WorldWideScience

Sample records for repair fuel systems

  1. Things for You to Know. Fuel System. Student Manual--Introduction. Small Engine Repair Series. First Edition.

    Science.gov (United States)

    Hill, Pamela

    This student manual, part of a small-engine repair series on servicing fuel systems, is designed for use by special needs students in Texas. Information covered in this manual is considered to be the minimum that students need to know about fuel systems in order to get small-engine repair jobs. The manual introduces students to small-engine fuel…

  2. Service the Two-Piece Flo-Jet Carburetor. Fuel System. Student Manual 3. Small Engine Repair Series. First Edition.

    Science.gov (United States)

    Hill, Pamela

    This student manual, part of a small-engine repair series on servicing fuel systems, is designed for use by special needs students in Texas. The manual explains in pictures and short sentences, written on a low reading level, the job of servicing two-piece flo-jet carburetors. Along with the steps of this repair job, specific safety and caution…

  3. Replace the Carburetor Diaphragm. Pulsa-Jet Style with Automatic Choke. Fuel System. Student Manual 2. Small Engine Repair Series. First Edition.

    Science.gov (United States)

    Hill, Pamela

    This student manual, part of a small-engine repair series on servicing fuel systems, is designed for use by special needs students in Texas. The manual explains in pictures and short sentences, written on a low reading level, the job of replacing carburetor diaphragms. Along with the steps of this repair job, specific safety and caution…

  4. Grey Repairable System Analysis

    Institute of Scientific and Technical Information of China (English)

    Renkuan Guo; Charles Ernie Love

    2006-01-01

    In this paper, we systematically discuss the basic concepts of grey theory, particularly the grey differential equation and its mathematical foundation, which is essentially unknown in the reliability engineering community. Accordingly,we propose a small-sample based approach to estimate repair improvement effects by partitioning system stopping times into intrinsic functioning times and repair improvement times. An industrial data set is used for illustrative purposes in a stepwise manner.

  5. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  6. Reward optimization of a repairable system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, I.T. [Departamento de Matematicas, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad, s/n. 10071 Caceres (Spain)]. E-mail: inmatorres@unex.es; Perez-Ocon, R. [Departamento de Estadistica e Investigacion Operativa, Facultad de Ciencias, Universidad de Granada, Avenida de Severo Ochoa, s/n. 18071 Granada (Spain)]. E-mail: rperezo@ugr.es

    2006-03-15

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures.

  7. Kvitebjoern gas pipeline repair - baptism of remote pipeline repair system

    Energy Technology Data Exchange (ETDEWEB)

    Gjertveit, Erling

    2010-07-01

    On the 1st of November 2007, severe anchor damage was discovered on the 30 inch Kvitebjoern gas export pipeline. The damage constituted a localised dent and a 17deg buckle, but no leakage. Statoil has invested in building an effective repair contingency structure for the large pipeline network on the Norwegian Continental shelf, with particular focus on the large gas export pipelines. The repair method for the Kvitebjoern pipeline was remotely operated using two Morgrip couplings and a spool. The installation used the purpose built Pipeline Repair System stored at Killingoey and couplings produced and tested back in 2005. This presentation will cover the initial damage investigations, the temporary operational phase, the repair preparations, the actual repair and lessons learned. (Author)

  8. Augmented Reality Repair Guidance System

    Directory of Open Access Journals (Sweden)

    Sidharth Bhatia

    2012-07-01

    Full Text Available The daily life of a common man revolves around various forms of appliances/gadgets he uses throughout the day such as a mobile phone, laptop, printer, microwave oven, washing machine, etc. Although these appliances/gadgets are taken by most of the people for granted, the problem occurs when any of these things do not work as they are expected to. Getting them to the repair shops for every small glitch is expensive as well as time consuming. Although most of the companies which produce these appliances/gadgets do supply them with basic manuals, which deal with how to solve these minor issues, but reading them and at the same time repairing the corresponding appliance/gadget can be a frustrating task at times. These problems can be reduced to a large extent if some kind of live guidance is available. In this paper we propose a method to do so with the help of an augmented reality based system that will guide the user to carry out small scale repair jobs on these gadgets. All that is required is a decent webcam and a computing device, with a processor of 1 GHz or more and a display screen.

  9. Fuel storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Tison, R.R.

    1979-08-01

    Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

  10. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  11. Stochastic Modelling Of The Repairable System

    Directory of Open Access Journals (Sweden)

    Andrzejczak Karol

    2015-11-01

    Full Text Available All reliability models consisting of random time factors form stochastic processes. In this paper we recall the definitions of the most common point processes which are used for modelling of repairable systems. Particularly this paper presents stochastic processes as examples of reliability systems for the support of the maintenance related decisions. We consider the simplest one-unit system with a negligible repair or replacement time, i.e., the unit is operating and is repaired or replaced at failure, where the time required for repair and replacement is negligible. When the repair or replacement is completed, the unit becomes as good as new and resumes operation. The stochastic modelling of recoverable systems constitutes an excellent method of supporting maintenance related decision-making processes and enables their more rational use.

  12. NIU's Kinder, Gentler, Housing Repair System.

    Science.gov (United States)

    Tillis, Linda; Montgomery, Rogene

    1999-01-01

    Explains the effective use of a centralized housing-repair request system at Northern Illinois University that has improved customer service and increased fiscal accountability. Describes the system and assesses of its effectiveness. (GR)

  13. A Two-Unit Cold Standby Repairable System with One Replaceable Repair Facility and Delay Repair:Some Reliability Problems

    Institute of Scientific and Technical Information of China (English)

    WEI Ying-yuan; TANG Ying-hui

    2004-01-01

    This paper considers a two-unit same cold standby repairable system with a replaceable repair facility and delay repair .The failure time of unit is assumed to follow exponential distribution , and the repair time and delay time of failed unit are assumed to follow arbitrary distributions , whereas the failure and replacement time distributions of the repair facility are exponential and arbitrary . By using the Markov renewal process theory, some primary reliability quantities of the system are obtained.

  14. Integrated Electrical Wire Insulation Repair System

    Science.gov (United States)

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  15. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  16. Systems Maintenance Automated Repair Tasks (SMART)

    Science.gov (United States)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  17. 46 CFR 28.335 - Fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fuel systems. 28.335 Section 28.335 Shipping COAST GUARD... Than 16 Individuals on Board § 28.335 Fuel systems. (a) Applicability. Except for the components of an...) Portable fuel systems. Portable fuel systems including portable tanks and related fuel lines and...

  18. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  19. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  20. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  1. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  2. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  5. Fuel nitrogen conversion in solid fuel fired systems

    Energy Technology Data Exchange (ETDEWEB)

    P. Glarborg; A.D. Jensen; J.E. Johnsson [Technical University of Denmark, Lyngby (Denmark). Department of Chemical Engineering

    2003-07-01

    Understanding of the chemical and physical processes that govern formation and destruction of nitrogen oxides (NOx) in combustion of solid fuels continues to be a challenge. There are still unresolved issues that may limit the potential of primary measures for NOx control. In most solid fuel fired systems oxidation of fuel-bound nitrogen constitutes the dominating source of nitrogen oxides. The paper reviews some fundamental aspects of fuel nitrogen conversion in these systems, emphasizing combustion of coal since most previous work deal with this fuel. Results on biomass combustion are also discussed. Homogeneous and heterogeneous pathways in fuel NO formation and destruction are discussed and the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N{sub 2} is evaluated. Results indicate that even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood. Light gases, tar, char and soot may all be important vehicles for fuel-N conversion, with their relative importance depending on fuel rank and reaction conditions. Oxygen availability and fuel-nitrogen level are major parameters determining the oxidation selectivity of fuel-N towards NO and N{sub 2}, but also the ability of char and soot to reduce NO is potentially important. The impact of fuel/oxidizer mixing pattern on NO formation appears to be less important in solid-fuel flames than in homogeneous flames. 247 refs., 14 figs., 2 tabs.

  6. Systems with randomly failing repairable components

    DEFF Research Database (Denmark)

    Der Kiureghian, Armen; Ditlevsen, Ove Dalager; Song, Junho

    2005-01-01

    Closed-form expressions are derived for the steady-state availability, mean rate of failure, mean duration of downtime and reliability of a general system with randomly and independently failing repairable components. Component failures are assumed to be homogeneous Poisson events in time and rep......, or reducing the mean duration of system downtime. Example applications to an electrical substation system demonstrate the use of the formulas developed in the paper....

  7. 33 CFR 183.542 - Fuel systems.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel systems. 183.542 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.542 Fuel systems. (a) Each fuel system in a boat must have been tested by the boat manufacturer and not leak when subjected to the...

  8. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  9. Schedule Planning for Repairing Power Supply System

    OpenAIRE

    Kuo-Wei Lin; Chein-Jen Kang

    2012-01-01

    Problem statement: Taiwan is located in the tropical ocean areas. The strong typhoon in summer often causes the collapse of electric transmission towers and results in power outages that seriously affect peoples lives and industrial production. Approach: In light of this situation, this study aims to employ project management techniques of Theory of Constraints (TOC) to develop a practical TOC model to quickly repair the towers and restore power supplied system. Results: The actual applicatio...

  10. Optimal Repair And Replacement Policy For A System With Multiple Components

    Science.gov (United States)

    2016-06-17

    probabilistic life-cycle maintenance mod- els for deteriorating civil infrastructure. Probabilistic Enginering Mechanics 19 345– 359. Zhang, Y.L. 2002. A...Repair, Replace, Multiple Component Models, Maintenance Models, Markov Decision Process 15. NUMBER OF PAGES 83 16. PRICE CODE 17. SECURITY...Parametric Analysis of the Fuel System . . . . . . . . . . . . . . 39 6 Conclusions and Future Work 45 6.1 Conclusions

  11. Fuel nitrogen conversion in solid fuel fired systems

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Jensen, A.D.; Johnsson, J.E. [Technical University of Denmark, Lyngby (Denmark). Department of Chemical Engineering

    2003-07-01

    Understanding of the chemical and physical processes that govern formation and destruction of nitrogen oxides (NO{sub x}) in combustion of solid fuels continues to be a challenge. Even though this area has been the subject of extensive research over the last three decades, there are still unresolved issues that may limit the potential of primary measures for NO{sub x} control. In most solid fuel fired systems oxidation of fuel-bound nitrogen constitutes the dominating source of nitrogen oxides. The present paper reviews some fundamental aspects of fuel nitrogen conversion in these systems, emphasizing mostly combustion of coal since most previous work deal with this fuel. However, also results on biomass combustion is discussed. Homogeneous and heterogeneous pathways in fuel NO formation and destruction are discussed and the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N{sub 2} is evaluated. Results indicate that even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood. Light gases, tar, char and soot may all be important vehicles for fuel-N conversion, with their relative importance depending on fuel rank and reaction conditions. Oxygen availability and fuel-nitrogen level are major parameters determining the oxidation selectivity of fuel-N towards NO and N{sub 2}, but also the ability of char and soot to reduce NO is potentially important. The impact of fuel/oxidizer mixing pattern on NO formation appears to be less important in solid-fuel flames than in homogeneous flames. (author)

  12. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  13. Compressed gas fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  14. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  15. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  16. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  17. Optimal Strategy for Inspection and Repair of Structural Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    A new strategy for inspection and repair of structural elements and systems is presented. The total cost of inspection and repair is minimized with the constraints that the reliability of elements and/or of the structural system are acceptable. The design variables are the time intervals between...... inspections and the quality of the inspections. Numerical examples are presented to illustrate the performance of the strategy. The strategy can be used for any engineering system where inspection and repair are required....

  18. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  19. Schedule Planning for Repairing Power Supply System

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Lin

    2012-01-01

    Full Text Available Problem statement: Taiwan is located in the tropical ocean areas. The strong typhoon in summer often causes the collapse of electric transmission towers and results in power outages that seriously affect peoples lives and industrial production. Approach: In light of this situation, this study aims to employ project management techniques of Theory of Constraints (TOC to develop a practical TOC model to quickly repair the towers and restore power supplied system. Results: The actual application had verified that the research model could not only shorten the duration of work but also save the manpower and material expenses. Conclusion: It once again proved the excellent results of reparation operations by applying TOC to project management.

  20. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  1. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  2. Incidence of systemic inflammatory response syndrome after endovascular aortic repair

    DEFF Research Database (Denmark)

    De La Motte, L; Vogt, K; Jensen, Leif Panduro;

    2011-01-01

    The aim of this study was to estimate the incidence of the post-implantation syndrome/systemic inflammatory response syndrome (SIRS) after endovascular aortic repair.......The aim of this study was to estimate the incidence of the post-implantation syndrome/systemic inflammatory response syndrome (SIRS) after endovascular aortic repair....

  3. Closed loop two-echelon repairable item systems

    NARCIS (Netherlands)

    Spanjers, L.; van Ommeren, Jan C.W.; Zijm, Willem H.M.

    In this paper we consider closed loop two-echelon repairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal

  4. Estimating diesel fuel exposure for a plumber repairing an underground pipe.

    Science.gov (United States)

    Finn, Mary; Stenzel, Mark; Ramachandran, Gurumurthy

    2017-04-01

    We estimated the diesel fuel exposure of a plumber repairing an underground water line leak at a truck stop. The repair work was performed over three days during which the plumber spent most of his time in a pit filled with a mixture of water and diesel fuel. Thus, the plumber was exposed via both the inhalation and dermal routes. While previously asymptomatic, he was diagnosed with acute renal failure 35 days after working at this site. No measurements were available for estimating either inhalation or dermal exposures or the cumulative dose and, therefore, two different approaches were used that were based on simple models of the exposure scenario. The first approach used the ideal gas law with the vapor pressure of the diesel fuel mixture to estimate a saturation vapor concentration, while the second one used a mass balance of the petroleum hydrocarbon component of diesel fuel in conjunction with the Henry's Law constant for this mixture. These inhalation exposure estimates were then adjusted to account for the limited ventilation in a confined space. The inhalation exposure concentrations predicted when handling the water layer alone is much lower than that expected from the organic layer. This case study illustrates the large differences in inhalation exposure associated with volatile organic layers and aqueous solution containing these chemicals. The estimate of dermal exposure was negligible compared to the inhalation exposure because the skin presents a much smaller surface area of exposure to the contaminant compared to the lungs. The methodology presented here is useful for situations where little information is available for more formal mathematical exposure modeling, but where adjustments to the worst-case exposures, estimated simply, can provide reasonable exposure estimates.

  5. Fuel Cycle System Analysis Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic

  6. Reliability analysis of two unit parallel repairable industrial system

    Directory of Open Access Journals (Sweden)

    Mohit Kumar Kakkar

    2015-09-01

    Full Text Available The aim of this work is to present a reliability and profit analysis of a two-dissimilar parallel unit system under the assumption that operative unit cannot fail after post repair inspection and replacement and there is only one repair facility. Failure and repair times of each unit are assumed to be uncorrelated. Using regenerative point technique various reliability characteristics are obtained which are useful to system designers and industrial managers. Graphical behaviors of mean time to system failure (MTSF and profit function have also been studied. In this paper, some important measures of reliability characteristics of a two non-identical unit standby system model with repair, inspection and post repair are obtained using regenerative point technique.

  7. Targeting DNA-repair systems brings hopes to cancer patients

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ CAS researchers have recently raised a hypothesis to circumvent tumor resistance to radio- and chemo-therapy and to enhance the efficacy of DNAdamaging agents by interfering with DNA repair. "There are emerging anticancer therapeutic opportunities in targeting DNA-repair systems," they asserted.

  8. Incidence of systemic inflammatory response syndrome after endovascular aortic repair

    DEFF Research Database (Denmark)

    De La Motte, L; Vogt, K; Jensen, Leif Panduro;

    2011-01-01

    AIM: The aim of this study was to estimate the incidence of the post-implantation syndrome/systemic inflammatory response syndrome (SIRS) after endovascular aortic repair. METHODS: All patients, undergoing elective primary endovascular repair of an asymptomatic infrarenal abdominal aortic aneurysm...

  9. Capacitated two-indenture models for repairable item systems

    NARCIS (Netherlands)

    Zijm, Willem H.M.; Avsar, Zeynep Müge

    2003-01-01

    A two-indenture maintenance system is considered for a number of identical installations, in use at a single site. The installations are considered as assemblies that are made up of a number of repairable components. A component repair center and an assembly facility are both modeled as product form

  10. Capacitated two-indenture models for repairable item systems

    NARCIS (Netherlands)

    Zijm, Willem H.M.; Avsar, Z.M.; van Houtum, Geert-Jan

    2001-01-01

    A two-indenture maintenance system is considered for a number of identical installations, in use at a single site. The installations are considered as assemblies that are made up of a number of repairable components. A component repair center and an assembly facility are both modeled as product form

  11. Capacitated two-echelon inventory models for repairable item systems

    NARCIS (Netherlands)

    Avsar, Z.M.; Zijm, Willem H.M.; Gershwin, S.B.; Dallery, Y.; Papadopoulos, C.; Smith, J.M.

    2002-01-01

    In this paper, we consider two-echelon maintenance systems with repair facilities both at a number of local service centers (called bases) and at a central location. Each repair facility may be considered to be a job shop and is modeled as a (limited capacity) open queuing network, while any

  12. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  13. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  14. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  15. System for injecting fuel in a gas turbine combustor

    Science.gov (United States)

    Berry, Jonathan Dwight

    2016-10-25

    A combustion system uses a fuel nozzle with an inner wall having a fuel inlet in fluid communication with a fuel outlet in a fuel cartridge. The inner wall defines a mounting location for inserting the fuel cartridge. A pair of annular lip seals around the cartridge outer wall on both sides of the fuel outlet seals the fuel passage between the fuel inlet and the fuel outlet.

  16. Reliability Analysis of Repairable Systems Using Stochastic Point Processes

    Institute of Scientific and Technical Information of China (English)

    TAN Fu-rong; JIANG Zhi-bin; BAI Tong-shuo

    2008-01-01

    In order to analyze the failure data from repairable systems, the homogeneous Poisson process(HPP) is usually used. In general, HPP cannot be applied to analyze the entire life cycle of a complex, re-pairable system because the rate of occurrence of failures (ROCOF) of the system changes over time rather thanremains stable. However, from a practical point of view, it is always preferred to apply the simplest methodto address problems and to obtain useful practical results. Therefore, we attempted to use the HPP model toanalyze the failure data from real repairable systems. A graphic method and the Laplace test were also usedin the analysis. Results of numerical applications show that the HPP model may be a useful tool for the entirelife cycle of repairable systems.

  17. Variable volume combustor with nested fuel manifold system

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  18. Liquid fuel utilization in SOFC hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Marco; Traverso, Alberto; Magistri, Loredana [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2009-10-15

    The interest in solid oxide fuel cell systems comes from their capability of converting the chemical energy of traditional fuels into electricity, with high efficiency and low pollutant emissions. In this paper, a study of the design space of solid oxide fuel cell and gas turbine hybrids fed by methanol and kerosene is presented for stationary power generation in isolated areas (or transportation). A 500 kW class hybrid system was analysed using WTEMP original software developed by the Thermochemical Power Group of the University of Genoa. The choice of fuel-processing strategy and the influence of the main design parameters on the thermoeconomic characteristics of hybrid systems were investigated. The low capital and fuel cost of methanol systems make them the most attractive solutions among those investigated here. (author)

  19. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  20. Shortcut model for water-balanced operation in fuel processor fuel cell systems

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Kramer, G.J.

    2004-01-01

    In a fuel processor, a hydrocarbon or oxygenate fuel is catalytically converted into a mixture rich in hydrogen which can be fed to a fuel cell to generate electricity. In these fuel processor fuel cell systems (FPFCs), water is recovered from the exhaust gases and recycled back into the system. We

  1. External fuel thermionic reactor system.

    Science.gov (United States)

    Mondt, J. F.; Peelgren, M. L.

    1971-01-01

    Thermionic reactors are prime candidates for nuclear electric propulsion. The national thermionic reactor effort is concentrated on the flashlight concept with the external-fuel concept as the backup. The external-fuel concept is very adaptable to a completely modular power subsystem which is attractive for highly reliable long-life applications. The 20- to 25-cm long, externally-fueled converters have been designed, fabricated, and successfully tested with many thermal cycles by electrical heating. However, difficulties have been encountered during encapsulation for nuclear heated tests and none have been started to date. These nuclear tests are required to demonstrate the concept feasibility.

  2. Effect of surface roughness on amalgam repair using adhesive systems.

    Science.gov (United States)

    Giannini, Marcelo; Paulillo, Luis Alexandre Maffei Sartini; Ambrosano, Gláucia Maria Bovi

    2002-01-01

    The objective of this in vitro study was to evaluate the effect of three surface treatments and two adhesive systems on the shear bond strength of old and freshly placed amalgam. The results suggested that the intact amalgam showed a significantly higher strength than repaired groups and the strongest repaired specimens were made when the amalgam surfaces were roughened with a diamond bur or microetcher. The adhesive systems showed no significant differences on bond strength with the same superficial texture.

  3. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems.

    Science.gov (United States)

    Elsaka, Shaymaa E

    2015-01-01

    This study evaluated the repair bond strength of a nanohybrid resin composite to a novel CAD/CAM hybrid ceramic based on four intraoral ceramic repair systems. Vita Enamic (VE) CAD/CAM hybrid ceramic was used in this study. Specimens were divided into five test groups according to the repair method performed on the ceramic surface: Gr C (No treatment; control); Gr CZ (Cimara Zircon); Gr PR (Porcelain Repair); Gr CR (Clearfil Repair); and Gr CS (CoJet system). Nanohybrid resin composite (GrandioSO) was packed onto treated ceramic surfaces for adhesion testing using microtensile bond strength test. Debonded specimens were examined with a stereomicroscope and SEM to determine the fracture mode. Data were analyzed using ANOVA and Tukey's HSD test. PR and CZ repair systems significantly enhanced the bond strength of nanohybrid resin composite to VE CAD/CAM hybrid ceramic when compared with the other tested repair systems.

  4. Fuel System Compatibility Issues for Prometheus-1

    Energy Technology Data Exchange (ETDEWEB)

    DC Noe; KB Gibbard; MH Krohn

    2006-01-20

    Compatibility issues for the Prometheus-1 fuel system have been reviewed based upon the selection of UO{sub 2} as the reference fuel material. In particular, the potential for limiting effects due to fuel- or fission product-component (cladding, liner, spring, etc) chemical interactions and clad-liner interactions have been evaluated. For UO{sub 2}-based fuels, fuel-component interactions are not expected to significantly limit performance. However, based upon the selection of component materials, there is a potential for degradation due to fission products. In particular, a chemical liner may be necessary for niobium, tantalum, zirconium, or silicon carbide-based systems. Multiple choices exist for the configuration of a chemical liner within the cladding; there is no clear solution that eliminates all concerns over the mechanical performance of a clad/liner system. A series of tests to evaluate the performance of candidate materials in contact with real and simulated fission products is outlined.

  5. 14 CFR 33.67 - Fuel system.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With fuel supplied to the engine at the flow and pressure specified by the applicant, the engine...

  6. Macstor system for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Pattantyus, P. (Atomic Energy of Canada Ltd., Montreal, PQ (Canada). Power Projects)

    1993-01-01

    In 1989, Transnuclear Inc. and AECL jointly developed the conceptual design for the Modular Aircooled Canister Storage System (Macstor) for LWR fuel. The development effort has proceeded to the completion of successful full-scale thermal testing. In 1990, AECL adapted the Macstor System approach for use with Candu fuel. The adapted design, called Canstor, has also successfully completed full-scale thermal testing, and the final system design has been completed. (author) 1 fig.

  7. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  8. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  9. DNA Repair Systems: Guardians of the Genome

    Indian Academy of Sciences (India)

    2016-10-01

    The 2015 Nobel Prize in Chemistry was awarded jointly to Tomas Lindahl, Paul Modrich and Aziz Sancar to honour their accomplishments in the field of DNA repair. Ever since the discovery of DNA structure and their importance in the storage of genetic information, questions about their stability became pertinent. A molecule which is crucial for the development and propagation of an organism must be closely monitored so that the genetic information is not corrupted. Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial in the fight against cancer and other debilitating diseases.

  10. Modeling and control of fuel cell systems and fuel processors

    Science.gov (United States)

    Pukrushpan, Jay Tawee

    Fuel cell systems offer clean and efficient energy production and are currently under intensive development by several manufacturers for both stationary and mobile applications. The viability, efficiency, and robustness of this technology depend on understanding, predicting, and controlling the unique transient behavior of the fuel cell system. In this thesis, we employ phenomenological modeling and multivariable control techniques to provide fast and consistent system dynamic behavior. Moreover, a framework for analyzing and evaluating different control architectures and sensor sets is provided. Two fuel cell related control problems are investigated in this study, namely, the control of the cathode oxygen supply for a high-pressure direct hydrogen Fuel Cell System (FCS) and control of the anode hydrogen supply from a natural gas Fuel Processor System (FPS). System dynamic analysis and control design is carried out using model-based linear control approaches. A system level dynamic model suitable for each control problem is developed from physics-based component models. The transient behavior captured in the model includes flow characteristics, inertia dynamics, lumped-volume manifold filling dynamics, time evolving spatially-homogeneous reactant pressure or mole fraction, membrane humidity, and the Catalytic Partial Oxidation (CPOX) reactor temperature. The goal of the FCS control problem is to effectively regulate the oxygen concentration in the cathode by quickly and accurately replenishing oxygen depleted during power generation. The features and limitations of different control configurations and the effect of various measurement on the control performance are examined. For example, an observability analysis suggests using the stack voltage measurement as feedback to the observer-based controller to improve the closed loop performance. The objective of the FPS control system is to regulate both the CPOX temperature and anode hydrogen concentration. Linear

  11. Web-ADARE: A Web-Aided Data Repairing System

    KAUST Repository

    Gu, Binbin

    2017-03-08

    Data repairing aims at discovering and correcting erroneous data in databases. In this paper, we develop Web-ADARE, an end-to-end web-aided data repairing system, to provide a feasible way to involve the vast data sources on the Web in data repairing. Our main attention in developing Web-ADARE is paid on the interaction problem between web-aided repairing and rule-based repairing, in order to minimize the Web consultation cost while reaching predefined quality requirements. The same interaction problem also exists in crowd-based methods but this is not yet formally defined and addressed. We first prove in theory that the optimal interaction scheme is not feasible to be achieved, and then propose an algorithm to identify a scheme for efficient interaction by investigating the inconsistencies and the dependencies between values in the repairing process. Extensive experiments on three data collections demonstrate the high repairing precision and recall of Web-ADARE, and the efficiency of the generated interaction scheme over several baseline ones.

  12. Fuel cell power generation system. Nenryo denchi hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Shiba, Y.

    1993-06-11

    It is general to fabricate the primary cooling water system including the fuel cell main body using corrosion resistant stainless steel, while the secondary cooling system including absorption type freezer is made of carbon steel. For this structure, returning the cooling water of the secondary cooling system to the primary cooling system can cause the corrosion of the primary cooling system. That is, the water of inferior quality in the secondary system can corrode the primary system including the fuel cell. This invention solves the problem. The fuel cell bypass which is branched from the fuel cell cooling water inlet, detours the fuel cell, and it is connected to the water-vapor separator installed to the fuel cell. And the heat exchanger is installed at any of fuel cooling water outlet line, fuel cell cooling water inlet line, or fuel cell bypass line. With this structure, recovering the heat generated during the power generation by the fuel cell at the secondary side of the heat exchanger can be achieved while separating the primary and secondary cooling water. So that the trouble of fuel cell operation caused by the contamination of the primary cooling water with the secondary cooling water which contains corrosive impurities can be avoided. 6 figs.

  13. Coal slurry fuel supply and purge system

    Science.gov (United States)

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  14. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  15. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  16. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  17. SOFC system with integrated catalytic fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, C.; Tompsett, G.A.; Kendall, K.; Ormerod, R.M. [Birchall Centre for Inorganic Chemistry and Materials Science, Keele Univ. (United Kingdom)

    2000-03-01

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm{sup -2} at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H{sub 2}/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack. (orig.)

  18. SOFC system with integrated catalytic fuel processing

    Science.gov (United States)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  19. Aircraft Fuel Systems Career Ladder.

    Science.gov (United States)

    1985-09-01

    type fittings remove and install fuel cells clean work areas inspect aircraft for safety pin installation purge tanks or cells using blow purge method...INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 84 H254 PURGE TANKS OR CELLS USING BLOW PURGE METHOD 83 H227 CHECK AIRCRAFT FOR LIQUID OXYGEN (LOX...H243 INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 52 M483 MIX SEALANTS BY HAND 48 K372 CONNECT OR DISCONNECT WIGGINS TYPE FITTINGS 48 H236 DISCONNECT

  20. Advanced maintenance, inspection & repair technology for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  1. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be—...

  2. 14 CFR 23.954 - Fuel system lightning protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954 Section 23.954 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged...

  3. 14 CFR 23.961 - Fuel system hot weather operation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 23.961 Section 23.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor...

  4. Fuel Flexible Turbine System (FFTS) Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was

  5. Fuel Flexible Turbine System (FFTS) Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone's lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector

  6. Analysis of contaminated field failure data for repairable systems

    DEFF Research Database (Denmark)

    Hansen, Christian Kornerup; Thyregod, Poul

    1991-01-01

    A simple model for electronic systems with repair, and a method for analyzing recorded field failure data for such systems are presented. The work performed has resulted in analytical results that may be used for assessing the product reliability. The method was originally developed for use under...

  7. Closed loop two-echelon repairable item systems

    NARCIS (Netherlands)

    Spanjers, L.; van Ommeren, Jan C.W.; Zijm, Willem H.M.; Liberopoulos, G.; Papadopoulos, C.T.; Tan, B.; MacGregor Smith, J.; Gershwin, S.B.

    2006-01-01

    In this paper we consider closed loop two-echelon epairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal

  8. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    Science.gov (United States)

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  9. 14 CFR 23.993 - Fuel system lines and fittings.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lines and fittings. 23.993 Section 23.993 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System Components § 23.993 Fuel system lines and fittings. (a) Each fuel line must be...

  10. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  11. Quantifying physical characteristics of wildland fuels using the fuel characteristic classification system.

    Science.gov (United States)

    Cynthia L. Riccardi; Susan J. Prichard; David V. Sandberg; Roger D. Ottmar

    2007-01-01

    Wildland fuel characteristics are used in many applications of operational fire predictions and to understand fire effects and behaviour. Even so, there is a shortage of information on basic fuel properties and the physical characteristics of wildland fuels. The Fuel Characteristic Classification System (FCCS) builds and catalogues fuelbed descriptions based on...

  12. Optimal inspection and Repair Strategies for Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Faber, Michael Havbro

    1992-01-01

    A model for reliability-based repair and maintenance strategies of structural systems is described. The total expected costs in the lifetime of the structure are minimized with the number of inspections, the number and positions of the inspected points, the inspection efforts, the repair criteria...... to be inspected and to select the location of the points to be inspected. It is shown how information obtained through inspections and through the periods of normal operating of the structure can be used to update the inspection and maintenance planning. Finally, a small example is given illustrating...

  13. Lubrication System. Teacher's Guide. Small Engine Repair Series. First Edition.

    Science.gov (United States)

    Hill, Pamela

    This teacher's guide accompanies three student manuals and together with them comprises an instructional package on the lubrication system in the Small Engine Repair Series for handicapped/special needs students. The first section, "Notes to the Instructor," covers equipment needs, preparation before teaching the instructional package,…

  14. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  15. Randomized trial comparing the Prolene Hernia System, mesh plug repair and Lichtenstein method for open inguinal hernia repair.

    NARCIS (Netherlands)

    Nienhuijs, S.W.; Oort, I.M. van; Keemers-Gels, M.E.; Strobbe, L.J.; Rosman, C.

    2005-01-01

    BACKGROUND: Most surgeons favour the use of a mesh for open inguinal hernia repair as it has a low recurrence rate. Procedures used most frequently are the Lichtenstein method, mesh plug repair and the Prolene Hernia System. The choice of technique may be influenced by the effects on postoperative p

  16. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions.

  17. Effective Measurement of Reliability of Repairable USAF Systems

    Science.gov (United States)

    2012-09-01

    Hansen presented a course, Concepts and Models for Repairable Systems Reliability, at the 2009 Centro de Investigacion en Mathematicas (CIMAT). The...defines MTBF in Technical Order 00-2-2, Maintenance Documentation ., Mean Time Between Failure (Inherent). Inherent refers to a Type 1 failure or...The USAF uses maintenance data to document the system failures. There is no method within that data system to define specific failure modes

  18. Availability, reliability and downtime of systems with repairable components

    DEFF Research Database (Denmark)

    Kiureghian, Armen Der; Ditlevsen, Ove Dalager; Song, J.

    2007-01-01

    Closed-form expressions are derived for the steady-state availability, mean rate of failure, mean duration of downtime and lower bound reliability of a general system with randomly and independently failing repairable components. Component failures are assumed to be homogeneous Poisson events in ......, or reducing the mean duration of system downtime. Example applications to an electrical substation system demonstrate the use of the formulas developed in the paper....

  19. 30 CFR 36.27 - Fuel-supply system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel-supply system. 36.27 Section 36.27 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... Construction and Design Requirements § 36.27 Fuel-supply system. (a) Fuel tank. (1) The fuel tank shall...

  20. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  1. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  2. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  3. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  4. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Fuel System Supply Point

    Science.gov (United States)

    2014-06-19

    utilizing Fuel System Supply Point Joel Schmitigal U S Army Tank Automotive Research DISTRIBUTION STATEMENT A. Approved for public release; distribution...UNCLASSIFIED 6 UNCLASSIFIED Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18...Test Center while AMRDEC was conducting Alcohol to Jet (ATJ) fuel flight tests (17). The test results indicated that on-line particle counters

  5. Spontaneously Igniting Hybrid Fuel-Oxidiser Systems

    Directory of Open Access Journals (Sweden)

    S. R. Jain

    1995-01-01

    Full Text Available After briefly outlining the recent developments in hybrid rockets, the work carried out by the author on self-igniting (hypergolic solid fuel-liquid oxidiser systems has been reviewed. A major aspect relates to the solid derivatives of hydrazines, which have been conceived as fuels for hybrid rockets. Many of these N-N bonded compounds ignite readily, with very short ignition delays, on coming into contact with liquid oxidisers, like HNO/sub 3/ and N/sub 2/ O/sub 4/. The ignition characteristics have been examined as a function of the nature of the functional group in the fuel molecule, in an attempt to establish a basis for the hypergolic ignition in terms of chemical reactivity of the fuel-oxidiser combination. Important chemical reactions occurring in the pre-ignition stage have been identified by examining the quenched reaction products. Hybrid systems exhibiting synergistic hypergolicity in the presence of metal powders have investigated. An estimation of the rocket performance parameters, experimental determination of the heats of combustion in HNO/sub 3/, thermal decomposition characteristics, temperature profile by thin film thermometry and product identification by the rapid scan FT-IR, are among the other relevant studies made on these systems. A significant recent development has been the synthesis of new N-N bonded viscous binders, capable of rataining the hypergolicity of the fuel powders embedded therein as well as providing the required mechanical strength to the grain. Several of these resins have been characterised. Metallised fuel composites of these resins having high loading of magnesium are found to have short ignition delays and high performance parameters.

  6. Fuel Cost Estimation for Sumatra Grid System

    Science.gov (United States)

    Liun, Edwaren

    2010-06-01

    Sumatra has a high growth rate electricity energy demand from the first decade in this century. At the medium of this decade the growth is 11% per annum. On the other side capability of Government of Indonesia cq. PLN authority is limited, while many and most old existing power plants will be retired. The electricity demand growth of Sumatra is increasing the fuel consumption for several next decades. Based on several cases by vary growth scenarios and economic parameters, it shown that some kinds of fossil fuel keep to be required until next several decades. Although Sumatra has abundant coal resource, however, the other fuel types such as fuel oil, diesel, gas and nuclear are needed. On the Base Scenario and discount rate of 10%, the Sumatra System will require 11.6 million tones of coal until 2030 producing 866 TWh with cost of US10558 million. Nuclear plants produce about 501 TWh or 32% by cost of US3.1 billion. On the High Scenario and discount rate 10%, the coal consumption becomes 486.6 million tones by fuel cost of US12.7 billion producing 1033 TWh electricity energy. Nuclear fuel cost required in this scenario is US7.06 billion. The other fuel in large amount consumed is natural gas for combined cycle plants by cost of US1.38 billion producing 11.7 TWh of electricity energy on the Base Scenario and discount rate of 10%. In the High Scenario and discount rate 10% coal plants take role in power generation in Sumatra producing about 866 TWh or 54% of electricity energy. Coal consumption will be the highest on the Base Scenario with discount rate of 12% producing 756 TWh and required cost of US17.1 billion. Nuclear plants will not applicable in this scenario due to its un-competitiveness. The fuel cost will depend on nuclear power role in Sumatra system. Fuel cost will increase correspond to the increasing of coal consumption on the case where nuclear power plants not appear.

  7. Analysis of contaminated field failure data for repairable systems

    OpenAIRE

    Hansen, Christian Kornerup; Thyregod, Poul

    1991-01-01

    A simple model for electronic systems with repair, and a method for analyzing recorded field failure data for such systems are presented. The work performed has resulted in analytical results that may be used for assessing the product reliability. The method was originally developed for use under ideal circumstances, but it has been adapted for use with contaminated data (i.e., data where the failure times are observed embedded by noise). A simple model for the noise that enables an analytica...

  8. Gaseous fuel reactor systems for aerospace applications

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.

    1977-01-01

    Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

  9. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    in which fuel cell appli‐ cations create synergy effects with other components of the system, as well as in which the efficiency improvements achieved by using fuel cells are lost elsewhere in the system. In order to identify suitable applications of fuel cells and electrolysers in future energy sys‐ tems...... be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency...

  10. Military Fuel and Alternative Fuel Effects on a Modern Diesel Engine Employing a Fuel-Lubricated High Pressure Common Rail Fuel Injection System

    Science.gov (United States)

    2011-08-09

    Fuel-lubricated High Pressure Common Rail Fuel Injection System, Adam C. Brandt, et al. Page 3 of 7 UNCLASSIFIED contains a two lobe camshaft ... camshafts rotation. These follower assemblies are then used to actuate the fuel plunger within the barrel to generate high pressure fuel. Fuel entering...top & bottom Camshaft light polish, seal contact wear light polish, very light burnish, seal contact wear light polish, light burnish, seal

  11. Materials directed to implants for repairing Central Nervous System

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Moreno-Burriel, B.; Chinarro, E.

    2014-07-01

    Central Nervous System (CNS) can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as secondary injury. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon. (Author)

  12. Reliability Analysis of Partially Repairable Systems%部分可修系统的可靠性分析

    Institute of Scientific and Technical Information of China (English)

    苏保河

    2005-01-01

    The reliability analysis of a system with repairable failures and non-repairable failures is presented. It is assumed that the system has n repairable failure modes and m non-repairable failure modes. As one repairable failure mode takes place, the system will be repaired after the failure mode is detected, otherwise, it would never work again when attaining one non-repairable failure mode. Thus, the system brings about new reliability indices for having both repairable failures and non-repairable failures. The definitions of the new reliability indices are given, and the calculating methods for them are derived by using probability analysis and the supplementary variable technique.

  13. Nonlinear Mixed-Effects Models for Repairable Systems Reliability

    Institute of Scientific and Technical Information of China (English)

    TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE

    2007-01-01

    Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.

  14. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed...... fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  15. BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem

    Science.gov (United States)

    Robert E. Burgan; Richard C. Rothermel

    1984-01-01

    This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.

  16. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  17. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  18. STRATOS™ system for the repair of pectus excavatum.

    Science.gov (United States)

    Stefani, Alessandro; Nesci, Jessica; Morandi, Uliano

    2013-12-01

    Open techniques represent a valid repair option for severe asymmetric pectus excavatum in adults. The use of metal supports is recommended to reduce the risk of recurrence. A wide variety of metal supports have been proposed, with pre-, trans- or retrosternal fixation. A novel open technique using titanium bars fixed to the ribs with clips has been recently introduced (STRATOS™ system) for chest wall reconstruction, rib fracture fixation and chest wall malformation repair. We employed this technique in two adult patients with severe asymmetric pectus excavatum: after sternal mobilization, one bar is passed below the body of the sternum and secured with clips bilaterally to two ribs. In the first case, the results remained excellent 5 years after surgery. In the second case, the initial results were satisfying but the bar ruptured after 30 months: removal of the bars and clips was performed and a subsequent recurrence of the deformity occurred. The experiences reported in literature are still too limited to draw firm conclusions about the use of the STRATOS™ system in pectus excavatum repair, but it seems that the use of two bars may reduce the risk of rupture. At present, we are the only ones who reported long-term results.

  19. Bone repair: Effects of physical exercise and LPS systemic exposition.

    Science.gov (United States)

    Nogueira, Jonatas E; Branco, Luiz G S; Issa, João Paulo M

    2016-08-01

    Bone repair can be facilitated by grafting, biochemical and physical stimulation. Conversely, it may be delayed lipopolysaccharide (LPS). Physical exercise exerts beneficial effects on the bone, but its effect on bone repair is not known. We investigated the effect of exercise on the LPS action on bone healing through bone densitometry, quantitative histological analysis for bone formation rate and immunohistochemical markers in sedentary and exercised animals. Rats ran on the treadmill for four weeks. After training the rats were submitted to a surgical procedure (bone defect in the right tibia) and 24h after the surgery LPS was administered at a dose of 100μg/kg i.p., whereas the control rats received a saline injection (1ml/kg, i.p.). Right tibias were obtained for analysis after 10days during which rats were not submitted to physical training. Physical exercise had a positive effect on bone repair, increasing bone mineral density, bone mineral content, bone formation rate, type I collagen and osteocalcin expression. These parameters were not affected by systemic administration of LPS. Our data indicate that physical exercise has an important osteogenic effect, which is maintained during acute systemic inflammation induced by exposure to a single dose of LPS.

  20. Evaluation of Precast Panels for Airfield Pavement Repair. Phase 1: System Optimization and Test Section Construction

    Science.gov (United States)

    2013-06-01

    panel repair system for repair of rigid airfield pavements in contingency situations. Design criteria were provided by AFCEC to assist with the...dimensions limit repair versatility, since they do not align with typical rigid airfield pavement slab sizes. The Air Force prototype system design consists...at the joint. The original Air Force panel design used 0.75-in.-wide joints that were backfilled with a rapid-setting rigid pavement repair material

  1. Regenerative fuel cell systems R and D

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  2. Fuel services; Servicios de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-07-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning,fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  3. A comparison of mechanical algorithms of fuel performance code systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. J.; Park, J. H.; Kang, K. H.; Ryu, H. J.; Moon, J. S.; Jeong, I. H.; Lee, C. Y.; Song, K. C

    2003-11-01

    The goal of fuel rod performance evaluation is to identify the robustness of fuel rod with cladding material during fuel irradiation. Computer simulation of fuel rod performance becomes important to develop new nuclear systems. To construct the computing code system for fuel rod performance, we compared several algorithms of existing fuel rod performance code systems and summarized the details and tips as a preliminary work. Among several code systems, FRAPCON, FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. The computational algorithms related to mechanical interaction of the fuel rod are compared including methodologies and subroutines. This work will be utilized to develop the computing code system for dry process fuel rod performance.

  4. A review of fuel cell systems for maritime applications

    Science.gov (United States)

    van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P. V.

    2016-09-01

    Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution, since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel, and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented, and maritime fuel cell application is reviewed with regard to efficiency, gravimetric and volumetric density, dynamic behaviour, environmental impact, safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours, but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles, hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study.

  5. Simplified Load-Following Control for a Fuel Cell System

    Science.gov (United States)

    Vasquez, Arturo

    2010-01-01

    A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.

  6. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saxe, Maria

    2008-10-15

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  7. Mathematical Model of the Jet Engine Fuel System

    Science.gov (United States)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  8. Mathematical Model of the Jet Engine Fuel System

    Directory of Open Access Journals (Sweden)

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  9. A discounted model for a repairable system with continuous state space

    NARCIS (Netherlands)

    Bruns, P.B.

    2000-01-01

    We examine repairable systems with a continous state space and partial repair options, carried out at fixed times $n=1,2,...$. Every time interval $[n,n+1)$ there is a manufacturing cost and a repair cost. These cost functions are not restricted to the class of bounded functions in this study. Condi

  10. Bond strength durability of a resin composite on a reinforced ceramic using various repair systems

    NARCIS (Netherlands)

    Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Leite, Fabiola; Bottino, Marco Antonio

    2009-01-01

    Objectives. This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems. Methods. Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha(R)) (N=30) were randomly divided into three groups according to the repair method: PR-

  11. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  12. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  13. Successful repair of a ventricular assist system percutaneous lead.

    Science.gov (United States)

    Pantalos, G M; Marks, J D; Richardson, E E; Nelson, K E; Long, J W

    1999-01-01

    A patient with an implanted, electrically powered, ventricular assist device (Thermo Cardiosystems VE HeartMate) experienced a partial break of the percutaneous lead 5 months after implantation. The break (limited to the Silicone rubber tube) occurred at the junction of the lead with the Y-connector to the controller and vent, leaving approximately 5 cm of exposed lead from the skin exit site to the connector. Electronic and pumping functions of the pump continued, but the opening in the lead (which went more that half way around the circumference) prevented the use of pneumatic actuation as a back-up mode for pump operation, and placed the pump at risk for contamination. Repair of the lead without surgical intervention was desirable, with ease of repair and minimal risk to the patient being the top priorities. The use of multiple layers of heat-shrink tubing or external metal stents was ruled out in favor of a three stage repair procedure. The first stage involved the removal of the Dacron velour in-growth material from the lead to expose the underlying Silicone rubber tube. While the opening in the tube was held shut, a coating of medical grade Silicone rubber adhesive was applied to the tube, then wrapped with a woven Dacron mesh, followed by two layers of plastic wrapping material to protect the adhesive. This initial layer was secured by an external stent of tubing with cable ties. After several days to allow for complete curing of the adhesive, the adhesive coating with mesh was repeated. The final step involved a double layer wrap of a 1 mm thick Silicone rubber sheeting with mesh incorporation and adhesive secured in place with cable ties. After completion of the repair and verification of the ability to operate the device with pneumatic actuation, the patient was discharged with no recurrence of the problem after 8 months of weekly follow-up. This experience demonstrates the need to clinically anticipate component repair or replacement without total device

  14. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  15. Inducible repair system in Haemophilus influenzae unaccompanied by mutation. [uv

    Energy Technology Data Exchange (ETDEWEB)

    Notani, N.K.; Setlow, J.K.

    1980-07-01

    Weigle reactivation of ultraviolet-irradiated HPlc1 phage was observed after ultraviolet or mitomycin C treatment of Haemophilus influenzae cells. The amount of reactivation was considerably increased when the treated cells were incubated in growth medium before infection. The presence of chloramphenicol during this incubation abolished the reactivation. No mutation of this phage accompanied the reactivation. When cells were treated so as to produce a maximal reactivation of phage, neither reactivation nor mutation of cells was observed. It is concluded that H. influenzae has an inducible repair system that is not accompanied by mutation.

  16. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  17. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  18. Low NO/x/ combustion systems for burning heavy residual fuels and high-fuel-bound nitrogen fuels

    Science.gov (United States)

    White, D. J.; Batakis, A.; Lecren, R. T.; Yacobucci, H. G.

    1981-01-01

    Design concepts are presented for lean-lean and staged rich-lean combustors. The combustors are designed for the dry reduction of thermal NO(x), control of NO(x) from fuels containing high levels of organic nitrogen, and control of smoke from low hydrogen content fuels. The combustor concepts are tested with a wide variety of fuels including a middle distillate, a petroleum based heavy residual, a coal derived synthetic, and ratios of blends of these fuels. The configurations of the lean-lean and rich-lean combustion systems are provided along with a description of the test rig and test procedure.

  19. Interim report spent nuclear fuel retrieval system fuel handling development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  20. Mechanism and Durability of Repair Systems in Polymer-Modified Cement Mortars

    Directory of Open Access Journals (Sweden)

    Ru Wang

    2015-01-01

    Full Text Available This paper investigated the mechanism and durability of repair systems made of ordinary cement-based repair mortar and three kinds of polymer-modified repair mortars with old concrete, SBR dispersion, SAE dispersion, and SAE powder. By comparing the bonding properties of mortars before and after erosion, it was found that polymers could effectively improve the durability of the repair system and SAE powder had the best improvement. Micromorphology study of the repair mortar and the interface of repair mortar with old concrete through SEM showed that the polymer film formed from SAE powder whatever in the mortar or at the interface was dense and tough, the film formed from SAE dispersion was loose and weak, while the film formed from SBR dispersion was in between them, which explained the difference in the tensile bond strength and the durability of the repair systems.

  1. Development of DUPIC fuel cycle technology - Assessment of Wolsong NPP fuel handling system for DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Na, Bok Gyun; Nam, Gung Ihn [Korea Power Engineering Company, Taejon (Korea)

    2000-04-01

    The DUPIC fuel loading and discharge path of Wolsong NPP is studied assuming that DUPIC fuel is used at Wolsong NPP. Spent DUPIC fuel discharge path is irrelevant, since it uses the same spent fuel discharge path. Number of factors such as safety, economics of design change, radiation exposure to operators, easy of operation and maintenance, etc, are considered in the evaluation of path. A more detailed analysis of cost estimation of the selected path is also carried out. The study shows that DUPIC fuel loading path following through Spent Fuel Storage Bay and Spent Fuel Discharge Port in reverse direction will minimize the design change and additional equipment and radiation exposure to operators. The estimated total cost of using DUPIC fuel in Wolsong NPP based on price index of year 2000 is around 4.5 billion won. 4 refs., 30 figs., 13 tabs. (Author)

  2. 14 CFR 29.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 29.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard...) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far...

  3. 14 CFR 27.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 27.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard...) Separation of fuel and ignition sources. To provide maximum crash resistance, fuel must be located as far...

  4. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  5. Critical assessment of power trains with fuel-cell systems and different fuels

    Science.gov (United States)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  6. Conceptual design study of advanced fuel fabrication systems

    Energy Technology Data Exchange (ETDEWEB)

    Ken-ya, Tanaka; Shusaku, Kono; Kiyoshi, Ono [Japan Nuclear Cycle Development JNC, Fuel Fabrication System Group, O-Arai Engineering Center, Ibaraki (Japan)

    2001-07-01

    The fuel fabrication plant images based on the advanced equipment with availability to operate in hot-cell facility are constructed. The characteristics of each fuel fabrication system for economical and environmental are evaluated roughly. The advanced fuel fabrication routes such as simplified pelletizing, vibration compaction and casting process would have the potential for reducing plant construction cost and minimizing the radioactive waste generated from fuel fabrication process. (author)

  7. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  8. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  9. Direct Self-Repairing Control for Quadrotor Helicopter Attitude Systems

    Directory of Open Access Journals (Sweden)

    Huiliao Yang

    2014-01-01

    Full Text Available A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally, the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of LQR through simulation.

  10. PEM fuel stack dynamics, constraining supervisory control for propulsion systems in fuel cell busses

    NARCIS (Netherlands)

    Tazelaar, Edwin; Veenhuizen, Bram; Middelman, E.; Bosch, P. van den

    2013-01-01

    The last decade several prototypes of fuel cell busses have been presented [1, 2]. A closer observation of these prototypes shows remarkable differences in both sizing and control of the system components. Some busses are essentially electric vehicles with a relative low power fuel cell system used

  11. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  12. 46 CFR 62.35-40 - Fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel systems. 62.35-40 Section 62.35-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-40 Fuel systems. (a) Level alarms. Where...

  13. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  14. Model of U3Si2 Fuel System using BISON Fuel Code

    Energy Technology Data Exchange (ETDEWEB)

    K. E. Metzger; T. W. Knight; R. L. Williamson

    2014-04-01

    This research considers the proposed advanced fuel system: U3Si2 combined with an advanced cladding. U3Si2 has a number of advantageous thermophysical properties, which motivate its use as an accident tolerant fuel. This preliminary model evaluates the behavior of U3Si2 using available thermophysical data to predict the cladding-fuel pellet temperature and stress using the fuel performance code: BISON. The preliminary results obtained from the U3Si2 fuel model describe the mechanism of Pellet-Clad Mechanical Interaction for this system while more extensive testing including creep testing of U3Si2 is planned for improved understanding of thermophysical properties for predicting fuel performance.

  15. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    Science.gov (United States)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  16. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  17. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  18. A deteriorating two-system with two repair modes and sojourn times phase-type distributed

    Energy Technology Data Exchange (ETDEWEB)

    Montoro-Cazorla, Delia [Departamento de Estadistica e I.O., Escuela Politecnica de Linares, Universidad de Jaen, 23700 Linares, Jaen (Spain); Perez-Ocon, Rafael [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain)]. E-mail: rperezo@ugr.es

    2006-01-01

    We study a two-unit cold standby system in steady-state. The online unit goes through a finite number of stages of successive degradation preceding the failure. The units are reparable, there is a repairman and two types of maintenance are considered, preventive and corrective. The preventive repair aims to improve the degradation of a unit being operative. The corrective repair is necessary when the unit fails. We will assume that the preventive repair will be interrupted in favour of a corrective repair in order to increase the availability of the system. The random operational and repair times follow phase-type distributions. For this system, the stationary probability vector, the replacement times, and the involved costs are calculated. An optimisation problem is illustrated by a numerical example. In this, the optimal degradation stage for the preventive repair of the online unit is determined by taking into account the system availability and the incurred costs.

  19. REPAIRABLE SYSTEM AVAILABILITY MODEL WITH RESPECT TO LIFE DISTRIBUTION OF SPARE PARTS

    Institute of Scientific and Technical Information of China (English)

    WU Yueming

    2008-01-01

    The failed components of repairable systems are replaced with spare parts that may have different failure distributions from those of the components that have failed. The spare parts may be either the same as new, better than new, or worse than new. This is the reality in maintenance engineering. Repair with better spare parts is defined as "super repair". The failure distributions of the spare parts affect the availability of the components and their systems. A novel model is proposed to describe the availability of repairable systems across their operating time, at the level of their components, on the assumption that the failed components are immediately replaced. The model functions with arbitrary failure distributions of spare parts. It can be used to compute the availability of components and systems not only under perfect and imperfect repair but also under super repair.

  20. Crop production without fossil fuel: production systems for tractor fuel and mineral nitrogen based on biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, Serina

    2009-12-15

    With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this thesis was to evaluate different systems for biomass-based production of tractor fuel and mineral nitrogen fertilisers, which at present are the two largest fossil energy carriers in Swedish agriculture. The land use, energy input and environmental load of the systems were calculated using life cycle assessment methodology. Two categories of renewable tractor fuel were studied: first generation fuels and second generation fuels, the latter defined as fuels not yet produced on a commercial scale. An organic farm self-sufficient in tractor fuel was modelled. Raw material from the farm was assumed to be delivered to a large fuel production facility and fuel transported back to the farm, where it was utilised. In general, the second generation renewable fuels had higher energy balance and lower environmental impact than the first generation fuels. However all systems studied reduced the use of fossil fuels to a great extent and lowered the contribution to global warming. The land needed to be set aside for tractor fuel varied between 2% and 5% of the farm's available land. Two major routes for biomass-based production of mineral nitrogen for conventional agriculture were studied, one based on anaerobic digestion and one on thermochemical gasification of biomass. The crops studied were able to produce between 1.6 and 3.9 tonnes N per hectare in the form of ammonium nitrate. The use of fossil fuel for ammonium nitrate production was 35 MJ per kg N in the fossil reference scenario, but only 1-4 MJ per kg N in the biomass systems. The contribution to global warming can be greatly reduced by the biomass systems, but there is an increased risk of eutrophication and acidification. It is clear that the agricultural sector has great potential to reduce the use of fossil fuel and to lower the emissions of greenhouse

  1. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  2. Novel proton exchange membrane fuel cell electrodes to improve performance of reversible fuel cell systems

    Science.gov (United States)

    Brown, Tim Matthew

    Proton exchange membrane (PEM) fuel cells react fuel and oxidant to directly and efficiently produce electrical power, without the need for combustion, heat engines, or motor-generators. Additionally, PEM fuel cell systems emit zero to virtually zero criteria pollutants and have the ability to reduce CO2 emissions due to their efficient operation, including the production or processing of fuel. A reversible fuel cell (RFC) is one particular application for a PEM fuel cell. In this application the fuel cell is coupled with an electrolyzer and a hydrogen storage tank to complete a system that can store and release electrical energy. These devices can be highly tailored to specific energy storage applications, potentially surpassing the performance of current and future secondary battery technology. Like all PEM applications, RFCs currently suffer from performance and cost limitations. One approach to address these limitations is to improve the cathode performance by engineering more optimal catalyst layer geometry as compared to the microscopically random structure traditionally used. Ideal configurations are examined and computer modeling shows promising performance improvements are possible. Several novel manufacturing methods are used to build and test small PEM fuel cells with novel electrodes. Additionally, a complete, dynamic model of an RFC system is constructed and the performance is simulated using both traditional and novel cathode structures. This work concludes that PEM fuel cell microstructures can be tailored to optimize performance based on design operating conditions. Computer modeling results indicate that novel electrode microstructures can improve fuel cell performance, while experimental results show similar performance gains that bolster the theoretical predictions. A dynamic system model predicts that novel PEM fuel cell electrode structures may enable RFC systems to be more competitive with traditional energy storage technology options.

  3. 46 CFR 63.15-3 - Fuel system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel system. 63.15-3 Section 63.15-3 Shipping COAST... General Requirements § 63.15-3 Fuel system. (a) Firing of an automatic auxiliary boiler by natural gas is... pump and its piping system must be designed in accordance with § 56.50-65 of this chapter....

  4. Dual-fuel versus single-fuel propulsion systems for AMLS applications. [Advanced Manned Launch System

    Science.gov (United States)

    Stanley, Douglas O.; Talay, T. A.

    1989-01-01

    The results of using a computerized preliminary design system to integrate propulsion systems examined as a part of the Space Transportation Main Engine (STME) and Space Transportation Booster Engine (STBE) studies with reference vehicle concepts from the Advanced Manned Launch System (AMLS) study are presented. The major trade study presented is an analysis of the effect of using a single fuel for both stages of two-stage AMLS reference vehicles as opposed to using a separate fuel for the boosters. Other trade studies presented examine the effect of varying relevant engine parameters in an attempt to optimize the reference engines for use with the AMLS launch vehicles. In each propulsion trade discussed, special attention is given to the major vehicle performance and operational issues involved.

  5. Loss of Thiol Repair Systems in Human Cataractous Lenses

    Science.gov (United States)

    Wei, Min; Xing, Kui-Yi; Fan, Yin-Chuan; Libondi, Teodosio; Lou, Marjorie F.

    2015-01-01

    Purpose. The purpose of this study was to investigate the thiol repair systems of thioltransferase (TTase) and thioredoxin (Trx) and oxidation-damaged proteins in human cataractous lenses. Methods. Cataractous lenses in humans (57–85 years of age) were classified into cortical, nuclear, mixed, mature, and hypermature cataract types by using a lens opacity classification system, and were obtained by extracapsular cataract extraction (ECCE) procedure. Cortical and nuclear cataracts were grouped by decreasing order of visual acuity into optical chart reading (R), counting fingers (CF), hand motion (HM), and light perception (LP). ECCE lens homogenate was analyzed for glutathione (GSH) level and enzyme activities of TTase, glutathione reductase (GR), Trx, and thioredoxin reductase (TR). Cortical and nuclear cataractous lenses (8 of each) with visual acuity better than HM were each dissected into cortical and nuclear portions for measurement of glyceraldehyde 3-phosphate dehydrogenase (G3PD) activity. Clear lenses (in humans 49–71 years of age) were used as control. Results. Compared with control, all cataractous lenses lost more than 80% GSH and 70% GR; TR and Trx activity; and 40% to 70% TTase activity, corroborated with the loss in visual acuity. Among cataracts with R and CF visual acuity, cortical cataract lost more cortical G3PD activity (18% of control) than that of nuclear cataract (50% of control), whereas GSH depletion and TTase inactivation were similar in both cataracts. Conclusions. Thiol repair systems were damaged in all types of cataracts. Cortical and nuclear cataracts showed differential G3PD inactivation in the cortex, implying those 2 type of cataracts might be formed through different mechanisms. PMID:25537203

  6. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  7. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  8. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  9. Development of information management system on LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility.

  10. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  11. Repair and degradation systems in irradiated animal cells

    Energy Technology Data Exchange (ETDEWEB)

    Ivannik, B.P.; Proskuryakov, S.Ya.; Ryabchenko, N.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    It was shown that primary radiosensitivity of DNA depends on the rate of DNA repair. In Zajdela hepatoma cells, cycloheximide administered immediately or 2 h before irradiation of animals does not influence DNA repair. Cycloheximide administered 4 h before irradiation of rats with a dose of 30 Gy arrests DNA repair in thymocytes and Zajdela hepatoma cells. At the same time, in cells of rat lymph nodes and spleen, under similar conditions, cycloheximide does not influence DNA repair and inhibits the secondary DNA degradation.

  12. Continuously acting fuel injection system. Kontinuierlich arbeitende Kraftstoffeinspritzanlage

    Energy Technology Data Exchange (ETDEWEB)

    Dorsch, H.; Hofbauer, A.; Steinbeck, H.

    1986-02-20

    A continuously acting fuel injection system with an air quantity meter in the suction pipe and a fuel distributor controlled by it is provided with an additional device for use in a multi-cylinder aircraft engine, which is used to give the best possible performance, fuel saving and safety. An altitude control pressure controller is connected in parallel with a warming up controller to the control pressure pipe going to the fuel distributor, which measures the control pressure and therefore the fuel dosing according to the air density varying with the temperature and pressure. By fitting a fixed throttle between the control pressure pipe and the fuel return pipe to the fuel tank, emergency running of the engine is ensured on failure of both controllers. (orig./BWI).

  13. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  14. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K D; Donnert, H J; Yang, T F

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron temperature is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  15. A natural-gas fuel processor for a residential fuel cell system

    Science.gov (United States)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  16. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  17. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  18. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  19. Bubble Effect in Heterogeneous Nuclear Fuel Solution System

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Xiao-ping; LUO; Huang-da; ZHANG; Wei; ZHU; Qing-fu

    2013-01-01

    Bubble effect means system reactivity changes due to the bubble induced solution volume,neutron leakage and absorption properties,neutron energy spectrum change in the nuclear fuel solution system.In the spent fuel dissolver,during uranium element shearing,the oxygen will be inlet to accelerate the

  20. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  1. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    NARCIS (Netherlands)

    Lukovic, M.; Ye, G.

    2015-01-01

    In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio

  2. MUTYH and the mismatch repair system: partners in crime?

    Science.gov (United States)

    Niessen, Renée C; Sijmons, Rolf H; Ou, J; Olthof, Sandra G M; Osinga, Jan; Ligtenberg, Marjolijn J; Hogervorst, Frans B L; Weiss, Marjan M; Tops, Carli M J; Hes, Frederik J; de Bock, Geertruida H; Buys, Charles H C M; Kleibeuker, Jan H; Hofstra, Robert M W

    2006-03-01

    Biallelic germline mutations of MUTYH-a gene encoding a base excision repair protein-are associated with an increased susceptibility of colorectal cancer. Whether monoallelic MUTYH mutations also increase cancer risk is not yet clear, although there is some evidence suggesting a slight increase of risk. As the MUTYH protein interacts with the mismatch repair (MMR) system, we hypothesised that the combination of a monoallelic MUTYH mutation with an MMR gene mutation increases cancer risk. We therefore investigated the prevalence of monoallelic MUTYH mutations in carriers of a germline MMR mutation: 40 carriers of a truncating mutation (group I) and 36 of a missense mutation (group II). These patients had been diagnosed with either colorectal or endometrial cancer. We compared their MUTYH mutation frequencies with those observed in a group of 134 Dutch colorectal and endometrial cancer patients without an MMR gene mutation (0.7%) and those reported for Caucasian controls (1.5%). In group I one monoallelic MUTYH mutation was found (2.5%). In group II five monoallelic germline MUTYH mutations were found (14%), four of them in MSH6 missense mutation carriers (20%). Of all patients with an MMR gene mutation, only those with a missense mutation showed a significantly higher frequency of (monoallelic) MUTYH mutations than the Dutch cancer patients without MMR gene mutations (P = 0.002) and the published controls (P = 0.001). These results warrant further study to test the hypothesis of mutations in MMR genes (in particular MSH6) and MUTYH acting together to increase cancer risk.

  3. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  4. EVermont Renewable Hydrogen Production and Transportation Fueling System

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  5. 46 CFR 28.835 - Fuel systems.

    Science.gov (United States)

    2010-10-01

    ... flame screen. (c) Test cocks must not be fitted to fuel oil tanks. (d) Valves for removing water or...) Flexible connections of a short length (no more than 762mm, (30 inches)), suitable metallic or nonmetallic flexible tubing or hose is permitted in the fuel supply line at or near the engine to prevent damage by...

  6. The system architecture for renewable synthetic fuels

    DEFF Research Database (Denmark)

    Ridjan, Iva

    To overcome and eventually eliminate the existing heavy fossil fuels in the transport sector, there is a need for new renewable fuels. This transition could lead to large capital costs for implementing the new solutions and a long time frame for establishing the new infrastructure unless a suitab...

  7. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  8. Reliability analysis of repairable systems using system dynamics modeling and simulation

    Science.gov (United States)

    Srinivasa Rao, M.; Naikan, V. N. A.

    2014-07-01

    Repairable standby system's study and analysis is an important topic in reliability. Analytical techniques become very complicated and unrealistic especially for modern complex systems. There have been attempts in the literature to evolve more realistic techniques using simulation approach for reliability analysis of systems. This paper proposes a hybrid approach called as Markov system dynamics (MSD) approach which combines the Markov approach with system dynamics simulation approach for reliability analysis and to study the dynamic behavior of systems. This approach will have the advantages of both Markov as well as system dynamics methodologies. The proposed framework is illustrated for a standby system with repair. The results of the simulation when compared with that obtained by traditional Markov analysis clearly validate the MSD approach as an alternative approach for reliability analysis.

  9. Materials directed to implants for repairing Central Nervous System

    Directory of Open Access Journals (Sweden)

    Canillas, M.

    2014-12-01

    Full Text Available Central Nervous System (CNS can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as “secondary injury”. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon.Existen diferentes tipos de lesiones o desordenes del Sistema Nervioso Central (SNC que pueden provocar graves secuelas e incluso en algunos casos una discapacidad permanente. Además, el proceso de reparación del SNC tiene algunas complicaciones. El mecanismo natural de reacción a una lesión, el cual consiste en la formación de una cicatriz glial, es desencadenado por un proceso inflamatorio. Las moléculas liberadas durante estos procesos, la inflamación y formación de la cicatriz glial, así como la deficiencia en oxígeno y glucosa debidos a la lesión, crean un ambiente que inhibe la regeneración axonal creando la llamada “lesión secundaria”. Los biomateriales están adquiriendo un papel cada vez más importante en la reparación de SNC. Las

  10. Mathematical Modeling of Fuel Pressure inside High Pressure Fuel Pipeline of Combination Electronic Unit Pump Fuel Injection System

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2013-08-01

    Full Text Available In order to completely understand the trend of pressure variations inside High Pressure (HP fuel pipeline of Combination Electronic Unit Pump (CEUP fuel injection system and study the impact of two major physical properties of fuel i.e., density and dynamic viscosity on pressure a 1D nonlinear dynamic mathematical model of fuel pressure inside pipeline using Wave Equation (WE has been developed in MATLAB using finite difference method. The developed model is based on the structural parameters of CEUP fuel injection system. The impact of two major physical properties of the fuel has been studied as a function of pressure at various operating conditions of diesel engine. Nearly 13.13 bars of increase in pressure is observed by increasing the density from 700 kg/m3 to 1000 kg/m3. Whereas an increase of viscosity from 2 kg/m.s to 6 kg/m.s results in decrease of pressures up to 44.16 bars. Pressure corrections in the mathematical model have been incorporated based on variations of these two fuel properties with the pressure. The resultant pressure profiles obtained from mathematical model at various distances along the pipeline are verified by correlating them with the profiles obtained from simulated AMESim numerical model of CEUP. The results show that MATLAB mathematical results are quite coherent with the AMESim simulated results and validate that the model is an effective tool for predicting pressure inside HP pipelines. The application of the this mathematical model with minute changes can therefore be extended to pressure modeling inside HP rail of Common Rail (CR fuel injection system.

  11. Macstor dry spent fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. E. [Atomic Energy of Canada Limited, Montreal (Canada)

    1996-04-15

    AECL, a Canadian Grown Corporation established since 1952, is unique among the world's nuclear organizations. It is both supplier of research reactors and heavy water moderated CANDU power reactors as well as operator of extensive nuclear research facilities. As part of its mandate, AECL has developed products and conceptual designs for the short, intermediate and long term storage and disposal of spent nuclear fuel. AECL has also assumed leadership in the area of dry storage of spent fuel. This Canadian Crown Corporation first started to look into dry storage for the management of its spent nuclear fuel in the early 1970's. After developing silo-like structures called concrete canisters for the storage of its research reactor enriched uranium fuel, AECL went on to perfect that technology for spent CANDU natural uranium fuel. In 1989 AECL teamed up with Trans nuclear, Inc.,(TN), a US based member of the international Trans nuclear Group, to extend its dry storage technology to LWR spent fuel. This association combines AECL's expertise and many years experience in the design of spent fuel storage facilities with TN's proven capabilities of processing, transportation, storage and handling of LWR spent fuel. From the early AECL-designed unventilated concrete canisters to the advanced MACSTOR concept - Modular Air-Cooled Canister Storage - now available also for LWR fuel - dry storage is proving to be safe, economical, practical and, most of all, well accepted by the general public. AECL's experience with different fuels and circumstances has been conclusive.

  12. Power Conversion System Strategies for Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    Kaushik Rajashekara

    2005-01-01

    Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.

  13. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Adams, J.A.; Kinnelly, A.A. [and others

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  14. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  15. ARC System fuel cycle analysis capability, REBUS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation.

  16. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Douglas [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  17. Design of gasifiers to optimize fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  18. Design of gasifiers to optimize fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  19. Burn-up characteristics of ADS system utilizing the fuel composition from MOX PWRs spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marsodi E-mail: marsodi@batan.go.id; Lasman, K.A.S.; Nishihara, K. E-mail: nishi@omega.tokai.jaeri.go.jp; Osugi, T.; Tsujimoto, K.; Marsongkohadi; Su' ud, Z. E-mail: szaki@fi.itb.ac.id

    2002-12-01

    Burn-up characteristics of accelerator-driven system, ADS has been evaluated utilizing the fuel composition from MOX PWRs spent fuel. The system consists of a high intensity proton beam accelerator, spallation target, and sub-critical reactor core. The liquid lead-bismuth, Pb-Bi, as spallation target, was put in the center of the core region. The general approach was conducted throughout the nitride fuel that allows the utilities to choose the strategy for destroying or minimizing the most dangerous high level wastes in a fast neutron spectrum. The fuel introduced surrounding the target region was the same with the composition of MOX from 33 GWd/t PWRs spent-fuel with 5 year cooling and has been compared with the fuel composition from 45 and 60 GWd/t PWRs spent-fuel with the same cooling time. The basic characteristics of the system such as burn-up reactivity swing, power density, neutron fluxes distribution, and nuclides densities were obtained from the results of the neutronics and burn-up analyses using ATRAS computer code of the Japan Atomic Energy research Institute, JAERI.

  20. System for operating solid oxide fuel cell generator on diesel fuel

    Science.gov (United States)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  1. CARB OBD-II Systems and their impact on alternative fuel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Baltusis, P. [Ford Motor Co., Dearborn, MI (United States). Powertrain and Materials Research Lab.

    1995-12-31

    An emission control system OBD-II and its impact on vehicle systems and components was discussed. OBD-II is a real time, on-board monitoring system that is part of the power-train control module. It consists of software, sensors and a malfunction indicator light; it monitors all emission related components and systems as the vehicle is being driven. The objectives of OBD-II were to (1) reduce high in-use emissions caused by emission-related malfunctions, (2) reduce time between occurrence of a malfunction and its detection repair, and (3) assist in the diagnosis and repair of emission-related problems. Generally, malfunctions are detected within two driving cycles. The OBD-II monitoring requirements for alternative fuel vehicles such as methanol, flex fuel, ethanol, natural gas, the implementation time table and exceptions thereto, and the unique OBD-II requirements for diesel engines for 1996 (deferrable to 1997 with Executive Officer approval), were also summarized. 15 figs.

  2. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  3. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    Science.gov (United States)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  4. Microbial contamination control in fuels and fuel systems since 1980 - a review

    Energy Technology Data Exchange (ETDEWEB)

    Passman, Frederick J. [Biodeterioration Control Associates, Inc (United States)], email: fredp@biodeterioration-control.com

    2011-07-01

    This paper presents a review of microbial contamination control in fuel and fuel systems. Some examples of the biodeterioration of components of fuel systems are given. Root cause analysis (RCA) and modeling can help in condition monitoring of fuel systems. RCA is a systematic process that starts after symptoms become apparent and facilitates improvement. Modeling, by contrast, starts before the problem occurs and the objective is to improve understanding of the process. Some of the different areas creating risk due to the process are climate, microbiology, chemistry, maintenance, and engineering. Condition monitoring is explained in detail, using representative samples. Contamination control plays a very important role. Various aspects of microbial contamination control are design, inventory control, house keeping and remediation. These aspects are explained in detail, using various examples. Since the deterioration cost involved is very high, its is important to avoid this problem by reducing the quantity of water used and using better risk assessment models.

  5. Basic data for integrated assessment of nuclear fuel cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Tamaki, Hitoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ito, Chihiro; Saegusa, Toshiari [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-03-01

    In our country, where natural energy resources such as oil and coal are scarce, it is vital to establish a nuclear fuel cycle to reprocess spent fuel and reuse valuable nuclear fuel in electric power generation reactors. However spent fuel is now being accumulated too much so that, for the time being, it is necessary to establish a system for tentatively storing spent fuel. In this report, in order to deal with these issues, evaluation methods, which were developed, prepared and discussed by Japan Atomic Energy Research Institute (JAERI) and Central Research Institute of Electric Power Industry (CRIEPI), are rendered together with sample results of their application. Also reported is some important information on the data and methods for the safety assessment of nuclear fuel cycle facilities, which have been surveyed by JAERI and CRIEPI. (author)

  6. Progress on coal-derived fuels for aviation systems

    Science.gov (United States)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  7. Design package test weights for fuel retrieval system (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1999-10-26

    This is a design package that documents the development of test weights used in the Spent Nuclear Fuels subproject Fuel Retrieval System. The K Basins Spent Nuclear Fuel (SNF) project consists of the safe retrieval, preparation, and repackaging of the spent fuel stored at the K East (KE) and K West (KW) Basins for interim safe storage in the Canister Storage Building (CSB). Multi-Canister Overpack (MCO) scrap baskets and fuel baskets will be loaded and weighed under water. The equipment used to weigh the loaded fuel baskets requires daily calibration checks, using test weights traceable to National Institute of Standards Testing (NIST) standards. The test weights have been designated as OCRWM related in accordance with HNF-SD-SNF-RF'T-007 (McCormack).

  8. THE OPTIMAL SYSTEM FOR SERIES SYSTEMS WITH WARM STANDBY COMPONENTS AND A REPAIRABLE SERVICE STATION

    Directory of Open Access Journals (Sweden)

    M. Salah EL-Sherbeny

    2009-01-01

    Full Text Available This paper deals with the reliability and availability characteristics of three different series system configurations with warm standby components and a repairable service station. The failure time of the primary and warm standby are assumed to be exponentially distributed with parameters and respectively. The repair time distribution of each server is also exponentially distributed with parameter . The breakdown time and the repair time of the service station are also assumed exponentially distributed with parameters and respectively. We derive the reliability dependent on time, availability dependent on time, the mean time to failure, , and the steady-state availability for three configurations and perform comparisons. Comparisons are made for specific values of distribution parameters and of the cost of the components. The three configurations are ranked based on: , and where is either or .

  9. Dry spent fuel storage with the MACSTOR system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations

    1996-10-01

    Atomic Energy of Canada Limited (AECL), and Transnuclear Inc. (TNI) began in 1989 the development of the concrete spent fuel storage system, called MACSTOR (Modular Air-Cooled Canister STORage) for use with LWR spent fuel assemblies. It is a hybrid system which combines the operational economies of metal cask technology with the capital economies of concrete technology. The MACSTOR Module is a monolithic, shielded concrete vault structure that can accommodate up to 20 spent fuel canisters. Each canister typically holds up to 21 PWR or 44 BWR spent fuel assemblies with a nominal fuel burn up rate of 40,000 MWD/MTU and a 7 year minimum cooling period. The structure is passively cooled by natural convection through an array of inlet and outlet gratings and galleries serving a central plenum where the (vertically) stored canisters are located. The canisters are continuously monitored by means of a pressure monitoring system developed by TNI. Thus, the utility can be assured of both positive cooling of the fuel and verification of the integrity of the fuel confinement boundary. The structure is seismically designed and is capable of withstanding site design basis accident events. The MACSTOR system includes the storage module(s), an overhead gantry system for cask handling, a transfer cask for moving fuel from wet to dry storage and a cask transporter. The canister and transfer cask designs are based on Transnuclear transport cask designs and proven hot cell transfer cask technology, adapted to requirements for on-site spent fuel storage. The MACSTOR system can economically address a wide range of storage capacity requirements. The modular concept allows for flexibility in determining each module`s capacity. Starting with 8 canisters, the capacity can be increased by increments of 4 up to 20 canisters. The MACSTOR system is also flexible in accommodating the various spent fuel types from such reactors as VVER-440, VVER-1000 and RBMK 1500. (J.P.N.)

  10. A modelling study of drying shrinkage damage in concrete repair systems

    NARCIS (Netherlands)

    Lukovic, M.; Savija, B.; Schlangen, E.; Ye, G.; van Breugel, K.

    2014-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems (Martinola, Sadouki et al. 2001, Beushausen and Alexander 2007). Magnitude of induced stresses depends on many factors, for example the amount of restraint,

  11. Fuel switching in Harare: An almost ideal demand system approach

    NARCIS (Netherlands)

    Chambwera, M.; Folmer, H.

    2007-01-01

    In urban areas several energy choices are available and the amount of (a given type of) fuel consumed is based on complex household decision processes. This paper analyzes urban fuel (particularly firewood) demand in an energy mix context by means of an Almost Ideal Demand System based on a survey

  12. Fuel switching in Harare : An almost ideal demand system approach

    NARCIS (Netherlands)

    Chambwera, Muyeye; Folmer, Henk

    In urban areas several energy choices are available and the amount of (a given type of) fuel consumed is based on complex household decision processes. This paper analyzes urban fuel (particularly firewood) demand in an energy mix context by means of an Almost Ideal Demand System based on a survey

  13. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  14. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  15. Fuel switching in Harare : An almost ideal demand system approach

    NARCIS (Netherlands)

    Chambwera, Muyeye; Folmer, Henk

    2007-01-01

    In urban areas several energy choices are available and the amount of (a given type of) fuel consumed is based on complex household decision processes. This paper analyzes urban fuel (particularly firewood) demand in an energy mix context by means of an Almost Ideal Demand System based on a survey c

  16. Fuel switching in Harare: An almost ideal demand system approach

    NARCIS (Netherlands)

    Chambwera, M.; Folmer, H.

    2007-01-01

    In urban areas several energy choices are available and the amount of (a given type of) fuel consumed is based on complex household decision processes. This paper analyzes urban fuel (particularly firewood) demand in an energy mix context by means of an Almost Ideal Demand System based on a survey c

  17. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  18. Analysis of Proliferation Resistance of Nuclear Fuel Cycle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Lae; Ko, Won Il; Kim, Ho Dong

    2009-11-15

    Proliferation resistance (PR) has been evaluated for the five nuclear fuel cycle systems, potentially deployable in Korea in the future, using the fourteen proliferation resistance attributes suggested in the TOPS report. Unidimensional Utility Theory (UUT) was used in the calculation of utility value for each of the fourteen proliferation resistance attributes, and Multi-Attribute Utility Theory (MAUT), a decision tool with multiple objectives, was used in the evaluation of the proliferation resistance of each nuclear fuel cycle system. Analytic Hierarchy Process (AHP) and Expert Elicitation (EE) were utilized in the derivation of weighting factors for the fourteen proliferation resistance attributes. Among the five nuclear fuel cycle systems evaluated, the once-through fuel cycle system showed the highest level of proliferation resistance, and Pyroprocessing-SFR fuel cycle system showed the similar level of proliferation resistance with the DUPIC fuel cycle system, which has two time higher level of proliferation resistance compared to that of the thermal MOX fuel cycle system. Sensitivity analysis was also carried out to make up for the uncertainty associated with the derivation of weighting factors for the fourteen proliferation resistance attributes.

  19. Catalyst development and systems analysis of methanol partial oxidation for the fuel processor - fuel cell integration

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Mizsey, P.; Hottinger, P.; Truong, T.B.; Roth, F. von; Schucan, Th.H. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Methanol partial oxidation (pox) to produce hydrogen for mobile fuel cell applications has proved initially more successful than hydrocarbon pox. Recent results of catalyst screening and kinetic studies with methanol show that hydrogen production rates have reached 7000 litres/hour/(litre reactor volume) for the dry pox route and 12,000 litres/hour/(litre reactor volume) for wet pox. These rates are equivalent to 21 and 35 kW{sub th}/(litre reactor volume) respectively. The reaction engineering problems remain to be solved for dry pox due to the significant exotherm of the reaction (hot spots of 100-200{sup o}C), but wet pox is essentially isothermal in operation. Analyses of the integrated fuel processor - fuel cell systems show that two routes are available to satisfy the sensitivity of the fuel cell catalysts to carbon monoxide, i.e. a preferential oxidation reactor or a membrane separator. Targets for individual system components are evaluated for the base and best case systems for both routes to reach the combined 40% efficiency required for the integrated fuel processor - fuel cell system. (author) 2 figs., 1 tab., 3 refs.

  20. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  1. Development of machine vision system for PHWR fuel pellet inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kamalesh Kumar, B.; Reddy, K.S.; Lakshminarayana, A.; Sastry, V.S.; Ramana Rao, A.V. [Nuclear Fuel Complex, Hyderabad, Andhra Pradesh (India); Joshi, M.; Deshpande, P.; Navathe, C.P.; Jayaraj, R.N. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh (India)

    2008-07-01

    Nuclear Fuel Complex, a constituent of Department of Atomic Energy; India is responsible for manufacturing nuclear fuel in India . Over a million Uranium-di-oxide pellets fabricated per annum need visual inspection . In order to overcome the limitations of human based visual inspection, NFC has undertaken the development of machine vision system. The development involved designing various subsystems viz. mechanical and control subsystem for handling and rotation of fuel pellets, lighting subsystem for illumination, image acquisition system, and image processing system and integration. This paper brings out details of various subsystems and results obtained from the trials conducted. (author)

  2. Status of commercial phosphoric acid fuel cell system development

    Science.gov (United States)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  3. Shear Bond Strength of Repair Systems to New CAD/CAM Restorative Materials.

    Science.gov (United States)

    Üstün, Özlem; Büyükhatipoğlu, Işıl Keçik; Seçilmiş, Aslı

    2016-11-23

    To evaluate the bond strength of repair systems (Ceramic Repair, Clearfil Repair) to computer-aided design/computer-assisted machining (CAD/CAM) restorative materials (IPS e.max CAD, Vita Suprinity, Vita Enamic, Lava Ultimate). Thermally aged CAD/CAM restorative material specimens (5000 cycles between 5°C and 55°C) were randomly divided into two groups according to the repair system: Ceramic Repair (37% phosphoric acid + Monobond-S + Heliobond + Tetric N Ceram) or Clearfil Repair (40% phosphoric acid + mixture of Clearfil Porcelain Bond Activator and Clearfil SE Bond Primer + Clearfil SE Bond + Filtek Z250). The resin composite was light-cured on conditioned specimens. All specimens were stored in distilled water at 37°C for 24 hours and then additionally aged for 5000 thermal cycles. The shear bond strength test was performed using a universal testing machine (0.5 mm/min). Two-way ANOVA was used to detect significance differences according to the CAD/CAM material and composite repair system factors. Subgroup analyses were conducted using the least significant difference post-hoc test. The results of two-way ANOVA indicated that bond strength values varied according to the restorative materials (p CAD/CAM restorative materials (p > 0.05), except in the Vita Suprinity group (p < 0.05). Moreover, no differences were observed between the repair systems. Both the Clearfil and Ceramic repair systems used in the study allow for successful repairs. © 2016 by the American College of Prosthodontists.

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  5. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  6. Advisory Systems Save Time, Fuel for Airlines

    Science.gov (United States)

    2012-01-01

    Heinz Erzberger never thought the sky was falling, but he knew it could benefit from enhanced traffic control. Throughout the 1990s, Erzberger led a team at Ames Research Center to develop a suite of automated tools to reduce restrictions and improve the efficiency of air traffic control operations. Called CTAS, or Center-TRACON (Terminal Radar Approach Control) Automation System, the software won NASA s Software of the Year award in 1998, and one of the tools in the suite - the traffic management advisor - was adopted by the Federal Aviation Administration and implemented at traffic control centers across the United States. Another one of the tools, Direct-To, has followed a different path. The idea behind Direct-To, explains Erzberger, a senior scientist at Ames, was that airlines could save fuel and money by shortening the routes they flew between take-off and landing. Aircraft are often limited to following established airways comprised of inefficient route segments. The routes are not easily adjusted because neither the pilot nor the aircraft controller can anticipate the constantly changing air traffic situation. To make the routes more direct while in flight, Erzberger came up with an idea for a software algorithm that could automatically examine air traffic in real-time, check to see if a shortcut was available, and then check for conflicts. If there were no conflicts and the shortcut saved more than 1 minute of flight time, the controller could be notified. "I was trying to figure out what goes on in the pilot and controller s minds when they decide to guide the aircraft in a certain way. That resulted in a different kind analysis," Erzberger says. As the engineer s idea went from theory to practice, in 2001, NASA demonstrated Direct-To in the airspace of Dallas-Ft. Worth. Estimations based on the demonstration found the technology was capable of saving 900 flying minutes per day for the aircraft in the test area.

  7. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  8. Control of Fuel Cell Power System

    OpenAIRE

    KOCALMIŞ BİLHAN, Ayşe; Wang, Caisheng

    2017-01-01

    In recent years, it is gettingattention for renewable energy sources such as Fuel Cell (FC), batteries,ultracapacitors or photovoltaic panels (PV) for distributed power generationsystems (DG) or electrical vehicles. This paper proposes a DC/DC converter andDC/AC inverter scheme to combine the Fuel Cell Stack (FC). The power systemconsist of a FC stack, a DC/DC converter, inverter and load. A FC mostly couldnot produce necessary output voltage, the DC/DC boost converter is used forobtaining th...

  9. Fuel-cell-system and its components for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Massimo [NuCellSys GmbH, Kirchheim/Teck-Nabern (Germany)

    2013-06-01

    In the past years the development of fuel cell systems for mobile applications has made significant progress in power density, performance and robustness. For a successful market introduction the cost of the fuel system powertrain needs to be competitive to diesel hybrid engine. The current development activities are therefore focusing on cost reduction. There are 3 major areas for cost reduction: functional integration, materials and design, supplier competitiveness and volume. Today unique fuel cell system components are developed by single suppliers, which lead to a monopoly. In the future the components will be developed at multiple suppliers to achieve a competitor situation, which will further reduce the component cost. Using all these cost reduction measures the fuel cell system will become a competitive alternative drive train. (orig.)

  10. High Efficiency Direct Methane Solid Oxide Fuel Cell System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  11. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  12. Engine control system having fuel-based adjustment

    Science.gov (United States)

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  13. Extravehicular Activity Probabilistic Risk Assessment Overview for Thermal Protection System Repair on the Hubble Space Telescope Servicing Mission

    Science.gov (United States)

    Bigler, Mark; Canga, Michael A.; Duncan, Gary

    2010-01-01

    The Shuttle Program initiated an Extravehicular Activity (EVA) Probabilistic Risk Assessment (PRA) to assess the risks associated with performing a Shuttle Thermal Protection System (TPS) repair during the Space Transportation System (STS)-125 Hubble repair mission as part of risk trades between TPS repair and crew rescue.

  14. Modeling the induced mutation process in bacterial cells with defects in excision repair system

    Science.gov (United States)

    Bugay, A. N.; Vasilyeva, M. A.; Krasavin, E. A.; Parkhomenko, A. Yu.

    2015-12-01

    A mathematical model of the UV-induced mutation process in Escherichia coli cells with defects in the uvrA and polA genes has been developed. The model describes in detail the reaction kinetics for the excision repair system. The number of mismatches as a result of translesion synthesis is calculated for both wild-type and mutant cells. The effect of temporal modulation of the number of single-stranded DNA during postreplication repair has been predicted. A comparison of effectiveness of different repair systems has been conducted.

  15. On-Orbit Health Monitoring and Repair Assessment of Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers On-orbit health MoNItoring and repair assessment of THERMal protection systems (OMNI_THERM). OMNI_THERM features impedance-based...

  16. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage

    NARCIS (Netherlands)

    Rutgers, M.; van Pelt, M.J.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F.

    2010-01-01

    Osteoarthritis and Cartilage Volume 18, Issue 1, January 2010, Pages 12-23 -------------------------------------------------------------------------------- Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage M. Rutgers†, M.J.P. van Pelt†, W.

  17. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair

    NARCIS (Netherlands)

    De Ruiter, Quirina M B; Moll, Frans L.; Van Herwaarden, Joost A.

    2015-01-01

    Objective This study reviewed the current developments in manual tracking and robotic navigation technologies for application in endovascular aortic aneurysm repair (EVAR). Methods EMBASE and MEDLINE databases were searched for studies reporting manual tracking or robotic navigation systems that are

  18. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage

    NARCIS (Netherlands)

    Rutgers, M.; van Pelt, M.J.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F.

    2010-01-01

    Osteoarthritis and Cartilage Volume 18, Issue 1, January 2010, Pages 12-23 -------------------------------------------------------------------------------- Review Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage M. Rutgers†, M.J.P. van Pelt†,

  19. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair

    NARCIS (Netherlands)

    De Ruiter, Quirina M B; Moll, Frans L.|info:eu-repo/dai/nl/070246882; Van Herwaarden, Joost A.|info:eu-repo/dai/nl/304814733

    2015-01-01

    Objective This study reviewed the current developments in manual tracking and robotic navigation technologies for application in endovascular aortic aneurysm repair (EVAR). Methods EMBASE and MEDLINE databases were searched for studies reporting manual tracking or robotic navigation systems that are

  20. Self-Repairing Flight Control System for Online Health Monitoring and Recovery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a reliable self-repairing Flight Control System (FCS) will be developed. To achieve this goal, an artificial Neural Network based Sensor...

  1. WELL-POSEDNESS OF THE MODEL DESCRIBING A REPAIRABLE, STANDBY, HUMAN & MACHINE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Geni Gupur

    2003-01-01

    By using the strong continuous semigroup theory of linear operators we prove the existence of a unique positive time-dependent solution of the model describing a repairable, standby, human & machine system.

  2. Advanced fuel developments for an industrial accelerator driven system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Delage, Fabienne; Ottaviani, Jean Pierre [Commissariat a l' Energie Atomique CEA (France); Fernandez-Carretero, Asuncion; Staicu, Dragos [JRC-ITU (Germany); Boccaccini, Claudia-Matzerath; Chen, Xue-Nong; Mascheck, Werner; Rineiski, Andrei [Forschungszentrum Karlsruhe - FZK (Germany); D' Agata, Elio [JRC-IE (Netherlands); Klaassen, Frodo [NRG, PO Box 25, NL-1755 ZG Petten (Netherlands); Sobolev, Vitaly [SCK-CEN (Belgium); Wallenius, Janne [KTH Royal Institute of Technology (Sweden); Abram, T. [National Nuclear Laboratory - NNL (United Kingdom)

    2009-06-15

    Fuel to be used in an Accelerator Driven System (ADS) for transmutation in a fast spectrum, can be described as a highly innovative concept in comparison with fuels used in critical cores. ADS fuel is not fertile, so as to improve the transmutation performance. It necessarily contains a high concentration ({approx}50%) of minor actinides and plutonium. This unusual fuel composition results in high gamma and neutron emissions during its fabrication, as well as degraded core performance. So, an optimal ADS fuel is based on finding the best compromise between thermal, mechanical, chemical, neutronic and technological constraints. CERCER and CERMET composite fuels consisting of particles of (Pu,MA)O{sub 2} phases dispersed in a magnesia or molybdenum matrix are under investigation within the frame of the ongoing European Integrated Project EUROTRANS (European Research programme for Transmutation) which aims at performing a conceptual design of a 400 MWth transmuter: the European Facility for Industrial Transmutation (EFIT). Performances and safety of EFIT cores loaded with CERCER and CERMET fuels have been evaluated. Out-of-pile and in-pile experiments are carried out to gain knowledge on the properties and the behaviour of these fuels. The current paper gives an overview of the work progress. (authors)

  3. Applicability of the SCALE code system to MOX fuel transport systems for criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toshihiro; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Toshiaki; Takasugi, Masahiro; Natsume, Toshihiro; Tsuda, Kazuaki

    1996-11-01

    In order to ascertain feasibilities of the SCALE code system for MOX fuel transport systems, criticality analyses were performed for MOX fuel (Pu enrichment; 3.0 wt.%) criticality experiments at JAERI`s TCA and for infinite fuel rod arrays as parameters of Pu enrichment and lattice pitch. The comparison with a combination of the continuous energy Monte Carlo code MCNP and JENDL-3.2 indicated that the SCALE code system with GAM-THERMOS 123-group library can produce feasible results. Though HANSEN-ROACH 16-group library gives poorer results for MOS fuel transport systems, the errors are conservative except for high enriched fuels. (author)

  4. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-07-11

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  5. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  6. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  7. Desulfurization of jet fuel for fuel cell-based APU systems in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Pasel, J.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    To prevent the catalysts in fuel cell systems from poisoning by sulfur containing substances the fuel to be used must be desulfurized to a maximum of 10 ppmw of sulfur. Since the conventional hydrodesulfurization process employed in the refinery industry is not suitable for mobile fuel cell applications (e.g. auxiliary power units, APUs), the present study aims at developing an alternative process and determining its technical feasibility. A large number of processes were assessed with respect to their application in fuel cell APUs. The results revealed that a two-step process combining pervaporation and adsorption is a suitable process for the on-board desulfurization of jet fuel. The investigations to evaluate this process are presented in this paper. Seven different membrane materials and ten sorbent materials were screened to choose the most suitable candidates. Further laboratory experiments were conducted to optimize the operating conditions and to collect data for a pilot plant design. Different jet fuel qualities with up to 1650 ppmw of sulfur can be desulfurized to a level of 10 ppmw. (orig.)

  8. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  9. MUTYH and the mismatch repair system: partners in crime?

    NARCIS (Netherlands)

    Niessen, R.C.; Sijmons, R.H.; Ou, J.; Olthof, S.G.; Osinga, J.; Ligtenberg, M.J.L.; Hogervorst, F.B.L.; Weiss, M.M.; Tops, C.M.; Hes, F.J.; Bock, G.H. de; Buys, C.H.C.M.; Kleibeuker, J.H.; Hofstra, R.M.

    2006-01-01

    Biallelic germline mutations of MUTYH-a gene encoding a base excision repair protein-are associated with an increased susceptibility of colorectal cancer. Whether monoallelic MUTYH mutations also increase cancer risk is not yet clear, although there is some evidence suggesting a slight increase of r

  10. MUTYH and the mismatch repair system : partners in crime?

    NARCIS (Netherlands)

    Niessen, RC; Sijmons, RH; Ou, J; Olthof, SGM; Osinga, J; Ligtenberg, MJ; Hogervorst, FBL; Weiss, MM; Tops, CMJ; Hes, FJ; de Bock, GH; Buys, CHCM; Kleibeuker, JH; Hofstra, RMW

    2006-01-01

    Biallelic germline mutations of MUTYH-a gene encoding a base excision repair protein-are associated with an increased susceptibility of colorectal cancer. Whether monoallelic MUTYH mutations also increase cancer risk is not yet clear, although there is some evidence suggesting a slight increase of r

  11. Damage induced by continued corrosion in concrete repair systems

    NARCIS (Netherlands)

    Luckovic, M.; Savija, B.; Schlangen, E.

    2014-01-01

    Corrosion of steel reinforcement is the main cause of deterioration in reinforced concrete structures. After the repair, corrosion of the steel might continue and even accelerate. While the development of the corrosion cell depends on many parameters and is difficult to control, the occurrence of vi

  12. Mesenteric ischemia after abdominal aortic aneurysm repair : a systemic review

    NARCIS (Netherlands)

    Bruggink, J. L. M.; Tielliu, I. F. J.; Zeebregts, C. J.; Pol, R. A.

    2014-01-01

    Mesenteric ischemia after abdominal aneurysm repair is a devastating complication with mortality rates up to 70%. Incidence however is relatively low. The aim of this review was to provide an overview on current insights, diagnostic modalities and on mesenteric ischemia after abdominal aortic aneury

  13. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  14. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  15. Application of Interfacial Propagation and Kinking Crack Concept to ECC/Concrete Overlay Repair System

    Directory of Open Access Journals (Sweden)

    Yaw ChiaHwan

    2014-01-01

    Full Text Available Research on the application of ultraductile engineered cementitious composite (ECC as overlay in the repair of deteriorated concrete structures is performed in this paper. Also, interfacial crack kinking and trapping mechanism experimentally observed in ECC/concrete overlay repair system are described by comparison of toughness and energy release rate. The mechanism involves cycles of extension, kinking, and arrest of interfacial crack into the overlay. Experimental testing of overlay repair system reveals significant improvements in load carrying capacity and ductility over conventional concrete overlay. The commonly observed overlay system failure mode of delamination or spalling is eliminated when ECC is applied. These failure modes are suppressed when ECC is used as an ideal and durable candidate overlay repair material.

  16. Non-parametric estimation of the availability in a general repairable system

    Energy Technology Data Exchange (ETDEWEB)

    Gamiz, M.L. [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain)], E-mail: mgamiz@ugr.es; Roman, Y. [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain)

    2008-08-15

    This work deals with repairable systems with unknown failure and repair time distributions. We focus on the estimation of the instantaneous availability, that is, the probability that the system is functioning at a given time, which we consider as the most significant measure for evaluating the effectiveness of a repairable system. The estimation of the availability function is not, in general, an easy task, i.e., analytical techniques are difficult to apply. We propose a smooth estimation of the availability based on kernel estimator of the cumulative distribution functions (CDF) of the failure and repair times, for which the bandwidth parameters are obtained by bootstrap procedures. The consistency properties of the availability estimator are established by using techniques based on the Laplace transform.

  17. Gas Conversion Systems Reclaim Fuel for Industry

    Science.gov (United States)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  18. Systems impacts of spent fuel disassembly alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  19. Fuel Lubricity Impact on Shipboard Engine and Fuel Systems and Sensitivity of U.S. Navy Diesel Engines to Low-Sulfur Diesel Fuel

    Science.gov (United States)

    2011-06-30

    ABSTRACT This project attempted to determine the kerosene and Ultra Low Sulfur Diesel fuel lubricity requirements of Delphi DPA rotary fuel injection...pumps and Detroit Diesel unit injectors . A test stand was configured to operate a rotary fuel injection pump and a stand configured to operated four...unit injectors simultaneously, with data acquisition and control systems for logging data. Results suggest that synthetic kerosene fuel adversely

  20. Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles

    Directory of Open Access Journals (Sweden)

    Ono Yusuke

    2017-01-01

    Full Text Available Residential polymer electrolyte fuel cells cogeneration systems (residential PEFC systems produce hydrogen from city gas by internal gas-reformer, and generate electricity, the hot water at the same time. From the viewpoint of the operation, it is known that residential PEFC systems do not continuously work but stop for long time, because the systems generate enough hot water for short operation time. In other words, currently residential PEFC systems are dominated by the amount of hot water demand. This study focuses on the idle time of residential PEFC systems. Since their gas-reformers are free, the systems have potential to produce hydrogen during the partial load operations. The authors expect that residential PEFC systems can take a role to supply hydrogen for fuel cell vehicles (FCVs before hydrogen fueling stations are distributed enough. From this perspective, the objective of this study is to evaluate the hydrogen production potential of residential PEFC systems. A residential PEFC system was modeled by the mixed integer linear programming to optimize the operation including hydrogen supply for FCV. The objective function represents annual system cost to be minimized with the constraints of energy balance. It should be noted that the partial load characteristics of the gas-reformer and the fuel cell stack are taken into account to derive the optimal operation. The model was employed to estimate the possible amount of hydrogen supply by a residential PEFC system. The results indicated that the system could satisfy at least hydrogen demand for transportation of 8000 km which is as far as the average annual mileage of a passenger car in Japan. Furthermore, hydrogen production by sharing a residential PEFC system with two households is more effective to reduce primary energy consumption with hydrogen supply for FCV than the case of introducing PEFC in each household.

  1. Fuel-cell powered uninterruptible power supply systems: Design considerations

    Science.gov (United States)

    Choi, Woojin; Howze, Jo. W.; Enjeti, Prasad

    A 1-kVA fuel cell powered, line-interactive uninterruptible power supply (UPS) system that employs modular (fuel cell and power converter) blocks is introduced. Two commercially available proton-exchange membrane fuel cell (25-39 V, 500 W) modules together with suitable dc-dc and dc-ac power electronic converter modules are employed. A supercapacitor module is also used to compensate for the instantaneous power fluctuations and to overcome the slow dynamics of the fuel processor (reformers). Further energy stored in the supercapacitor is also utilized to handle a momentary overload such as 200% for a short duration. Due to the absence of batteries, the system satisfies the demand for an environmentally clean source of energy. A complete design that defines the amount of hydrogen storage required for a power outage of 1 h, and the sizing of the supercapacitors for transient load demand is presented for a 1-kVA UPS.

  2. Designing and optimization of a micro CHP system based on Solid Oxide Fuel Cell with different fuel processing technologies

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    of the Micro Combined Heat and Power plant (mCHP) will be identified including fuel and air supply, fuel management anode re-circulation, exhaust gas heat management, power conditioning and control system. Using mass and energy balance, different types of fuel reforming including steam reforming...

  3. Elimination of Fuel Pressure Fluctuation and Multi-injection Fuel Mass Deviation of High Pressure Common-rail Fuel Injection System

    Institute of Scientific and Technical Information of China (English)

    LI Pimao; ZHANG Youtong; LI Tieshuan; XIE Lizhe

    2015-01-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  4. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  5. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  6. Market-Based and System-Wide Fuel Cycle Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul Philip Hood [Univ. of Wisconsin, Madison, WI (United States); Scopatz, Anthony [Univ. of South Carolina, Columbia, SC (United States); Gidden, Matthew [Univ. of Wisconsin, Madison, WI (United States); Carlsen, Robert [Univ. of Wisconsin, Madison, WI (United States); Mouginot, Baptiste [Univ. of Wisconsin, Madison, WI (United States); Flanagan, Robert [Univ. of South Carolina, Columbia, SC (United States)

    2017-06-13

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  7. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  8. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  9. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  10. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  11. System design of a large fuel cell hybrid locomotive

    Science.gov (United States)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  12. System design of a large fuel cell hybrid locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.R.; Hess, K.S.; Barnes, D.L.; Erickson, T.L. [Vehicle Projects LLC, 621 17th Street, Suite 2131, Denver, CO 80293 (United States)

    2007-11-15

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads. (author)

  13. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  14. Combustion system for hybrid solar fossil fuel receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  15. High temperature polymer fuel cells and their Interplay with fuel processing systems

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, R.

    2003-01-01

    This paper reports recent results from our group on polymer electrolyte membrane fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all....... The high working temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  16. Advanced coal-fueled industrial cogeneration gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  18. Economic competitiveness of fuel cell onsite integrated energy systems

    Science.gov (United States)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  19. Impact of physical properties of mixture of diesel and biodiesel fuels on hydrodynamic characteristics of fuel injection system

    Directory of Open Access Journals (Sweden)

    Filipović Ivan M.

    2014-01-01

    Full Text Available One of the alternative fuels, originating from renewable sources, is biodiesel fuel, which is introduced in diesel engines without major construction modifications on the engine. Biodiesel fuel, by its physical and chemical properties, is different from diesel fuel. Therefore, it is expected that by the application of a biodiesel fuel, the characteristic parameters of the injection system will change. These parameters have a direct impact on the process of fuel dispersion into the engine cylinder, and mixing with the air, which results in an impact on the quality of the combustion process. Method of preparation of the air-fuel mixture and the quality of the combustion process directly affect the efficiency of the engine and the level of pollutant emissions in the exhaust gas, which today is the most important criterion for assessing the quality of the engine. The paper presents a detailed analysis of the influence of physical properties of a mixture of diesel and biodiesel fuels on the output characteristics of the fuel injection system. The following parameters are shown: injection pressure, injection rate, the beginning and duration of injection, transformation of potential into kinetic energy of fuel and increase of energy losses in fuel injection system of various mixtures of diesel and biodiesel fuels. For the analysis of the results a self-developed computer program was used to simulate the injection process in the system. Computational results are verified using the experiment, for a few mixtures of diesel and biodiesel fuels. This paper presents the verification results for diesel fuel and biodiesel fuel in particular.

  20. Stochastic behavior of a cold standby system with maximum repair time

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2015-09-01

    Full Text Available The main aim of the present paper is to analyze the stochastic behavior of a cold standby system with concept of preventive maintenance, priority and maximum repair time. For this purpose, a stochastic model is developed in which initially one unit is operative and other is kept as cold standby. There is a single server who visits the system immediately as and when required. The server takes the unit under preventive maintenance after a maximum operation time at normal mode if one standby unit is available for operation. If the repair of the failed unit is not possible up to a maximum repair time, failed unit is replaced by new one. The failure time, maximum operation time and maximum repair time distributions of the unit are considered as exponentially distributed while repair and maintenance time distributions are considered as arbitrary. All random variables are statistically independent and repairs are perfect. Various measures of system effectiveness are obtained by using the technique of semi-Markov process and RPT. To highlight the importance of the study numerical results are also obtained for MTSF, availability and profit function.

  1. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  2. Development of structural health monitoring systems for composite bonded repairs on aircraft structures

    Science.gov (United States)

    Galea, Stephen C.; Powlesland, Ian G.; Moss, Scott D.; Konak, Michael J.; van der Velden, Stephen P.; Stade, Bryan; Baker, Alan A.

    2001-08-01

    The application of bonded composite patches to repair or reinforce defective metallic structures is becoming recognized as a very effective versatile repair procedure for many types of problems. Immediate applications of bonded patches are in the fields of repair of cracking, localized reinforcement after removal of corrosion damage and for reduction of fatigue strain. However, bonded repairs to critical components are generally limited due to certification concerns. For certification and management of repairs to critical structure, the Smart Patch approach may be an acceptable solution from the airworthiness prospective and be cost effective for the operator and may even allow some relaxation of the certification requirements. In the most basic form of the Smart Patch in-situ sensors can be used as the nerve system to monitor in service the structural condition (health or well-being) of the patch system and the status of the remaining damage in the parent structure. This application would also allow the operator to move away from current costly time-based maintenance procedures toward real-time health condition monitoring of the bonded repair and the repaired structure. TO this end a stand-alone data logger device, for the real-time health monitoring of bonded repaired systems, which is in close proximity to sensors on a repair is being developed. The instrumentation will measure, process and store sensor measurements during flight and then allow this data to be up-loaded, after the flight, onto a PC, via remote (wireless) data access. This paper describes two in-situ health monitoring systems which will be used on a composite bonded patch applied to an F/A-18. The two systems being developed consists of a piezoelectric (PVDF) film-based and a conventional electrical-resistance foil strain gauge-based sensing system. The latter system uses a primary cell (Lithium- based battery) as the power source, which should enable an operating life of 1-2 years. The patch

  3. 24 CFR 3280.704 - Fuel supply systems.

    Science.gov (United States)

    2010-04-01

    ...), shall be delivered from the system into the gas supply connection. (b) LP-gas containers—(1) Maximum... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Fuel supply systems. 3280.704 Section 3280.704 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  4. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    in individual households are not suitable for renewable en‐ ergy systems. This is due to the high losses associated with the conversion to hydrogen and the lower regulation abilities of such systems. In a short‐term perspective, natural gas mi‐ cro‐fuel cell CHP may spread the CHP production more than locally...

  5. Fuel cycle analysis of once-through nuclear systems.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  6. Lubrication System. Introduction: Things for You to Know. Student Manual. Small Engine Repair Series. First Edition.

    Science.gov (United States)

    Hill, Pamela

    This student manual introducing the lubrication system is the first of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose of the booklet is to help students learn about the lubrication system and safe and good work habits. Informative material and diagrams are…

  7. Parameter Interval Estimation of System Reliability for Repairable Multistate Series-Parallel System with Fuzzy Data

    Science.gov (United States)

    2014-01-01

    The purpose of this paper is to create an interval estimation of the fuzzy system reliability for the repairable multistate series–parallel system (RMSS). Two-sided fuzzy confidence interval for the fuzzy system reliability is constructed. The performance of fuzzy confidence interval is considered based on the coverage probability and the expected length. In order to obtain the fuzzy system reliability, the fuzzy sets theory is applied to the system reliability problem when dealing with uncertainties in the RMSS. The fuzzy number with a triangular membership function is used for constructing the fuzzy failure rate and the fuzzy repair rate in the fuzzy reliability for the RMSS. The result shows that the good interval estimator for the fuzzy confidence interval is the obtained coverage probabilities the expected confidence coefficient with the narrowest expected length. The model presented herein is an effective estimation method when the sample size is n ≥ 100. In addition, the optimal α-cut for the narrowest lower expected length and the narrowest upper expected length are considered. PMID:24987728

  8. Integration of criticality alarm system at a fuel manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Longinov, M.; Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)

    2005-07-01

    In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element CANFLEX bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. As the primary fuel supplier to the reactor site that has chosen to utilize this new fuel design, Zircatec has agreed to manufacture and supply this new fuel at their facility in Port Hope, Ontario. Under this agreement, Zircatec is challenged with converting a fuel manufacturing facility to include the processing of enriched uranium. The challenge is to introduce the new concept of criticality control to a facility that traditionally does not have to deal with such a concept. One of the elements of the implementation is the criticality detection and alarm system - CIDAS. Since a criticality could go undetected by human senses, one of the methods of ensuring safety from radiation exposure in the event of a criticality is the installation of a criticality incident detection and alarm system. This early warning device could be the difference between low dose exposure and lethal exposure. This paper describes the challenges that Zircatec has faced with the installation of a criticality incident detection and alarm system. These challenges include determining the needs and requirements, determining appropriate specifications, selecting the right equipment, installing the equipment and training personnel in the operation of the new equipment. (author)

  9. Fuel Cell System for Transportation -- 2005 Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.

    2006-10-01

    Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of

  10. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  11. Start-up analysis for automotive PEM fuel cell systems

    Science.gov (United States)

    De Francesco, M.; Arato, E.

    The development of fuel cell cars can play an important role in resolving transport problems, due to the high environmental compatibility and high efficiency of this kind of vehicle. Among the different types of fuel cells, proton-exchange membrane fuel cells (PEMFCs) are considered the best solution for automotive applications at the moment. In this work, constructive criteria are discussed with the aim of obtaining a power generation module adaptable to a wide range of cars. A particular problem in accomplishing the overall project is represented by the definition of the compressor system for air feeding. In this work, the design approach to the problem will be delineated: some options are reviewed and the best solution is analysed. The transient response of the system (fuel cell and compressor) is investigated in order to optimise the start-up running through a model of a fuel cell stack and a compressor simulation. The model and its results are proposed as a work procedure to solve the problem, by varying external conditions: in fact, to perform the system start-up under stable conditions, the air relative humidity and temperature must be maintained in a proper range of values. The approach here presented has been utilised for the definition of the characteristics of the power module and layout of a middle-size hybrid city bus in the framework of a project promoted by the European Union.

  12. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Directory of Open Access Journals (Sweden)

    Lee YongDeok

    2017-01-01

    Full Text Available A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241 was done at Korea Atomic Energy Research Institute (KAERI, using lead slowing down spectrometer (LSDS. The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with ~2% uncertainty for Pu239. By applying the covering (neutron absorber, the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  13. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Science.gov (United States)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  14. System design description for sampling fuel in K basins

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-09-17

    This System Design Description provides: (1) statements of the Spent Nuclear Fuel Project`s needs for sampling of fuel in the K East and K West Basins, (2) the sampling equipment functions and requirements, (3) a general work plan and the design logic followed to develop the equipment, and (4) a summary description of the design for the sampling equipment. This report summarizes the integrated application of both the subject equipment and the canister sludge sampling system in the characterization campaigns at K Basins.

  15. ALLOCATING REPAIRABLE SYSTEM'S RELIABILITY SUBJECT TO MINIMAL TOTAL COST - AN INTEGER PROGRAMMING APPROACH

    Institute of Scientific and Technical Information of China (English)

    Ahmad A. Moreb

    2007-01-01

    Reliability allocation problem is commonly treated using a closed-form expression relating the cost to reliability. A recent approach has introduced the use of discrete integer technique for un-repairable systems. This research addresses the allocation problem for repairable systems. It presents an integer formulation for finding the optimum selection of components based on the integer values of their Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR). The objective is to minimize the total cost under a system reliability constraint, in addition to other physical constraints. Although, a closed-form expression relating the cost to reliability may not be a linear; however, in this research, the objective function will always be linear regardless of the shape of the equivalent continuous closed-form function. An example is solved using the proposed method and compared with the solution of the continuous closed-form version. The formulation for all possible system configurations, components and subsystems are also considered.

  16. Distributed generation system using wind/photovoltaic/fuel cell

    Science.gov (United States)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  17. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  18. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  19. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  20. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  1. Inducible SOS Response System of DNA Repair and Mutagenesis in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Celina Janion

    2008-01-01

    Full Text Available Chromosomal DNA is exposed to continuous damage and repair. Cells contain a number of proteins and specific DNA repair systems that help maintain its correct structure. The SOS response was the first DNA repair system described in Escherichia coli induced upon treatment of bacteria with DNA damaging agents arrest DNA replication and cell division. Induction of the SOS response involves more than forty independent SOS genes, most of which encode proteins engaged in protection, repair, replication, mutagenesis and metabolism of DNA. Under normal growth conditions the SOS genes are expressed at a basal level, which increases distinctly upon induction of the SOS response. The SOS-response has been found in many bacterial species (e.g., Salmonella typhimurium, Caulobacter crescentus, Mycobacterium tuberculosis, but not in eukaryotic cells. However, species from all kingdoms contain some SOS-like proteins taking part in DNA repair that exhibit amino acid homology and enzymatic activities related to those found in E. coli. but are not organized in an SOS system. This paper presents a brief up-to-date review describing the discovery of the SOS system, the physiology of SOS induction, methods for its determination, and the role of some SOS-induced genes.

  2. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  3. Exergy & economic analysis of biogas fueled solid oxide fuel cell systems

    Science.gov (United States)

    Siefert, Nicholas S.; Litster, Shawn

    2014-12-01

    We present an exergy and an economic analysis of a power plant that uses biogas produced from a thermophilic anaerobic digester (AD) to fuel a solid oxide fuel cell (SOFC). We performed a 4-variable parametric analysis of the AD-SOFC system in order to determine the optimal design operation conditions, depending on the objective function of interest. We present results on the exergy efficiency (%), power normalized capital cost ( kW-1), and the internal rate of return on investment, IRR, (% yr-1) as a function of the current density, the stack pressure, the fuel utilization, and the total air stoichiometric ratio. To the authors' knowledge, this is the first AD-SOFC paper to include the cost of the AD when conducting economic optimization of the AD-SOFC plant. Our calculations show that adding a new AD-SOFC system to an existing waste water treatment (WWT) plant could yield positives values of IRR at today's average electricity prices and could significantly out-compete other options for using biogas to generate electricity. AD-SOFC systems could likely convert WWT plants into net generators of electricity rather than net consumers of electricity while generating economically viable rates of return on investment if the costs of SOFC systems are within a factor of two of the DOE/SECA cost targets.

  4. Surveillance system for DUPIC fuel development facility (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. Y.; Kim, H. D.; Park, C. S.; Cha, H. R.; Hong, J. S.; Yang, M. S. [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    DUPIC Surveillance System is developed to process image data and radiation data together to diagnose intelligently the transportation status of the nuclear material, which makes it possible that usual DUPIC process be carried out without interruption under the surveillance. We developed the neutron monitor for surveillance and the system which takes and processes radiation data and image data, where the system is under the test operation after installed at DFDF (Dupic Fuel Development Facility)

  5. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  6. Simulation of Gravity Feed Oil for Areoplane Fuel Transfer System

    Science.gov (United States)

    Lv, Y. G.; Liu, Z. X.; Huang, S. Q.; Xu, T.

    Generally, it has two different ways for fuel transfer for areoplane, the simplest one is by gravity, and another is by pumps. But the simplest one mighte change to the vital method in some situation, such as electrical and mechanical accident. So the study of gravity feed oil is aslo important. Past calculations assumed that, under gravity feed, only one fuel tank in aircraft supplies the fuel needed for preventing extremely serious accident to happen. Actually, gravity feed oil is a transient process, all fuel tanks compete for supplying oil and there must have several fuel tanks offering oil simultaneously. The key problems to calculate gravity feed oil are the sumulation of the multiple-branch and transient process. Firstly, we presented mathematical models for oil flow through pipes, non-working pupms and check valves, ect. Secondly, On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Finally, we give a numerical example using the new method for a certain type of aircraft under gravity feed. achieved the variations of oil level and flow mass per second of each oil tanks which showed in Figures below. These variations show preliminarily that our proposed method of calculations is satisfactory.

  7. Effect of surface roughness and adhesive system on repair potential of silorane-based resin composite

    Directory of Open Access Journals (Sweden)

    Enas H. Mobarak

    2012-07-01

    Full Text Available This study was performed to evaluate the influence of surface roughness and adhesive system on the repair strength of silorane-based resin composite. Twenty-four substrate discs from silorane-based FiltekP90 were made and stored for 24 h. Half of the discs were roughened against 320 grit SiC paper while the other half was polished against 4000 grit SiC paper. All discs were etched with phosphoric acid. Repair resin composite, FiltekP90 or FiltekZ250, was bonded to the treated surfaces using their corresponding adhesive; P90 System Adhesive (SA or Adper Scotchbond Multipurpose (SBMP ending up with four repair groups. The groups were as follows: G1: Smooth + SA + FiltekP90; G2: Roughened + SA + FiltekP90; G3: Smooth + SBMP + FiltekZ250; G4: Roughened + SBMP + FiltekZ250. Additional six unrepaired discs from each resin composite (G5 and G6 were prepared to test the cohesive strength. After 24 h, discs (n = 6/group were serially sectioned to obtain sticks (n = 30/group for microtensile bond strength (μTBS testing. Scanning electron microscopic (SEM evaluation of substrates that received different treatments as well as representative substrate-repair sticks from each group were performed. Modes of failure were also determined. Two-way ANOVA with Repeated-Measures revealed that surface treatment and repair material had no significant effect on repair bond strength of silorane-based composite material. Paired t-test showed that all repair strength values were significantly lower than the cohesive strength of FiltekP90. Adhesive failure was the predominant mode of failure which was confirmed by SEM. Surface treated FiltekP90 composite showed different textures under SEM whereas phosphoric acid did not produce clear changes. An interaction layer between SBMP adhesive and FiltekZ250 repairing composite was detected. Repair of the silorane composite was successful irrespective of the surface roughness and chemistry of the repair

  8. Fuel System Durability--U.S. Coast Guard

    Science.gov (United States)

    2008-05-01

    injection pump test facility would require a cam support, camshaft components, and fuel injection system components. Due to the low rpm, large injection...support the cam lobe and camshaft . The cam box was built with steel plates, bearings, and shafting shown in Figure 7. Machining and fabrication of the

  9. 33 CFR 183.564 - Fuel tank fill system.

    Science.gov (United States)

    2010-07-01

    ... fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five gallons per minute for at least five seconds will not enter the boat when the boat is in its static... that do not depend solely on the spring tension of the clamps for compressive force. (c) Each...

  10. Advanced energy analysis of high temperature fuel cell systems

    NARCIS (Netherlands)

    De Groot, A.

    2004-01-01

    In this thesis the performance of high temperature fuel cell systems is studied using a new method of exergy analysis. The thesis consists of three parts: ⢠In the first part a new analysis method is developed, which not only considers the total exergy losses in a unit operation, but which distingu

  11. Fluid bed gasification pilot plant fuel feeding system evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, W.A.; Fonstad, T.; Pugsley, T.; Gerspacher, R. (Univ. of Saskatchewan, Saskatoon (Canada)), Email: wac132@mail.usask.ca; Wang Zhiguo (Saskatchewan Research Council, Saskatoon (Canada)), Email: zhiguo.wang@src.sk.ca

    2009-07-01

    Fluidized bed gasification (FBG) is a method for thermally converting solid biomass to a gaseous product termed syngas, which can be used as fuel for heat or electricity generation. Accurate and consistent feeding of biomass fuel into biomass FBG converters is a continuing, challenge, and was the subject of experimentation at the University of Saskatchewan biomass FBG pilot plant. The 2-conveyor feeding system for this pilot plant was tested using meat and bone meal (MBM) as feedstock, by conveying the feedstock through the system, and measuring the output rate as the fuel was discharged. The relationship between average mass-flowrate (F{sub M}) and conveyor speed (S) for the complete feeding system was characterized to be F{sub M}=0.2188S-0.42 for the tests performed. Testing of the metering conveyor coupled to the injection conveyor showed that operating these conveyors at drive synchronized speeds, air pulsed into the injection hopper, and 50 slpm injection air, produced the most consistent feed output rate. Hot fluidized bed tests followed, which showed that plugging of the injection nozzle occurred as bed temperatures increased past 700C, resulting in loss of fuel flow. The pneumatic injection nozzle was subsequently removed, and the system was found to perform adequately with it absent. (orig.)

  12. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a

  13. Thorium as a Fuel for Accelerator Driven Subcritical Electronuclear Systems

    CERN Document Server

    Barashenkov, V S; Singh, V

    2000-01-01

    Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two times smaller, accelerator Driven subcritical Systems (ADS) with thorium fuel are very perspective at the bombarding energies higher than several hundreds MeV. An admixture of fissile elements U^{233}, U^{235}, Pu^{239} in the set-up gives larger neutron multiplication which in turn shows better energy amplification. It is argued that due to the practically complete burning of the fuel in such set-up there is no need of technology of conversion of the exhaust fuel.

  14. PV-Wind System with Fuel Cell & Electrolyzer

    Directory of Open Access Journals (Sweden)

    Deepa Sharma

    2015-12-01

    Full Text Available In this paper, a detailed modeling and simulation of solar cell/ wind turbine/ fuel cell hybrid power system is developed using a novel topology to complement each other and to alleviate the effects of environmental variations. Comparing with the other sources , the renewable energy is inexhaustible and has non-pollution characteristics. The solar energy, wind power, hydraulic power and tidal energy are natural resources of the interest to generate electrical power. As the wind turbine output power varies with the wind speed and the solar cell output power varies with both the ambient temperature and radiation, a fuel cell with ultra capacitor bank can be integrated to ensure that the system performs under all conditions. Excess wind and solar energies when available are converted to hydrogen using electrolysis for later use in the fuel cell. In this paper dynamic modeling of various components of this isolated system system is presented. Transient responses of the system to step change in the load, ambient temperature, radiation, and wind speed in a number of possible situations are studied. Modeling and simulations are conducted using MATLAB/Simulink software packages to verify the effectiveness of the proposed system. The results show that the proposed hybrid power system can tolerate the rapid change in natural conditions and suppress the effects of these fluctuations on the voltage within the acceptable range.The proposed system can be used for off grid power generation in non interconnected areas or remote isolated communities of nation.

  15. 60-WATT HYDRAZINE-AIR FUEL CELL SYSTEM.

    Science.gov (United States)

    fuel cell system as presented in our Design Plan. Prior to preparation of the Design Plan, a systems analysis of the basic electrochemical system was made. From the results of this analysis, the operating parameters of the support equipment were defined and an initial selection of components made. System components defined were: the cell stack, electrolyte tank, hydrazine feed system, cooling and chemical air blowers, voltage regulator, and thermal control system. A package design was then made for these components and the final detail design completed.

  16. CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

    Directory of Open Access Journals (Sweden)

    JONG-YOUL PARK

    2014-12-01

    Full Text Available In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

  17. The synchronous active neutron detection system for spent fuel assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  18. Lean Gasoline System Development for Fuel Efficient Small Cars

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stuart R. [General Motors LLC, Pontiac, MI (United States)

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  19. Lean Gasoline System Development for Fuel Efficient Small Cars

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-30

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  20. Study of Hydrogen Supply System with Ammonia Fuel

    Science.gov (United States)

    Saika, Takashi; Nakamura, Mitsuhiro; Nohara, Tetsuo; Ishimatsu, Shinji

    Carbon-free fuel is effective in preventing global warming. Hydrogen has no carbon and can be made also from nuclear energy or reproducible energies other than fossil fuels. However, hydrogen lacks portability because of its difficulty in liquefying, but ammonia can easily be liquefied at a room temperature and dissociated into high-content hydrogen and nitrogen using a suitable catalyst. An ammonia dissociation system for fuel cells is proposed in this paper. The residual ammonia by 13ppm or more in the dissociated gas (H2+ N2) causes a decrease in the output of fuel cells. To separate residual ammonia, it should be sent to an ammonia separator and then to an ammonia distiller. In the experiment, the authors examine the concentrations of ammonia after dissociation at various temperatures, pressures and space velocities. The ammonia separator uses the fact that ammonia dissolves well in water. Then the ammonia water is distilled in the distiller. Thereby, the authors have proposed an ammonia circulation system that is a clean energy system.

  1. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  2. RESTART simulation of non-Markov consecutive-k-out-of-n: F repairable systems

    Energy Technology Data Exchange (ETDEWEB)

    Villen-Altamirano, Jose, E-mail: jvillen@eui.upm.e [Departamento de Matematica Aplicada (E.U. Informatica), Universidad Politecnica de Madrid, Calle Arboleda s/n, 28031 Madrid (Spain)

    2010-03-15

    The reliability of consecutive-k-out-of-n: F repairable systems and (k-1)-step Markov dependence is studied. The model analyzed in this paper is more general than those of previous studies given that repair time and component lifetimes are random variables that follow a general distribution. The system has one repair service which adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly dependable systems, the RESTART method was used for the estimation of steady-state unavailability, MTBF and unreliability. Probabilities up to the order of 10{sup -16} have been accurately estimated with little computational effort. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty for the application of this method is to find a suitable function, called the importance function, to define the regions. Given the simplicity involved in changing some model assumptions with RESTART, the importance function used in this paper could be useful for dependability estimation of many systems.

  3. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  4. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  5. Development of direct methanol fuel cells for the applications in mining and tunnelling. Automation and power conditioning of a fuel cell-battery hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Kulakarni, Sreekantha Rao

    2012-07-01

    In mining and tunneling, there are many decentralized types of power-consuming equipment for which the issue of power supply has not yet been resolved satisfactorily. This equipment includes electro-hydraulic control of shield-type supports, gas detection systems, seismic measuring devices, radio relay stations, access points for wireless networks, water level monitoring stations and the power supply for repair stations as well as special alarm signals in combination with gas detectors. The decentralized power consumers in mining and tunneling cannot be supplied by cable, because of their remote location and the fact that the installation of cables is extremely costly. The other alternative, the power supply by means of rechargeable batteries, requires regular charging and transportation between charging and workstations. Due to the large distances that may be necessary, this task can stress several workers and vehicles around the clock. Pit lamps carried by the miners are quite heavy due to rechargeable batteries. The weight of these pit lamps must be reduced. Fuel cells will provide the solution to the problems mentioned above. They are lighter in weight, since they have a higher energy density than can be reached by commercially-available batteries, and they provide electrical power as long as the fuel is delivered. The most widely used fuel in the fuel cell is hydrogen, but hydrogen is not readily available in nature. Therefore, it must be reformed from other fuels such as natural gas and there are still some barriers in the production, transportation and storage of hydrogen. Due to lower density, hydrogen must be stored in compressed cylinders. Normally hydrogen is stored in cylinders at a pressure of 700 bar (i.e. highly compressed gas cylinders). Since, hydrogen is an explosive gas; usage of such highly compressed gas cylinders is prohibited in underground mining for security reasons. Under this aspect, direct methanol fuel cells (DMFCs) are the most

  6. Pattern recognition receptors and central nervous system repair.

    Science.gov (United States)

    Kigerl, Kristina A; de Rivero Vaccari, Juan Pablo; Dietrich, W Dalton; Popovich, Phillip G; Keane, Robert W

    2014-08-01

    Pattern recognition receptors (PRRs) are part of the innate immune response and were originally discovered for their role in recognizing pathogens by ligating specific pathogen associated molecular patterns (PAMPs) expressed by microbes. Now the role of PRRs in sterile inflammation is also appreciated, responding to endogenous stimuli referred to as "damage associated molecular patterns" (DAMPs) instead of PAMPs. The main families of PRRs include Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-like receptors (RLRs), AIM2-like receptors (ALRs), and C-type lectin receptors. Broad expression of these PRRs in the CNS and the release of DAMPs in and around sites of injury suggest an important role for these receptor families in mediating post-injury inflammation. Considerable data now show that PRRs are among the first responders to CNS injury and activation of these receptors on microglia, neurons, and astrocytes triggers an innate immune response in the brain and spinal cord. Here we discuss how the various PRR families are activated and can influence injury and repair processes following CNS injury.

  7. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    Directory of Open Access Journals (Sweden)

    Mladena Lukovic

    2015-12-01

    Full Text Available In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c. This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d, the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning. From reconstructed images, different phases in the repair system (repair material, substrate, voids can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice.

  8. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  9. Back-Up/ Peak Shaving Fuel Cell System

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL

  10. Systemic Inflammatory Response and Severe Thrombocytopenia after Endovascular Thoracic Aortic Aneurysm Repair

    Directory of Open Access Journals (Sweden)

    Valentina Silvestrin

    2017-01-01

    Full Text Available After Endovascular repair of thoracic aortic aneurysm, a systemic inflammatory response, named postimplantation syndrome, can develop. This syndrome is characterized by fever, leukocytosis, and elevated CRP plasma levels and its pathogenetic mechanisms are still unknown. Although this syndrome generally resolves within few days, some patients develop a persisting severe inflammatory reaction leading to mild or severe complications. Here we describe the case of a male patient who developed postimplantation inflammatory syndrome and severe thrombocytopenia after endovascular repair of thoracic aortic aneurysm. Treatment with prednisone (50 mg/bid for two weeks did not improve the clinical and laboratory findings. We utilized danazol, a weak androgen that has been shown to be effective in the treatment of immune and idiopathic thrombocytopenic purpura, and after 12 days of treatment with danazol (200 mg/bid, the patient improved progressively and platelet number increased up to 53,000/μL. Patients undergoing endovascular repair of thoracic aortic aneurysm should be carefully monitored for the development of postimplantation syndrome. This clinical condition is relatively common after the endovascular repair of aortic aneurysm but is rarely observed after endovascular repair of thoracic aortic aneurysms. The different known therapeutical approaches are still empiric, with reported beneficial effects with the use of NSAID, corticosteroids, and danazol.

  11. Systemic Inflammatory Response and Severe Thrombocytopenia after Endovascular Thoracic Aortic Aneurysm Repair

    Science.gov (United States)

    Silvestrin, Valentina; Bonvini, Stefano; Antonello, Michele; Grego, Franco; Vettor, Roberto

    2017-01-01

    After Endovascular repair of thoracic aortic aneurysm, a systemic inflammatory response, named postimplantation syndrome, can develop. This syndrome is characterized by fever, leukocytosis, and elevated CRP plasma levels and its pathogenetic mechanisms are still unknown. Although this syndrome generally resolves within few days, some patients develop a persisting severe inflammatory reaction leading to mild or severe complications. Here we describe the case of a male patient who developed postimplantation inflammatory syndrome and severe thrombocytopenia after endovascular repair of thoracic aortic aneurysm. Treatment with prednisone (50 mg/bid) for two weeks did not improve the clinical and laboratory findings. We utilized danazol, a weak androgen that has been shown to be effective in the treatment of immune and idiopathic thrombocytopenic purpura, and after 12 days of treatment with danazol (200 mg/bid), the patient improved progressively and platelet number increased up to 53,000/μL. Patients undergoing endovascular repair of thoracic aortic aneurysm should be carefully monitored for the development of postimplantation syndrome. This clinical condition is relatively common after the endovascular repair of aortic aneurysm but is rarely observed after endovascular repair of thoracic aortic aneurysms. The different known therapeutical approaches are still empiric, with reported beneficial effects with the use of NSAID, corticosteroids, and danazol. PMID:28154580

  12. Advanced ECU Software Development Method for Fuel Cell Systems

    Institute of Scientific and Technical Information of China (English)

    TIAN Shuo; LIU Yuan; XIA Wenchuan; LI Jianqiu; YANG Minggao

    2005-01-01

    The electronic control unit (ECU) in electrical powered hybrid and fuel cell vehicles is exceedingly complex. Rapid prototyping control is used to reduce development time and eliminate errors during software development. This paper describes a high-efficiency development method and a flexible tool chain suitable for various applications in automotive engineering. The control algorithm can be deployed directly from a Matlab/Simulink/Stateflow environment into the ECU hardware together with an OSEK real-time operating system (RTOS). The system has been successfully used to develop a 20-kW fuel cell system ECU based on a Motorola PowerPC 555 (MPC555) microcontroller. The total software development time is greatly reduced and the code quality and reliability are greatly enhanced.

  13. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  14. Prediction of Repair Work Duration for Gas Transport Systems Based on Small Data Samples

    DEFF Research Database (Denmark)

    Lesnykh, Valery; Litvin, Yuri; Kozin, Igor

    2016-01-01

    Prediction of the duration of a repair and maintenance project of a gas transport system is an important part of planning activities. There exist numerous sources of uncertainties that may result in time overruns possibly leading to multiple negative consequences. Our experience in planning...... this work suggests that accepting the stochastic nature of the project duration is a constructive step towards the preparedness to contingencies and defining penalties for repair companies. To support this approach, one needs to construct probability distributions of the durations of the projects...

  15. Lubrication System 2. Service the Crankcase Breather. Student Manual. Small Engine Repair Series. First Edition.

    Science.gov (United States)

    Hill, Pamela

    This student manual on servicing the crankcase breather is the third of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  16. Superficial fascial system repair: an abdominoplasty technique to reduce local complications after caesarean delivery.

    Science.gov (United States)

    Al-Benna, Sammy; Al-Ajam, Yazan; Tzakas, Elias

    2009-05-01

    Abdominal incision complications are a major source of morbidity after caesarean delivery. Repair of the superficial fascial system may avert local complications after caesarean delivery by minimising tension to the skin and increasing the initial biomechanical strength of wound which has the potential to decrease early wound dehiscence and as a by-product correct suprapubic bulging.

  17. Semiconservative replication, genetic repair, and many-gened genomes: Extending the quasispecies paradigm to living systems

    Science.gov (United States)

    Tannenbaum, Emmanuel; Shakhnovich, Eugene I.

    2005-12-01

    Quasispecies theory has emerged as an important tool for modeling the evolutionary dynamics of biological systems. We review recent advances in the field, with an emphasis on the quasispecies dynamics of semiconservatively replicating genomes. Applications to cancer and adult stem cell growth are discussed. Additional topics, such as genetic repair and many-gene genomes, are covered as well.

  18. Bond strength durability of direct and indirect composite systems following surface conditioning for repair

    NARCIS (Netherlands)

    Passos, Sheila Pestana; Ozcan, Mutlu; Vanderlei, Aleska Dias; Leite, Fabiola Pessoa Pereira; Kimpara, Estevao Tomomitsu; Bottino, Marco Antonio

    2007-01-01

    Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sin

  19. Injecting a liquid bacteria-based repair system to make porous network conrete healed

    NARCIS (Netherlands)

    Sangadji, S.; Wiktor, V.A.C.; Jonkers, H.M.; Schlangen, H.E.J.G.

    2013-01-01

    Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and buff

  20. Principles of Fuel and Fuel Systems, 8-4. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This volume of student materials for a secondary/postsecondary level course in principles of fuel and fuel systems is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose of the individualized, self-paced course is to provide the…

  1. Fuel-cell-propelled submarine-tanker-system study

    Energy Technology Data Exchange (ETDEWEB)

    Court, K E; Kumm, W H; O' Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  2. Challenges facing air management for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P.B. [Department of Energy (United States); Sutton, R. [Argonne National Lab. (United States); Wagner, F.W. [Energetics Incorporated (United States)

    2000-07-01

    The U.S. Department of Energy (DOE) and the U.S. automotive industry are working cooperatively under the auspices of the Partnership for a New Generation of Vehicles (PNGV) to develop a six-passenger automobile that can achieve up to 80 mpg. while meeting customer needs and all safety and emission requirements. These partners are continuing to invest heavily in the research and development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient energy conversion system for the PNGV. A critical challenge facing fuel cell systems for the PNGV is the development of efficient, compact, cost-effective air management systems. The U.S. Department of Energy has been exploring several compressor/expander options for pressurized fuel cell systems, including scroll, toroidal intersecting vane, turbine, twin screw, and piston technologies. Each of these technologies has strengths and weaknesses regarding efficiency, pressure ratio over turndown, size and weight, and cost. This paper will present data from the U.S. Department of Energy's research and development efforts on air management systems and will discusses recent program developments resulting from an independent peer review evaluation. (author)

  3. Modeling and identification of a PEM fuel cell humidification system

    Institute of Scientific and Technical Information of China (English)

    Xianrui DENG; Guoping LIU; George WANG; Min TAN

    2009-01-01

    A theoretical model of a humidifier of proton exchange membrane (PEM) fuel cell systems is developed and analyzed first in this paper. The model shows that there exists a strong nonlinearity in the system. Then, the system is identified using a wavelet networks method. To avoid the curse-of-dimensionality problem, a class of wavelet networks proposed by Billings is employed. The experimental data acquired from the test bench are used for identification. The one-step-ahead predictions and the five-step-ahead predictions are compared with the real measurements, respectively. It shows that the identified model can effectively describe the real system.

  4. DNA repair. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals. (HLW)

  5. Defective dental restorations: to repair or not to repair? Part 2: All-ceramics and porcelain fused to metal systems.

    Science.gov (United States)

    Blum, Igor R; Jagger, Daryll C; Wilson, Nairn H F

    2011-04-01

    With the increasing use of ceramics in restorative dentistry, and trends to extend restoration longevity through the use of minimal interventive techniques, dental practitioners should be familiar with the factors that may influence the decision either to repair or replace fractured metal-ceramic and all-ceramic restorations and, also, the materials and techniques available to repair these restorations. This second of two papers addresses the possible modes of failure of ceramic restorations and outlines indications and techniques in this developing aspect of restoration repair in clinical practice. The repair of metal-ceramic and all-ceramic restorations is a reliable low-cost, low-risk technique that may be of value for the management of loss or fracture of porcelain from a crown or bridge in clinical practice.

  6. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  7. Fuel injection and mixing systems and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei; Short, John

    2010-08-03

    A fuel injection and mixing system is provided. The system includes an injector body having a fuel inlet and a fuel outlet, and defines a fuel flow path between the inlet and outlet. The fuel flow path may include a generally helical flow passage having an inlet end portion disposed proximate the fuel inlet of the injector body. The flow path also may include an expansion chamber downstream from and in fluid communication with the helical flow passage, as well as a fuel delivery device in fluid communication with the expansion chamber for delivering fuel. Heating means is also provided in thermal communication with the injector body. The heating means may be adapted and configured for maintaining the injector body at a predetermined temperature to heat fuel traversing the flow path. A method of preheating and delivering fuel is also provided.

  8. Solid oxide fuel cell power plant having a bootstrap start-up system

    Science.gov (United States)

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  9. Solid oxide fuel cell power plant having a bootstrap start-up system

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Michael T

    2016-10-04

    The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26) until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).

  10. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  11. 3-Unit System Comprising Two Types of Units with First Come First Served Repair Pattern Except When Both Types of Units are Waiting for Repair

    Directory of Open Access Journals (Sweden)

    Amit Goyal

    2010-01-01

    Full Text Available Problem statement: In this study we investigated the probabilistic analysis of a three unit system working in a sugar Mill, wherein one unit is big and the other two units are small and identical, is examined. Upon failure of the big unit, both small units are made operative and failed unit is undertaken for repair immediately. Priority for operation is given to the big unit. Priority for repair is given to big unit if both types (i.e., big and small of units are in queue to get the repair done. System is able to work with full capacity only if big unit or both small units are in good condition. If only one small unit is operable, the system works at reduced capacity. The system under consideration goes to rest during the non-seasonal period. Approach: System was analyzed by making use of semi-Markov processes and regenerative point technique and various measures of the system effectiveness are obtained including the profit incurred to the system. Results: Graphs had been plotted to depict the behavior of the profit with respect to failure rate for different values of repair rate and with respect to revenue per unit up time for which system is working at full capacity for different values of cost for PM/CM. Conclusion: The profit increases with the decrease in the values of the failure rate and with the increase in the values of revenue per unit up time. It has lower (higher values on increasing the values of cost (repair rate. Cut-off points obtained for failure rate help decide about having the system with failure rate lesser than that the value at cut-off point. Also, the price of the product should be fixed in such a way so as to get the revenue greater than the value at cut-off point.

  12. Antimisting kerosene JT3 engine fuel system integration study

    Science.gov (United States)

    Fiorentino, A.

    1987-01-01

    An analytical study and laboratory tests were conducted to assist NASA in determining the safety and mission suitability of the modified fuel system and flight tests for the Full-Scale Transport Controlled Impact Demonstration (CID) program. This twelve-month study reviewed and analyzed both the use of antimisting kerosene (AMK) fuel and the incorporation of a fuel degrader on the operational and performance characteristics of the engines tested. Potential deficiencies and/or failures were identified and approaches to accommodate these deficiencies were recommended to NASA Ames -Dryden Flight Research Facility. The result of flow characterization tests on degraded AMK fuel samples indicated levels of degradation satisfactory for the planned missions of the B-720 aircraft. The operability and performance with the AMK in a ground test engine and in the aircraft engines during the test flights were comparable to those with unmodified Jet A. For the final CID test, the JT-3C-7 engines performed satisfactorily while operating on AMK right up to impact.

  13. Materials and system degradation in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, D. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering, Green Energy and Fuel Cell Group

    2007-07-01

    Various degradation processes in fuel cell anodes and cathodes can cause the release of fluoride ions that thin the ionomer membrane and allow more gases to permeate the cell. This presentation provided an overview of reliability modelling techniques used to identify the failure modes of material degradation in fuel cells. A reliability model of a fuel cell stack and hydrogen power system was presented in addition to solution methods for Nafion degradation of the main polymer chain. Changes in the molecular weight of Nafion were discussed. A case study of a model was used to demonstrate that reaction slowed as the ionomer on the cathode degraded. Equations were developed for hydrogen crossover, peroxide production; peroxide destruction; F-ion production; thickness change; diffusion through the gas diffusion layer (GDL); and open circuit voltage (OCV). It was concluded that the OCV durability experiments generated a mechanism for degradation of commercial membranes. The modelling study showed that degradation was related to the permeability of hydrogen to the cathode, and oxygen to the anode. It was concluded that at lower oxygen pressures anode degradation was limited, while at higher pressures anode degradation was more significant. A power point presentation of the University of Waterloo's alternative fuel team provided details of the team's recent research activities. tabs., figs.

  14. Air management system for automotive fuel cells; Luftversorgungssystem fuer Fahrzeugbrennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Temming, J. [Dortmund Univ. (Germany). Fachgebiet Fluidenergiemaschinen

    2001-07-01

    Fuel cells have attained a predominant position in the development of alternative automotive drives during the last few years. The Polymer Electrolyte Membrane Fuel Cell (PEMFC), preferred for automotive applications, requires compressed air for maximum efficiency. In most prototypes this is provided by twin-screw compressors. The article introduces the different types of fuel cells, and the system and requirements of mobile applications of fuel cells. The advantages and development potential of screw compressors are described. Furthermore concepts of a compressor-expander module based on screw machines are presented and discussed. (orig.) [German] Bei der Entwicklung alternativer Fahrzeugantriebe hat die Brennstoffzelle in den letzten Jahren eine vorherrschende Stellung eingenommen. Die Polymer-Elektrolyt-Membran Brennstoffzelle, PEMFC, die fuer automotive Anwendungen bevorzugt verwendet wird, benoetigt fuer einen optimalen Wirkungsgrad eine Druckluftversorgung. Als Compressor kommt derzeit insbesondere der Schraubenlader bzw. -compressor in verschiedenen Prototypenfahrzeugen zum Einsatz. Der Beitrag behandelt zunaechst die unterschiedlichen Brennstoffzellentypen, den Systemaufbau und die Anforderungen an die mobile Anwendung der Brennstoffzelle. Fuer diesen speziellen Anwendungsfall werden Vorteile und Entwicklungsmoeglichkeiten der Schraubenmaschine dargelegt. Davon ausgehend finden sich Konzepte zum Aufbau eines Compressor-Expander-Moduls (CEM) auf Basis der Schraubenmaschinen. (orig.)

  15. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating multiple stack building

  16. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  17. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  18. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    radiator #7. The fan blades and shroud were formed using stereo lithography; the fan motor was a brushless DC motor with motor controller. These...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--10-9253 Cooling System Design for PEM Fuel Cell Powered Air Vehicles June 18, 2010...Stroman, Michael W. Schuette,* and Gregory S. Page† Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5342 NRL/MR/6110--10-9253

  19. Liquid Hydrogen Fuel System for Small Unmanned Air Vehicles

    Science.gov (United States)

    2013-01-07

    propulsion plant comprised a hydrogen fuel cell system, built by Protonex Technology Corporation, which weighed 2.5 lbs and produced a maximum of 550... NASA for flight on long-endurance UAVs. 9 Aluminum was selected for both the inner and outer walls of the LH2 dewar because of its low H2...impact of cooling from air flow would ordinarily be tested in a wind tunnel, LH2 safety complicates indoor testing in a wind tunnel, as

  20. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  1. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  2. NASA Lewis Evaluation of Regenerative Fuel Cell (RFC) Systems

    Science.gov (United States)

    Hagedorn, N. H.; Gonzalez-Sanabria, O. D; Kohout, L. L.

    1986-01-01

    Evaluation of two regenerative fuel cell (RFC) systems was begun in-house, and under contracts and grants. The passive hydrogen-oxygen RFC offers the possibility of a high-energy density, long-life storage system for geosynchronous Earth orbit missions. The hydrogen-bromine RFC offers the combination of high efficiency and moderate energy density that could ideally suit low Earth orbit missions if successfully developed. Either or both of these systems would be attractive additions to the storage options available to designers of future missions.

  3. Design of Propulsion System for a Fuel Cell Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Andreasen, Søren Juhl; Rasmussen, Peter Omand

    2007-01-01

    This paper presents a design method of propulsion systems for fuel cell vehicles complying with the 42V PowerNet standard. The method is based on field measurements during several weeks. Several cases of combining energy storage devices to a common bus voltage are investigated, and the total mass......, volume, cost and efficiency of the propulsion system are compared. It is concluded that the number of energy storage devices and their connecting to the common bus have a significant affect of the mass, volume, cost and efficiency of the propulsion system....

  4. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  5. Carbide-based fuel system for undersea vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Burke, A. Alan; Carreiro, Louis G.; Greene, Eric S. [Naval Undersea Warfare Center, Division Newport (NUWCDIVNPT), 1176 Howell Street, Building 1302/2, Newport, RI 02841 (United States)

    2008-01-21

    In underwater applications such as unmanned undersea vehicle (UUV) propulsion, mass and volume constraints often dictate system energy density and specific energy, which are targeted to exceed 300 Wh L{sup -1} and 300 Wh kg{sup -1}, respectively, in order to compete with state-of-the-art battery technologies. To address this need, a novel carbide-based fuel system (CFS) intended for use with a solid oxide fuel cell (SOFC) is under development that is capable of achieving these energy metrics as well as sequestering carbon dioxide. The proposed CFS uses calcium carbide and calcium hydride that react with water to generate acetylene and hydrogen as the fuel and calcium hydroxide as a carbon dioxide scrubber. The acetylene is hydrogenated to ethane and then reformed to syngas (carbon monoxide and hydrogen) before being utilized by the SOFC. Carbon dioxide effluent from the SOFC is reacted with the calcium hydroxide to produce a storable solid, calcium carbonate, thus eliminating gas evolution from the UUV. A system configuration is proposed and discussion follows concerning energy storage metrics, operational parameters and preliminary safety analysis. (author)

  6. Carbide-based fuel system for undersea vehicles

    Science.gov (United States)

    Burke, A. Alan; Carreiro, Louis G.; Greene, Eric S.

    In underwater applications such as unmanned undersea vehicle (UUV) propulsion, mass and volume constraints often dictate system energy density and specific energy, which are targeted to exceed 300 Wh L -1 and 300 Wh kg -1, respectively, in order to compete with state-of-the-art battery technologies. To address this need, a novel carbide-based fuel system (CFS) intended for use with a solid oxide fuel cell (SOFC) is under development that is capable of achieving these energy metrics as well as sequestering carbon dioxide. The proposed CFS uses calcium carbide and calcium hydride that react with water to generate acetylene and hydrogen as the fuel and calcium hydroxide as a carbon dioxide scrubber. The acetylene is hydrogenated to ethane and then reformed to syngas (carbon monoxide and hydrogen) before being utilized by the SOFC. Carbon dioxide effluent from the SOFC is reacted with the calcium hydroxide to produce a storable solid, calcium carbonate, thus eliminating gas evolution from the UUV. A system configuration is proposed and discussion follows concerning energy storage metrics, operational parameters and preliminary safety analysis.

  7. MODELLING AND FUZZY LOGIC CONTROL OF PEM FUEL CELL SYSTEM POWER GENERATION FOR RESIDENTIAL APPLICATION

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2010-01-01

    This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposedinclude a fuel cell stack model, reformer model and DC/AC inverter model. More then an analytical details ofhow active and reactive power output of a proton-exchange-membrane (PEM) fuel cell system is controlled.Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. Thecontroller modifies the hydrogen flow feedback from the terminal load. Si...

  8. Fossil-Fuel C02 Emissions Database and Exploration System

    Science.gov (United States)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). This presentation introduces newly build database and web interface, reflects the present state and functionality of the Fossil-Fuel CO2 Emissions Database and Exploration System as well as future plans for expansion.

  9. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    Science.gov (United States)

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  10. Solid oxide fuel cell systems development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The main objective in this project has been to develop a generic and dynamic tool for SOFC systems simulation and development. Developing integrated fuel cell systems is very expensive and therefore having the right tools to reduce the development cost and time to market for products becomes an important feature. The tools developed in this project cover a wide range of needs in Dantherm Power, R and D, and can be divided into 3 categories: 1. Component selection modeling; to define component specification requirements and selection of suppliers. 2. Application simulation model built from scratch, which can simulate the interface between customer demand and system output and show operation behavior for different control settings. 3. System operation strategy optimization with respect to operation cost and customer benefits. a. Allows to see how system size, in terms of electricity and heat output, and operation strategy influences a specific business case. b. Gives a clear overview of how a different property, in the system, affects the economics (e.g. lifetime, electrical and thermal efficiency, fuel cost sensitivity, country of deployment etc.). The main idea behind the structure of the tool being separated into 3 layers is to be able to service different requirements, from changing stakeholders. One of the major findings in this project has been related to thermal integration between the existing installation in a private household and the fuel cell system. For a normal family requiring 4500 kWh of electricity a year, along with the possibility of only running the system during the heating season (winter), the heat storage demand is only 210kWh of heat with an approximate value of Dkr 160,- in extra gas consumption. In this case, it would be much more cost effective to dump the heat, in the house, and save the expense of adding heat storage to the system. This operation strategy is only valid in Denmark for the time being, since the feed-In-Tariff allows for a

  11. Method of Hydrogenous Fuel Usage to Increase the Efficiency in Tandem Diverse Temperature Oxidation System

    Directory of Open Access Journals (Sweden)

    Zubkova Marina

    2016-01-01

    Full Text Available This paper presents the results of estimation energy efficiency, the collation data of thermodynamic calculations and data on material balance for an assessment of electric and thermal components in considered ways to use convention products, performance enhancement in the tandem system containing the high-temperature fuel cell and the low-temperature fuel cell with full heat regeneration for hydrogenous fuel (CH4. The overall effective efficiency (ηΣef. making full use of the recovered heat considered tandem system depends on the efficiency of its constituent fuel cells. The overall effective efficiency of the tandem installation including the fuel converter, separating system, high-temperature oxidation system, and hydrogen disposal system in case of fuel use in the low-temperature fuel cell, is higher than for each of the fuel cell elements separately.

  12. A decision dependent stochastic process model for repairable systems with applications

    Directory of Open Access Journals (Sweden)

    Paul F. Zantek

    2015-12-01

    This paper mathematically formalizes the notion of how management actions impact the functioning of a repairable system over time by developing a new stochastic process model for such systems. The proposed model is illustrated using both simulated and real data. The proposed model compares favorably to other models for well-known data on Boeing airplanes. The model is further illustrated and compared to other models on failure time and maintenance data stemming from the South Texas Project nuclear power plant.

  13. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Elements of Floating-Debris Control Systems

    Science.gov (United States)

    1988-09-01

    a variety of materials from plastic bottles to sage brush, but it is t’quialy wood in soiw shape or form--from whole trees to lawn furniture. The...REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION’RESEARCH PROGRAM TECHNICAL REPORT REMVR-HY-3 ELEMENTS O F FLOATING- DEBRIS CONTROL SYSTEMS’ by...TITLE (Include Security Classification) Elements of Floating- Debris Control Systems 12. PERSONAL AUTHOR(S) Perham, Roscoe E. 13a. TYPE OF REPORT 13b TIME

  14. Inspection-Repair based Availability Optimization of Distribution Systems using Teaching Learning based Optimization

    Science.gov (United States)

    Tiwary, Aditya; Arya, L. D.; Arya, Rajesh; Choube, S. C.

    2016-09-01

    This paper describes a technique for optimizing inspection and repair based availability of distribution systems. Optimum duration between two inspections has been obtained for each feeder section with respect to cost function and subject to satisfaction of availability at each load point. Teaching learning based optimization has been used for availability optimization. The developed algorithm has been implemented on radial and meshed distribution systems. The result obtained has been compared with those obtained with differential evolution.

  15. Alkaline Exchange Membrane (AEM) for High-Efficiency Fuel Cells, Electrolyzers and Regenerative Fuel Cell Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an alkaline exchange membrane (AEM)for use as a polymer electrolyte in both fuel cell and electrolyzer systems.  The ultimate goal in AEM development is...

  16. Multisensor robotic system for autonomous space maintenance and repair

    Science.gov (United States)

    Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.

    1988-01-01

    The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.

  17. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Science.gov (United States)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  18. A Study of Transport Airplane Crash-Resistant Fuel Systems

    Science.gov (United States)

    Jones, Lisa (Technical Monitor); Robertson, S. H.; Johnson, N. B.; Hall, D. S.; Rimson, I. J.

    2002-01-01

    This report presents the results of a study, funded by the Federal Aviation Administration (FAA), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S. Army, which ultimately led to the current state of the art in CRFS technology. It describes the basic research, testing, field investigations and production efforts which have led to the highly successful military CRFS, which has saved many lives and reduced costs of accidents. Current CRFS technology used in transport category airplanes is defined and compared to the available state-of-the-art technology. The report provides information to the FAA and other government organizations which can help them plan their efforts to improve the state of crash fire protection in the transport airplane fleet. The report provides guidance to designers looking for information about CRFS design problems, analysis tools to use for product improvement, and a summary of current and proposed regulations for transport category airplane fuel systems.

  19. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Science.gov (United States)

    2012-08-07

    ... National Institute of Standards and Technology Work Group on Measuring Systems for Electric Vehicle Fueling... devices and systems used to assess charges to consumers for electric vehicle fuel. There is no cost for... residential and business locations and those used to measure and sell electricity dispensed as a vehicle fuel...

  20. Modeling and control of the output current of a Reformed Methanol Fuel Cell system

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar

    2015-01-01

    In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...

  1. Engine Performance (Section B: Fuel and Exhaust Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    Science.gov (United States)

    Rains, Larry

    This module is the third of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: fuel supply systems; carburetion; carburetor service; gasoline engine electronic fuel injection; diesel fuel injection; and exhaust systems and turbochargers. Introductory materials include a competency profile and…

  2. Homomorphic Self-repairing Codes for Agile Maintenance of Distributed Storage Systems

    CERN Document Server

    Oggier, Frederique

    2011-01-01

    Distributed data storage systems are essential to deal with the need to store massive volumes of data. In order to make such a system fault-tolerant, some form of redundancy becomes crucial, incurring various overheads - most prominently in terms of storage space and maintenance bandwidth requirements. Erasure codes, originally designed for communication over lossy channels, provide a storage efficient alternative to replication based redundancy, however entailing high communication overhead for maintenance, when some of the encoded fragments need to be replenished in news ones after failure of some storage devices. We propose as an alternative a new family of erasure codes called self-repairing codes (SRC) taking into account the peculiarities of distributed storage systems, specifically the maintenance process. SRC has the following salient features: (a) encoded fragments can be repaired directly from other subsets of encoded fragments by downloading less data than the size of the complete object, ensuring ...

  3. Corrosion inhibitors and other protective systems in concrete repair concepts or misconcepts

    Institute of Scientific and Technical Information of China (English)

    XuKe

    2009-01-01

    The paper concludes that as long as one continues to blindly use protection methods applicable for newly constructed structures for concrete repairs,the business of "repairing the repairs"will be on the rise.A broader understanding of the electrochemical differences between new and repaired concrete is necessary for effective protection of reinforcement in repaired structures.

  4. Energy system analysis of fuel cells and distributed generation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2007-01-01

    on the energy system in which they are used. Consequently, coherent energy systems analyses of specific and complete energy systems must be conducted in order to evaluate the benefits of FC technologies and in order to be able to compare alternative solutions. In relation to distributed generation, FC...... can be used for such analyses. Moreover, the chapter presents the results of evaluating the overall system fuel savings achieved by introducing different FC applications into different energy systems. Natural gas-based and hydrogen-based micro FC-CHP, natural gas local FC-CHP plants for district...... technologies have different strengths and weaknesses in different energy systems, but often they do not have the expected effect. Specific analyses of each individual country must be conducted including scenarios of expansion of e.g. wind power in order to evaluate where and when the best use of FC...

  5. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  6. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems

    Science.gov (United States)

    Milcarek, Ryan J.; Wang, Kang; Falkenstein-Smith, Ryan L.; Ahn, Jeongmin

    2016-02-01

    Currently the role of fuel cells in future power generation is being examined, tested and discussed. However, implementing systems is more difficult because of sealing challenges, slow start-up and complex thermal management and fuel processing. A novel furnace system with a flame-assisted fuel cell is proposed that combines the thermal management and fuel processing systems by utilizing fuel-rich combustion. In addition, the flame-assisted fuel cell furnace is a micro-combined heat and power system, which can produce electricity for homes or businesses, providing resilience during power disruption while still providing heat. A micro-tubular solid oxide fuel cell achieves a significant performance of 430 mW cm-2 operating in a model fuel-rich exhaust stream.

  7. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  8. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  9. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    Science.gov (United States)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  10. GCtool for fuel cell systems design and analysis : user documentation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  11. Engine control system having fuel-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  12. The Refrigeration System; Appliance Repair--Advanced: 9027.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This course outline provides students with an understanding of the observation of basic refrigeration system components, the techniques used in working with copper tubing, and practice demonstrations to show what they have learned. Course content includes specific block objectives, orientation, refrigeration components (evaporator, compressor,…

  13. Plate-Based Fuel Processing System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  14. Plate-Based Fuel Processing System Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  15. Rotator cuff repair in the Brazilian Unified Health System: Brazilian trends from 2003 to 2015.

    Science.gov (United States)

    Malavolta, Eduardo Angeli; Assunção, Jorge Henrique; Beraldo, Rodrigo Alves; Pinto, Gustavo de Mello Ribeiro; Gracitelli, Mauro Emilio Conforto; Ferreira Neto, Arnaldo Amado

    2017-01-01

    To assess the historical trend of rotator cuff repairs in Brazil between 2003 and 2015, using the database of the Brazilian Unified Health System's (Sistema Único de Saúde [SUS]) Department of Informatics (DataSUS). Historical series using DataSUS. Surgeries performed between 2003 and 2015 were included and data relating to cuff tear repair were assessed, including decompression procedures were included. The numerator was the total number of rotator cuff repair and the denominator, the total population of the assessed locality. Population data were based on information from the Instituto Brasileiro de Geografia e Estatística (IBGE). During the period, 50,207 surgeries were performed. The rate was presented as number of procedures per 100,000 inhabitants, and increased from 0.83 to 2.81, a growth of 238%. In 2015, the South region had the highest rate, 6.32, followed by the Southeast, 3.62, while the North had the lowest rate, 0.13. The growing trend can be observed in the Southeast, South, and Midwest, while the rate is stable in the North and Northeast. The rate of rotator cuff repairs in Brazil performed through the SUS increased from 0.83 to 2.81 between 2003 and 2015, representing a growth of 238%, but remains lower than that of developed countries. A trend of growth can be observed in the Southeast, South, and Midwest, while the rate is stable in the North and Northeast.

  16. Integrated microchemical systems for fuel processing in micro fuel cell applications

    Science.gov (United States)

    Pattekar, Ashish V.

    Rapid advances in microelectronics technology over the last decade have led to the search for novel applications of miniaturization to all aspects of engineering. Microreaction engineering, which involves the development of miniature reactors on microchips for novel applications, has been a key area of interest in this quest for miniaturization. The idea of a fully integrated microplant with embedded control electronics, sensors and actuators on a single silicon chip has been gaining increasing acceptance as significant progress is being made in this area. The aim of this project has been to demonstrate a working microreaction system for hydrogen delivery to miniature proton exchange membrane (PEM) fuel cells through the catalytic steam reforming of methanol. The complete reformer - fuel cell unit is proposed as an alternative to conventional portable sources of electricity such as batteries due to its ability to provide an uninterrupted supply of electricity as long as a supply of methanol and water can be provided. This technology also offers significantly higher energy storage densities, which translates into less frequent 'recharging' through the refilling of methanol fuel. Various aspects of the design of a miniature methanol reformer on a silicon substrate are discussed with a focus on the theoretical understanding of microreactor operation and optimum utilization of the semiconductor-processing techniques used for fabricating the devices. Three prototype microreactor designs have been successfully fabricated and tested. Issues related to microchannel capping, on-chip heating and temperature sensing, introduction and trapping of catalyst particles in microchannels, microfluidic interfacing, pressure drop reduction, and thermal insulation have been addressed. Details regarding modeling and simulation of the designs to provide an insight into the working of the microreactor are presented along with a description of the microfabrication steps followed to

  17. Micronucleus formation, DNA damage and repair in premenopausal women chronically exposed to high level of indoor air pollution from biomass fuel use in rural India.

    Science.gov (United States)

    Mondal, Nandan Kumar; Mukherjee, Bidisha; Das, Debangshu; Ray, Manas Ranjan

    2010-03-29

    Genotoxicity of indoor air pollution from biomass fuel use has been examined in 132 biomass users (median age 34 years) and 85 age-matched control women from eastern India who used the cleaner fuel liquefied petroleum gas (LPG) to cook. Micronucleus (MN) frequency was evaluated in buccal (BEC) and airway epithelial cells (AEC); DNA damage was examined by comet assay in peripheral blood lymphocytes (PBL); and expressions of gamma-H2AX, Mre11 and Ku70 proteins were localized in AEC and PBL by immunocytochemistry. Reactive oxygen species (ROS) generation in leukocytes was measured by flow cytometry, and the levels of superoxide dismutase (SOD) and total antioxidant status (TAS) in blood were measured by spectrophotometry. Real-time aerosol monitor was used to measure particulate pollutants in indoor air. Compared with controls, biomass users had increased frequencies of micronucleated cells in BEC (3.5 vs. 1.7, pair, and MN frequency and comet tail % DNA were positively associated with these pollutants after controlling potential confounders. Thus, chronic exposure to biomass smoke causes chromosomal and DNA damage and upregulation of DNA repair mechanism.

  18. Energy Conversion Analysis of a Novel Solar Thermochemical System Coupled with Fuel Cells

    OpenAIRE

    Vinck, Ian; Ozalp, Nesrin

    2015-01-01

    Fossil fuels have been the main supply of power generation for use in manufacturing, transportation, residential and commercial sectors. However, environmentally adverse effects of fossil fuel conversion systems combined with pending shortage raise major concerns. As a promising approach to tackle these challenges, this paper presents a novel energy conversion system comprising of a solar thermal reactor coupled with hydrogen fuel cell and carbon fuel cell for electricity generation. The syst...

  19. A Comparison of Two Air Compressors for PEM Fuel Cell Systems

    OpenAIRE

    Kulp, Galen W.

    2001-01-01

    Proton exchange membrane (PEM) fuel cells are considered one of the best potential alternative power sources for automobiles. For this application, high efficiency and high power density are required. Pressurizing the fuel cell system can give higher efficiency, higher power density and better water balance characteristics for the fuel cell, but pressurization uses a percentage of the fuel cell output power. The compressor used to elevate the pressure has a direct effect on the system effi...

  20. Low velocity impact response and damage evolution in unreinforced resin systems and self-repairing polymer matrix composites

    Science.gov (United States)

    Motuku, Molefi

    The low velocity impact response and damage evolution in unreinforced polymer matrices, conventional polymer matrix composites, and self-repairing polymer matrix composites was investigated. The impact response study of unreinforced matrices and conventional laminates was undertaken because the failure initiation energies, threshold energy levels, failure characteristics and damage evolution in both the matrix material (unreinforced resin plaques) and the composite are intrinsic to proper design of a self-repairing composite. The self-repairing concept was investigated due to its attractive potential to alleviate damage problems in polymer matrix composites. Self-repairing composites, which fall under the category of passive smart polymer composites, have the potential to self repair both micro- and macro-damage resulting from impacts as well as non-impact loading. The self-repairing mechanism is achieved through the incorporation of hollow fibers in addition to the normal solid reinforcing fibers. The hollow fibers store the damage-repairing solution or chemicals that are released into the matrix or damaged zone upon fiber failure to repair and/or arrest damage progression. The room temperature low velocity impact response and damage evolution in DERAKANE 411-350 and 411-C50 vinyl ester unreinforced resin systems was investigated as a function of impact energy level, sample thickness, matrix material and catalyst system. The low velocity impact response of conventional and self-repairing glass reinforced polymer composites was investigated by addressing the fabrication and some of the parameters that influence their response to low velocity impact loading. Specific issues addressed by this study include developing a process to fabricate self-repairing laminates, processing quality; selection of storage material for the repairing solution; release and transportation of repairing solution; the effect of the number, type and spatial distribution of the repairing

  1. Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.A. (U. of California, Irvine, CA); Brouwer, J. (U. of California, Irvine, CA); Liese, E.A.; Gemmen, R.S.

    2006-04-01

    Hybrid fuel cell/gas turbine systems provide an efficient means of producing electricity from fossil fuels with ultra low emissions. However, there are many significant challenges involved in integrating the fuel cell with the gas turbine and other components of this type of system. The fuel cell and the gas turbine must maintain efficient operation and electricity production while protecting equipment during perturbations that may occur when the system is connected to the utility grid or in stand-alone mode. This paper presents recent dynamic simulation results from two laboratories focused on developing tools to aid in the design and dynamic analyses of hybrid fuel cell systems. The simulation results present the response of a carbonate fuel cell/gas turbine, or molten carbonate fuel cell/gas turbine, (MCFC/GT) hybrid system to a load demand perturbation. Initial results suggest that creative control strategies will be needed to ensure a flexible system with wide turndown and robust dynamic operation.

  2. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2005-12-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was

  3. Satellite Attitude Control System Design considering the Fuel Slosh Dynamics

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gadelha de Souza

    2014-01-01

    Full Text Available The design of the satellite attitude control system (ACS becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR and linear quadratic Gaussian (LQG methods to perform a planar manoeuvre assuming thrusters are actuators.

  4. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recirculation is needed or not and if so then what would be the effect of anode recycling on plant efficiency. A single study with similar conditions and prerequisites will thus reveal the importance of fuel recirculation on plant performance with alternative fuels. It is also shown that increasing anode...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained...

  5. Modeling and control of fuel cell based distributed generation systems

    Science.gov (United States)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  6. Uncertain multiobjective redundancy allocation problem of repairable systems based on artificial bee colony algorithm

    Institute of Scientific and Technical Information of China (English)

    Guo Jiansheng; Wang Zutong; Zheng Mingfa; Wang Ying

    2014-01-01

    Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.

  7. Recommendations for optimised repair welding operations in steam systems exposed to creep; Rekommendationer foer optimering av svetsreparationer i kryppaakaenda aangsystem

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Samuelson, Aake; Klasen, Bjoern; Jensen, Carsten

    2002-03-01

    Recommendations for optimised repair welding in creep exposed steam systems have been produced on basis of different parts of the project which involve a literature survey, case studies, metallographical investigations and finite element simulations. The separate parts are compiled in the present report where the results also are coupled to each other. Two of the project parts are reported in appendices in the present report and the other ones in three separate work reports. The studies have shown evidence of the complexity associated with repair welding and many alternatives may be offered for a given situation. The importance of the factors which may influence the life time of the repair have been investigated and are described in order to facilitate the decision-making process for the given situation. From the obtained results there are also more general recommendations to be given: Make sure that system stresses not are acting at the repair. Avoid welding methods that could result in strongly creep soft HAZs. Select a weld metal for the repair which is slightly creep hard compared to the remaining aged material. Selection of a wide and 'medium' deep excavation geometry as well as a repair around the whole circumference is to be preferred. Repairs of welds that not include excavation of the whole width of the original weld should be avoided. Replica testing is recommended in addition to the common practice in the quality and condition-monitoring control of the repair.

  8. Simple facet joint repair with dynamic pedicular system: Technical note and case series

    OpenAIRE

    Ali Fahir Ozer; Tuncer Suzer; Mehdi Sasani; Tunc Oktenoglu; Phillip Cezayirli; Hosein Jafari Marandi; Deniz Ufuk Erbulut

    2015-01-01

    Simple facet joint repair with dynamic pedicular system: Technical note and case series Ali Ozer, Tuncer Suzer, Mehdi Sasani, Tunc Oktenoglu, Phillip Cezayirli and Hosein Marandi Journal of Craniovertebral Junction and Spine. 6.2 (April-June 2015): p65. Copyright: COPYRIGHT 2015 Medknow Publications and Media Pvt. Ltd. http://www.jcvjs.com/ Full Text: Byline: Ali. Ozer, Tuncer. Suzer, Mehdi. Sasani, Tunc. Oktenoglu, Phillip. Cezayirli, Hosein. Marandi, Deniz. Erbulut Purpose: Facet joints are...

  9. Analysis of a fuel cell on-site integrated energy system for a residential complex

    Science.gov (United States)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  10. Study of fuel cell and gas turbine hybrid power systems

    OpenAIRE

    Basurto, M. T.

    2002-01-01

    Environmental awareness and the interest in distributed generation caused by electricity market de-regulation are factors that promote research on renewable energies. Fuel cells transform the chemical energy stored in fuel into electricity by means of electrochemical reactions. Among the different fuel cell types, high temperature fuel cells (HTFCS) have many advantages: high efficiency, low emissions, fuel flexibility, modularity and high quality waste heat. The main disadvant...

  11. System and method having multi-tube fuel nozzle with differential flow

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight; York, William David

    2017-01-03

    A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.

  12. An application of modulated poisson processes to the reliability analysis of repairable systems

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Pedro L.C. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Reatores]. E-mail: saldanha@cnen.gov.br; Melo, P.F. Frutuoso e [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: frutuoso@con.ufrj.br; Noriega, Hector C. [Universidad Austral de Chile (UACh), Valdivia (Chile). Faculdad de Ciencias de la Ingeniaria]. E-mail: hnoriega@uach.cl

    2005-07-01

    This paper discusses the application of the modulated power law process (MPLP) model to the rate of occurrence of failures of active repairable systems in reliability engineering. Traditionally, two ways of modeling repairable systems, in what concerns maintenance policies, are: a pessimistic approach (non-homogeneous process - NHPP), and a very optimistic approach (renewal processes - RP). It is important to build a generalized model that might consider characteristics and properties both of the NHPP and of the RP models as particular cases. In practice, by considering the pattern of times between failures, the MPLP appears to be more realistic to represent the occurrence of failures of repairable systems in order to define whether they can be modeled by a homogeneous or a non-homogeneous process. The study has shown that the model can be used to make decisions concerning the evaluation of the qualified life of plant equipment. By controlling and monitoring two of the three parameters of the MPLP model during the equipment operation, it is possible to check whether and how the equipment is following the basis of its qualification process, and so identify how the effects of time, degradation and operation modes are influencing the equipment performance. The discussion is illustrated by an application to the service water pumps of a typical PWR plant. (author)

  13. Solid polyelectrolyte fuel cell power supply system; Kotai kobunshigata nenryo denchi dengen system

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T. [Kanagawa (Japan); Kadoma, H. [Yokohama (Japan); Hashizaki, K.; Tani, T. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1996-06-11

    When a previous solid polyelectrolyte fuel cell power supply system is used underwater, the water generated by the cell reaction is stored in a water storage tank and it is necessary that the system is suspended in case the generated water is full in the water storage tank to take the system out of water and the water in the tank is discharged in the atmosphere. The solid polyelectrolyte fuel cell power supply system of this invention is equipped with a discharge pump to exhaust the generated water out of the closed vessel accommodating the system or equipped with a device to exhaust the generated water into the outside water accompanied with gushing of high-pressure gas into the outside water. As a result, the water generated by the cell reaction can be exhausted from the system into the outside water at any required time so that the fuel cell power supply system can be operated continuously as far as the supply of the fuel or the oxidizer last. By the installment of this function, a solid polyelectrolyte fuel cell power supply system can be used as an independent underwater power source or as a power source for an underwater moving body. 4 figs.

  14. Fuel Costs, Propulsion Systems and Interplanetary Supply Chains

    Science.gov (United States)

    Smith, R.

    A perspective on the economics of space logistics in a future state where there are continuous supply routes between Earth and outlying bodies in the solar system is discussed. In particular, the dependence of the cost of transport on specific impulse and % of non-fuel mass as cargo is discussed. Also, a simple way to calculate the optimal cargo mass of a transport ship carrying a commodity with constant demand is proposed as well as qualitative issues regarding backhaul and inventory that space logistics planners will have to one day confront.

  15. Polymers for hydrogen infrastructure and vehicle fuel systems :

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  16. Development of a novel computational tool for optimizing the operation of fuel cells systems: Application for phosphoric acid fuel cells

    Science.gov (United States)

    Zervas, P. L.; Tatsis, A.; Sarimveis, H.; Markatos, N. C. G.

    Fuel cells offer a significant and promising clean technology for portable, automotive and stationary applications and, thus, optimization of their performance is of particular interest. In this study, a novel optimization tool is developed that realistically describes and optimizes the performance of fuel cell systems. First, a 3D steady-state detailed model is produced based on computational fluid dynamics (CFD) techniques. Simulated results obtained from the CFD model are used in a second step, to generate a database that contains the fuel and oxidant volumetric rates and utilizations and the corresponding cell voltages. In the third step mathematical relationships are developed between the input and output variables, using the database that has been generated in the previous step. In particular, the linear regression methodology and the radial basis function (RBF) neural network architecture are utilized for producing the input-output "meta-models". Several statistical tests are used to validate the proposed models. Finally, a multi-objective hierarchical Non-Linear Programming (NLP) problem is formulated that takes into account the constraints and limitations of the system. The multi-objective hierarchical approach is built upon two steps: first, the fuel volumetric rate is minimized, recognizing the fact that our first concern is to reduce consumption of the expensive fuel. In the second step, optimization is performed with respect to the oxidant volumetric rate. The proposed method is illustrated through its application for phosphoric acid fuel cell (PAFC) systems.

  17. Thermoeconomic optimization of solid oxide fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Nehter, P. [Hamburg Univ. of Applied Science, Hamburg (Germany)

    2007-07-01

    The high operational temperature of solid oxide fuel cells (SOFC) helps to achieve the highest possible system efficiencies. Although the power density, long term stability and startup time of SOFCs have improved in recent years, the cost of fuel cell systems still has to be reduced by a factor of about 20-50 before widespread commercialization can take place. This study investigated the feasibility of replacing a 1 kW solar panel, a 300 kW internal combustion engine and a 30 MW combined cycle gas turbine (CCGT) power plant by two SOFC cycle configurations. The 2 SOFC cycle configurations were investigated for both mobile and stationary applications with respect to the capital and operational cost. The design model consisted of a 2-dimensional finite difference method and was used to calculate the local distribution of the current density, temperature and gas composition of the SOFC. The size and cost of the whole component was calculated based on different material specifications and scaling effects concerning the SOFC stack, reformer, heat exchanger, evaporator and flue gas condenser. The purpose was to determine the optimum range of operational parameters. Both SOFC cycle configurations showed the strong economic benefit in terms of pressurized SOFC systems. It was concluded that the allowable stack cost can be increased by a factor of 1.6 to 4 compared to cost at atmospheric pressure. 16 refs., 4 tabs., 7 figs.

  18. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    Energy Technology Data Exchange (ETDEWEB)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  19. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Science.gov (United States)

    2010-01-01

    .... (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance with... failures of the FRM that occur in service that could increase any fuel tank's Fleet Average Flammability... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Flammability...

  20. Tractor Mechanics: Maintaining and Servicing the Fuel System. Learning Activity Packages 20-33.

    Science.gov (United States)

    Clemson Univ., SC. Vocational Education Media Center.

    Learning activity packages are presented for instruction in tractor mechanics. The packages deal with the duties involved in maintaining the fuel system. The following fourteen learning activity packages are included: servicing fuel and air filters, servicing fuel tanks and lines, adjusting a carburetor, servicing a carburetor, servicing the…

  1. A fuel cell energy storage system for Space Station extravehicular activity

    Science.gov (United States)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  2. Phosphoric acid fuel cell power plant system performance model and computer program

    Science.gov (United States)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  3. Operator Semi-group of Density Evolution Equation for a Repairable Redundnt System with Two Same Components

    Institute of Scientific and Technical Information of China (English)

    史定华; 徐洪; 等

    2002-01-01

    For a repairable redundant system consisting of two same components with exponential lifetime and general repair time distribution,the probability densities of the system in some state at time t were determined by a group of ordinary and partial differential equations,called density evolution equations.It was proved that the time-dependent solution of the density evolution equations uniquely exists and strongly converges to its steady state density solution by a semi-group method.In this proof,it is not necessary to suppose that the repair rate function is bounded.The technique of the proof is valuable for many density evolution equatons.

  4. A New Approach for Analyzing the Reliability of the Repair Facility in a Series System with Vacations

    Directory of Open Access Journals (Sweden)

    Renbin Liu

    2012-01-01

    Full Text Available Based on the renewal process theory we develop a decomposition method to analyze the reliability of the repair facility in an n-unit series system with vacations. Using this approach, we study the unavailability and the mean replacement number during (0,t] of the repair facility. The method proposed in this work is novel and concise, which can make us see clearly the structures of the facility indices of a series system with an unreliable repair facility, two convolution relations. Special cases and numerical examples are given to show the validity of our method.

  5. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system

    Science.gov (United States)

    Kaneko, T.; Brouwer, J.; Samuelsen, G. S.

    This paper addresses how the power and temperature are controlled in a biomass gas fueled solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system. A SOFC and MGT dynamic model are developed and used to simulate the hybrid system performance operating on biomass gas. The transient behavior of both the SOFC and MGT are discussed in detail. An unstable power output is observed when the system is fed biomass gas. This instability is due to the fluctuation of gas composition in the fuel. A specially designed fuel controller succeeded not only in allowing the hybrid system to follow a step change of power demand from 32 to 35 kW, but also stably maintained the system power output at 35 kW. In addition to power control, fuel cell temperature is controlled by introduction and use of a bypass valve around the recuperator. By releasing excess heat to the exhaust, the bypass valve provided the control means to avoid the self-exciting behavior of system temperature and stabilized the temperature of SOFC at 850 °C.

  6. THE WORK SIMULATION OF FLOW RATE FOR CARRIAGES' REPAIR AS A MULTIPHASE, MULTIPLEX AND MULTIDISCIPLINARY SYSTEM OF MASS SERVICE

    Directory of Open Access Journals (Sweden)

    V. V. Myamlin

    2011-04-01

    Full Text Available The algorithm of computer simulation of the flexible flow for repair of cars as a multiphase polychannel manyobject queuing system is presented. The basic operators of the model are given and their work is described.

  7. Sea experiment of a survey AUV powered by a fuel cell system

    OpenAIRE

    Raugel, E; Rigaud, Vincent; Lakeman, C

    2010-01-01

    The use of autonomous underwater systems, such as AUV, is currently limited by their on board energy supply. The emergence of a higher capacity power source could be a breakthrough that extends these technologies field of application. Since 2005, within the PACSM project1, fuel cell systems for underwater applications were studied. HELION, an AREVA Renewable subsidiary, dedicated to both PEM fuel cell and electrolyze systems development, has designed a fuel cell system adapted for AUV energy ...

  8. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    Science.gov (United States)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  9. Incisional, epigastric and umbilical hernia repair using the Prolene Hernia System: describing a novel technique.

    Science.gov (United States)

    Khera, Goldie; Berstock, David A

    2006-08-01

    The Prolene Hernia System (PHS) is already widely in use in the United Kingdom for inguinal hernias. We describe the novel technique of using the three-in-one design of the PHS (Ethicon Endo-Surgery, Bracknell, UK) for repairing incisional, epigastric and umbilical herniae. This is a three-dimensional device and consists of an onlay patch, a tubular connector and an underlay patch. We recommend a four 'corner' suturing of the underlay patch under vision (and then) through the full thickness of abdominal wall layers to ensure a flat underlay mesh. These four sutures flatten out the underlay patch and can be tied or removed with equal effect. The sutures are placed at 3, 6, 9 and 12 o'clock, which simplifies the procedure and ensures that the underlay lays correctly and is corrugation-free and tension-free, thereby providing a two-layer repair for those herniae with a high rate of recurrence.

  10. Prediction of Repair Work Duration for Gas Transport Systems Based on Small Data Samples

    DEFF Research Database (Denmark)

    Lesnykh, Valery; Litvin, Yuri; Kozin, Igor

    2016-01-01

    Prediction of the duration of a repair and maintenance project of a gas transport system is an important part of planning activities. There exist numerous sources of uncertainties that may result in time overruns possibly leading to multiple negative consequences. Our experience in planning...... this work suggests that accepting the stochastic nature of the project duration is a constructive step towards the preparedness to contingencies and defining penalties for repair companies. To support this approach, one needs to construct probability distributions of the durations of the projects...... of concurrently running subprojects. Following this, guidance is provided on how to decide about what duration should define the deadline for completion of the whole work. A simple example is provided....

  11. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna International, Rochester Mills, MI (United States)

    2010-08-27

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  12. The electrical storage systems in energy networks with fuel cells and photovoltaic systems for residential use

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Aki, H. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Fuel cell systems and photovoltaic systems are expected to penetrate Japan's residential sector as a distributed energy resource. However, in order to connect photovoltaic systems to the electricity grid in Japan, the power conditioner of the photovoltaic system should have a function to restrict output. The purpose of this study was to establish a cooperative operations method for fuel cells, photovoltaic cells and electrical storage devices. In the proposed networks of this study, electricity, hydrogen and hot water were interchanged and the equipment was shared for cooperative operation. The power generated by the photovoltaic system fluctuated widely. The power flow at the connecting point of the energy networks to the electric power distribution system was bidirectional and depended on the balance of the power produced by the photovoltaic system as well as the power consumption. The use of an electrical storage system for the proposed networks ensured the stability of the power system and enabled more flexible operation of fuel cell stacks. The cooperative operational method for fuel cell systems, photovoltaic systems and electrical storage systems involved the combination of an electrical double layer capacitor (EDLC) and a lithium-ion battery for residential dwellings. Simulation results showed that the use of an EDLC reduced the required capacity of electrical storage systems and the fluctuation of output power of fuel cell systems. The construction of an experimental facilities is being planned to evaluate the charge-discharge characteristics of the electric storage devices and auxiliary equipment, such as inverters. 1 ref., 1 tab., 5 figs.

  13. 46 CFR 56.50-70 - Gasoline fuel systems.

    Science.gov (United States)

    2010-10-01

    ... opening on top for cleaning screens. A drip pan shall be fitted under the strainer. (e) Outlets and drains... cleaning purposes. (f) Fuel suction connections. All fuel suction and return lines shall enter the top...

  14. Fabrication and Installation of Radiation Shielded Spent Fuel Fusion System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Dal; Park, Yang Soon; Kim, Jong Goo; Ha, Yeong Keong; Song, Kyu Seok

    2010-02-15

    Most of the generated fission gases are retained in the fuel matrix in supersaturated state, thus alter the original physicochemical properties of the fuel. And some of them are released into free volume of a fuel rod and that cause internal pressure increase of a fuel rod. Furthermore, as extending fuel burnup, the data on fission gas generation(FGG) and fission gas release(FGR) are considered very important for fuel safety investigation. Consequently, it is required to establish an experimental facility for handling of highly radioactive sample and to develop an analytical technology for measurement of retained fission gas in a spent fuel. This report describes not only on the construction of a shielded glove box which can handle highly radioactive materials but also on the modifications and instrumentations of spent fuel fusion facilities and collection apparatuses of retained fission gas

  15. Multi-Fuel oxidation in Solid Oxide Fuel Cells: Model anodes and system studies

    NARCIS (Netherlands)

    Patel, H.C.

    2015-01-01

    With the evolution of renewable energy technologies it has become necessary that a balance is found between power production with conventional energy sources and other long term solutions. SOFCs offer an alternative for utilising conventional fossil fuels as well as sustainable biomass derived fuels

  16. Development of novel visual-plus quantitative analysis systems for studying DNA double-strand break repairs in zebrafish.

    Science.gov (United States)

    Liu, Jingang; Gong, Lu; Chang, Changqing; Liu, Cong; Peng, Jinrong; Chen, Jun

    2012-09-20

    The use of reporter systems to analyze DNA double-strand break (DSB) repairs, based on the enhanced green fluorescent protein (EGFP) and meganuclease such as I-Sce I, is usually carried out with cell lines. In this study, we developed three visual-plus quantitative assay systems for homologous recombination (HR), non-homologous end joining (NHEJ) and single-strand annealing (SSA) DSB repair pathways at the organismal level in zebrafish embryos. To initiate DNA DSB repair, we used two I-Sce I recognition sites in opposite orientation rather than the usual single site. The NHEJ, HR and SSA repair pathways were separately triggered by the injection of three corresponding I-Sce I-cut constructions, and the repair of DNA lesion caused by I-Sce I could be tracked by EGFP expression in the embryos. Apart from monitoring the intensity of green fluorescence, the repair frequencies could also be precisely measured by quantitative real-time polymerase chain reaction (qPCR). Analysis of DNA sequences at the DSB sites showed that NHEJ was predominant among these three repair pathways in zebrafish embryos. Furthermore, while HR and SSA reporter systems could be effectively decreased by the knockdown of rad51 and rad52, respectively, NHEJ could only be impaired by the knockdown of ligaseIV (lig4) when the NHEJ construct was cut by I-Sce I in vivo. More interestingly, blocking NHEJ with lig4-MO increased the frequency of HR, but decreased the frequency of SSA. Our studies demonstrate that the major mechanisms used to repair DNA DSBs are conserved from zebrafish to mammal, and zebrafish provides an excellent model for studying and manipulating DNA DSB repair at the organismal level.

  17. Development of Novel Visual-Plus Quantitative Analysis Systems for Studying DNA Double-Strand Break Repairs in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Jingang Liu; Lu Gong; Changqing Chang; Cong Liu; Jinrong Peng; Jun Chen

    2012-01-01

    The use of reporter systems to analyze DNA double-strand break (DSB) repairs,based on the enhanced green fluorescent protein (EGFP) and meganuclease such as I-Sce Ⅰ,is usually carried out with cell lines.In this study,we developed three visual-plus quantitative assay systems for homologous recombination (HR),non-homologous end joining (NHEJ) and single-strand annealing (SSA) DSB repair pathways at the organismal level in zebrafish embryos.To initiate DNA DSB repair,we used two I-Sce Ⅰ recognition sites in opposite orientation rather than the usual single site.The NHEJ,HR and SSA repair pathways were separately triggered by the injection of three corresponding I-Sce I-cut constructions,and the repair of DNA lesion caused by I-Sce Ⅰ could be tracked by EGFP expression in the embryos.Apart from monitoring the intensity of green fluorescence,the repair frequencies could also be precisely measured by quantitative real-time polymerase chain reaction (qPCR).Analysis of DNA sequences at the DSB sites showed that NHEJ was predominant among these three repair pathways in zebrafish embryos.Furthermore,while HR and SSA reporter systems could be effectively decreased by the knockdown of rad51 and rad52,respectively,NHEJ could only be impaired by the knockdown of ligaseⅣ (lig4) when the NHEJ construct was cut by I-Sce Ⅰ in vivo.More interestingly,blocking NHEJ with lig4-MO increased the frequency of HR,but decreased the frequency of SSA.Our studies demonstrate that the major mechanisms used to repair DNA DSBs are conserved from zebrafish to mammal,and zebrafish provides an excellent model for studying and manipulating DNA DSB repair at the organismal level.

  18. Portable fuel cell systems for America's army: technology transition to the field

    Science.gov (United States)

    Patil, Ashok S.; Dubois, Terry G.; Sifer, Nicholas; Bostic, Elizabeth; Gardner, Kristopher; Quah, Michael; Bolton, Christopher

    The US Army Communications, Electronics Research Development and Engineering Center (CERDEC) envisions three thrust areas for portable fuel cell systems for military applications. These areas include soldier power (500 W), it is imperative that the fuel cell power units be able to operate on fuels within the military logistics chain [DOD 4140.25-M, DOD Directive 4140.25 (1993)]. CERDEC is currently conducting research on catalysts and microchannel fuel reformers that offer great promise for the reforming of diesel and JP-8 fuels into hydrogen. In addition to research work on PEM fuel cells and enabling technologies, the Army is also conducting research on direct methanol and solid oxide fuel cells, and combined heat and power applications utilizing new high temperature fuel cells.

  19. Oxidative DNA damage background estimated by a system model of base excision repair.

    Science.gov (United States)

    Sokhansanj, Bahrad A; Wilson, David M

    2004-08-01

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level, based on measuring 8-oxoguanine lesions as a biomarker, have led to estimates that vary over three to four orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our findings show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  20. Targeting 14-3-3 adaptor protein-protein interactions to stimulate central nervous system repair

    Directory of Open Access Journals (Sweden)

    Andrew Kaplan

    2017-01-01

    Full Text Available The goal of developing treatments for central nervous system (CNS injuries is becoming more attainable with the recent identification of various drugs that can repair damaged axons. These discoveries have stemmed from screening efforts, large expression datasets and an improved understanding of the cellular and molecular biology underlying axon growth. It will be important to continue searching for new compounds that can induce axon repair. Here we describe how a family of adaptor proteins called 14-3-3s can be targeted using small molecule drugs to enhance axon outgrowth and regeneration. 14-3-3s bind to many functionally diverse client proteins to regulate their functions. We highlight the recent discovery of the axon-growth promoting activity of fusicoccin-A, a fungus-derived small molecule that stabilizes 14-3-3 interactions with their client proteins. Here we discuss how fusicoccin-A could serve as a starting point for the development of drugs to induce CNS repair.

  1. A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

    Science.gov (United States)

    Leimkuehler, Thomas O.; Patel, Vipul; Reeves, Daniel R.; Holt, James M.

    2005-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.

  2. DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging

    Directory of Open Access Journals (Sweden)

    Juan Cristóbal Conde-Pérezprina

    2012-01-01

    Full Text Available The mechanisms that concern DNA repair have been studied in the last years due to their consequences in cellular homeostasis. The diverse and damaging stimuli that affect DNA integrity, such as changes in the genetic sequence and modifications in gene expression, can disrupt the steady state of the cell and have serious repercussions to pathways that regulate apoptosis, senescence, and cancer. These altered pathways not only modify cellular and organism longevity, but quality of life (“health-span”. The DNA mismatch repair system (MMR is highly conserved between species; its role is paramount in the preservation of DNA integrity, placing it as a necessary focal point in the study of pathways that prolong lifespan, aging, and disease. Here, we review different insights concerning the malfunction or absence of the DNA-MMR and its impact on cellular homeostasis. In particular, we will focus on DNA-MMR mechanisms regulated by known repair proteins MSH2, MSH6, PMS2, and MHL1, among others.

  3. Oxidative DNA damage background estimated by a system model of base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B A; Wilson, III, D M

    2004-05-13

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  4. DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging

    Science.gov (United States)

    Conde-Pérezprina, Juan Cristóbal; León-Galván, Miguel Ángel; Konigsberg, Mina

    2012-01-01

    The mechanisms that concern DNA repair have been studied in the last years due to their consequences in cellular homeostasis. The diverse and damaging stimuli that affect DNA integrity, such as changes in the genetic sequence and modifications in gene expression, can disrupt the steady state of the cell and have serious repercussions to pathways that regulate apoptosis, senescence, and cancer. These altered pathways not only modify cellular and organism longevity, but quality of life (“health-span”). The DNA mismatch repair system (MMR) is highly conserved between species; its role is paramount in the preservation of DNA integrity, placing it as a necessary focal point in the study of pathways that prolong lifespan, aging, and disease. Here, we review different insights concerning the malfunction or absence of the DNA-MMR and its impact on cellular homeostasis. In particular, we will focus on DNA-MMR mechanisms regulated by known repair proteins MSH2, MSH6, PMS2, and MHL1, among others. PMID:23213348

  5. Scaling up microbial fuel cells and other bioelectrochemical systems

    KAUST Repository

    Logan, Bruce E.

    2009-12-15

    Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m3 (reactor volume) and to 6.9 W/m2 (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications. © 2009 Springer-Verlag.

  6. Dynamic Simulation of a Proton Exchange Membrane Fuel Cell System For Automotive Applications

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2012-01-01

    A dynamic model of the PEMFC system is developed to investigate the behaviour and transient response of the fuel cell system for automotive applications. The system accounts for the fuel cell stack with coolant, humidifier, heat exchangers and pumps. Governing equations for fuel cell and humidifier...... sufficient insight for further in-depth analysis of PEMFC and prove to be a basis for efficient control and design methodologies....

  7. ANALYSIS OF A TWO UNIT STANDBY SYSTEM WITH CORRELATED FAILURE AND REPAIR AND RANDOM APPEARANCE AND DISAPPEARANCE OF REPAIRMAN

    Directory of Open Access Journals (Sweden)

    Rakesh Gupta

    2010-01-01

    Full Text Available The paper deals with the stochastic analysis of a two non-identical unit standbysystem model. The one unit is considered as priority (p unit and the other as ordinary (o unit.The p-unit gets priority in operation. A single repair facility appears in and disappears from thesystem randomly with constant rates. The repair discipline of units is FCFS. The joint distributionof failure and repair times for each unit is taken to be bivariate exponential. Using regenerativepoint technique various measures of system effectiveness useful to industrial managers areobtained.

  8. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    Science.gov (United States)

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  9. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    Science.gov (United States)

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  10. Efficacy of a novel IGS system in atrial septal defect repair

    Science.gov (United States)

    Mefleh, Fuad N.; Baker, G. Hamilton; Kwartowitz, David M.

    2013-03-01

    Congenital heart disease occurs in 107.6 out of 10,000 live births, with Atrial Septal Defects (ASD) accounting for 10% of these conditions. Historically, ASDs were treated with open heart surgery using cardiopulmonary bypass, allowing a patch to be sewn over the defect. In 1976, King et al. demonstrated use of a transcatheter occlusion procedure, thus reducing the invasiveness of ASD repair. Localization during these catheter based procedures traditionally has relied on bi-plane fluoroscopy; more recently trans-esophageal echocardiography (TEE) and intra-cardiac echocardiography (ICE) have been used to navigate these procedures. Although there is a high success rate using the transcatheter occlusion procedure, fluoroscopy poses radiation dose risk to both patient and clinician. The impact of this dose to the patients is important as many of those undergoing this procedure are children, who have an increased risk associated with radiation exposure. Their longer life expectancy than adults provides a larger window of opportunity for expressing the damaging effects of ionizing radiation. In addition, epidemiologic studies of exposed populations have demonstrated that children are considerably more sensitive to the carcinogenic effects radiation. Image-guided surgery (IGS) uses pre-operative and intra-operative images to guide surgery or an interventional procedure. Central to every IGS system is a software application capable of processing and displaying patient images, registration between multiple coordinate systems, and interfacing with a tool tracking system. We have developed a novel image-guided surgery framework called Kit for Navigation by Image Focused Exploration (KNIFE). In this work we assess the efficacy of this image-guided navigation system for ASD repair using a series of mock clinical experiments designed to simulate ASD repair device deployment.

  11. Status of Research on Online Fuel Damage Detection and Core Damage Assessment System

    Institute of Scientific and Technical Information of China (English)

    XU; Xi-an; JI; Song-tao; GAO; Yong-guang; SHI; Xiao-lei

    2012-01-01

    <正>The technique research on the online fuel element damage detection and reactor core damage assessment is one project in the research program of the technical research for reactor key equipment maintenance and detection. The main research objective is to develop an online fuel damage detection system (FDDS), a core damage assessment system (CDAS) and make the integration of the two systems.

  12. The role of fuel cells and electrolysers in future efficient energy systems

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mathiesen, Brian Vad; Pedersen, Allan S.

    2012-01-01

    Fuel cells can increase the efficiency of the energy system and electrolysers can help enable a de-carbonisation of the energy supply. In this chapter we explain the role of fuel cells in future energy systems together with the role of electrolysers in smart energy systems with increasing...

  13. Engineering model system study for a regenerative fuel cell: Study report

    Science.gov (United States)

    Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.

    1984-01-01

    Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.

  14. A Web-Based Rapid Prototyping Workflow Management Information System for Computer Repair and Maintenance

    Directory of Open Access Journals (Sweden)

    A. H. El-Mousa

    2008-01-01

    Full Text Available Problem statement: Response to paper-based requests for computer and peripheral repair and maintenance has become very troublesome and slow due to the large demand and expansion at the University of Jordan. The objectives of this study were to: (i investigate the current system processes associated with the paper-based workflow system. (ii design and implement, using a suitable workflow management approach, a totally electronic alterative to improve performance. Approach: The methodology followed in the transform of the business processes from the paper to the electronic-based was using the rapid prototyping workflow management approach. This approach is seen to be especially effective in such cases where there is direct continuous interaction and involvement between the different stakeholders during the lifecycle of the project. Results: The system had been implemented and tested with the result that efficiency, accountability and response time have greatly improved in handling repair and maintenance orders. The transform from paper to electronic resulted in greatly enhanced user satisfaction especially since the developed system provided automatic feedback regarding order status. Conclusion: The design process and results provide a working blueprint for easy and quick various similar university-based business processes to be transformed to electronic. This should highly motivate internal in-house restructuring of business process to utilize technology and IT to enhance performance and accountability.

  15. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  16. Reliability modelling of repairable systems using Petri nets and fuzzy Lambda-Tau methodology

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, J.; Odoom, E.R

    2001-07-01

    A methodology is developed which uses Petri nets instead of the fault tree methodology and solves for reliability indices utilising fuzzy Lambda-Tau method. Fuzzy set theory is used for representing the failure rate and repair time instead of the classical (crisp) set theory because fuzzy numbers allow expert opinions, linguistic variables, operating conditions, uncertainty and imprecision in reliability information to be incorporated into the system model. Petri nets are used because unlike the fault tree methodology, the use of Petri nets allows efficient simultaneous generation of minimal cut and path sets.

  17. A cell-free system for studying a priming factor involved in repair of bleomycin-damaged DNA.

    Directory of Open Access Journals (Sweden)

    Seki,Shuji

    1989-04-01

    Full Text Available A simple cell-free system for studying a priming factor involved in the repair of bleomycin-damaged DNA was established. The template-primer used for the repair DNA synthesis was prepared by treating the closed circular, superhelical form of pUC19 plasmid DNA with 2.2 microM bleomycin and 20 microM ferrous ions. Single-strand breaks were introduced into pUC19 DNA by the bleomycin treatment, and the DNA was consequently converted largely into the open circular form. A system for repair of this bleomycin-damaged DNA was constructed with a priming factor, DNA polymerase (DNA polymerase beta or Klenow fragment of DNA polymerase I, ATP, T4 DNA ligase and four deoxynucleoside triphosphates. After incubation, the conformation of the DNA was analyzed by agarose gel electrophoresis and electron microscopy. The open circular DNA was largely converted to the closed circular DNA, indicating that the single-strand breaks of DNA were repaired. When the priming factor was omitted, DNA repair did not occur. The present system seemed to be applicable to the study of priming factors involved in the repair of DNA with single-strand breaks caused not only by bleomycin but also by ionizing radiation or active oxygen.

  18. Electrolyser-metal hydride-fuel cell system for seasonal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Lund, P.D.; Tolonen, J.S. [Helsinki Univ. of Technology, Engineering Physics and Mathematics Dept., Helsinki (Finland)

    1998-12-01

    A small-scale seasonal energy storage system, comprising an electrolyser, metal hydride hydrogen store and fuel cell, has been studied. According to the feasibility study, solid polymer electrolysers and fuel cells are the best options for the electrolyser-metal hydride-fuel cell energy storage systems. A round-trip efficiency of 30% has already been demonstrated, and the next target is to reach a round-trip efficiency close to 40%. The electyrolyser-metal hydride-fuel cell systems are suitable for small-scale self-sufficient applications in which high volumetric capacity is needed and safety aspects are appreciated. (Author)

  19. Methods of aircraft fuel system protection against low-temperature failures of its serviceability

    Directory of Open Access Journals (Sweden)

    П. Ф. Максютинський

    1999-09-01

    Full Text Available The following aircraft fuel system protection methods against low-temperature failures of its serviceability have been considered: the method of fuel temperature stabilization in the tanks at a predetermined level, also method of hydrocleaning of low-temperature deposits from the fuel pump filter. By the application of calculations and experimental research we have determined parameters of the system for the fuel temperature stabilization by means of utilization of heat at the radiator of the air-conditioning system and the effectiveness of the hydrocleaning of low-temperature deposits. The design of punched collector and the effective modes of hydrocleaning have been proposed

  20. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  1. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  2. Analysis of pressure wave dynamics in fuel rail system

    Directory of Open Access Journals (Sweden)

    B Alzahabi

    2008-09-01

    Full Text Available A model of an amplified common rail fuel system is simulated in Matlab toanalyze the wave mechanics in the rail. The injectors are modeled as asystem of linear and non-linear ODE’s consisting of masses, a helical spring,compressibility effects from fluid volumes, and hydraulic flow throughorifices. The injector simulation then predicts the rate of oil consumption,which is then input into the rail model.The rail is modeled in three sections which are coupled together. The pointswhere the coupling occurs are the locations where the current firinginjector and the pump supply are connected to the rail. This allows themodel to control the pressure and velocity (as boundary conditions atthese points. The rail model is based on the 1D, undamped wave equation,in a non-dimensional form [1] (in the position variable, x. The Reduction ofOrder method was used to solve the wave equation with the Matlabfunction PDEPE.The model was run with two different sets of initial conditions - nominal(constant pressure and zero velocity, and worst case using a simplifiedrepresentation of the pressure and velocity distribution at start of injection.This was done to determine the effect of rail waves at the start of injection,on the output of the model. The variation in fuel delivery, due to the variationin rail pressure, was then evaluated at three operating conditions - Idle,Peak Torque (PT and High Speed Light Load (HSLL. The simulation outputis then compared to analytical solutions of two forms of simplifiedgeometry, using the product method to solve the system [1.

  3. FDD-1 System On-line Monitoring Fuel Rod Failure of Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    CHENPeng; ZHANGYing-chao; JISong-tao; GAOYong-guang; YINZhen-guo; HANChuan-bin

    2003-01-01

    The FDD-1 system developed by CIAE for on-line monitoring fuel rod failure of nuclear power plant consists of γ-ray detector, γ-ray spectrum analyzer, computer, and an analysis code for evaluating the status of fuel rod failure. It would be determined that the fuel rod failure occurs when a large amount of γ activity increases in the primary system measured by γ-ray detector near the CVCS.

  4. Compressor-expander units for mobile fuel cell systems; Verdichter und Expander fuer mobile Brennstoffzellensysteme

    Energy Technology Data Exchange (ETDEWEB)

    Lang, O. [FEV Motorentechnik GmbH, Aachen (Germany).; Pischinger, S.; Schoenfelder, C.; Steidten, T. [RWTH Aachen (DE). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA)

    2004-08-01

    The air supply of hydrogen-powered fuel cell systems containing PEM fuel cells has a significant impact on their efficiency and mode of operation. Therefore, several mechanical compressors and expanders were examined at the RWTH Aachen. Simulations were then performed to determine the behaviour of the fuel cell system. This article discusses the findings of a project commissioned by the Forschungsvereinigung Verbrennungskraftmaschinen e.V. (FVV). (orig.)

  5. Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems

    OpenAIRE

    Chyuan-Yow Tseng; Hsun-Heng Tsai

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to oc...

  6. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  7. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2009-01-01

    This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC) controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  8. Lubricity Doser Evaluation Studies on High Pressure Common Rail Fuel Systems

    Science.gov (United States)

    2014-05-01

    high-pressure common rail system found on John Deere 4.5L Powertech Engines. The completion of a modified test protocol based on the NATO test cycle...Pressure Common Rail (HPCR) fuel system found on a John Deere 4.5L PowetechPlus engine. The three fuels that were tested on the HPCR test rig with...for John Deere HPCR Pump Stand ............................................................................. 10 Table 3. Test Fuels and Summary of

  9. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Advanced Aviation Forward Area Refueling System

    Science.gov (United States)

    2014-01-24

    UNCLASSIFIED 6 UNCLASSIFIED Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18/16/13 14/10/7 Pamas... Alcohol to Jet (ATJ) fuel flight testing at Redstone Test Center, TARDEC was afforded the opportunity to evaluate light obscuration particle counters on...Advanced Aviation Forward Area Refueling System (AAFARS) setup for Alcohol to Jet (ATJ) fuel flight testing. Figure 2. AAFARS fuel sampling port

  10. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  11. A Theoretical Solid Oxide Fuel Cell Model for Systems Controls and Stability Design

    Science.gov (United States)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni

    2008-01-01

    As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a micro-turbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and micro-turbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell mode is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  12. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald; Drigert, Mark William; Jewell, James Keith; Egger, Ann Elizabeth; Cordes, Gail Adele

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was from a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.

  13. Comparison of fuel-cell and diesel integrated energy systems and a conventional system for a 500-unit apartment

    Science.gov (United States)

    Simons, S. N.; Maag, W. L.

    1978-01-01

    The electrical and thermal energy utilization efficiencies of a 500 unit apartment complex are analyzed and compared for each of three energy supply systems. Two on-site integrated energy systems, one powered by diesel engines and the other by phosphoric-acid fuel cells were compared with a conventional system which uses purchased electricity and on-site boilers for heating. All fuels consumed on-site are clean, synthetic fuels (distillate fuel oil or pipeline quality gas) derived from coal. Purchased electricity was generated from coal at a central station utility. The relative energy consumption and economics of the three systems are analyzed and compared.

  14. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.

    Science.gov (United States)

    Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M

    2014-02-01

    The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded

  15. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method

    Science.gov (United States)

    Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei

    The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.

  16. Systemic inflammatory responses during laparoscopic and open inguinal hernia repair: a randomised prospective study

    DEFF Research Database (Denmark)

    Jess, P; Schultz, Karen; Bendtzen, K

    2000-01-01

    To see if the inflammatory responses during and after laparoscopic and open inguinal hernia repairs differed.......To see if the inflammatory responses during and after laparoscopic and open inguinal hernia repairs differed....

  17. Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

  18. Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

  19. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  20. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....

  1. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    Science.gov (United States)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell

  2. ENERGY MANAGEMENT OF PHOTOVOLTAIC SYSTEMS USING FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Cristian MIRON

    2016-11-01

    Full Text Available Renewable energy generators show an accelerated growth both in terms of production wise, as well as in research fields. Focusing only on photovoltaic panels, the generated energy has the disadvantage of being strongly oscillatory in evolution. The classical solution is to create a network between photovoltaic farms spanning on large distances, in order to share the total energy before sending it to the clients. A solution that was recently proposed is going to use hydrogen in order to store the energy surplus. Fuel Cells (FCs represent energy generators whose energy vector is usually hydrogen. These have already started the transition from the laboratory context towards commercialization. Due to their high energy density, as well as their theoretical infinite storage capacity through hydrogen, configurations based on electrolyzers and FCs are seen as high potential storage systems, both for vehicle and for stationary applications. Therefore, a study on such distributed control systems is of high importance. This paper analyses the existing solutions, with emphasis on a particular case where a supervisory system is developed and tested in a specialised simulation software.

  3. Hydrogen-fueled Wankel engines for small integrated power systems

    Energy Technology Data Exchange (ETDEWEB)

    Salanki, P. A.; Wallace, J. S. [Toronto Univ., ON (Canada)

    1997-05-01

    An experimental investigation into hydrogen fueling of Wankel engines, currently underway at the University of Toronto, was described. The objective of the experiment was to generate an emissions and efficiency database. In the first phase of the work, external mixture formation was used. Results confirmed Mazda`s own unpublished results. Using a small air-cooled Wankel engine, the authors investigated simpler means of injecting hydrogen through a row of four symmetric and equally separated orifices drilled through the epitrochoid wall. Hydrogen was supplied continuously to the orifices through the distribution manifold on the outside of the housing, with the flow controlled by a needle valve at the inlet of the distribution manifold. Although this system of continuous injection did not provide the complete separation of inlet air and injected hydrogen achieved by the Mazda timed hydrogen injection system, it was considered to be far simpler and achieved the critical goal of isolating open air intake from the hot combustion chamber surfaces. It was concluded that the epitrochoid wall injection offers some advantages over simple external mixture formation. It also has the added advantage of avoiding the complexity of a timed injection system with a valve. 9 refs., 4 figs..

  4. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  5. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIII, I--MAINTAINING THE FUEL SYSTEM (PART III), CUMMINS DIESEL ENGINES, II--RADIATOR SHUTTER SYSTEM.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, OPERATION, AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND RADIATOR SHUTTER SYSTEMS. TOPICS ARE (1) MORE ABOUT THE CUMMINS FUEL SYSTEM, (2) CALIBRATING THE PT FUEL PUMP, (3) CALIBRATING THE FUEL INJECTORS, (4) UNDERSTANDING THE SHUTTER SYSTEM, (5) THE…

  7. Alternative Fuels for use in DoD/Army Tactical Ground Systems

    Science.gov (United States)

    2011-02-03

    Construction Equipment • Bridging • Assured Mobility Systems Robotics • TALON • PackBot • MARCbot • Gladiator • Demonstrators • Technology...Advance Controls; Advance LTC; Fuel Systems; Adv. Turbo •Modern Engine Repower MILITARY* • Variety engines (MY 19XX) • Jet fuel (JP-8

  8. Engine Tune-Up Service. Unit 5: Fuel and Carburetion Systems. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson, Ludy

    This student guide is for Unit 5, Fuel and Carburetion Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting and servicing the fuel and carburetion systems. A companion review exercise book and posttests are available separately as CE 031 218-219. An introduction tells how this unit fits…

  9. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  10. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    E.I. Karpenko; Y.E. Karpenko; V.E. Messerle; A.B. Ustimenko [RAO Unified Energy Systems of Russia, Gusinoozersk (Russian Federation). Russia Sectional Center for Plasma-Power Technologies

    2009-07-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  11. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  12. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rich Chartrand

    2011-08-31

    efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.

  13. Fuel input substitution under tradable carbon permits system. Evidence from Finnish energy plants 2003-2007

    Energy Technology Data Exchange (ETDEWEB)

    Linden, M. (Joensuu Univ. (Finland), Dept. of Business and Economics., email:mika.linden@joensuu.fi); Maekelae, M.; Uusivuori, J. (The Finnish Forest Reserch Institute (Metla), Vantaa (Finland))

    2009-07-01

    Following the Kyoto protocol and the European Union climate policies larger than 20 MW energy plants are part of the EU's emissions-trading scheme (ETS). This greenhouse gas emission mitigation strategy, tradable carbon quota system, started in 2005. The scheme is not mandatory for the firms with size less than 20MW. Also the firms using renewable fuels will not pay for allowances. Advanced energy production technologies enable power and heating plants to use both nonrenewable fossil fuels and renewable wood fuels in energy production. Wood fuel demand may constitute a substitute for fossil fuel demand if the price of tradable carbon allowances is relatively high. In this context plant level panel data from years 2003 - 2007 in Finland is analyzed with panel and mixed models. Econometric demand equations are specified for the ratio of wood and fossil fuel. The results show that high allowance prices in the years 2005 and 2006 compared to the years 2003 and 2004 decreased the use of fossil fuels and the demand for wood fuels increased. This increase was the larger the smaller proportional user of wood-fuel a plant was. However the downturn of allowance prices in year 2007 ended this process. The heterogeneity of energy plants in size, industry and location determines the intensity and extension of fuel use but their role is limited in the fuel substitution. (orig.)

  14. Prolene Hernia System in the Tension-Free Repair of Primary Inguinal Hernias

    Directory of Open Access Journals (Sweden)

    Jayesh Gohel

    2012-06-01

    Full Text Available Objective: The aim of this study was to determine the feasibility of using the Prolene (polypropylene Hernia System for open tension-free repair on inguinal hernias, and study the results in terms of operation time, patient comfort, hospital stay, return to normal activity and postoperative complications. Material and Methods: From February 2002 through April 2003, we performed 50 open tension-free hernia repairs on 47 patients (46 men, 1 woman with a mean age of 55.8 years. There were 26 right and 18 left hernias, and 3 were bilateral. Of these, 39 were direct, 10 were indirect and 1 was femoral type. All were primary hernias. Results: The duration of surgery averaged 35 minutes (range 20 to 90 min. There was no perioperative mortality. Four patients developed mild self-limiting neuralgias. There were no subcutaneous wound infections, no haematomas, no seromas and no testicular atrophy. The average duration of postoperative hospitalisation was 3.5 days. The length of follow-up ranged from 1 month to 15 months (mean= 6.24 months. We have had no recurrences so far. Conclusion: The Prolene Hernia System is a novel approach in the management of inguinal hernias, with encouraging initial results. Its long-term efficacy needs to be studied with larger, prospective double-blind randomized trials, with longer follow-up. [National J of Med Res 2012; 2(3.000: 302-305

  15. Evaluation of ECHO PS Positioning System in a Porcine Model of Simulated Laparoscopic Ventral Hernia Repair.

    Science.gov (United States)

    Hanna, Erin M; Voeller, Guy R; Roth, J Scott; Scott, Jeffrey R; Gagne, Darcy H; Iannitti, David A

    2013-01-01

    Purpose. Operative efficiency improvements for laparoscopic ventral hernia repair (LVHR) have focused on reducing operative time while maintaining overall repair efficacy. Our objective was to evaluate procedure time and positioning accuracy of an inflatable mesh positioning device (Echo PS Positioning System), as compared to a standard transfascial suture technique, using a porcine model of simulated LVHR. Methods. The study population consisted of seventeen general surgeons (n = 17) that performed simulated LVHR on seventeen (n = 17) female Yorkshire pigs using two implantation techniques: (1) Ventralight ST Mesh + Echo PS Positioning System (Echo PS) and (2) Ventralight ST Mesh + transfascial sutures (TSs). Procedure time and mesh centering accuracy overtop of a simulated surgical defect were evaluated. Results. Echo PS demonstrated a 38.9% reduction in the overall procedure time, as compared to TS. During mesh preparation and positioning, Echo PS demonstrated a 60.5% reduction in procedure time (P Echo PS (16.2%), this was not significantly different than TS. Conclusions. Echo PS demonstrated a significant reduction in overall simulated LVHR procedure time, particularly during mesh preparation/positioning. These operative time savings may translate into reduced operating room costs and improved surgeon/operating room efficiency.

  16. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    Science.gov (United States)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  17. Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation

    Science.gov (United States)

    Peters, Roland; Deja, Robert; Engelbracht, Maximilian; Frank, Matthias; Nguyen, Van Nhu; Blum, Ludger; Stolten, Detlef

    2016-10-01

    This study analyzes different hydrogen-fueled solid oxide fuel cell (SOFC) system layouts. It begins with a simple system layout without any anode off-gas recirculation, continues with a configuration equipped with off-gas recirculation, including steam condensation and then considers a layout with a dead-end anode off-gas loop. Operational parameters such as stack fuel utilization, as well as the recirculation rate, are modified, with the aim of achieving the highest efficiency values. Drawing on experiments and the accumulated experience of the SOFC group at the Forschungszentrum Jülich, a set of operational parameters were defined and applied to the simulations. It was found that anode off-gas recirculation, including steam condensation, improves electrical efficiency by up to 11.9 percentage-points compared to a layout without recirculation of the same stack fuel utilization. A system layout with a dead-end anode off-gas loop was also found to be capable of reaching electrical efficiencies of more than 61%.

  18. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Takayuki [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki-ken 319-1194 (Japan); Ohta, Hirokazu; Ogata, Takanari [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511 (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-15

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel.

  19. Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems

    Science.gov (United States)

    Park, Gu-Gon; Yim, Sung-Dae; Yoon, Young-Gi; Lee, Won-Yong; Kim, Chang-Soo; Seo, Dong-Joo; Eguchi, Koichi

    An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al 2O 3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al 2O 3 pellets prepared by 'incipient wetness' were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H 2, 24.5% CO 2 and 2.2% CO at 230-260 °C which can produce power output of 59 Wt.

  20. Optimisation of air supply to mobile fuel cell systems; Optimierung von Luftversorgungseinheiten fuer Brennstoffzellensysteme in Fahrzeugantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, S. [RWTH Aachen (DE). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA); Ogrzewalla, J.; Schoenfelder, C. [FEV Motorentechnik, Aachen (Germany)

    2006-07-01

    Fuel cells will help to reduce fuel consumption and lessen our dependence on petroleum imports. The investigation focused on optimised design, construction and operation of air supply systemes for PEFC fuel cell systems in vehicle drives. Appropriate supercharging systems were selected and investigated, and the interaction of air supply with the overall system was researched. The use of mechanical expanders may improve the performance as compression energy is recovered by expansion of the cathode off-gas. Further, the influence of wetting concepts on fuel cell operation is investigated. Numeric simulations were made, and optimisation criteria were developed. Optimum charge pressure was found to be in the range of about 2 bar (absolute), depending on the moisturizing concept and of the moisture dependence of the fuel cell. Further, the system performance can be improved by 3-5 percent by installing an expander for energy recovery. (orig.)