hong Zhao; Zhen Huang; Yue Han; Dong-Bin Zhao; Jian-Jun Zhao

    2016-01-01

    Background:Conflicting results about the association between expression level of excision repair cross-complementation group 1 (ERCC1) and clinical outcome in patients with colorectal cancer (CRC) receiving chemotherapy have been reported.Thus,we searched the available articles and performed the meta-analysis to elucidate the prognostic role of ERCC1 expression in patients with CRC.Methods:A thorough literature search using PubMed (Medline),Embase,Cochrane Library,Web of Science databases,and Chinese Science Citation Database was conducted to obtain the relevant studies.Pooled hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the results.Results:A total of 11 studies were finally enrolled in this meta-analysis.Compared with patients with lower ERCC1 expression,patients with higher ERCC1 expression tended to have unfavorable overall survival (OS) (HR =2.325,95% CI:1.720-3.143,P < 0.001),progression-free survival (PFS) (HR =1.917,95% CI:1.366-2.691,P < 0.001) and poor response to chemotherapy (OR =0.491,95% CI:0.243-0.990,P =0.047).Subgroup analyses by treatment setting,ethnicity,HR extraction,detection methods,survival analysis,and study design demonstrated that our results were robust.Conclusions:ERCC1 expression may be taken as an effective prognostic factor predicting the response to chemotherapy,OS,and PFS.Further studies with better study design and longer follow-up are warranted in order to gain a deeper understanding of ERCC 1's prognostic value.

  6. Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease.

    Science.gov (United States)

    Sepe, Sara; Milanese, Chiara; Gabriels, Sylvia; Derks, Kasper W J; Payan-Gomez, Cesar; van IJcken, Wilfred F J; Rijksen, Yvonne M A; Nigg, Alex L; Moreno, Sandra; Cerri, Silvia; Blandini, Fabio; Hoeijmakers, Jan H J; Mastroberardino, Pier G

    2016-05-31

    The underlying relation between Parkinson's disease (PD) etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that Ercc1 mutant mice with mildly compromised NER exhibit typical PD-like pathological alterations, including decreased striatal dopaminergic innervation, increased phospho-synuclein levels, and defects in mitochondrial respiration. Ercc1 mouse mutants are also more sensitive to the prototypical PD toxin MPTP, and their transcriptomic landscape shares important similarities with that of PD patients. Our results demonstrate that specific defects in DNA repair impact the dopaminergic system and are associated with human PD pathology and might therefore constitute an age-related risk factor for PD.

  7. Nucleotide Excision Repair Protein Levels vis-à -vis Anticancer Drug Resistance in 60 Human Tumor Cell Lines%人肿瘤细胞核苷酸切除修复蛋白表达与抗癌药耐药的相关性

    Institute of Scientific and Technical Information of China (English)

    陈忠平; AretiMALAPETSA

    2002-01-01

    Background & Objective: Nucleotide excision repair (NER) is a multi-enzyme DNA repair system in eukaryotes. Several NER genes in this system including XPA, XPB, ERCC1, and ERCC2 (XPD) have been implicated in anticancer drug resistance in human tumor cells. This study was designed to investigate the relationship between the expression of NER protein and the drug-resistance of human tumor cell lines. Methods: In this study, The authors assessed the levels of the above mentioned proteins, by utilizing Western blot analysis, in the USA National Cancer Institute (NCI) panel of 60 human tumor cell lines and correlated to the cytotoxicity patterns of 170 compounds that constitute the standard agent (SA) database. Results: The ERCC1, XPB, and XPD protein expression patterns yielded significant negative Pearson correlations with 13, 17, and 32 out of the 170 compounds, respectively (P < 0.05). XPA produced a random assortment of negative and positive correlations and did not appear to confer an overall resistance or sensitivity to these drugs. Protein expression was also compared with a pre-defined categorisation of the standard agents into six mechanism-of-action (MOA) groups resulting in an inverse association between XPD and alkylating agent sensitivity. Conclusion: Our present data demonstrate that XPD protein levels correlate with resistance to alkylating agents in human tumor cell lines, suggesting that XPD plays an important role in the development of this resistance.%背景与目的:核苷酸切除修复(Nucleotide excision repair,NER)是真核细胞中的DNA修复多酶系统,它可能与人肿瘤细胞对抗癌药的耐药有关.本实验将探讨NER蛋白(XPA,XPB,XPD和ERCC1)的表达与人肿瘤细胞耐药的关系.方法:采用western blot检测美国国家癌症研究所(National Cancer Institute,NCI)用于抗癌药筛选的60株人肿瘤细胞的ERCC1,XPA,XPB XPD表达,并与170种抗癌药物的细胞毒试验结果进行相关性分析.结果:ERCC1,XPB

  8. Interaction of DNA repair gene polymorphisms and aflatoxin B1 in the risk of hepatocellular carcinoma

    OpenAIRE

    2014-01-01

    Aflatoxin B1 (AFB1) is an important environmental carcinogen and can induce DNA damage and involve in the carcinogenesis of hepatocellular carcinoma (HCC). The deficiency of DNA repair capacity related to the polymorphisms of DNA repair genes might play a central role in the process of HCC tumorigenesis. However, the interaction of DNA repair gene polymorphisms and AFB1 in the risk of hepatocellular carcinoma has not been elucidated. In this study, we investigated whether six polymorphisms (i...

  9. Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas

    DEFF Research Database (Denmark)

    Berntsson, Shala Ghaderi; Wibom, Carl; Sjöström, Sara;

    2011-01-01

    The purpose of this study was to explore the variation in DNA repair genes in adults with WHO grade II and III gliomas and their relationship to patient survival. We analysed a total of 1,458 tagging single-nucleotide polymorphisms (SNPs) that were selected to cover DNA repair genes, in 81 grade ...

  10. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling

    2011-01-01

    Microsatellite instability (MSI) is caused by defective mismatch repair (MMR) and is one of the very few molecular markers with proven clinical importance in colorectal cancer with respect to heredity, prognosis, and treatment effect. The gene expression of the MMR gene MSH2 may be a quantitative...... marker for the level of MMR and a potential molecular marker with clinical relevance. The aim was to investigate the gene expression of MSH2 in primary operable colorectal cancer in correlation with MSI, protein expression, and promoter hypermethylation. In a cohort of 210 patients, the primary tumor...... and lymphnode metastases were analyzed with immunohistochemistry, methylation and MSI analyses, and quantitative polymerase chain reaction (PCR). The median gene expression of MSH2 was 1.00 (range 0.16-11.2, quartiles 0.70-1.51) and there was good agreement between the gene expression in primary tumor and lymph...

  11. Triple Negative Breast Cancers Have a Reduced Expression of DNA Repair Genes

    Science.gov (United States)

    Andreis, Daniele; Bertoni, Ramona; Giardini, Roberto; Fox, Stephen B.; Broggini, Massimo; Bottini, Alberto; Zanoni, Vanessa; Bazzola, Letizia; Foroni, Chiara; Generali, Daniele; Damia, Giovanna

    2013-01-01

    DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia) in paraffin embedded samples of triple negative breast cancer (TNBC) compared to luminal A breast cancer (LABC). Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects. PMID:23825533

  12. Polymorphisms of the DNA repair genes XRCC1 and XRCC3 in a Brazilian population

    Directory of Open Access Journals (Sweden)

    Duarte Márcia Cristina

    2005-01-01

    Full Text Available In several DNA repair genes, polymorphisms may result in reduced repair capacity, which has been implicated as a risk factor for various types of cancer. The frequency of the polymorphic alleles varies among populations, suggesting an ethnic distribution of genotypes. We genotyped 300 healthy Southeastern Brazilian individuals (262 of European ancestry and 38 of African ancestry for polymorphisms of codons 194 and 399 of the XRCC1 base excision repair pathway gene and of codon 241 of the XRCC3 homologous recombination repair pathway gene. The allele frequencies were 0.07 for the Arg194Trp and 0.33 for the Arg399Gln codons of the XRCC1 gene and 0.35 for the Thr241Met codon of the XRCC3 gene. The genotypic frequencies were within Hardy-Weinberg equilibrium. These frequencies showed ethnic variability when compared with those obtained for different populations from several countries.

  13. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  14. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  15. SELECTIVE-INHIBITION OF REPAIR OF ACTIVE GENES BY HYPERTHERMIA IS DUE TO INHIBITION OF GLOBAL AND TRANSCRIPTION COUPLED REPAIR PATHWAYS

    NARCIS (Netherlands)

    SAKKERS, RJ; FILON, AR; BRUNSTING, JF; KAMPINGA, HH; KONINGS, AWT; MULLENDERS, LHF

    1995-01-01

    Hyperthermia specifically inhibits the repair of UV-induced DNA photolesions in transcriptionally active genes, To define more precisely which mechanisms underlie the heat-induced inhibition of repair of active genes, removal of cyclobutane pyrimidine dimers (CPDs) was studied in human fibroblasts w

  16. Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease

    National Research Council Canada - National Science Library

    Gosselink, John V; Hayashi, Shizu; Elliott, W Mark; Xing, Li; Chan, Becky; Yang, Luojia; Wright, Claire; Sin, Don; Paré, Peter D; Pierce, John A; Pierce, Richard A; Patterson, Alex; Cooper, Joel; Hogg, James C

    2010-01-01

    .... The expression of 54 genes associated with repair of repetitively damaged tissue was measured in 136 paired samples of small bronchioles and surrounding lung tissue separated by laser capture microdissection...

  17. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira.

    Science.gov (United States)

    Martins-Pinheiro, Marinalva; Schons-Fonseca, Luciane; da Silva, Josefa B; Domingos, Renan H; Momo, Leonardo Hiroyuki Santos; Simões, Ana Carolina Quirino; Ho, Paulo Lee; da Costa, Renata M A

    2016-04-01

    Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.

  18. Quantification of the mutagenic potency and repair of glycidol-induced DNA lesions.

    Science.gov (United States)

    Aasa, Jenny; Vare, Daniel; Motwani, Hitesh V; Jenssen, Dag; Törnqvist, Margareta

    2016-07-01

    Glycidol (Gly) is an electrophilic low-molecular weight epoxide that is classified by IARC as probably carcinogenic to humans. Humans might be exposed to Gly from food, e.g. refined vegetable oils, where Gly has been found as a food process contaminant. It is therefore important to investigate and quantify the genotoxicity of Gly as a primary step towards cancer risk assessment of the human exposure. Here, quantification of the mutagenic potency expressed per dose (AUC: area under the concentration-time curve) of Gly has been performed in Chinese hamster ovary (CHO) cells, using the HPRT assay. The dose of Gly was estimated in the cell exposure medium by trapping Gly with a strong nucleophile, cob(I)alamin, to form stable cobalamin adducts for analysis by LC-MS/MS. Gly was stable in the exposure medium during the time for cell treatment, and thus the dose in vitro is the initial concentration×cell treatment time. Gly induced mutations in the hprt-gene at a rate of 0.08±0.01 mutations/10(5) cells/mMh. Through comparison with the effect of ionizing radiation in the same system a relative mutagenic potency of 9.5rad-eq./mMh was obtained, which could be used for comparison of genotoxicity of chemicals and between test systems and also in procedures for quantitative cancer risk assessment. Gly was shown to induce strand breaks, that were repaired by base excision repair. Furthermore, Gly-induced lesions, present during replication, were found to delay the replication fork elongation. From experiments with repair deficient cells, homologous recombination repair and the ERCC1-XPF complex were indicated to be recruited to support in the repair of the damage related to the stalled replication elongation. The type of DNA damage responsible for the mutagenic effect of Gly could not be concluded from the present study.

  19. Transcript RNA supports precise repair of its own DNA gene.

    Science.gov (United States)

    Keskin, Havva; Meers, Chance; Storici, Francesca

    2016-01-01

    The transfer of genetic information from RNA to DNA is considered an extraordinary process in molecular biology. Despite the fact that cells transcribe abundant amount of RNA with a wide range of functions, it has been difficult to uncover whether RNA can serve as a template for DNA repair and recombination. An increasing number of experimental evidences suggest a direct role of RNA in DNA modification. Recently, we demonstrated that endogenous transcript RNA can serve as a template to repair a DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven mechanism in budding yeast. These results point out that the transfer of genetic information from RNA to DNA is more general than previously thought. We found that transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a homologous but ectopic locus (in trans). Here, we summarize current knowledge about the process of RNA-driven DNA repair and recombination, and provide further data in support of our model of DSB repair by transcript RNA in cis. We show that a DSB is precisely repaired predominately by transcript RNA and not by residual cDNA in conditions in which formation of cDNA by reverse transcription is inhibited. Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in RNA-DNA recombination. Ultimately, we discuss several questions that should be addressed to better understand mechanisms and implications of RNA-templated DNA repair and recombination.

  20. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Wilding, Craig S. [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom)]. E-mail: craig.wilding@westlakes.ac.uk; Relton, Caroline L. [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom); Paediatric and Lifecourse Epidemiology Research Group, School of Clinical Medical Sciences (Child Health), Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle-upon-Tyne NE1 4LP (United Kingdom); Rees, Gwen S. [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom); Tarone, Robert E. [International Epidemiology Institute, 1455 Research Boulevard, Suite 550, Rockville, MD 20850 (United States); Whitehouse, Caroline A. [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom); Tawn, E. Janet [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom)

    2005-02-15

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC]{sub n} microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC]{sub n} microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations.

  1. Chromosomal Aberrations and DNA Repair Gene Variants in a Radon-exposed Population

    Energy Technology Data Exchange (ETDEWEB)

    Kiuru, A.; Lindholm, C.; Koivistoinen, A.; Salomaa, S.

    2004-07-01

    Polymorphisms of XRCC1 (X-ray repair cross-complementing group 1), XRCC3 (X-ray repair cross-complementing group 3), and hOGG1 (the human homologue of the yeast OGG1 gene) DNA repair genes have been associated with altered DNA repair capacity and risk of various cancers. In the present study our goal was to clarify the influence of various DNA repair gene variants on the frequency of chromosomal aberrations (CA) in subjects exposed to residential radon. The study group of 84 non-smoking, healthy individuals exposed to domestic radon were analysed using the fluorescence in-situ hybridization (FISH) technique. No association between radon concentration and CA frequencies was observed. However, a significant increase with age was shown as well as a large variability in translocation frequencies between individuals within the same age group. In order to investigate the role of individual susceptibility to this variation genotypes of DNA repair genes XRCC1 (codons 194, 280 and 399), XRCC3 (codon 241) and hOGG1 (codon 326) were determined from leukocyte DNA using methods based on polymerase chain reaction. Multiple regression analysis was applied to evaluate the effect of the polymorphisms and the other confounding factors (age, exposure to randon etc) to the frequency of CA. The preliminary statistical analyses showed that the different gene appeared not to be related to a pronounced increase in chromosome aberration frequencies observed by FISH painting. However, the analysis indicated that the homozygous variant of XRCC3 codon 241 was associated (P<0.05) with two-ways translocations in conjunction with age. Larger studies, both with regard to the cohort and the number of gene variants are needed to elucidate the influence of other DNA repair variants to the yield of chromosomal aberrations. The results indicate that the chromosomal translocations accumulated by age (spontaneous background) may be partly explained by defects in homologous recombination repair. (Author

  2. Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus

    Directory of Open Access Journals (Sweden)

    Menck Carlos FM

    2007-03-01

    Full Text Available Abstract Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA, endonuclease III (nth, O6-methylguanine-DNA methyltransferase (ada gene, photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular

  3. Preferential repair of DNA double-strand break at the active gene in vivo.

    Science.gov (United States)

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K; Bhaumik, Sukesh R

    2012-10-19

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3' end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells.

  4. Polymorphisms in human DNA repair genes and head and neck squamous cell carcinoma

    Indian Academy of Sciences (India)

    Rim Khlifi; Ahmed Rebai; Amel Hamza-Chaffai

    2012-12-01

    Genetic polymorphisms in some DNA repair proteins are associated with a number of malignant transformations like head and neck squamous cell carcinoma (HNSCC). Xeroderma pigmentosum group D (XPD) and X-ray repair cross-complementing proteins 1 (XRCC1) and 3 (XRCC3) genes are involved in DNA repair and were found to be associated with HNSCC in numerous studies. To establish our overall understanding of possible relationships between DNA repair gene polymorphisms and development of HNSCC, we surveyed the literature on epidemiological studies that assessed potential associations with HNSCC risk in terms of gene–environment interactions, genotype-induced functional defects in enzyme activity and/or protein expression, and the influence of ethnic origin on these associations.We conclude that large, well-designed studies of common polymorphisms in DNA repair genes are needed. Such studies may benefit from analysis of multiple genes or polymorphisms and from the consideration of relevant exposures that may influence the likelihood of HNSCC when DNA repair capacity is reduced.

  5. hOGG1、XRCC3、ERCC1基因多态性在子宫内膜异位症的表达意义

    Institute of Scientific and Technical Information of China (English)

    王娅菲; 卢霞

    2014-01-01

    目的:研究 DNA 修复基因 hOGG1、XRCC3、ERCC 多态性与子宫内膜异位症发病风险的关系。方法:采用病例-对照研究的方法,应用 PCR -RELP 方法检测子宫内膜异位症患者与非子宫内膜异位症妇女 hOGG1、XRCC3、ERCC1基因多态性分布。结果:h0GG1Ser326Cys 基因多态性在内异症组与对照组未见明显差异(X2=0.172,P =0.678);XRCC3 Thr241Met 基因多态性在内异症组与对照组未见明显差异(X2=3.769,P =0.052);ERCC1C19007T 基因多态性在内异症组与对照组未见明显差异(X2=0.232,P =0.630)。结论:DNA 修复基因 hOGG1、XRCC3、ERCC1多态性并未增加子宫内膜异位症发生风险。

  6. Approaches to diagnose DNA mismatch repair gene defects in cancer

    DEFF Research Database (Denmark)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-01-01

    The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind...... already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR...

  7. ROLE OF INTERACTION OF XPF WITH RPA IN NUCLEOTIDE EXCISION REPAIR

    Science.gov (United States)

    Fisher, Laura A.; Bessho, Mika; Wakasugi, Mitsuo; Matsunaga, Tsukasa; Bessho, Tadayoshi

    2011-01-01

    Nucleotide excision repair (NER) is a very important defense system against various types of DNA damage and it is necessary for maintaining genomic stability. The molecular mechanism of NER has been studied in considerable detail, and it has been shown that proper protein-protein interactions among NER factors are critical for efficient repair. A structure-specific endonuclease, XPF-ERCC1, which makes the 5’ incision in NER, was shown to interact with a single-stranded DNA binding protein, RPA. However, the biological significance of this interaction was not studied in detail. We used the yeast two-hybrid assay to determine that XPF interacts with the p70 subunit of RPA. To further examine the role of this XPF-p70 interaction, a p70-interaction deficient mutant form of XPF that contains a single amino acid substitution in the N-terminus of XPF was isolated by the reverse yeast two-hybrid assay using randomly mutagenized XPF. Biochemical properties of this RPA-interaction deficient mutant XPF-ERCC1 are very similar to wild type XPF-ERCC1 in vitro. Interestingly, expression of this mutated form of XPF in the XPF-deficient Chinese hamster ovary (CHO) cell line, UV41, only partially restores NER activity and UV resistance in vivo compared to wild type XPF. We discovered that the RPA-interaction deficient XPF is not localized in nuclei and the mislocalization of XPF-ERCC1 prevents the complex from functioning in NER. PMID:21875596

  8. Assignment of ten DNA repair genes from Schizosaccharomyces pombe to chromosomal NotI restriction fragments

    NARCIS (Netherlands)

    B.C. Broughton; N.C. Barbet; J. Murray (Johanne); F.Z. Watts (Felicity); M.H.M. Koken (Marcel); A.R. Lehmann (Alan); A.M. Carr (Anthony)

    1991-01-01

    textabstractTen DNA repair (rad) genes from the fission yeast, Schizosaccharomyces pombe were mapped to the 17 NotI fragments of the three chromosomes. Nine of the genes map to chromosome I, but there is no evidence for significant clustering.

  9. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    Directory of Open Access Journals (Sweden)

    Stephen eDownes

    2014-08-01

    Full Text Available Thymidine kinase 1 (TK1 is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumour suppressor (TP53 and human telomerase reverse transcriptase (hTERT gene regions, over 1 hour after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, while levels of genomic DNA repair were consistant between the two cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 minute repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents.

  10. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    Science.gov (United States)

    McAllister, Katherine A.; Yasseen, Akeel A.; McKerr, George; Downes, C. S.; McKelvey-Martin, Valerie J.

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  11. Expression of domains for protein-protein interaction of nucleotide excision repair proteins modifies cancer cell sensitivity to platinum derivatives and genomic stability.

    Science.gov (United States)

    Jordheim, Lars Petter; Cros-Perrial, Emeline; Matera, Eva-Laure; Bouledrak, Karima; Dumontet, Charles

    2014-10-01

    Nucleotide excision repair (NER) is involved in the repair of DNA damage caused by platinum derivatives and has been shown to decrease the cytotoxic activity of these drugs. Because protein-protein interactions are essential for NER activity, we transfected human cancer cell lines (A549 and HCT116) with plasmids coding the amino acid sequences corresponding to the interacting domains between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum, complementation group A (XPA), as well as ERCC1 and xeroderma pigmentosum, complementation group F (XPF), all NER proteins. Using the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and annexin V staining, we showed that transfected A549 cells were sensitized 1.2-2.2-fold to carboplatin and that transfected HCT116 cells were sensitized 1.4-5.4-fold to oxaliplatin in vitro. In addition, transfected cells exhibited modified in vivo sensitivity to the same drugs. Finally, in particular cell models of the interaction between ERCC1 and XPF, DNA repair was decreased, as evidenced by increased phosphorylation of the histone 2AX after exposure to mitomycin C, and genomic instability was increased, as determined by comparative genomic hybridization studies. The results indicate that the interacting peptides act as dominant negatives and decrease NER activity through inhibition of protein-protein interactions.

  12. 'Hide-then-hit' to explain the importance of genotypic polymorphism of DNA repair genes in determining susceptibility to cancer

    Institute of Scientific and Technical Information of China (English)

    Pei-Ei Wu; Chen-Yang Shen

    2011-01-01

    Interindividual variations in DNA repair capacity/efficiency linked to the presence of polymorphisms in DNA repair-related genes have been suggested to account for different risk of developing cancers. In this review article, on the basis of breast cancer formation as a model, we propose a 'hide-then-hit' hypothesis indicating the importance of escaping checkpoint surveillance for sub-optimal DNA repair variants to cause cancer. Therefore, only cells with subtle defects in repair capacity arising from low-penetrance variants of DNA repair genes would have the opportunity to grow and accumulate the genetic changes needed for cancer formation, without triggering cell-cycle checkpoint surveillance. Furthermore, distinct from high-penetrance alleles, these polymorphic alleles of DNA repair genes would predispose carriers to a higher risk of developing cancer but would not necessarily cause cancer. To examine this,we simultaneously genotyped multiple SNPs of cell-cycle checkpoint genes and the DNA repair genes. Support for the hypothesis came from observations that breast cancer risk associated with variant genotypes of DNA repair genes became more significant in be confirmed by biological evidence in which a cause-effect relationship has to be established. However, based on this, possible gene-gene interaction is considered to play an important role in modifying the cancer risk associated with genotypic polymorphism of DNA repair gene in different study populations.

  13. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer.

    Science.gov (United States)

    Das, Raima; Ghosh, Sankar Kumar

    2017-04-01

    DNA repair pathway is a primary defense system that eliminates wide varieties of DNA damage. Any deficiencies in them are likely to cause the chromosomal instability that leads to cell malfunctioning and tumorigenesis. Genetic polymorphisms in DNA repair genes have demonstrated a significant association with cancer risk. Our study attempts to give a glimpse of the overall scenario of the germline polymorphisms in the DNA repair genes by taking into account of the Exome Aggregation Consortium (ExAC) database as well as the Human Gene Mutation Database (HGMD) for evaluating the disease link, particularly in cancer. It has been found that ExAC DNA repair dataset (which consists of 228 DNA repair genes) comprises 30.4% missense, 12.5% dbSNP reported and 3.2% ClinVar significant variants. 27% of all the missense variants has the deleterious SIFT score of 0.00 and 6% variants carrying the most damaging Polyphen-2 score of 1.00, thus affecting the protein structure and function. However, as per HGMD, only a fraction (1.2%) of ExAC DNA repair variants was found to be cancer-related, indicating remaining variants reported in both the databases to be further analyzed. This, in turn, may provide an increased spectrum of the reported cancer linked variants in the DNA repair genes present in ExAC database. Moreover, further in silico functional assay of the identified vital cancer-associated variants, which is essential to get their actual biological significance, may shed some lights in the field of targeted drug development in near future. Copyright © 2017. Published by Elsevier B.V.

  14. Gene Expression in Experimental Aortic Coarctation and Repair: Candidate Genes for Therapeutic Intervention?

    Science.gov (United States)

    LaDisa, John F; Bozdag, Serdar; Olson, Jessica; Ramchandran, Ramani; Kersten, Judy R; Eddinger, Thomas J

    2015-01-01

    Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is one of the most common congenital cardiovascular defects. Treatments for CoA improve life expectancy, but morbidity persists, particularly due to the development of chronic hypertension (HTN). Identifying the mechanisms of morbidity is difficult in humans due to confounding variables such as age at repair, follow-up duration, coarctation severity and concurrent anomalies. We previously developed an experimental model that replicates aortic pathology in humans with CoA without these confounding variables, and mimics correction at various times using dissolvable suture. Here we present the most comprehensive description of differentially expressed genes (DEGs) to date from the pathology of CoA, which were obtained using this model. Aortic samples (n=4/group) from the ascending aorta that experiences elevated blood pressure (BP) from induction of CoA, and restoration of normal BP after its correction, were analyzed by gene expression microarray, and enriched genes were converted to human orthologues. 51 DEGs with >6 fold-change (FC) were used to determine enriched Gene Ontology terms, altered pathways, and association with National Library of Medicine Medical Subject Headers (MeSH) IDs for HTN, cardiovascular disease (CVD) and CoA. The results generated 18 pathways, 4 of which (cell cycle, immune system, hemostasis and metabolism) were shared with MeSH ID's for HTN and CVD, and individual genes were associated with the CoA MeSH ID. A thorough literature search further uncovered association with contractile, cytoskeletal and regulatory proteins related to excitation-contraction coupling and metabolism that may explain the structural and functional changes observed in our experimental model, and ultimately help to unravel the mechanisms responsible for persistent morbidity after treatment for CoA.

  15. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  16. Variation in PAH-related DNA adduct levels among non-smokers: the role of multiple genetic polymorphisms and nucleotide excision repair phenotype.

    Science.gov (United States)

    Etemadi, Arash; Islami, Farhad; Phillips, David H; Godschalk, Roger; Golozar, Asieh; Kamangar, Farin; Malekshah, Akbar Fazel-Tabar; Pourshams, Akram; Elahi, Seerat; Ghojaghi, Farhad; Strickland, Paul T; Taylor, Philip R; Boffetta, Paolo; Abnet, Christian C; Dawsey, Sanford M; Malekzadeh, Reza; van Schooten, Frederik J

    2013-06-15

    Polycyclic aromatic hydrocarbons (PAHs) likely play a role in many cancers even in never-smokers. We tried to find a model to explain the relationship between variation in PAH-related DNA adduct levels among people with similar exposures, multiple genetic polymorphisms in genes related to metabolic and repair pathways, and nucleotide excision repair (NER) capacity. In 111 randomly selected female never-smokers from the Golestan Cohort Study in Iran, we evaluated 21 SNPs in 14 genes related to xenobiotic metabolism and 12 SNPs in eight DNA repair genes. NER capacity was evaluated by a modified comet assay, and aromatic DNA adduct levels were measured in blood by32P-postlabeling. Multivariable regression models were compared by Akaike's information criterion (AIC). Aromatic DNA adduct levels ranged between 1.7 and 18.6 per 10(8) nucleotides (mean: 5.8 ± 3.1). DNA adduct level was significantly lower in homozygotes for NAT2 slow alleles and ERCC5 non-risk-allele genotype, and was higher in the MPO homozygote risk-allele genotype. The sum of risk alleles in these genes significantly correlated with the log-adduct level (r = 0.4, p adduct levels. NER capacity was affected by polymorphisms in the MTHFR and ERCC1 genes. Female non-smokers in this population had PAH-related DNA adduct levels three to four times higher than smokers and occupationally-exposed groups in previous studies, with large inter-individual variation which could best be explained by a combination of Phase I genes and NER capacity.

  17. A multistep genomic screen identifies new genes required for repair of DNA double-strand breaks in Saccharomyces cerevisiae.

    Science.gov (United States)

    McKinney, Jennifer Summers; Sethi, Sunaina; Tripp, Jennifer DeMars; Nguyen, Thuy N; Sanderson, Brian A; Westmoreland, James W; Resnick, Michael A; Lewis, L Kevin

    2013-04-15

    Efficient mechanisms for rejoining of DNA double-strand breaks (DSBs) are vital because misrepair of such lesions leads to mutation, aneuploidy and loss of cell viability. DSB repair is mediated by proteins acting in two major pathways, called homologous recombination and nonhomologous end-joining. Repair efficiency is also modulated by other processes such as sister chromatid cohesion, nucleosome remodeling and DNA damage checkpoints. The total number of genes influencing DSB repair efficiency is unknown. To identify new yeast genes affecting DSB repair, genes linked to gamma radiation resistance in previous genome-wide surveys were tested for their impact on repair of site-specific DSBs generated by in vivo expression of EcoRI endonuclease. Eight members of the RAD52 group of DNA repair genes (RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, MRE11 and XRS2) and 73 additional genes were found to be required for efficient repair of EcoRI-induced DSBs in screens utilizing both MATa and MATα deletion strain libraries. Most mutants were also sensitive to the clastogenic chemicals MMS and bleomycin. Several of the non-RAD52 group genes have previously been linked to DNA repair and over half of the genes affect nuclear processes. Many proteins encoded by the protective genes have previously been shown to associate physically with each other and with known DNA repair proteins in high-throughput proteomics studies. A majority of the proteins (64%) share sequence similarity with human proteins, suggesting that they serve similar functions. We have used a genetic screening approach to detect new genes required for efficient repair of DSBs in Saccharomyces cerevisiae. The findings have spotlighted new genes that are critical for maintenance of genome integrity and are therefore of greatest concern for their potential impact when the corresponding gene orthologs and homologs are inactivated or polymorphic in human cells.

  18. Polymorphisms in base excision repair genes: Breast cancer risk and individual radiosensitivity

    Science.gov (United States)

    Patrono, Clarice; Sterpone, Silvia; Testa, Antonella; Cozzi, Renata

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. The aetiology and carcinogenesis of BC are not clearly defined, although genetic, hormonal, lifestyle and environmental risk factors have been established. The most common treatment for BC includes breast-conserving surgery followed by a standard radiotherapy (RT) regimen. However, radiation hypersensitivity and the occurrence of RT-induced toxicity in normal tissue may affect patients’ treatment. The role of DNA repair in cancer has been extensively investigated, and an impaired DNA damage response may increase the risk of BC and individual radiosensitivity. Single nucleotide polymorphisms (SNPs) in DNA repair genes may alter protein function and modulate DNA repair efficiency, influencing the development of various cancers, including BC. SNPs in DNA repair genes have also been studied as potential predictive factors for the risk of RT-induced side effects. Here, we review the literature on the association between SNPs in base excision repair (BER) genes and BC risk. We focused on X-ray repair cross complementing group 1 (XRCC1), which plays a key role in BER, and on 8-oxoguanine DNA glycosylase 1, apurinic/apyrimidinic endonuclease 1 and poly (ADP-ribose) polymerase-1, which encode three important BER enzymes that interact with XRCC1. Although no association between SNPs and radiation toxicity has been validated thus far, we also report published studies on XRCC1 SNPs and variants in other BER genes and RT-induced side effects in BC patients, emphasising that large well-designed studies are needed to determine the genetic components of individual radiosensitivity. PMID:25493225

  19. Gene therapy and peripheral nerve repair : a perspective

    NARCIS (Netherlands)

    Hoyng, Stefan A; de Winter, Fred; Tannemaat, Martijn R; Blits, Bas; Malessy, Martijn J A; Verhaagen, J.

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral

  20. Gene therapy and peripheral nerve repair : a perspective

    NARCIS (Netherlands)

    Hoyng, Stefan A; de Winter, Fred; Tannemaat, Martijn R; Blits, Bas; Malessy, Martijn J A; Verhaagen, J.

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral

  1. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.

    NARCIS (Netherlands)

    D.F.R. Muris; O.Y. Bezzubova (Olga); J-M. Buerstedde; K. Vreeken; A.S. Balajee; C.J. Osgood; C. Troelstra (Christine); J.H.J. Hoeijmakers (Jan); K. Ostermann; H. Schmidt (Henning); A.T. Natarajan; J.C.J. Eeken; P.H.M. Lohmann (Paul); A. Pastink (Albert)

    1994-01-01

    textabstractThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were

  2. Chromosomal localization of three repair genes: the xeroderma pigmentosum group C gene and two human homologs of yeast RAD23.

    NARCIS (Netherlands)

    P.J. van der Spek (Peter); E.M.E. Smit (Elisabeth); H.B. Beverloo (Berna); K. Sugasawa (Kaoru); C. Matsutani; F. Hanaoka (Fumio); J.H.J. Hoeijmakers (Jan); A. Hagemeier

    1994-01-01

    textabstractThe nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) is characterized by sun (UV) sensitivity, predisposition to skin cancer, and extensive genetic heterogeneity. Recently, we reported the cloning and analysis of three human NER genes, XPC, HHR23A, and HHR23B. The

  3. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6.

    NARCIS (Netherlands)

    M.H.M. Koken (Marcel); P. Reynolds (Paul); I. Jaspers-Dekker (Iris); L. Prakash; S. Prakash; D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1991-01-01

    textabstractThe RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme (E2) that is required for DNA repair, damage-induced mutagenesis, and sporulation. We have cloned the two human RAD6 homologs, designated HHR6A and HHR6B. The two 152-amino acid human proteins share 95% sequ

  4. Comprehensive analysis of DNA repair gene variants and risk of meningioma

    DEFF Research Database (Denmark)

    Bethke, L.; Murray, A.; Webb, E.

    2008-01-01

    of meningioma and exposure to ionizing radiation is also well known and led us to examine whether variants in DNA repair genes contribute to disease susceptibility. METHODS: We analyzed 1127 tagging single-nucleotide polymorphisms (SNPs) that were selected to capture most of the common variation in 136 DNA...

  5. Semiconservative replication, genetic repair, and many-gened genomes: Extending the quasispecies paradigm to living systems

    Science.gov (United States)

    Tannenbaum, Emmanuel; Shakhnovich, Eugene I.

    2005-12-01

    Quasispecies theory has emerged as an important tool for modeling the evolutionary dynamics of biological systems. We review recent advances in the field, with an emphasis on the quasispecies dynamics of semiconservatively replicating genomes. Applications to cancer and adult stem cell growth are discussed. Additional topics, such as genetic repair and many-gene genomes, are covered as well.

  6. A Database to Support the Interpretation of Human Mismatch Repair Gene Variants

    NARCIS (Netherlands)

    Ou, Jianghua; Niessen, Renee C.; Vonk, Jan; Westers, Helga; Hofstra, Robert M. W.; Sijmons, Rolf H.

    2008-01-01

    Germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2 can cause Lynch syndrome. This syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is an autosomal dominantly-inherited disorder predominantly characterized by colorectal and endometrial cancer. Tr

  7. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair.

    Science.gov (United States)

    Reumann, Marie K; Strachna, Olga; Yagerman, Sarah; Torrecilla, Daniel; Kim, Jihye; Doty, Stephen B; Lukashova, Lyudmila; Boskey, Adele L; Mayer-Kuckuk, Philipp

    2011-10-01

    Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1(-/-) mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1(-/-) mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1(-/-) callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Hee Nam Kim

    2014-04-01

    Full Text Available The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1. To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls. Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT were associated with a decreased risk for NHL [odds ratio (ORXRCC1 GA = 0.80, p = 0.02; OROGG1 GG = 0.70, p = 0.008; ORBRCA1 TT = 0.71, p = 0.048; ORWRN TT = 0.68, p = 0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR = 1.25, p = 0.04. In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR = 0.74, p = 0.04, and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT = 1.50, p < 0.0001; OR3435TT = 1.43, p = 0.02. These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients.

  9. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  10. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  11. Mutagen sensitivity and DNA repair of the EGFR gene in oropharyngeal cancer.

    Science.gov (United States)

    Reiter, Maximilian; Welz, Christian; Baumeister, Philipp; Schwenk-Zieger, Sabina; Harréus, Ulrich

    2010-07-01

    Epidermal growth factor receptor (EGFR) is overexpressed in several epithelial malignancies, including head and neck squamous cell cancer. Up to 90% of the tumour cases in this area exhibit EGFR overexpression. The reasons for overexpression are still not clear. Mutagen sensitivity, pre-existing conditions for genotoxic damage, gene amplification, and reduced DNA repair of the EGFR gene are possible causes for EGFR protein overexpression. DNA damage in macroscopically healthy pharyngeal mucosal tissue of 30 patients with (15) and without cancer (15) of the oropharynx was evaluated after incubation with Benz[a]pyren-7,8-diol-9,10-epoxid (BPDE), a tobacco-associated carcinogen. Emerging DNA fragmentation of the EGFR gene located on chromosome 7 was evaluated. The centromere of the chromosome served as a reference gene. Comet FISH was applied to assess the mutagen sensitivity in these regions. The extent of DNA repair was evaluated in the same samples after a 24-h repair-period. Differences in gene amplification and protein expression between the two groups were analysed by Interphase-FISH (I-FISH) and immunohistochemistry (IHC), respectively. BPDE caused significant DNA damage compared to the negative control in oropharyngeal mucosa cells of patients with- and without carcinoma. DNA fragmentation of the EGFR gene in the two groups was comparable. Mutagen sensitivity was significantly higher in the EGFR gene than in the reference gene, but fragmentation of the EGFR gene was not enhanced compared to the DNA damage of the entire DNA. The DNA repair period led to a significant reduction in DNA damage levels in all groups, without preference for any of the groups or genes. EGFR amplification was found in 7.7% of the tumour patients but not in control patients. Of the patients with oropharyngeal carcinoma, 66.6% showed enhanced expression of EGFR protein (grades 2 and 3), whereas only 13% of tumour-free patients showed such protein expression. No significant differences in

  12. Evaluating the effects of genetic variants of DNA repair genes using cytogenetic mutagen sensitivity approaches.

    Science.gov (United States)

    Abdel-Rahman, Sherif Z; El-Zein, Randa A

    2011-08-01

    Mutagen sensitivity, measured in short-term cultures of peripheral blood lymphocytes by cytogenetic endpoints, is an indirect measure for DNA repair capacity and has been used for many years as a biomarker for intrinsic susceptibility for cancer. In this article, we briefly give an overview of the different cytogenetic mutagen sensitivity approaches that have been used successfully to evaluate the biological effects of polymorphisms in DNA repair genes based on a current review of the literature and based on the need for biomarkers that would allow the characterization of the biological and functional significance of such polymorphisms. We also address some of the future challenges facing this emerging area of research.

  13. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays

    DEFF Research Database (Denmark)

    Heinen, Christopher D; Juel Rasmussen, Lene

    2012-01-01

    provided an important experimental tool for studying the functional consequences of VUS. However, beyond this repair assay, a number of other experimental methods have been developed that allow us to test the effect of a VUS on discrete biochemical steps or other aspects of MMR function. Here, we describe......ABSTRACT: With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis...

  14. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    Science.gov (United States)

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  15. Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides

    Science.gov (United States)

    Bertoni, Carmen; Rustagi, Arjun; Rando, Thomas A.

    2009-01-01

    Gene editing mediated by oligonucleotides has been shown to induce stable single base alterations in genomic DNA in both prokaryotic and eukaryotic organisms. However, the low frequencies of gene repair have limited its applicability for both basic manipulation of genomic sequences and for the development of therapeutic approaches for genetic disorders. Here, we show that single-stranded oligodeoxynucleotides (ssODNs) containing a methyl-CpG modification and capable of binding to the methyl-CpG binding domain protein 4 (MBD4) are able to induce >10-fold higher levels of gene correction than ssODNs lacking the specific modification. Correction was stably inherited through cell division and was confirmed at the protein, transcript and genomic levels. Downregulation of MBD4 expression using RNAi prevented the enhancement of gene correction efficacy obtained using the methyl-CpG-modified ssODN, demonstrating the specificity of the repair mechanism being recruited. Our data demonstrate that efficient manipulation of genomic targets can be achieved and controlled by the type of ssODN used and by modulation of the repair mechanism involved in the correction process. This new generation of ssODNs represents an important technological advance that is likely to have an impact on multiple applications, especially for gene therapy where permanent correction of the genetic defect has clear advantages over viral and other nonviral approaches currently being tested. PMID:19854937

  16. DNA-repair gene variants are associated with glioblastoma survival

    DEFF Research Database (Denmark)

    Wibom, Carl; Sjöström, Sara; Henriksson, Roger

    2012-01-01

    genes, in 138 glioblastoma samples from Sweden and Denmark. We confirmed our findings in an independent cohort of 121 glioblastoma patients from the UK. Our analysis revealed nine SNPs annotating MSH2, RAD51L1 and RECQL4 that were significantly (p

  17. Chromosomal localization of three repair genes: The xeroderma pigmentosum group C gene and two human homologs of yeast RAD23

    Energy Technology Data Exchange (ETDEWEB)

    Spek, P.J. van der; Smit, E.M.E.; Beverloo, H.B. [Erasmus Univ., Rotterdam (Netherlands)] [and others

    1994-10-01

    The nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) is characterized by sun (UV) sensitivity, predisposition to skin cancer, and extensive genetic heterogeneity. Recently, we reported the cloning and analysis of three human NER genes, XPC, HHR23A, and HHR23B. The previously cloned XPC gene is involved in the common XP complementation group C, which is defective in excision repair of nontranscribed sequences in the genome. The XPC protein was found to be complexed with the product of HHR23B, one of the two human homologs of the Saccharomyes cerevisiae NER gene RAD23. Here we present the chromosomal localization by in situ hybridization using haptenized probes of all three genes. The HHR23A gene was assigned to chromosome 19p13.2. Interestingly, the HHR23B and XPC genes, the product of which forms a tight complex, were found to colocalize on band 3p25.1. Pulsed-field gel electrophoresis revealed that the HHR23B and XPC genes possibly share a MluI restriction fragment of about 625 kb. Potential involvement of the HHR23 genes in human genetic disorders is discussed. 53 refs., 4 figs., 2 tabs.

  18. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  19. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Directory of Open Access Journals (Sweden)

    Vasieva Olga

    2011-01-01

    Full Text Available Abstract Background The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes, for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties. Results The main patterns discovered by the classification methods are as follows: (a the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO annotations; (c GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d interaction with the XRCC5 (Ku80 protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related. Conclusions The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.

  20. DNA Repair Gene Polymorphisms in Relation to Non-Small Cell Lung Cancer Survival

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-07-01

    Full Text Available Background: Single nucleotide polymorphisms (SNPs in the DNA repair genes are suspected to be related to the survival of lung cancer patients due to their possible influence on DNA repair capacity (DRC. However, the study results are inconsistent. Methods: A follow-up study of 610 non-small cell lung cancer (NSCLC patients was conducted to investigate genetic polymorphisms associated with the DNA repair genes in relation to NSCLC survival; 6 SNPs were genotyped, including XRCC1 (rs25487 G>A, hOGG1 (rs1052133 C>G, MUTYH (rs3219489 G>C, XPA (rs1800975 G>A, ERCC2 (rs1799793 G>A and XRCC3 (rs861539 C>T. Kaplan-Meier survival curve and Cox proportional hazards regression analyses were performed. SNP-SNP interaction was also examined using the survival tree analysis. Results: Advanced disease stage and older age at diagnosis were associated with poor prognosis of NSCLC. Patients with the variant ‘G' allele of hOGG1 rs1052133 had poor overall survival compared with those with the homozygous wild ‘CC' genotype, especially in female patients, adenocarcinoma histology, early stage, light smokers and without family history of cancer. For never smoking female lung cancer patients, individuals carrying homozygous variant ‘AA' genotype of XPA had shorter survival time compared to those with wild ‘G' alleles. Furthermore, females carrying homozygous variant XPA and hOGG1 genotypes simultaneously had 2.78-fold increased risk for death. Among all 6 polymorphisms, the homozygous variant ‘AA' of XPA carriers had poor prognosis compared to the carriers of wild ‘G' alleles of XPA together with other base excision repair (BER polymorphisms. Conclusions: Besides disease stage and age, the study found DNA repair gene polymorphisms were associated with lung cancer survival.

  1. Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma.

    Science.gov (United States)

    Betti, Marta; Casalone, Elisabetta; Ferrante, Daniela; Aspesi, Anna; Morleo, Giulia; Biasi, Alessandra; Sculco, Marika; Mancuso, Giuseppe; Guarrera, Simonetta; Righi, Luisella; Grosso, Federica; Libener, Roberta; Pavesi, Mansueto; Mariani, Narciso; Casadio, Caterina; Boldorini, Renzo; Mirabelli, Dario; Pasini, Barbara; Magnani, Corrado; Matullo, Giuseppe; Dianzani, Irma

    2017-10-01

    Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer caused by asbestos exposure. An inherited predisposition has been suggested to explain multiple cases in the same family and the observation that not all individuals highly exposed to asbestos develop the tumor. Germline mutations in BAP1 are responsible for a rare cancer predisposition syndrome that includes predisposition to mesothelioma. We hypothesized that other genes involved in hereditary cancer syndromes could be responsible for the inherited mesothelioma predisposition. We investigated the prevalence of germline variants in 94 cancer-predisposing genes in 93 MPM patients with a quantified asbestos exposure. Ten pathogenic truncating variants (PTVs) were identified in PALB2, BRCA1, FANCI, ATM, SLX4, BRCA2, FANCC, FANCF, PMS1 and XPC. All these genes are involved in DNA repair pathways, mostly in homologous recombination repair. Patients carrying PTVs represented 9.7% of the panel and showed lower asbestos exposure than did all the other patients (p = 0.0015). This suggests that they did not efficiently repair the DNA damage induced by asbestos and leading to carcinogenesis. This study shows that germline variants in several genes may increase MPM susceptibility in the presence of asbestos exposure and may be important for specific treatment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  3. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    Science.gov (United States)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  4. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  5. DNA repair gene ERCC2 polymorphisms and associations with breast and ovarian cancer risk

    Directory of Open Access Journals (Sweden)

    Rabiau Nadège

    2008-05-01

    Full Text Available Abstract Breast and ovarian cancers increased in the last decades. Except rare cases with a genetic predisposition and high penetrance, these pathologies are viewed as a polygenic disease. In this concept, association studies look for genetic variations such as polymorphisms in low penetrance genes, i.e. genes in interaction with environmental factors. DNA repair systems that protect the genome from deleterious endogenous and exogenous damages have been shown to have significantly reduced. In particular, enzymes of the nucleotide excision repair pathway are suspected to be implicated in cancer. In this study, 2 functional polymorphisms in a DNA repair gene ERCC2 were analyzed. The population included 911 breast cancer cases, 51 ovarian cancer cases and 1000 controls. The genotyping of 2 SNP (Single Nucleotide Polymorphism was carried out on the population with the MGB (Minor Groove Binder probe technique which consists of the use of the allelic discrimination with the Taqman® method. This study enabled us to show an increase in risk of breast cancer with no oral contraceptive users and with women exhibiting a waist-to-hip ratio (WHR > 0.85 for Asn homozygous for ERCC2 312.

  6. Mutation mismatch repair gene deletions in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Couronné, Lucile; Ruminy, Philippe; Waultier-Rascalou, Agathe; Rainville, Vinciane; Cornic, Marie; Picquenot, Jean-Michel; Figeac, Martin; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2013-05-01

    To further unravel the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL), we performed high-resolution comparative genomic hybridization on lymph node biopsies from 70 patients. With this strategy, we identified microdeletions of genes involved in the mutation mismatch repair (MMR) pathway in two samples. The first patient presented with a homozygous deletion of MSH2-MSH6 due to duplication of an unbalanced pericentric inversion of chromosome 2. The other case showed a PMS2 heterozygous deletion. PMS2 and MSH2-MSH6 abnormalities, respectively, resulted in a decrease and complete loss of gene expression. However, unlike tumors associated with the hereditary non-polyposis colorectal cancer syndrome or immunodeficiency-related lymphomas, no microsatellite instability was detected. Mutational profiles revealed especially in one patient an aberrant hypermutation without a clear activation-induced cytidine deaminase signature, indicating a breakdown of the high-fidelity repair in favor of the error-prone repair pathway. Our findings suggest that in a rare subset of patients, inactivation of the genes of the MMR pathway is likely an important step in the molecular pathogenesis of DLBCL and does not involve the same molecular mechanisms as other common neoplasms with MMR deficiency.

  7. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    Directory of Open Access Journals (Sweden)

    Leclerc Xavier

    2009-04-01

    Full Text Available Abstract Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1. Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.

  8. Assessment by Southern blot analysis of UV-induced damage and repair in human immunoglobulin genes.

    Science.gov (United States)

    Bianchi, M S; Bianchi, N O; de la Chapelle, A

    1990-09-01

    Irradiation of DNA with UV light induces pyrimidine dimers and (6-4) photoproducts. The presence of one of these photolesions in the restriction site of a given endonuclease inhibits DNA cleavage and induces the formation of fragments by incomplete DNA digestion which appear as additional, facultative bands in Southern hybridization autoradiograms. The number and size of these fragments show a positive correlation with the UV dose. The response to UV light of immunoglobulin light-chain constant kappa and heavy-chain constant mu genes was analyzed with 2 specific probes. Constant kappa and mu genes when irradiated as part of the chromatin of living lymphocytes showed a UV sensitivity similar to that of naked DNA. The same genes from granulocytes had 50-60 times lower UV sensitivity. When cells were allowed to repair photolesions for 24 h the facultative bands from granulocytes disappeared indicating that these cells were able to remove photolesions from constant kappa and mu genes. Facultative bands from lymphocytes showed a smaller decrease of density after 24 h repair. This suggests that lymphocytes are less efficient than granulocytes in removing UV damage from constant kappa and mu genes.

  9. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  10. Reduced Activity of Double-Strand Break Repair Genes in Prostate Cancer Patients With Late Normal Tissue Radiation Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Oorschot, Bregje van, E-mail: b.vanoorschot@amc.uva.nl [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Hovingh, Suzanne E. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Moerland, Perry D. [Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Medema, Jan Paul; Stalpers, Lukas J.A. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Franken, Nicolaas A.P. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands)

    2014-03-01

    Purpose: To investigate clinical parameters and DNA damage response as possible risk factors for radiation toxicity in the setting of prostate cancer. Methods and Materials: Clinical parameters of 61 prostate cancer patients, 34 with (overresponding, OR) and 27 without (non-responding, NR) severe late radiation toxicity were assembled. In addition, for a matched subset the DNA damage repair kinetics (γ-H2AX assay) and expression profiles of DNA repair genes were determined in ex vivo irradiated lymphocytes. Results: Examination of clinical data indicated none of the considered clinical parameters to be correlated with the susceptibility of patients to develop late radiation toxicity. Although frequencies of γ-H2AX foci induced immediately after irradiation were similar (P=.32), significantly higher numbers of γ-H2AX foci were found 24 hours after irradiation in OR compared with NR patients (P=.03). Patient-specific γ-H2AX foci decay ratios were significantly higher in NR patients than in OR patients (P<.0001). Consequently, NR patients seem to repair DNA double-strand breaks (DSBs) more efficiently than OR patients. Moreover, gene expression analysis indicated several genes of the homologous recombination pathway to be stronger induced in NR compared with OR patients (P<.05). A similar trend was observed in genes of the nonhomologous end-joining repair pathway (P=.09). This is congruent with more proficient repair of DNA DSBs in patients without late radiation toxicity. Conclusions: Both gene expression profiling and DNA DSB repair kinetics data imply that less-efficient repair of radiation-induced DSBs may contribute to the development of late normal tissue damage. Induction levels of DSB repair genes (eg, RAD51) may potentially be used to assess the risk for late radiation toxicity.

  11. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  12. Gene Polymorphisms and Chemotherapy in Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Kayo OSAWA

    2009-01-01

    The phamacogenetics is being used to predict whether the selected chemotherapy will be really effective and tolerable to the patient. Irinotecan, oxidized by CYP3A4 to produce inactive compounds, is used for treatment of various cancers including advanced non small cell lung cancer (NSCLC) patients. CYP3A4*16B polymorphism was associated with decreased metabolism ofirrinotecan. Irinotecan is also metabolized by carboxylesterase to its principal active metabolite, SN-38, which is subsequently glucuronidated by UGT1As to form the inactive compound SN-38G. UGT1A1*28 and UGT1A1*6 polymorphisms were useful for predicting severe toxicity with NSCLC patients treated with irinotecan-based chemotherapy. Platinum-based compounds (cisplatin, carboplatin) are being used in combination with new cytotoxic drugs such as gemcitabine, paclitaxel, docetaxel, or vinorelbine in the treatment of advanced NSCLC. Cisplatin activity is mediated through the formation of cisplatin-DNA adducts. Gene polymorphisms of DNA repair factors are therefore obvious candidates for determinants of repair capacity and chemotherapy efficacy. ERCC1, XRCC1 and XRCC3 gene polymorphisms were a useful marker for predicting better survival in advanced NSCLC patients treated with platinum-based chemotherapy. XPA and XPD polymorphisms significantly increased response to platinum-based chemotherapy. These DNA repair gene polymorphisms were useful as a predictor of clinical outcome to the platinum-based chemotherapy. EGFR kinase inhibitors induce dramatic clinical responses in NSCLC patients with advanced disease. EGFR gene polymorphism in intron 1 contains a polymorphic single sequence dinudeotide repeat (CA-SSR) showed a statistically significant correlation with the gefitinib response and was appeared to be a useful predictive marker of the development of clinical outcome containing skin rashes with gefitinib treatment. The other polymorphisms of EGFR were also associated with increased EGFR promoter activity

  13. Gene Polymorphisms and Chemotherapy in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kayo OSAWA

    2009-08-01

    Full Text Available The phamacogenetics is being used to predict whether the selected chemotherapy will be really effective and tolerable to the patient. Irinotecan, oxidized by CYP3A4 to produce inactive compounds, is used for treatment of various cancers including advanced non small cell lung cancer (NSCLC patients. CYP3A4*16B polymorphism was associated with decreased metabolism of irrinotecan. Irinotecan is also metabolized by carboxylesterase to its principal active metabolite, SN-38, which is subsequently glucuronidated by UGT1As to form the inactive compound SN-38G. UGT1A1*28 and UGT1A1*6 polymorphisms were useful for predicting severe toxicity with NSCLC patients treated with irinotecan-based chemotherapy. Platinum-based compounds (cisplatin, carboplatin are being used in combination with new cytotoxic drugs such as gemcitabine, paclitaxel, docetaxel, or vinorelbine in the treatment of advanced NSCLC. Cisplatin activity is mediated through the formation of cisplatin-DNA adducts. Gene polymorphisms of DNA repair factors are therefore obvious candidates for determinants of repair capacity and chemotherapy efficacy. ERCC1, XRCC1 and XRCC3 gene polymorphisms were a useful marker for predicting better survival in advanced NSCLC patients treated with platinum-based chemotherapy. XPA and XPD polymorphisms significantly increased response to platinum-based chemotherapy. These DNA repair gene polymorphisms were useful as a predictor of clinical outcome to the platinum-based chemotherapy. EGFR kinase inhibitors induce dramatic clinical responses in NSCLC patients with advanced disease. EGFR gene polymorphism in intron 1 contains a polymorphic single sequence dinucleotide repeat (CA-SSR showed a statistically significant correlation with the gefitinib response and was appeared to be a useful predictive marker of the development of clinical outcome containing skin rashes with gefitinib treatment. The other polymorphisms of EGFR were also associated with increased EGFR

  14. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    Science.gov (United States)

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  15. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yawei; Spitz, Margaret R.; Guo Zhaozheng; Hadeyati, Mohammad; Grossman, Lawrence; Kraemer, Kenneth H.; Wei Qingyi

    2002-11-30

    As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.

  16. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  17. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032.

    Directory of Open Access Journals (Sweden)

    Jason Gioia

    Full Text Available BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

  18. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.

    Science.gov (United States)

    Jasin, Maria; Haber, James E

    2016-08-01

    DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.

  19. Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination.

    Science.gov (United States)

    McLachlan, Jennifer; Fernandez, Serena; Helleday, Thomas; Bryant, Helen E

    2009-12-03

    The feasibility of introducing point mutations in vivo using single-stranded DNA oligonucleotides (ssON) has been demonstrated but the efficiency and mechanism remain elusive and potential side effects have not been fully evaluated. Understanding the mechanism behind this potential therapy may help its development. Here, we demonstrate the specific repair of an endogenous non-functional hprt gene by a ssON in mammalian cells, and show that the frequency of such an event is enhanced when cells are in S-phase of the cell cycle. A potential barrier in using ssONs as gene therapy could be non-targeted mutations or gene rearrangements triggered by the ssON. Both the non-specific mutation frequencies and the frequency of gene rearrangements were largely unaffected by ssONs. Furthermore, we find that the introduction of a mutation causing the loss of a functional endogenous hprt gene by a ssON occurred at a similarly low but statistically significant frequency in wild type cells and in cells deficient in single strand break repair, nucleotide excision repair and mismatch repair. However, this mutation was not induced in XRCC3 mutant cells deficient in homologous recombination. Thus, our data suggest ssON-mediated targeted gene repair is more efficient in S-phase and involves homologous recombination.

  20. Expression of DNA repair genes in burned skin exposed to low-level red laser.

    Science.gov (United States)

    Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson

    2014-11-01

    Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.

  1. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity.

    Science.gov (United States)

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86-58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.

  2. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity.

    Directory of Open Access Journals (Sweden)

    Zoraida Verde

    Full Text Available Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86-58.82 and OR=16.90, 95% CI=2.09-142.8; respectively. Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.

  3. Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sara Sepe

    2016-05-01

    Full Text Available The underlying relation between Parkinson’s disease (PD etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER capacity and that Ercc1 mutant mice with mildly compromised NER exhibit typical PD-like pathological alterations, including decreased striatal dopaminergic innervation, increased phospho-synuclein levels, and defects in mitochondrial respiration. Ercc1 mouse mutants are also more sensitive to the prototypical PD toxin MPTP, and their transcriptomic landscape shares important similarities with that of PD patients. Our results demonstrate that specific defects in DNA repair impact the dopaminergic system and are associated with human PD pathology and might therefore constitute an age-related risk factor for PD.

  4. A systematic gene-gene and gene-environment interaction analysis of DNA repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Da; Yen, Ching-Yui; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2015-04-01

    Oral cancer is the sixth most common cancer worldwide with a high mortality rate. Biomarkers that anticipate susceptibility, prognosis, or response to treatments are much needed. Oral cancer is a polygenic disease involving complex interactions among genetic and environmental factors, which require multifaceted analyses. Here, we examined in a dataset of 103 oral cancer cases and 98 controls from Taiwan the association between oral cancer risk and the DNA repair genes X-ray repair cross-complementing group (XRCCs) 1-4, and the environmental factors of smoking, alcohol drinking, and betel quid (BQ) chewing. We employed logistic regression, multifactor dimensionality reduction (MDR), and hierarchical interaction graphs for analyzing gene-gene (G×G) and gene-environment (G×E) interactions. We identified a significantly elevated risk of the XRCC2 rs2040639 heterozygous variant among smokers [adjusted odds ratio (OR) 3.7, 95% confidence interval (CI)=1.1-12.1] and alcohol drinkers [adjusted OR=5.7, 95% CI=1.4-23.2]. The best two-factor based G×G interaction of oral cancer included the XRCC1 rs1799782 and XRCC2 rs2040639 [OR=3.13, 95% CI=1.66-6.13]. For the G×E interaction, the estimated OR of oral cancer for two (drinking-BQ chewing), three (XRCC1-XRCC2-BQ chewing), four (XRCC1-XRCC2-age-BQ chewing), and five factors (XRCC1-XRCC2-age-drinking-BQ chewing) were 32.9 [95% CI=14.1-76.9], 31.0 [95% CI=14.0-64.7], 49.8 [95% CI=21.0-117.7] and 82.9 [95% CI=31.0-221.5], respectively. Taken together, the genotypes of XRCC1 rs1799782 and XRCC2 rs2040639 DNA repair genes appear to be significantly associated with oral cancer. These were enhanced by exposure to certain environmental factors. The observations presented here warrant further research in larger study samples to examine their relevance for routine clinical care in oncology.

  5. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  6. Nucleotide Excision Repair in Cellular Chromatin: Studies with Yeast from Nucleotide to Gene to Genome

    Directory of Open Access Journals (Sweden)

    Simon Reed

    2012-09-01

    Full Text Available Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.

  7. Polymorphisms in nucleotide excision repair genes, smoking and intake of fruit and vegetables in relation to lung cancer

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Sørensen, Mette; Overvad, Kim

    2007-01-01

    Polymorphisms in nucleotide excision repair genes have been associated with risk for lung cancer. We examined gene-environment interactions in relation to lung cancer in 430 cases and 790 comparison persons identified within a prospective cohort of 57,053 persons. We included polymorphisms...... in the XPC, XPA and XPD genes involved in the nucleotide excision DNA repair pathway and analysed possible interactions with smoking and dietary intake of fruit and vegetables in relation to risk for lung cancer. We found that intake of fruit was associated with lower risk for lung cancer only among carriers...

  8. Early passage bone marrow stromal cells express genes involved in nervous system development supporting their relevance for neural repair

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Bossers, K.; Ritfeld, G.J.; Blits, B.; Grotenhuis, J.A.; Verhaagen, J.; Oudega, M.

    2011-01-01

    PURPOSE: The assessment of the capacity of bone marrow stromal cells (BMSC) to repair the nervous system using gene expression profiling. The evaluation of effects of long-term culturing on the gene expression profile of BMSC. METHODS: Fourty four k whole genome rat microarrays were used to study

  9. Challenges in biotechnology at LLNL: from genes to proteins

    Energy Technology Data Exchange (ETDEWEB)

    Albala, J S

    1999-03-11

    This effort has undertaken the task of developing a link between the genomics, DNA repair and structural biology efforts within the Biology and Biotechnology Research Program at LLNL. Through the advent of the I.M.A.G.E. (Integrated Molecular Analysis of Genomes and their Expression) Consortium, a world-wide effort to catalog the largest public collection of genes, accepted and maintained within BBRP, it is now possible to systematically express the protein complement of these to further elucidate novel gene function and structure. The work has ensued in four phases, outlined as follows: (1) Gene and System selection; (2) Protein expression and purification; (3) Structural analysis; and (4) biological integration. Proteins to be expressed have been those of high programmatic interest. This includes, in particular, proteins involved in the maintenance of genome integrity, particularly those involved in the repair of DNA damage, including ERCC1, ERCC4, XRCC2, XRCC3, XRCC9, HEX1, APN1, p53, RAD51B, RAD51C, and RAD51. Full-length cDNA cognates of selected genes were isolated, and cloned into baculovirus-based expression vectors. The baculoviral expression system for protein over-expression is now well-established in the Albala laboratory. Procedures have been successfully optimized for full-length cDNA clining into expression vectors for protein expression from recombinant constructs. This includes the reagents, cell lines, techniques necessary for expression of recombinant baculoviral constructs in Spodoptera frugiperda (Sf9) cells. The laboratory has also generated a high-throughput baculoviral expression paradigm for large scale expression and purification of human recombinant proteins amenable to automation.

  10. Synergistic interactions between RAD5, RAD16, and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

    Energy Technology Data Exchange (ETDEWEB)

    Glassner, B.J. [Univ. of California, Berkeley, CA (United States); Mortimer, R.K. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1994-07-01

    Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MO1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene plays a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16, and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways. 49 refs., 6 figs., 2 tabs.

  11. Haplotype analyses of DNA repair gene polymorphisms and their role in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Avinash Bardia

    Full Text Available Ulcerative colitis (UC is a major clinical form of inflammatory bowel disease. UC is characterized by mucosal inflammation limited to the colon, always involving the rectum and a variable extent of the more proximal colon in a continuous manner. Genetic variations in DNA repair genes may influence the extent of repair functions, DNA damage, and thus the manifestations of UC. This study thus evaluated the role of polymorphisms of the genes involved in DNA repair mechanisms. A total of 171 patients and 213 controls were included. Genotyping was carried out by ARMS PCR and PCR-RFLP analyses for RAD51, XRCC3 and hMSH2 gene polymorphisms. Allelic and genotypic frequencies were computed in both control & patient groups and data was analyzed using appropriate statistical tests. The frequency of 'A' allele of hMSH2 in the UC group caused statistically significant increased risk for UC compared to controls (OR 1.64, 95% CI 1.16-2.31, p = 0.004. Similarly, the CT genotype of XRCC3 gene was predominant in the UC group and increased the risk for UC by 1.75 fold compared to controls (OR 1.75, 95% CI 1.15-2.67, p = 0.03, further confirming the risk of 'T' allele in UC. The GC genotype frequency of RAD51 gene was significantly increased (p = 0.02 in the UC group (50.3% compared to controls (38%. The GC genotype significantly increased the risk for UC compared to GG genotype by 1.73 fold (OR 1.73, 95% CI 1.14-2.62, p = 0.02 confirming the strong association of 'C' allele with UC. Among the controls, the SNP loci combination of hMSH2:XRCC3 were in perfect linkage. The GTC and ACC haplotypes were found to be predominant in UC than controls with a 2.28 and 2.93 fold significant increase risk of UC.

  12. Polymorphisms in genes controlling inflammation and tissue repair in rheumatoid arthritis: a case control study

    Directory of Open Access Journals (Sweden)

    de Vogel Lisette

    2011-03-01

    Full Text Available Abstract Background Various cytokines and inflammatory mediators are known to be involved in the pathogenesis of rheumatoid arthritis (RA. We hypothesized that polymorphisms in selected inflammatory response and tissue repair genes contribute to the susceptibility to and severity of RA. Methods Polymorphisms in TNFA, IL1B, IL4, IL6, IL8, IL10, PAI1, NOS2a, C1INH, PARP, TLR2 and TLR4 were genotyped in 376 Caucasian RA patients and 463 healthy Caucasian controls using single base extension. Genotype distributions in patients were compared with those in controls. In addition, the association of polymorphisms with the need for anti-TNF-α treatment as a marker of RA severity was assessed. Results The IL8 781 CC genotype was associated with early onset of disease. The TNFA -238 G/A polymorphism was differentially distributed between RA patients and controls, but only when not corrected for age and gender. None of the polymorphisms was associated with disease severity. Conclusions We here report an association between IL8 781 C/T polymorphism and age of onset of RA. Our findings indicate that there might be a role for variations in genes involved in the immune response and in tissue repair in RA pathogenesis. Nevertheless, additional larger genomic and functional studies are required to further define their role in RA.

  13. Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Wen-Qin CAI; Cheng-Ren LI

    2006-01-01

    Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats'hind limbs was observed and HE and X-gal immunocytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate,and partially integrate with host spinal cord, and they significantly ameliorate rats ' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.

  14. Role of APC and DNA mismatch repair genes in the development of colorectal cancers

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2003-12-01

    Full Text Available Abstract Colorectal cancer is the third most common cause of cancer-related death in both men and women in the western hemisphere. According to the American Cancer Society, an estimated 105,500 new cases of colon cancer with 57,100 deaths will occur in the U.S. in 2003, accounting for about 10% of cancer deaths. Among the colon cancer patients, hereditary risk contributes approximately 20%. The main inherited colorectal cancers are the familial adenomatous polyposis (FAP and the hereditary nonpolyposis colorectal cancers (HNPCC. The FAP and HNPCC are caused due to mutations in the adenomatous polyposis coli (APC and DNA mismatch repair (MMR genes. The focus of this review is to summarize the functions of APC and MMR gene products in the development of colorectal cancers.

  15. Repairing DNA damage in xeroderma pigmentosum: T4N5 lotion and gene therapy.

    Science.gov (United States)

    Zahid, Sarwar; Brownell, Isaac

    2008-04-01

    Patients with xeroderma pigmentosum (XP) have defective DNA repair and are at a high risk for cutaneous malignancies. Standard treatments for XP are limited in scope and effectiveness. Understanding the molecular etiology of XP has led to the development of novel therapeutic approaches, including enzyme and gene therapies. One new topical treatment utilizing bacteriophage T4 endonuclease 5 (T4N5) in a liposomal lotion is currently in clinical trials and has received a Fast Track designation from the FDA. Gene therapy for XP, while making leaps in preclinical studies, has been slower to develop due to tactical hurdles, but seems to have much potential for future treatment. If these treatments prove effective in lowering the risk of cancer in patients with XP, they may also be found useful in reducing skin cancers in other at-risk patient populations.

  16. Mutation screening of mismatch repair gene Mlh3 in familial esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Hong-Xu Liu; Yu Li; Xue-Dong Jiang; Hong-Nian Yin; Lin Zhang; Yu Wang; Jun Yang

    2006-01-01

    AIM: To shed light on the possible role of mismatch repair gene Mlh3 in familial esophageal cancer (FEC).METHODS: A total of 66 members from 10 families suggestive of a genetic predisposition to hereditary esophageal cancer were screened for germline mutations in Mlh3 with denaturing high performance liquid chromatography (DHPLC), a newly developed method of comparative sequencing based on heteroduplex detection. For all samples exhibiting abnormal DHPLC profiles,sequence changes were evaluated by cycle sequencing.For any mutation in family members, we conducted a segregation study to compare its prevalence in sporadic esophageal cancer patients and normal controls.RESULTS: Exons of Mlh3 in all samples were successfully examined. Overall, 4 missense mutations and 3 polymorphisms were identified in 4 families. Mlh3 missense mutations in families 9 and 10 might be pathogenic, but had a reduced penetrance. While in families 1 and 7,there was no sufficient evidence supporting the monogenic explanations of esophageal cancers in families.The mutations were found in 33% of high-risk families and 50% of low-risk families.CONCLUSION: Mlh3 is a high risk gene with a reduced penetrance in some families. However, it acts as a low risk gene for esophageal cancer in most families. Mutations of Mlh3 may work together with other genes in an accumulated manner and result in an increased risk of esophageal tumor. DHPLC is a robust and sensitive technique for screening gene mutations.

  17. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    Science.gov (United States)

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  18. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium

    OpenAIRE

    Li, Jun; Zhu, Kai; Yang, Shan; WANG, YULIN; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng; Lai, Hao

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothe...

  19. Horizontal gene transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms.

    Directory of Open Access Journals (Sweden)

    Saliou Fall

    Full Text Available Horizontal gene transfer (HGT is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3% of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment

  20. Stimulation of proteoglycan synthesis by glucuronosyltransferase-I gene delivery: a strategy to promote cartilage repair.

    Science.gov (United States)

    Venkatesan, N; Barré, L; Benani, A; Netter, P; Magdalou, J; Fournel-Gigleux, S; Ouzzine, M

    2004-12-28

    Osteoarthritis is a degenerative joint disease characterized by a progressive loss of articular cartilage components, mainly proteoglycans (PGs), leading to destruction of the tissue. We investigate a therapeutic strategy based on stimulation of PG synthesis by gene transfer of the glycosaminoglycan (GAG)-synthesizing enzyme, beta1,3-glucuronosyltransferase-I (GlcAT-I) to promote cartilage repair. We previously reported that IL-1beta down-regulated the expression and activity of GlcAT-I in primary rat chondrocytes. Here, by using antisense oligonucleotides, we demonstrate that GlcAT-I inhibition impaired PG synthesis and deposition in articular cartilage explants, emphasizing the crucial role of this enzyme in PG anabolism. Thus, primary chondrocytes and cartilage explants were engineered by lipid-mediated gene delivery to efficiently overexpress a human GlcAT-I cDNA. Interestingly, GlcAT-I overexpression significantly enhanced GAG synthesis and deposition as evidenced by (35)S-sulfate incorporation, histology, estimation of GAG content, and fluorophore-assisted carbohydrate electrophoresis analysis. Metabolic labeling and Western blot analyses further suggested that GlcAT-I expression led to an increase in the abundance rather than in the length of GAG chains. Importantly, GlcAT-I delivery was able to overcome IL-1beta-induced PG depletion and maintain the anabolic activity of chondrocytes. Moreover, GlcAT-I also restored PG synthesis to a normal level in cartilage explants previously depleted from endogenous PGs by IL-1beta-treatment. In concert, our investigations strongly indicated that GlcAT-I was able to control and reverse articular cartilage defects in terms of PG anabolism and GAG content associated with IL-1beta. This study provides a basis for a gene therapy approach to promote cartilage repair in degenerative joint diseases.

  1. Platinum drugs and DNA repair mechanisms in lung cancer.

    Science.gov (United States)

    Bonanno, Laura; Favaretto, Adolfo; Rosell, Rafael

    2014-01-01

    The standard first-line treatment for around 80% of newly-diagnosed advanced non-small cell lung cancer (NSCLC) is chemotherapy. Currently, patients are allocated to chemotherapy on the basis of clinical conditions, comorbidities and histology. If feasible, platinum-based chemotherapy is considered as the most efficacious option. Due to the heterogeneity in terms of platinum-sensitivity among patients with NSCLC, great efforts have been made in order to identify molecular predictive markers of platinum resistance. Based on the mechanism of action of platinum, several components of DNA repair pathways have been investigated as potential predictive markers. The main DNA repair pathways involved in the repair of platinum-induced DNA damage are nucleotide excision repair and homologous recombination. The most studied potential predictive markers of platinum-sensitivity are Excision Repair Cross Complementing-1 (ERCC1) and Brest Cancer Type-I Susceptibility protein (BRCA1); however, increasing biological knowledge about DNA repair pathways suggests the potential clinical usefulness of integrated analysis of multiple DNA repair components.

  2. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium

    Science.gov (United States)

    Li, Jun; Zhu, Kai; Yang, Shan; Wang, Yulin; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury. PMID:25767192

  3. Vascular endothelial growth factor gene transfection to enhance the repair of avascular necrosis of the femoral head of rabbit

    Institute of Scientific and Technical Information of China (English)

    杨操; 杨述华; 杜靖远; 李进; 许伟华; 熊宇芳

    2003-01-01

    Objective To explore a new method for the therapy of avascular necrosis of the femoral head.Methods The recombinant plasmid pCD-hVEGF165 was mixed with collagen and was implanted in the necrotic femoral head. The expression of vascular endothelial growth factor (VEGF) was examined by RNA dot hybridization and immunohistochemical techniques. Repair of the femoral head was observed by histological and histomorphometric analysis.Results The expression of VEGF was detected in the femoral head transfected with the VEGF gene. The femoral head transfected with the VEGF gene showed a significant increase in angiogenesis 2 and 4 weeks after gene transfection and a significant increase in bone formation 6 and 8 weeks after gene transfection on histomorphometric analysis (P<0.01).Conclusions Transfection of the VEGF gene enhances bone tissue angiogenesis. Repair of osteonecrosis could be accelerated accordingly, thus providing a potential method for therapy of osteonecrosis.

  4. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains.

    Science.gov (United States)

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-02-15

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (epsilon globin, p53 and gamma interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to alpha(lambda)mu(omicron)sigma(tau) 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed.

  5. p53 Gene repair with zinc finger nucleases optimised by yeast 1-hybrid and validated by Solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Frank Herrmann

    Full Text Available The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs. We adapted a commercially-available yeast one-hybrid (Y1H selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation 'hotspots'. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci.

  6. p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing

    Science.gov (United States)

    Herrmann, Frank; Garriga-Canut, Mireia; Baumstark, Rebecca; Fajardo-Sanchez, Emmanuel; Cotterell, James; Minoche, André; Himmelbauer, Heinz; Isalan, Mark

    2011-01-01

    The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs). We adapted a commercially-available yeast one-hybrid (Y1H) selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation ‘hotspots’. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci. PMID:21695267

  7. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-01-01

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3+/− germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse. PMID:28290521

  8. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells.

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-03-14

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3(+/-) germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse.

  9. hOGG1、XRCC3、ERCC1基因多态性在子宫内膜异位症的表达意义

    Institute of Scientific and Technical Information of China (English)

    王娅菲; 卢霞

    2014-01-01

    目的研究DNA修复基因hOGG1、XRCC3、ERCC多态性与子宫内膜异位症发病风险的关系。方法:采用病例一对照研究的方法,应用PCR-RELP方法检测子宫内膜异位症患者与非子宫内膜异位症妇女hOGG1、XRCC3、ERCC1基因多态性分布。结果:hOGG1Ser326Cys基因多态性在内异症组与对照组未见明显差异(X2=0 172,P=0.678);XRCC3 Thr241Met基因多态性在内异症组与对照组来见明显差异(X2=3.769,P=0.052);ERCClC19007T基因多态性在内异症组与对照组未见明显差异(X2=0.232,P=0.630)。结论:DNA修复基因hOGGI、XRCC3、ERCC1多态性并未增加子宫内膜异位症发生风险。

  10. The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes

    Directory of Open Access Journals (Sweden)

    Silvia Pierandrei

    2016-01-01

    Full Text Available Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR.

  11. A peek into the possible future of management of articular cartilage injuries: gene therapy and scaffolds for cartilage repair.

    Science.gov (United States)

    Kim, Hubert T; Zaffagnini, Stefano; Mizuno, Shuichi; Abelow, Stephen; Safran, Marc R

    2006-10-01

    Two rapidly progressing areas of research will likely contribute to cartilage repair procedures in the foreseeable future: gene therapy and synthetic scaffolds. Gene therapy refers to the transfer of new genetic information to cells that contribute to the cartilage repair process. This approach allows for manipulation of cartilage repair at the cellular and molecular level. Scaffolds are the core technology for the next generation of autologous cartilage implantation procedures in which synthetic matrices are used in conjunction with chondrocytes. This approach can be improved further using bioreactor technologies to enhance the production of extracellular matrix proteins by chondrocytes seeded onto a scaffold. The resulting "neo-cartilage implant" matures within the bioreactor, and can then be used to fill cartilage defects.

  12. Phenotypic Heterogeneity by Germline Mismatch Repair Gene Defect in Lynch Syndrome Patients.

    Science.gov (United States)

    Hernâni-Eusébio, Jorge; Barbosa, Elisabete

    2016-10-01

    Introdução: A síndrome de Lynch é a forma hereditária mais comum de cancro colo-rectal, sendo também responsável por cancro do endométrio e de outros tipos. Associa-se a mutações germinativas nos genes de mismatch repair do ADN e a instabilidade de microssatélites. As mutações MLH1 e MSH2 têm um fenótipo de síndrome de Lynch ‘clássico’, sendo o MSH2 mais associado a cancro extra-cólico. Mutações do MSH6 e PMS2 têm um fenótipo atípico. A expressão clínica é heterogénea, existindo uma correlação entre o gene mismatch repair mutado e o padrão fenotípico. Material e Métodos: Análise retrospetiva dos dados clínicos de doentes que cumpriam os critérios de Amesterdão ou que tinha mutações nos genes mismatch repair, entre setembro de 2012 e outubro de 2015. Resultados: Identificámos 28 doentes. Dezassete tinham cancro colo-rectal sendo a localização no cólon direito predominante. Cinco tiveram cancro do endométrio (mediana da idade de diagnóstico – 53), sem qualquer mutação no MSH6. Cinco desenvolveram outros cancros. Todos os casos com mutações mismatch repair estudados tinham instabilidade de microssatélites. Discussão: Na maioria dos casos foi encontrada mutação no MSH2 apesar de o MLH1 ser descrito na literatura como o gene mais frequentemente mutado. Interessa dizer que os doentes com cancro colo-rectal não evidenciam uma tendência para ter muito infiltrado inflamatório. Na maioria dos casos foi realizada colectomia parcial apesar da incidência elevada de lesões síncronas e metácronas associadas. Histerectomia e anexectomia profilática foi realizada em doentes em menopausa/perimenopausa. Conclusão: O registo standardizado dos dados dos doentes poderá levar a um melhor acompanhamento e conhecimento desta síndrome. O uso das Guidelines de Bethesda poderá identificar novos casos que escapam aos critérios de Amesterdão. A pesquisa de instabilidade de microssatélites deve ser feita em muito maior n

  13. XRCC1 and XPD DNA repair gene polymorphisms: a potential risk factor for glaucoma in the Pakistani population

    NARCIS (Netherlands)

    Yousaf, S.; Khan, M.I.; Micheal, S.; Akhtar, F.; Ali, S.H.; Riaz, M.; Ali, M.; Lall, P.; Waheed, N.K.; Hollander, A.I. den; Ahmed, A.; Qamar, R.

    2011-01-01

    PURPOSE: The present study was designed to determine the association of polymorphisms of the DNA repair genes X-ray cross-complementing group 1 (XRCC1) (c.1316G>A [rs25487]) and xeroderma pigmentosum complementation group D (XPD) (c.2298A>C [rs13181]) with primary open-angle glaucoma (POAG) an

  14. Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23.

    NARCIS (Netherlands)

    P.J. van der Spek (Peter); C.E. Visser (Cécile); F. Hanaoka (Fumio); B. Smit (Bep); A. Hagemeijer (Anne); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1996-01-01

    textabstractThe Saccharomyces cerevisiae RAD23 gene is involved in nucleotide excision repair (NER). Two human homologs of RAD23, HHR23A and HHR23B (HGMW-approved symbols RAD23A and RAD23B), were previously isolated. The HHR23B protein is complexed with the protein defective in the cancer-prone

  15. Genetic Variation in Base Excision Repair Pathway Genes, Pesticide Exposure, and Prostate Cancer Risk

    National Research Council Canada - National Science Library

    Kathryn Hughes Barry; Stella Koutros; Sonja I. Berndt; Gabriella Andreotti; Jane A. Hoppin; Dale P. Sandler; Laurie A. Burdette; Meredith Yeager; Laura E. Beane Freeman; Jay H. Lubin; Xiaomei Ma; Tongzhang Zheng; Michael C. R. Alavanja

    2011-01-01

    .... OBJECTIVES: Because base excision repair (BER) is the predominant pathway involved in repairing oxidative damage, we evaluated interactions between 39 pesticides and 394 tag single-nucleotide polymorphisms (SNPs...

  16. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation

    OpenAIRE

    2012-01-01

    Abstract Background The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI) after BCS (breast conserving surgery). Methods A total of 57 breast cancer pa...

  17. DNA Damage/Repair and Polymorphism of the hOGG1 Gene in Lymphocytes of AMD Patients

    Directory of Open Access Journals (Sweden)

    Katarzyna Wozniak

    2009-01-01

    Full Text Available Oxidative stress is thought to play a role in the pathogenesis of age-related macular degeneration (AMD. We determined the extent of oxidative DNA damage and the kinetics of its removal as well as the genotypes of the Ser326Cys polymorphism of the hOGG1 gene in lymphocytes of 30 wet AMD patients and 30 controls. Oxidative DNA damage induced by hydrogen peroxide and its repair were evaluated by the comet assay and DNA repair enzymes. We observed a higher extent of endogenous oxidative DNA damage and a lower efficacy of its repair in AMD patients as compared with the controls. We did not find any correlation between the extent of DNA damage and efficacy of DNA repair with genotypes of the Ser326Cys polymorphism. The results obtained suggest that oxidative DNA damage and inefficient DNA repair can be associated with AMD and the variability of the hOOG1 gene may not contribute to this association.

  18. DNA repair and gene targeting in plant end-joining mutants

    NARCIS (Netherlands)

    Jia, Qi

    2011-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or by non-homologous end joining (NHEJ). The latter mechanism is the major route for DSB repair in the somatic cells of higher eukaryotes, including plants. If we could manipulate the balance of the DSB repair pathways

  19. DNA repair and gene targeting in plant end-joining mutants

    NARCIS (Netherlands)

    Jia, Qi

    2011-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or by non-homologous end joining (NHEJ). The latter mechanism is the major route for DSB repair in the somatic cells of higher eukaryotes, including plants. If we could manipulate the balance of the DSB repair pathways

  20. Relationship between ERCC-1 Expression and Combined Effect of mTOR Inhibitor Rapamycin and Cisplatin on Survival of Hep-2 Cells In Vitro%雷帕霉素和顺铂对Hep-2细胞DNA切除修复交叉互补基因1表达的协同作用

    Institute of Scientific and Technical Information of China (English)

    雷文斌; 贾涛; 苏振忠; 文卫平; 祝小林

    2011-01-01

    [ Objective ] To investigate the cytotoxic effect and mechanism of action of cisplatin and the mTOR inhibitor rapamycin on laryngeal cancer (Hep2) cells. [Methods] Hep-2 cells were cultured in the presence of different concentrations of rapamycin, cisplatin or the two combined. A subset of cells was treated with rapamycin only at concentrations of 5 and 20 μmol/L. A further subset of cells was treated with cisplatin only at concentrations of 3 and 12 μmol/L. A final subset of cells was treated with media containing 5 μmol/L rapamycin and 3 μmol/L cisplatin combined. Western blot was used to determine expression of proteins p-Akt, p-mTOR, S6K, and ERCC-1 in 3, 6, 12, 24, and 48 h. [Results] mTOR, S6K and ERCC-1 protein levels significantly decreased after treating with rapamycin 12 h. AKT protein levels significantly increase after treating with rapamycin 48 h. ERCC-1 protein levels significantly increase after treating with cisplatin 12 h. No changes in AKT, p-mTOR and S6K protein expression were apparent for treating with cisplatin. S6K and p-mTOR protein levels significantly decreased after treating with combined drug 12 h. AKT protein levels significantly increase after 48 h. No changes in ERCC-1 protein expression were apparent for this treatment group.[Conclusions] The synergistic effect of rapamycin and cisplatin improves their cytotoxicity on Hep2 cells. The expression of ERCC-1 influencing by rapamycin might be related to this.%[目的]探讨mTOR抑制剂雷帕霉素和顺铂对喉癌Hep-2细胞协同作用的机制。[方法]Hep-2细胞在雷帕霉素单药浓度为5、20 μmol/L;顺铂单药浓度为3、12 μmol/L;联合用药浓度为雷帕霉素5 μmol/L联合顺铂3 μmol/L中分别培养,检测Hep-2细胞AKT,mTOR,S6K和ERCC1(DNA切除修复交叉互补基因1)蛋白分别在3,6,12,24,48 h的表达情况。[结果]雷帕霉素单药干预Hep-2细胞12 h后,p-mTOR、S6K及ERCC-1表达表达下调,与对照组

  1. Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation.

    Science.gov (United States)

    Prudhomme, M; Méjean, V; Martin, B; Claverys, J P

    1991-11-01

    DNA repair systems able to correct base pair mismatches within newly replicated DNA or within heteroduplex molecules produced during recombination are widespread among living organisms. Evidence that such generalized mismatch repair systems evolved from a common ancestor is particularly strong for two of them, the Hex system of the gram-positive Streptococcus pneumoniae and the Mut system of the gram-negative Escherichia coli and Salmonella typhimurium. The homology existing between HexA and MutS and between HexB and MutL prompted us to investigate the effect of expressing hex genes in E. coli. Complementation of mutS or mutL mutations, which confer a mutator phenotype, was assayed by introducing on a multicopy plasmid the hexA and hexB genes, under the control of an inducible promoter, either individually or together in E. coli strains. No decrease in mutation rate was conferred by either hexA or hexB gene expression. However, a negative complementation effect was observed in wild-type E. coli cells: expression of hexA resulted in a typical Mut- mutator phenotype. hexB gene expression did not increase the mutation rate either individually or in conjunction with hexA. Since expression of hexA did not affect the mutation rate in mutS mutant cells and the hexA-induced mutator effect was recA independent, it is concluded that this effect results from inhibition of the Mut system. We suggest that HexA, like its homolog MutS, binds to mismatches resulting from replication errors, but in doing so it protects them from repair by the Mut system. In agreement with this hypothesis, an increase in mutS gene copy number abolished the hexA-induced mutator phenotype. HexA protein could prevent repair either by being unable to interact with Mut proteins or by producing nonfunctional repair complexes.

  2. Basic fibroblast growth factor gene transfection in repair of internal carotid artery aneurysm wall

    Institute of Scientific and Technical Information of China (English)

    Lei Jiao; Ming Jiang; Jinghai Fang; Yinsheng Deng; Zejun Chen; Min Wu

    2012-01-01

    Surgery or interventional therapy has some risks in the treatment of cerebral aneurysm. We established an internal carotid artery aneurysm model by dripping elastase in the crotch of the right internal and external carotid arteries of New Zealand rabbits. Following model induction, lentivirus carrying basic fibroblast growth factor was injected through the ear vein. We found that the longer the action time of the lentivirus, the smaller the aneurysm volume. Moreover, platelet-derived growth factor expression in the aneurysm increased, but smooth muscle 22 alpha and hypertension-related gene 1 mRNA expression decreased. At 1, 2, 3, and 4 weeks following model establishment, following 1 week of injection of lentivirus carrying basic fibroblast growth factor, the later the intervention time, the more severe the blood vessel damage, and the bigger the aneurysm volume, the lower the smooth muscle 22 alpha and hypertension-related gene 1 mRNA expression. Simultaneously, platelet-derived growth factor expression decreased. These data suggest that recombinant lentivirus carrying basic fibroblast growth factor can repair damaged cells in the aneurysmal wall and inhibit aneurysm dynamic growth, and that the effect is dependent on therapeutic duration.

  3. Cell and gene therapy for arrhythmias: Repair of cardiac conduction damage

    Institute of Scientific and Technical Information of China (English)

    Yong-Fu Xiao

    2011-01-01

    Action potentials generated in the sinoatrial node(SAN)dominate the rhythm and rate of a healthy human heart.Subsequently,these action potentials propagate to the whole heart via its conduction system .Abnormalities of impulse generation and/or propagation in a heart can cause arrhythmias.For example,SAN dysfunction or conduction block of the atrioventricular node can lead to serious bradycardia which is currently treated with an implanted electronic pacemaker.On the other hand conduction damage may cause reentrant tachyarrhythmias which are primarily treated pharmacologically or by medical device-based therapies,including defibrillation and tissue ablation.However,drug therapies sometimes may not be effective or are associated with serious side effects.Device-based therapies for cardiac arrhythmias,even with well developed technology,still face inadequacies,limitations,hardware complications,and other challenges.Therefore,scientists are actively seeking other alternatives for antiarrhythmic therapy.In particular,cells and genes used for repairing cardiac conduction damage/defect have been investigated in various studies both in vitro and in vivo.Despite the complexities of the excitation and conduction systems of the heart,cell and gene-based strategies provide novel alternatives for treatment or cure of cardiac anhythmias.This review summarizes some highlights of recent research progress in this field.

  4. Expression Silence of DNA Repair Gene hMGMT Induced by RNA Interference

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-ying; LAI Yan-dong

    2007-01-01

    Objective: MGMT protein expression has been associated with tumor resistance to alkylating agents. The objective of this paper is to construct the RNA interference vector which can specifically induce the expression silence of human DNA repair gene hMGMT. Methods: The hMGMT specific siRNA expression cassette was made by two steps PCR, linked with pUC19 to get pU6-MGMTi, co-transfected with pEGFP-C1 into 16HBE and screened by G418. The MGMT mRNA and protein levels were detected by RT-PCR and Western Blot respectively. Results: hMGMT specific RNA interfere vector pU6-MGMTi was constructed successfully. In transfected 16HBE cells MGMT mRNA level could hardly be detected and the protein level was only 10% of control. Conclusion: MGMT specific RNAi expression cassette can effectively inhibit MGMT expression. MGMT silence cell line was built by co-transfection technology, which offered condition for studying the gene function of MGMT.

  5. Characterisation of the promoter region of the human DNA-repair gene Rad51.

    Science.gov (United States)

    Hasselbach, L; Haase, S; Fischer, D; Kolberg, H C; Stürzbecher, H W

    2005-01-01

    Regulatory elements of the 5'-flanking region of the DNA-repair gene Rad51 were analysed to characterise pathological alterations of Rad51 mRNA expression during tumour development. Various fragments of the Rad51 promoter were cloned into the pGL3 reporter vector and the respective promoter activity was determined by luciferase assays in transfected U2-OS cells. Transcription factor binding was identified using Protein/DNA arrays. The region encompassing base pairs -204 to -58 was identified as crucial for Rad51 gene transcription. Down regulator sequences are present upstream (-305 to -204) and downstream (-48 and +204) of this core promoter element. Promoter activity is significantly enhanced by substituting G at the polymorphic positions +135 and +172 for C and T, respectively. Transcription factors Ets1/PEA3, E2F1, p53, EGR1, and Stat5 were identified as relevant for regulating expression of Rad51. We identified three separate cis-sequence elements within the Rad51 transcriptional promoter, one ensuring basal levels of expression and two elements limiting expression to relatively low levels. The characterisation of transcription factor binding might help to explain high-level expression of Rad51 in a variety of solid tumours. The polymorphic sites appear important for the increased risk of breast and/or ovarian cancer for BRCA2 mutation carriers.

  6. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Veronica L Martinez-Marignac

    Full Text Available Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3 and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.

  7. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    Science.gov (United States)

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  8. Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array

    DEFF Research Database (Denmark)

    Saunders, Edward J; Dadaev, Tokhir; Leongamornlert, Daniel A

    2016-01-01

    BACKGROUND: Germline mutations within DNA-repair genes are implicated in susceptibility to multiple forms of cancer. For prostate cancer (PrCa), rare mutations in BRCA2 and BRCA1 give rise to moderately elevated risk, whereas two of B100 common, low-penetrance PrCa susceptibility variants identif...

  9. Assessment of single nucleotide polymorphisms in screening 52 DNA repair and cell cycle control genes in Fanconi anemia patients

    Directory of Open Access Journals (Sweden)

    Petrović Sandra

    2015-01-01

    Full Text Available Fanconi anemia (FA is a rare genetically heterogeneous disorder associated with bone marrow failure, birth defects and cancer susceptibility. Apart from the disease- causing mutations in FANC genes, the identification of specific DNA variations, such as single nucleotide polymorphisms (SNPs, in other candidate genes may lead to a better clinical description of this condition enabling individualized treatment with improvement of the prognosis. In this study, we have assessed 95 SNPs located in 52 key genes involved in base excision repair (BER, nucleotide excision repair (NER, mismatch repair (MMR, double strand break (DSB repair and cell cycle control using a DNA repair chip (Asper Biotech, Estonia which includes most of the common variants for the candidate genes. The SNP genotyping was performed in five FA-D2 patients and in one FA-A patient. The polymorphisms studied were synonymous (n=10, nonsynonymous (missense (n=52 and in non-coding regions of the genome (introns and 5 ‘and 3’ untranslated regions (UTR (n=33. Polymorphisms found at the homozygous state are selected for further analysis. Our results have shown a significant inter-individual variability among patients in the type and the frequency of SNPs and also elucidate the need for further studies of polymorphisms located in ATM, APEX APE 1, XRCC1, ERCC2, MSH3, PARP4, NBS1, BARD1, CDKN1B, TP53 and TP53BP1 which may be of great importance for better clinical description of FA. In addition, the present report recommends the use of SNPs as predictive and prognostic genetic markers to individualize therapy of FA patients. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  10. Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor.

    Directory of Open Access Journals (Sweden)

    Sushant K Kachhap

    Full Text Available BACKGROUND: Histone deacetylase inhibitors (HDACis re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process. METHODOLOGY/PRINCIPAL FINDINGS: Applying Analysis of Functional Annotation (AFA on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs. CONCLUSIONS/SIGNIFICANCE: Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC

  11. Gene polymorphisms of the DNA Repairing Genes APE1 and XRCC1 among Smoking Lung Cancer Egyptians

    Directory of Open Access Journals (Sweden)

    Rezk Ahmed Abd-ellateef Elbaz, Salim Abd-elhady Habib, Maha Ebraheem Esmael Ebraheem, Gamal Kamel EL-Ebidy, Lamiaa Mohamed Mahmoud Ramadan and Ahmed Settin

    2012-04-01

    Full Text Available Lung cancer is the leading cause of cancer-related mortality worldwide and is thus a major public health problem. DNA base damage or losses caused by endogenous and exogenous agents occur constantly at a high frequency in human cells. The removal or repair of damaged bases is an important mechanism in protecting the integrity of the genome. APE1 (Apurinic/Apyrimidinic Endonuclease 1 and XRCC1 (X-ray cross-complementing group1 are DNA repair proteins that play important roles in the base excision repair (BER pathway. The focus of this work is limited to the association between polymorphisms in the DNA repair genes, (APE1 Asp148Glu (2197 T→G and XRCC1 Arg399Gln (28152 G→A genotypes, cigarette smoking and lung cancer. This study has included 131 cases affected with lung cancers include; 33cases with small cell carcinoma (25.2% and 98 cases with non-small cell carcinoma (74.8%. They were recruited from oncology Center, Mansoura University, Egypt; in the period between April 2008 to March 2010. For comparison, a negative control group including 150 healthy individuals randomly selected from blood donors. Controls were selected by random sampling cancer-free individuals without a past history of cancer, who visited Mansoura University hospitals and provided peripheral blood between April 2008 and March 2010. DNA was extracted from the whole peripheral blood using generation DNA purification capture column kit (Gentra system, USA and genotyping for APE1 Glu148Asp and XRCC1 Arg399Gln polymorphisms was performed by a PCR--CTPP (PCR with confronting two-pair primers method. The collected data were organized and statistically analyzed using SPSS statistical computer package version 10 software. we observed that, There were no significant differences in the frequencies of the APE1 Asp148Glu (2197 T→G polymorphism of all genotypes and alleles in all lung cancer cases compared to all healthy controls. Also, there were no significant differences in the

  12. Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study

    Directory of Open Access Journals (Sweden)

    Pina Julieta

    2009-09-01

    Full Text Available Abstract Background MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility. Methods We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH. Results Using unconditional logistic regression we found that MLH3 (L844P, G>A polymorphism GA (Leu/Pro and AA (Pro/Pro genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95 (p = 0.03 and OR = 0.62 (0.41-0.94 (p = 0.03, respectively. Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: MSH3 Ala1045Thr/MSH6 Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83, p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49, p = 0.01], GG/AA [OR = 2.11 (1.12-3,98, p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15, p = 0.02] all associated with an increased risk for breast cancer. Conclusion It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results.

  13. Cloning of the hexA mismatch-repair gene of Streptococcus pneumoniae and identification of the product.

    Science.gov (United States)

    Martin, B; Prats, H; Claverys, J P

    1985-01-01

    The hexA mismatch repair gene of Streptococcus pneumoniae has been cloned into multicopy plasmid vectors. The cloned hexA gene is expressed as judged from its ability to complement various chromosomal hexA- alleles. Its direction of transcription was defined and the functional limits were localized by original methods relying on homology-dependent integration of nonautonomous chimeric plasmids carrying chromosomal inserts into the chromosome. Comparison of the proteins encoded by recombinant plasmids and by restriction fragments allowed us to identify an Mr 94 000 protein as the probable product of the hexA gene.

  14. Use of the comet-FISH assay to compare DNA damage and repair in p53 and hTERT genes following ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Declan J McKenna

    Full Text Available The alkaline single cell gel electrophoresis (comet assay can be combined with fluorescent in situ hybridisation (FISH methodology in order to investigate the localisation of specific gene domains within an individual cell. The number and position of the fluorescent signal(s provides information about the relative damage and subsequent repair that is occurring in the targeted gene domain(s. In this study, we have optimised the comet-FISH assay to detect and compare DNA damage and repair in the p53 and hTERT gene regions of bladder cancer cell-lines RT4 and RT112, normal fibroblasts and Cockayne Syndrome (CS fibroblasts following γ-radiation. Cells were exposed to 5Gy γ-radiation and repair followed for up to 60 minutes. At each repair time-point, the number and location of p53 and hTERT hybridisation spots was recorded in addition to standard comet measurements. In bladder cancer cell-lines and normal fibroblasts, the p53 gene region was found to be rapidly repaired relative to the hTERT gene region and the overall genome, a phenomenon that appeared to be independent of hTERT transcriptional activity. However, in the CS fibroblasts, which are defective in transcription coupled repair (TCR, this rapid repair of the p53 gene region was not observed when compared to both the hTERT gene region and the overall genome, proving the assay can detect variations in DNA repair in the same gene. In conclusion, we propose that the comet-FISH assay is a sensitive and rapid method for detecting differences in DNA damage and repair between different gene regions in individual cells in response to radiation. We suggest this increases its potential for measuring radiosensitivity in cells and may therefore have value in a clinical setting.

  15. Stimulation of DNA repair and increased light output in response to UV irradiation in Escherichia coli expressing lux genes.

    Science.gov (United States)

    Cutter, Kerry L; Alloush, Habib M; Salisbury, Vyv C

    2007-01-01

    It has previously been suggested that the evolutionary drive of bacterial bioluminescence is a mechanism of DNA repair. By assessing the UV sensitivity of Escherichia coli, it is shown that the survival of UV-irradiated E. coli constitutively expressing luxABCDE in the dark is significantly better than either a strain with no lux gene expression or the same strain expressing only luciferase (luxAB) genes. This shows that UV resistance is dependent on light output, and not merely on luciferase production. Also, bacterial survival was found to be dependent on the conditions following UV irradiation, as bioluminescence-mediated repair was not as efficient as repair in visible light. Moreover, photon emission revealed a dose-dependent increase in light output per cell after UV exposure, suggesting that increased lux gene expression correlates with UV-induced DNA damage. This phenomenon has been previously documented in organisms where the lux genes are under their natural luxR regulation but has not previously been demonstrated under the regulation of a constitutive promoter.

  16. c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair.

    Science.gov (United States)

    Chiang, Yu-Chi; Teng, Shu-Chun; Su, Yi-Ning; Hsieh, Fon-Jou; Wu, Kou-Juey

    2003-05-23

    The c-myc proto-oncogene encodes a ubiquitous transcription factor involved in the control of cell growth and implicated in inducing tumorigenesis. Understanding the function of c-Myc and its role in cancer depends upon the identification of c-Myc target genes. Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, and chromosomal instability. The NBS gene product, NBS1 (p95 or nibrin), is a part of the hMre11 complex, a central player associated with double-strand break (DSB) repair. NBS1 contains domains characteristic for proteins involved in DNA repair, recombination, and replication. Here we show that c-Myc directly activates NBS1. c-Myc-mediated induction of NBS1 gene transcription occurs in different tissues, is independent of cell proliferation, and is mediated by a c-Myc binding site in the intron 1 region of NBS1 gene. Overexpression of NBS1 in Rat1a cells increased cell proliferation. These results indicate that NBS1 is a direct transcriptional target of c-Myc and links the function of c-Myc to the regulation of DNA DSB repair pathway operating during DNA replication.

  17. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  18. Manipulation of cell cycle progression can counteract the apparent loss of correction frequency following oligonucleotide-directed gene repair

    Directory of Open Access Journals (Sweden)

    Kmiec Eric B

    2007-02-01

    Full Text Available Abstract Background Single-stranded oligonucleotides (ssODN are used routinely to direct specific base alterations within mammalian genomes that result in the restoration of a functional gene. Despite success with the technique, recent studies have revealed that following repair events, correction frequencies decrease as a function of time, possibly due to a sustained activation of damage response signals in corrected cells that lead to a selective stalling. In this study, we use thymidine to slow down the replication rate to enhance repair frequency and to maintain substantial levels of correction over time. Results First, we utilized thymidine to arrest cells in G1 and released the cells into S phase, at which point specific ssODNs direct the highest level of correction. Next, we devised a protocol in which cells are maintained in thymidine following the repair reaction, in which the replication is slowed in both corrected and non-corrected cells and the initial correction frequency is retained. We also present evidence that cells enter a senescence state upon prolonged treatment with thymidine but this passage can be avoided by removing thymidine at 48 hours. Conclusion Taken together, we believe that thymidine may be used in a therapeutic fashion to enable the maintenance of high levels of treated cells bearing repaired genes.

  19. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    Science.gov (United States)

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese.

  20. Escherichia coli radD (yejH) gene: a novel function involved in radiation resistance and double-strand break repair

    OpenAIRE

    Chen, Stefanie H.; Byrne, Rose T.; Wood, Elizabeth A; Cox, Michael M.

    2015-01-01

    A transposon insertion screen implicated the yejH gene in the repair of ionizing radiation-induced damage. The yejH gene, which exhibits significant homology to the human transcription-coupled DNA repair gene XPB, is involved in the repair of double strand DNA breaks. Deletion of yejH significantly sensitized cells to agents that cause double strand breaks (ionizing radiation, UV radiation, ciprofloxacin). In addition, deletion of both yejH and radA hypersensitized the cells to ionizing radia...

  1. Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group.

    Science.gov (United States)

    Yan, Y X; Schiestl, R H; Prakash, L

    1995-06-01

    The RAD6 gene of Saccharomyces cerevisiae is required for post-replication repair of UV-damaged DNA, UV mutagenesis, and sporulation. Here, we show that the radiation sensitivity of a MATa rad6 delta strain can be suppressed by the MAT alpha 2 gene carried on a multicopy plasmid. The a1-alpha 2 suppression is specific to the RAD6 pathway, as mutations in genes required for nucleotide excision repair or for recombinational repair do not show such mating-type suppression. The a1-alpha 2 suppression of the rad6 delta mutation requires the activity of the RAD52 group of genes, suggesting that suppression occurs by channelling of post-replication gaps present in the rad6 delta mutant into the RAD52 recombinational repair pathway. The a1-alpha 2 repressor could mediate this suppression via an enhancement in the expression, or the activity, of recombination genes.

  2. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  3. Polymorphism of the DNA repair gene XPA and susceptibility to lung cancer

    Institute of Scientific and Technical Information of China (English)

    Jinfu Zhu; Zhibin Hu; Hongxia Ma; Xiang Huo; Lin Xu; Jiannong Zhou; Hongbing Shen; Yijiang Chen

    2005-01-01

    Objective: To study the relationship between one polymorphism in the promoter of the DNA repair gene XPA and the susceptibility to lung cancer. Methods: Genotypes were determined by the PCR-restriction fragment length polymorphism (PCR-RFLP)method in 310 histologically-confirmed lung cancer cases and 341 age and sex frequency-matched cancer-free controls. Results: The XPA A23G genotype frequencies were 27.1% (AA), 42.9% (AG), and 30.0% (GG) in case patients and 21.1% (AA), 52.8% (AG),and 26.1% (GG) in control subjects. Multivariate logistic regression analysis revealed that individuals carrying at least one 23G variant allele (AG + GG genotypes) had a significantly decreased risk for lung cancer (adjusted OR = 0.66; 95% CI = 0.44- 0.98) compared with the wild-type genotype (23AA). Stratified analysis showed that the protective effect was more evident in subjects with a family history of cancer. Conclusion: These results suggest that the XPA A23G polymorphism may have a role in lung cancer susceptibility in this study population.

  4. Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes.

    Science.gov (United States)

    Park, Eun-Jung; Hur, Shin-Kyoung; Kwon, Jongbum

    2010-10-15

    Recent studies have shown that the SWI/SNF family of ATP-dependent chromatin-remodelling complexes play important roles in DNA repair as well as in transcription. The INO80 complex, the most recently described member of this family, has been shown in yeast to play direct role in DNA DSB (double-strand break) repair without affecting the expression of the genes involved in this process. However, whether this function of the INO80 complex is conserved in higher eukaryotes has not been investigated. In the present study, we found that knockdown of hINO80 (human INO80) confers DNA-damage hypersensitivity and inefficient DSB repair. Microarray analysis and other experiments have identified the Rad54B and XRCC3 (X-ray repair complementing defective repair in Chinese-hamster cells 3) genes, implicated in DSB repair, to be repressed by hINO80 deficiency. Chromatin immunoprecipitation studies have shown that hINO80 binds to the promoters of the Rad54B and XRCC3 genes. Re-expression of the Rad54B and XRCC3 genes rescues the DSB repair defect in hINO80-deficient cells. These results suggest that hINO80 assists DSB repair by positively regulating the expression of the Rad54B and XRCC3 genes. Therefore, unlike yeast INO80, hINO80 can contribute to DSB repair indirectly via gene expression, suggesting that the mechanistic role of this chromatin remodeller in DSB repair is evolutionarily diversified.

  5. Clinical features and mismatch repair gene mutation screening in Chinese patients with hereditary nonpolyposis colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shan-Run Liu; Bo Zhao; Zhen-Jun Wang; Yuan-Lian Wan; Yan-Ting Huang

    2004-01-01

    AIM: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominantly- inherited cancer-susceptibility syndrome that confers an increased risk for colorectal cancer and a variety of other tumors at a young age. It has been associated with germline mutations in five mismatch repair (MMR) genes (hMSH2, hMLH1, hPMS1, hPMS2, and hMSH6/GTBP). The great majority of germline mutations were found in hMSH2 and hMLH1. The purpose of this study was to analyze the clinical features of Chinese HNPCC patients and to screen hMSH2 and hMLH1 gene mutations. METHODS: Twenty-eight independent Chinese families were collected, of which 15 met Amsterdam criteria I and 13 met the Japanese clinical diagnosis criteria. The data were recorded including sex, site of colorectal cancer (CRC),age of diagnosis, history of synchronous and/or metachronous CRC, instance of extracolonic cancers, and histopathology of tumors. Peripheral blood samples were collected from all pedigrees after formal written consents were signed. PCR and denaturing high-performance liquid chromatography (DHPLC) were used to screen the coding regions of hMSH2 and hMLH1 genes. The samples showing abnormal DHPLC profiles were sequenced by a 377 DNA sequencer.RESULTS: One hundred and seventy malignant neoplasms were found in one hundred and twenty-six patients (multiple cancer in twenty-three), including one hundred and twentyseven CRCs, fifteen gastric, seven endometrial, and five esophageal cancers. Seventy-seven point eight percent of the patients had CRCs, sharing the features of early occurrence (average age of onset, 45.9 years) and of the right-sided predominance reported in the literature. In Chinese HNPCC patients, gastric cancer occurred more frequently, accounting for 11.9% of all cancers patients and ranking second in the spectrum of HNPCC predisposing cancers. Synchronous CRCs occurred less frequently, only accounting for 3.1% of the total CRCs. Twenty percent of the colorectal patients had

  6. Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Joellen M Schildkraut

    Full Text Available BACKGROUND: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS, a population-based, case-control study. METHODS/PRINCIPAL FINDINGS: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio(per allele = 0.66; 95% credible interval (CI = 0.44-1.00 and rs6005835 (median OR(per allele = 0.69; 95% CI = 0.53-0.91 in CHEK2, rs2078486 (median OR(per allele = 1.65; 95% CI = 1.21-2.25 and rs12951053 (median OR(per allele = 1.65; 95% CI = 1.20-2.26 in TP53, rs411697 (median OR (rare homozygote = 0.53; 95% CI = 0.35 - 0.79 in BACH1 and rs10131 (median OR( rare homozygote = not estimable in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study. CONCLUSIONS/SIGNIFICANCE: Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.

  7. FRAGILE HISTIDINE TRIAD GENE EXPRESSION AND ITS CORRALATION WITH MISMATCH REPAIR PROTEIN IN HUMAN SPORADIC COLORECTAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    姚成才; 林从尧

    2004-01-01

    Objective: To investigate the expression of fragile histidine triad (FHIT) gene and its correlation with clinicopathological features and correlation with mismatch repair protein (mainly MLH1 and MSH2) in human sporadic colorectal carcinoma (SCC). Methods:Immunohistochemistry SP method was used to determine the expression of FHIT, MLH1 and MSH2 protein in surgically resected specimens of 84 human SCC. Results:The positive rates of FHIT, MLH1 and MSH2 protein expression were 48.81%, 92.86% and 100% respectively.Loss or reduced expression of FHIT protein was not related with tumors clinicopathological features such as age, gender,tumors site and histological type (P>0.05), but was correlated with tumors invade depth, degree of the differentiation, Ducks' stage and metastasis (P<0.05). There was no relationship between FHIT gene expression and MLH1 protein (r=0.0991, P>0.05) and MSH2 protein (r=0.0000, P=l.00) expression in human SCC. Conclusion:Absent or reduction of FHIT gene expression consists of high proportion and is a frequent event in SCC. FHIT gene is involved in the development and progression of human SCC and may be a candidate tumors suppressor gene. The relationship between alteration of FHIT gene expression and mismatch repair protein (mainly MLH1 and MSH2)deserved further study in human SCC.

  8. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. (Argonne National Lab., IL (United States)); Libertin, C.R. (Loyola Univ., Maywood, IL (United States))

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  9. Polymorphisms in DNA repair genes, smoking, and bladder cancer risk: findings from the International Consortium of Bladder Cancer

    Science.gov (United States)

    Stern, Mariana C.; Lin, Jie; Figueroa, Jonine D.; Kelsey, Karl T.; Kiltie, Anne E.; Yuan, Jian-Min; Matullo, Giuseppe; Fletcher, Tony; Benhamou, Simone; Taylor, Jack A.; Placidi, Donatella; Zhang, Zuo-Feng; Steineck, Gunnar; Rothman, Nathaniel; Kogevinas, Manolis; Silverman, Debra; Malats, Nuria; Chanock, Stephen; Wu, Xifeng; Karagas, Margaret R.; Andrew, Angeline S.; Nelson, Heather H.; Bishop, D. Timothy; Sak, Sei Chung; Choudhury, Ananya; Barrett, Jennifer H; Elliot, Faye; Corral, Román; Joshi, Amit D.; Gago-Dominguez, Manuela; Cortessis, Victoria K.; Xiang, Yong-Bing; Vineis, Paolo; Sacerdote, Carlotta; Guarrera, Simonetta; Polidoro, Silvia; Allione, Alessandra; Gurzau, Eugen; Koppova, Kvetoslava; Kumar, Rajiv; Rudnai, Peter; Porru, Stefano; Carta, Angela; Campagna, Marcello; Arici, Cecilia; Park, SungShim Lani; Garcia-Closas, Montserrat

    2009-01-01

    Tobacco smoking is the most important and well-established bladder cancer risk factor, and a rich source of chemical carcinogens and reactive oxygen species that can induce damage to DNA in urothelial cells. Therefore, common variation in DNA repair genes might modify bladder cancer risk. In this study we present results from meta- and pooled analyses conducted as part of the International Consortium of Bladder Cancer. We included data on 10 single nucleotide polymorphisms corresponding to 7 DNA repair genes from 13 studies. Pooled- and meta-analyses included 5,282 cases and 5,954 controls of non-Latino white origin. We found evidence for weak but consistent associations with ERCC2 D312N (rs1799793) (per allele OR = 1.10; 95% CI = 1.01–1.19; p = 0.021), NBN E185Q (rs1805794) (per allele OR = 1.09; 95% CI = 1.01–1.18; p = 0.028), and XPC A499V (rs2228000) (per allele OR = 1.10; 95% CI = 1.00–1.21, p = 0.044). The association with NBN E185Q was limited to ever smokers (interaction p = 0.002), and was strongest for the highest levels of smoking dose and smoking duration. Overall, our study provides the strongest evidence to date for a role of common variants in DNA repair genes in bladder carcinogenesis. PMID:19706757

  10. Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley.

    Science.gov (United States)

    Budhagatapalli, Nagaveni; Rutten, Twan; Gurushidze, Maia; Kumlehn, Jochen; Hensel, Goetz

    2015-07-06

    Transcription activator-like effector nucleases open up new opportunities for targeted mutagenesis in eukaryotic genomes. Similar to zinc-finger nucleases, sequence-specific DNA-binding domains can be fused with effector domains like the nucleolytically active part of FokI to induce double-strand breaks and thereby modify the host genome on a predefined target site via nonhomologous end joining. More sophisticated applications of programmable endonucleases involve the use of a DNA repair template facilitating homology-directed repair (HDR) so as to create predefined rather than random DNA sequence modifications. The aim of this study was to demonstrate the feasibility of editing the barley genome by precisely modifying a defined target DNA sequence resulting in a predicted alteration of gene function. We used gfp-specific transcription activator-like effector nucleases along with a repair template that, via HDR, facilitates conversion of gfp into yfp, which is associated with a single amino acid exchange in the gene product. As a result of co-bombardment of leaf epidermis, we detected yellow fluorescent protein accumulation in about three of 100 mutated cells. The creation of a functional yfp gene via HDR was unambiguously confirmed by sequencing of the respective genomic site. In addition to the allele conversion accomplished in planta, a readily screenable marker system is introduced that might be useful for optimization approaches in the field of genome editing.

  11. The Mutyh base excision repair gene influences the inflammatory response in a mouse model of ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Ida Casorelli

    Full Text Available BACKGROUND: The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh(-/- mice to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS. The Mutyh(-/- phenotype was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh(-/- mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh(-/- mice. Lymphoid hyperplasia and a significant reduction in Foxp3(+ regulatory T cells were observed only in Mutyh(-/- mice. CONCLUSIONS: The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.

  12. New single nucleotide polymorphisms (SNPs) in homologous recombination repair genes detected by microarray analysis in Polish breast cancer patients.

    Science.gov (United States)

    Romanowicz, Hanna; Strapagiel, Dominik; Słomka, Marcin; Sobalska-Kwapis, Marta; Kępka, Ewa; Siewierska-Górska, Anna; Zadrożny, Marek; Bieńkiewicz, Jan; Smolarz, Beata

    2016-11-30

    Breast cancer is the most common cause of malignancy and mortality in women worldwide. This study aimed at localising homologous recombination repair (HR) genes and their chromosomal loci and correlating their nucleotide variants with susceptibility to breast cancer. In this study, authors analysed the association between single nucleotide polymorphisms (SNPs) in homologous recombination repair genes and the incidence of breast cancer in the population of Polish women. Blood samples from 94 breast cancer patients were analysed as test group. Individuals were recruited into the study at the Department of Oncological Surgery and Breast Diseases of the Institute of the Polish Mother's Memorial Hospital in Lodz, Poland. Healthy controls (n = 500) were obtained from the Biobank Laboratory, Department of Molecular Biophysics, University of Lodz. Then, DNA of breast cancer patients was compared with one of the disease-free women. The test was supported by microarray analysis. Statistically significant correlations were identified between breast cancer and 3 not described previously SNPs of homologous recombination repair genes BRCA1 and BRCA2: rs59004709, rs4986852 and rs1799950. Further studies on larger groups are warranted to support the hypothesis of correlation between the abovementioned genetic variants and breast cancer risk.

  13. Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord

    Directory of Open Access Journals (Sweden)

    Min-fei Wu

    2015-01-01

    Full Text Available The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco′s modified Eagle′s medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem

  14. Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord.

    Science.gov (United States)

    Wu, Min-Fei; Zhang, Shu-Quan; Gu, Rui; Liu, Jia-Bei; Li, Ye; Zhu, Qing-San

    2015-09-01

    The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco's modified Eagle's medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the

  15. Transplantation of erythropoietin gene-modiifed neural stem cells improves the repair of injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Min-fei Wu; Shu-quan Zhang; Rui Gu; Jia-bei Liu; Ye Li; Qing-san Zhu

    2015-01-01

    The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells culturedin vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was inject-ed with non-transfected neural stem cells. Dulbecco’s modified Eagle’s medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1–4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythro-poietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoi-etin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythro-poietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the

  16. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers.

    Science.gov (United States)

    Dashti, S Ghazaleh; Buchanan, Daniel D; Jayasekara, Harindra; Ait Ouakrim, Driss; Clendenning, Mark; Rosty, Christophe; Winship, Ingrid M; Macrae, Finlay A; Giles, Graham G; Parry, Susan; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Thibodeau, Stephen N; Lindor, Noralane M; Newcomb, Polly A; Potter, John D; Baron, John A; Hopper, John L; Jenkins, Mark A; Win, Aung Ko

    2017-03-01

    Background: People with germline mutation in one of the DNA mismatch repair (MMR) genes have increased colorectal cancer risk. For these high-risk people, study findings of the relationship between alcohol consumption and colorectal cancer risk have been inconclusive.Methods: 1,925 MMR gene mutations carriers recruited into the Colon Cancer Family Registry who had completed a questionnaire on lifestyle factors were included. Weighted Cox proportional hazard regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between alcohol consumption and colorectal cancer.Results: Colorectal cancer was diagnosed in 769 carriers (40%) at a mean (SD) age of 42.6 (10.3) years. Compared with abstention, ethanol consumption from any alcoholic beverage up to 14 g/day and >28 g/day was associated with increased colorectal cancer risk (HR, 1.50; 95% CI, 1.09-2.07 and 1.69; 95% CI, 1.07-2.65, respectively; Ptrend = 0.05), and colon cancer risk (HR, 1.78; 95% CI, 1.27-2.49 and 1.94; 95% CI, 1.19-3.18, respectively; Ptrend = 0.02). However, there was no clear evidence for an association with rectal cancer risk. Also, there was no evidence for associations between consumption of individual alcoholic beverage types (beer, wine, spirits) and colorectal, colon, or rectal cancer risk.Conclusions: Our data suggest that alcohol consumption, particularly more than 28 g/day of ethanol (∼2 standard drinks of alcohol in the United States), is associated with increased colorectal cancer risk for MMR gene mutation carriers.Impact: Although these data suggested that alcohol consumption in MMR carriers was associated with increased colorectal cancer risk, there was no evidence of a dose-response, and not all types of alcohol consumption were associated with increased risk. Cancer Epidemiol Biomarkers Prev; 26(3); 366-75. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Heteroduplex DNA mismatch repair system of Streptococcus pneumoniae: cloning and expression of the hexA gene.

    OpenAIRE

    Balganesh, T S; Lacks, S A

    1985-01-01

    Mutations affecting heteroduplex DNA mismatch repair in Streptococcus pneumoniae were localized in two genes, hexA and hexB, by fractionation of restriction fragments carrying mutant alleles. A fragment containing the hexA4 allele was cloned in the S. pneumoniae cloning system, and the hexA+ allele was introduced into the recombinant plasmid by chromosomal facilitation of plasmid transfer. Subcloning localized the functional hexA gene to a 3.5-kilobase segment of the cloned pneumococcal DNA. ...

  18. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers

    DEFF Research Database (Denmark)

    Sønderstrup, Ida Marie Heeholm; Nygård, Sune Boris; Poulsen, Tim Svenstrup

    2015-01-01

    (MMR) subtypes of CRC have been associated with benefit from adjuvant chemotherapy of primary CRC. Given the involvement of the topoisomerase enzymes in DNA replication and repair, we raised the hypothesis that an association may exist between TOP gene copy numbers and MMR proficiency/deficiency in CRC...... patients with deficient MMR (dMMR) CRC. TOP1 and TOP2A gene copy numbers and their ratios per nucleus were correlated with MMR status using the Mann-Whitney test. Validation cohort: FFPE samples from 154 patients with primary stage III CRC (originally included in the RANX05 study) were classified according...

  19. Two DNA repair and recombination genes in Saccharomyces cerevisiae, RAD52 and RAD54, are induced during meiosis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, G.M.; Mortimer, R.K. (Univ. of California, Berkeley (United States)); Schild, D. (Lawrence Berkeley Lab., CA (United States))

    1989-07-01

    The DNA repair and recombination genes of Saccharomyces cerevisiae, RAD52 and RAD54, were transcriptionally induced approximately 10- to 15-fold in sporulating MATa/{alpha} cells. Congenic MATa/a cells, which did not sporulate, did not show similar increases. Assays of {beta}-galactosidase activity in strains harboring either a RAD52- or RAD54-lacZ gene fusion indicated that this induction occurred at a time concomitant with a commitment to meiotic recombination, as measured by prototroph formation from his1 heteroalleles.

  20. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown

    DEFF Research Database (Denmark)

    Higgins, Geoff S; Prevo, Remko; Lee, Yin-Fai

    2010-01-01

    radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B...... polymerase ) as a potential tumor-specific target. Subsequent investigations showed that POLQ knockdown resulted in radiosensitization of a panel of tumor cell lines from different primary sites while having little or no effect on normal tissue cell lines. These findings raise the possibility that POLQ...

  1. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ivanov, E L; Haber, J E

    1995-04-01

    HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.

  2. Repair genes expression profile of MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers.

    Science.gov (United States)

    Alves, Mônica Ghislaine Oliveira; Carta, Celina Faig Lima; de Barros, Patrícia Pimentel; Issa, Jaqueline Scholz; Nunes, Fábio Daumas; Almeida, Janete Dias

    2017-01-01

    The aim of this study was to evaluate the effect of chronic smoking on the expression profile of the repair genes MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers and never smokers. The sample consisted of thirty exfoliative cytology smears per group obtained from Smokers and Never Smokers. Total RNA was extracted and expression of the MLH1, MSH2 and ATM genes were evaluated by quantitative real-time and immunocytochemistry. The gene and protein expression data were correlated to the clinical data. Gene expression was analyzed statistically using the Student t-test and Pearson's correlation coefficient, with pexpression of MLH1, MSH2, ATM and age, number of cigarettes consumed per day, time of smoking during life, smoking history or levels of CO in expired air. The expression of genes and proteins related to DNA repair mechanism MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers was reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. DNA repair and damage pathway related cancer suppressor genes in low-dose-rate irradiated AKR/J an IR mice

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyun Soon; Bong, Jin Jong; Kang, Yumi; Choi, Moo Hyun; Lee, Hae Un; Yoo, Jae Young; Choi, Seung Jin; Kim, Hee Sun [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Gyeongju (Korea, Republic of); Lee, Kyung Mi [Global Research Lab, BAERI Institute, Dept. of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    It has been reported that low-dose-rate radiation stimulates the immune response, prolongs life span and inhibits carcinogenesis. The high dose-rate radiation influences the expression of DNA repair and damage-related genes. In contrast, DNA repair and damage signaling triggered by low-dose-rate irradiation remain unclear. In the present study, we investigated the differential expression of DNA repair and damage pathway related genes in the thymus of AKR/J and ICR mice after 100th day low-dose-rate irradiation. Our findings demonstrated that low-dose-rate γ -radiation suppressed tumorigenesis.

  4. Prognostic impact of mismatch repair genes germline defects in colorectal cancer patients: are all mutations equal?

    Science.gov (United States)

    Maccaroni, Elena; Bracci, Raffaella; Giampieri, Riccardo; Bianchi, Francesca; Belvederesi, Laura; Brugiati, Cristiana; Pagliaretta, Silvia; Del Prete, Michela; Scartozzi, Mario; Cascinu, Stefano

    2015-01-01

    Background Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, caused by germline mutations in MisMatch Repair (MMR) genes, particularly in MLH1, MSH2 and MSH6. Patients with LS seem to have a more favourable prognosis than those with sporadic CRC, although the prognostic impact of different mutation types is unknown. Aim of our study is to compare survival outcomes of different types of MMR mutations in patients with LS-related CRC. Methods 302 CRC patients were prospectively selected on the basis of Amsterdam or Revised Bethesda criteria to undergo genetic testing: direct sequencing of DNA and MLPA were used to examine the entire MLH1, MSH2 and MSH6 coding sequence. Patients were classified as mutation-positive or negative according to the genetic testing result. Results A deleterious MMR mutation was found in 38/302 patients. Median overall survival (OS) was significantly higher in mutation-positive vs mutation-negative patients (102.6 vs 77.7 months, HR:0.63, 95%CI:0.46–0.89, p = 0.0083). Different types of mutation were significantly related with OS: missense or splicing-site mutations were associated with better OS compared with rearrangement, frameshift or non-sense mutations (132.5 vs 82.5 months, HR:0.46, 95%CI:0.16–0.82, p = 0.0153). Conclusions Our study confirms improved OS for LS-patients compared with mutation-negative CRC patients. In addition, not all mutations could be considered equal: the better prognosis in CRC patients with MMR pathogenic missense or splicing site mutation could be due to different functional activity of the encoded MMR protein. This matter should be investigated by use of functional assays in the future. PMID:26485756

  5. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair or recombination phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, G.M.; Mortimer, R.K. (Univ. of California, Berkeley (USA))

    1989-08-01

    The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae.

  6. Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair.

    Science.gov (United States)

    Mehta, Anuja; Beach, Annette; Haber, James E

    2017-02-02

    Saccharomyces cerevisiae mating-type switching is initiated by a double-strand break (DSB) at MATa, leaving one cut end perfectly homologous to the HMLα donor, while the second end must be processed to remove a non-homologous tail before completing repair by gene conversion (GC). When homology at the matched end is ≤150 bp, efficient repair depends on the recombination enhancer, which tethers HMLα near the DSB. Thus, homology shorter than an apparent minimum efficient processing segment can be rescued by tethering the donor near the break. When homology at the second end is ≤150 bp, second-end capture becomes inefficient and repair shifts from GC to break-induced replication (BIR). But when pol32 or pif1 mutants block BIR, GC increases 3-fold, indicating that the steps blocked by these mutations are reversible. With short second-end homology, absence of the RecQ helicase Sgs1 promotes gene conversion, whereas deletion of the FANCM-related Mph1 helicase promotes BIR. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair.

    Science.gov (United States)

    Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G; Daiber, Andreas

    2015-08-01

    Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  8. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

    Directory of Open Access Journals (Sweden)

    Yuliya Mikhed

    2015-08-01

    Full Text Available Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α and mRNA binding proteins (e.g. GAPDH, HuR is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications. By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  9. DNA Repair Gene Polymorphisms in the Nucleotide Excision Repair Pathway and Lung Cancer Risk: A Meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Chao-rong Mei; Meng Luo; Hong-mei Li; Wen-jun Deng; Qing-hua Zhou

    2011-01-01

    Objective: A number of studies have reported the association of “XPA”, “XPC”, “XPD/ERCC2” gene polymorphisms with lung cancer risk. However, the results were conflict. To clarify the impact of polymorphisms of “XPA”, “XPC”; “XPD/ERCC2”, on lung cancer risk, a meta-analysis was performed in this study. Methods: The electronic databases PubMed and Embase were retrieved for studies included in this meta-analysis by “XPA”; “XPC”, “XPD/ERCC2”, “lung”, “cancer/neoplasm/tumor/carcinoma”, “polymorphism” (An upper date limit of October, 31, 2009). A meta-analysis was performed to evaluate the relationship among XPA, XPC and XPD polymorphism and lung cancer risks. Results: A total of 31 publications retrieved from Pubmed and Embase included in this study. XPC A939C CC genotype increased lung cancer risk in total population (recessive genetic model: OR=1.23, 95% Cl:1.05-1.44;homozygote comparison: OR=1.21,95%Cl:1.02-1.43and CC vs. CA contrast: OR=1.25,95%Cl:1.06-1.48), except in Asians. XPD A751C, 751C allele and CC genotype also increased lung cancer risk in total population and in Caucasians (recessive genetic model: Total population: OR=1.20, 95%Cl:1.07-1.35). No significant correlation was found between XPD A751C and lung cancer risk in Asians and African Americans. XPD G312A AA genotype increased lung cancer risk in total population, in Asians and Caucasians(recessive genetic model: Total population: OR=1.20, 95%Cl:1.06-1.36). No significant association was found between XPA G23A, XPC C499T, XPD C156A and lung cancer risk. Conclusion: Our results suggest that the polymorphisms in XPC and XPD involve in lung cancer risks. XPA polymorphisms is less related to lung cancer risk.

  10. Association Between Polymorphisms of DNA Repair Gene XRCC1 and DNA Damage in Asbestos-Exposed Workers

    Institute of Scientific and Technical Information of China (English)

    XIAO-HONG ZHAO; GUANG JIA; YONG-QUAN LIU; SHAO-WEI LIU; LEI YAN; YU JIN; NIAN LIU

    2006-01-01

    Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestos exposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral bloodlymphocytes were determined by comet assay, and XRCC 1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P<0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gln/Gln, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gln/Gln by Student's t-test (P<0.05 or 0.01). The comet scores were higher in asbestosis workers with Gln/Gln than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced

  11. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Weeda, G.; Donker, I.; Vermeulen, W. [Erasmus Univ., Rotterdam (Netherlands)] [and others

    1997-02-01

    Trichothiodystrophy (TTD) is a rare, autosomal recessive disorder characterized by sulfur-deficient brittle hair and nails, mental retardation, impaired sexual development, and ichthyosis. Photosensitivity has been reported in {approximately}50% of the cases, but no skin cancer is associated with TTD. Virtually all photosensitive TTD patients have a deficiency in the nucleotide excision repair (NER) of UV-induced DNA damage that is indistinguishable from that of xeroderma pigmentosum (XP) complementation group D (XP-D) patients. DNA repair defects in XP-D are associated with two additional, quite different diseases; XP, a sun-sensitive and cancer-prone repair disorder, and Cockayne syndrome (CS), a photosensitive condition characterized by physical and mental retardation and wizened facial appearance. One photosensitive TTD case constitutes a new repair-deficient complementation group, TTD-A. Remarkably, both TTD-A and XP-D defects are associated with subunits of TFIIH, a basal transcription factor with a second function in DNA repair. Thus, mutations in TFIIH components may, on top of a repair defect, also cause transcriptional insufficiency, which may explain part of the non-XP clinical features of TTD. To date, three patients with the remarkable conjunction of XP and CS but not TM have been assigned to XP complementation group B (XP-B). Here we present the characterization of the NER defect in two mild TTD patients (TTD6VI and TTD4VI) and confirm the assignment to X-PB. The causative mutation was found to be a single base substitution resulting in a missense mutation (T119P) in a region of the XPB protein. These findings define a third TTD complementation group, extend the clinical heterogeneity associated with XP-B, stress the exclusive relationship between TTD and mutations in subunits of repair/transcription factor TFIIH, and strongly support the concept of {open_quotes}transcription syndromes.{close_quotes} 46 refs., 6 figs., 2 tabs.

  12. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities

    Science.gov (United States)

    Valentin-Kahan, Adrián; García-Tejedor, Gabriela B.; Robello, Carlos; Trujillo-Cenóz, Omar; Russo, Raúl E.; Alvarez-Valin, Fernando

    2017-01-01

    Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery. PMID:28223917

  13. PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Binkova, Blanka [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Chvatalova, Irena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Lnenickova, Zdena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Milcova, Alena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Tulupova, Elena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Farmer, Peter B. [Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Sram, Radim J. [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic)]. E-mail: sram@biomed.cas.cz

    2007-07-01

    Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22-50 years) working outdoors in the downtown area of Prague and in matched 'unexposed' controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by {sup 32}P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32-55 {mu}g/m{sup 3}, PM2.5 27-38 {mu}g/m{sup 3}, c-PAHs 18-22 ng/m{sup 3}; personal exposure to c-PAHs: 9.7 ng/m{sup 3} versus 5.8 ng/m{sup 3} (P < 0.01) for EXP and CON groups, respectively. The total DNA adduct levels did not significantly differ between EXP and CON groups (0.92 {+-} 0.28 adducts/10{sup 8} nucleotides versus 0.82 {+-} 0.23 adducts/10{sup 8} nucleotides, P = 0.065), whereas the level of the B[a]P-'like' adduct was significantly higher in exposed group (0.122 {+-} 0.036 adducts/10{sup 8} nucleotides versus 0.099 {+-} 0.035 adducts/10{sup 8} nucleotides, P = 0

  14. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  15. DNA repair gene XRCC3 241Met variant and breast cancer susceptibility of Azeri population in Iranian

    Directory of Open Access Journals (Sweden)

    Gohari-Lasaki Sahar

    2015-01-01

    Full Text Available DNA-repair systems are essential for repairing damage that occurs when there is recombination between homologous chromosomes. The gene XRCC3 (X-ray cross complementing group 3 encodes a member of the RecA/Rad51-related protein family that participates in homologous recombination to maintain chromosome stability and repair DNA damage. The Thr241Met XRCC3-18067C>T, rs861539 substitution, a C to T transition at codon 241 in exon7, thus plays critical roles in cancer development. The aim of this study was association between XRCC3 Thr241Met polymorphism and risk of sporadic breast cancer in Azari population. We analysed DNA samples from 100 sporadic breast cancer patients and 100 healthy women, for XRCC3 Thr241Met polymorphism using PCR-RFLP. Genotype specific risks were tested using chi-test with 95% confident intervals. Frequency of Thr/Thr at codon 241was 69% in controls and 70% in patients, Thr/Met frequency was 22% in controls and 13 % in patients, the Met/Met genotype was 9% incontrols and 17% in patients. No correlation between the genotype and allele distribution and increased susceptibility for breast Cancer. Our results suggested that in pre-menopausal women, breast cancer riskis not significantly associated with rs861539 in Azari population.

  16. Analysis of the mRNA Expression of Chemotherapy-Related Genes in Colorectal Carcinoma Using the Danenberg Tumor Profile Method

    Directory of Open Access Journals (Sweden)

    Shin Sasaki

    2013-01-01

    Full Text Available The establishment of individualized chemotherapy for colorectal carcinoma based on the expression of genes involved in chemotherapeutic sensitivity or prognosis is necessary. To achieve this, the expression profiles of genes within tumors and their relationship to clinicopathological factors must be elucidated. Here, we selected 10 genes (TS, DPD, TP, FPGS, GGH, DHFR, ERCC1, TOPO-1, VEGF, and EGFR, examined differences in their mRNA expression between the upper and lower thirds of tumors by laser-captured microdissection and real-time RT-PCR (the Danenberg tumor profile, and analyzed the relationships between their expression profiles and clinicopathological factors. Interestingly, the mRNA expression of DPD, TP, and VEGF was significantly higher in the lower third than in the upper third of tumors (P=0.044, 0.023, and 0.013, resp.. Furthermore, increased ERCC1 mRNA expression in the lower third of tumors correlated with recurrence (P=0.049, and VEGF mRNA expression was significantly higher in cases with recurrence than in cases without recurrence, both in the upper and lower thirds of tumors (P=0.018 and 0.036, resp.. These results implied that heterogeneity in DPD, TP, and VEGF expression may exist in colorectal carcinoma and that ERCC-1 and VEGF may be markers predicting recurrence after curative operation.

  17. Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors.

    NARCIS (Netherlands)

    Feitsma, H.; Kuiper, R.V.; Korving, J.; Nijman, I.J.; Cuppen, E.

    2008-01-01

    Defective mismatch repair (MMR) in humans causes hereditary nonpolyposis colorectal cancer. This genetic predisposition to colon cancer is linked to heterozygous familial mutations, and loss-of-heterozygosity is necessary for tumor development. In contrast, the rare cases with biallelic MMR

  18. Impaired Cytogenetic Damage Repair and Cell Cycle Regulation in Response to Ionizing Radiation in Human Fibroblast Cells with Individual Knock-down of 25 Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish; Jeevarajan, Antony; Pierson, Duane; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with upregulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. In our present study, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yield of MN and/or CA formation were significantly increased by suppressed expression of 5 genes that included Ku70 in the DSB repair pathway; XPA in the NER pathway; RPA1 in the MMR pathway; RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes including MRE11A, RAD51 in the DSB pathway, and SESN1 and SUMO1 showed significant inhibition of cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, p21 and MLH1 expression resulted in both enhanced cell cycle progression and significantly higher yield of cytogenetic damage, indicating the involvement of these gene products in both cell cycle control and DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  19. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair

    Science.gov (United States)

    Svendsen, Jennifer M.; Smogorzewska, Agata; Sowa, Mathew E.; O’Connell, Brenda C.; Gygi, Steven P.; Elledge, Stephen J.; Harper, J. Wade

    2009-01-01

    Summary Structure-specific endonucleases mediate repair of DNA structures formed from replication fork collapse or during double-strand break (DSB) repair. Here we identify BTBD12 as the human ortholog of the budding yeast DNA repair factor Slx4p and D. melanogaster MUS312. Human SLX4 forms a multiprotein complex with the ERCC4(XPF)-ERCC1, MUS81-EME1, and SLX1 endonucleases, and also associates with MSH2/MSH3 mismatch repair complex, telomere binding complex TERF2(TRF2)-TERF2IP(RAP1), the protein kinase PLK1 and the uncharacterized protein C20orf94. Depletion of SLX4 causes sensitivity to mitomycin C and camptothecin, and reduces the efficiency of DSB repair in vivo. SLX4 complexes cleave 3’-flap, 5’-flap and replication fork structures; yet unlike other endonucleases associated with SLX4, the SLX1-SLX4 module promotes symmetrical cleavage of static and migrating Holliday junctions (HJs), identifying SLX1-SLX4 as a HJ resolvase. Thus, SLX4 assembles a modular tool-kit for repair of specific types of DNA lesions and is critical for cellular responses to replication fork failure. PMID:19596235

  20. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  1. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation

    Directory of Open Access Journals (Sweden)

    Falvo Elisabetta

    2012-01-01

    Full Text Available Abstract Background The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI after BCS (breast conserving surgery. Methods A total of 57 breast cancer patients who underwent SSPBI were genotyped for SNPs (single nucleotide polymorphisms in XRCC1, XRCC3, GST and RAD51 by Pyrosequencing technology. Univariate analysis (ORs and 95% CI was performed to correlate SNPs with the risk of developing ≥ G2 fibrosis or fat necrosis. Results A higher significant risk of developing ≥ G2 fibrosis or fat necrosis in patients with: polymorphic variant GSTP1 (Ile105Val (OR = 2.9; 95%CI, 0.88-10.14, p = 0.047. Conclusions The presence of some SNPs involved in DNA repair or response to oxidative stress seem to be able to predict late toxicity. Trial Registration ClinicalTrials.gov: NCT01316328

  2. Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.

    Science.gov (United States)

    Palii, Carmen G; Vulesevic, Branka; Fraineau, Sylvain; Pranckeviciene, Erinija; Griffith, Alexander J; Chu, Alphonse; Faralli, Hervé; Li, Yuhua; McNeill, Brian; Sun, Jie; Perkins, Theodore J; Dilworth, F Jeffrey; Perez-Iratxeta, Carol; Suuronen, Erik J; Allan, David S; Brand, Marjorie

    2014-05-01

    A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential.

  3. Three-dimensionally Specific Inhibition of DNA Repair-Related Genes by Activated KRAS in Colon Crypt Model

    Directory of Open Access Journals (Sweden)

    Toshiyuki Tsunoda

    2010-05-01

    Full Text Available Growth and differentiation of colonic epithelium are regulated in the three-dimensional (3D physiological architecture, colonic crypt, and deregulation of 3D interactions is involved in tumorigenesis. Cell-based 3D culture systems provide a suitable approach bridging the gap between two-dimensional (2D culture and animal models. KRAS mutations are found at high frequencies in human colorectal cancer (CRC; however, KRAS-targeted cancer therapy has not been developed. Here, we have established a 3D cell culture model resembling the colonic crypt by use of HKe3 cells, human CRC HCT116 cells disrupted at activated KRAS. In this 3D colonic crypt model, HKe3 cells showed the features of time course-dependent transit-amplifying and terminal-differentiated stages, which are characteristic of normal colonic crypt. On the basis of the features of HCT116 cells, activated KRAS inhibited normal cell polarity and apoptosis in 3D culture. The expression of DNA repair-related tumor suppressor genes including TP53, BRCA1, BRCA2, and EXO-1 was markedly suppressed by activated KRAS in 3D culture but not in 2D culture. These results together suggest that activated KRAS plays critical roles in the accumulation of genetic alterations through inhibition of DNA repair genes and apoptosis and that this 3D culture model will provide a useful tool for investigating the molecular mechanisms of CRC development.

  4. Regulated expression of the Saccharomyces cerevisiae DNA repair gene RAD7 in response to DNA damage and during sporulation.

    Science.gov (United States)

    Jones, J S; Prakash, L; Prakash, S

    1990-06-11

    The RAD7 gene of Saccharomyces cerevisiae affects the proficiency of excision repair of DNA damaged by UV light. Here, we report our studies on the regulation of the RAD7 gene in response to UV irradiation and during sporulation. RAD7 transcript levels increased 6-fold within 40 min of exposure of cells to 37 J/m2 of UV light. Higher UV doses also elicited rapid increases in the level of RAD7 mRNA. RAD7 mRNA levels increased in sporulating MATa/MAT alpha diploid cells, but not in the asporogenous MATa/MATa strain exposed to sporulation conditions. The increase in RAD7 mRNA level in MATa/MAT alpha cells was 15-fold after 6 h and 9-fold after 7 h in sporulation medium; thereafter, RAD7 mRNA levels declined. Periodic transcription of RAD7 during sporulation suggests a role for RAD7 in this process.

  5. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia.

    Science.gov (United States)

    Basu, Sanmitra; Majumder, Subhadipa; Bhowal, Ankur; Ghosh, Alip; Naskar, Sukla; Nandy, Sumit; Mukherjee, Subhabrata; Sinha, Rajan Kumar; Basu, Keya; Karmakar, Dilip; Banerjee, Soma; Sengupta, Sanghamitra

    2015-01-01

    Prostate cancer is one of the leading causes of mortality among aging males. There is an unmet requirement of clinically useful biomarkers for early detection of prostate cancer to reduce the liabilities of overtreatment and accompanying morbidity. The present population-based study investigates the factors disrupting expression of multiple functionally related genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular attributes distinguishing adenocarcinoma from benign hyperplasia of prostate. Gene expression was compared between tissue samples from prostate cancer and benign prostatic hyperplasia using real-time-PCR, western blot and immunohistochemistry. Assessment of genotypes of seven single-nucleotide-polymorphisms of three MMR genes was conducted using PCR-coupled RFLP and sequencing. Promoter methylation was interrogated by methylation-specific-PCR and bisulfite-sequencing. Interaction between microRNAs and MMR genes was verified by 3'UTR-based dual luciferase assays. Concurrent reduction of three MMR genes namely hMLH1, hMSH6 and hMSH2 (34-85%, Pprostate cancer tissues. hMSH6 polymorphism rs1800932(Pro92Pro) conferred a borderline protection in cancer patients (OR = 0.33, 95% CI = 0.15-0.75). Relative transcript level of hMLH1 was inversely related (r = -0.59, Pprostate cancer. This comparative study reflects that microRNA expression level, particularly hsa-miR-155, exhibits predictive signature of prostate adenocarcinoma.

  6. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer.

    Science.gov (United States)

    Podlutsky, Andrej; Valcarcel-Ares, Marta Noa; Yancey, Krysta; Podlutskaya, Viktorija; Nagykaldi, Eszter; Gautam, Tripti; Miller, Richard A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2017-02-23

    Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period

  7. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair.

    Science.gov (United States)

    Mulo, Paula; Sakurai, Isamu; Aro, Eva-Mari

    2012-01-01

    The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.

  8. DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition.

    Science.gov (United States)

    Ollier, Marie; Radosevic-Robin, Nina; Kwiatkowski, Fabrice; Ponelle, Flora; Viala, Sandrine; Privat, Maud; Uhrhammer, Nancy; Bernard-Gallon, Dominique; Penault-Llorca, Frédérique; Bignon, Yves-Jean; Bidet, Yannick

    2015-01-01

    Among breast cancers, 10 to 15% of cases would be due to hereditary risk. In these familial cases, mutations in BRCA1 and BRCA2 are found in only 15% to 20%, meaning that new susceptibility genes remain to be found. Triple-negative breast cancers represent 15% of all breast cancers, and are generally aggressive tumours without targeted therapies available. Our hypothesis is that some patients with triple negative breast cancer could share a genetic susceptibility different from other types of breast cancers. We screened 36 candidate genes, using pyrosequencing, in all the 50 triple negative breast cancer patients with familial history of cancer but no BRCA1 or BRCA2 mutation of a population of 3000 families who had consulted for a familial breast cancer between 2005 and 2013. Any mutations were also sequenced in available relatives of cases. Protein expression and loss of heterozygosity were explored in tumours. Seven deleterious mutations in 6 different genes (RAD51D, MRE11A, CHEK2, MLH1, MSH6, PALB2) were observed in one patient each, except the RAD51D mutation found in two cases. Loss of heterozygosity in the tumour was found for 2 of the 7 mutations. Protein expression was absent in tumour tissue for 5 mutations. Taking into consideration a specific subtype of tumour has revealed susceptibility genes, most of them in the homologous recombination DNA repair pathway. This may provide new possibilities for targeted therapies, along with better screening and care of patients.

  9. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat.

    Science.gov (United States)

    Tabandeh, Mohammad Reza; Oryan, Ahmad; Mohammadalipour, Adel

    2014-04-01

    Polysaccharides are the main macromolecules of Aloe vera gel but no data about their effect on extracellular matrix (ECM) elements are available. Here, mannose rich Aloe vera polysaccharides (AVP) with molecular weight between 50 and 250 kDa were isolated and characterized. Open cutaneous wounds on the back of 45 rats (control and treated) were daily treated with 25mg (n=15) and 50 mg (n=15) AVP for 30 days. The levels of MMP-3 and TIMP-2 gene expression were analyzed using real time PCR. The levels of n-acetyl glucosamine (NAGA), n-acetyl galactosamine (NAGLA) and collagen contents were also measured using standard biochemical methods. Faster wound closure was observed at day 15 post wounding in AVP treated animals in comparison with untreated group. At day 10 post wounding, AVP inhibited MMP-3 gene expression, while afterwards MMP-3 gene expression was upregulated. AVP enhanced TIMP-2 gene expression, collagen, NAGLA and NAGA synthesis in relation to untreated wounds. Our results suggest that AVP has positive effects on the regulation of ECM factor synthesis, which open up new perspectives for the wound repair activity of Aloe vera polysaccharide at molecular level.

  10. Genomic structure and characterization of the Drosophila S3 ribosomal/DNA repair gene and mutant alleles.

    Science.gov (United States)

    Kelley, M R; Xu, Y; Wilson, D M; Deutsch, W A

    2000-03-01

    The Drosophila S3 protein is known to be associated with ribosomes, where it is thought to play a role in the initiation of protein translation. The S3 protein also contains a DNA repair activity, efficiently processing 8-oxoguanine residues in DNA via an N-glycosylase/apurinic-apyrimidinic (AP) lyase activity. The gene that encodes S3 has previously been localized to one of the Minute loci on chromosome 3 in Drosophila. This study focused on the genomic organization of S3 at M(3)95A, initial promoter characterization, and analysis of three mutant alleles at this locus. The S3 gene was found to be a single-copy gene 2 to 3 kb in length and containing a single intron. The upstream 1.6-kb region was analyzed for promoter activity, identifying a presumptive regulatory domain containing potential enhancer and suppressor elements. This finding is of interest, as the S3 gene is constitutively expressed throughout development and mRNA is most likely maternally inherited. Lastly, three Minute alleles from the same locus were sequenced and two alleles found to contain a 22-bp deletion in exon 2, resulting in a truncated S3 protein, although wildtype levels of S3 mRNA and protein were detected in the viable heterozygous Minute alleles, possibly reflecting dosage compensation.

  11. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    Science.gov (United States)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  12. Human longevity and variation in DNA damage response and repair: study of the contribution of sub-processes using competitive gene-set analysis.

    Science.gov (United States)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike; Dato, Serena; Mengel-From, Jonas; Stevnsner, Tinna; Bohr, Vilhelm A; Kruse, Torben A; Schreiber, Stefan; Nebel, Almut; Christensen, Kaare; Tan, Qihua; Christiansen, Lene

    2014-09-01

    DNA-damage response and repair are crucial to maintain genetic stability, and are consequently considered central to aging and longevity. Here, we investigate whether this pathway overall associates to longevity, and whether specific sub-processes are more strongly associated with longevity than others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10(-5)), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using the competitive gene-set analysis by Wang et al indicated that BER, HRR and RECQ associated stronger with longevity than the respective remaining genes of the pathway (P-values=0.004-0.048). For HRR and RECQ, only one gene contributed to the significance, whereas for BER several genes contributed. These associations did, however, generally not pass correction for multiple testing. Still, these findings indicate that, of the entire pathway, variation in BER might influence longevity the most. These modest sized P-values were not replicated in a German sample. This might, though, be due to differences in genotyping procedures and investigated SNPs, potentially inducing differences in the coverage of gene regions. Specifically, five genes were not covered at all in the German data. Therefore, investigations in additional study populations are needed before final conclusion can be drawn.

  13. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

    Energy Technology Data Exchange (ETDEWEB)

    Xi, T; Jones, I M; Mohrenweiser, H W

    2003-11-03

    Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of the variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.

  14. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes.

    Science.gov (United States)

    Dragileva, Ella; Hendricks, Audrey; Teed, Allison; Gillis, Tammy; Lopez, Edith T; Friedberg, Errol C; Kucherlapati, Raju; Edelmann, Winfried; Lunetta, Kathryn L; MacDonald, Marcy E; Wheeler, Vanessa C

    2009-01-01

    Modifying the length of the Huntington's disease (HD) CAG repeat, the major determinant of age of disease onset, is an attractive therapeutic approach. To explore this we are investigating mechanisms of intergenerational and somatic HD CAG repeat instability. Here, we have crossed HD CAG knock-in mice onto backgrounds deficient in mismatch repair genes, Msh3 and Msh6, to discern the effects on CAG repeat size and disease pathogenesis. We find that different mechanisms predominate in inherited and somatic instability, with Msh6 protecting against intergenerational contractions and Msh3 required both for increasing CAG length and for enhancing an early disease phenotype in striatum. Therefore, attempts to decrease inherited repeat size may entail a full understanding of Msh6 complexes, while attempts to block the age-dependent increases in CAG size in striatal neurons and to slow the disease process will require a full elucidation of Msh3 complexes and their function in CAG repeat instability.

  15. Deproteinized bone with VEGF gene transfer to facilitate the repair of early avascular necrosis of femoral head of rabbit

    Institute of Scientific and Technical Information of China (English)

    CAO Kai; HUANG Wei; AN Hong; JIANG Dian-ming; SHU Yong; HAN Zhi-min

    2009-01-01

    Objective: To explore a new method for early avascular necrosis of femoral head (AVNFH) therapy.Methods: Sixty-nine AVNFH New Zealand adult rabbits were randomly divided into three groups with equal number. In Group A, deproteinized bone (DPB) that absorbed with recombinant plasmid pcDNA3.1-hVEGF165 was implanted into the drilled tunnel of necrotic femoral head. In Group B, only DPB was implanted. In Group C, only tunnel was drilled without DPB or plasmid implanted. Femoral head specimens were obtained at postoperative 1, 2, 4, 8, 16 weeks. The expression of VEGF165 and collagen I was detected by immunohistochemistry. Bone formation was detected generally by X-ray. Angiogenesis and the repair of the femoral head were observed histologically.Results: The expression of VEGF 165 could be detected 2 weeks after implantation in Group A, but it was not observed in other groups. The result of collagen I expression had a significantly difference 2, 4 and 8 weeks after operation in Group A from those in other groups (P<0.01).X-ray results indicated that there was more bone formation in Group A than in other groups. The regenerated capillary vessels staining result of necrotic femoral head in Group A was significantly different from those in other groups at postoperative 2 and 4 weeks (P<0.01).Conclusions: Transfection ofhVEGF165 gene enhances local angiogenesis and DPB-VEGF compound improves the repair of necrotic femoral head. Deproteinized bone grafting with VEGF gene transfer provides a potential method for the treatment of osteonecrosis.

  16. Sequence and stress-response analyses of the DNA mismatch repair gene hexA in Lactococcus lactis.

    Science.gov (United States)

    Ren, J; Park, J H; Dunn, N W; Kim, W S

    2001-10-01

    The DNA mismatch repair gene hexA was identified in Lactococcus lactis by PCR amplification by using a pair of primers homologous to the DNA-binding Dps protein. The gene in its entirety, including the regulatory regions, was sequenced, by using a strategy of chromosomal walking based on two PCR protocols. The open reading frame of 2526 bp was preceded by a strong ribosome-binding site (AGGAAG) and was followed by a potential transcription terminator (hairpin loop structure). The 5' terminus of the hexA mRNA was located 135 bp upstream of the start codon, and putative -10 and -35 regions were identified. The deduced amino acid sequence revealed two motifs, the ATP/GTP-binding site (P-loop) and the "MutS family signature". The hexA promoter was cloned into pMU1327, which contained a promoter-less CAT reporter gene, and the promoter activity was examined under oxidative-stress conditions. It appears that the promoter activity is down-shifted by H2O2 at 4 mM.

  17. Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryeo-Ok [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhee, Jae-Sung [Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of); Won, Eun-Ji [Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Kyun-Woo [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kang, Chang-Mo [Laboratory of Cytogenetics and Tissue Regeneration, Korea Institute of Radiological and Medical Science, Seoul 139-709 (Korea, Republic of); Lee, Young-Mi [Department of Green Life Science, College of Convergence, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac.kr [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-02-15

    Ultraviolet B (UV-B) radiation causes direct cellular damage by breakage of DNA strands and oxidative stress induction in aquatic organisms. To understand the effect of UV-B radiation on the rotifer, Brachionus sp., several parameters including 24-h survival rate, population growth rate, and ROS level were measured after exposure to a wide range of UV-B doses. To check the expression of other important inducible genes such as replication protein A (RPA), DNA-dependent protein kinase (DNA-PK), Ku70, Ku80, and heat shock proteins (hsps) after UV-B radiation, we observed dose- and time-dependency at 2 kJ/m{sup 2}. We also examined 13 hsp genes for their roles in the UV-B damaged rotifer. Results showed that UV-B remarkably inhibited the population growth of Brachionus sp. The level of intracellular reactive oxygen species (ROS) was high at 2 kJ/m{sup 2}, suggesting that 2 kJ/m{sup 2} would already be toxic. This result was supported by other enzymatic activities, such as GSH levels, glutathione peroxidase, glutathione S-transferase, and glutathione reductase. For dose dependency, low doses of UV-B radiation (2, 4, and 6 kJ/m{sup 2}) significantly up-regulated the examined genes (e.g. RPA, DNA-PK, Ku70, and Ku80). For the time course study, RPA genes showed immediate up-regulation but returned to basal or lower expression levels compared to the control 3 h after UV-B exposure. The DNA-PK and Ku70/80 genes significantly increased, indicating that they may be involved in repairing processes against a low dose of UV-B exposure (2 kJ/m{sup 2}). At the basal level, the hsp90{alpha}1 gene showed the highest expression, and followed by hsp10, hsp30, hsp60, and hsc70, and hsp90{beta} in adults (w/o egg). In eggs, the hsp10 gene was expressed the highest, and followed by hsp30, hsp27, hsp90{alpha}1, and hsp60 genes. In real-time RT-PCR array on rotifer hsp genes, low doses of UV-B radiation (2 and 4 kJ/m{sup 2}) showed up-regulation of several hsp genes but most of the hsp

  18. Identification of mismatch repair gene mutations in young patients with colorectal cancer and in patients with multiple tumours associated with hereditary non-polyposis colorectal cancer

    NARCIS (Netherlands)

    Niessen, R C; Berends, M J W; Wu, Y; Sijmons, R H; Hollema, H; Ligtenberg, M J L; de Walle, H E K; de Vries, E G E; Karrenbeld, A; Buys, C H C M; van der Zee, A G J; Hofstra, R M W; Kleibeuker, J H

    2006-01-01

    Background: Patients with early-onset colorectal cancer (CRC) or those with multiple tumours associated with hereditary non-polyposis colorectal cancer (HNPCC) raise suspicion of the presence of germline DNA mismatch repair (MMR) gene mutations. Aim: To analyse the value of family history,

  19. Identification of mismatch repair gene mutations in young patients with colorectal cancer and in patients with multiple tumours associated with hereditary non-polyposis colorectal cancer.

    NARCIS (Netherlands)

    Niessen, R.C.; Berends, M.J.; Wu, Y.; Sijmons, R.H.; Hollema, H.; Ligtenberg, M.J.L.; Walle, H.E. de; Vries, E.G.F. de; Karrenbeld, A.; Buys, C.H.C.M.; Zee, A.G. van der; Hofstra, R.M.; Kleibeuker, J.H.

    2006-01-01

    BACKGROUND: Patients with early-onset colorectal cancer (CRC) or those with multiple tumours associated with hereditary non-polyposis colorectal cancer (HNPCC) raise suspicion of the presence of germline DNA mismatch repair (MMR) gene mutations. AIM: To analyse the value of family history,

  20. Expression of Drug-Resistant Factor Genes in Hepatocellular Carcinoma Patients Undergoing Chemotherapy with Platinum Complex by Arterial Infusion

    Directory of Open Access Journals (Sweden)

    Shiro Ueda

    2010-09-01

    Full Text Available This study investigated gene expression of drug resistance factors in biopsy tissue samples from hepatocellular carcinoma (HCC patients undergoing chemotherapy by platinum complex. Liver biopsy was performed to collect tissue from the tumor site (T and the non-tumor site (NT prior to the start of treatment. For drug-resistant factors, drug excretion transporters cMOAT and MDR-1, intracellular metal binding protein MT2, DNA repair enzyme ERCC-l and inter-nucleic cell transport protein MVP, were investigated. The comparison of the expression between T and NT indicated a significant decrease of MT2 and MDR-1 in T while a significant increase in ERCC-1 was noted in T. Further, expression was compared between the response cases and non-response cases using the ratios of expression in T to those in NT. The response rate was significantly low in the high expression group when the cutoff value of cMOAT and MT2 was set at 1.5 and 1.0, respectively. Furthermore, when the patients were classified into A group (cMOAT ≧ 1.5 or MT2 ≧ 1.0 and B group (cMOAT < 1.5 and MT2 < 1.0, the response rate of A group was significantly lower than B group when we combined the cutoff values of cMOAT and MT2. It is considered possible to estimate the therapeutic effect of platinum complex at a high probability by combining the expression condition of these two genes.

  1. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Chistiakov, Dimitry A. (Dept. of Pathology, Univ. of Pittsburgh, Pittsburgh (US)); Voronova, Natalia V. (Dept. of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow (RU)); Chistiakov, Pavel A. (Dept. of Radiology, Cancer Research Center, Moscow (RU))

    2008-06-15

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  2. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia.

    Directory of Open Access Journals (Sweden)

    Sanmitra Basu

    Full Text Available Prostate cancer is one of the leading causes of mortality among aging males. There is an unmet requirement of clinically useful biomarkers for early detection of prostate cancer to reduce the liabilities of overtreatment and accompanying morbidity. The present population-based study investigates the factors disrupting expression of multiple functionally related genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular attributes distinguishing adenocarcinoma from benign hyperplasia of prostate. Gene expression was compared between tissue samples from prostate cancer and benign prostatic hyperplasia using real-time-PCR, western blot and immunohistochemistry. Assessment of genotypes of seven single-nucleotide-polymorphisms of three MMR genes was conducted using PCR-coupled RFLP and sequencing. Promoter methylation was interrogated by methylation-specific-PCR and bisulfite-sequencing. Interaction between microRNAs and MMR genes was verified by 3'UTR-based dual luciferase assays. Concurrent reduction of three MMR genes namely hMLH1, hMSH6 and hMSH2 (34-85%, P<0.05 was observed in prostate cancer tissues. hMSH6 polymorphism rs1800932(Pro92Pro conferred a borderline protection in cancer patients (OR = 0.33, 95% CI = 0.15-0.75. Relative transcript level of hMLH1 was inversely related (r = -0.59, P<0.05 with methylation quotient of its promoter which showed a significantly higher methylation density (P = 0.008, Z = -2.649 in cancer patients. hsa-miR-155, hsa-miR-141 and hsa-miR-21 gene expressions were significantly elevated (66-85%, P<0.05 in tumor specimens and negatively correlated (r = -0.602 to -0.527, P<0.05 with that of MMR genes. hsa-miR-155 & hsa-miR-141 and hsa-miR-155 & hsa-miR-21 were demonstrated to bind to their putative seed sequences in hMLH1 and hMSH6 3'UTRs respectively. Relatively higher expression of DNA methyl-transferases (DNMT1 and DNMT3b and HIF-1α genes (34-50%, P<0.05 were also detected in tumor

  3. The Saccharomyces cerevisiae RAD7 and RAD16 genes are required for inducible excision of endonuclease III sensitive-sites, yet are not needed for the repair of these lesions following a single UV dose.

    Science.gov (United States)

    Scott, A D; Waters, R

    1997-01-31

    The RAD7 and RAD16 genes of Saccharomyces cerevisiae have roles in the repair of UV induced CPDs in nontranscribed genes [1], and in the repair of CPDs in the nontranscribed strand of transcribed genes [2]. Previously, we identified an inducible component to nucleotide excision repair (NER), which is absent in a rad16 delta strain [3]. We have examined the repair of UV induced endonuclease III sensitive-sites (EIIISS), and have shown repair of these lesions to proceed by NER but their removal from nontranscribed regions is independent of RAD7 and RAD16. Furthermore, EIIISS are repaired with equal efficiency from both transcribed and nontranscribed genes [4]. In order to dissect the roles of RAD7 and RAD16 in the above processes we examined the repair of EIIISS in the MAT alpha and HML alpha loci, which are, respectively, transcriptionally active and inactive in alpha haploid cells. These loci have elevated levels of these lesions after UV (in genomic DNA EIIISS constitute about 10% of total lesions, whereas CPDs are about 70% of total lesions). We have shown that excision of UV induced EIIISS is enhanced following a prior UV irradiation. No enhancement of repair was detected in either the rad7 delta or the rad16 delta mutant. The fact that RAD7 and RAD16 are not required for the repair of EIIISS per se yet are required for the enhanced excision of these lesions from MAT alpha and HML alpha suggests two possibilities. These genes have two roles in NER, namely in the repair of CPDs from nontranscribed sequences, and in enhancing NER itself regardless of whether these genes' products are required for the excision of the specific lesion being repaired. In the latter case, the induction of RAD7 and RAD16 may increase the turnover of complexes stalled in nontranscribed DNA so as to increase the availability of NER proteins for the repair of CPDs and EIIISS in all regions of the genome.

  4. Promoter Hypermethylation of DNA Repair Gene MGMT in Laryngeal Squamous Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between hypermethylation of CpG islands in the promoter regions of O6methylguanine DNA methyltransferase (MGMT)genes and laryngeal squamous cell carcinoma was explored. Methylation-specific PCR and semi-quantitative RT-PCR were used to study the promoter methylation and mRNA expression of the MGMT gene in laryngeal carcinoma tissues, t issues adjacent to the tumor and normal laryngeal tissues. Hypermethylation of MGMT gene was detected in 16 samples of 46 (34.8 %) laryngeal squamous cell carcinoma samples. However, the MGMT hypermethylation was not detected in all tissues adjacent to the tumors and normal tissues. No significant difference in MGMT gene hypermethylation was found in samples with different histological grades (x2= 3. 130, P=0. 077) or in samples from patients with different TNM status (x2=3. 957, P=0. 138). No expression of MGMT mRNA was detected in all hypermethylated laryngeal carcinoma tissues. The expression of MGMT mRNA was detected in all unmethylated laryngeal carcinoma tissues, tissues adjacent to the tumors and normal tissues. It suggests that MGMT gene promoter hypermethylation is associated with MGMT gene transcription loss in laryngeal carcinoma tissues and possibly plays an important role in carcinogenesis of laryngeal tissues.

  5. Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination.

    Science.gov (United States)

    Laffleur, B; Bardet, S M; Garot, A; Brousse, M; Baylet, A; Cogné, M

    2014-01-01

    Immunoglobulin (Ig) genes specifically recruit activation-induced deaminase (AID) for 'on-target' DNA deamination, initiating either variable (V) region somatic hypermutation, or double-strand break intermediates of class switch recombination (CSR). Such breaks overwhelmingly undergo legitimate intra-Ig repair rather than rare illegitimate and potentially oncogenic junctions outside of Ig loci. We show that in human B cells, legitimate synapsis and repair efficiently join Ig genes whether physically linked on one chromosome or located apart on both alleles. This indicates mechanisms faithfully recognizing and/or pairing loci with homology in structure and accessibility, thus licensing interchromosomal trans-CSR junctions while usually preventing illegitimate interchromosomal recombination with AID off-target genes. Physical linkage of IgH genes in cis on the same allele just increases the likelihood of legitimate repair by another fourfold. The strongest force driving CSR might thus be recognition of legitimate target genes. Formation of IgH intra-allelic loops along this process would then constitute a consequence rather than a pre-requisite of this gene-pairing process.

  6. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  7. Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams

    Science.gov (United States)

    Shimamura, Shigeru; Kaneko, Takashi; Ozawa, Genki; Matsumoto, Mamiko Nishino; Koshiishi, Takeru; Takaki, Yoshihiro; Kato, Chiaki; Takai, Ken; Yoshida, Takao; Fujikura, Katsunori; Barry, James P.

    2017-01-01

    Intracellular thioautotrophic symbionts of deep-sea vesicomyid clams lack some DNA repair genes and are thought to be undergoing reductive genome evolution (RGE). In this study, we addressed two questions, 1) how these symbionts lost their DNA repair genes and 2) how such losses affect RGE. For the first question, we examined genes associated with nucleotide excision repair (NER; uvrA, uvrB, uvrC, uvrD, uvrD paralog [uvrDp] and mfd) in 12 symbionts of vesicomyid clams belonging to two clades (5 clade I and 7 clade II symbionts). While uvrA, uvrDp and mfd were conserved in all symbionts, uvrB and uvrC were degraded in all clade I symbionts but were apparently intact in clade II symbionts. UvrD was disrupted in two clade II symbionts. Among the intact genes in Ca. Vesicomyosocius okutanii (clade I), expressions of uvrD and mfd were detected by reverse transcription-polymerase chain reaction (RT-PCR), but those of uvrA and uvrDp were not. In contrast, all intact genes were expressed in the symbiont of Calyptogena pacifica (clade II). To assess how gene losses affect RGE (question 2), genetic distances of the examined genes in symbionts from Bathymodiolus septemdierum were shown to be larger in clade I than clade II symbionts. In addition, these genes had lower guanine+cytosine (GC) content and higher repeat sequence densities in clade I than measured in clade II. Our results suggest that NER genes are currently being lost from the extant lineages of vesicomyid clam symbionts. The loss of NER genes and mutY in these symbionts is likely to promote increases in genetic distance and repeat sequence density as well as reduced GC content in genomic genes, and may have facilitated reductive evolution of the genome. PMID:28199404

  8. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    Full Text Available BACKGROUND: The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes. METHODOLOGY/PRINCIPAL FINDINGS: A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs. A recent Beijing genotype (Bmyc10, which included 60% of strains from distinct parts of the world, appeared to be predominant. CONCLUSIONS/SIGNIFICANCE: We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  9. Orchestrating the nucleases involved in DNA interstrand cross-link (ICL) repair.

    Science.gov (United States)

    Sengerová, Blanka; Wang, Anderson T; McHugh, Peter J

    2011-12-01

    DNA interstrand cross-links (ICLs) pose a significant threat to genomic and cellular integrity by blocking essential cellular processes, including replication and transcription. In mammalian cells, much ICL repair occurs in association with DNA replication during S phase, following the stalling of a replication fork at the block caused by an ICL lesion. Here, we review recent work showing that the XPF-ERCC1 endonuclease and the hSNM1A exonuclease act in the same pathway, together with SLX4, to initiate ICL repair, with the MUS81-EME1 fork incision activity becoming important in the absence of the XPF-SNM1A-SLX4-dependent pathway. Another nuclease, the Fanconi anemia-associated nuclease (FAN1), has recently been implicated in the repair of ICLs, and we discuss the possible ways in which the activities of different nucleases at the ICL-stalled replication fork may be coordinated. In relation to this, we briefly speculate on the possible role of SLX4, which contains XPF and MUS81- interacting domains, in the coordination of ICL repair nucleases.

  10. Excision repair cross complementation group 1 polymorphisms and lung cancer risk: a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    CAO Chao; DENG Zai-chun; ZHANG Yan-mei; WANG Ran; SUN Shi-fang; CHEN Zhong-bo; MA Hong-ying; YU Yi-ming; DING Qun-li; SHU Li-hua

    2011-01-01

    Background Several studies have evaluated the association between polymorphisms of encoding excision repair cross complementation group 1 (ERCC1) enzyme and lung cancer risk in diverse populations but with conflicting results.By pooling the relatively small samples in each study, it is possible to perform a meta-analysis of the evidence by rigorous methods.Methods Embase, Ovid, Medline and Chinese National Knowledge Infrastructure were searched. Additional studies were identified from references in original studies or review articles. Articles meeting the inclusion criteria were reviewed systematically, and the reported data were aggregated using the statistical techniques of meta-analysis.Results We found 3810 cases with lung cancer and 4332 controls from seven eligible studies. T19007C polymorphism showed no significant effect on lung cancer risk (C allele vs. T allele: odds ratio (OR)=0.91, 95% confidence interval (CI)=0.80-1.04; CC vs. TT: OR=0.76, 95% CI=0.56-1.02; CC vs. (CT+TT): OR=0.96, 95% CI=-0.84-1.10). Similarly,there was no significant main effects for T19007C polymorphism on lung cancer risk when stratified analyses by ethnicity (Chinese or Caucasian). No significant association was found between C8092A polymorphism (3060 patients and 2729 controls) and the risk of lung cancer (A allele vs. C allele: OR=1.03, 95% CI=0.95-1.11; AA vs. CC: OR=1.08, 95% CI=-0.88-1.33; AA vs. (AC+CC): OR=1.08, 95% CI=-0.88-1.31).Conclusion We found little evidence of an association between the T1900C or C8092A polymorphisms of ERCC 1 and the risk of lung cancer in Caucasian or Han Chinese people.

  11. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor {beta}{sub 1} gene

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Liu Kai [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Quan Daping [Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-12-15

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-{beta}{sub 1}) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-{beta}{sub 1} that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-{beta}{sub 1} gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA{sub 3}-TGF-{beta}{sub 1} gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA{sub 3} gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of

  12. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.

    OpenAIRE

    Lewis, L K; Westmoreland, J W; Resnick, M A

    1999-01-01

    Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid ce...

  13. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Reinardy, Helena C.; Syrett, James R. [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Jeffree, Ross A. [Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Henry, Theodore B., E-mail: ted.henry@plymouth.ac.uk [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996. USA (United States); Jha, Awadhesh N. [School of Biomedical and Biological Sciences, The University of Plymouth (United Kingdom)

    2013-01-15

    Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. {sup 60}Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC{sub 50}) in larval zebrafish exposed (96 h) to 0-50 mg l{sup -1} Co was 35.3 {+-} 1.1 (95% C.I.) mg l{sup -1} Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l{sup -1}) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l{sup -1}) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l{sup -1}). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l{sup -1} Co relative to controls. Induction of 4.0 {+-} 0.9, 2.5 {+-} 0.7, and 3.1 {+-} 0.7-fold change (mean {+-} S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l{sup -1}). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success.

  14. Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells.

    Science.gov (United States)

    Wang, Yebo; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan

    2016-11-28

    Human embryonic stem cells (hESCs) are used as platforms for disease study, drug screening and cell-based therapy. To facilitate these applications, it is frequently necessary to genetically manipulate the hESC genome. Gene editing with engineered nucleases enables site-specific genetic modification of the human genome through homology-directed repair (HDR). However, the frequency of HDR remains low in hESCs. We combined efficient expression of engineered nucleases and integration-defective lentiviral vector (IDLV) transduction for donor template delivery to mediate HDR in hESC line WA09. This strategy led to highly efficient HDR with more than 80% of the selected WA09 clones harboring the transgene inserted at the targeted genomic locus. However, certain portions of the HDR clones contained the concatemeric IDLV genomic structure at the target site, probably resulted from recombination of the IDLV genomic input before HDR with the target. We found that the integrase protein of IDLV mediated the highly efficient HDR through the recruitment of a cellular protein, LEDGF/p75. This study demonstrates that IDLV-mediated HDR is a powerful and broadly applicable technology to carry out site-specific gene modification in hESCs.

  15. Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas

    Directory of Open Access Journals (Sweden)

    Walsh Tom

    2009-07-01

    Full Text Available Abstract Background DNA repair genes critically regulate the cellular response to chemotherapy and epigenetic regulation of these genes may be influenced by chemotherapy exposure. Restoration of BRCA1 and BRCA2 mediates resistance to platinum chemotherapy in recurrent BRCA1 and BRCA2 mutated hereditary ovarian carcinomas. We evaluated BRCA1, BRCA2, and MLH1 protein expression in 115 sporadic primary ovarian carcinomas, of which 31 had paired recurrent neoplasms collected after chemotherapy. Additionally, we assessed whether promoter methylation of BRCA1, MLH1 or FANCF influenced response to chemotherapy or explained alterations in protein expression after chemotherapy exposure. Results Of 115 primary sporadic ovarian carcinomas, 39 (34% had low BRCA1 protein and 49 (42% had low BRCA2 expression. BRCA1 and BRCA2 protein expression were highly concordant (p Conclusion Low BRCA1 expression in primary sporadic ovarian carcinoma is associated with prolonged survival. Recurrent ovarian carcinomas commonly have increased BRCA1 and/or BRCA2 protein expression post chemotherapy exposure which could mediate resistance to platinum based therapies. However, alterations in expression of these proteins after chemotherapy are not commonly mediated by promoter methylation, and other regulatory mechanisms are likely to contribute to these alterations.

  16. Defects in the DNA repair and transcription gene ERCC2(XPD) in trichothiodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, K.; Salazar, E.P.; Thompson, L.H. [Lawrence Livermore National Lab., CA (United States)] [and others

    1996-02-01

    Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair with reduced sulfur content, ichthyosis, peculiar face, and mental and growth retardation. Clinical photosensitivity is present in {approximately}50% of TTD patients but is not associated with an elevated frequency of cancers. Previous complementation studies show that the photosensitivity in nearly all of the studied patients is due to a defect in the same genetic locus that underlies the cancer-prone genetic disorder xeroderma pigmentosum group D (XP-D). Nucleotide-sequence analysis of the ERCC2 cDNA from three TTD cell strains (TTD1VI, TTD3VI, and TTD1RO) revealed mutations within the region from amino acid 713-730 and within previously identified helicase functional domains. The various clinical presentations and DNA repair characteristics of the cell strains can be correlated with the particular mutations found in the ERCC2 locus. Mutations of Arg658 to either His or Cys correlate with TTD cell strains with intermediate UV-sensitivity, mutation of Arg722 to Trp correlates with highly UV-sensitive TTD cell strains, and mutation of Arg683 to Trp correlates with XP-D. Alleles with mutation of Arg616 to Pro or with the combined mutation of Leu461 to Val and deletion of 716-730 are found in both XP-D and TTD cell strains. 39 refs., 2 figs., 3 tabs.

  17. Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome.

    Science.gov (United States)

    Woollard, Wesley J; Pullabhatla, Venu; Lorenc, Anna; Patel, Varsha M; Butler, Rosie M; Bayega, Anthony; Begum, Nelema; Bakr, Farrah; Dedhia, Kiran; Fisher, Joshua; Aguilar-Duran, Silvia; Flanagan, Charlotte; Ghasemi, Aria A; Hoffmann, Ricarda M; Castillo-Mosquera, Nubia; Nuttall, Elisabeth A; Paul, Arisa; Roberts, Ceri A; Solomonidis, Emmanouil G; Tarrant, Rebecca; Yoxall, Antoinette; Beyers, Carl Z; Ferreira, Silvia; Tosi, Isabella; Simpson, Michael A; de Rinaldis, Emanuele; Mitchell, Tracey J; Whittaker, Sean J

    2016-06-30

    Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.

  18. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

    Directory of Open Access Journals (Sweden)

    van Roekel Henk S

    2008-10-01

    Full Text Available Abstract Background The laboratory rat (Rattus norvegicus is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest.

  19. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

    Science.gov (United States)

    van Boxtel, Ruben; Toonen, Pim W; Verheul, Mark; van Roekel, Henk S; Nijman, Isaac J; Guryev, Victor; Cuppen, Edwin

    2008-01-01

    Background The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest. PMID:18840264

  20. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Pawel Domagala

    Full Text Available This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs and to poly(ADP-ribose polymerase (PARP inhibitors.Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.Thirty five (22.2% of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7% of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%, and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%. In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined were identified in the hereditary non-triple-negative group.Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.

  1. Polymorphisms in DNA repair genes XRCC2 and XRCC3 risk of gastric cancer in Turkey

    Directory of Open Access Journals (Sweden)

    İlhami Gok

    2014-09-01

    Full Text Available We studied the prevalence of polymorphisms in genes XRCC2 and XRCC3 in stomach cancer patients who lived in North Eastern Turkey. A total of 61 cancer patients and 78 controls were included in this study. Single nucleotide changes were studied in XRCC2 and XRCC3 genes at locus Arg188His and Thr241Met. Blood samples were taken from the patients and controls, and DNA was isolated. The regions of interest were amplified using a polymerase chain reaction method. After amplification, we used restriction enzymes (HphI and NcoI to digest the amplified product. Digested product was then run through gel electrophoresis. We identified changes in the nucleotides in these specific regions. It was found that the Arg188His polymorphism of the XRCC2 gene was about 39% (24 out of the 61 among cancer patients. However, only 15% (12 out of 78 of the control group indicated this polymorphism. We also observed that 18 of the 61 cancer patients (29% carried the Thr241Met polymorphism of the XRCC3 gene whereas 11 of the 78 (14% individuals in the control group had the polymorphism. Our results showed a significant difference in polymorphism ratios between the cancer patients and health control group for the regions of interest. This result clearly showed that these polymorphisms increase the risk of stomach cancer and might be a strong marker for early diagnosis of gastric cancer.

  2. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause

    DEFF Research Database (Denmark)

    Perry, John R B; Hsu, Yi-Hsiang; Chasman, Daniel I

    2014-01-01

    The length of female reproductive lifespan is associated with multiple adverse outcomes, including breast cancer, cardiovascular disease and infertility. The biological processes that govern the timing of the beginning and end of reproductive life are not well understood. Genetic variants are kno...... to contribute to ∼50% of the variation in both age at menarche and menopause, but to date the known genes explain...

  3. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    Science.gov (United States)

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner.

  4. The Effect of Polymorphisms in DNA Repair Genes and Carcinogen Metabolizers on Leukocyte Telomere Length: A Cohort of Healthy Spanish Smokers.

    Science.gov (United States)

    Verde, Zoraida; Reinoso-Barbero, Luis; Chicharro, Luis; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina

    2016-04-01

    Smoking implies exposure to carcinogenic agents that causes DNA damage, which could be suspected to enhance telomere attrition. To protect and deal with DNA damage, cells possess mechanisms that repair and neutralize harmful substances. Polymorphisms altering DNA repair capacity or carcinogen metabolism may lead to synergistic effects with tobacco carcinogen-induced shorter telomere length independently of cancer interaction. The aim of this study was to explore the association between leukocyte telomere length (LTL) and several genetic polymorphisms in DNA repair genes and carcinogen metabolizers in a cohort of healthy smokers. We evaluated the effect of six genetic polymorphisms in cytochrome P1A1 (Ile462Val), XRCC1 (Arg399Gln), APEX1 (Asp148Glu), XRCC3 (Thr241Met), and XPD (Asp312Asn; Lys751Gln) on LTL in a cohort of 145 healthy smokers in addition to smoking habits. Logistic regression analysis showed an association between XRCC1 399Gln allele and shorter telomere length (OR = 5.03, 95% CI = 1.08% to 23.36%). There were not association between the rest of polymorphisms analyzed and LTL. Continuous exposure to tobacco could overwhelm the DNA repair machinery, making the effect of the polymorphisms that reduce repair capacity more pronounced. Analyzing the function of smoking-induced DNA-repair genes and LTL is an important goal in order to identify therapeutic targets to treat smoking-induced diseases. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Gene expression and DNA repair in progeroid syndromes and human aging.

    Science.gov (United States)

    Kyng, Kasper J; Bohr, Vilhelm A

    2005-11-01

    Human progeroid syndromes are caused by mutations in single genes accelerating some but not all features of normal aging. Most progeroid disorders are linked to defects in genome maintenance, and while it remains unknown if similar processes underlie normal and premature aging, they provide useful models for the study of aging. Altered transcription is speculated to play a causative role in aging, and is involved in the pathology of most if not all progeroid syndromes. Previous studies demonstrate that there is a similar pattern of gene expression changes in primary cells from old and Werner syndrome compared to young suggesting a presence of common cellular aging mechanisms in old and progeria. Here we review the role of transcription in progeroid syndromes and discuss the implications of similar transcription aberrations in normal and premature aging.

  6. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair.

    Directory of Open Access Journals (Sweden)

    Nicole Bennardo

    2008-06-01

    Full Text Available Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ, single-strand annealing (SSA, and homology directed repair (HDR/GC. Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI-induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy.

  7. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair.

    Directory of Open Access Journals (Sweden)

    Nicole Bennardo

    2008-06-01

    Full Text Available Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ, single-strand annealing (SSA, and homology directed repair (HDR/GC. Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI-induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy.

  8. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos.

    Science.gov (United States)

    Yu, Shuangying; Tang, Song; Mayer, Gregory D; Cobb, George P; Maul, Jonathan D

    2015-02-01

    Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides increased transcript abundance of CSA and MUTL. In addition, mRNA abundance of HSP70 and GADD45α were increased by endosulfan and mRNA abundance of XPG was increased by α-cypermethrin. XPC, HR23B, XPG, and GADD45α exhibited elevated mRNA concentrations whereas there was a reduction in MUTL transcript concentrations in UVB-alone treatments. It appeared that even

  9. Participation of different genes in the ruptures repair of double chain in Escherichia coli stumps exposed to gamma radiation; Participacion de diferentes genes en la reparacion de rupturas de doble cadena en cepas de Escherichia coli expuestas a radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Serment G, J. H.; Martinez M, E.; Alcantara D, D., E-mail: jorge.serment@inin.gob.mx [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-05-01

    All living organisms are naturally exposed to radiation from different sources. Ionizing radiation produces a plethora of lesions upon DNA that can be categorized as single and double strand breaks and base damage. Among them, unrepaired double strand breaks (Dbs) have the greatest biological significance, since they are responsible of cell death. In Escherichia coli this kind of lesions are repaired mostly by homologous recombination. In this work the participation of some recombination genes in the repair of Dbs is evaluated. Escherichia coli defective strains were exposed to gamma radiation and incubated for different periods in ideal conditions. Both micro electrophoresis and pulse field gel electrophoresis techniques were used to evaluate the kinetics of repair of such lesions, reflecting the importance of each defective gene in the process. (Author)

  10. The novel quinolone CHM-1 induces DNA damage and inhibits DNA repair gene expressions in a human osterogenic sarcoma cell line.

    Science.gov (United States)

    Chen, Hung-Yi; Lu, Hsu-Feng; Yang, Jai-Sing; Kuo, Sheng-Chu; Lo, Chyi; Yang, Mei-Due; Chiu, Tsan-Hung; Chueh, Fu-Shin; Ho, Heng-Chien; Ko, Yang-Ching; Chung, Jing-Gung

    2010-10-01

    20-Fluoro-6,7-methylenedioxy-2-phenyl-4-quino-lone (CHM-1) has been reported to induce cell cycle arrest and apoptosis in many types of cancer cells. However, there is no available information to show CHM-1 affecting DNA damage and expression of associated repair genes. Herein, we investigated whether or not CHM-1 induced DNA damage and affected DNA repair gene expression in U-2 OS human osterogenic sarcoma cells. The comet assay showed that incubation of U-2 OS cells with 0, 0.75, 1.5, 3 and 6 μM of CHM-1 led to a longer DNA migration smear (comet tail). DNA gel electrophoresis showed that 3 μM of CHM-1 for 24 and 48 h treatment induced DNA fragmentation in U-2 OS cells. Real-time PCR analysis showed that treatment with 3 μM of CHM-1 for 24 h reduced the mRNA expression levels of ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR), breast cancer 1, early onset (BRCA1), 14-3-3sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK) and O(6)-methylguanine-DNA methyltransferase (MGMT) genes in a time-dependent manner. Taken together, the results indicate that CHM-1 caused DNA damage and reduced DNA repair genes in U-2 OS cells, which may be the mechanism for CHM-1-inhibited cell growth and induction of apoptosis.

  11. The human Bloom syndrome gene suppresses the DNA replication and repair defects of yeast dna2 mutants.

    Science.gov (United States)

    Imamura, Osamu; Campbell, Judith L

    2003-07-08

    Bloom syndrome is a disorder of profound and early cancer predisposition in which cells become hypermutable, exhibit high frequency of sister chromatid exchanges, and show increased micronuclei. BLM, the gene mutated in Bloom syndrome, has been cloned previously, and the BLM protein is a member of the RecQ family of DNA helicases. Many lines of evidence suggest that BLM is involved either directly in DNA replication or in surveillance during DNA replication, but its specific roles remain unknown. Here we show that hBLM can suppress both the temperature-sensitive growth defect and the DNA damage sensitivity of the yeast DNA replication mutant dna2-1. The dna2-1 mutant is defective in a helicase-nuclease that is required either to coordinate with the crucial Saccharomyces cerevisiae (sc) FEN1 nuclease in Okazaki fragment maturation or to compensate for scFEN1 when its activity is impaired. We show that human BLM interacts with both scDna2 and scFEN1 by using coimmunoprecipitation from yeast extracts, suggesting that human BLM participates in the same steps of DNA replication or repair as scFEN1 and scDna2.

  12. Inactivation of RAD52 and HDF1 DNA repair genes leads to premature chronological aging and cellular instability

    Indian Academy of Sciences (India)

    SILVIA MERCADO-SÁENZ; BEATRIZ LÓPEZ-DÍAZ; FRANCISCO SENDRA-PORTERO; MANUEL MARTÍNEZ-MORILLO; MIGUEL J RUIZ-GÓMEZ

    2017-06-01

    The present study aims to investigate the role of radiation sensitive 52 (RAD52) and high-affinity DNA binding factor1 (HDF1) DNA repair genes on the life span of budding yeasts during chronological aging. Wild type (wt) and rad52,hdf1, and rad52 hdf1 mutant Saccharomyces cerevisiae strains were used. Chronological aging and survival assayswere studied by clonogenic assay and drop test. DNA damage was analyzed by electrophoresis after phenol extraction.Mutant analysis, colony forming units and the index of respiratory competence were studied by growing on dextroseand glycerol plates as a carbon source. Rad52 and rad52 hdf1 mutants showed a gradual decrease in surviving fractionin relation to wt and hdf1 mutant during aging. Genomic DNA was spontaneously more degraded during aging,mainly in rad52 mutants. This strain showed an increased percentage of revertant colonies. Moreover, all mutantsshowed a decrease in the index of respiratory competence during aging. The inactivation of RAD52 leads to prematurechronological aging with an increase in DNA degradation and mutation frequency. In addition, RAD52 and HDF1contribute to maintain the metabolic state, in a different way, during chronological aging. The results obtained couldhave important implications in the chronobiology of aging.

  13. Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Gloria A. Santa-Gonzalez

    2016-10-01

    Full Text Available Many environmental and physiological stresses are chronic. Thus, cells are constantly exposed to diverse types of genotoxic insults that challenge genome stability, including those that induce oxidative DNA damage. However, most in vitro studies that model cellular response to oxidative stressors employ short exposures and/or acute stress models. In this study, we tested the hypothesis that chronic and repeated exposure to a micromolar concentration of hydrogen peroxide (H2O2 could activate DNA damage responses, resulting in cellular adaptations. For this purpose, we developed an in vitro model in which we incubated mouse myoblast cells with a steady concentration of ~50 μM H2O2 for one hour daily for seven days, followed by a final challenge of a 10 or 20X higher dose of H2O2 (0.5 or 1 mM. We report that intermittent long-term exposure to this oxidative stimulus nearly eliminated cell toxicity and significantly decreased genotoxicity (in particular, a >5-fold decreased in double-strand breaks resulting from subsequent acute exposure to oxidative stress. This protection was associated with cell cycle arrest in G2/M and induction of expression of nine DNA repair genes. Together, this evidence supports an adaptive response to chronic, low-level oxidative stress that results in genomic protection and up-regulated maintenance of cellular homeostasis.

  14. Evolution of DNA Double-Strand Break Repair by Gene Conversion: Coevolution Between a Phage and a Restriction-Modification System

    Science.gov (United States)

    Yahara, Koji; Horie, Ryota; Kobayashi, Ichizo; Sasaki, Akira

    2007-01-01

    The necessity to repair genome damage has been considered to be an immediate factor responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading DNA from several bacteriophages initiates recombinational repair by gene conversion if there is homologous DNA. In this work, we modeled the interaction between a bacteriophage and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus on the bacteriophage genome has either a restriction-sensitive or a restriction-resistant allele, and another locus determines whether it is recombination/repair proficient or defective. A restriction break can be repaired by a co-infecting phage genome if one of them is recombination/repair proficient. We define the fitness of phage (resistant/sensitive and repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by assuming random encounter of the genotypes, with given probabilities of single and double infections, and the costs of resistance, repair, and restriction. Our results show the evolution of the repair allele depends on \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}b_{1}/b_{0},\\end{equation*}\\end{document} the ratio of the burst size \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}b_{1}\\end{equation*}\\end{document} under damage to host cell physiology induced by an unrepaired double-strand break to the default burst size \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage

  15. Micronuclei in humans induced by exposure to low level of ionizing radiation: influence of polymorphisms in DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Sabrina [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy) and Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden)]. E-mail: angelini@biocfarm.unibo.it; Kumar, Rajiv [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Carbone, Fabio [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy); Maffei, Francesca [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy); Forti, Giorgio Cantelli [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy); Violante, Francesco Saverio [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Occupational Medicine Unit, S. Orsola-Malpighi Hospital, Via Pelagi 9, Bologna 40100 (Italy); Lodi, Vittorio [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Curti, Stefania [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Hemminki, Kari [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Hrelia, Patrizia [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy)

    2005-02-15

    Understanding the risks deriving from protracted exposure to low doses of ionizing radiation has remarkable societal importance in view of the large number of work settings in which sources of IR are encountered. To address this question, we studied the frequency of micronuclei (MN), which is an indicator of DNA damage, in a population exposed to low levels of ionizing radiation and in matched controls. In both exposed population and controls, the possible influence of single nucleotide polymorphisms in XRCC1, XRCC3 and XPD genes on the frequency of micronuclei was also evaluated. We also considered the effects of confounding factors, like smoking status, age and gender. The results indicated that MN frequency was significantly higher in the exposed workers than in the controls [8.62 {+-} 2.80 versus 6.86 {+-} 2.65; P = 0.019]. Radiological workers with variant alleles for XRCC1 or XRCC3 polymorphisms or wild-type alleles for XPD exon 23 or 10 polymorphisms showed a significantly higher MN frequency than controls with the same genotypes. Smoking status did not affect micronuclei frequency either in exposed workers or controls, while age was associated with increased MN frequency in the exposed only. In the combined population, gender but not age exerted an influence on the yield of MN, being higher in females than in males. Even though there is a limitation in this study due to the small number of subjects, these results suggest that even exposures to low level of ionizing radiation could have genotoxic effects and that XRCC3, XRCC1 and XPD polymorphisms might contribute to the increased genetic damage in susceptible individuals occupationally exposed to chronic low levels of ionizing radiation. For a clear conclusion on the induction of DNA damage caused by protracted exposure to low doses of ionizing radiation and the possible influence of genetic polymorphism in DNA repair genes larger studies are needed.

  16. Assessing SNP-SNP interactions among DNA repair, modification and metabolism related pathway genes in breast cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available Genome-wide association studies (GWASs have identified low-penetrance common variants (i.e., single nucleotide polymorphisms, SNPs associated with breast cancer susceptibility. Although GWASs are primarily focused on single-locus effects, gene-gene interactions (i.e., epistasis are also assumed to contribute to the genetic risks for complex diseases including breast cancer. While it has been hypothesized that moderately ranked (P value based weak single-locus effects in GWASs could potentially harbor valuable information for evaluating epistasis, we lack systematic efforts to investigate SNPs showing consistent associations with weak statistical significance across independent discovery and replication stages. The objectives of this study were i to select SNPs showing single-locus effects with weak statistical significance for breast cancer in a GWAS and/or candidate-gene studies; ii to replicate these SNPs in an independent set of breast cancer cases and controls; and iii to explore their potential SNP-SNP interactions contributing to breast cancer susceptibility. A total of 17 SNPs related to DNA repair, modification and metabolism pathway genes were selected since these pathways offer a priori knowledge for potential epistatic interactions and an overall role in breast carcinogenesis. The study design included predominantly Caucasian women (2,795 cases and 4,505 controls from Alberta, Canada. We observed two two-way SNP-SNP interactions (APEX1-rs1130409 and RPAP1-rs2297381; MLH1-rs1799977 and MDM2-rs769412 in logistic regression that conferred elevated risks for breast cancer (P(interaction<7.3 × 10(-3. Logic regression identified an interaction involving four SNPs (MBD2-rs4041245, MLH1-rs1799977, MDM2-rs769412, BRCA2-rs1799943 (P(permutation = 2.4 × 10(-3. SNPs involved in SNP-SNP interactions also showed single-locus effects with weak statistical significance, while BRCA2-rs1799943 showed stronger statistical significance (P

  17. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuangying, E-mail: shuangying.yu@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Tang, Song, E-mail: song.tang@usask.ca [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Mayer, Gregory D., E-mail: greg.mayer@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Cobb, George P., E-mail: george_cobb@baylor.edu [Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798 (United States); Maul, Jonathan D., E-mail: jonathan.maul@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States)

    2015-02-15

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  18. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Han, Jeonghoon [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon [Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Su-Jae [Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Heum Gi, E-mail: hgpark@gwnu.ac.kr [Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m{sup 2}) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m{sup 2} of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  19. Association between Genetic Polymorphisms of DNA Repair Genes and Chromosomal Damage for 1,3-Butadiene-Exposed Workers in a Matched Study in China

    OpenAIRE

    2015-01-01

    The aim of the study was to examine the association between polymorphisms of DNA repair genes and chromosomal damage of 1,3-butadiene- (BD-) exposed workers. The study was conducted in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and a circulatory water workshop in China. Newly developed biomarkers (micronuclei, MNi; nucleoplasmic bridges, NPBs; nuclear buds, NBUDs) in the cytokinesis-blocked micronucleus (CBMN) cy...

  20. Germ line mutations of mismatch repair genes in hereditary nonpolyposis colorectal cancer patients with small bowel cancer: International Society for Gastrointestinal Hereditary Tumours Collaborative Study

    DEFF Research Database (Denmark)

    Park, Jae-Gahb; Kim, Duck-Woo; Hong, Chang Won;

    2006-01-01

    PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members of the Internatio.......8%, P teens. The distribution of MSH2 mutations found in patients with HNPCC-associated SBCs significantly differed from that found in the control group (P

  1. Association between Genetic Polymorphisms of DNA Repair Genes and Chromosomal Damage for 1,3-Butadiene-Exposed Workers in a Matched Study in China.

    Science.gov (United States)

    Xiang, Menglong; Sun, Lei; Dong, Xiaomei; Yang, Huan; Liu, Wen-bin; Zhou, Niya; Han, Xue; Zhou, Ziyuan; Cui, Zhihong; Liu, Jing-yi; Cao, Jia; Ao, Lin

    2015-01-01

    The aim of the study was to examine the association between polymorphisms of DNA repair genes and chromosomal damage of 1,3-butadiene- (BD-) exposed workers. The study was conducted in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and a circulatory water workshop in China. Newly developed biomarkers (micronuclei, MNi; nucleoplasmic bridges, NPBs; nuclear buds, NBUDs) in the cytokinesis-blocked micronucleus (CBMN) cytome assay were adopted to detect chromosomal damage. PCR and PCR-restriction fragment length polymorphism (RFLP) are adopted to analyze polymorphisms of DNA repair genes, such as X-ray repair cross-complementing Group 1 (XRCC1), O6-methylguanine-DNA methyltransferase (MGMT), poly (adenosine diphosphate-ribose) polymerases (ADPRT), and apurinic/apyrimidinic endonucleases (APE1). The BD-exposed workers exhibited increased frequencies of MNi and NPBs when compared to subjects in the control group. The results also show that the BD-exposed workers carrying XRCC1 diplotypes TCGA-CCGG (4.25 ± 2.06 ‰) (FR = 2.10, 95% CI: 1.03-4.28) and TCGG-TCGA (5.80 ± 3.56 ‰) (FR = 2.75, 95% CI: 0.76-2.65) had statistically higher NBUD frequencies than those who carried diplotype TCGG-TCGG (1.89 ± 1.27 ‰). Our study suggests that polymorphisms of XRCC1 gene may influence chromosomal damage in BD-exposed workers.

  2. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana.

    Science.gov (United States)

    Won, Eun-Ji; Han, Jeonghoon; Lee, Yeonjung; Kumar, K Suresh; Shin, Kyung-Hoon; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-08-01

    To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0-3kJ/m(2)) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7-87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (Pnana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1kJ/m(2) of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  3. Normal repair of ultraviolet radiation-induced DNA damage in familial melanoma without CDKN2A or CDK4 gene mutation.

    Science.gov (United States)

    Shannon, J A; Matias, C; Luxford, C; Kefford, R F; Mann, G J

    1999-04-01

    Excessive sun exposure and family history are strong risk factors for the development of cutaneous melanoma. Inherited susceptibility to this type of skin cancer could therefore result from constitutively impaired capacity to repair ultraviolet (UV)-induced DNA lesions. While a proportion of familial melanoma kindreds exhibit germline mutations in the cell cycle regulatory gene CDKN2A (p16INK4a) or its protein target, cyclin-dependent kinase 4 (CDK4), the biochemical basis of most familial melanoma is unknown. We have examined lymphoblastoid cell lines from melanoma-affected and unaffected individuals from large hereditary melanoma kindreds which are not attributable to CDKN2A or CDK4 gene mutation. These lines were tested for sensitivity of clonogenic growth to UV radiation and for their ability to repair transfected UV-damaged plasmid templates (host cell reactivation). Two of seven affected-unaffected pairs differed in colony survival after exposure to UVB radiation; however, no significant differences were observed in the host-cell reactivation assays. These results indicate that melanoma susceptibility genes other than CDKN2A and CDK4 do not impair net capacity to repair UV-induced DNA damage.

  4. Polymorphisms in DNA Repair Gene XRCC3 and Susceptibility to Breast Cancer in Saudi Females

    Directory of Open Access Journals (Sweden)

    Alaa Mohammed Ali

    2016-01-01

    Full Text Available We investigated three common polymorphisms (SNPs in the XRCC3 gene (rs861539, rs1799794, and rs1799796 in 143 Saudi females suffering from breast cancer (median age = 51.4 years and 145 age matched normal healthy controls. DNA was extracted from whole blood and genotyping was conducted using PCR-RFLP. rs1799794 showed significant association, where AA and AA+AG occurred at a significantly higher frequency in the cancer patients compared to the control group (OR: 28.1; 95% CI: 3.76–21.12; χ2: 22.82; pT and rs1799796 A>G did not show a significant difference when the results in the patients and controls were compared. However, the frequency of rs1799796 differed significantly in patients with different age of diagnosis, tumor grade, and ER and HER2 status. The wild type A allele occurred at a higher frequency in the ER− and HER2− group. Our results among Saudis suggest that some variations in XRCC3 may contribute to breast cancer susceptibility. In conclusion, the results obtained during this study suggest that rs1799794 in XRCC3 shows strong association with breast cancer development in Saudi females.

  5. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    Science.gov (United States)

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and

  6. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    Science.gov (United States)

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and

  7. Influence of DNA repair gene polymorphisms of hOGG1, XRCC1, XRCC3, ERCC2 and the folate metabolism gene MTHFR on chromosomal aberration frequencies.

    Science.gov (United States)

    Skjelbred, Camilla Furu; Svendsen, Marit; Haugan, Vera; Eek, Anette Kildal; Clausen, Kjell Oskar; Svendsen, Martin Veel; Hansteen, Inger-Lise

    2006-12-01

    We have studied the effect of genetic polymorphisms in the DNA repair genes hOGG1, XRCC1, XRCC3, ERCC2 and the MTHFR gene in the folate metabolism on the frequencies of cells with chromosomal aberrations (CA), chromosome-type aberrations (CSA), chromatid-type aberrations (CTA), chromatid breaks (CTB) and chromatid gaps (CTG) scored in peripheral blood lymphocytes from 651 Norwegian subjects of Caucasian descendant. DNA was extracted from fixed cell suspensions. The log-linear Poisson regression model was used for the combined data which included age, smoking, occupational exposure and genotype for 449 subjects. Our results suggest that individuals carrying the hOGG1 326Cys or the XRCC1 399Gln allele have an increased risk of chromosomal damage, while individuals carrying the XRCC1 194Trp or the ERCC2 751Gln allele have a reduced risk regardless of smoking habits and age. Individuals carrying the XRCC1 280His allele had an increased risk of CSA which was only apparent in non-smokers. This was independent of age. A protective effect of the XRCC3 241Met allele was only found in the older age group in non-smokers for CA, CSA and CTA, and in smokers for CSA. In the youngest age group, the opposite effect was found, with an increased risk for CA, CTA and CTG in smokers. Carrying the MTHFR 222Val allele gave an increased risk for chromosome and chromatid-type aberrations for both non-smokers and smokers, especially for individuals in the older age group, and with variable results in the youngest age group. The variables included in the different regression models accounted, however, for only 4-10% of the variation. The frequency ratio for CTG was significantly higher than for CTA and CTB for only 7 of the 43 comparisons performed. Some of the gap frequencies diverge from the trend in the CA, CSA, CTA and CTB results.

  8. Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA.

    Science.gov (United States)

    Burghout, Peter; Bootsma, Hester J; Kloosterman, Tomas G; Bijlsma, Jetta J E; de Jongh, Christa E; Kuipers, Oscar P; Hermans, Peter W M

    2007-09-01

    We applied a novel negative selection strategy called genomic array footprinting (GAF) to identify genes required for genetic transformation of the gram-positive bacterium Streptococcus pneumoniae. Genome-wide mariner transposon mutant libraries in S. pneumoniae strain R6 were challenged by transformation with an antibiotic resistance cassette and growth in the presence of the corresponding antibiotic. The GAF screen identified the enrichment of mutants in two genes, i.e., hexA and hexB, and the counterselection of mutants in 21 different genes during the challenge. Eight of the counterselected genes were known to be essential for pneumococcal transformation. Four other genes, i.e., radA, comGF, parB, and spr2011, have previously been linked to the competence regulon, and one, spr2014, was located adjacent to the essential competence gene comFA. Directed mutants of seven of the eight remaining genes, i.e., spr0459-spr0460, spr0777, spr0838, spr1259-spr1260, and spr1357, resulted in reduced, albeit modest, transformation rates. No connection to pneumococcal transformation could be made for the eighth gene, which encodes the response regulator RR03. We further demonstrated that the gene encoding the putative DNA repair protein RadA is required for efficient transformation with chromosomal markers, whereas transformation with replicating plasmid DNA was not significantly affected. The radA mutant also displayed an increased sensitivity to treatment with the DNA-damaging agent methyl methanesulfonate. Hence, RadA is considered to have a role in recombination of donor DNA and in DNA damage repair in S. pneumoniae.

  9. Down-regulation of the Nucleotide Excision Repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells

    Directory of Open Access Journals (Sweden)

    Geroni Cristina

    2010-09-01

    Full Text Available Abstract Background Drug resistance is one of the major obstacles limiting the activity of anticancer agents. Activation of DNA repair mechanism often accounts for increase resistance to cancer chemotherapy. Results We present evidence that nemorubicin, a doxorubicin derivative currently in clinical evaluation, acts through a mechanism of action different from classical anthracyclines, requiring an intact nucleotide excision repair (NER system to exert its activity. Cells made resistant to nemorubicin show increased sensitivity to UV damage. We have analysed the mechanism of resistance and discovered a previously unknown mechanism resulting from methylation-dependent silencing of the XPG gene. Restoration of NER activity through XPG gene transfer or treatment with demethylating agents restored sensitivity to nemorubicin. Furthermore, we found that a significant proportion of ovarian tumors present methylation of the XPG promoter. Conclusions Methylation of a NER gene, as described here, is a completely new mechanism of drug resistance and this is the first evidence that XPG gene expression can be influenced by an epigenetic mechanism. The reported methylation of XPG gene could be an important determinant of the response to platinum based therapy. In addition, the mechanism of resistance reported opens up the possibility of reverting the resistant phenotype using combinations with demethylating agents, molecules already employed in the clinical setting.

  10. Comparative analysis of meiotic progression in female mice bearing mutations in genes of the DNA mismatch repair pathway.

    Science.gov (United States)

    Kan, Rui; Sun, Xianfei; Kolas, Nadine K; Avdievich, Elena; Kneitz, Burkhard; Edelmann, Winfried; Cohen, Paula E

    2008-03-01

    The DNA mismatch repair (MMR) family functions in a variety of contexts to preserve genome integrity in most eukaryotes. In particular, members of the MMR family are involved in the process of meiotic recombination in germ cells. MMR gene mutations in mice result in meiotic disruption during prophase I, but the extent of this disruption often differs between male and female meiocytes. To address the role of MMR proteins specifically in female meiosis, we explored the progression of oocytes through prophase I and the meiotic divisions in mice harboring deletions in members of the MMR pathway (Mlh1, Mlh3, Exo1, and an ATPase-deficient variant of Mlh1, Mlh1(G67R)). The colocalization of MLH1 and MLH3, key proteins involved in stabilization of nascent crossovers, was dependent on intact heterodimer formation and was highly correlated with the ability of oocytes to progress through to metaphase II. The exception was Exo1(-/-) oocytes, in which normal MLH1/MLH3 localization was observed followed by failure to proceed to metaphase II. All mutant oocytes were able to resume meiosis after dictyate arrest, but they showed a dramatic decline in chiasmata (to less than 25% of normal), accompanied by varied progression through metaphase I. Taken together, these results demonstrate that MMR function is required for the formation and stabilization of crossovers in mammalian oocytes and that, in the absence of a functional MMR system, the failure to maintain chiasmata results in a reduced ability to proceed normally through the first and second meiotic divisions, despite near-normal levels of meiotic resumption after dictyate arrest.

  11. Excision Repair Cross-complementation Group 1 is a Prognostic Biomarker in Patients with Colorectal Cancer Receiving Chemotherapy

    Directory of Open Access Journals (Sweden)

    Mu-Xing Li

    2016-01-01

    Conclusions: ERCC1 expression may be taken as an effective prognostic factor predicting the response to chemotherapy, OS, and PFS. Further studies with better study design and longer follow-up are warranted in order to gain a deeper understanding of ERCC1's prognostic value.

  12. Macrophage-specific apoE gene repair reduces diet-induced hyperlipidemia and atherosclerosis in hypomorphic Apoe mice.

    Directory of Open Access Journals (Sweden)

    Nathalie Gaudreault

    Full Text Available BACKGROUND: Apolipoprotein (apo E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Hypomorphic apoE (Apoe(h/h mice expressing wildtype mouse apoE at ∼2-5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoe(h/h allele in Apoe(h/hLysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoe(h/hLysM-Cre and Apoe(h/h mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12. When fed a high-cholesterol diet (HCD for 16 weeks, Apoe(h/hLysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoe(h/h mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7. On HCD, Apoe(h/hLysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoe(h/hLysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoe(h/h mice (167×10(3±16×10(3 µm(2 versus 259×10(3±56×10(3 µm(2, n = 7. This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol. CONCLUSIONS/SIGNIFICANCE: Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels.

  13. Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation.

    OpenAIRE

    Prudhomme, M; Méjean, V; Martin, B; Claverys, J P

    1991-01-01

    DNA repair systems able to correct base pair mismatches within newly replicated DNA or within heteroduplex molecules produced during recombination are widespread among living organisms. Evidence that such generalized mismatch repair systems evolved from a common ancestor is particularly strong for two of them, the Hex system of the gram-positive Streptococcus pneumoniae and the Mut system of the gram-negative Escherichia coli and Salmonella typhimurium. The homology existing between HexA and ...

  14. H. pylori-Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-κB Target Gene Expression

    Directory of Open Access Journals (Sweden)

    Mara L. Hartung

    2015-10-01

    Full Text Available The human bacterial pathogen Helicobacter pylori exhibits genotoxic properties that promote gastric carcinogenesis. H. pylori introduces DNA double strand breaks (DSBs in epithelial cells that trigger host cell DNA repair efforts. Here, we show that H. pylori-induced DSBs are repaired via error-prone, potentially mutagenic non-homologous end-joining. A genome-wide screen for factors contributing to DSB induction revealed a critical role for the H. pylori type IV secretion system (T4SS. Inhibition of transcription, as well as NF-κB/RelA-specific RNAi, abrogates DSB formation. DSB induction further requires β1-integrin signaling. DSBs are introduced by the nucleotide excision repair endonucleases XPF and XPG, which, together with RelA, are recruited to chromatin in a highly coordinated, T4SS-dependent manner. Interestingly, XPF/XPG-mediated DNA DSBs promote NF-κB target gene transactivation and host cell survival. In summary, H. pylori induces XPF/XPG-mediated DNA damage through activation of the T4SS/β1-integrin signaling axis, which promotes NF-κB target gene expression and host cell survival.

  15. Comprehensive SNP scan of DNA repair and DNA damage response genes reveal multiple susceptibility loci conferring risk to tobacco associated leukoplakia and oral cancer.

    Science.gov (United States)

    Mondal, Pinaki; Datta, Sayantan; Maiti, Guru Prasad; Baral, Aradhita; Jha, Ganga Nath; Panda, Chinmay Kumar; Chowdhury, Shantanu; Ghosh, Saurabh; Roy, Bidyut; Roychoudhury, Susanta

    2013-01-01

    Polymorphic variants of DNA repair and damage response genes play major role in carcinogenesis. These variants are suspected as predisposition factors to Oral Squamous Cell Carcinoma (OSCC). For identification of susceptible variants affecting OSCC development in Indian population, the "maximally informative" method of SNP selection from HapMap data to non-HapMap populations was applied. Three hundred twenty-five SNPs from 11 key genes involved in double strand break repair, mismatch repair and DNA damage response pathways were genotyped on a total of 373 OSCC, 253 leukoplakia and 535 unrelated control individuals. The significantly associated SNPs were validated in an additional cohort of 144 OSCC patients and 160 controls. The rs12515548 of MSH3 showed significant association with OSCC both in the discovery and validation phases (discovery P-value: 1.43E-05, replication P-value: 4.84E-03). Two SNPs (rs12360870 of MRE11A, P-value: 2.37E-07 and rs7003908 of PRKDC, P-value: 7.99E-05) were found to be significantly associated only with leukoplakia. Stratification of subjects based on amount of tobacco consumption identified SNPs that were associated with either high or low tobacco exposed group. The study reveals a synergism between associated SNPs and lifestyle factors in predisposition to OSCC and leukoplakia.

  16. [Photoreactivating Activity of Bioluminescence: Repair of UV-damaged DNA of Escherichia coli Occurs with Assistance of lux-Genes of Marine Bacteria].

    Science.gov (United States)

    Zavilgelsky, G B; Melkina, O E; Kotova, V Yu; Konopleva, M N; Manukhov, I V; Pustovoit, K Ss

    2015-01-01

    The UV resistance of luminescent bacteria Escherichia coli AB1886 uvrA6 (pLeo1) containing the plasmid with luxCDABE genes of marine bacteria Photobacterium leiognathi is approximately two times higher than the UV resistance of non-luminous bacteria E. coli AB1886 uvrA6. Introduction of phr::kan(r) mutations (a defect in the functional activity of photolyase) into the genome of E. coli AB1886 uvrA6 (pLeo1) completely removes the high UV resistance of the cells. Therefore, photoreactivation that involves bacterial photolyase contributes mainly to the bioluminescence-induced DNA repair. It is shown that photoreactivating activity of bioluminescence of P. leiognathi is about 2.5 times lower compared with that one induced by a light source with λ > 385 nm. It is also shown that an increase in the bioluminescence intensity, induced by UV radiation in E. coli bacterial cells with a plasmid containing the luxCD ABE genes under RecA-LexA-regulated promoters, occurs only 25-30 min later after UV irradiation of cells and does not contribute to DNA repair. A quorum sensing regulatory system is not involved in the DNA repair by photolyase.

  17. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain

    Directory of Open Access Journals (Sweden)

    Tardón Adonina

    2007-08-01

    Full Text Available Abstract Background Polymorphisms in DNA repair genes have been associated to repair DNA lesions, and might contribute to the individual susceptibility to develop different types of cancer. Nucleotide excision repair (NER, base excision repair (BER, and double-strand break repair (DSBR are the main DNA repair pathways. We investigated the relationship between polymorphisms in two NER genes, XPC (poly (AT insertion/deletion: PAT-/+ and XPD (Asp312Asn and Lys751Gln, the BER gene XRCC1 (Arg399Gln, and the DSBR gene XRCC3 (Thr241Met and the risk of developing lung cancer. Methods A hospital-based case-control study was designed with 516 lung cancer patients and 533 control subjects, matched on ethnicity, age, and gender. Genotypes were determined by PCR-RFLP and the results were analysed using multivariate unconditional logistic regression, adjusting for age, gender and pack-years. Results Borderline association was found for XPC and XPD NER genes polymorphisms, while no association was observed for polymorphisms in BER and DSBR genes. XPC PAT+/+ genotype was associated with no statistically significant increased risk among ever smokers (OR = 1.40; 95%CI = 0.94–2.08, squamous cell carcinoma (OR = 1.44; 95%CI = 0.85–2.44, and adenocarcinoma (OR = 1.72; 95%CI = 0.97–3.04. XPD variant genotypes (312Asn/Asn and 751Gln/Gln presented a not statistically significant risk of developing lung cancer (OR = 1.52; 95%CI = 0.91–2.51; OR = 1.38; 95%CI = 0.85–2.25, respectively, especially among ever smokers (OR = 1.58; 95%CI = 0.96–2.60, heavy smokers (OR = 2.07; 95%CI = 0.74–5.75, and adenocarcinoma (OR = 1.88; 95%CI = 0.97–3.63. On the other hand, individuals homozygous for the XRCC1 399Gln allele presented no risk of developing lung cancer (OR = 0.87; 95%CI = 0.57–1.31 except for individuals carriers of 399Gln/Gln genotype and without family history of cancer (OR = 0.57; 95%CI = 0.33–0.98 and no association was found between XRCC3 Thr241Met

  18. Removal of nonhomologous DNA ends in double-strand break recombination: The role of the yeast ultraviolet repair gene RAD1

    Energy Technology Data Exchange (ETDEWEB)

    Fishman-Lobell, J.; Habert, J.E. (Brandeis Univ., Waltham, MA (United States))

    1992-10-15

    Double-strand breaks (DSBs) in Saccharomyces cerevisiae can be repaired by gene conversions or by deletions resulting from single-strand annealing between direct repeats of homologous sequences. Although rad1 mutants are resistant to x-rays and can complete DSB-mediated mating-type switching, they could not complete recombination when the ends of the break contained approximately 60 base pairs of nonhomology. Recombination was restored when the ends of the break were made homologous to donor sequences. Additionally, the absence of RAD1 led to the frequent appearance of a previously unobserved type of recombination product. These data suggest RAD1 is required to remove nonhomologous DNA from the 3{prime} ends of recombining DNA, a process analogous to the excision of photodimers during repair of ultraviolet-damaged DNA.

  19. Inducible Apoe Gene Repair in Hypomorphic ApoE Mice Deficient in the LDL Receptor Promotes Atheroma Stabilization with a Human-like Lipoprotein Profile

    Science.gov (United States)

    Eberlé, Delphine; Luk, Fu Sang; Kim, Roy Y.; Olivas, Victor R.; Kumar, Nikit; Posada, Jessica M.; Li, Kang; Gaudreault, Nathalie; Rapp, Joseph H.; Raffai, Robert L.

    2013-01-01

    Objective To study atherosclerosis regression in mice following plasma lipid reduction to moderately elevated apolipoprotein B (apoB)-lipoprotein levels. Approach and Results Chow-fed hypomorphic Apoe mice deficient in LDL receptor expression (Apoeh/hLdlr−/−Mx1-cre mice) develop hyperlipidemia and atherosclerosis. These mice were studied before and after inducible cre-mediated Apoe gene repair. By 1 week, induced mice displayed a 2-fold reduction in plasma cholesterol and triglyceride levels and a decrease in the non-HDL:HDL-cholesterol ratio from 87%:13% to 60%:40%. This halted atherosclerotic lesion growth and promoted macrophage loss and accumulation of thick collagen fibers for up to 8 weeks. Concomitantly, blood Ly-6Chi monocytes were decreased by 2-fold but lesional macrophage apoptosis was unchanged. The expression of several genes involved in extra-cellular matrix remodeling and cell migration were changed in lesional macrophages 1 week after Apoe gene repair. However, mRNA levels of numerous genes involved in cholesterol efflux and inflammation were not significantly changed at this time point. Conclusions Restoring apoE expression in Apoeh/hLdlr−/−Mx1-cre mice resulted in lesion stabilization in the context of a human-like ratio of non-HDL:HDL-cholesterol. Our data suggest that macrophage loss derived in part from reduced blood Ly-6Chi monocytes levels and genetic reprogramming of lesional macrophages. PMID:23788760

  20. Tendon repair

    Science.gov (United States)

    Repair of tendon ... Tendon repair can be performed using: Local anesthesia (the immediate area of the surgery is pain-free) ... a cut on the skin over the injured tendon. The damaged or torn ends of the tendon ...

  1. International congress on DNA damage and repair: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  2. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Directory of Open Access Journals (Sweden)

    Ricardo Mouro Pinto

    2013-10-01

    Full Text Available The Huntington's disease gene (HTT CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111 than on a 129 background (129.Hdh(Q111 . Linkage mapping in (B6x129.Hdh(Q111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3 complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3. The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest

  3. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Science.gov (United States)

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C

    2013-10-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1

  4. Biological Augmentation of Rotator Cuff Tendon Repair

    National Research Council Canada - National Science Library

    Kovacevic, David; Rodeo, Scott A

    2008-01-01

    A histologically normal insertion site does not regenerate following rotator cuff tendon-to-bone repair, which is likely due to abnormal or insufficient gene expression and/or cell differentiation at the repair site...

  5. Cloning of the VASP (Vasodilator-Stimulated Phosphoprotein) genes in human and mouse: Structure, sequence, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, M.; Fischer, L.; Hauser, W. [Medizinische Universitaetsklinik, Wuerzburg (Germany)] [and others

    1996-09-01

    The genes encoding the vasodilator-stimulated phosphoprotein (VASP) in human and mouse were isolated, and major parts were sequenced. In both species the gene is composed of 13 exons with conserved exon-intron positions. The mouse VASP cDNA sequence was deduced from the genomic sequence. The predicted amino acid sequence is 89% identical to the human protein. The high nucleotide sequence homology extends not only over the coding regions but also into the 3{prime}-UTRs, indicating a possible function in mRNA targeting or regulation of translation. Prominent 5{prime} CpG islands including multiple SP1 sites indicate a housekeeping function of VASP. Using cosmid DNA as a probe for fluorescence in situ hybridization, the human VASP gene was assigned to chromosome 19q13.2-q13.3, an extended region with homology to mouse chromosome 7. A sequence overlap of the VASP 5{prime}-region with the telomeric end of a cosmid contig physically links the VASP gene with ERCC1. VASP is located about 92 kb distal to ERCC1 and about 300 kb proximal to the myotonic dystrophy protein kinase gene. 43 refs., 6 figs.

  6. Deoxyribonucleic acid repair gene X-ray repair cross-complementing group 1 polymorphisms and non-carcinogenic disease risk in different populations: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2013-01-01

    Full Text Available Purpose: This study aims to assess a meta-analysis of the association of X-ray repair cross-complementing group 1 (XRCC1 polymorphisms with the risk of various non-carcinogenic diseases in different population. Materials and Methods: This meta-analysis was performed by critically reviewing reveals 38 studies involving 10043 cases and 11037 controls. Among all the eligible studies, 14 focused on Arg194Trp polymorphism, 33 described the Arg399Gln and three articles investigated on Arg280His. Populations were divided into three different ethnic subgroups include Caucasians, Asians and other (Turkish and Iranian. Results: Pooled results showed no correlation between Arg194Trp and non-carcinogenic disease. There was only weak relation in the recessive (odds ratio [OR] =1.11, 95% confidence interval [CI]: 0.86-1.44 model in Asian population and dominant (OR = 1.04, 95% CI: 0.66-1.63 model of other populations. In Arg399Gln polymorphism, there was no relation with diseases of interest generally. In the pooled analysis, there were weak relation in the dominant (OR = 1.08, 95% CI: 0.86-1.35 model of Asian population and quite well-correlation with recessive (OR = 1.49, 95% CI: 1.19-1.88, dominant (OR = 1.23, 95% CI: 0.94-1.62, and additive (OR = 1.23, 95% CI: 0.94-1.62 models of other subgroup. For Arg280His, there was a weak relation only in the dominant model (OR = 1.06, 95% CI: 0.74-1.51. Conclusion: The present meta-analysis correspondingly shows that Arg399Gln variant to be associated with increased non-carcinogenic diseases risk through dominant and recessive modes among Iranian and Turkish population. It also suggests a trend of dominant and recessive effect of Arg280His variant in all population and its possible protective effect on non-carcinogenic diseases.

  7. Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or the mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1 and MSH2

    Energy Technology Data Exchange (ETDEWEB)

    Porter, G.; Westmoreland, J.; Priebe, S. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)] [and others

    1996-06-01

    Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad{sup +} vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. 67 refs., 5 figs., 4 tabs.

  8. Association between Genetic Polymorphisms of DNA Repair Genes and Chromosomal Damage for 1,3-Butadiene-Exposed Workers in a Matched Study in China

    Directory of Open Access Journals (Sweden)

    Menglong Xiang

    2015-01-01

    Full Text Available The aim of the study was to examine the association between polymorphisms of DNA repair genes and chromosomal damage of 1,3-butadiene- (BD- exposed workers. The study was conducted in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and a circulatory water workshop in China. Newly developed biomarkers (micronuclei, MNi; nucleoplasmic bridges, NPBs; nuclear buds, NBUDs in the cytokinesis-blocked micronucleus (CBMN cytome assay were adopted to detect chromosomal damage. PCR and PCR-restriction fragment length polymorphism (RFLP are adopted to analyze polymorphisms of DNA repair genes, such as X-ray repair cross-complementing Group 1 (XRCC1, O6-methylguanine-DNA methyltransferase (MGMT, poly (adenosine diphosphate-ribose polymerases (ADPRT, and apurinic/apyrimidinic endonucleases (APE1. The BD-exposed workers exhibited increased frequencies of MNi and NPBs when compared to subjects in the control group. The results also show that the BD-exposed workers carrying XRCC1 diplotypes TCGA-CCGG (4.25±2.06‰ (FR=2.10, 95% CI: 1.03–4.28 and TCGG-TCGA (5.80±3.56‰ (FR=2.75, 95% CI: 0.76–2.65 had statistically higher NBUD frequencies than those who carried diplotype TCGG-TCGG (1.89±1.27‰. Our study suggests that polymorphisms of XRCC1 gene may influence chromosomal damage in BD-exposed workers.

  9. Identification and Analysis of MS5(d): A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes.

    Science.gov (United States)

    Zeng, Xinhua; Yan, Xiaohong; Yuan, Rong; Li, Keqi; Wu, Yuhua; Liu, Fang; Luo, Junling; Li, Jun; Wu, Gang

    2016-01-01

    Here, we report the identification of the Brassica-specific gene MS5(d), which is responsible for male sterility in Brassica napus. The MS5(d) gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5(d) gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5(d), encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5(d) likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.

  10. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation.

    Science.gov (United States)

    Toprani, Sneh M; Das, Birajalaxmi

    2015-09-01

    Radio-adaptive response is a mechanism whereby a low-dose exposure (priming dose) induces resistance to a higher dose (challenging dose) thus significantly reducing its detrimental effects. Radiation-induced DNA damage gets repaired through various DNA repair pathways in human cells depending upon the type of lesion. The base excision repair (BER) pathway repairs radiation-induced base damage, abasic sites and single-strand breaks in cellular DNA. In the present study, an attempt has been made to investigate the involvement of BER genes and proteins in the radio-adaptive response in human resting peripheral blood mononuclear cells (PBMC). Venous blood samples were collected from 20 randomly selected healthy male individuals with written informed consent. PBMC were isolated and irradiated at a priming dose of 0.1 Gy followed 4h later with a challenging dose of 2.0 Gy (primed cells). Quantitation of DNA damage was done using the alkaline comet assay immediately and expression profile of BER genes and proteins were studied 30 min after the challenging dose using real-time quantitative polymerase chain reaction and western blot, respectively. The overall result showed significant (P ≤ 0.05) reduction of DNA damage in terms of percentage of DNA in tail (%T) with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4 h. Twelve individuals showed significant (P ≤ 0.05) reduction in %T whereas eight individuals showed marginal reduction in DNA damage that was not statistically significant. However, at the transcriptional level, BER genes such as APE1, FEN1 and LIGASE1 showed significant (P ≤ 0.05) up-regulation in both groups. Significant (P ≤ 0.05) up-regulation was also observed at the protein level for OGG1, APE1, MBD4, FEN1 and LIGASE1 in primed cells. Up-regulation of some BER genes and proteins such as APE1, FEN1 and LIGASE1 in primed cells of resting PBMC is suggestive of active involvement of the BER pathway in radio-adaptive response.

  11. Fission yeast Pxd1 promotes proper DNA repair by activating Rad16XPF and inhibiting Dna2.

    Directory of Open Access Journals (Sweden)

    Jia-Min Zhang

    2014-09-01

    Full Text Available Structure-specific nucleases play crucial roles in many DNA repair pathways. They must be precisely controlled to ensure optimal repair outcomes; however, mechanisms of their regulation are not fully understood. Here, we report a fission yeast protein, Pxd1, that binds to and regulates two structure-specific nucleases: Rad16XPF-Swi10ERCC1 and Dna2-Cdc24. Strikingly, Pxd1 influences the activities of these two nucleases in opposite ways: It activates the 3' endonuclease activity of Rad16-Swi10 but inhibits the RPA-mediated activation of the 5' endonuclease activity of Dna2. Pxd1 is required for Rad16-Swi10 to function in single-strand annealing, mating-type switching, and the removal of Top1-DNA adducts. Meanwhile, Pxd1 attenuates DNA end resection mediated by the Rqh1-Dna2 pathway. Disabling the Dna2-inhibitory activity of Pxd1 results in enhanced use of a break-distal repeat sequence in single-strand annealing and a greater loss of genetic information. We propose that Pxd1 promotes proper DNA repair by differentially regulating two structure-specific nucleases.

  12. Inter-individual variation in nucleotide excision repair pathway is modulated by non-synonymous polymorphisms in ERCC4 and MBD4 genes

    Energy Technology Data Exchange (ETDEWEB)

    Allione, Alessandra, E-mail: alessandra.allione@hugef-torino.org [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Guarrera, Simonetta; Russo, Alessia [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Ricceri, Fulvio [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin (Italy); Purohit, Rituraj [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India); Pagnani, Andrea; Rosa, Fabio; Polidoro, Silvia; Voglino, Floriana [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Matullo, Giuseppe [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin (Italy)

    2013-11-15

    Highlights: • We reported a large inter-individual variability of NER capacity. • ERCC4 rs1800124 and MBD4 rs10342 nsSNP variants were associated with DNA repair capacity. • DNA–protein interaction analyses showed alteration of binding for ERCC4 and MBD4 variants. • A new possible cross-talk between NER and BER pathways has been reported. - Abstract: Inter-individual differences in DNA repair capacity (DRC) may lead to genome instability and, consequently, modulate individual cancer risk. Among the different DNA repair pathways, nucleotide excision repair (NER) is one of the most versatile, as it can eliminate a wide range of helix-distorting DNA lesions caused by ultraviolet light irradiation and chemical mutagens. We performed a genotype–phenotype correlation study in 122 healthy subjects in order to assess if any associations exist between phenotypic profiles of NER and DNA repair gene single nucleotide polymorphisms (SNPs). Individuals were genotyped for 768 SNPs with a custom Illumina Golden Gate Assay, and peripheral blood mononuclear cells (PBMCs) of the same subjects were tested for a NER comet assay to measure DRC after challenging cells by benzo(a)pyrene diolepoxide (BPDE). We observed a large inter-individual variability of NER capacity, with women showing a statistically significant lower DRC (mean ± SD: 6.68 ± 4.76; p = 0.004) than men (mean ± SD: 8.89 ± 5.20). Moreover, DRC was significantly lower in individuals carrying a variant allele for the ERCC4 rs1800124 non-synonymous SNP (nsSNP) (p = 0.006) and significantly higher in subjects with the variant allele of MBD4 rs2005618 SNP (p = 0.008), in linkage disequilibrium (r{sup 2} = 0.908) with rs10342 nsSNP. Traditional in silico docking approaches on protein–DNA and protein–protein interaction showed that Gly875 variant in ERCC4 (rs1800124) decreases the DNA–protein interaction and that Ser273 and Thr273 variants in MBD4 (rs10342) indicate complete loss of protein

  13. Completion of meiosis in male zebrafish (Danio rerio) despite lack of DNA mismatch repair gene mlh1

    NARCIS (Netherlands)

    Leal, M.C.; Feitsma, H.; Cuppen, E.; França, L.R.; Schulz, R.W.

    2008-01-01

    Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile but ha

  14. Explorative study to identify novel candidate genes related to oxaliplatin efficacy and toxicity using a DNA repair array.

    NARCIS (Netherlands)

    Kweekel, D.M.; Antonini, N.F.; Nortier, J.W.; Punt, C.J.A.; Gelderblom, H.; Guchelaar, H.J.

    2009-01-01

    PURPOSE: To identify new polymorphisms (single nucleotide polymorphisms, SNPs) in DNA repair pathways that are associated with efficacy and toxicity in patients receiving oxaliplatin and capecitabine for advanced colorectal cancer (ACC). METHODS: We studied progression-free survival (PFS) in 91 ACC

  15. Completion of meiosis in male zebrafish (Danio rerio) despite lack of DNA mismatch repair gene mlh1.

    NARCIS (Netherlands)

    Leal, M.C.; Feitsma, H.; Cuppen, E.; Franca, L.R.; Schulz, R.W.

    2008-01-01

    Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile but

  16. Bladder exstrophy repair

    Science.gov (United States)

    Bladder birth defect repair; Everted bladder repair; Exposed bladder repair; Repair of bladder exstrophy ... Bladder exstrophy repair involves two surgeries. The first surgery is to repair the bladder and the second one is to attach ...

  17. Kin-cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair, BRCA1 interacting and growth factor genes

    Directory of Open Access Journals (Sweden)

    Rutter Joni L

    2004-03-01

    Full Text Available Abstract Background Subtle functional deficiencies in highly conserved DNA repair or growth regulatory processes resulting from polymorphic variation may increase genetic susceptibility to breast cancer. Polymorphisms in DNA repair genes can impact protein function leading to genomic instability facilitated by growth stimulation and increased cancer risk. Thus, 19 single nucleotide polymorphisms (SNPs in eight genes involved in base excision repair (XRCC1, APEX, POLD1, BRCA1 protein interaction (BRIP1, ZNF350, BRCA2, and growth regulation (TGFß1, IGFBP3 were evaluated. Methods Genomic DNA samples were used in Taqman 5'-nuclease assays for most SNPs. Breast cancer risk to ages 50 and 70 were estimated using the kin-cohort method in which genotypes of relatives are inferred based on the known genotype of the index subject and Mendelian inheritance patterns. Family cancer history data was collected from a series of genotyped breast cancer cases (N = 748 identified within a cohort of female US radiologic technologists. Among 2,430 female first-degree relatives of cases, 190 breast cancers were reported. Results Genotypes associated with increased risk were: XRCC1 R194W (WW and RW vs. RR, cumulative risk up to age 70, risk ratio (RR = 2.3; 95% CI 1.3–3.8; XRCC1 R399Q (QQ vs. RR, cumulative risk up to age 70, RR = 1.9; 1.1–3.9; and BRIP1 (or BACH1 P919S (SS vs. PP, cumulative risk up to age 50, RR = 6.9; 1.6–29.3. The risk for those heterozygous for BRCA2 N372H and APEX D148E were significantly lower than risks for homozygotes of either allele, and these were the only two results that remained significant after adjusting for multiple comparisons. No associations with breast cancer were observed for: APEX Q51H; XRCC1 R280H; IGFPB3 -202A>C; TGFß1 L10P, P25R, and T263I; BRCA2 N289H and T1915M; BRIP1 -64A>C; and ZNF350 (or ZBRK1 1845C>T, L66P, R501S, and S472P. Conclusion Some variants in genes within the base-excision repair pathway (XRCC1 and

  18. Dose response and adaptive response of non-homologous end joining repair genes and proteins in resting human peripheral blood mononuclear cells exposed to γ radiation.

    Science.gov (United States)

    Shelke, Shridevi; Das, Birajalaxmi

    2015-05-01

    Ionising radiation induces single-strand breaks, double-strand breaks (DSB) and base damages in human cell. DSBs are the most deleterious and if not repaired may lead to genomic instability and cell death. DSB can be repaired through non-homologous end joining (NHEJ) pathway in resting lymphocytes. In this study, NHEJ genes and proteins were studied in irradiated human peripheral blood mononuclear cells (PBMC) at resting stage. Dose-response, time point kinetics and adaptive-response studies were conducted in irradiated PBMC at various end points such as DNA damage quantitation, transcription and protein expression profile. Venous blood samples were collected from 20 random, normal and healthy donors with written informed consent. PBMC was separated and irradiated with various doses between 0.1 and 2.0 Gy ((60)CO-γ source) for dose-response study. Repair kinetics of DNA damage and time point changes in expression of genes and proteins were studied in post-irradiated PBMC at 2.0 Gy at various time points up to 240 min. Adaptive-response study was conducted with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4-h incubation. Our results revealed that Ku70, Ku80, XLF and Ligase IV were significantly upregulated (P Adaptive-response study showed significantly increased expression of the proteins involved in NHEJ, suggesting their role in adaptive response in human PBMC at G0/G1, which has important implications to human health. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Gene expression analysis during recovery process indicates the mechanism for innate immune injury and repair from Coxsackievirus B3-induced myocarditis.

    Science.gov (United States)

    Yao, Hai-Lan; Song, Juan; Sun, Peng; Song, Qin-Qin; Sheng, Lin-Jun; Chi, Miao-Miao; Han, Jun

    2016-02-02

    To investigate the innate immune injury and repair mechanism during recovery from Coxsackievirus B3 (CVB3) induced myocarditis, we established an acute viral myocarditis recovery model by infecting BALB/c mice with CVB3. Histopathological examination of cardiac tissues after infection showed a gradual increase of myocardial injury to the maximum degree at 8 dpi (days post infection), followed by a recovery process with reduced viral replication. We also measured expression changes of innate immune genes in heart after 4, 8 and 12 days of infection using innate immune real-time PCR array. The results showed expression alterations in many Pattern Recognition Receptors (PRRs) genes upon CVB3 infection, which activated multiple important signaling pathways during recovery process. The expression of TLRs, RLRs, PKR and cytokines were strongly induced and reached the peak at 4 dpi in early myocarditis stage, followed by a gradual reduction in recovery stage, during which the levels were even lower than normal at 12 dpi. The strong correlation between cardiac histopathology score and chemokine expression level suggested that the chemokines might play a role in pathological changes during early myocarditis stage. In addition, we also found that both cell survival signaling pathways (AKT1, p38MAPK) and antiviral signaling pathways (IKKα/β/ε) were activated and promoted the recovery during late myocarditis stage. Altogether, our observations improved the understanding of formation and progression of the pathological lesions, as well as the repair mechanism for acute viral myocarditis.

  20. DNA repair genes XRCC1 and XRCC3 polymorphisms and their relationship with the level of micronuclei in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Raquel A. Santos

    2010-01-01

    Full Text Available Breast cancer (BC is the most prevalent type worldwide, besides being one of the most common causes of death among women. It has been suggested that sporadic BC is most likely caused by low-penetrance genes, including those involved in DNA repair mechanisms. Furthermore, the accumulation of DNA damage may contribute to breast carcinogenesis. In the present study, the relationship between two DNA repair genes, viz., XRCC1 (Arg399Gln and XRCC3 (Thr241Met polymorphisms, and the levels of chromosome damage detected in 65 untreated BC women and 85 healthy controls, was investigated. Chromosome damage was evaluated through micronucleus assaying, and genotypes determined by PCR-RFLP methodology. The results showed no alteration in the risk of BC and DNA damage brought about by either XRCC1 (Arg399Gln or XRCC3 (Thr241Met action in either of the two groups. Nevertheless, on evaluating BC risk in women presenting levels of chromosome damage above the mean, the XRCC3 Thr241Met polymorphism was found to be more frequent in the BC group than in the control, thereby leading to the conclusion that there is a slight association between XRCC3 (241 C/T genotypes and BC risk in the subgroups with higher levels of chromosome damage.

  1. Transcript levels of the Saccharomyes cerevisiae DNA repair gene RAD23 increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle.

    Science.gov (United States)

    Madura, K; Prakash, S

    1990-08-25

    The RAD23 gene of Saccharomyces cerevisiae is required for excision-repair of UV damaged DNA. In this paper, we determine the location of the RAD23 gene in a cloned DNA fragment, identify the 1.6 kb RAD23 transcript, and examine RAD23 transcript levels in UV damaged cells, during the mitotic cell cycle, and in meiosis. The RAD23 mRNA levels are elevated 5-fold between 30 to 60 min after 37 J/m2 of UV light. RAD23 mRNA levels rise over 6-fold during meiosis at a stage coincident with high levels of genetic recombination. This response is specific to sporulation competent MATa/MAT alpha diploid cells, and is not observed in asporogenous MATa/MATa diploids. RAD23 mRNA levels, however, remain constant during the mitotic cell cycle.

  2. The CREB Coactivator CRTC2 is a Lymphoma Tumor Suppressor that Preserves Genome Integrity Through Transcription of DNA Mismatch Repair Genes

    Science.gov (United States)

    Fang, Minggang; Pak, Magnolia L.; Chamberlain, Lynn; Xing, Wei; Yu, Hongbo; Green, Michael R.

    2015-01-01

    SUMMARY The CREB-regulated transcription coactivator CRTC2 stimulates CREB target gene expression and has a well-established role in modulating glucose and lipid metabolism. Here we find, unexpectedly, that loss of CRTC2, as well as CREB1 and its coactivator CREB-binding protein (CBP), results in a deficiency in DNA mismatch repair (MMR) and a resultant increased mutation frequency. We show that CRTC2, CREB1 and CBP are transcriptional activators of well-established MMR genes, including EXO1, MSH6, PMS1 and POLD2. Mining of expression profiling databases and analysis of patient samples reveal that CRTC2 and its target MMR genes are down-regulated in specific T-cell lymphoma subtypes, which are microsatellite unstable. The levels of acetylated histone H3 on the CRTC2 promoter are significantly reduced in lymphoma compared to normal tissue, explaining the decreased CRTC2 expression. Our results establish a role for CRTC2 as a lymphoma tumor suppressor gene that preserves genome integrity by stimulating transcription of MMR genes. PMID:26004186

  3. Comparison of clastogen-induced gene expression profiles in wild-type and DNA repair-deficient Rad54/Rad54B cells

    Directory of Open Access Journals (Sweden)

    van Benthem Jan

    2010-01-01

    Full Text Available Abstract Background Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC as compared to wild-type (WT cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM and γ-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU and vehicle were taken as controls. Results Most exposures resulted in an induction of DNA damage signaling and apoptosis genes and a reduced expression of cell division genes in cells of both genotypes. As expected, responses to N-ac-AAF were very similar in both genotypes. ENU exposure did not lead to significant gene expression changes in cells of both genotypes, presumably due to its short half-life. Gene expression responses to clastogens, however, showed a genotype-dependent effect for BLM and MMC. MMC treated Rad54/Rad54B MEFs showed no induction of p53-signaling, DNA damage response and apoptosis as seen for all the other treatments. Conclusion These data support our finding that different types of clastogens exist and that responses to these types depend on the DNA repair status of the cells.

  4. Association of Polymorphisms in X-Ray Repair Cross Complementing 1 Gene and Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Yu-Xia Yun

    2015-01-01

    Full Text Available Objectives. To investigate the association between three single nucleotide polymorphisms (SNPs in the X-ray repair cross complementing 1 gene (XRCC1 and the risk of esophageal squamous cell carcinoma (ESCC in Chinese population. Methods. A case-control study including 381 primary ESCC patients recruited from hospital and 432 normal controls matched with patients by age and gender from Chinese Han population was conducted. The genotypes of three XRCC1 polymorphisms at −77T>C (T-77C, codon 194 (Arg194Trp, and codon 399 (Arg399Gln were studied by means of polymerase chain reaction-restriction fragment length polymorphism techniques (PCR-RFLP. Unconditional logistic regression model and haplotype analysis were used to estimate associations of these three SNPs in XRCC1 gene with ESCC risk. Results. Polymorphisms at these three sites in XRCC1 gene were not found to be associated with risk for developing ESCC; however the haplotype Ccodon 194Gcodon 399C-77T>C was significantly associated with reduced risk of ESCC (OR: 0.62, 95% CI: 0.40–0.96 upon haplotype analysis. Conclusion. These results suggested that the gene-gene interactions might play vital roles in the progression on esophageal cancer in Chinese Han population and it would be necessary to confirm these findings in a large and multiethnic population.

  5. Genetic polymorphisms of DNA repair genes and chromosomal damage in workers exposed to 1,3-butadiene.

    Science.gov (United States)

    Wang, Qi; Wang, Ai-hong; Tan, Hong-shan; Feng, Nan-nan; Ye, Yun-jie; Feng, Xiao-qing; Liu, Geoffrey; Zheng, Yu-xin; Xia, Zhao-lin

    2010-05-01

    The base excision repair (BER) pathway is important in repairing DNA damage incurred from occupational exposure to 1,3-butadiene (BD). This study examines the relationship between inherited polymorphisms of the BER pathway (x-ray repair cross-complementing group 1 (XRCC1) Arg194Trp, Arg280His, Arg399Gln, T-77C, ADPRT Val762Ala, MGMT Leu84Phe and APE1 Asp148Glu) and chromosomal damage in BD-exposed workers, using the cytokinesis-blocked (CB) micronucleus (MN) assay in peripheral lymphocytes of 166 workers occupationally exposed to BD and 41 non-exposed healthy individuals. The MN frequency of exposed workers (3.39 +/- 2.42) per thousand was higher than that of the non-exposed groups (1.48 +/- 1.26) per thousand (P damage among BD-exposed workers. In workers exposed to BD, multiple BER polymorphisms and a XRCC1 haplotype were associated with differential levels of chromosome damage.

  6. Protein expression of DNA damage repair proteins dictates response to topoisomerase and PARP inhibitors in triple-negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie L Boerner

    Full Text Available Patients with metastatic triple-negative breast cancer (TNBC have a poor prognosis. New approaches for the treatment of TNBC are needed to improve patient survival. The concept of synthetic lethality, brought about by inactivating complementary DNA repair pathways, has been proposed as a promising therapeutic option for these tumors. The TNBC tumor type has been associated with BRCA mutations, and inhibitors of Poly (ADP-ribose polymerase (PARP, a family of proteins that facilitates DNA repair, have been shown to effectively kill BRCA defective tumors by preventing cells from repairing DNA damage, leading to a loss of cell viability and clonogenic survival. Here we present preclinical efficacy results of combining the PARP inhibitor, ABT-888, with CPT-11, a topoisomerase I inhibitor. CPT-11 binds to topoisomerase I at the replication fork, creating a bulky adduct that is recognized as damaged DNA. When DNA damage was stimulated with CPT-11, protein expression of the nucleotide excision repair enzyme ERCC1 inversely correlated with cell viability, but not clonogenic survival. However, 4 out of the 6 TNBC cells were synergistically responsive by cell viability and 5 out of the 6 TNBC cells were synergistically responsive by clonogenic survival to the combination of ABT-888 and CPT-11. In vivo, the BRCA mutant cell line MX-1 treated with CPT-11 alone demonstrated significant decreased tumor growth; this decrease was enhanced further with the addition of ABT-888. Decrease in tumor growth correlated with an increase in double strand DNA breaks as measured by γ-H2AX phosphorylation. In summary, inhibiting two arms of the DNA repair pathway simultaneously in TNBC cell lines, independent of BRCA mutation status, resulted in un-repairable DNA damage and subsequent cell death.

  7. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    Directory of Open Access Journals (Sweden)

    Yang Zhen-Zhou

    2010-02-01

    Full Text Available Abstract Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer.

  8. Repair of Staphylococcus aureus-infected wound with gene-modified C3H10T1/2 cells expressing BPI-BD3 fusion antibiotic peptide

    Directory of Open Access Journals (Sweden)

    Xin-ran ZHANG

    2015-10-01

    Full Text Available Objective To study the antibacterial and tissue reparative effect of BPI-BD3 gene-modified mesenchymal stem cells in a mouse model of wound infection. Methods C3H10T1/2 cells were transfected with recombinant adenovirus vector pAdxsi-BPI-BD3, the expression of BPI-BD3 fusion protein was verified by RT-PCR and Western blotting. Excision wound with a diameter of 1cm was inoculated with Staphylococcus aureuswas made on the back of 30 mice. The mice were randomly divided into 3 groups (10 each. Mice in group T were injected with BPI-BD3 gene-modified C3H10T1/2 cells through caudal vein, those in group C were injected with unmodified C3H10T1/2 cells, and in group N were injected with PBS as control. The wound repair result was evaluated by estimation of the percentage of remaining wound area and the amount of wound bacteria under the scar, followed by observation of pathological changes. Inflammatory reactions of the wounds were assessed accordingly. Results The amount of bacteria under the scar was less in group T than in the other two groups (P<0.05. It was also found that the wound healing process was faster in group T than in group C and group N. Pathological observation showed that the inflammatory reaction in group T was also significantly milder than in the other two groups. Conclusion BPI-BD3 gene-modified mesenchymal stem cells may enhance wound repair by controlling infection and promoting tissue regeneration, thus it may be promising in clinical application. DOI: 10.11855/j.issn.0577-7402.2015.09.07

  9. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes

    Directory of Open Access Journals (Sweden)

    Alexey A. Leontovich

    2016-01-01

    Full Text Available Metabolic memory (MM is defined as the persistence of diabetic (DM complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6–13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes.

  10. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes

    Science.gov (United States)

    Leontovich, Alexey A.; Intine, Robert V.; Sarras, Michael P.

    2016-01-01

    Metabolic memory (MM) is defined as the persistence of diabetic (DM) complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes) were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6–13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes. PMID:26981540

  11. Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: a comprehensive analysis of 3,671 families.

    Science.gov (United States)

    Steinke, Verena; Holzapfel, Stefanie; Loeffler, Markus; Holinski-Feder, Elke; Morak, Monika; Schackert, Hans K; Görgens, Heike; Pox, Christian; Royer-Pokora, Brigitte; von Knebel-Doeberitz, Magnus; Büttner, Reinhard; Propping, Peter; Engel, Christoph

    2014-07-01

    Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time-consuming, clinical criteria and tumor-tissue analysis are widely used as pre-screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor-tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability-high (MSI-H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p small-bowel cancer (p small-bowel cancer were clinically relevant predictors for Lynch syndrome. © 2013 UICC.

  12. Identification of a deletion in the mismatch repair gene, MSH2, using mouse-human cell hybrids monosomal for chromosome 2.

    Science.gov (United States)

    Pyatt, R E; Nakagawa, H; Hampel, H; Sedra, M; Fuchik, M B; Comeras, I; de la Chapelle, A; Prior, T W

    2003-03-01

    Hereditary non-polyposis colorectal cancer is characterized by mutations in one of the DNA mismatch repair genes, primarily MLH1, MSH2, or MSH6. We report here the identification of a genomic deletion of approximately 11.4 kb encompassing the first two exons of the MSH2 gene in two generations of an Ohio family. By Southern blot analysis, using a cDNA probe spanning the first seven exons of MSH2, an alteration in each of three different enzyme digests (including a unique 13-kb band on HindIII digests) was observed, which suggested the presence of a large alteration in the 5' region of this gene. Mouse-human cell hybrids from a mutation carrier were then generated which contained a single copy each of human chromosome 2 on which the MSH2 gene resides. Southern blots on DNA from the cell hybrids demonstrated the same, unique 13-kb band from one MSH2 allele, as seen in the diploid DNA. DNA from this same monosomal cell hybrid failed to amplify in polymerase chain reactions (PCRs) using primers to exons 1 and 2, demonstrating the deletion of these sequences in one MSH2 allele, and the breakpoints involving Alu repeats were identified by PCR amplification and sequence analysis.

  13. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis.

    Science.gov (United States)

    Takeda, Takashi; Banno, Kouji; Yanokura, Megumi; Adachi, Masataka; Iijima, Moito; Kunitomi, Haruko; Nakamura, Kanako; Iida, Miho; Nogami, Yuya; Umene, Kiyoko; Masuda, Kenta; Kobayashi, Yusuke; Yamagami, Wataru; Hirasawa, Akira; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2016-10-14

    Germline mutation of DNA mismatch repair (MMR) genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 (MLH1) and MutS homolog 2 (MSH2) has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1, MSH2, and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP). Germline mutation of MMR genes, microsatellite instability (MSI), and immunohistochemistry (IHC) were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%)-1 out of 58 (1.72%) with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H), loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6. The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes.

  14. Polymorphisms in DNA Repair Genes (APEX1, XPD, XRCC1 and XRCC3 and Risk of Preeclampsia in a Mexican Mestizo Population

    Directory of Open Access Journals (Sweden)

    Ada Sandoval-Carrillo

    2014-03-01

    Full Text Available Variations in genes involved in DNA repair systems have been proposed as risk factors for the development of preeclampsia (PE. We conducted a case-control study to investigate the association of Human apurinic/apyrimidinic (AP endonuclease (APEX1 Asp148Glu (rs1130409, Xeroderma Pigmentosum group D (XPD Lys751Gln (rs13181, X-ray repair cross-complementing group 1 (XRCC Arg399Gln (rs25487 and X-ray repair cross-complementing group 3 (XRCC3 Thr241Met (rs861539 polymorphisms with PE in a Mexican population. Samples of 202 cases and 350 controls were genotyped using RTPCR. Association analyses based on a χ2 test and binary logistic regression were performed to determine the odds ratio (OR and a 95% confidence interval (95% CI for each polymorphism. The allelic frequencies of APEX1 Asp148Glu polymorphism showed statistical significant differences between preeclamptic and normal women (p = 0.036. Although neither of the polymorphisms proved to be a risk factor for the disease, the APEX1 Asp148Glu polymorphism showed a tendency of association (OR: 1.74, 95% CI = 0.96–3.14 and a significant trend (p for trend = 0.048. A subgroup analyses revealed differences in the allelic frequencies of APEX1 Asp148Glu polymorphism between women with mild preeclampsia and severe preeclampsia (p = 0.035. In conclusion, our results reveal no association between XPD Lys751Gln, XRCC Arg399Gln and XRCC3 Thr241Met polymorphisms and the risk of PE in a Mexican mestizo population; however, the results in the APEX1 Asp148Glu polymorphism suggest the need for future studies using a larger sample size.

  15. The TMPRSS2-ERG Gene Fusion Blocks XRCC4-Mediated Nonhomologous End-Joining Repair and Radiosensitizes Prostate Cancer Cells to PARP Inhibition.

    Science.gov (United States)

    Chatterjee, Payel; Choudhary, Gaurav S; Alswillah, Turkeyah; Xiong, Xiahui; Heston, Warren D; Magi-Galluzzi, Cristina; Zhang, Junran; Klein, Eric A; Almasan, Alexandru

    2015-08-01

    Exposure to genotoxic agents, such as ionizing radiation (IR), produces DNA damage, leading to DNA double-strand breaks (DSB); IR toxicity is augmented when the DNA repair is impaired. We reported that radiosensitization by a PARP inhibitor (PARPi) was highly prominent in prostate cancer cells expressing the TMPRSS2-ERG gene fusion protein. Here, we show that TMPRSS2-ERG blocks nonhomologous end-joining (NHEJ) DNA repair by inhibiting DNA-PKcs. VCaP cells, which harbor TMPRSS2-ERG and PC3 cells that stably express it, displayed γH2AX and 53BP1 foci constitutively, indicating persistent DNA damage that was absent if TMPRSS2-ERG was depleted by siRNA in VCaP cells. The extent of DNA damage was enhanced and associated with TMPRSS2-ERG's ability to inhibit DNA-PKcs function, as indicated by its own phosphorylation (Thr2609, Ser2056) and that of its substrate, Ser1778-53BP1. DNA-PKcs deficiency caused by TMPRSS2-ERG destabilized critical NHEJ components on chromatin. Thus, XRCC4 was not recruited to chromatin, with retention of other NHEJ core factors being reduced. DNA-PKcs autophosphorylation was restored to the level of parental cells when TMPRSS2-ERG was depleted by siRNA. Following IR, TMPRSS2-ERG-expressing PC3 cells had elevated Rad51 foci and homologous recombination (HR) activity, indicating that HR compensated for defective NHEJ in these cells, hence addressing why TMPRSS2-ERG alone did not lead to radiosensitization. However, the presence of TMPRSS2-ERG, by inhibiting NHEJ DNA repair, enhanced PARPi-mediated radiosensitization. IR in combination with PARPi resulted in enhanced DNA damage in TMPRSS2-ERG-expressing cells. Therefore, by inhibiting NHEJ, TMPRSS2-ERG provides a synthetic lethal interaction with PARPi in prostate cancer patients expressing TMPRSS2-ERG. ©2015 American Association for Cancer Research.

  16. Human Longevity and Variation in GH/IGF-1/Insulin Signaling, DNA Damage Signaling and Repair and Pro/antioxidant Pathway Genes: Cross Sectional and Longitudinal Studies

    Science.gov (United States)

    Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H. Eka D.; de Craen, Anton J.M.; Westendorp, Rudi G.J.; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A.; Slagboom, P. Eline; Nebel, Almut; Vaupel, James W.; Christensen, Kaare; McGue, Matt; Christiansen, Lene

    2012-01-01

    Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92–93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (pbased association study, the largest to date applying a pathway approach, points to potential new longevity loci, but does also underline the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms. PMID:22406557

  17. Sequence analysis of the DNA-repair gene rad51 in the tardigrades Milnesium cf. tardigradum, Hypsibius dujardini and Macrobiotus cf. harmsworthi

    Directory of Open Access Journals (Sweden)

    Eliana A. Beltrán-Pardo

    2013-05-01

    Full Text Available Tardigrades are known for being resistant to extreme conditions, including tolerance to ionising and UV radiation in both the hydrated and the dehydrated state. It is known that these factors may cause damage to DNA. It has recently been shown that single and double DNA strand breaks occur when tardigrades are maintained for a long time in the anhydrobiotic state. This may suggest that perhaps tardigrades rely on efficient DNA repair mechanisms. Among all proteins that comprise the DNA repair system, recombinases such as RecA or Rad51 have a very important function: DNA exchange activity. This enzyme is used in the homologous recombination and allows repair of the damaged strand using homologous non-damaged strands as a template. In this study, Rad51 induction was evaluated by western blot in Milnesium cf. tardigradum, after exposure to gamma radiation. The Rad51 protein was highly induced by radiation, when compared to the control. The rad51 genes were searched in three tardigrades: Milnesium cf. tardigradum, Hypsibius dujardini and Macrobiotus cf. harmsworthi. The gene sequences were obtained by preparing and sequencing transcriptome libraries for H. dujardini and M. cf. harmsworthi and designing rad51 degenerate primers specific for M. cf. tardigradum. Comparison of Rad51 putative proteins from tardigrades with other organisms showed that they are highly similar to the corresponding sequence from the nematode Trichinella spiralis. A structure-based sequence alignment from tardigrades and other organisms revealed that putative Rad51 predicted proteins from tardigrades contain the expected motifs for these important recombinases. In a cladogram tree based on this alignment, tardigrades tend to cluster together suggesting that they have selective differences in these genes that make them diverge between species. Predicted Rad51 structures from tardigrades were also compared with crystalline structure of Rad51 in Saccharomyces cerevisiae. These

  18. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases.

    Science.gov (United States)

    Fekairi, Samira; Scaglione, Sarah; Chahwan, Charly; Taylor, Ewan R; Tissier, Agnès; Coulon, Stéphane; Dong, Meng-Qiu; Ruse, Cristian; Yates, John R; Russell, Paul; Fuchs, Robert P; McGowan, Clare H; Gaillard, Pierre-Henri L

    2009-07-10

    Structure-specific endonucleases resolve DNA secondary structures generated during DNA repair and recombination. The yeast 5' flap endonuclease Slx1-Slx4 has received particular attention with the finding that Slx4 has Slx1-independent key functions in genome maintenance. Although Slx1 is a highly conserved protein in eukaryotes, no orthologs of Slx4 were reported other than in fungi. Here we report the identification of Slx4 orthologs in metazoa, including fly MUS312, essential for meiotic recombination, and human BTBD12, an ATM/ATR checkpoint kinase substrate. Human SLX1-SLX4 displays robust Holliday junction resolvase activity in addition to 5' flap endonuclease activity. Depletion of SLX1 and SLX4 results in 53BP1 foci accumulation and H2AX phosphorylation as well as cellular hypersensitivity to MMS. Furthermore, we show that SLX4 binds the XPF(ERCC4) and MUS81 subunits of the XPF-ERCC1 and MUS81-EME1 endonucleases and is required for DNA interstrand crosslink repair. We propose that SLX4 acts as a docking platform for multiple structure-specific endonucleases.

  19. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    Science.gov (United States)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm‑2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  20. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.

    Directory of Open Access Journals (Sweden)

    Ewelina Bolcun-Filas

    2009-02-01

    Full Text Available In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.