WorldWideScience

Sample records for repair deficient cells

  1. Transfer of Chinese hamster DNA repair gene(s) into repair-deficient human cells (Xeroderma pigmentosum)

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1985-01-01

    Transfer of repair genes by DNA transfection into repair-deficient Xeroderma pigmentosum (XP) cells has thus far been unsuccessful, presenting an obstacle to cloning XP genes. The authors chose an indirect route to transfer repair genes in chromosome fragments. DNA repair-competent (UV resistant) hybrid cell lines were established by PEG-mediated fusions of DNA repair-deficient (UV sensitive) human fibroblasts (XP12RO) with wild type Chinese hamster (CHO) cells (AA8). CHO cells were exposed to 5 Krad X-rays prior to fusions, predisposing hybrid cells to lose CHO chromosome fragments preferentially. Repair-competent hybrids were selected by periodic exposures to UV light. Secondary and tertiary hybrid cell lines were developed by fusion of X-irradiated hybrids to XP12RO. The hybrid cell lines exhibit resistance to UV that is comparable to that of CHO cells and they are proficient at repair replication after UV exposure. Whole cell DNA-DNA hybridizations indicate that the hybrids have greater homology to CHO DNA than is evident between XP12RO and CHO. These observations indicate that CHO DNA sequences which can function in repair of UV-damaged DNA in human cells have been transferred into the genome of the repair-deficient XP12RO cells

  2. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Directory of Open Access Journals (Sweden)

    Jose Luis Ramirez-GarciaLuna

    Full Text Available In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1 mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2 re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3 the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  3. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Science.gov (United States)

    Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  4. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Rashda [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Efferth, Thomas [Institute of Pharmacy und Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Kuhmann, Christine [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Opatz, Till [Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz (Germany); Hao, Xiaojiang [Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 (China); Popanda, Odilia, E-mail: o.popanda@dkfz.de [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy

  5. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    International Nuclear Information System (INIS)

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine; Opatz, Till; Hao, Xiaojiang; Popanda, Odilia; Schmezer, Peter

    2012-01-01

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC 50 values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC 50 values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy options in

  6. An Inducible, Isogenic Cancer Cell Line System for Targeting the State of Mismatch Repair Deficiency

    Science.gov (United States)

    Bailis, Julie M.; Gordon, Marcia L.; Gurgel, Jesse L.; Komor, Alexis C.; Barton, Jacqueline K.; Kirsch, Ilan R.

    2013-01-01

    The DNA mismatch repair system (MMR) maintains genome stability through recognition and repair of single-base mismatches and small insertion-deletion loops. Inactivation of the MMR pathway causes microsatellite instability and the accumulation of genomic mutations that can cause or contribute to cancer. In fact, 10-20% of certain solid and hematologic cancers are MMR-deficient. MMR-deficient cancers do not respond to some standard of care chemotherapeutics because of presumed increased tolerance of DNA damage, highlighting the need for novel therapeutic drugs. Toward this goal, we generated isogenic cancer cell lines for direct comparison of MMR-proficient and MMR-deficient cells. We engineered NCI-H23 lung adenocarcinoma cells to contain a doxycycline-inducible shRNA designed to suppress the expression of the mismatch repair gene MLH1, and compared single cell subclones that were uninduced (MLH1-proficient) versus induced for the MLH1 shRNA (MLH1-deficient). Here we present the characterization of these MMR-inducible cell lines and validate a novel class of rhodium metalloinsertor compounds that differentially inhibit the proliferation of MMR-deficient cancer cells. PMID:24205301

  7. Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells.

    Science.gov (United States)

    Bailis, Julie M; Weidmann, Alyson G; Mariano, Natalie F; Barton, Jacqueline K

    2017-07-03

    The DNA mismatch repair (MMR) pathway recognizes and repairs errors in base pairing and acts to maintain genome stability. Cancers that have lost MMR function are common and comprise an important clinical subtype that is resistant to many standard of care chemotherapeutics such as cisplatin. We have identified a family of rhodium metalloinsertors that bind DNA mismatches with high specificity and are preferentially cytotoxic to MMR-deficient cells. Here, we characterize the cellular mechanism of action of the most potent and selective complex in this family, [Rh(chrysi)(phen)(PPO)] 2+ (Rh-PPO). We find that Rh-PPO binding induces a lesion that triggers the DNA damage response (DDR). DDR activation results in cell-cycle blockade and inhibition of DNA replication and transcription. Significantly, the lesion induced by Rh-PPO is not repaired in MMR-deficient cells, resulting in selective cytotoxicity. The Rh-PPO mechanism is reminiscent of DNA repair enzymes that displace mismatched bases, and is differentiated from other DNA-targeted chemotherapeutics such as cisplatin by its potency, cellular mechanism, and selectivity for MMR-deficient cells.

  8. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.

    Science.gov (United States)

    Haruta, Nami; Kubota, Yoshino; Hishida, Takashi

    2012-09-01

    UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.

  9. γ-ray dose rate effect in DNA double-strand break repair deficient murine cells

    International Nuclear Information System (INIS)

    Li Liya; Li Peiwen

    2002-01-01

    Objective: To analyze the dose rate effect and potentially lethal damage repair in DNA double-strand break repair deficient murine cells (SCID) irradiated by γ-ray. Methods: The wild type (CB.17+/+) and SCID cells were exposed to γ-ray at high and low dose rates. The high dose rate exposure was fractionated into two equal doses at 24 h intervals. The survival rates of irradiated cells were calculated by clone-forming analysis. Results: When γ-ray was given to wild type (CB.17+/+) cells in two fractions at 24 h intervals, the survival rate was significantly higher than that when the same total dose was given singly. In contrast, there was no difference in the survival rates between the single and fractionated exposure in SCID cells. SCID cells were more sensitive than CB.17+/+ cells to both low and high dose rates γ-ray exposure for cell killing. The survival rate by low dose rate exposure was significantly higher than that by high dose rate exposure, not only in CB.17+/+ cells but also in SCID cells. Conclusions: SCID cells are deficient in repairing γ-ray induced double-strand breaks. There is dose rate effect in both SCID and CB.17+/+ cells

  10. Frequency of intrachromosomal homologous recombination induced by UV radiation in normally repairing and excision repair-deficient human cells

    International Nuclear Information System (INIS)

    Tsujimura, T.; Maher, V.M.; McCormick, J.J.; Godwin, A.R.; Liskay, R.M.

    1990-01-01

    To investigate the role of DNA damage and nucleotide excision repair in intrachromosomal homologous recombination, a plasmid containing duplicated copies of the gene coding for hygromycin resistance was introduced into the genome of a repair-proficient human cell line, KMST-6, and two repair-deficient lines, XP2OS(SV) from xeroderma pigmentosum complementation group A and XP2YO(SV) from complementation group F. Neither hygromycin-resistance gene codes for a functional enzyme because each contains an insertion/deletion mutation at a unique site, but recombination between the two defective genes can yield hygromycin-resistant cells. The rates of spontaneous recombination in normal and xeroderma pigmentosum cell strains containing the recombination substrate were found to be similar. The frequency of UV-induced recombination was determined for three of these cell strains. At low doses, the group A cell strain and the group F cell strain showed a significant increase in frequency of recombinants. The repair-proficient cell strain required 10-to 20-fold higher doses of UV to exhibit comparable increases in frequency of recombinants. These results suggest that unexcised DNA damage, rather than the excision repair process per se, stimulates such recombination

  11. A preliminary investigation into the extent of increased radioresistance or hyper-radiosensitivity in cells of hamster cell lines known to be deficient in DNA repair

    International Nuclear Information System (INIS)

    Skov, K.; Marples, B.; Matthews, J.B.; Zhou, H.; Joiner, M.C.

    1994-01-01

    The response to low doses of X rays was assessed in cells of three hamster cell lines which are defective in DNA repair and was compared with their parental lines. Cells of the V79-derived double-strand break repair-deficient line XR-V15B showed no radioresistance in the 0.5-Gy range compared with the V79B wild type, but instead showed an exponential response. Cells of the single-strand break repair-deficient line EM9 showed hyper-radiosensitivity and exhibited increased radioresistance. Most interestingly, cells of the UV-20 cell line appeared to respond exponentially, as a continuation of the hyper-radiosensitive portion of the curve, with no evidence of increased radioresistance. This line is defective in an incision step of excision repair and is sensitive to crosslinking agents. Further studies are warranted to address the possible role of single- and double-strand break repair and excision repair in hyper-radiosensitivity and increased radioresistance. 24 refs., 4 figs

  12. Deficiency of UV-induced excision repair in human thymocytes

    International Nuclear Information System (INIS)

    Gensler, H.L.; Lindberg, R.E.; Pinnas, J.L.; Jones, J.F.

    1985-01-01

    The capacity of human thymocytes and of differentiated lymphocytes circulating in peripheral blood to perform unscheduled DNA synthesis (a measure of nucleotide excision repair) after UV irradiation was measured by radioautographic analysis. Only 4% of immature T lymphocytes, but 68% of circulating lymphocytes exhibited unscheduled DNA synthesis. When UV sensitivity of peripheral blood lymphocytes and thymocytes from the same donor were compared, the thymocytes, in each case, were significantly more UV sensitive than were the circulating lymphocytes. Peripheral blood lymphocytes from subjects undergoing halothane and morphine anesthesia during surgery showed 56% less excision repair capacity than those from unanesthetized donors. The difference occurred in the number of cells capable of repair rather than in the extent of repair synthesis per cell. Ultraviolet-induced unscheduled DNA synthesis occurred in only 3% of the thymocytes removed from rats killed by cervical dislocation. Therefore, the deficiency of excision repair was observed in rat thymocytes which had not been affected by anesthesia or surgical trauma. The results indicate that immature T-cells are deficient in nucleotide excision repair whereas the majority of mature peripheral blood lymphocytes exhibit such repair. (author)

  13. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    Science.gov (United States)

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  14. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Sykora, Peter; Bohr, Vilhelm A

    2015-01-01

    deficient cells. Moreover, the removal of 5'-AMP from DNA was significantly slower in the mitochondrial extracts from human cell lines and mouse tissues compared with their corresponding nuclear extracts. These results suggest that, contrary to nuclear DNA repair, mitochondrial DNA repair is not able...... elucidated. Here, we monitored the repair of 5'-AMP DNA damage in nuclear and mitochondrial extracts from human APTX(+/+) and APTX(-/-) cells. The efficiency of repair of 5'-AMP DNA was much lower in mitochondrial than in nuclear protein extracts, and resulted in persistent DNA repair intermediates in APTX......Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX...

  15. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    International Nuclear Information System (INIS)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-01-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO 3 ). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  16. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    Science.gov (United States)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  18. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  19. Biochemical evidence for deficient DNA repair leading to enhanced G2 chromatid radiosensitivity and susceptibility to cancer

    International Nuclear Information System (INIS)

    Gantt, R.; Parshad, R.; Price, F.M.; Sanford, K.K.

    1986-01-01

    Human tumor cells and cells from cancer-prone individuals, compared with those from normal individuals, show a significantly higher incidence of chromatid breaks and gaps seen in metaphase cells immediately after G2 X irradiation. Previous studies with DNA repair-deficient mutants and DNA repair inhibitors strongly indicate that the enhancement results from a G2 deficiency(ies) in DNA repair. We report here biochemical evidence for a DNA repair deficiency that correlates with the cytogenetic studies. In the alkaline elution technique, after a pulse label with radioactive thymidine in the presence of 3-acetylaminobenzamide (a G2-phase blocker) and X irradiation, DNA from tumor or cancer-prone cells elutes more rapidly during the postirradiation period than that from normal cells. These results indicate that the DNA of tumor and cancer-prone cells either repairs more slowly or acquires more breaks than that of normal cells; breaks can accumulate during incomplete or deficient repair processes. The kinetic difference between normal and tumor or cancer-prone cells in DNA strand-break repair reaches a maximum within 2 h, and this maximum corresponds to the kinetic difference in chromatid aberration incidence following X irradiation reported previously. These findings support the concept that cells showing enhanced G2 chromatid radiosensitivity are deficient in DNA repair. The findings could also lead to a biochemical assay for cancer susceptibility

  20. Reduced repair of potentially lethal radiation damage in glutathione synthetase-deficient human fibroblasts after X-irradiation

    International Nuclear Information System (INIS)

    Midander, J.; Revesz, L.; Deschavanne, P.J.; Debieu, D.; Malaise, E.P.

    1986-01-01

    Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions. (author)

  1. Effect of an aminothiol (WR-1065) on radiation-induced mutagenesis and cytotoxicity in two repair-deficient mammalian cell lines

    International Nuclear Information System (INIS)

    Grdina, D.J.; Nagy, B.; Meechan, P.J.

    1991-01-01

    WR-2721 and its free thiol WR-1065 have been found to effectively protect against radiation- and/or chemotherapy-induced mutagenesis, transformation and carcinogenesis. With respect to the antimutagenic effect, WR-1065 significantly reduced the frequency of HGPRT mutants even when it was administered up to three hours following exposure of cells to radiation. The mechanisms of action most often attributed to these agents include their ability to scavenge free radicals, enter into chemical repair processes through the donation of hydrogen atoms, and induce intracellular hypoxia by means of auto-oxidative processes. Although evidence exists for each of these processes, none is sufficiently satisfactory to account for the post-irradiation protection of WR-1065 against mutation induction in mammalian cells. The most elegant work describing the role of aminothiols on cellular enzymatic repair processes has focused on well-characterized repair-proficient and -deficient bacterial and yeast cell systems. Protection against radiation-induced cytotoxicity by the aminothiol cysteamine was absent in E. coli cell lines that were characterized as having genetically defective repair systems. Until recently, such studies could not be effectively performed with mammalian cells. However, with the isolation and characterization of rodent cell lines deficient in their ability to repair DNA damage, it is now possible to investigate the role of cell-mediated repair systems on aminothiol radioprotection. Specifically, the authors have investigated the effects of WR-1065 on radiation-induced mutagenesis and cytotoxicity in cell lines EM9 and xrs-5, which are defective in DNA single-strand break (SSB) and double-strand break (DSB) rejoining, respectively. Corresponding parental repair-proficient cell lines, AA8 and K1, were also studied for comparative purposes. 26 refs., 5 figs., 2 tabs

  2. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  3. DNA repair in DNA-polymerase-deficient mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Smith, D.W.; Tait, R.C.; Harris, A.L.

    1975-01-01

    Escherichia coli mutants deficient in DNA polymerase I, in DNA polymerases I and II, or in DNA polymerase III can efficiently and completely execute excision-repair and postreplication repair of the uv-damaged DNA at 30 0 C and 43 0 C when assayed by alkaline sucrose gradients. Repair by Pol I - and Pol I - , Pol II - cells is inhibited by 1-β-D-arabinofuranosylcytosine (araC) at 43 0 C but not at 30 0 C, whereas that by Pol III - cells is insensitive to araC at any temperature. Thus, either Pol I or Pol III is required for complete and efficient repair, and in their absence Pol II mediates a limited, incomplete dark repair of uv-damaged DNA

  4. [Constitutional mismatch repair deficiency syndrome].

    Science.gov (United States)

    Jongmans, Marjolijn C; Gidding, Corrie E; Loeffen, Jan; Wesseling, Pieter; Mensenkamp, Arjen; Hoogerbrugge, Nicoline

    2015-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. An 8-year-old girl was diagnosed with CMMR-D syndrome after she developed a brain tumour at the age of 4 and a T-cell non-Hodgkin lymphoma at the age of 6. She had multiple hyperpigmented skin lesions and died of myelodysplastic syndrome at the age of 11. In children with cancer CMMR-D syndrome can be recognized particularly if there are multiple primary malignancies and skin hyperpigmentations and hypopigmentations. The parents of these children are at high risk for colorectal and endometrial cancer (Lynch syndrome), amongst others.

  5. A deficiency in chromatin repair, genetic instability, and predisposition to cancer

    International Nuclear Information System (INIS)

    Sanford, K.K.; Parshad, R.; Gantt, R.R.; Tarone, R.E.

    1989-01-01

    This review traces steps leading to malignant neoplastic transformation of rodent and human cells in culture and in vivo. Emphasis is placed on an abnormal response characterized by persistent chromatid damage following irradiation of cells in culture with X-rays or fluorescent light during G2 phase of the cell cycle. Evidence is presented that deficient or unbalanced DNA repair during G2 accounts for the abnormal response. This G2 repair deficiency can be inherited or acquired by normal tissue cells during the process of or following attainment of infinite lifespan. It appears as an early, possibly initiating step in neoplastic transformation. It characterizes all human tumor cells examined irrespective of histopathology or tissue of origin. It has a genetic basis. In an animal model, the BALB/c mouse, this phenotype is associated with genes on chromosomes 1 and 4. It characterizes skin fibroblasts and blood lymphocytes from individuals with genetic or familial conditions predisposing to cancer and can be used to identify clinically normal family members carrying a gene(s) for any one of the three cancer-prone genetic disorders studied to date. Furthermore, it can provide the basis of a test for carriers of genes predisposing to a high risk of cancer. We conclude that the G2 repair deficiency, whether inherited or acquired, is a prerequisite for cancer development and that it accounts for the genetic instability of the cancer cell. 167 refs

  6. [Constitutional mismatch repair deficiency syndrome

    NARCIS (Netherlands)

    Jongmans, M.C.J.; Gidding, C.E.M.; Loeffen, J.; Wesseling, P.; Mensenkamp, A.; Hoogerbrugge, N.

    2015-01-01

    BACKGROUND: Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. CASE DESCRIPTION: An 8-year-old

  7. The human cyclin B1 protein modulates sensitivity of DNA mismatch repair deficient prostate cancer cell lines to alkylating agents.

    Science.gov (United States)

    Rasmussen, L J; Rasmussen, M; Lützen, A; Bisgaard, H C; Singh, K K

    2000-05-25

    DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.

  8. Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours

    NARCIS (Netherlands)

    von Bueren, A. O.; Bacolod, M. D.; Hagel, C.; Heinimann, K.; Fedier, A.; Kordes, U.; Pietsch, T.; Koster, J.; Grotzer, M. A.; Friedman, H. S.; Marra, G.; Kool, M.; Rutkowski, S.

    2012-01-01

    BACKGROUND: Tumours are responsive to temozolomide (TMZ) if they are deficient in O-6-methylguanine-DNA methyltransferase (MGMT), and mismatch repair (MMR) proficient. METHODS: The effect of TMZ on medulloblastoma (MB) cell killing was analysed with clonogenic survival assays. Expression of DNA

  9. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  10. Repair of furocoumarin adducts in mammalian cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-01-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly

  11. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Regulation of poly(ADP-ribose (PAR synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose polymerase-1 (PARP-1 occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β. The extent and duration of PARP-1 activation was measured after exposure to either the DNA alkylating agent, methyl methanesulfonate (MMS, or to low energy laser-induced DNA damage. There was strong DNA damage-induced hyperactivation of PARP-1 in pol β nullcells, but not in wild-type cells. In the case of MMS treatment, PAR synthesis did not lead to cell death in the pol β null cells, but instead resulted in increased PARylation of the nonhomologous end-joining (NHEJ protein Ku70 and increased association of Ku70 with PARP-1. Inhibition of the NHEJ factor DNA-PK, under conditions of MMS-induced PARP-1 hyperactivation, enhanced necrotic cell death. These data suggest that PARP-1 hyperactivation is a protective mechanism triggering the classical-NHEJ DNA repair pathway when the primary alkylated base damage repair pathway is compromised.

  12. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Joyce, Kellie [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Xie, Hong [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Falank, Carolyne [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); and others

    2014-04-15

    Highlights: • The role of homologous recombination repair in DU-induced toxicity was examined. • Loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. • XRCC3 protects cell from DU-induced chromosome breaks and fusions. • XRCC3 plays a role in DU-induced chromosome fragmentation of the X chromosome. - Abstract: Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.

  13. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation

    International Nuclear Information System (INIS)

    Holmes, Amie L.; Joyce, Kellie; Xie, Hong; Falank, Carolyne

    2014-01-01

    Highlights: • The role of homologous recombination repair in DU-induced toxicity was examined. • Loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. • XRCC3 protects cell from DU-induced chromosome breaks and fusions. • XRCC3 plays a role in DU-induced chromosome fragmentation of the X chromosome. - Abstract: Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation

  14. Free radical scavenging and the expression of potentially lethal damage in X-irradiated repair-deficient Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1987-01-01

    When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed

  15. Measurement of DNA repair deficiency in workers exposed to benzene

    International Nuclear Information System (INIS)

    Hallberg, L.M.; Au, W.W.; El Zein, R.; Grossman, L.

    1996-01-01

    We hypothesize that chronic exposure to environmental toxicants can induce genetic damage causing DNA repair deficiencies and leading to the postulated mutator phenotype of carcinogenesis. To test our hypothesis, a host cell reactivation (HCR) assay was used in which pCMVcat plasmids were damaged with UV light (175, 350 J/m 2 UV light), inactivating the chloramphenicol acetyltransferase reporter gene, and then transfected into lymphocytes. Transfected lymphocytes were therefore challenged to repair the damaged plasmids, reactivating the reporter gene. Xeroderma pigmentosum (XP) and Gaucher cell lines were used as positive and negative controls for the HCR assay. The Gaucher cell line repaired normally but XP cell lines demonstrated lower repair activity. Additionally, the repair activity of the XP heterozygous cell line showed intermediate repair compared to the homozygous XP and Gaucher cells. We used HCR to measure the effects of benzene exposure on 12 exposed and 8 nonexposed workers from a local benzene plant. Plasmids 175 J/m 2 and 350 J/m 2 were repaired with a mean frequency of 66% and 58%, respectively, in control workers compared to 71% and 62% in exposed workers. Conversely, more of the exposed workers were grouped into the reduced repair category than controls. These differences in repair capacity between exposed and control workers were, however, not statistically significant. The lack of significant differences between the exposed and control groups may be due to extremely low exposure to benzene (<0.3 ppm), small population size, or a lack of benzene genotoxicity at these concentrations. These results are consistent with a parallel hprt gene mutation assay. 26 refs., 4 figs., 2 tabs

  16. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency.

    Directory of Open Access Journals (Sweden)

    Sander Barnhoorn

    2014-10-01

    Full Text Available As part of the Nucleotide Excision Repair (NER process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS, or the infantile lethal cerebro-oculo-facio-skeletal (COFS syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  17. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency

    International Nuclear Information System (INIS)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam; Marcos, Ricard; Hernández, Alba

    2015-01-01

    Highlights: • Repair ability under long-term exposure to arsenic was tested using the comet assay. • Effects were measured under Ogg1 wild-type and deficient backgrounds. • Exposed cells repair less efficiency the DNA damage induced by SA, KBrO 3 , MMA III or UVC radiation. • Oxidative damage and Ogg1 deficient background exacerbate repair deficiencies. • Overexpression of the arsenic metabolizing enzyme As3mt acts as adaptive mechanism. - Abstract: Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1 +/+ and Ogg1 −/− genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1 +/+ and Ogg1 −/− cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1 −/− cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1 −/− cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage—and Ogg1 deficiency—exacerbates this phenomenon. The

  18. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Hernández, Alba, E-mail: alba.hernandez@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-09-15

    Highlights: • Repair ability under long-term exposure to arsenic was tested using the comet assay. • Effects were measured under Ogg1 wild-type and deficient backgrounds. • Exposed cells repair less efficiency the DNA damage induced by SA, KBrO{sub 3}, MMA{sup III} or UVC radiation. • Oxidative damage and Ogg1 deficient background exacerbate repair deficiencies. • Overexpression of the arsenic metabolizing enzyme As3mt acts as adaptive mechanism. - Abstract: Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1{sup +/+} and Ogg1{sup −/−} genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1{sup +/+} and Ogg1{sup −/−} cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1{sup −/−} cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1{sup −/−} cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage—and Ogg1 deficiency

  19. Cell sensitivity to irradiation and DNA repair processes

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.

    1984-01-01

    A new model of oxygen effect realisation is proposed for E.coli cells. The model explains differencies in oxygen enhancement ratio (OER) between wild type cells and repair deficient mutants. These differencies are logically linked to corresponding defects in repair systems. A quantitative analysis has been performed. The dependence of OER and cell sensitivity on the properties of cultivation medium is considered, too. Decreasing OER and increasing sensitivity in poor conditions are explained as the consequence of the shift of repair capacity from slow to fast repair system

  20. Deficient repair of chemical adducts in alpha DNA of monkey cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Cortopassi, G.A.; Smith, C.A.; Hanawalt, P.C.

    1982-01-01

    Researchers have examined excision repair of DNA damage in the highly repeated alpha DNA sequence of cultured African green monkey cells. Irradiation of cells with 254 nm ultraviolet light resulted in the same frequency of pyrimidine dimers in alpha DNA and the bulk of the DNA. The rate and extent of pyrimidine dimer removal, as judged by measurement of repair synthesis, was also similar for alpha DNA and bulk DNA. In cells treated with furocoumarins and long-wave-length ultraviolet light, however, repair synthesis in alpha DNA was only 30% of that in bulk DNA, although it followed the same time course. Researchers found that this reduced repair was not caused by different initial amounts of furocoumarin damage or by different sizes of repair patches, as researchers found these to be similar in the two DNA species. Direct quantification demonstrated that fewer furocoumarin adducts were removed from alpha DNA than from bulk DNA. In cells treated with another chemical DNA-damaging agent, N-acetoxy-2-acetylaminofluorene, repair synthesis in alpha DNA was 60% of that in bulk DNA. These results show that the repair of different kinds of DNA damage can be affected to different extents by some property of this tandemly repeated heterochromatic DNA. To our knowledge, this is the first demonstration in primate cells of differential repair of cellular DNA sequences

  1. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  2. DNA repair in mammalian cells exposed to combinations of carcinogenic agents

    International Nuclear Information System (INIS)

    Setlow, R.B.; Ahmed, F.E.

    1979-01-01

    Cells defective in one or more aspects of repair are killed and often mutagenized more readily than normal cells by DNA damaging agents, and humans whose cells are deficient in repair are at an increased carcinogenic risk compared to normal individuals. The excision repair of uv induced pyrimidine dimers is a well studied system, but the details of the steps in this repair system are far from being understood in human cells. We know that there are a number of chemicals that mimic uv in that normal human cells repair DNA damage from both these agents and from uv by a long patch excision repair system, and that xeroderma pigmentosum cells defective in repair of uv are also defective in the repair of damage from these chemicals. The chemicals we have investigated are AAAF, 4-NQO, DMBA-epoxide, and ICR-170. We describe experiments, using several techniques, in which DNA excision repair is measured after treatment of various human cell strains with combinations of uv and these agents. If two agents have a common rate limiting step then, at doses high enough to saturate the repair system, one would expect the observed repair after a treatment with a combination of agents to be equal to that from one agent alone. Such is not the case for normal human or excision-deficient XP cells. In the former repair is additive and in the latter repair is usually appreciably less than that observed with either agent alone. Models that attempt to explain these surprising results involve complexes of enzymes and cofactors

  3. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  4. Energetics of cellular repair processes in a respiratory-deficient mutant of yeast

    International Nuclear Information System (INIS)

    Jain, V.K.; Gupta, I.; Lata, K.

    1982-01-01

    Repair of potentially lethal damage induced by cytoxic agents like UV irradiation (254 nm), psorelen-plus-UVA (365 mn), and methyl methanesulfonate has been studied in the presence of a glucose analog, 2-deoxy-D-glucose, in yeast cells. Simultaneously, effects of 2-deoxy-D-glucose were also investigated on parameters of energy metabolism like glucose utilization, rate of ATP production, and ATP content of cells. The following results were obtained. (i) 2-Deoxy-D-glucose is able to inhibit repair of potentially lethal damage induced by all the cytotoxic agents tested. The 2-deoxy-D-glucose-induced inhibition of repair depends upon the type of lesion and the pattern of cellular energy metabolism, the inhibition being greater in respiratory-deficient mutants than in the wild type. (ii) A continuous energy flow is necessary for repair of potentially lethal damage in yeast cells. Energy may be supplied by the glycolytic and/or the respiratory pathway; respiratory metabolism is not essential for this purpose. (iii) The magnitude of repair correlates with the rate of ATP production in a sigmoid manner

  5. Radio-sensitization of WRN helicase deficient cancer cells by targeting homologous recombination pathway

    International Nuclear Information System (INIS)

    Gupta, Pooja; Saha, Bhaskar; Patro, Birija Sankar; Chattopadhyay, Subrata

    2016-01-01

    Ionizing radiation (IR) induced DNA double-strand breaks (DSBs) are primarily repaired by non-homologous end joining (NHEJ). However, it is well established that a subset DSBs which are accumulated in IR-induced G2 phase are dependent on homologous recombination (HR). DNA repair deficient tumor cells have been shown to accumulate high levels of DNA damage. Consequently, these cells become hyperdependent on DNA damage response pathways, including the CHK1-kinase-mediated HR-repair. These observations suggest that DNA repair deficient tumors should exhibit increased radio-sensitivity under HR inhibition. Genetic defects leading to functional loss of werner (WRN) protein is associated with genomic instability and increased cancer incidence. WRN function is known to be abrogated in several human cancer cells due to hypermethylation of CpGisland-promoter and transcriptional silencing of WRN gene. In the current investigation, using isogenic pairs of cell lines differing only in the WRN function, we showed that WRN-deficient cell lines were hyper-radiosensitive to CHK1 pharmacologic inhibition. Here, we found that unrepaired DSB was drastically increased in WRN-deficient cells vis-à-vis WRN-proficient cells in response to IR and CHK1 inhibitor (CHK1i). Our results revealed a marginal role of NHEJ pathway accountable for the radio-sensitivity of WRN-deficient cells. Interestingly, silencing CTIP, a HR protein required for RAD51 loading, significantly abrogated the CHK1i-mediated radiosensitivity in WRN-deficient cells. Silencing of WRN or CTIP individually led to no significant difference in the extent of DNA end resection, as required during HR pathway. Imperatively, our results revealed that WRN and CTIP together play a complementary role in executing DNA end resection during HR-mediated repair of IR induced DSBs. Altogether, our data indicated that inhibition of IR-induced HR pathway at RAD51 loading, but not at DSB end resection, make the WRN-deficient cancer cells

  6. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  7. Nucleotide excision repair- and p53-deficient mouse models in cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Hoogervorst, Esther M. [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Utrecht University, Department of Pathobiology, Utrecht (Netherlands); Steeg, Harry van [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Vries, Annemieke de [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands)]. E-mail: Annemieke.de.Vries@rivm.nl

    2005-07-01

    Cancer is caused by the loss of controlled cell growth due to mutational (in)activation of critical genes known to be involved in cell cycle regulation. Three main mechanisms are known to be involved in the prevention of cells from becoming cancerous; DNA repair and cell cycle control, important to remove DNA damage before it will be fixed into mutations and apoptosis, resulting in the elimination of cells containing severe DNA damage. Several human syndromes are known to have (partially) deficiencies in these pathways, and are therefore highly cancer prone. Examples are xeroderma pigmentosum (XP) caused by an inborn defect in the nucleotide excision repair (NER) pathway and the Li-Fraumeni syndrome, which is the result of a germ line mutation in the p53 gene. XP patients develop skin cancer on sun exposed areas at a relatively early age, whereas Li-Fraumeni patients spontaneously develop a wide variety of early onset tumors, including sarcomas, leukemia's and mammary gland carcinomas. Several mouse models have been generated to mimic these human syndromes, providing us information about the role of these particular gene defects in the tumorigenesis process. In this review, spontaneous phenotypes of mice deficient for nucleotide excision repair and/or the p53 gene will be described, together with their responses upon exposure to either chemical carcinogens or radiation. Furthermore, possible applications of these and newly generated mouse models for cancer will be given.

  8. lambda. -prophage induction in repair-deficient and wild type E. coli strains by. gamma. -rays and heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bonev, M.N.; Kozubek, S.; Krasavin, E.A.; Amirtajev, K.G. (Joint Inst. for Nuclear Research, Dubna (USSR))

    1990-05-01

    {lambda}-prophage induction in repair-deficient and wild-type E. coli strains by heavy ions and {gamma}-rays was investigated. The dose dependence of the fraction of induced cells has been measured and its initial slope ({lambda}-induction potency) determined. Induction by {gamma}-rays was found to be more efficient in a polA-repair-deficient strain; the value of {lambda}-induction potency is zero in lexA{sup -} and recA{sup -} strains. The {lambda}-induction potency potency increased with LET for wild-type cells but remained constant in polA{sup -} mutant cells. It is suggested that DNA damage triggering the {lambda}-prophage induction in the case of ionizing radiation could be a type of DNA single-strand break with complex structures which cannot be repaired by fast repair processes, and requires a substantial level of energy deposition for induction in a DNA molecule. (author).

  9. Selective Cytotoxicity of Rhodium Metalloinsertors in Mismatch Repair-Deficient Cells†

    Science.gov (United States)

    Ernst, Russell J.; Komor, Alexis C.; Barton, Jacqueline K.

    2011-01-01

    Mismatches in DNA occur naturally during replication and as a result of endogenous DNA damaging agents, but the mismatch repair (MMR) pathway acts to correct mismatches before subsequent rounds of replication. Rhodium metalloinsertors bind to DNA mismatches with high affinity and specificity and represent a promising strategy to target mismatches in cells. Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands in cells deficient in MMR versus those that are MMR-proficient. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle, monitored by flow cytometry assays, and induction of necrosis, monitored by dye exclusion and caspase inhibition assays, that occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents. PMID:22103240

  10. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  11. Ultraviolet light induction of diphtheria toxin-resistant mutations in normal and DNA repair-deficient human and Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Trosko, J.E.; Schultz, R.S.; Chang, C.C.; Glover, T.

    1980-01-01

    The role on unrepaired DNA lesions in the production of mutations is suspected of contributing to the initiation phase of carcinogenesis. Since the molecular basis of mutagenesis is not understood in eukaryotic cells, development of new genetic markers for quantitative in vitro measurement of mutations for mammalian cells is needed. Furthermore, mammalian cells, genetically deficient for various DNA repair enzymes, will be needed to study the role of unrepaired DNA lesions in mutagenesis. The results in this report relate to preliminary attempts to characterize the diphtheria toxin resistance marker as a useful quantitative genetic marker in human cells and to isolate and characterize various DNA repair-deficient Chinese hamster cells

  12. FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair

    Directory of Open Access Journals (Sweden)

    Zeina Kais

    2016-06-01

    Full Text Available BRCA1/2 proteins function in homologous recombination (HR-mediated DNA repair and cooperate with Fanconi anemia (FA proteins to maintain genomic integrity through replication fork stabilization. Loss of BRCA1/2 proteins results in DNA repair deficiency and replicative stress, leading to genomic instability and enhanced sensitivity to DNA-damaging agents. Recent studies have shown that BRCA1/2-deficient tumors upregulate Polθ-mediated alternative end-joining (alt-EJ repair as a survival mechanism. Whether other mechanisms maintain genomic integrity upon loss of BRCA1/2 proteins is currently unknown. Here we show that BRCA1/2-deficient tumors also upregulate FANCD2 activity. FANCD2 is required for fork protection and fork restart in BRCA1/2-deficient tumors. Moreover, FANCD2 promotes Polθ recruitment at sites of damage and alt-EJ repair. Finally, loss of FANCD2 in BRCA1/2-deficient tumors enhances cell death. These results reveal a synthetic lethal relationship between FANCD2 and BRCA1/2, and they identify FANCD2 as a central player orchestrating DNA repair pathway choice at the replication fork.

  13. Mechanisms of radiosensitization and protection studied with glutathione-deficient human cell lines

    International Nuclear Information System (INIS)

    Revesz, L.; Edgren, M.

    1982-01-01

    Glutathione-deficient fibroblasts and lymphoblastoid cells, derived from patients with an inborn error of glutathione synthetase activity, and glutathione-proficient cells, derived from clinically healthy individuals, were used to investigate the importance of glutathione for radiosensitization by misonidazole. With single-strand DNA breaks as an end point, misonidazole as well as oxygen was found to lack any sensitizing effect on cells deficient in glutathione. The post-irradiation repair of single-strand breaks induced by hypoxic irradiation of misonidazole treated cells was found to be a great extent glutathione dependent, like the repair of breaks induced by oxic irradiation. Naturally occurring aminothiols in glutathione-deficient cells appeared to be in efficient as substitutes for glutatione. Artificial aminothiols, such as cysteamine or dithiothreitol, were found to effectively replace glutathione

  14. Role of DNA lesions and repair in the transformation of human cells

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1987-01-01

    Results of studies on the transformation of diploid human fibroblasts in culture into tumor-forming cells by exposure to chemical carcinogens or radiation indicate that such transformation is multi-stepped process that at least one step, acquisition of anchorage independence, occurs as a mutagenic event. Studies comparing normal-repairing human cells with DNA repair-deficient cells, such as those derived from cancer-prone xeroderma pigmentosum patients, indicate that excision repair in human fibroblasts is essentially an error-free process that the ability to excise potentially cytotoxic, mutagenic, or transforming lesions induced DNA by carcinogens determines their ultimate biological consequences. Cells deficient in excision repair are abnormally sensitive to these agents. Studies with cells treated at various times in the cell cycle show that there is a certain limited amount of time available for DNA repair between the initial exposure and the onset of the cellular event responsible for mutation induction and transformation to anchorage independence. The data suggest that DNA replication on a template containing unexcised lesions (photoproducts, adducts) is the critical event

  15. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  16. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair

    Science.gov (United States)

    Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam

    2018-01-01

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. PMID:29488881

  17. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  18. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    Science.gov (United States)

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.

  19. Replication fork stability confers chemoresistance in BRCA-deficient cells

    DEFF Research Database (Denmark)

    Chaudhuri, Arnab Ray; Callen, Elsa; Ding, Xia

    2016-01-01

    /4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11......Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3...... nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations...

  20. Radiation induced bystander signals are independent of DNA damage and DNA repair capacity of the irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, Genro [Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom); Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Suzuki, Keiji [Division of Radiation Biology, Department of Radiology and Radiation Biology, Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan); Matsuda, Naoki [Division of Radiation Biology and Protection, Center for Frontier Life Sciences, Nagasaki University, Nagasaki 852-8102 (Japan); Kodama, Seiji [Radiation Biology Laboratory, Radiation Research Center, Frontier Science Innovation Center, Organization for University-Industry-Government Cooperation, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570 (Japan); Ono, Koji [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Watanabe, Masami [Laboratory of Radiation Biology, Division of Radiation Life Science, Department of Radiation Life Science and Radiation Medical Science, Kyoto University Research Reactor Institute, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Prise, Kevin M [Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom) and Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Lisburn Road, Belfast BT9 7AB (United Kingdom)]. E-mail: prise@gci.ac.uk

    2007-06-01

    Evidence is accumulating that irradiated cells produce signals, which interact with non-exposed cells in the same population. Here, we analysed the mechanism for bystander signal arising in wild-type CHO cells and repair deficient varients, focussing on the relationship between DNA repair capacity and bystander signal arising in irradiated cells. In order to investigate the bystander effect, we carried out medium transfer experiments after X-irradiation where micronuclei were scored in non-targeted DSB repair deficient xrs5 cells. When conditioned medium from irradiated cells was transferred to unirradiated xrs5 cells, the level of induction was independent of whether the medium came from irradiated wild-type, ssb or dsb repair deficient cells. This result suggests that the activation of a bystander signal is independent of the DNA repair capacity of the irradiated cells. Also, pre-treatment of the irradiated cells with 0.5% DMSO, which suppresses micronuclei induction in CHO but not in xrs5 cells, suppressed bystander effects completely in both conditioned media, suggesting that DMSO is effective for suppression of bystander signal arising independently of DNA damage in irradiated cells. Overall the work presented here adds to the understanding that it is the repair phenotype of the cells receiving bystander signals, which determines overall response rather than that of the cell producing the bystander signal.

  1. Cytotoxicity of 125I decay in the DNA double strand break repair deficient mutant cell line, xrs-5

    International Nuclear Information System (INIS)

    Yasui, L.S.

    1992-01-01

    Survival of parental Chinese hamster ovary (CHO) K1 cells and the DNA double strand break (DSB) repair deficient mutant, xrs-5 was determined after accumulation of 125 I decays. Both CHO and xrs-5 cells were extremely sensitive to accumulated 125 I decays. D o values for CHO and xrs-5 cells were 40 and approximately 7 decays per cell, respectively. Difference in cell survival between CHO and xrs-5 cells was not due to differences in overall 125 IUdR incorporation, differences in labelling index (LI) or differences in plating efficiency (PE). Relative biological effectiveness (RBE) values calculated relative to 137 Cs gamma radiation survival values (D o and D 10 ) were higher in xrs-5 cells compared with CHO cells, although both CHO and xrs-5 cells have high RBE values that correspond to a high sensitivity of CHO and xrs-5 cells to 125 I decay. (Author)

  2. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    International Nuclear Information System (INIS)

    Ciarrocchi, G.; Linn, S.

    1978-01-01

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  3. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer

    Science.gov (United States)

    2012-01-01

    Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million

  4. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    Science.gov (United States)

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  5. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow.

    Science.gov (United States)

    Kostecki, Lisa M; Thomas, Megan; Linford, Geordie; Lizotte, Matthew; Toxopeus, Lori; Bartleman, Anne-Pascale; Kirkland, James B

    2007-12-01

    We have shown that niacin deficiency impairs poly(ADP-ribose) formation and enhances sister chromatid exchanges and micronuclei formation in rat bone marrow. We designed the current study to investigate the effects of niacin deficiency on the kinetics of DNA repair following ethylation, and the accumulation of double strand breaks, micronuclei (MN) and chromosomal aberrations (CA). Weanling male Long-Evans rats were fed niacin deficient (ND), or pair fed (PF) control diets for 3 weeks. We examined repair kinetics by comet assay in the 36h following a single dose of ethylnitrosourea (ENU) (30mg/kg bw). There was no effect of ND on mean tail moment (MTM) before ENU treatment, or on the development of strand breaks between 0 and 8h after ENU. Repair kinetics between 12 and 30h were significantly delayed by ND, with a doubling of area under the MTM curve during this period. O(6)-ethylation of guanine peaked by 1.5h, was largely repaired by 15h, and was also delayed in bone marrow cells from ND rats. ND significantly enhanced double strand break accumulation at 24h after ENU. ND alone increased chromosome and chromatid breaks (four- and two-fold). ND alone caused a large increase in MN, and this was amplified by ENU treatment. While repair kinetics suggest that ND may be acting by creating catalytically inactive PARP molecules with a dominant-negative effect on repair processes, the effect of ND alone on O(6)-ethylation, MN and CA, in the absence of altered comet results, suggests additional mechanisms are also leading to chromosomal instability. These data support the idea that the bone marrow cells of niacin deficient cancer patients may be more sensitive to the side effects of genotoxic chemotherapy, resulting in acute bone marrow suppression and chronic development of secondary leukemias.

  6. The role of mismatch repair in small-cell lung cancer cells

    DEFF Research Database (Denmark)

    Hansen, L T; Thykjaer, T; Ørntoft, T F

    2003-01-01

    The role of mismatch repair (MMR) in small-cell lung cancer (SCLC) is controversial, as the phenotype of a MMR-deficiency, microsatellite instability (MSI), has been reported to range from 0 to 76%. We studied the MMR pathway in a panel of 21 SCLC cell lines and observed a highly heterogeneous...... pattern of MMR gene expression. A significant correlation between the mRNA and protein levels was found. We demonstrate that low hMLH1 gene expression was not linked to promoter CpG methylation. One cell line (86MI) was found to be deficient in MMR and exhibited resistance to the alkylating agent MNNG...

  7. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Three-year report, February 1, 1981-September 30, 1983

    International Nuclear Information System (INIS)

    Evans, H.H.

    1983-01-01

    Mutant strains were selected which are deficient in various DNA repair pathways and these were studied with regard to (1) the nature of the defect in repair, and (2) the mutability and transformability of the defective cells by various agents as compared to the wild type parental cells. Lightly mutagenized wild-type cells were infected with irradiated herpes simplex virus (HSV). Cells which repair HSV are lysed so the surviving population is enriched in repair-deficient cells. Six strains which survived two rounds of infection were characterized with respect to their radiosensitivity

  8. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    Science.gov (United States)

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  9. Increased sensitivity of UV-repair-deficient human cells to DNA bound platinum products which unlike thymine dimers are not recognised by an endonuclease extracted from Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Fraval, H N.A.; Rawlings, C J; Roberts, J J [Institute of Cancer Research, Royal Cancer Hospital, Pollards Wood Research Station, Chalfont St. Giles, Bucks, UK

    1978-07-01

    The response of human cells in culture to cis platinum (II) diammine dichloride (cis Pt(II)) induced DNA damage has been studied. The survival data, measured as a function of cis Pt(II) dose were similar in a normal cell line (Human foetal lung) compared to a UV-sensitive, thymine dimer excision repair-deficient cell line (Xeroderma pigmentatosum). However, there was a marked difference between the two cell lines when binding to DNA was plotted against dose of cis Pt(II) given for 1 h. When these findings were expressed as cell survival versus binding to DNA, a 4.1-fold difference between the slopes of the survival curves for the two cell lines was obtained. These findings are consistent with the notion that normal cells are able to excise cis Pt(II) induced damage from their genome and thus increase their ability to survive as compared to excision deficient cells. An endonuclease preparation from Micrococcus luteus is able to recognise UV damage in DNA, but did not recognise cis Pt(II) induced damage. These results possibly indicate differences in the pathways of repair of damage caused by the two agents.

  10. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD)

    OpenAIRE

    Ramchander, N. C.; Ryan, N. A. J.; Crosbie, E. J.; Evans, D. G.

    2017-01-01

    BackgroundConstitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of th...

  11. Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi's anemia

    International Nuclear Information System (INIS)

    Remsen, J.F.; Cerutti, P.A.

    1976-01-01

    The capacity of preparations of skin fibroblasts from normal individuals and patients with Fanconi's anemia to excise gamma-ray products of the 5,6-dihydroxydihydrothymine type from exogenous DNA was investigated. The excision capacity of whole-cell homogenates of fibroblasts from two of four patients with Fanconi's anemia was substantially below normal. This repair deficiency was further pronounced in nuclear preparations from cells of the same two patients

  12. Mutation induction in repair-deficient strains of Drosophila

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.

    1980-01-01

    Experimental evidence indicates a polygenic control of mutagenesis in Drosophila melanogaster. In oocytes chromosome aberrations detected as half-translocations or dominant lethals depend on a repair system which in a number of genetically nonrelated strains shows different repair capacities. Sister chromatid exchanges are easily studied as ring chromosome losses. They develop through a genotype controlled mechanism from, premutational lesions. Stocks with particular pairs of third chromosomes were discovered in which increased sensitivity of larvae to the toxic effects of a monofunctional alkylating agent correlates with high frequencies of x-ray induced SCE's. Sex-linked mutagen-sensitive mutants could be shown to control mutation fixation: pronounced maternal effects were found when sperm carrying particular types of premutational lesions were introduced into different types of mutant oocytes. The mutant mus(1)101D1 was found to be unable to process lesions induced by the crosslinking agent nitrogen mustard into point mutations. Alkylation damage leads to increased point mutation frequencies in the excision repair deficient mutant mei-9L1, but to reduced frequencies in the post-replication repair deficient mutant mei-41D5. It became clear that the study of maternal effects on mutagenized sperm represents an efficient tool to analyze the gentic control of mutagenesis in the eukaryotic genome of Drosophila melanogaster

  13. Thymidine kinase 1 deficient cells show increased survival rate after UV-induced DNA damage

    DEFF Research Database (Denmark)

    Skovgaard, T; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    2010-01-01

    Balanced deoxynucleotide pools are known to be important for correct DNA repair, and deficiency for some of the central enzymes in deoxynucleotide metabolism can cause imbalanced pools, which in turn can lead to mutagenesis and cell death. Here we show that cells deficient for the thymidine salva...

  14. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1986-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia

  15. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks.

    Science.gov (United States)

    Wang, Yingying; Chang, Jianhui; Shao, Lijian; Feng, Wei; Luo, Yi; Chow, Marie; Du, Wei; Meng, Aimin; Zhou, Daohong

    2016-06-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra partial or whole copy of chromosome 21. In addition to musculoskeletal and neurodevelopmental abnormalities, children with DS exhibit various hematologic disorders and have an increased risk of developing acute lymphoblastic leukemia and acute megakaryocytic leukemia. Using the Ts65Dn mouse model, we investigated bone marrow defects caused by trisomy for 132 orthologs of the genes on human chromosome 21. The results showed that, although the total bone marrow cellularity as well as the frequency of hematopoietic progenitor cells (HPCs) was comparable between Ts65Dn mice and their age-matched euploid wild-type (WT) control littermates, human chromosome 21 trisomy led to a significant reduction in hematopoietic stem cell (HSC) numbers and clonogenic function in Ts65Dn mice. We also found that spontaneous DNA double-strand breaks (DSBs) were significantly increased in HSCs from the Ts65Dn mice, which was correlated with the significant reduction in HSC clonogenic activity compared to those from WT controls. Moreover, analysis of the repair kinetics of radiation-induced DSBs revealed that HSCs from Ts65Dn mice were less proficient in DSB repair than the cells from WT controls. This deficiency was associated with a higher sensitivity of Ts65Dn HSCs to radiation-induced suppression of HSC clonogenic activity than that of euploid HSCs. These findings suggest that an additional copy of genes on human chromosome 21 may selectively impair the ability of HSCs to repair DSBs, which may contribute to DS-associated hematological abnormalities and malignancies.

  16. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, August 1, 1977-October 31, 1980

    International Nuclear Information System (INIS)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. More specifically, mutant strains will be selected which are deficient in various DNA repair pathways. These strains will be studied with regard to (1) the nature of the defect in repair, and (2) the mutability and transformability of the defective cells by various agents as compared to the wild type parental cells. The results to date include progress in the following areas: (1) determination of optimum conditions for growth and maintenance of cells and for quantitative measurement of various cellular parameters; (2) investigation of the effect of holding mutagenized cells for various periods in a density inhibited state on survival and on mutation and transformation frequencies; (3) examination of the repair capabilities of BHK cells, as compared to repair-proficient and repair-deficient human cells and excision-deficient mouse cells, as measured by the reactivation of Herpes simplex virus (HSV) treated with radiation and ethylmethane sulfonate (EMS); (4) initiation of host cell reactivation viral sucide enrichment and screening of survivors of the enrichment for sensitivity to ionizing radiation; and (5) investigation of the toxicity, mutagenicity, and carcinogenicity of various metabolites of 4-nitroquinoline-1-oxide (4-NQO)

  17. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    Science.gov (United States)

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  18. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    International Nuclear Information System (INIS)

    Utsumi, H.; Elkind, M.M.

    1983-01-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of these cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal

  19. Effect of DNA repair on the cytotoxicity and mutagenicity of uv irradiation and of chemical carcinogens in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1976-01-01

    The cytotoxic and mutagenic action of ultraviolet (UV) irradiation and of aromatic amides or polycyclic hydrocarbons was quantitatively compared in normally repairing strains of human cells and in several excision-repair deficient or post-replication repair-deficient xeroderma pigmentosum (XP) strains

  20. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  1. Repair of DNA double-strand breaks and cell killing by charged particles

    Science.gov (United States)

    Eguchi-Kasai, K.; Murakami, M.; Itsukaichi, H.; Fukutsu, K.; Yatagai, F.; Kanai, T.; Ohara, H.; Sato, K.

    It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing. We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/mum and were even smaller than unity for the LET region greater than 300 keV/mum. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/mum, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main cause of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.

  2. DNA replication and post-replication repair in U.V.-sensitive mouse neuroblastoma cells

    International Nuclear Information System (INIS)

    Lavin, M.F.; McCombe, P.; Kidson, C.

    1976-01-01

    Mouse neuroblastoma cells differentiated when grown in the absence of serum; differentiation was reversed on the addition of serum. Differentiated cells were more sensitive to U.V.-radiation than proliferating cells. Whereas addition of serum to differentiated neuroblastoma cells normally resulted in immediate, synchronous entry into S phase, irradiation just before the addition of serum resulted in a long delay in the onset of DNA replication. During this lag period, incorporated 3 H-thymidine appeared in the light density region of CsCl gradients, reflecting either repair synthesis or abortive replication. Post-replication repair (gap-filling) was found to be present in proliferating cells and at certain times in differentiated cells. It is suggested that the sensitivity of differentiated neuroblastoma cells to U.V.-radiation may have been due to ineffective post-replication repair or to deficiencies in more than one repair mechanism, with reduction in repair capacity beyond a critical threshold. (author)

  3. Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells.

    Directory of Open Access Journals (Sweden)

    Yulan Qing

    Full Text Available Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs, creating a preleukemic stem cell (PLSC. Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC. Thymic lymphomas have been thought to develop from developing thymocytes. T cell progenitors are generated from HSCs in the bone marrow (BM, but maturation and proliferation of T cells as well as T-lymphomagenesis depends on both regulatory mechanisms and microenvironment within the thymus. We studied PLSC linked to thymic lymphomas. In this study, we use MSH2-/- mice as a model to investigate the existence of PLSC and the evolution of PLSC to LIC. Following BM transplantation, we found that MSH2-/- BM cells from young mice are able to fully reconstitute multiple hematopoietic lineages of lethally irradiated wild-type recipients. However, all recipients developed thymic lymphomas within three and four months post transplantation. Transplantation of different fractions of BM cells or thymocytes from young health MSH2-/- mice showed that an HSC enriched fraction always reconstituted hematopoiesis followed by lymphoma development. In addition, lymphomas did not occur in thymectomized recipients of MSH2-/- BM. These results suggest that HSCs with DNA repair defects such as MSH2-/- are PLSCs because they retain hematopoietic function, but also carry an obligate lymphomagenic potential within their T-cell progeny that is dependent on the thymic microenvironment.

  4. Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice

    International Nuclear Information System (INIS)

    Munson, G.P.; Woloschak, G.E.

    1990-01-01

    Experiments were designed to examine in vivo changes in total transcription and in the expression of the c-fos gene following whole-body exposure of mice to JANUS fission-spectrum neutrons. Radiation repair-deficient (wst/wst) and -proficient (wst/., C57BL/6 x C3H F1) mice were exposed to JANUS fission-spectrum neutrons calibrated to deliver a gut dose of 50 cGy. Animals were sacrificed less than 10 or at 60 min postirradiation, and gut tissues were removed for study. Our results revealed that, in repair-proficient mice, an immediate depression (relative to untreated control) in total transcription was evident that continued through 1 h postirradiation. Conversely, radiation-sensitive wst/wst mice displayed doubled transcription levels postirradiation. Expression of c-fos was consistently depressed following radiation exposure in control and wst/wst mice. However, the depression of c-fos mRNA was delayed in wst/wst mice relative to controls. These results demonstrate abnormal regulation of transcription and of c-fos mRNA accumulation in repair-deficient wasted mice following exposure to ionizing radiation. In addition, this work documents rapid total transcriptional depression in normal mice following radiation exposure

  5. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-01-01

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs

  6. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    International Nuclear Information System (INIS)

    Oommen, Deepu; Yiannakis, Dennis; Jha, Awadhesh N.

    2016-01-01

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  7. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  8. Constitutional mismatch repair deficiency in a healthy child : On the spot diagnosis?

    NARCIS (Netherlands)

    Suerink, Manon; Potjer, Thomas P.; Versluijs, A. B.; Ten Broeke, Sanne W.; Tops, Carli M.; Wimmer, K.; Nielsen, M.

    2018-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a rare, recessively inherited childhood cancer predisposition syndrome caused by biallelic germline mutations in one of the mismatch repair genes. The CMMRD phenotype overlaps with that of neurofibromatosis type 1 (NF1), since many patients have

  9. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    Science.gov (United States)

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium.

    Science.gov (United States)

    Bakry, Doua; Aronson, Melyssa; Durno, Carol; Rimawi, Hala; Farah, Roula; Alharbi, Qasim Kholaif; Alharbi, Musa; Shamvil, Ashraf; Ben-Shachar, Shay; Mistry, Matthew; Constantini, Shlomi; Dvir, Rina; Qaddoumi, Ibrahim; Gallinger, Steven; Lerner-Ellis, Jordan; Pollett, Aaron; Stephens, Derek; Kelies, Steve; Chao, Elizabeth; Malkin, David; Bouffet, Eric; Hawkins, Cynthia; Tabori, Uri

    2014-03-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which data regarding clinical manifestations, molecular screening tools and management are limited. We established an international CMMRD consortium and collected comprehensive clinical and genetic data. Molecular diagnosis of tumour and germline biospecimens was performed. A surveillance protocol was developed and implemented. Overall, 22/23 (96%) of children with CMMRD developed 40 different tumours. While childhood CMMRD related tumours were observed in all families, Lynch related tumours in adults were observed in only 2/14 families (p=0.0007). All children with CMMRD had café-au-lait spots and 11/14 came from consanguineous families. Brain tumours were the most common cancers reported (48%) followed by gastrointestinal (32%) and haematological malignancies (15%). Importantly, 12 (30%) of these were low grade and resectable cancers. Tumour immunohistochemistry was 100% sensitive and specific in diagnosing mismatch repair (MMR) deficiency of the corresponding gene while microsatellite instability was neither sensitive nor specific as a diagnostic tool (psyndrome where family history of cancer may not be contributory. Screening tumours and normal tissues using immunohistochemistry for abnormal expression of MMR gene products may help in diagnosis and early implementation of surveillance for these children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair

    Energy Technology Data Exchange (ETDEWEB)

    Siede, W.; Eckardt, F.

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction (mutation kinetics) at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  12. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  13. Constitutional mismatch repair deficiency syndrome: Do we know it?

    Science.gov (United States)

    Ramachandra, C; Challa, Vasu Reddy; Shetty, Rachan

    2014-04-01

    Constitutional mismatch repair deficiency syndrome is a rare autosomal recessive syndrome caused by homozygous mutations in mismatch repair genes. This is characterized by the childhood onset of brain tumors, colorectal cancers, cutaneous manifestations of neurofibromatosis-1 like café au lait spots, hematological malignancies, and occasionally other rare malignancies. Here, we would like to present a family in which the sibling had glioblastoma, and the present case had acute lymphoblastic lymphoma and colorectal cancer. We would like to present this case because of its rarity and would add to literature.

  14. Murine P-glycoprotein deficiency alters intestinal injury repair and blunts lipopolysaccharide-induced radioprotection.

    Science.gov (United States)

    Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G

    2012-09-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.

  15. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents

    DEFF Research Database (Denmark)

    Bodo, Sahra; Colas, Chrystelle; Buhard, Olivier

    2015-01-01

    BACKGROUND & AIMS: Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas...... or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors...

  16. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test

    International Nuclear Information System (INIS)

    Raffin, A.L.

    2009-06-01

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  17. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage.

    Science.gov (United States)

    Liu, Ying; Wu, Xiaohua; Hu, Xiaoqing; Chen, Ziyuan; Liu, Hao; Takeda, Shunichi; Qing, Yong

    2017-08-01

    Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1 -/- , base excision repair (BER) deficient cell lines of Polβ -/- , homologous recombination (HR) mutants of Brca1 -/- and Brca2 -/- and translesion DNA synthesis (TLS) mutants of Rev3 -/- and Rad18 -/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  18. Some important advances in DNA repair study on the mammalian cells

    International Nuclear Information System (INIS)

    Xia Shouxuan.

    1991-01-01

    In the recent years the study of DNA damage and repair in the mammalian cells has gone deeply at gene level and got the following advances: (1) For a long time DNA has been considered to be an uniform unit in case of damage and repair. Now this concept should be replaced by the non-random distribution of damage and heterogenous repair in the genome. These would allow us to study cellular mutagenesis, carcinogenesis, aging and dying processes in great detail, and would be beneficial to the elucidation of mechanisms of radiation sickness and chemical toxicology. (2) The advent of new techniques in molecular biology has made it possible to isolate and clone the human DNA repair genes. Up to now more than ten human DNA repair genes have been cloned and these works would have an important impact on the theoretical and practical study in this field. Because DNA repair system is very complicate, voluminous work should be done in the future. (3) The technique of gene transfer has been efficiently used in the study of DNA repair in mammalian cells and has made great contribution in the cellular engineering. It could modify the genetic behavior of the gene-accepting cells, and enhance the DNA repair ability to physical and chemical damages. Human gene therapy for DNA deficient diseases is now on the day

  19. TOB1 Deficiency Enhances the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Tendon-Bone Healing in a Rat Rotator Cuff Repair Model

    Directory of Open Access Journals (Sweden)

    Yulei Gao

    2016-01-01

    Full Text Available Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1 expression in bone marrow-derived mesenchymal stem cells (MSCs on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218 of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.

  20. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD).

    Science.gov (United States)

    Ramchander, N C; Ryan, N A J; Crosbie, E J; Evans, D G

    2017-04-05

    Constitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of the founder PMS2 mutation - NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11 and its associated cancers in this family. The proband is 30 years old and is alive today. She is of Pakistani ethnic origin and a product of consanguinity. She initially presented aged 24 with painless bleeding per-rectum from colorectal polyps and was referred to clinical genetics. Clinical examination revealed two café-au-lait lesions, lichen planus, and a dermoid cyst. Her sister had been diagnosed in childhood with an aggressive brain tumour followed by colorectal cancer. During follow up, the proband developed 37 colorectal adenomatous polyps, synchronous ovarian and endometrial adenocarcinomas, and ultimately a metachronous gastric adenocarcinoma. DNA sequencing of peripheral lymphocytes revealed a bi-allelic inheritance of the PMS2 mutation NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11. Ovarian tumour tissue demonstrated low microsatellite instability. To date, she has had a total abdominal hysterectomy, bilateral salpingo-oophorectomy, and a total gastrectomy. Aspirin and oestrogen-only hormone replacement therapy provide some chemoprophylaxis and manage postmenopausal symptoms, respectively. An 18-monthly colonoscopy surveillance programme has led to the excision of three high-grade dysplastic colorectal tubular adenomatous polyps. The proband's family pedigree displays multiple relatives with cancers including a likely case of 'true' Turcot syndrome. Constitutional mismatch repair

  1. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.

    1989-05-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author).

  2. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.

    1989-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author)

  3. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M.

    1991-01-01

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair

  5. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  6. Relevance of DNA repair pathways on ascorbic acid effects on Echerichia Coli K-12 cells

    International Nuclear Information System (INIS)

    Slyus, M.A. van; Oliveira, R.L.B. da C.; Felzenszwalb, I.; Gomes, R.A.; Menck, C.F.

    1985-01-01

    Inactivation kinetics were performed with repair proficient and deficient Escherichia coli K-12 cells treated with oxidized solutions of ascorbic acid. The repair pathways controlled by the recA and uvrA gene products are essential for cell survival to the treatment. However, SOS chromotest result indicates that the SOS functions are only induced at high and toxic concentrations of the drug. Moreover, single strand breaks in DNA from treated cells are detected, demonstrating genome damage promoted by oxidized solutions of ascorbate. (M.A.C.) [pt

  7. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair

    International Nuclear Information System (INIS)

    McMahon, Laura W.; Zhang Pan; Sridharan, Deepa M.; Lefferts, Joel A.; Lambert, Muriel W.

    2009-01-01

    Nonerythroid α-spectrin (αIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that αIISp plays in normal human cells and in the repair defect in FA, αIISp was knocked down in normal cells using siRNA. Depletion of αIISp in normal cells by siRNA resulted in chromosomal instability and cellular hypersensitivity to DNA interstrand cross-linking agents. An increased number of chromosomal aberrations were observed and, following treatment with a DNA interstrand cross-linking agent, mitomycin C, cells showed decreased cell growth and survival and decreased formation of damage-induced αIISp and XPF nuclear foci. Thus depletion of αIISp in normal cells leads to a number of defects observed in FA cells, such as chromosome instability and a deficiency in cross-link repair.

  8. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch Syndrome

    OpenAIRE

    Poulogiannis , George; Frayling , Ian; Arends , Mark

    2009-01-01

    Abstract DNA mismatch repair (MMR) deficiency is one of the best understood forms of genetic instability in colorectal cancer (CRC), and is characterised by the loss of function of the MMR pathway. Failure to repair replication-associated errors due to a defective MMR system allows persistence of mismatch mutations all over the genome, but especially in regions of repetitive DNA known as microsatellites, giving rise to the phenomenon of microsatellite instability (MSI). A high freq...

  9. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  10. Evidence for multiple repair pathways of double-strand DNA breaks in Chinese hamster cells

    International Nuclear Information System (INIS)

    Giaccia, A.J.; Weistein, R.; Stamato, T.D.; Roosa, R.

    1984-01-01

    XR-1 is a mutant of the Chinese hamster cell (CHO-K1) which is abnormally sensitive to killing by gamma rays in G/sub 1/ (D37 = 27 rads vs. 318 for parent) and early S phases of the cell cycle but has near normal resistance in late S and early G/sub 2/ (Somatic Cell Genetics, 9:165-173, 1983). Complementation studies between XR-1 and its parent indicate that this sensitivity to gamma rays is a recessive phenotype. Both the XR-1 and its parent cell are able to repair single strand DNA breaks. However, in comparison to its parental cell, the XR-1 cell is markedly deficient in the repair of double strand DNA breaks introduced by gamma irradiation during the sensitive G/sub 1/-early S period, while in the late S-G/sub 2/ resistant period the repair is similar in both cells. This correlation suggests that an unrepaired double strand DNA break is the lethal lesion and that at least two pathways for the repair of these lesions exist in mammalian cells

  11. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines

    International Nuclear Information System (INIS)

    Bedford, P.; Fichtinger-Schepman, A.M.; Shellard, S.A.; Walker, M.C.; Masters, J.R.; Hill, B.T.

    1988-01-01

    The formation and removal of four platinum-DNA adducts were immunochemically quantitated in cultured cells derived from a human bladder carcinoma cell line (RT112) and from two lines derived from germ cell tumors of the testis (833K and SUSA), following exposure in vitro to 16.7 microM (5 micrograms/ml) cisplatin. RT112 cells were least sensitive to the drug and were proficient in the repair of all four adducts, whereas SUSA cells, which were 5-fold more sensitive, were deficient in the repair of DNA-DNA intrastrand cross-links in the sequences pApG and pGpG. Despite expressing a similar sensitivity to SUSA cells, 833K cells were proficient in the repair of all four adducts, although less so than the RT112 bladder tumor cells. In addition, SUSA cells were unable to repair DNA-DNA interstrand cross-links whereas 50-85% of these lesions were removed in RT112 and 833K cells 24 h following drug exposure. It is possible that the inability of SuSa cells to repair platinated DNA may account for their hypersensitivity to cisplatin

  12. Repair and replication of DNA in hereditary (bilateral) retinoblastoma cells after X-irradiation

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Char, D.; Charles, W.C.; Rand, N.

    1982-01-01

    Fibroblasts from patients with hereditary retinoblastoma reportedly exhibit increased sensitivity to killing by X-rays. Although some human syndromes with similar or greater hypersensitivity to DNA-damaging agents (e.g., X-rays, ultraviolet light, and chemical carcinogens), such as xeroderma pigmentosum, are deficient in DNA repair, most do not have such clearly demonstrable defects in repair. Retinoblastoma cells appear to be normal in repairing single-strand breaks and performing repair replication after X-irradiation and also in synthesizing poly(adenosine diphosphoribose). Semiconservative DNA replication in these cells, however, is slightly more resistant than normal after X-irradiation, suggesting that continued replication of damaged parental DNA could contribute to the pathogenesis of the disease. This effect is small, however, and may be a consequence rather than a cause of the fundamental enzymatic abnormality in retinoblastoma that causes the tumorigenesis

  13. Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development.

    Science.gov (United States)

    Sears, Catherine R; Zhou, Huaxin; Justice, Matthew J; Fisher, Amanda J; Saliba, Jacob; Lamb, Isaac; Wicker, Jessica; Schweitzer, Kelly S; Petrache, Irina

    2018-03-01

    Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.

  14. DNA repair and its relation to recombination-deficient and other mutations in Bacillus subtilis

    International Nuclear Information System (INIS)

    Ganesan, A.T.

    1975-01-01

    DNA repair processes operating in Bacillus subtilis are similar to other transformable bacterial systems. Radiation-sensitive, recombination-deficient mutants are blocked in distinct steps leading to recombination. DNA polymerase I is essential for the repair of x-ray-induced damage to DNA but not for recombination

  15. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.

    Science.gov (United States)

    Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R

    2017-04-01

    Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Campos-Nebel, Marcelo de; Larripa, Irene; Gonzalez-Cid, Marcela

    2008-01-01

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by γH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB

  17. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU

  18. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Theo A. Knijnenburg

    2018-04-01

    Full Text Available Summary: DNA damage repair (DDR pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy. : Knijnenburg et al. present The Cancer Genome Atlas (TCGA Pan-Cancer analysis of DNA damage repair (DDR deficiency in cancer. They use integrative genomic and molecular analyses to identify frequent DDR alterations across 33 cancer types, correlate gene- and pathway-level alterations with genome-wide measures of genome instability and impaired function, and demonstrate the prognostic utility of DDR deficiency scores. Keywords: The Cancer Genome Atlas PanCanAtlas project, DNA damage repair, somatic mutations, somatic copy-number alterations, epigenetic silencing, DNA damage footprints, mutational signatures, integrative statistical analysis, protein structure analysis

  19. Evaluation of tests using DNA repair-deficient bacteria for predicting genotoxicity and carcinogenicity

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, Z.; Kada, T.; Mandel, M.; Zeiger, E.; Stafford, R.; Rosenkranz, H.S.

    1981-01-01

    The detection of DNA-damaging agents by repair-deficient bacterial assays is based on the differential inhibition of growth of repair-proficient and repair-deficient bacterial pairs. The various methodologies used are described and recommendations are made for their improved use. In a survey of the literature through April 1979, 91 of 276 papers evaluated contained usable data, resulting in an analysis of 611 compounds that had been assayed in 1 or more of 55 pairs of repair-proficient and repair-deficient strains. The results indicate that a liquid suspension assay is more sensitive than a spot (diffusion) test. There was a 78% correspondence between results obtained with E. coli polA and Bacillus subtilis (H17/M45, 17A/45T) rec assay and between E. coli polA and Proteus mirabilis. In a comparison of test results with carcinogenicity data, 44 of 71 (62%) carcinogenic compounds assayed by the polA system were positive, 10 (14%) were negative, and 17 (24%) gave No Test or doubtful results. The results were analyzed with respect to chemical classes. E. coli polA detected the highest percentage of hydroxylamines and alkyl epoxides. The B. subtilis rec assay detected the highest percentage of nitrosamines and sulfur and nitrogen oxides. It is concluded that some of these test systems are effective tools for the detection of DNA-damaging and potentially carcinogenic compounds, especially if the assay is done in liquid suspension and if more than 1 pair of tester strains is used. Advantages and disadvantages of the assay are discussed and suggestions are made for improvements in the system.

  20. Radiation-induced mitotic catastrophe in PARG-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Ame, J.Ch.; Fouquerel, E.; Dantzer, F.; De Murcia, G.; Schreiber, V. [IREBS-FRE3211 du CNRS, Universite de Strasbourg, ESBS, Bd Sebastien Brant, BP 10413, 67412 Illkirch Cedex (France); Gauthier, L.R.; Boussin, F.D. [Laboratoire de Radiopathologie/INSERM U967, CEA-DSV-IRCM, 92265 Fontenay aux Roses, Cedex 6 (France); Biard, D. [CEA-DSV-IRCM/INSERM U935, Institut A. Lwoff-CNRS, BP 8, 94801 Villejuif cedex (France)

    2009-07-01

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glyco-hydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations. To gain insight into the function of PARG in response to irradiation, we constitutively and stably knocked down expression of PARG isoforms in HeLa cells. PARG depletion leading to PAR accumulation was not deleterious to undamaged cells and was in fact rather beneficial, because it protected cells from spontaneous single-strand breaks and telomeric abnormalities. By contrast, PARG-deficient cells showed increased radiosensitivity, caused by defects in the repair of single- and double-strand breaks and in mitotic spindle checkpoint, leading to alteration of progression of mitosis. Irradiated PARG-deficient cells displayed centrosome amplification leading to mitotic supernumerary spindle poles, and accumulated aberrant mitotic figures, which induced either polyploidy or cell death by mitotic catastrophe. Our results suggest that PARG could be a novel potential therapeutic target for radiotherapy. (authors)

  1. Differences in heavy-ion-induced DNA double-strand breaks in a mouse DNA repair-deficient mutant cell line (SL3-147) before and after chromatin proteolysis

    International Nuclear Information System (INIS)

    Murakami, Masahiro; Eguchi-Kasai, Kiyomi; Sato, Koki; Minohara, Shinichi; Kanai, Tatsuaki; Yatagai, Fumio.

    1995-01-01

    DNA double-strand breaks induced by X- or neon beam-irradiation in a DNA double-strand break-repair-deficient mutant cell line (SL3-147) were examined. The increase in the number of DNA double-strand breaks was dose-depend after irradiation with X-rays and neon beams and was enhanced by chromatin-proteolysis treatment before irradiation. These results suggest that the induction of DNA double-strand breaks by ionizing radiation, including heavy-ions, is influenced by the chromatin structure. (author)

  2. Mismatch repair deficiency in colorectal cancer patients in a low ...

    African Journals Online (AJOL)

    2013-02-06

    Feb 6, 2013 ... This is 10% of the rate reported in First-World countries. In high-incidence areas, the rate of abnormal mismatch repair gene expression in colorectal cancers is 2 - 7%. Objectives. The aim of this study was to determine the prevalence of hMLH1- and hMSH2-deficient colorectal cancer in the. Northern Cape.

  3. Vitamin C deficiency in weanling guinea pigs: differential expression of oxidative stress and DNA repair in liver and brain

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Trueba, Gilberto Perez; Poulsen, Henrik E

    2007-01-01

    Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency...... incision repair (P = 0.014) were all increased, while protein oxidation decreased (P = 0.003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may...

  4. Role of DNA damage repair capacity in radiation induced adaptive response

    International Nuclear Information System (INIS)

    Yuan Dexiao; Pan Yan; Zhao Meijia; Chen Honghong; Shao Cunlin

    2009-01-01

    This work was to explore γ-ray induced radioadaptive response (RAR) in Chinese hamster ovary(CHO) cell lines of different DNA damage repair capacities. CHO-9 cells and the two repair-deficient strains, EM-C11(DNA single strand break repair deficient) and XR-C1(DNA double strand break repair deficient), were irradiated with a priming dose of 0.08 Gy or 0.016 Gy. After 4 or 7 hours, they were irradiated again with a challenging dose of 1 Gy. The micronucleus induction and plating efficiency of the cells were assayed. Under 0.08 Gy priming dose and 4-h interval, just the CHO-9 cells showed RAR, while with the 7-h interval the CHO-9 and EM-C11 showed RAR, but XR-C1 did not. When the cells were pretreated with a lower priming dose of 0.016 Gy in a 4-h time interval, all the three cell lines showed RAR to subsequent 1 Gy irradiation. It can be concluded that RAR is not only related to the priming dose and time interval, but also has close dependence on the ability of DNA damage repair. (authors)

  5. Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells

    DEFF Research Database (Denmark)

    Björkman, Andrea; Qvist, Per; Du, Likun

    2015-01-01

    of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast...

  6. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance

  7. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  8. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    Science.gov (United States)

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  9. Inhibition of topoisomerase II activity in repair-proficient CHO K1 cells by 2-[(aminopropyl)amino]ethanethiol (WR-1065)

    International Nuclear Information System (INIS)

    Grdina, D.J.; Constantinou, A.; Shigematsu, N.

    1992-09-01

    The aminothiol 2-[(aminopropyl)amino]ethanethiol (WR-1065) is the active thiol of the clinically studied radioprotective agent S-2-(3-aminopropylamino) ethylphosphorothioic acid (WR-2721). WR-1065 is an effective radiation protector under in vitro conditions when it is administered 30 min prior to radiation exposure at a concentration of 4 mM to repair-proficient Chinese hamster ovary Kl cells (i.e., a dose modification factor of 1.4). In contrast, the DNA double-strand break, repair-deficient Chinese hamster ovary xrs-5 cell line is not protected under these conditions (i.e., a dose modification factor of 1.0). Topoisomerase (topo) I and II activities and protein contents were measured in both Kl and xrs-5 cell lines and were found to be similar in magnitude. Neither exposure to radiation, to WR-1065, or to both affected these variables in xrs-5 cells. WR 1065 was effective, however, in reducing topo 11 activity by a factor of 2 in the repair-proficient Kl cell line. Topo II protein content, however, was not affected by these exposure conditions. One of several mechanisms of radiation protection attributed to aminothiol compounds has been their ability to affect enzymatic reactions involved in DNA synthesis, repair, and cell cycle progression. These results demonstrate a modifying effect by 2-[(aminopropyl)amino]ethanethiol on a specific nuclear enzyme (i.e., type H topoisomerase), which is involved in DNA synthesis. These results also suggest that differences do exist between the topo 11 enzymes isolated from the parent repair-proficient Kl and the DNA double-strand break, repair-deficient xrs-5 mutant cell lines

  10. Inhibition of topoisomerase II activity in repair-proficient CHO K1 cells by 2-[(aminopropyl)amino]ethanethiol (WR-1065)

    Energy Technology Data Exchange (ETDEWEB)

    Grdina, D.J.; Constantinou, A.; Shigematsu, N.

    1992-09-01

    The aminothiol 2-[(aminopropyl)amino]ethanethiol (WR-1065) is the active thiol of the clinically studied radioprotective agent S-2-(3-aminopropylamino) ethylphosphorothioic acid (WR-2721). WR-1065 is an effective radiation protector under in vitro conditions when it is administered 30 min prior to radiation exposure at a concentration of 4 mM to repair-proficient Chinese hamster ovary Kl cells (i.e., a dose modification factor of 1.4). In contrast, the DNA double-strand break, repair-deficient Chinese hamster ovary xrs-5 cell line is not protected under these conditions (i.e., a dose modification factor of 1.0). Topoisomerase (topo) I and II activities and protein contents were measured in both Kl and xrs-5 cell lines and were found to be similar in magnitude. Neither exposure to radiation, to WR-1065, or to both affected these variables in xrs-5 cells. WR 1065 was effective, however, in reducing topo 11 activity by a factor of 2 in the repair-proficient Kl cell line. Topo II protein content, however, was not affected by these exposure conditions. One of several mechanisms of radiation protection attributed to aminothiol compounds has been their ability to affect enzymatic reactions involved in DNA synthesis, repair, and cell cycle progression. These results demonstrate a modifying effect by 2-[(aminopropyl)amino]ethanethiol on a specific nuclear enzyme (i.e., type H topoisomerase), which is involved in DNA synthesis. These results also suggest that differences do exist between the topo 11 enzymes isolated from the parent repair-proficient Kl and the DNA double-strand break, repair-deficient xrs-5 mutant cell lines.

  11. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1979-October 31, 1980

    International Nuclear Information System (INIS)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. Use of the host-cell reactivation viral suicide enrichment procedure was initiated in the isolation of repair-deficient mutants. Lightly mutagenized BHK cells were infected with irradiated Herpes simplex virus (HSV); several radiation-sensitive strains were isolated among the survivors of the infection. The characterization of these strains is progressing and the enrichments are continuing. That alterations in the frequency of mutation of C3H/10T 1/2 cells, occurring as a result of holding the cells in a confluent state following treatment with ethylmethane sulfonate, parallel the alterations in the frequency of neoplastic transformation was found. The repair capabilities of BHK cells were found to be intermediate in comparison to repair-proficient and -deficient human cells with regard to the reactivation of HSV treated with various inactivating agents. The effect of confluency and of low serum levels on DNA synthesis, as well as the response to the cytotoxic effects of MNNG and acriflavin were determined in BHK cells in preparation for the investigation of the role of DNA repair in mutagenesis and transformation. It was also found that C3H/10T 1/2 cells partially recover from the toxic effects of 4-nitroquinoline-1-oxide if they are held in a confluent state for 6 to 22 hrs following treatment. Addition of catalase did not alleviate the toxic effects of 4-NQO. The cells contain a relatively high endogenous level of this enzyme

  12. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1979-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. Use of the host-cell reactivation viral suicide enrichment procedure was initiated in the isolation of repair-deficient mutants. Lightly mutagenized BHK cells were infected with irradiated Herpes simplex virus (HSV); several radiation-sensitive strains were isolated among the survivors of the infection. The characterization of these strains is progressing and the enrichments are continuing. That alterations in the frequency of mutation of C3H/10T 1/2 cells, occurring as a result of holding the cells in a confluent state following treatment with ethylmethane sulfonate, parallel the alterations in the frequency of neoplastic transformation was found. The repair capabilities of BHK cells were found to be intermediate in comparison to repair-proficient and -deficient human cells with regard to the reactivation of HSV treated with various inactivating agents. The effect of confluency and of low serum levels on DNA synthesis, as well as the response to the cytotoxic effects of MNNG and acriflavin were determined in BHK cells in preparation for the investigation of the role of DNA repair in mutagenesis and transformation. It was also found that C3H/10T 1/2 cells partially recover from the toxic effects of 4-nitroquinoline-1-oxide if they are held in a confluent state for 6 to 22 hrs following treatment. Addition of catalase did not alleviate the toxic effects of 4-NQO. The cells contain a relatively high endogenous level of this enzyme. (ERB)

  13. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different

  14. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells

    International Nuclear Information System (INIS)

    Rao, B.S.S.; Tano, Kaori; Utsumi, Hiroshi; Takeda, Shunichi

    2007-01-01

    To understand the role of proteins involved in double strand breaks (DSB) repair modulating sublethal damage (SLD) recovery, chicken B lymphoma (DT 40) cell lines either proficient or deficient in RAD52, XRCC2, XRCC3, RAD51C and RAD51D were subjected to fractionated irradiation and their survival curves charted. Survival curves of both WT DT40 and RAD52 -/- cells had a big shoulder while all the other cells exhibited small shoulders. However, at the higher doses of radiation, RAD51C -/- cells displayed hypersensitivity comparable to the data obtained for the homologous recombination deficient RAD54 -/- cells. Repair of SLD was measured as an increase in survival after a split dose irradiation with an interval of incubation between the radiation doses. All the cell lines (parental DT40 and genetic knockout cell lines viz., RAD52 -/- , XRCC2 -/- XRCC3 -/- RAD51C -/- and RAD51D -/- ) used in this study demonstrated a typical split-dose recovery capacity with a specific peak, which varied depending on the cell type. The maximum survival of WT DT40 and RAD52 -/- was reached at about 1-2 hours after the first dose of radiation and then decreased to a minimum thereafter (5 h). The increase in the survival peaked once again by about 8 hours. The survival trends observed in XRCC2 -/- , XRCC3 -/- , RAD51C -/- and RAD51D -/- knockout cells were also similar, except for the difference in the initial delay of a peak survival for RAD51D -/- and lower survival ratios. The second phase of increase in the survival in these cell lines was much slower in XRCC2 -/- , XRCC3 -/- , RAD51C -/- nd RAD51D -/- and further delayed when compared with that of RAD52 -/- and parental DT40 cells suggesting a dependence on their cell cycle kinetics. This study demonstrates that the participation of RAD52, XRCC2, XRCC3, RAD51C and RAD51D in the DSB repair via homologous recombination is of less importance in comparison to RAD54, as RAD54 deficient cells demonstrated complete absence of SLD recovery

  15. Contribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein.

    Science.gov (United States)

    Wrzesiński, Michał; Nieminuszczy, Jadwiga; Sikora, Anna; Mielecki, Damian; Chojnacka, Aleksandra; Kozłowski, Marek; Krwawicz, Joanna; Grzesiuk, Elzbieta

    2010-06-01

    In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), alpha-ketoglutarate-dependent dioxygenase that oxidatively demethylates 1meA and 3meC lesions in DNA, with recovery of A and C. Here, we studied the impact of transcription-coupled DNA repair (TCR) on MMS-induced mutagenesis in E. coli strain deficient in functional AlkB protein. Measuring the decline in the frequency of MMS-induced argE3-->Arg(+) revertants under transient amino acid starvation (conditions for TCR induction), we have found a less effective TCR in the BS87 (alkB(-)) strain in comparison with the AB1157 (alkB(+)) counterpart. Mutation in the mfd gene encoding the transcription-repair coupling factor Mfd, resulted in weaker TCR in MMS-treated and starved AB1157 mfd-1 cells in comparison to AB1157 mfd(+), and no repair in BS87 mfd(-) cells. Determination of specificity of Arg(+) revertants allowed to conclude that MMS-induced 1meA and 3meC lesions, unrepaired in bacteria deficient in AlkB, are the source of mutations. These include AT-->TA transversions by supL suppressor formation (1meA) and GC-->AT transitions by supB or supE(oc) formation (3meC). The repair of these lesions is partly Mfd-dependent in the AB1157 mfd-1 and totally Mfd-dependent in the BS87 mfd-1 strain. The nucleotide sequence of the mfd-1 allele shows that the mutated Mfd-1 protein, deprived of the C-terminal translocase domain, is unable to initiate TCR. It strongly enhances the SOS response in the alkB(-)mfd(-) bacteria but not in the alkB(+)mfd(-) counterpart. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  17. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  18. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  19. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    International Nuclear Information System (INIS)

    Intine, R.V.; Rainbow, A.J.

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in part at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair

  20. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9

    International Nuclear Information System (INIS)

    Kaur, G.P.; Athwal, R.S.

    1989-01-01

    Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9

  1. Faulty DNA-polymerase δ/ε-mediated excision-repair in response to gamma-radiation or ultraviolet-light in P53-deficient fibroblast strains from affected members of a cancer-prone family with Li-Fraumeni syndrome

    International Nuclear Information System (INIS)

    Mirzayans, R.; Enns, L.; Dietrich, K.; Barley, R.D.C.; Paterson, M.C.; Alberta Univ., Edmonton, AB; Alberta Univ., Edmonton, AB

    1996-01-01

    Dermal fibroblast strains cultured from affected members of a cancer-prone family with Li-Fraumeni syndrome (LFS) harbor a point mutation in one allele of the p53 tumor suppressor gene, resulting in loss of normal p53-deficient strains to carry out the long-patch mode of excision repair, mediated by DNA polymerases delta and epsilon, after exposure to Co-60 gamma radiation or far ultraviolet (UV) (chiefly 254 mm) light. Repair was monitored by incubation of the irradiated cultures in the presence of aphidicolin (ape) or 1-beta-D-arabinofuranosylcytosine (araC), each a specific inhibitor of long-patch repair, followed by measurement of drug-induced DNA strand breaks (reflecting non-ligated strand incision events) by alkaline surcrose velocity sedimentation. The LFS strains displayed deficient repair capacity in response to both gamma rays and UV light. The repair anomaly in UV-irradiated LFS cultures was manifested not only in the overall genome, but also in the transcriptionally active, preferentially repaired c-myc gene. Using autoradiography we also assessed unscheduled DNA synthesis (UDS) after UV irradiation and found this conventional measure of repair replication to be deficient in LFS strains. Moreover, both ape and araC decreased the level of UV-induced UDS by similar to 75% in normal cells, but each had only a marginal effect on LFS cells. We further demonstrated that the LFS strains are impaired in the recovery of both RNA and replicative DNA syntheses after UV treatment, two molecular anomalies of the DNA repair deficiency disorders xeroderma pigmentosum and Cockayne's syndrome. Together these results imply a critical role for wild-type p53 protein in DNA polymerase delta/epsilon-mediated excision repair, both the mechanism operating on the entire genome and that acting on expressed genes. (Author)

  2. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    Science.gov (United States)

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  3. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome

    NARCIS (Netherlands)

    Westdorp, Harm; Kolders, Sigrid; Hoogerbrugge, Nicoline; de Vries, I Jolanda M; Jongmans, Marjolijn C.J.; Schreibelt, Gerty

    2017-01-01

    Monoallelic germline mutations in one of the DNA mismatch repair (MMR) genes cause Lynch syndrome, with a high lifetime risks of colorectal and endometrial cancer at adult age. Less well known, is the constitutional mismatch repair deficiency (CMMRD) syndrome caused by biallelic germline mutations

  4. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair

    OpenAIRE

    McMahon, Laura W.; Zhang, Pan; Sridharan, Deepa M.; Lefferts, Joel A.; Lambert, Muriel W.

    2009-01-01

    Nonerythroid α-spectrin (αIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that αIISp plays in normal human cells and in the repair defect in FA, αIISp was knocked down in normal cells using siRNA. Depletion of αIISp in normal cells by siRNA resulted in chromosomal instability and cellu...

  5. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin.

    Science.gov (United States)

    Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu

    2018-05-01

    PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Excision-repair in mutants of Escherichia coli deficient in DNA polymerase I and/or its associated 5'. -->. 3' exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P [Stanford Univ., Calif. (USA). Dept. of Biological Sciences

    1977-01-01

    The UV sensitivity of E.coli mutants deficient in the 5'..-->..3' exonuclease activity of DNA polymerase I is intermediate between that of pol/sup +/ strains and mutants which are deficient in the polymerizing activity of pol I (polA1). Like polA1 mutants, the 5'-econuclease deficient mutants exhibit increased UV-induced DNA degradation and increased repair synthesis compared to a pol/sup +/ strain, although the increase is not as great as in polA1 or in the conditionally lethal mutant BT4113ts deficient in both polymerase I activities. When dimer excision was measured at UV doses low enough to avoid interference from extensive DNA degradation, all three classes of polymerase I deficient mutants were found to remove dimers efficiently from their DNA. We conclude that enzymes alternative to polymerase I can operate in both the excision and resynthesis steps of excision repair and that substitution for either of the polymerase I functions results in longer patches of repair. A model is proposed detailing the possible events in the alternative pathways.

  7. DNA repair in human xeroderma pigmentosum and chinese hamster cells

    International Nuclear Information System (INIS)

    Zelle, B.

    1980-01-01

    The investigations described were performed to study the genetic heterogeneity of excision repair-deficient XP (xeroderma pigmentosum) strains and the biochemical defects in their repair processes after irradiation with ultraviolet radiation. (Auth.)

  8. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    Science.gov (United States)

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  9. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hidenori; Fujimori, Hiroaki [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Gunji, Akemi [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Maeda, Daisuke [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Hirai, Takahisa [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Poetsch, Anna R. [ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Harada, Hiromi [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Yoshida, Tomoko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minatoku, Tokyo 105-8512 (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Masutani, Mitsuko, E-mail: mmasutan@ncc.go.jp [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  10. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    International Nuclear Information System (INIS)

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi; Maeda, Daisuke; Hirai, Takahisa; Poetsch, Anna R.; Harada, Hiromi; Yoshida, Tomoko; Sasai, Keisuke; Okayasu, Ryuichi; Masutani, Mitsuko

    2013-01-01

    Highlights: •Parg −/− ES cells were more sensitive to γ-irradiation than Parp-1 −/− ES cells. •Parg −/− cells were more sensitive to carbon-ion irradiation than Parp-1 −/− cells. •Parg −/− cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg −/− and poly(ADP-ribose) polymerase-1 deficient (Parp-1 −/− ) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg −/− cells were more sensitive to γ-irradiation than Parp-1 −/− cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg −/− cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg −/− ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1 −/− cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg −/− ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg −/− cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1 −/− cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was not different between wild-type and Parg −/− cells. The augmented

  11. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in repair deficient CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Suzuki, Keiji; Prise, K.M.

    2005-01-01

    Evidence is accumulating that irradiated cells produce some signals which interact with non-exposed cells in the same population. Here, we analysed the mechanism of such a bystander effect from targeted cells to non-targeted cells. Firstly, in order to investigate the bystander effect in Chinese hamster ovary (CHO) cell lines we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population, of double strand break repair deficient xrs5 cells, was targeted with 1 Gy of Al-K soft X-rays, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells. The induction of micronuclei was also observed when conditioned medium was transferred from irradiated to non-irradiated xrs5 cells. These results suggest that DNA double strand breaks are caused by factors secreted in the medium from irradiated cells. To clarify the involvements of radical species in the bystander response, cells were treated with 0.5%DMSO 1 hour before irradiation and then bystander effects were estimated in xrs5 cells. The results showed clearly that DMSO treatment during X-irradiation suppress the induction of micronuclei in bystander xrs5 cells, when conditioned medium was transferred from irradiated xrs5 cells. Therefore, it is suggested that radical species induced by ionizing radiation are important for producing bystander signals. (author)

  12. Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: implications of the DNA repair deficiencies in attenuation of mycobacteria.

    Science.gov (United States)

    Rex, Kervin; Kurthkoti, Krishna; Varshney, Umesh

    2013-10-01

    Mycobacteria are an important group of pathogenic bacteria. We generated a series of DNA repair deficient strains of Mycobacterium smegmatis, a model organism, to understand the importance of various DNA repair proteins (UvrB, Ung, UdgB, MutY and Fpg) in survival of the pathogenic strains. Here, we compared tolerance of the M. smegmatis strains to genotoxic stress (ROS and RNI) under aerobic, hypoxic and recovery conditions of growth by monitoring their survival. We show an increased susceptibility of mycobacteria to genotoxic stress under hypoxia. UvrB deficiency led to high susceptibility of M. smegmatis to the DNA damaging agents. Ung was second in importance in strains with single deficiencies. Interestingly, we observed that while deficiency of UdgB had only a minor impact on the strain's susceptibility, its combination with Ung deficiency resulted in severe consequences on the strain's survival under genotoxic stress suggesting a strong interdependence of different DNA repair pathways in safeguarding genomic integrity. Our observations reinforce the possibility of targeting DNA repair processes in mycobacteria for therapeutic intervention during active growth and latency phase of the pathogen. High susceptibility of the UvrB, or the Ung/UdgB deficient strains to genotoxic stress may be exploited in generation of attenuated strains of mycobacteria. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Characteristics of the repair - deficient mutants 1435 plague microbe strain

    International Nuclear Information System (INIS)

    Temiralieva, G.A.

    1977-01-01

    Repair-deficient mutants 1435 A uvr - hcr - , 1435-17 uvr - hcr + and 1435-35 lon have been obtained from 1435 plague microbe strain, isolated from a large gerbil living in the Central Asian desert region. The mutants have the same cultural-morphological and enzymatic characteristics, the same need in growth factors and similar virulence determinants as the original strain, but they do not cause death of the experimental animals

  14. Germline mutation rates at tandem repeat loci in DNA-repair deficient mice

    International Nuclear Information System (INIS)

    Barber, Ruth C.; Miccoli, Laurent; Buul, Paul P.W. van; Burr, Karen L.-A.; Duyn-Goedhart, Annemarie van; Angulo, Jaime F.; Dubrova, Yuri E.

    2004-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of non-exposed and irradiated severe combined immunodeficient (scid) and poly(ADP-ribose) polymerase (PARP-1 -/- ) deficient male mice. Non-exposed scid and PARP -/- male mice showed considerably elevated ESTR mutation rates, far higher than those in wild-type isogenic mice and other inbred strains. The irradiated scid and PARP-1 -/- male mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated wild-type isogenic males. ESTR mutation spectra in the scid and PARP-1 -/- strains did not differ from those in the isogenic wild-type strains. Considering these data and the results of previous studies, we propose that a delay in repair of DNA damage in scid and PARP-1 -/- mice could result in replication fork pausing which, in turn, may affect ESTR mutation rate in the non-irradiated males. The lack of mutation induction in irradiated scid and PARP-1 -/- can be explained by the high cell killing effects of irradiation on the germline of deficient mice

  15. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    Science.gov (United States)

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  16. DNA repair deficiency in lymphocytes from patients with actinic keratosis

    International Nuclear Information System (INIS)

    Abo-Darub, J.M.; Mackie, R.; Pitts, J.D.

    1978-01-01

    DNA repair activity was measured in peripheral blood lymphocytes from 18 patients with Actinic Keratosis and 18 age-matched control subjects, by comparing the incorporation of 3 H-thymidine into cells after irradiation with ultraviolet light with that into unirradiated cells. The incorporation was followed autoradiographically or by measuring acid insoluble radioactivity in cells labelled in the presence of hydroxyurea. The repair activity in lymphocytes from Actinic keratosis patients was only 47.1% (+-6.5%) of that in cells from the control subjects

  17. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  18. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  19. Repair of DNA in xeroderma pigmentosum conjunctiva

    International Nuclear Information System (INIS)

    Newsome, D.A.; Kraemer, K.H.; Robbins, J.H.

    1975-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive disease with tumor formation on sun-exposed areas of the skin and eyes. Cells from most XP patients are deficient in repairing DNA damaged by ultraviolet (uv) light as shown by a reduced rate of tritiated thymidine (3HTdR) incorporation during their DNA repair synthesis. We have studied such repair synthesis in conjunctival cells from an XP patient with a conjunctival epithelioma and from normal cadaver conjunctiva. Cultured conjunctival cells were irradiated with uv light and then incubated with 3HTdR. Autoradiograms were prepared and showed that uv radiation induced a considerably slower rate of DNA repair synthesis in the XP cells than in normal cells. Many of the ocular abnormalities of XP, including tumor formation, may be the result of this defective DNA repair process

  20. Efficient and reproducible identification of mismatch repair deficient colon cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Bendahl, Pär-Ola; Halvarsson, Britta

    2013-01-01

    BACKGROUND: The identification of mismatch-repair (MMR) defective colon cancer is clinically relevant for diagnostic, prognostic and potentially also for treatment predictive purposes. Preselection of tumors for MMR analysis can be obtained with predictive models, which need to demonstrate ease...... of application and favorable reproducibility. METHODS: We validated the MMR index for the identification of prognostically favorable MMR deficient colon cancers and compared performance to 5 other prediction models. In total, 474 colon cancers diagnosed ≥ age 50 were evaluated with correlation between...... clinicopathologic variables and immunohistochemical MMR protein expression. RESULTS: Female sex, age ≥60 years, proximal tumor location, expanding growth pattern, lack of dirty necrosis, mucinous differentiation and presence of tumor-infiltrating lymphocytes significantly correlated with MMR deficiency. Presence...

  1. Reprogramming Cells for Brain Repair

    Directory of Open Access Journals (Sweden)

    Randall D. McKinnon

    2013-08-01

    Full Text Available At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair.

  2. Establishment, characterization and chemosensitivity of three mismatch repair deficient cell lines from sporadic and inherited colorectal carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudia Maletzki

    Full Text Available BACKGROUND: Colorectal cancer (CRC represents a morphologic and molecular heterogenic disease. This heterogeneity substantially impairs drug effectiveness and prognosis. The subtype of mismatch repair deficient (MMR-D CRCs, accounting for about 15% of all cases, shows particular differential responses up to resistance towards currently approved cytostatic drugs. Pre-clinical in vitro models representing molecular features of MMR-D tumors are thus mandatory for identifying biomarkers that finally help to predict responses towards new cytostatic drugs. Here, we describe the successful establishment and characterization of three patient-derived MMR-D cell lines (HROC24, HROC87, and HROC113 along with their corresponding xenografts. METHODOLOGY: MMR-D cell lines (HROC24, HROC87, and HROC113 were established from a total of ten clinicopathological well-defined MMR-D cases (120 CRC cases in total. Cells were comprehensively characterized by phenotype, morphology, growth kinetics, invasiveness, and molecular profile. Additionally, response to clinically relevant chemotherapeutics was examined in vitro and in vivo. PRINCIPAL FINDINGS: Two MMR-D lines showing CIMP-H derived from sporadic CRC (HROC24: K-ras(wt, B-raf(mut, HROC87: K-ras(wt, B-raf(mut, whereas the HROC113 cell line (K-ras(mut, B-raf(wt was HNPCC-associated. A diploid DNA-status could be verified by flow cytometry and SNP Array analysis. All cell lines were characterized as epithelial (EpCAM(+ tumor cells, showing surface tumor marker expression (CEACAM(+. MHC-class II was inducible by Interferon-γ stimulation. Growth kinetics as well as invasive potential was quite heterogeneous between individual lines. Besides, MMR-D cell lines exhibited distinct responsiveness towards chemotherapeutics, even when comparing in vitro and in vivo sensitivity. CONCLUSIONS: These newly established and well-characterized, low-passage MMR-D cell lines provide a useful tool for future investigations on the

  3. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression

    Directory of Open Access Journals (Sweden)

    Kaina Bernd

    2010-09-01

    Full Text Available Abstract Background Cisplatin based chemotherapy cures over 80% of metastatic testicular germ cell tumours (TGCT. In contrast, almost all other solid cancers in adults are incurable once they have spread beyond the primary site. Cell lines derived from TGCTs are hypersensitive to cisplatin reflecting the clinical response. Earlier findings suggested that a reduced repair capacity might contribute to the cisplatin hypersensitivity of testis tumour cells (TTC, but the critical DNA damage has not been defined. This study was aimed at investigating the formation and repair of intrastrand and interstrand crosslinks (ICLs induced by cisplatin in TTC and their contribution to TTC hypersensitivity. Results We observed that repair of intrastrand crosslinks is similar in cisplatin sensitive TTC and resistant bladder cancer cells, whereas repair of ICLs was significantly reduced in TTC. γH2AX formation, which serves as a marker of DNA breaks formed in response to ICLs, persisted in cisplatin-treated TTC and correlated with sustained phosphorylation of Chk2 and enhanced PARP-1 cleavage. Expression of the nucleotide excision repair factor ERCC1-XPF, which is implicated in the processing of ICLs, is reduced in TTC. To analyse the causal role of ERCC1-XPF for ICL repair and cisplatin sensitivity, we over-expressed ERCC1-XPF in TTC by transient transfection. Over-expression increased ICL repair and rendered TTC more resistant to cisplatin, which suggests that ERCC1-XPF is rate-limiting for repair of ICLs resulting in the observed cisplatin hypersensitivity of TTC. Conclusion Our data indicate for the first time that the exceptional sensitivity of TTC and, therefore, very likely the curability of TGCT rests on their limited ICL repair due to low level of expression of ERCC1-XPF.

  4. Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients

    International Nuclear Information System (INIS)

    Kibitel, J.T.; Yee, V.; Yarosh, D.B.

    1991-01-01

    The phage T4 denV gene, coding for the pyrimidine-dimer specific T4 endonuclease V, was transfected into human repair-proficient fibroblasts, repair-deficient xeroderma pigmentosum fibroblasts, and wild type CHO hamster cells. Transfectants maintained denV DNA and expressed denV mRNA. Purified T4 endonuclease V encapsulated in liposomes was also used to treat repair-proficient and -deficient human cells. The denV transfected clones and liposome-treated cells showed increased unscheduled DNA synthesis and enhanced removal of pyrimidine dimers compared to controls. Both denV gene transfection and endonuclease V liposome treatment enhanced post-UV survival in xeroderma pigmentosum cells but had no effect on survival in repair-proficient human or hamster cells. The results demonstrate that an exogenous DNA repair enzyme can correct the DNA repair defect in xeroderma pigmentosum cells and enhance DNA repair in normal cells. (author)

  5. Efficiency of repair of pyrimidine dimers and psoralen monoadducts in normal and xeroderma pigmentosum human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Charles, W.C.; Kong, S.H.

    1984-01-01

    Repair of DNA damage produced by ultraviolet light or 5-methylisopsoralen in normal and xeroderma pigmentosum human cells involves many similar steps. Aphidicolin and cytosine arabinoside block repair of both kinds of damage with similar efficiency, indicating that DNA polymerase α has a major role in repair for these lesions. In xeroderma pigmentosum cells of various complementation groups, the relative efficiency of excision repair for both ultraviolet- and 5-methylisopsoralen-induced damage was group A< C< D, indicating a close resemblance between both kinds of lesions in relation to the repair deficiencies in these groups. At high doses, the maximum rate of repair of damage by ultraviolet light was about twice that for methylisopsoralen damage, possibly because ultraviolet-induced damage forms a substrate that is more readily recognized and excised than that of the psoralen adducts. Differences in the structural distortions to DNA caused by these kinds of damage could be detected using single strand specific nucleases which excised dimers but not 5-MIP adducts from double strand DNA. (author)

  6. Neocarzinostatin-mediated DNA damage and repair in wild-type and repair-deficient Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Kuo, W.L.; Meyn, R.E.; Haidle, C.W.

    1984-01-01

    The formation and repair of neocarzinostatin (NCS)-mediated DNA damage were examined in two strains of Chinese hamster ovary cells. The response in strain EM9, a mutant line selected for its sensitivity to ethyl methanesulfonate and shown to have a defect in the repair of X-ray-induced DNA breaks, was compared with that observed in the parental strain (AA8). The DNA strand breaks and their subsequent rejoining were measured using the method of elution of DNA from filters under either alkaline (for single-strand breaks), or nondenaturing conditions (for double-strand breaks). Colony survival assays showed that the mutant was more sensitive to the action of NCS than was the parental strain by a factor of approximately 1.5. Elution analyses showed that the DNA from both strains was damaged by NCS; the mutant displayed more damage than the parent under the same treatment conditions. Single-strand breaks were produced with a frequency of about 10 to 15 times the frequency of double-strand breaks. Both strains were able to rejoin both single-strand breaks and double-strand breaks induced by NCS treatment. The strand break data suggest that the difference in NCS-mediated cytotoxicity between EM9 and AA8 cells may be directly related to the enhanced production of DNA strand breaks in EM9. However, the fact that much higher doses of NCS were required in the DNA studies compared to the colony survival assays implies that either a small number of DNA breaks occur in a critical region of the genome, or that lesions other than DNA strand breaks are partly responsible for the observed cytotoxicity

  7. Detection and repair of a UV-induced photosensitive lesion in the DNA of human cells

    International Nuclear Information System (INIS)

    Francis, A.A.; Regan, J.D.

    1986-01-01

    Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. The authors have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. The data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells. (Auth.)

  8. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg; Dziegielewski, Jaroslaw

    2005-01-01

    repair (HRR) system. Abrogation of Chk1 function with small interfering RNA or chemical antagonists inhibits HRR, leading to persistent unrepaired DNA double-strand breaks (DSBs) and cell death after replication inhibition with hydroxyurea or DNA-damage caused by camptothecin. After hydroxyurea treatment......-depleted cells failed to form RAD51 nuclear foci after exposure to hydroxyurea, and cells expressing a phosphorylation-deficient mutant RAD51(T309A) were hypersensitive to hydroxyurea. These results highlight a crucial role for the Chk1 signalling pathway in protecting cells against lethal DNA lesions...

  9. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  10. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  11. The impact of cofactors and inhibitors on DNA repair synthesis after γ-irradiation in semi-permeable Escherichia coli cells

    International Nuclear Information System (INIS)

    Gaertner, C.

    1981-01-01

    The DNA-repair synthesis in tuluol-permeable E. coli cells after γ-irradiation has been investigated in dependence on the co-facotrs. ATB and NAD by means of enzyme kinetics. A partly repair-deficient mutants were taken into consideration which are well characterized in view of molecular biology; they showed which enzyme functions participate in the γ-induced DNA repair synthesis. The inhibition of the DNA-repair synthesis by the intercalary substances Adriamycin and Proflavin has been described and compared with the survival rates after irradiation and after combined treatment by irradiation and intercalary agents. (orig./AJ) [de

  12. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1980-October 31, 1981

    International Nuclear Information System (INIS)

    Evans, H.H.

    1981-10-01

    The isolation of several radiation-sensitive BHK strains following a host-cell viral suicide enrichment procedure has been reported in which mutagenized cells were infected with heavily irradiated Herpes virus (HSV). Six surviving colonies were isolated from 38,000 infected cells. The survivors were not transformed by HSV, as indicated by a lack of reaction with fluorescent HSV antibody. At least two of the strains were shown to be sensitive to the lethal effects of ionizing radiation and methylmethane sulfonate, but not to ethylmethane sulfonate (EMS) or to uv radiation. These two strains showed a small decrease in the ability to repair sublethal damage following a split dose of ionizing radiation. The two strains differed from wild-type BHK cells in EMS-induced mutability; strain VI showed a higher mutation frequency and V2 a lower mutation frequency than did BHK cells following treatment with this agent. When either ionizing radiation or uv radiation was used as the mutagenic agent, however, the comparative mutability patterns were altered: the mutation frequency of both strains was somewhat less than the wild type following ionizing radiation, whereas following uv radiation, strain V1 showed a markedly lower mutation frequency than the wild type. It is possible that the strain V1 is deficient in the repair of an EMS-induced mutagenic lesion, while strain V2 is either efficient in such repair or deficient in an error-prone repair process

  13. Factors modifying 3-aminobenzamide cytotoxicity in normal and repair-deficient human fibroblasts

    International Nuclear Information System (INIS)

    Boorstein, R.J.; Pardee, A.B.

    1984-01-01

    3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribosylation), is lethal to human fibroblasts with damaged DNA. Its cytotoxicity was determined relative to a number of factors including the types of lesions, the kinetics of repair, and the availability of alternative repair systems. A variety of alkylating agent, UV or gamma irradiation, or antimetabolites were used to create DNA lesions. 3-AB enhanced lethality with monofunctional alkylating agents only. Within this class of compounds, methylmethanesulfonate (MMS) treatments made cells more sensitive to 3-AB than did treatment with methylnitrosourea (MNU) or methylnitronitrosoguanidine (MNNG). 3-AB interfered with a dynamic repair process lasting several days, since human fibroblasts remained sensitive to 3-AB for 36-48 hours following MMS treatment. During this same interval 3-AB caused these cells to arrest in G 2 phase. Alkaline elution analysis also revealed that this slow repair was delayed further by 3-AB. Human mutant cell defective in DNA repair differed in their responses to 3-AB. Greater lethality with 3-AB could be dependent on inability of the mutant cells to repair damage by other processes

  14. DNA replication and repair in Tilapia cells

    International Nuclear Information System (INIS)

    Yew, F.H.; Chang, L.M.

    1984-01-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-β-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor. (author)

  15. Base excision repair deficiency in acute myeloid leukemia

    International Nuclear Information System (INIS)

    Scheer, N.M.

    2009-01-01

    Acute myeloid leukemia (AML) is an aggressive malignancy of the hematopoietic system arising from a transformed myeloid progenitor cell. Genomic instability is the hallmark of AML and characterized by a variety of cytogenetic and molecular abnormalities. Whereas 10% to 20% of AML cases reflect long-term sequelae of cytotoxic therapies for a primary disorder, the etiology for the majority of AMLs remains unknown. The integrity of DNA is under continuous attack from a variety of exogenous and endogenous DNA damaging agents. The majority of DNA damage is caused by constantly generated reactive oxygen species (ROS) resulting from metabolic by-products. Base excision repair (BER) is the major DNA repair mechanism dealing with DNA base lesions that are induced by oxidative stress or alkylation. In this study we investigated the BER in AML. Primary AML patients samples as well as AML cell lines were treated with hydrogen peroxide (H 2 O 2 ). DNA damage induction and repair was monitored by the alkaline comet assay. In 15/30 leukemic samples from patients with therapy-related AML, in 13/35 with de novo AML and 14/26 with AML following a myelodysplastic syndrome, significantly reduced single strand breaks (SSBs) representing BER intermediates were found. In contrast, normal SSB formation was seen in mononuclear cells of 30 healthy individuals and 30/31 purified hematopoietic stem- and progenitor cell preparations obtained from umbilical cord blood. Additionally, in 5/10 analyzed AML cell lines, no SSBs were formed upon H 2 O 2 treatment, either. Differences in intracellular ROS concentrations or apoptosis could be excluded as reason for this phenomenon. A significantly diminished cleavage capacity for 7,8-dihydro-8-oxoguanine as well as for Furan was observed in cell lines that exhibited no SSB formation. These data demonstrate for the first time that initial steps of BER are impaired in a proportion of AML cell lines and leukemic cells from patients with different forms of

  16. Defective repair of UV-damaged DNA in human tumor and SV40-transformed human cells but not in adenovirus-transformed human cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    The DNA repair capacities of five human tumor cell lines, one SV40-transformed human cell line and one adenovirus-transformed human cell line were compared with that of normal human fibroblasts using a sensitive host cell reactivation (HCR) technique. Unirradiated and UV-irradiated suspensions of adenovirus type 2 (Ad 2) were assayed for their ability to form viral structural antigens (Vag) in the various cell types using immunofluorescent staining. The survival of Vag formation for UV-irradiated Ad 2 was significantly reduced in all the human tumor cell lines and the SV40-transformed human line compared to the normal human fibroblasts, but was apparently normal in the adenovirus-transformed human cells. D 0 values for the UV survival of Ad 2 Vag synthesis in the tumor and virally transformed lines expressed as a percentage of that obtained on normal fibroblast strains were used as a measure of DNA repair capacity. Percent HCR values ranged from 26 to 53% in the tumor cells. These results indicate a deficiency in the repair of UV-induced DNA damage associated with human tumorigenesis and the transformation of human cells by SV40 but not the transformation of human cells by adenovirus. (author)

  17. Repair-misrepair model of cell survival

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.

    1980-01-01

    During the last three years a new model, the repair-misrepair model (RMR) has been proposed, to interpret radiobiological experiments with heavy ions. In using the RMR model it became apparent that some of its features are suitable for handling the effects produced by a variety of environmental agents in addition to ionizing radiation. Two separate sequences of events are assumed to take place in an irradiated cell. The first sequence begins with an initial energy transfer consisting of ionizations and excitations, culminating via fast secondary physical and chemical processes in established macromolecular lesions in essential cell structures. The second sequence contains the responses of the cell to the lesions and consists of the processes of recognition and molecular repair. In normal cells there exists one repair process or at most a few enzymatic repair processes for each essential macromolecular lesion. The enzymatic repair processes may last for hours and minutes, and can be separated in time from the initial physicochemical and later genetic phases

  18. Comparison of initial DNA (Chromosome) damage/repair in cells exposed to heavy ion particles and X-rays

    International Nuclear Information System (INIS)

    Okayasu, Ryuichi; Okada, Maki; Noguchi, Mitsuho; Saito, Shiori; Okabe, Atsushi; Takakura, Kahoru

    2005-01-01

    We have studied cell survival and chromosome damage/repair in normal and non homologous end-joining (NHEJ) deficient human cells exposed to carbon ions (290 MeV/u, ∼70 keV/um), iron ions (500 MeV/u, ∼200 keV/um) and X-rays. In order to examine the effect of heavy ion on double strand break (DSB) repair machinery, the auto-phosphorylation of DNA-PKcs was also investigated. The important discoveries made during this period are: 200 keV/um iron irradiation induced additional molecular damage beyond that 70 keV/um carbon did. Iron irradiation not only caused an inefficient G1 chromosome repair, but also induced non-repairable DSB/chromosome damage. The auto-phosphorylation of DNA-PKcs was significantly affected by high linear energy transfer (LET) irradiation when compared to X-rays. These results indicate NHEJ machinery was markedly disturbed by high LET radiation when compared to low LET radiation. (author)

  19. Repair in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Wanna-Nakamura, S.S.

    1981-01-01

    Unscheduled DNA synthesis (UDS), an indicator of excision repair, was induced in freshly drawn Ehrlich ascites tumor cells (EAT), using ionizing radiation, far ultraviolet light (254 nm) or near uv light (365 nm) in combination with 8-methoxypsoralen. UDS was scored by grain counts in autoradiographs following the incorporation of tritium-labelled thymidine. The amount of UDS after each of these agents was expressed in terms of two parameters, viz. numer of cells showing repair and the mean number of grains per nucleus. The influence of radiation dose and of the duration of radioactive thymidine incubation were also examined. To test for a possible relationship between low mitotic index and repair capability, EAT cells were incubated in buffered salt media to lower the mitotic index. Cells kept in a buffered salt solution for 7 h show a marked drop in mitotic index compared to those incubated in minimal medium containing 15% fetal calf serum (MEM + FCS). This drop in mitotic index was reversible for up to 5 h, if cells were returned to MEM + FCS. Cells incubated in MEM + FCS also showed a decrease in mitotic activity compared to freshly drawn cells. This reduced mitotic index is approximately constant for up to 24 h. With the drop in mitotic index, EAT cells also show a drop in repair compared to freshly drawn cells. The repair capability of cells incubated in buffer can be restored by returning cells to MEM + FCS

  20. Gamma-ray induced inhibition of DNA synthesis in ataxia telangiectasia fibroblasts is a function of excision repair capacity

    International Nuclear Information System (INIS)

    Smith, P.J.; Paterson, M.C.

    1980-01-01

    The extent of the deficiency in γ-ray induced DNA repair synthesis in an ataxia telangiectasia (AT) human fibroblast strain was found to show no oxygen enhancement, consistent with a defect in the repair of base damage. Repair deficiency, but not repair proficiency, in AT cells was accompanied by a lack of inhibition of DNA synthesis by either γ-rays or the radiomimetic drug bleomycin. Experiments with 4-nitroquinoline 1-oxide indicated that lack of inhibition was specific for radiogenic-type damage. Thus excision repair, perhaps by DNA strand incision or chromatin modification, appears to halt replicon initiation in irradiated repair proficient cells whereas in repair defective AT strains this putatively important biological function is inoperative

  1. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.

    Science.gov (United States)

    Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S

    2014-08-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Directory of Open Access Journals (Sweden)

    Thai Q Tran

    2017-11-01

    Full Text Available Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  3. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Science.gov (United States)

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  4. The inhibition of DNA repair by aphidicolin or cytosine arabinoside in X-irradiated normal and xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Waters, R.; Crocombe, K.; Mirzayans, R.

    1981-01-01

    Normal and excision-deficient xeroderma pigmentosum fibroblasts were X-irradiated and the influence on DNA repair of either the repair inhibitor cytosine arabinoside or the specific inhibitor of DNA polymerase α, aphidicolin, investigated. The data indicated that the repair of a certain fraction of X-ray-induced lesions can be inhibited in both cell lines by both compounds. Thus, as aphidicolin blocks the operation of polymerase α, this enzyme must be involved in an excision repair pathway operating in both normal and excision-deficient xeroderma pigmentosum cells. (orig.)

  5. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1.

    Science.gov (United States)

    Hinrichsen, Inga; Ernst, Benjamin Philipp; Nuber, Franziska; Passmann, Sandra; Schäfer, Dieter; Steinke, Verena; Friedrichs, Nicolaus; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-24

    Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.

  6. Augmentation of Distal Biceps Repair With an Acellular Dermal Graft Restores Native Biomechanical Properties in a Tendon-Deficient Model.

    Science.gov (United States)

    Conroy, Christine; Sethi, Paul; Macken, Craig; Wei, David; Kowalsky, Marc; Mirzayan, Raffy; Pauzenberger, Leo; Dyrna, Felix; Obopilwe, Elifho; Mazzocca, Augustus D

    2017-07-01

    The majority of distal biceps tendon injuries can be repaired in a single procedure. In contrast, complete chronic tears with severe tendon substance deficiency and retraction often require tendon graft augmentation. In cases with extensive partial tears of the distal biceps, a human dermal allograft may be used as an alternative to restore tendon thickness and biomechanical integrity. Dermal graft augmentation will improve load to failure compared with nonaugmented repair in a tendon-deficient model. Controlled laboratory study. Thirty-six matched specimens were organized into 1 of 4 groups: native tendon, native tendon with dermal graft augmentation, tendon with an attritional defect, and tendon with an attritional defect repaired with a graft. To mimic a chronic attritional biceps lesion, a defect was created by a complete tear, leaving 30% of the tendon's width intact. The repair technique in all groups consisted of cortical button and interference screw fixation. All specimens underwent cyclical loading for 3000 cycles and were then tested to failure; gap formation and peak load at failure were documented. The mean (±SD) load to failure (320.9 ± 49.1 N vs 348.8 ± 77.6 N, respectively; P = .38) and gap formation (displacement) (1.8 ± 1.4 mm vs 1.6 ± 1.1 mm, respectively; P = .38) did not differ between the native tendon groups with and without graft augmentation. In the tendon-deficient model, the mean load to failure was significantly improved with graft augmentation compared with no graft augmentation (282.1 ± 83.8 N vs 199.7 ± 45.5 N, respectively; P = .04), while the mean gap formation was significantly reduced (1.2 ± 1.0 mm vs 2.7 ± 1.4 mm, respectively; P = .04). The mean load to failure of the deficient tendon with graft augmentation (282.1 N) compared with the native tendon (348.8 N) was not significantly different ( P = .12). This indicates that the native tendon did not perform differently from the grafted deficient tendon. In a tendon-deficient

  7. DNA mismatch repair deficiency accelerates lung neoplasm development in K-rasLA1/+ mice: a brief report

    International Nuclear Information System (INIS)

    Downey, Charlene M; Jirik, Frank R

    2015-01-01

    Inherited as well as acquired deficiencies in specific DNA mismatch repair (MMR) components are associated with the development of a wide range of benign and malignant neoplasms. Loss of key members such as MSH2 and MLH1 severely cripples the ability of the cell to recognize and correct such lesions as base:base mismatches and replicative DNA polymerase errors such as slippages at repetitive sequences. Genomic instability resulting from MMR deficiency not only predisposes cells to malignant transformation but may also promote tumor progression. To test the latter, we interbred Msh2 −/− mice with the K-ras LA1/+ transgenic line that spontaneously develops a range of premalignant and malignant lung lesions. Compared to K-ras LA1/+ mice, K-ras LA1/+ ; Msh2 −/− mice developed lung adenomas and adenocarcinomas at an increased frequency and also demonstrated evidence of accelerated adenocarcinoma growth. Since MMR defects have been identified in some human lung cancers, the mutant mice may not only be of preclinical utility but they will also be useful in identifying gene alterations able to act in concert with Kras mutants to promote tumor progression

  8. Cultured cells from a severe combined immunodeficient mouse have a slower than normal rate of repair of potentially lethal damage sensitive to hypertonic treatment

    International Nuclear Information System (INIS)

    Kimura, H.; Terado, T.; Ikebuchi, M.; Aoyama, T.; Komatsu, K.; Nozawa, A.

    1995-01-01

    The effects of hypertonic 0.5 M NaCl treatment after irradiation on the repair of DNA damage were examined in fibroblasts of the severe combined immunodeficient (scid) mouse. These cells are hypersensitive to ionizing radiation because of a deficiency in the repair of double-strand breaks. Hypertonic treatment caused radiosensitization due to a fixation of potentially lethal damage (PLD) in scid cells, demonstrating that scid cells normally repair PLD. To assess the kinetics of the repair of PLD, hypertonic treatment was delayed for various times after irradiation. Potentially lethal damage was repaired during these times in isotonic medium at 37 degrees C. It was found that the rate of repair of PLD was much slower in scid cells than in BALB/c 3T3 cells, which have a open-quotes wild-typeclose quotes level of radiosensitivity. This fact indicates that the scid mutation affects the type of repair of PLD that is sensitive to 0.5 M NaCl treatment. In scid hybrid cells containing fragments of human chromosome 8, which complements the radiosensitivity of the scid cells, the rate of repair was restored to a normal level. An enzyme encoded by a gene on chromosome 8 may also be connected with PLD which is sensitive to hypertonic treatment. 29 refs., 3 figs

  9. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  10. Radiation-induced mutagenicity in repair deficient Chinese hamster ovary (CHO) mutants

    International Nuclear Information System (INIS)

    Tesmer, J.G.; Saunders, E.H.; Chen, D.J.

    1987-01-01

    To determine if there is a relationship between DNA double-strand break repair and mutagenicity the authors utilized two x-ray sensitive mutants of Chinese hamster ovary cells along with the parental line K1. The two mutant lines xrs-5 and xrs-6, which have different DSB repair capabilities, were used to determine cell killing and 6-thioguanine resistance (6TG/sup r/) mutation frequencies induced by either x-rays of α-particles, x-ray survival data indicated the two mutant lines have similar sensitivity and are 5-7 fold more sensitive than the parental line K1. The mutant lines are also sensitive to α-particles but to a lesser extent. The authors' 6TG mutation data indicated that the two mutant lines are hypermutable. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in mutant cell population than in parental K1 cells. Their results support the notion that repair of DSB play an important role in the expression of radiation-induced cell killing and mutagenicity

  11. Constitutional mismatch repair deficiency presenting in childhood as three simultaneous malignancies.

    Science.gov (United States)

    Walter, Andrew W; Ennis, Sara; Best, Hunter; Vaughn, Cecily P; Swensen, Jeffrey J; Openshaw, Amanda; Gripp, Karen W

    2013-11-01

    A 13-year-old child presented with three simultaneous malignancies: glioblastoma multiforme, Burkitt lymphoma, and colonic adenocarcinoma. She was treated for her diseases without success and died 8 months after presentation. Genetic analysis revealed a homozygous mutation in the PMS2 gene, consistent with constitutional mismatch repair deficiency. Her siblings and parents were screened: three of four siblings and both parents were heterozygous for this mutation; the fourth sibling did not have the mutation. Copyright © 2013 Wiley Periodicals, Inc.

  12. Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells

    International Nuclear Information System (INIS)

    Wang, Tzuchien V.; Smith, K.C.

    1986-01-01

    The number of DNA double-strand breaks formed in UV-irradiated uvrB recF recB cells correlates with the number of unrepaired DNA daughter-strand gaps, and is dependent on DNA synthesis after UV-irradiation. These results are consistent with the model that the DNA double-strand breaks that are produced in UV-irradiated excision-deficient cells occur as the result of breaks in the parental DNA opposite unrepaired DNA daughter-strand gaps. By employing a temperature-sensitive recA200 mutation, we have devised an improved assay for studying the formation and repair of these DNA double-strand breaks. Possible mechanisms for the postreplication repair of DNA double-strand breaks are discussed. (Auth.)

  13. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells.

    Science.gov (United States)

    Ah-Koon, Laurent; Lesage, Denis; Lemadre, Elodie; Souissi, Inès; Fagard, Remi; Varin-Blank, Nadine; Fabre, Emmanuelle E; Schischmanoff, Olivier

    2016-10-01

    The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  15. Diagnostic criteria for constitutional mismatch repair deficiency syndrome

    DEFF Research Database (Denmark)

    Wimmer, Katharina; Kratz, Christian P; Vasen, Hans F A

    2014-01-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain....... They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches...... patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points...

  16. Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency

    NARCIS (Netherlands)

    S. Barnhoorn (Sander); L.M. Uittenboogaard (Lieneke); D. Jaarsma (Dick); W.P. Vermeij (Wilbert); M. Tresini (Maria); M. Weymaere (Michael); H. Menoni (Hervé); R.M.C. Brandt (Renata); M.C. de Waard (Monique); S.M. Botter (Sander); A.H. Sarker (Altraf); N.G.J. Jaspers (Nicolaas); G.T.J. van der Horst (Gijsbertus); P.K. Cooper (Priscilla K.); J.H.J. Hoeijmakers (Jan); I. van der Pluijm (Ingrid)

    2014-01-01

    textabstractAs part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG

  17. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Taubenheim, Nadine; Peron, Sophie; Fischer, Alain

    2007-01-01

    B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.

  18. The effect of caffeine on repair in chlamydomonas reinhardtii. Pt. 1

    International Nuclear Information System (INIS)

    Rosen, H.; Rehn, M.M.; Johnson, B.A.

    1980-01-01

    The effect of caffeine on repair was studied in the green alga Chlamydomonas reinhardtii. Treatment of UV-irradiated wild-type (UVS + ) cells with a sublethal level of caffeine caused a significant increase in survival compared to untreated UV-irradiated cells. Caffeine did not affect survival in the repair-deficient strain UVSE1, which is deficient in repair of UV-induced damage carried out by enzymes associated with recombination during meiosis. A significant increase in survival in the presence of caffeine was observed in the repair-deficient strain UVSE4 in which recombination during meiosis is not affected. Treatment of zygotes homozygous for UVS + , UVSE1, or UVSE4 with sublethal levels of caffeine caused marked increases in recombination frequency in UVS + and UVSE4 zygotes and no increase in recombination in UVSE1 zygotes. These results indicate that caffeine increases recombination in normal strains. Increased opportunity for recombination caused by caffeine would not result in increased recombination frequency in the UVSE1 strain, assuming limited-recombination enzyme activity in this strain. The observed increase in survival following UV-irradiation in the presence of caffeine in strains having normal recombination would therefore be associated with a caffeine-induced increase in opportunities for recombination repair. (orig.)

  19. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome.

    Science.gov (United States)

    Ripperger, Tim; Schlegelberger, Brigitte

    2016-03-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is one of the rare diseases associated with a high risk of cancer. Causative mutations are found in DNA mismatch repair genes PMS2, MSH6, MSH2 or MLH1 that are well known in the context of Lynch syndrome. CMMRD follows an autosomal recessive inheritance trait and is characterized by childhood brain tumors and hematological malignancies as well as gastrointestinal cancer in the second and third decades of life. There is a high risk of multiple cancers, occurring synchronously and metachronously. In general, the prognosis is poor. About one third of CMMRD patients develop hematological malignancies as primary (sometimes the only) malignancy or as secondary neoplasm. T-cell non-Hodgkin lymphomas, mainly of mediastinal origin, are the most frequent hematological malignancies. Besides malignant diseases, non-neoplastic features are frequently observed, e.g. café-au-lait spots sometimes resembling neurofibromatosis type I, hypopigmented skin lesions, numerous adenomatous polyps, multiple pilomatricomas, or impaired immunoglobulin class switch recombination. Within the present review, we summarize previously published CMMRD patients with at least one hematological malignancy, provide an overview of steps necessary to substantiate the diagnosis of CMMRD, and refer to the recent most relevant literature. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells.

    Science.gov (United States)

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro

    2014-11-30

    Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis.

  1. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    Science.gov (United States)

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  2. Repair of traumatized mammalian hair cells via sea anemone repair proteins.

    Science.gov (United States)

    Tang, Pei-Ciao; Smith, Karen Müller; Watson, Glen M

    2016-08-01

    Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea. © 2016. Published by The Company of Biologists Ltd.

  3. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    International Nuclear Information System (INIS)

    Merkle, Thomas J.; O'Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H.

    2004-01-01

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage

  4. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, Thomas J.; O' Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H

    2004-10-04

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage.

  5. Regulation of DNA repair by parkin

    International Nuclear Information System (INIS)

    Kao, Shyan-Yuan

    2009-01-01

    Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson's disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.

  6. Mismatch repair deficiency commonly precedes adenoma formation in Lynch Syndrome-Associated colorectal tumorigenesis.

    Science.gov (United States)

    Sekine, Shigeki; Mori, Taisuke; Ogawa, Reiko; Tanaka, Masahiro; Yoshida, Hiroshi; Taniguchi, Hirokazu; Nakajima, Takeshi; Sugano, Kokichi; Yoshida, Teruhiko; Kato, Mamoru; Furukawa, Eisaku; Ochiai, Atsushi; Hiraoka, Nobuyoshi

    2017-08-01

    Lynch syndrome is a cancer predisposition syndrome caused by germline mutations in mismatch repair (MMR) genes. MMR deficiency is a ubiquitous feature of Lynch syndrome-associated colorectal adenocarcinomas; however, it remains unclear when the MMR-deficient phenotype is acquired during tumorigenesis. To probe this issue, the present study examined genetic alterations and MMR statuses in Lynch syndrome-associated colorectal adenomas and adenocarcinomas, in comparison with sporadic adenomas. Among the Lynch syndrome-associated colorectal tumors, 68 of 86 adenomas (79%) and all adenocarcinomas were MMR-deficient, whereas all the sporadic adenomas were MMR-proficient, as determined by microsatellite instability testing and immunohistochemistry for MMR proteins. Sequencing analyses identified APC or CTNNB1 mutations in the majority of sporadic adenomas (58/84, 69%) and MMR-proficient Lynch syndrome-associated adenomas (13/18, 72%). However, MMR-deficient Lynch syndrome-associated adenomas had less APC or CTNNB1 mutations (25/68, 37%) and frequent frameshift RNF43 mutations involving mononucleotide repeats (45/68, 66%). Furthermore, frameshift mutations affecting repeat sequences constituted 14 of 26 APC mutations (54%) in MMR-deficient adenomas whereas these frameshift mutations were rare in MMR-proficient adenomas in patients with Lynch syndrome (1/12, 8%) and in sporadic adenomas (3/52, 6%). Lynch syndrome-associated adenocarcinomas exhibited mutation profiles similar to those of MMR-deficient adenomas. Considering that WNT pathway activation sufficiently drives colorectal adenoma formation, the distinct mutation profiles of WNT pathway genes in Lynch syndrome-associated adenomas suggest that MMR deficiency commonly precedes adenoma formation.

  7. Priming of microglia in a DNA-repair deficient model of accelerated aging.

    Science.gov (United States)

    Raj, Divya D A; Jaarsma, Dick; Holtman, Inge R; Olah, Marta; Ferreira, Filipa M; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M; de Waard, Monique C; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L; Laman, Jon D; de Haan, Gerald; Biber, Knut P H; Hoeijmakers, Jan H J; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2014-09-01

    Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  9. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  10. DNA repair in murine embryonic stem cells and differentiated cells

    International Nuclear Information System (INIS)

    Tichy, Elisia D.; Stambrook, Peter J.

    2008-01-01

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells

  11. Transplantation of Gene-Edited Hepatocyte-like Cells Modestly Improves Survival of Arginase-1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    2018-03-01

    Full Text Available Progress in gene editing research has been accelerated by utilizing engineered nucleases in combination with induced pluripotent stem cell (iPSC technology. Here, we report transcription activator-like effector nuclease (TALEN-mediated reincorporation of Arg1 exons 7 and 8 in iPSCs derived from arginase-1-deficient mice possessing Arg1Δ alleles lacking these terminal exons. The edited cells could be induced to differentiate into hepatocyte-like cells (iHLCs in vitro and were subsequently used for transplantation into our previously described (Sin et al., PLoS ONE 2013 tamoxifen-inducible Arg1-Cre arginase-1-deficient mouse model. While successful gene-targeted repair was achieved in iPSCs containing Arg1Δ alleles, only minimal restoration of urea cycle function could be observed in the iHLC-transplanted mice compared to control mice, and survival in this lethal model was extended by up to a week in some mice. The partially rescued phenotype may be due to inadequate regenerative capacity of arginase-1-expressing cells in the correct metabolic zones. Technical hurdles exist and will need to be overcome for gene-edited iPSC to iHLC rescue of arginase-1 deficiency, a rare urea cycle disorder.

  12. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

    Science.gov (United States)

    Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2007-12-01

    Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.

  13. DNA Mismatch Repair Deficiency Promotes Genomic Instability in a Subset of Papillary Thyroid Cancers.

    Science.gov (United States)

    Javid, Mahsa; Sasanakietkul, Thanyawat; Nicolson, Norman G; Gibson, Courtney E; Callender, Glenda G; Korah, Reju; Carling, Tobias

    2018-02-01

    Efficient DNA damage repair by MutL-homolog DNA mismatch repair (MMR) enzymes, MLH1, MLH3, PMS1 and PMS2, are required to maintain thyrocyte genomic integrity. We hypothesized that persistent oxidative stress and consequent transcriptional dysregulation observed in thyroid follicles will lead to MMR deficiency and potentiate papillary thyroid tumorigenesis. MMR gene expression was analyzed by targeted microarray in 18 papillary thyroid cancer (PTC), 9 paracarcinoma normal thyroid (PCNT) and 10 normal thyroid (NT) samples. The findings were validated by qRT-PCR, and in follicular thyroid cancers (FTC) and follicular thyroid adenomas (FTA) for comparison. FOXO transcription factor expression was also analyzed. Protein expression was assessed by immunohistochemistry. Genomic integrity was evaluated by whole-exome sequencing-derived read-depth analysis and Mann-Whitney U test. Clinical correlations were assessed using Fisher's exact and t tests. Microarray and qRT-PCR revealed reduced expression of all four MMR genes in PTC compared with PCNT and of PMS2 compared with NT. FTC and FTA showed upregulation in MLH1, MLH3 and PMS2. PMS2 protein expression correlated with the mRNA expression pattern. FOXO1 showed lower expression in PMS2-deficient PTCs (log2-fold change -1.72 vs. -0.55, U = 11, p clinical characteristics. MMR deficiency, potentially promoted by FOXO1 suppression, may explain the etiology for PTC development in some patients. FTC and FTA retain MMR activity and are likely caused by a different tumorigenic pathway.

  14. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  15. Induced repair and mutagenesis in animal cells

    International Nuclear Information System (INIS)

    Takimoto, Koichi

    1981-01-01

    Induced repair and mutagenesis of animal cells against UV were studied in contrast with SOS repair of E. coli primarily by the use of viruses. Since UV-enhanced reactivation is a phenomenon similar to UV-reactivation (mutagenesis) and the presence of lesion bypass synthsis has been suggested, UV-enhanced reactivation has several common aspects with SOS reactivation of E. coli. However, correlation is not necessarily noted between increase in the viral survival rate and mutagenesis, nor do protease blockers exert any effect. Therefore, SOS repair of E. coli may have different mechansms from induced repair and mutagenesis in animal cells. (Ueda, J.)

  16. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  17. Rhabdomyosarcoma in patients with constitutional mismatch-repair-deficiency syndrome.

    Science.gov (United States)

    Kratz, C P; Holter, S; Etzler, J; Lauten, M; Pollett, A; Niemeyer, C M; Gallinger, S; Wimmer, K

    2009-06-01

    Biallelic germline mutations in the mismatch repair genes MLH1, MSH2, MSH6 or PMS2 cause a recessive childhood cancer syndrome characterised by early-onset malignancies and signs reminiscent of neurofibromatosis type 1 (NF1). Alluding to the underlying genetic defect, we refer to this syndrome as constitutional mismatch repair-deficiency (CMMR-D) syndrome. The tumour spectrum of CMMR-D syndrome includes haematological neoplasias, brain tumours and Lynch syndrome-associated tumours. Other tumours, such as neuroblastoma, Wilm tumour, ovarian neuroectodermal tumour or infantile myofibromatosis, have so far been found only in individual cases. We analysed two consanguineous families that had members with suspected CMMR-D syndrome who developed rhabdomyosarcoma among other neoplasias. In the first family, we identified a pathogenic PMS2 mutation for which the affected patient was homozygous. In family 2, immunohistochemistry analysis showed isolated loss of PMS2 expression in all tumours in the affected patients, including rhabdomyosarcoma itself and the surrounding normal tissue. Together with the family history and microsatellite instability observed in one tumour this strongly suggests an underlying PMS2 alteration in family 2 also. Together, these two new cases show that rhabdomyosarcoma and possibly other embryonic tumours, such as neuroblastoma and Wilm tumour, belong to the tumour spectrum of CMMR-D syndrome. Given the clinical overlap of CMMR-D syndrome with NF1, we suggest careful examination of the family history in patients with embryonic tumours and signs of NF1 as well as analysis of the tumours for loss of one of the mismatch repair genes and microsatellite instability. Subsequent mutation analysis will lead to a definitive diagnosis of the underlying disorder.

  18. Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Boyd, J.B.; Setlow, R.B.

    1976-01-01

    Mutants of Drosophila melanogaster, with suspected repair deficiencies, were analyzed for their capacity to repair damage induced by x-rays, and uv radiation. Analysis was performed on cell cultures derived from embryos of homozygous mutant stocks. Postreplication repair following uv radiation has been analyzed in mutant stocks derived from a total of ten complementation groups. Cultures were irradiated, pulse-labeled, and incubated in the dark prior to analysis by alkaline sucrose gradient centrifugation. Kinetics of the molecular weight increase in newly synthesized DNA were assayed after cells had been incubated in the presence or absence of caffeine. Two separate pathways of postreplication repair have been tentatively identified by mutants derived from four complementation groups. The proposed caffeine sensitive pathway (CAS) is defined by mutants which also disrupt meiosis. The second pathway (CIS) is caffeine insensitive and is not yet associated with meiotic functions. All mutants deficient in postreplication repair are also sensitive to nitrogen mustard. The mutants investigated display a normal capacity to repair single-strand breaks induced in DNA by x-rays, although two may possess a reduced capacity to repair damage caused by localized incorporation of high specific activity thymidine- 3 H. The data have been employed to construct a model for repair of uv-induced damage in Drosophila DNA. Implications of the model for DNA repair in mammals are discussed

  19. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents.

    Science.gov (United States)

    Bodo, Sahra; Colas, Chrystelle; Buhard, Olivier; Collura, Ada; Tinat, Julie; Lavoine, Noémie; Guilloux, Agathe; Chalastanis, Alexandra; Lafitte, Philippe; Coulet, Florence; Buisine, Marie-Pierre; Ilencikova, Denisa; Ruiz-Ponte, Clara; Kinzel, Miriam; Grandjouan, Sophie; Brems, Hilde; Lejeune, Sophie; Blanché, Hélène; Wang, Qing; Caron, Olivier; Cabaret, Odile; Svrcek, Magali; Vidaud, Dominique; Parfait, Béatrice; Verloes, Alain; Knappe, Ulrich J; Soubrier, Florent; Mortemousque, Isabelle; Leis, Alexander; Auclair-Perrossier, Jessie; Frébourg, Thierry; Fléjou, Jean-François; Entz-Werle, Natacha; Leclerc, Julie; Malka, David; Cohen-Haguenauer, Odile; Goldberg, Yael; Gerdes, Anne-Marie; Fedhila, Faten; Mathieu-Dramard, Michèle; Hamelin, Richard; Wafaa, Badre; Gauthier-Villars, Marion; Bourdeaut, Franck; Sheridan, Eamonn; Vasen, Hans; Brugières, Laurence; Wimmer, Katharina; Muleris, Martine; Duval, Alex

    2015-10-01

    Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  1. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  2. Influence of a uvrD mutation on survival and repair of X-irradiated Escherichia coli K-12 cells

    International Nuclear Information System (INIS)

    Schueren, E. van der; Youngs, D.A.; Smith, K.C.

    1977-01-01

    The presence of a uvrD mutation increased the X-ray sensitivities of E.coli wild-type and polA strains, but had no effect on the sensitivities of recA and recB strains, and little effect on a lexA strain. Incubation of irradiated cells in medium containing 2,4-dinitrophenol or chloramphenicol decreased the survival of wild-type and uvrD cells, but had no effect on the survival of recA, recB and lexA strains. Alkaline sucrose gradient sedimentation studies indicated that the uvrD strain is deficient in the growth-medium-dependent (Type III) repair of DNA single-strand breaks. These results indicate that the uvrD mutation inhibits certain rec + lex + -dependent repair processes, including the growth-medium-dependent (Type III) repair of X-ray-induced DNA single-strand breaks, but does not inhibit other rec + lex + -dependent processes that are sensitive to 2,4-dinitrophenol and chloramphenicol. (author)

  3. Influence of a uvrD mutation on survival and repair of x-irradiated Escherichia coli K-12 cells

    Energy Technology Data Exchange (ETDEWEB)

    van der Schueren, E; Youngs, D A; Smith, K C [Stanford Univ., Calif. (USA). Dept. of Radiology

    1977-06-01

    The presence of a uvrD mutation increased the x-ray sensitivities of E.coli wild-type and polA strains, but had no effect on the sensitivities of recA and recB strains, and little effect on a lexA strain. Incubation of irradiated cells in medium containing 2,4-dinitrophenol or chloramphenicol decreased the survival of wild-type and uvrD cells, but had no effect on the survival of recA, recB and lexA strains. Alkaline sucrose gradient sedimentation studies indicated that the uvrD strain is deficient in the growth-medium-dependent (Type III) repair of DNA single-strand breaks. These results indicate that the uvrD mutation inhibits certain rec/sup +/lex/sup +/-dependent repair processes, including the growth-medium-dependent (Type III) repair of x-ray-induced DNA single-strand breaks, but does not inhibit other rec/sup +/lex/sup +/-dependent processes that are sensitive to 2,4-dinitrophenol and chloramphenicol.

  4. Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells.

    Science.gov (United States)

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C; Dahiya, Rajvir; Tanaka, Yuichiro

    2015-06-30

    DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells.

  5. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  6. The Mechanism of Nucleotide Excision Repair-Mediated UV-Induced Mutagenesis in Nonproliferating Cells

    Science.gov (United States)

    Kozmin, Stanislav G.; Jinks-Robertson, Sue

    2013-01-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. PMID:23307894

  7. Restoration of u.v.-induced excision repair in Xeroderma D cells transfected with the denV gene of bacteriophage T4

    International Nuclear Information System (INIS)

    Arrand, J.E.; Squires, S.; Bone, N.M.; Johnson, R.T.

    1987-01-01

    The heritable DNA repair defect in human Xeroderma D cells, resulting in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for dominant marker plus resistance to killing by u.v. light, were shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation were correlated with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. Results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell. (author)

  8. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  9. Radioimmunoassay studies on repair of ultraviolet damaged DNA in cultured animal cells

    International Nuclear Information System (INIS)

    Yatani, Ryuichi; Tohgo, Yukihiro; Kunishima, Nobuyoshi.

    1975-01-01

    UV (ultraviolet) damaged DNA and its repair of various cultured animal cells were observed by radioimmunoassay using anti-serum against the UV irradiation induced heat-degenerated DNA. There is some difference among the cells of used animals according to their DNA repairabilities. The cells were divided into four groups according to the existence or strength of their repairabilities. 1) excision repair type: cells of men and chimpanzees. 2) photoreactivation type: cells derived from Tachydromus tachydromoides and chicks. 3) photoreactivation with excision repair: cells of rats, kangaroos and mosquitos. 4) non-excision repair type: cells of mice, Meriones and rats. Animal cells have plural types of repair. Main types of repair will differ according to the kind of animals. (Ichikawa, K.)

  10. Regulation of DNA repair processes in mammalian cell

    International Nuclear Information System (INIS)

    Bil'din, V.N.; Sergina, T.B.; Zhestyanikov, V.D.

    1992-01-01

    A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase α and β (aphidicolin) and DNA polymerase β (2', 3'-dideoxythjymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gy) or by γ-ray irradiation (150 Gy) is more sensitive to aphidicolin and mitogen-simulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase α

  11. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  12. Programmed Death Ligand 1 Expression Among 700 Consecutive Endometrial Cancers: Strong Association With Mismatch Repair Protein Deficiency.

    Science.gov (United States)

    Li, Zaibo; Joehlin-Price, Amy S; Rhoades, Jennifer; Ayoola-Adeola, Martins; Miller, Karin; Parwani, Anil V; Backes, Floor J; Felix, Ashley S; Suarez, Adrian A

    2018-01-01

    This study aims to determine the prevalence of programmed death ligand 1 (PD-L1) expression in endometrial carcinoma (EC) and determine clinical and pathological associations. Immunohistochemistry for PD-L1 was performed on sections of a triple-core tissue microarray of 700 ECs. Positive PD-L1 expression, defined as 1% of cells staining positive, was evaluated in tumor and stromal compartments. Using age-adjusted logistic regression, we estimated odds ratios and 95% confidence intervals for associations between PD-L1 expression (overall and by staining compartment) with clinical and tumor characteristics. Kaplan-Meier plots and log-rank tests were used to evaluate associations between PD-L1 expression and EC-specific survival. PD-L1 expression was observed in 100 cases (14.3%), including 27 (3.9%) with expression in tumor cells only, 35 (5.0%) with expression in both tumor cells and stroma, and 38 (5.4%) with expression in stroma only. Expression was observed in ECs of different histologic types. Tumors characterized by loss of mismatch repair proteins were significantly associated with tumoral PD-L1 expression (P < 0.0001), but not with stromal PD-L1 expression. Both tumoral and stromal PD-L1 expressions were associated with high-grade endometrioid histology, nonendometrioid histology, and lymphovascular space invasion. We observed no significant associations between PD-L1 expression and EC-specific survival. PD-L1 is expressed in a significant proportion of EC and is associated with mismatch repair deficiency, potentially representing a mechanism of tumor immune evasion and a therapeutic target in EC.

  13. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  14. DNA-radiosensitivity and repair in mammolian cells

    International Nuclear Information System (INIS)

    Proskuryakov, S.Ya.; Ivannik, B.P.; Ryabchenko, N.I.

    1979-01-01

    Determination was made of the formation and repair of single-stranded DNA breaks (SB) in cells of rat thymus and liver and Ehrlich's ascites tumor (EAT) with the use of the method of low-gradient viscosimetry of alkaline cell lysates. The radiochemical yield of single-stranded breaks (Gsub(SB)) induced by irradiation of animals is 41.2 eV/break for hepatocytes, 96.8 eV/break, for thymocytes, and 129.7 eV/break, for EAT cells. The half-recovery time of single-stranded DNA breaks for cells of thymus and EAT exposed in vivo is 16.0 and 5.1 s -1 , correspondingly. In hepatocytes exposed in vivo and in vitro no repairs occurs for 3 h. Under conditions of inhibition of SB repair, when suspensions of thymocytes and hepatocytes were exposed in vitro at 4 deg C, Gsub(SB) is 35.5 and 38.7 eV/break, respectively. The analysis of the data obtained prompts the conclusion that under in vivo conditions, there is a correlation between DNA radiosensitivity and the rate of repair processes

  15. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome.

    Science.gov (United States)

    Pai, Rish K; Dudley, Beth; Karloski, Eve; Brand, Randall E; O'Callaghan, Neil; Rosty, Christophe; Buchanan, Daniel D; Jenkins, Mark A; Thibodeau, Stephen N; French, Amy J; Lindor, Noralane M; Pai, Reetesh K

    2018-06-08

    Lynch syndrome is the most common form of hereditary colorectal carcinoma. However, establishing the diagnosis of Lynch syndrome is challenging, and ancillary studies that distinguish between sporadic DNA mismatch repair (MMR) protein deficiency and Lynch syndrome are needed, particularly when germline mutation studies are inconclusive. The aim of this study was to determine if MMR protein-deficient non-neoplastic intestinal crypts can help distinguish between patients with and without Lynch syndrome. We evaluated the expression of MMR proteins in non-neoplastic intestinal mucosa obtained from colorectal surgical resection specimens from patients with Lynch syndrome-associated colorectal carcinoma (n = 52) and patients with colorectal carcinoma without evidence of Lynch syndrome (n = 70), including sporadic MMR protein-deficient colorectal carcinoma (n = 30), MMR protein proficient colorectal carcinoma (n = 30), and "Lynch-like" syndrome (n = 10). MMR protein-deficient non-neoplastic colonic crypts were identified in 19 of 122 (16%) patients. MMR protein-deficient colonic crypts were identified in 18 of 52 (35%) patients with Lynch syndrome compared to only 1 of 70 (1%) patients without Lynch syndrome (p Lynch-like" syndrome and harbored two MSH2-deficient non-neoplastic colonic crypts. MMR protein-deficient non-neoplastic colonic crypts were not identified in patients with sporadic MMR protein-deficient or MMR protein proficient colorectal carcinoma. Our findings suggest that MMR protein-deficient colonic crypts are a novel indicator of Lynch syndrome, and evaluation for MMR protein-deficient crypts may be a helpful addition to Lynch syndrome diagnostics.

  16. Concepts, problems and the role of modifying agents in the relationship between recovery of cells' survival ability and mechanisms of repair of radiation lesions

    International Nuclear Information System (INIS)

    Orr, J.S.

    1984-01-01

    The two strands of the problem are the shapes and changes with time of cell survival curves on the one hand and the responses of cell constituents to radiation on the other. Evidence of correlations between results of studies of these two types of phenomena under the influence of a wide range of modifying agents is required to establish mechanisms. Recovery may be defined as referring to the whole cell, while repair should be regarded as a process carried out by one substance on another. The degrees of usefulness and possible deficiencies of a multi-hit/target model and a repair model for explaining cell survival curves and cell recovery are compared in a range of circumstances. A fully satisfactory model is not yet available. (author)

  17. Transformation of ultraviolet-irradiated human fibroblasts by simian virus 40 is enhanced by cellular DNA repair functions

    International Nuclear Information System (INIS)

    Hall, J.D.

    1981-01-01

    Human fibroblasts irradiated with ultraviolet light were either tested for survival (colony formation) or infected with simian virus 40 and examined for transformation (foci formation). For normal cell cultures, the fractions of surviving colonies which were also transformed increased with increasing irradiation dose. In contrast, little increase in the transformation of ultraviolet-irradiated repair-deficient (xeroderma pigmentosum and xeroderma pigmentosum variant) cells was observed. Similar experiments with xeroderma pigmentosum variant cells treated with caffeine following irradiation indicated that, under these conditions, the deficient cells produced more transformants among the survivors of ultraviolet irradiation than did unirradiated cells. These results suggest (1) that DNA repair functions, not DNA damage per se, are required for enhanced viral transformation in normal cells; (2) that functions involved in excision repair and functions needed for replication of ultraviolet-damaged DNA appear necessary for this stimulation; and (3) that blocking DNA replication in ultraviolet-irradiated xeroderma pigmentosum variant cells by caffeine enhances viral transformation. (Auth.)

  18. Repetitious nature of repaired DNA in mammalian cells

    International Nuclear Information System (INIS)

    1978-01-01

    The report consists of three appendices, as follows: summary of preliminary studies of the comparative DNA repair in normal lymphoblastoid and Burkitt's lymphoma cell lines; nonuniform reassociation of human lymphoblastoid cell DNA repair replicated following methyl methane sulfonate treatment; and preliminary DNA single-strand breakage studies in the L5178Y cell line

  19. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  20. ATM is required for the repair of Topotecan-induced replication-associated double-strand breaks

    International Nuclear Information System (INIS)

    Köcher, Sabrina; Spies-Naumann, Anja; Kriegs, Malte; Dahm-Daphi, Jochen; Dornreiter, Irena

    2013-01-01

    Purpose: DNA replication is a promising target for anti-cancer therapies. Therefore, the understanding of replication-associated DNA repair mechanisms is of great interest. One key factor of DNA double-strand break (DSB) repair is the PIK kinase Ataxia-Telangiectasia Mutated (ATM) but it is still unclear whether ATM is involved in the repair of replication-associated DSBs. Here, we focused on the involvement of ATM in homology-directed repair (HDR) of indirect DSBs associated with replication. Material and methods: Experiments were performed using ATM-deficient and -proficient human cells. Replication-associated DSBs were induced with Topotecan (TPT) and compared with γ-irradiation (IR). Cell survival was measured by clonogenic assay. Overall DSB repair and HDR were evaluated by detecting residual γH2AX/53BP1 and Rad51 foci, respectively. Cell cycle distribution was analysed by flow cytometry and protein expression by Western blot. Results: ATM-deficiency leads to enhanced numbers of residual DSBs, resulting in a pronounced S/G2-block and decreased survival upon TPT-treatment. In common with IR, persisting Rad51 foci were detected following TPT-treatment. Conclusions: These results demonstrate that ATM is essentially required for the completion of HR-mediated repair of TPT-induced DSBs formed indirectly at replication forks

  1. Repair processes for photochemical damage in mammalian cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1974-01-01

    Repair processes for photochemical damage in cells following uv irradiation are reviewed. Cultured fibroblast cells from human patients with xeroderma pigmentosum were used as an example to illustrate aspects of repair of injuries to DNA and proteins. (250 references) (U.S.)

  2. DNA-repair synthesis in ataxia telangiectasia lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, M.D.; Houldsworth, J.; Lavin, M.F. (Queensland Univ., Brisbane (Australia). Dept. of Biochemistry)

    1981-12-01

    The ability of a number of Epstein-Barr virus-transformed lymphoblastoid cells from ataxia telangiectasia (AT) patients to repair ..gamma..-radiation damage to DNA was determined. All of these AT cells were previously shown to be hypersensitive to ..gamma..-radiation. Two methods were used to determine DNA-repair synthesis: isopycnic gradient analysis and a method employing hydroxyurea to inhibit semiconservative DNA synthesis. Control, AT heterozygote and AT homozygote cells were demonstrated to have similar capacities for repair of radiation damage to DNA. In addition at high radiation doses (10-40 krad) the extent of inhibition of DNA synthesis was similar in the different cell types.

  3. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  4. A 30-Year-Old Man with Three Primary Malignancies: A Case of Constitutional Mismatch Repair Deficiency

    OpenAIRE

    Rengifo-Cam, William; Jasperson, Kory; Garrido-Laguna, Ignacio; Colman, Howard; Scaife, Courtney; Samowitz, Wade; Samadder, N. Jewel

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which clinical manifestations, genetic screening, and cancer prevention strategies are limited. We report a case of CMMRD presenting with metachronous colorectal cancer and brain cancer. Oncologists and gastroenterologists should be aware of the CMMRD syndrome as a rare cause of very early-onset colorectal cancer.

  5. A 30-Year-Old Man with Three Primary Malignancies: A Case of Constitutional Mismatch Repair Deficiency.

    Science.gov (United States)

    Rengifo-Cam, William; Jasperson, Kory; Garrido-Laguna, Ignacio; Colman, Howard; Scaife, Courtney; Samowitz, Wade; Samadder, N Jewel

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which clinical manifestations, genetic screening, and cancer prevention strategies are limited. We report a case of CMMRD presenting with metachronous colorectal cancer and brain cancer. Oncologists and gastroenterologists should be aware of the CMMRD syndrome as a rare cause of very early-onset colorectal cancer.

  6. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    Science.gov (United States)

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  8. Evidence for three types of x-ray damage repair in yeast and sensitivity of totally repair deficient strains to sunlight

    International Nuclear Information System (INIS)

    Game, J.C.; Schild, D.; Mortimer, R.K.

    1987-01-01

    Mutants of yeast that confer sensitivity to x-rays are known to fall into two epistasis groups, called here the RAD51 and RAD18 groups, which are each thought to control a different type of x-ray repair. They examine here the role of genes in a third repair pathways in x-ray repair. RAD1 and RAD3 are known to be important in the repair of pyrimidine dimers after uv-irradiation. They find that these genes can also play an important role in x-ray repair, but that this role is only exposed when both the other pathways of x-ray repair are blocked. Double mutants blocked in the RAD51 and RAD18 pathways are significantly less x-ray sensitive than triple mutants blocked in these pathways but also mutant in either the RAD1 or RAD3 genes. In a related experiment, they tested the importance of DNA repair in nature by determining the sensitivity to natural unfiltered sunlight of a strain lacking all known DNA repair pathways. They constructed a quadruple mutant strain containing RAD1-1, RAD18-2, RAD51-1 and PHR1-1. The latter mutation blocks the cell's ability to photoreactivate uv damage. They found that this strain was so sensitive to sunlight that less than three seconds' exposure would cause an average of one lethal hit per cell, and survival was less than 2% after ten seconds' exposure. Wild type yeast at sea level showed no killing after thirty minutes. the quadruple mutant is approximately one thousand times more sensitive to sunlight than the related wild type

  9. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid.

    Science.gov (United States)

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-07-08

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee.

  10. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  11. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  12. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y; Kano, Y; Paul, P; Goto, K; Yamamoto, K [Kobe Univ. (Japan). School of Medicine

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD/sup +/, suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation.

  13. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    International Nuclear Information System (INIS)

    Fujiwara, Yoshisada; Kano, Yoshio; Paul, P.; Goto, Kaoru; Yamamoto, Kazuo

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD + , suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation. (J.P.N.)

  14. Excision and crosslink repair of DNA and sister chromatid exchanges in cultured human fibroblasts with different repair capacities

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y.; Kano, Y.; Paul, P.; Goto, K.; Yamamoto, K. (Kobe Univ. (Japan). School of Medicine)

    1981-01-01

    Xeroderma pigmentosum (XP) groups A to G lacked the initial stage of ultraviolet (UV) excision repair in the order of A = G > C > D > E asymptotically equals F, while the XP variant was weakly defective in the later repair steps. Killing sensitivities were in the orders of A >= G > D > C > E asymptotically equals F asymptotically equals variant > normal to UV, A = G > D > F > C = E > variant > normal to 4-nitroquinoline-1-oxide (4NQO), and A > C > D = E = F = variant > G = normal to decarbamoyl mitomycin-C(DCMC). The induced sister chromatid exchange (SCE) frequency was unrelated to the extent of repair deficiency. The SCE induction rate was consistently 3 - 6 fold higher by these UV-like mutagens in XP group A cells than in normal cells. However, repair-proficient Cockayne's syndrome (CS) cells showed a higher SCE induction by UV, which was normalized by NAD/sup +/, suggesting that chromatin lesions as well as DNA damage contribute to SCE. Two-step crosslink repair involves a first rapid half-excision and a second slow nucleotide-excision repair. Fanconi's anemia (FA) cells had an impaired first half-excision and were supersensitive to MC, but not to UV and DCMC. The SCE frequency induced by MC (1 hr) was higher in FA cells than in normal cells despite their normal response to DCMC, and vice versa in XP cells. FA cells lacked the first rapid decline and showed higher remaining SCEs. Thus, part of the crosslink seems to lead to SCE formation. Caffeine synergistically elevated UV-induced SCEs, but not UV induced mutations in V79 cells, implying that SCE may not necessarily involve mutation.

  15. RTEL1 contributes to DNA replication and repair and telomere maintenance.

    Science.gov (United States)

    Uringa, Evert-Jan; Lisaingo, Kathleen; Pickett, Hilda A; Brind'Amour, Julie; Rohde, Jan-Hendrik; Zelensky, Alex; Essers, Jeroen; Lansdorp, Peter M

    2012-07-01

    Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic stem cells to examine the function of mRtel1 in replication, DNA repair, recombination, and telomere maintenance. mRtel1-deficient mouse embryonic stem cells showed sensitivity to a range of DNA-damaging agents, highlighting its role in replication and genome maintenance. Deletion of mRtel1 increased the frequency of sister chromatid exchange events and suppressed gene replacement, demonstrating the involvement of the protein in homologous recombination. mRtel1 localized transiently at telomeres and is needed for efficient telomere replication. Of interest, in the absence of mRtel1, telomeres in embryonic stem cells appeared relatively stable in length, suggesting that mRtel1 is required to allow extension by telomerase. We propose that mRtel1 is a key protein for DNA replication, recombination, and repair and efficient elongation of telomeres by telomerase.

  16. Mismatch repair protein deficient endometrioid adenocarcinomas, metastasizing to adrenal gland and lymph nodes: Unusual cases with diagnostic implications

    Directory of Open Access Journals (Sweden)

    Bharat Rekhi

    2015-01-01

    Full Text Available Recently, certain endometrial carcinomas have been found to be associated with mismatch repair (MMR protein defects/deficiency. A 39-year-old female presented with cough, decreased appetite and significant weight loss since 2 months. Earlier, she had undergone total abdominal hysterectomy with bilateral salpingo-oophorectomy (TAH-BSO for endometrioid adenocarcinoma. Imaging disclosed an 8 cm-sized adrenal mass that was surgically excised. Histopathology of the adrenal tumor, endocervical tumor, and endometrial biopsy revealed Federation of Gynecology and Obstetrics (FIGO Grade II to III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were positive for cytokeratin 7, epithelial membrane antigen, PAX8, MLH1 and PMS2 while negative for estrogen receptor (ER, progesterone receptor (PR, MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. A 34-year-old lady presented with vaginal bleeding since 9 months. She underwent TAH-BSO, reported as FIGO Grade III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were negative for ER, PR, MLH1, and PMS2 while positive for MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. However, she developed multiple nodal and pericardial metastases and succumbed to the disease within a year post-diagnosis. Certain high-grade endometrioid adenocarcinomas occurring in younger women are MMR protein deficient and display an aggressive clinical course. Adrenal metastasis in endometrial carcinomas is rare.

  17. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    Science.gov (United States)

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an

  18. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    Science.gov (United States)

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  19. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  20. DNA polymerase I-mediated ultraviolet repair synthesis in toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Dorson, J.W.; Moses, R.E.

    1978-01-01

    DNA synthesis after ultraviolet irradiation is low in wild type toluene-treated cells. The level of repair incorporation is greater in strains deficient in DNA polymerase I. The low level of repair synthesis is attributable to the concerted action of DNA polymerase I and polynucleotide ligase. Repair synthesis is stimulated by blocking ligase activity with the addition of nicotinamide mononucleotide (NMN) or the use of a ligase temperature-sensitive mutant. NMN stimulation is specific for DNA polymerase I-mediated repair synthesis, as it is absent in isogenic strains deficient in the polymerase function or the 5' yields 3' exonuclease function associated with DNA polymerase I. DNA synthesis that is stimulated by NMN is proportional to the ultraviolet exposure at low doses, nonconservative in nature, and is dependent on the uvrA gene product but is independent of the recA gene product. These criteria place this synthesis in the excision repair pathway. The NMN-stimulated repair synthesis requires ATP and is N-ethylmaleimide-resistant. The use of NMN provides a direct means for evaluating the involvement of DNA polymerase I in excision repair

  1. Radiation protection of glutathion-deficient cells by thiol-containing compounds

    International Nuclear Information System (INIS)

    Ehdgren, M.; Modig, Kh.; Revez, L.

    1983-01-01

    Results of the experiments on the effect of aminothiols (under conditions of hypoxia and in the air) on radiation injury of glutathion-deficient human fibroblasts (criterionthe number of single-strand breaks in DNA) have been interpreted in the following way protection with eddogenous and exogenous aminothiols takes place to a great extent due to repair of radiation induced radicals by means of hydrogen loss by SH-group under conditions of competition with oxygen which registers the radiation injury. Repair of in uries formed under aeration conditions is accelerated by endogenoUs and exogenous aminothiols

  2. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  3. Correlation between cell survival and DNA single-strand break repair proficiency in the Chinese hamster ovary cell lines AA8 and EM9 irradiated with 365-nm ultraviolet-A radiation

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, M.E.; Peak, J.G.; Peak, M.J. (Argonne National Lab., IL (USA))

    1991-02-01

    Cell survival parameters and the induction and repair of DNA single-strand breaks were measured in two Chinese hamster ovary cell lines after irradiation with monochromatic UVA radiation of wavelength 365 nm. The radiosensitive mutant cell line EM9 is known to repair ionizing-radiation-induced single-strand breaks (SSB) more slowly than the parent line AA8. EM9 was determined to be 1.7-fold more sensitive to killing by 365-nm radiation than AA8 at the 10% survival level, and EM9 had a smaller shoulder region on the survival curve ({alpha} = 1.76) than AA8 ({alpha} = 0.62). No significant differences were found between the cell lines in the initial yields of SSB induced either by {gamma}-radiation (as determined by alkaline sucrose gradient sedimentation) or by 365-nm UVA (as determined by alkaline elution). For measurement of initial SSB, cells were irradiated at 0.5{sup o}C to minimize DNA repair processes. Rejoining of 365-nm induced SSB was measured by irradiating cells at 0.5{sup o}C, allowing them to repair at 37{sup o}C in full culture medium, and then quantitating the remaining SSB by alkaline elution. The repair of these breaks followed biphasic kinetics in both cell lines. EM9 repaired the breaks more slowly (T{sub 1/2} values of 1.3 and 61.3 min) than did AA8 (T{sub 1/2} values of 0.9 and 53.3 min), and EM9 also left more breaks unrepaired 90 min after irradiation (24% vs 8% for AA8). Thus, the sensitivity of EM9 to 365-nm radiation correlated with its deficiency in repairing DNA lesions revealed as SSB in alkaline elution. These results suggest that DNA may be a critical target in 365-nm induced cellular lethality and that the ability of AA8 and EM9 cells to repair DNA strand breaks may be related to their ability to survive 365-nm radiation. (author).

  4. DNA repair capacity and rate of excision repair in UV-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Inoue, Masao; Takebe, Hiraku.

    1978-01-01

    Repair capacities of five mammalian cell strains were measured by colony-forming ability, HCR of UV-irradiated virus, UDS, pyrimidine dimer excision, and semi-conservative DNA replication. Colony-forming ability of UV-irradiated cells was high for human amnion FL cells and mouse L cells, slightly low for African green monkey CV-1 cells, and extremely low for xeroderma pigmentosum cells. HCR of UV-irradiated Herpes simplex virus was high in CV-1 cells, FL and normal human fibroblast cells, low in both XP and L cells. The amount of UDS was high in FL and normal human fibroblast cells, considerably low in CV-1 cells, and essentially no UDS was observed in XP cells. Rate of UDS after UV-irradiation was slower for CV-1 cells than FL and human fibroblast cells. Rate of the excision of thymine-containing dimers from the acid-insoluble fraction during post-irradiation incubation of the cells was rapid in FL and normal human cells and slow in CV-1 cells, and no excision took place in XP cells. Semi-conservative DNA synthesis was reduced after UV-irradiation in all cell lines, but subsequently recovered in FL, normal human and CV-1 cells. The onset of recovery was 4 h after UV-irradiation for FL and normal human cells, but about 6 h for CV-1 cells. The apparent intermediate repair of CV-1 cells except for HCR may be related to the slow rate of excision repair. ''Patch and cut'' model is more favorable than ''cut and patch'' model to elucidate these results. (auth.)

  5. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra

    International Nuclear Information System (INIS)

    Vreeswijk, Maaike P.G.; Meijers, Caro M.; Giphart-Gassler, Micheline; Vrieling, Harry; Zeeland, Albert A. van; Mullenders, Leon H.F.; Loenen, Wil A.M.

    2009-01-01

    Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C > T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.

  6. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test; Phenotypage de la reparation de l'ADN de lignees Xeroderma pigmentosum, par un test in vitro multiparametrique

    Energy Technology Data Exchange (ETDEWEB)

    Raffin, A.L.

    2009-06-15

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  7. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    Science.gov (United States)

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.

  8. Novel roles for MLH3 deficiency and TLE6-like amplification in DNA mismatch repair-deficient gastrointestinal tumorigenesis and progression.

    Directory of Open Access Journals (Sweden)

    Peng-Chieh Chen

    2008-06-01

    Full Text Available DNA mismatch repair suppresses gastrointestinal tumorgenesis. Four mammalian E. coli MutL homologues heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. To understand the mechanistic contributions of MLH3 and PMS2 in gastrointestinal tumor suppression, we generated Mlh3(-/-;Apc(1638N and Mlh3(-/-;Pms2(-/-;Apc(1638N (MPA mice. Mlh3 nullizygosity significantly increased Apc frameshift mutations and tumor multiplicity. Combined Mlh3;Pms2 nullizygosity further increased Apc base-substitution mutations. The spectrum of MPA tumor mutations was distinct from that observed in Mlh1(-/-;Apc(1638N mice, implicating the first potential role for MLH1/PMS1 in tumor suppression. Because Mlh3;Pms2 deficiency also increased gastrointestinal tumor progression, we used array-CGH to identify a recurrent tumor amplicon. This amplicon contained a previously uncharacterized Transducin enhancer of Split (Tle family gene, Tle6-like. Expression of Tle6-like, or the similar human TLE6D splice isoform in colon cancer cells increased cell proliferation, colony-formation, cell migration, and xenograft tumorgenicity. Tle6-like;TLE6D directly interact with the gastrointestinal tumor suppressor RUNX3 and antagonize RUNX3 target transactivation. TLE6D is recurrently overexpressed in human colorectal cancers and TLE6D expression correlates with RUNX3 expression. Collectively, these findings provide important insights into the molecular mechanisms of individual MutL homologue tumor suppression and demonstrate an association between TLE mediated antagonism of RUNX3 and accelerated human colorectal cancer progression.

  9. Ultraviolet-induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal

    International Nuclear Information System (INIS)

    Parris, C.N.; Kraemer, K.H.

    1993-01-01

    The authors compared the contribution to mutagenesis on Cockayne syndrome (CS) cells of the major class of UV photoproducts, the cyclobutane pyrimidine dimer, to that of other DNA photoproducts by using the mutagenesis shuttle vector pZ189. Lymphoblastoid cell lines from the DNA repair-deficient disorders CS and xeroderma pigmentosum (XP) and a normal line were transfected with UV-treated pZ189. Cyclobutane dimers were selectively removed before transfection by photoreactivation (PR), leaving nondimer photoproducts intact. After UV exposure and replication in CS and XP cells, plasmid survival was abnormally elevated. After PR, plasmid survival increased and mutation frequency in CS cells decreased to normal levels but remained abnormal in XP cells. Sequence analysis of >200 mutant plasmids showed that with CS cells a major mutational hot spot was caused by unrepaired cyclobutane dimers. These data indicate that with both CS and XP cyclobutane dimers are major photoproducts generating reduced plasmid survival and increased mutation frequency. However, unlike XP, CS cells are proficient in repair of nondimer photoproducts. Since XP but not CS patients have a high frequency of UV-induced skin cancers, the data suggest that prevention of UV-induced skin cancers is associated with proficient repair of nondimer photoproducts. 38 refs., 3 figs., 2 tabs

  10. Methotrexate induces DNA damage and inhibits homologous recombination repair in choriocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Xie L

    2016-11-01

    Full Text Available Lisha Xie,1,* Tiancen Zhao,1,2,* Jing Cai,1 You Su,1 Zehua Wang,1 Weihong Dong1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 2Department of Obstetrics and Gynecology, Central Hospital of Wuhan, Wuhan, China *These authors contributed equally to this work Objective: The objective of this study was to investigate the mechanism of sensitivity to methotrexate (MTX in human choriocarcinoma cells regarding DNA damage response. Methods: Two choriocarcinoma cancer cell lines, JAR and JEG-3, were utilized in this study. An MTX-sensitive osteosarcoma cell line MG63, an MTX-resistant epithelial ovarian cancer cell line A2780 and an MTX-resistant cervical adenocarcinoma cell line Hela served as controls. Cell viability assay was carried out to assess MTX sensitivity of cell lines. MTX-induced DNA damage was evaluated by comet assay. Quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of BRCA1, BRCA2, RAD51 and RAD52. The protein levels of γH2AX, RAD 51 and p53 were analyzed by Western blot. Results: Remarkable DNA strand breaks were observed in MTX-sensitive cell lines (JAR, JEG-3 and MG63 but not in MTX-resistant cancer cells (A2780 and Hela after 48 h of MTX treatment. Only in the choriocarcinoma cells, the expression of homologous recombination (HR repair gene RAD51 was dramatically suppressed by MTX in a dose- and time-dependent manner, accompanied with the increase in p53. Conclusion: The MTX-induced DNA strand breaks accompanied by deficiencies in HR repair may contribute to the hypersensitivity to chemotherapy in choriocarcinoma. Keywords: choriocarcinoma, chemotherapy hypersensitivity, DNA double-strand break, RAD51, p53

  11. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice.

    Science.gov (United States)

    Nallanthighal, Sameera; Chan, Cadia; Murray, Thomas M; Mosier, Aaron P; Cady, Nathaniel C; Reliene, Ramune

    2017-10-01

    Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.

  12. RTEL1 contributes to DNA replication and repair and telomere maintenance.

    OpenAIRE

    Uringa, E.-J.; Lisaingo, K.; Pickett, H. A.; Brind'Amour, J.; Rohde, J.-H.; Zelensky, A.; Essers, J.; Lansdorp, P. M.

    2012-01-01

    textabstractTelomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic stem cells to examine the function of mRtel1 in replication, DNA repair, recombination, and...

  13. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  14. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  15. Epigenetic changes of DNA repair genes in cancer.

    Science.gov (United States)

    Lahtz, Christoph; Pfeifer, Gerd P

    2011-02-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  16. Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome).

    Science.gov (United States)

    Buchanan, Daniel D; Rosty, Christophe; Clendenning, Mark; Spurdle, Amanda B; Win, Aung Ko

    2014-01-01

    Carriers of a germline mutation in one of the DNA mismatch repair (MMR) genes have a high risk of developing numerous different cancers, predominantly colorectal cancer and endometrial cancer (known as Lynch syndrome). MMR gene mutation carriers develop tumors with MMR deficiency identified by tumor microsatellite instability or immunohistochemical loss of MMR protein expression. Tumor MMR deficiency is used to identify individuals most likely to carry an MMR gene mutation. However, MMR deficiency can also result from somatic inactivation, most commonly methylation of the MLH1 gene promoter. As tumor MMR testing of all incident colorectal and endometrial cancers (universal screening) is becoming increasingly adopted, a growing clinical problem is emerging for individuals who have tumors that show MMR deficiency who are subsequently found not to carry an MMR gene mutation after genetic testing using the current diagnostic approaches (Sanger sequencing and multiplex ligation-dependent probe amplification) and who also show no evidence of MLH1 methylation. The inability to determine the underlying cause of tumor MMR deficiency in these "Lynch-like" or "suspected Lynch syndrome" cases has significant implications on the clinical management of these individuals and their relatives. When the data from published studies are combined, 59% (95% confidence interval [CI]: 55% to 64%) of colorectal cancers and 52% (95% CI: 41% to 62%) of endometrial cancers with MMR deficiency were identified as suspected Lynch syndrome. Recent studies estimated that colorectal cancer risk for relatives of suspected Lynch syndrome cases is lower than for relatives of those with MMR gene mutations, but higher than for relatives of those with tumor MMR deficiency resulting from methylation of the MLH1 gene promoter. The cause of tumor MMR deficiency in suspected Lynch syndrome cases is likely due to either unidentified germline MMR gene mutations, somatic cell mosaicism, or biallelic somatic

  17. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.

    Science.gov (United States)

    Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L

    2008-09-01

    Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.

  18. Unique DNA repair gene variations and potential associations with the primary antibody deficiency syndromes IgAD and CVID.

    Directory of Open Access Journals (Sweden)

    Steven M Offer

    Full Text Available BACKGROUND: Despite considerable effort, the genetic factors responsible for >90% of the antibody deficiency syndromes IgAD and CVID remain elusive. To produce a functionally diverse antibody repertoire B lymphocytes undergo class switch recombination. This process is initiated by AID-catalyzed deamination of cytidine to uridine in switch region DNA. Subsequently, these residues are recognized by the uracil excision enzyme UNG2 or the mismatch repair proteins MutSalpha (MSH2/MSH6 and MutLalpha (PMS2/MLH1. Further processing by ubiquitous DNA repair factors is thought to introduce DNA breaks, ultimately leading to class switch recombination and expression of a different antibody isotype. METHODOLOGY/PRINCIPAL FINDINGS: Defects in AID and UNG2 have been shown to result in the primary immunodeficiency hyper-IgM syndrome, leading us to hypothesize that additional, potentially more subtle, DNA repair gene variations may underlie the clinically related antibody deficiencies syndromes IgAD and CVID. In a survey of twenty-seven candidate DNA metabolism genes, markers in MSH2, RAD50, and RAD52 were associated with IgAD/CVID, prompting further investigation into these pathways. Resequencing identified four rare, non-synonymous alleles associated with IgAD/CVID, two in MLH1, one in RAD50, and one in NBS1. One IgAD patient carried heterozygous non-synonymous mutations in MLH1, MSH2, and NBS1. Functional studies revealed that one of the identified mutations, a premature RAD50 stop codon (Q372X, confers increased sensitivity to ionizing radiation. CONCLUSIONS: Our results are consistent with a class switch recombination model in which AID-catalyzed uridines are processed by multiple DNA repair pathways. Genetic defects in these DNA repair pathways may contribute to IgAD and CVID.

  19. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair.

  20. Effects of post-treatment incubation on recombinogenesis in incision-proficient and incision-deficient strains of saccharomyces cerevisiae, 2

    International Nuclear Information System (INIS)

    Saeki, Tetsuya; Machida, Isamu

    1991-01-01

    After the photoaddition of mono- and bifunctional furocoumarins to G1 phase cells, most gene conversion and crossing-over occurred without post-irradiation incubation of these cells in incision-proficient strains. In contrast, incision-deficient cells showed marked induction of both recombinational events only after treated cells had been incubated for several hours before selection. These results indicate that when furocoumarins are photoadded to G1 cells, initiation of recombinational events occurs during the same G1 phase in the incision-proficient cells; whereas, it occurs only after post-irradiation DNA replication in incision-deficient cells. The action of the PSO2 gene product specific for the repair of DNA crosslinks in recombination induction is discussed and compared to the actions of the excision repair genes RAD1 and RAD2. (author)

  1. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  2. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    International Nuclear Information System (INIS)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-01-01

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  3. mei-9/sup a/ mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Golino, M.D.; Setlow, R.B.

    1976-01-01

    The mei-9/sup a/ mutant of Drosophila melanogaster, which reduces meiotic recombination in females, is deficient in the excision of uv-induced pyrimidine dimers in both sexes. Assays were performed in primary cultures and established cell lines derived from embryos. An endonuclease preparation from M. luteus, which is specific for pyrimidine dimers, was employed to monitor uv-induced dimers in cellular DNA. The rate of disappearance of endonuclease-sensitive sites from DNA of control cells is 10-20 times faster than that from mei-9/sup a/ cells. The mutant mei-218, which is also deficient in meiotic recombination, removes nuclease-sensitive sites at control rates. The mei-9/sup a/ cells exhibit control levels of photorepair, postreplication repair and repair of single strand breaks. In mei-9 cells DNA synthesis and possibly postreplication repair are weakly sensitive to caffeine. Larvae which are hemizygous for either of the two mutants that define the mei-9 locus are hypersensitive to killing by the mutagens methyl methanesulfonate, nitrogen mustard and 2-acetylaminofluorene. Larvae hemizygous for the mei-218 mutant are insensitive to each of these reagents. These data demonstrate that the mei-9 locus is active in DNA repair of somatic cells. Thus functions involved in meiotic recombination are also active in DNA repair in this higher eukaryote. The results are consistent with the earlier suggestions that the mei-9 locus functions in the exchange events of meiosis. The mei-218 mutation behaves differently in genetic tests and our data suggest its function may be restricted to meiosis. These studies demonstrate that currently recognized modes of DNA repair can be efficiently detected in primary cell cultures derived from Drosophila embryos

  4. Lack of chemically induced mutation in repair-deficient mutants of yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1974-01-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), β-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents. (auth)

  5. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    Science.gov (United States)

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  6. Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Broholm, Christa; Brandt, Claus; Schultz, Ninna S

    2012-01-01

    The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response...... nor proliferation rate was affected. In conclusion, although LIF and LIFR proteins were increased in muscle tissue and myoblasts from diabetic patients, LIF signaling and LIF-stimulated cell proliferation were impaired in diabetic myoblasts, suggesting a novel mechanism by which muscle function......RNA knockdown of suppressor of cytokine signaling (SOCS)3 in myoblast cultures established from healthy individuals and patients with type 2 diabetes. Myoblast proliferation rate was assessed by bromodeoxyuridine incorporation. LIF and LIFR proteins were increased in both muscle tissue and cultured myoblasts...

  7. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Marie, Melanie; Hafner, Sophie; Moratille, Sandra; Vaigot, Pierre; Rigaud, Odile; Martin, Michele T.; Mine, Solene

    2012-01-01

    Fibroblast growth factor 2 (FGF2) is a well-known survival factor. However, its role in DNA repair is poorly documented. The present study was designed to investigate in epidermoid carcinoma cells the potential role of FGF2 in DNA repair. The side population (SP) with cancer stem cell-like properties and the main population (MP) were isolated from human A431 squamous carcinoma cells. Radiation-induced DNA damage and repair were assessed using the alkaline comet assay. FGF2 expression was quantified by enzyme linked immunosorbent assay (ELISA). SP cells exhibited rapid repair of radiation induced DNA damage and a high constitutive level of nuclear FGF2. Blocking FGF2 signaling abrogated the rapid DNA repair. In contrast, in MP cells, a slower repair of damage was associated with low basal expression of FGF2. Moreover, the addition of exogenous FGF2 accelerated DNA repair in MP cells. When irradiated, SP cells secreted FGF2, whereas MP cells did not. FGF2 was found to mediate DNA repair in epidermoid carcinoma cells. We postulate that carcinoma stem cells would be intrinsically primed to rapidly repair DNA damage by a high constitutive level of nuclear FGF2. In contrast, the main population with a low FGF2 content exhibits a lower repair rate which can be increased by exogenous FGF2. (authors)

  8. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Martini

    2011-09-01

    Full Text Available Meiotic DNA double-strand breaks (DSBs initiate crossover (CO recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs. Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs. First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.

  9. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  10. X-ray repair replication in L1210 leukemia cells

    International Nuclear Information System (INIS)

    Lee, Y.C.; Byfield, J.E.; Bennett, L.R.; Chan, P.Y.M.

    1974-01-01

    Repair replication has been studied in detail in mouse L1210 leukemia cells. A method of identifying and quantitating repair replication using a pre- and postradiation block of normal replication with cytosine arabinoside is illustrated. The method derived does not require isolation of DNA per se and appears to be satisfactory for screening for inhibitors of repair replication. Repair replication can be demonstrated at doses in the 1000-rad range in bromouridine deoxyriboside-substituted cells and at slightly higher doses in nonsubstituted cells. Drugs that are known to bind to DNA inhibit this x-ray-induced repair replication. Drugs with these properties may be identified by the methods described and compared quantitatively in their ability to inhibit this type of x-ray damage. Since these phenomena can be demonstrated for low radiation doses and at drug concentrations attainable in vivo during human cancer chemotherapy this class of anticancer agent may be worthy of closer study. Application to the L1210 leukemia system should permit comparison of in vitro and in vivo drug effects in the context of the extensive in vivo pharmacological data already available for L1210 cells. (U.S.)

  11. The Bright and the Dark Sides of DNA Repair in Stem Cells

    OpenAIRE

    Frosina, Guido

    2010-01-01

    DNA repair is a double-edged sword in stem cells. It protects normal stem cells in both embryonic and adult tissues from genetic damage, thus allowing perpetuation of intact genomes into new tissues. Fast and efficient DNA repair mechanisms have evolved in normal stem and progenitor cells. Upon differentiation, a certain degree of somatic mutations becomes more acceptable and, consequently, DNA repair dims. DNA repair turns into a problem when stem cells transform and become cancerous. Tran...

  12. A rare case of Crohn's ileitis in a patient with constitutional mismatch repair deficiency.

    Science.gov (United States)

    Kaimakliotis, Pavlos; Giardiello, Francis; Eze, Ogechukwu; Truta, Brindusa

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD), a variant of Lynch syndrome, is a rare disease characterized by café-au-lait spots, oligopolyposis, glioblastoma and lymphoma. A 24-year-old male, under surveillance for CMMRD, developed Crohn's ileitis after total colectomy with end ileostomy for colorectal cancer and failed to respond to oral corticosteroids. The patient underwent induction and maintenance of remission with vedolizumab infusions. We report the first patient with CMMRD developing Crohn's disease. The choice of immunosuppressive therapy in these patients is challenging and needs to be made according to their risk for malignancy.

  13. Constitutional mismatch repair deficiency in a healthy child: On the spot diagnosis?

    Science.gov (United States)

    Suerink, M; Potjer, T P; Versluijs, A B; Ten Broeke, S W; Tops, C M; Wimmer, K; Nielsen, M

    2018-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a rare, recessively inherited childhood cancer predisposition syndrome caused by biallelic germline mutations in one of the mismatch repair genes. The CMMRD phenotype overlaps with that of neurofibromatosis type 1 (NF1), since many patients have multiple café-au-lait macules (CALM) and other NF1 signs, but no germline NF1 mutations. We report of a case of a healthy 6-year-old girl who fulfilled the diagnostic criteria of NF1 with >6 CALM and freckling. Since molecular genetic testing was unable to confirm the diagnosis of NF1 or Legius syndrome and the patient was a child of consanguineous parents, we suspected CMMRD and found a homozygous PMS2 mutation that impairs MMR function. Current guidelines advise testing for CMMRD only in cancer patients. However, this case illustrates that including CMMRD in the differential diagnosis in suspected sporadic NF1 without causative NF1 or SPRED1 mutations may facilitate identification of CMMRD prior to cancer development. We discuss the advantages and potential risks of this CMMRD testing scenario. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Restoring balance to B cells in ADA deficiency.

    Science.gov (United States)

    Luning Prak, Eline T

    2012-06-01

    It is paradoxical that immunodeficiency disorders are associated with autoimmunity. Adenosine deaminase (ADA) deficiency, a cause of X-linked severe combined immunodeficiency (SCID), is a case in point. In this issue of the JCI, Sauer and colleagues investigate the B cell defects in ADA-deficient patients. They demonstrate that ADA patients receiving enzyme replacement therapy had B cell tolerance checkpoint defects. Remarkably, gene therapy with a retrovirus that expresses ADA resulted in the apparent correction of these defects, with normalization of peripheral B cell autoantibody frequencies. In vitro, agents that either block ADA or overexpress adenosine resulted in altered B cell receptor and TLR signaling. Collectively, these data implicate a B cell-intrinsic mechanism for alterations in B cell tolerance in the setting of partial ADA deficiency that is corrected by gene therapy.

  15. The repair of damage to DNA in different cell types

    International Nuclear Information System (INIS)

    Karran, P.

    1974-01-01

    DNA single strand breaks induced by either X-ray irradiation or by methyl methanesulphonate (MMS) were studied in different lymphoid cell populations directly taken from the animal and maintained in tissue culture merely for the duration of the experiment. The results obtained from these cell populations were compared with those obtained with L5178Y cells maintained in tissue culture. All cell types studied were found to possess at least one class of enzymes required for repair of DNA damage, namely those enzymes involved in the rejoining of X-ray induced by MMS is different in each cell type. Repair replication was at much reduced levels and the endonucleolytic degradation was at much reduced levels and the endonucleolytic degradation was initiated at lower MMS concentration in the lymphoid cells as compared to L5178Y cells. It is suggested that the overall ''repair capacity'' of a population may be related to the number of cells in a cycle which, moreover, might be the only ones to have the ability to repair damage to DNA induced by MMS (G.G.)

  16. A novel germline POLE mutation causes an early onset cancer prone syndrome mimicking constitutional mismatch repair deficiency.

    Science.gov (United States)

    Wimmer, Katharina; Beilken, Andreas; Nustede, Rainer; Ripperger, Tim; Lamottke, Britta; Ure, Benno; Steinmann, Diana; Reineke-Plaass, Tanja; Lehmann, Ulrich; Zschocke, Johannes; Valle, Laura; Fauth, Christine; Kratz, Christian P

    2017-01-01

    In a 14-year-old boy with polyposis and rectosigmoid carcinoma, we identified a novel POLE germline mutation, p.(Val411Leu), previously found as recurrent somatic mutation in 'ultramutated' sporadic cancers. This is the youngest reported cancer patient with polymerase proofreading-associated polyposis indicating that POLE mutation p.(Val411Leu) may confer a more severe phenotype than previously reported POLE and POLD1 germline mutations. The patient had multiple café-au-lait macules and a pilomatricoma mimicking the clinical phenotype of constitutional mismatch repair deficiency. We hypothesize that these skin features may be common to different types of constitutional DNA repair defects associated with polyposis and early-onset cancer.

  17. Immunoglobulin class-switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Kracker, Sven

    2012-07-30

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.

  18. Discovery of DNA repair inhibitors by combinatorial library profiling

    Science.gov (United States)

    Moeller, Benjamin J.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2011-01-01

    Small molecule inhibitors of DNA repair are emerging as potent and selective anti-cancer therapies, but the sheer magnitude of the protein networks involved in DNA repair processes poses obstacles to discovery of effective candidate drugs. To address this challenge, we used a subtractive combinatorial selection approach to identify a panel of peptide ligands that bind DNA repair complexes. Supporting the concept that these ligands have therapeutic potential, we show that one selected peptide specifically binds and non-competitively inactivates DNA-PKcs, a protein kinase critical in double-strand DNA break repair. In doing so, this ligand sensitizes BRCA-deficient tumor cells to genotoxic therapy. Our findings establish a platform for large-scale parallel screening for ligand-directed DNA repair inhibitors, with immediate applicability to cancer therapy. PMID:21343400

  19. Lethal effects of solar radiation in proficient and deficient bacteria in repair systems

    International Nuclear Information System (INIS)

    Sousa Neto, A. de.

    1980-01-01

    A study of the lethal action of solar radiation on strains of E.coli K12, proficient or deficient in repair systems, as well as the wild type strain gene products are involved in repair of damage induced by solar radiation. The inactivation of the various bacterial strains (normalized to a dose equivalent to radiation at a wavelength 254 nm) suggests that the more energetic wavelengths of the solar spectrum (290-320 nm) could be responsible for the primary damage that occurs in the DNA. The reduction in the shoulder of the survival curve in wild type strains in indicative of induction of sub-lethal damage in this region of the curve. Analysing solar inactivation curves of the bacterial strains (normalised by spore dosimetry) together with those of the same strains irradiated with UV at 254 nm, it was evident that 254 nm is not the ideal wavelength for comparison. This analysis also indicated that in addition to damage to DNA, other factors are involved in the solar radiation inactivation of wild type strains. (author)

  20. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination

    International Nuclear Information System (INIS)

    Mudgett, J.S.; MacInnes, M.A.

    1990-01-01

    The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal

  1. A uv-sensitive Chinese hamster lung fibroblast cell line (V79/UC) with a possible defect in DNA polymerase activity is deficient in DNA repair

    International Nuclear Information System (INIS)

    Creissen, D.M.; Hill, C.K.

    1991-01-01

    Studies of repair enzyme activities in a uv-sensitive cell line (V79/UC) derived from Chinese hamster V79 cells have revealed levels of total DNA polymerase that are about 50% of the levels in the parental cell line. There are a number of DNA polymerase inhibitors available which allow us to distinguish between the major forms of DNA polymerase (alpha, beta, gamma, and delta) identified in mammalian cells. Enzyme assays with these inhibitors indicate that the aphidicolin-sensitive DNA polymerase is defective in the V79/UC cell line. This could be either polymerase alpha or delta, or both. The V79/UC cells do not express resistance to aphidicolin in standard toxicity studies. However, when aphidicolin is added postirradiation in survival assays designed to measure the extent of inhibitable repair, V79/UC cells do not respond with the further decrease in survival seen in the parental line. Further evidence of a polymerase-dependent repair defect is evident from alkaline elution data. In this case the V79/UC cells show the appearance of single-strand breaks following uv irradiation in the absence of any added inhibitor. Cells of the V79/M12G parental line, on the other hand, show the appearance of single-strand breaks only when aphidicolin is present

  2. Increased DNA-repair in spleen cells of M. Hodgkin

    International Nuclear Information System (INIS)

    Frischauf, H.; Neumann, E.; Howanietz, L.; Dolejs, I.; Tuschl, H.; Altmann, H.

    1974-11-01

    In spleen cells of control patients and cells of Morbus Hodgkin, DNA-repair after gamma- and UV-irradiation was determined measuring the incorporated 3H-thymidine activity in the DNA. Additionally, the ratio of labeled cells compared to non-labeled cells and the grains per cell were evaluated by autoradiographic investigations. DNA-content per cell was measured using pulsecytophotometry. A significant increase of DNA-repair capacity after gamma-irradiation was found by density gradient centrifugation in alkaline sucrose. The same trend could be shown by investigations of unscheduled DNA-synthesis using autoradiographic method. (author)

  3. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  4. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    International Nuclear Information System (INIS)

    Dupuy, Aurélie; Sarasin, Alain

    2015-01-01

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients

  5. DNA Damage Induced by Alkylating Agents and Repair Pathways

    Science.gov (United States)

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  6. Characterization of a mutant rat kangaroo cell line with alterations in the cell cycle and DNA repair

    Directory of Open Access Journals (Sweden)

    Miyaji E.N.

    2000-01-01

    Full Text Available Using a positive selection system for isolating DNA replication and repair related mutants, we isolated a clone from a rat kangaroo cell line (PtK2 that has increased sensitivity to UV light. Characterization of this clone indicated normal post-replication repair after UV irradiation, and normal removal rates of cyclobutane pyrimidine dimers and pyrimidine(6-4pyrimidone photoproducts by excision repair. However, this cell line has decreased ability to make early incisions on damaged DNA, possibly indicating a defect in preferential repair of actively transcribed genes, and a slower cell proliferation rate, including a longer S-phase. This phenotype reinforces the present notion that control of key mechanisms in cell metabolism, such as cell cycle control, repair, transcription and cell death, can be linked.

  7. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.

    Science.gov (United States)

    Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P

    2018-05-07

    Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.

  8. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  9. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  10. Repair of potentially lethal and sublethal radiation damage in x-irradiated ascites tumor cells

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Okamoto, Mieko; Tsuchiya, Takehiko.

    1985-01-01

    The ability of cells to repair cellular radiation damage during the growth of TMT-3 ascites tumor and the effect of host reaction on the repair ability were examined by using an in vitro assay of cell clonogenicity after in situ irradiation of tumor cells. In single-dose experiments, the repair of potentially lethal radiation damage (PLD) was observed in stationary phase cells (12-day tumor) of the unirradiated host, but not in exponential phase cells (3-day tumor) of the unirradiated host animals. However, if previously irradiated host animals were used, even the exponentially growing tumor cells showed repair of PLD. In two-dose experiments, the ability to repair sublethal radiation damage (SLD) in exponential phase tumor cells was less than that of stationary phase cells in the unirradiated host. In the pre-irradiated host, the extent of the repair in exponential phase cells was somewhat enhanced. These results suggest that irradiation of host animals might suppress a factor that inhibits repair, resulting in enhancement of the repair capability of tumor cells. (author)

  11. A link between double-strand break-related repair and V(D)J recombination: the scid mutation

    International Nuclear Information System (INIS)

    Hendrickson, E.A.; Qin, X.Q.; Bump, E.A.; Schatz, D.G.; Oettinger, M.; Weaver, D.T.

    1991-01-01

    We show here that mammalian site-specific recombination and DNA-repair pathways share a common factor. The effects of DNA-damaging agents on cell lines derived from mice homozygous for the scid (severe combined immune deficiency) mutation were studied. Surprisingly, all scid cell lines exhibited a profound hypersensitivity to DNA-damaging agents that caused double-strand breaks (x-irradiation and bleomycin) but not to other chemicals that caused single-strand breaks or cross-links. Neutral filter elution assays demonstrated that the x-irradiation hypersensitivity could be correlated with a deficiency in repairing double-strand breaks. These data suggest that the scid gene product is involved in two pathways: DNA repair of random double-strand breaks and the site-specific and lymphoid-restricted variable-(diversity)-joining [V(D)J] DNA rearrangement process. We propose that the scid gene product performs a similar function in both pathways and may be a ubiquitous protein

  12. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils

    Science.gov (United States)

    Campo, Vanina A.; Patenaude, Anne-Marie; Kaden, Svenja; Horb, Lori; Firka, Daniel; Jiricny, Josef; Di Noia, Javier M.

    2013-01-01

    The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR. PMID:23314153

  13. Saturation of DNA repair in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F E; Setlow, R B

    1979-01-01

    Excision repair seems to reach a plateau in normal human cells at a 254 nm dose near 20 J/m/sup 2/. We measured excision repair in normal human fibroblasts up to 80 J/m/sup 2/. The four techniques used (unscheduled DNA synthesis, photolysis of BrdUrd incorporated during repair, loss of sites sensitive to a UV endonuclease from Micrococcus luteus, and loss of pyrimidine dimers from DNA) showed little difference between the two doses. Moreover, the loss of endonuclease sites in 24h following two 20 J/m/sup 2/ doses separated by 24h was similar to the loss observed following one dose. Hence, we concluded that the observed plateau in excision repair is real and does not represent some inhibitory process at high doses but a true saturation of one of the rate limiting steps in repair.

  14. Local delivery of glial cell line-derived neurotrophic factor improves facial nerve regeneration after late repair.

    Science.gov (United States)

    Barras, Florian M; Kuntzer, Thierry; Zurn, Anne D; Pasche, Philippe

    2009-05-01

    Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.

  15. DNA repair ability of cultured cells derived from mouse embryos in comparison with human cells

    International Nuclear Information System (INIS)

    Yaki, T.

    1982-01-01

    DNA repair in mouse cells derived from embryos of 3 inbred strains were investigated in comparison with that in human cells. The levels of unscheduled DNA synthesis after UV irradiation appeared to change at different passages, but capacities of host-cell reactivation of UV-irradiated herpes simplex virus were always reduced to the same levels as those in xeroderma pigmentosum cells. This implied that mouse cells are reduced in excision-repair capacities and that the apparently high levels of unscheduled DNA synthesis at certain passages are not quantitatively related to high levels of cell survival. Essentially no differences in DNA repair were noted among 3 strains - BALB/c, C3H/He and C57BL/10. (orig.)

  16. A influência da deficiência estrogênica no processo de remodelação e reparação óssea Effect of estrogen deficiency on bone turnover and bone repair

    Directory of Open Access Journals (Sweden)

    Susana Ungaro Amadei

    2006-02-01

    cellular activity and several studies focus on the factors able to modulate the bone functions. The increase of bone research is, in part, due to the establishment of osteoporosis as a healthy problem common in elderly. Osteoporosis is one of the most important osteopathy, characterized by the bone mass reduction, resulted from disequilibrium between bone resorption and bone formation. OBJECTIVE: Based on the relationship between estrogen and bone metabolism, the aim of this study is present a review of literature about the principal aspects of bone turnover and bone repair associated to estrogen deficiency. Bone turnover: Bone tissue is in continuous turnover, however, changes in this process can result in some disorders, such as osteoporosis. Bone repair: Involves a sequence of biological events. It is affected by local and external factors and regulated by interaction of several mechanisms, like bone turnover. Estrogen deficiency and bone metabolism: The capacity to repair has been associated to changes in bone turnover and repair. DISCUSSION: It is not known which bone repair stage is modified: the bone formation, the mineralization or the resorption stage. CONCLUSION: The pathophysiology of bone changes caused by estrogen deficiency are not completely clear, so, new studies are still necessary.

  17. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma.

    Science.gov (United States)

    Hall, Geoffrey; Clarkson, Adele; Shi, Amanda; Langford, Eileen; Leung, Helen; Eckstein, Robert P; Gill, Anthony J

    2010-01-01

    Currently, testing for mismatch repair deficiency in colorectal cancers is initiated by performing immunohistochemistry with four antibodies (MLH1, PMS2, MSH2 and MSH6). If any one of these stains is negative the tumour is considered microsatellite unstable and, if clinical circumstances warrant it, the patient is offered genetic testing for Lynch's syndrome. Due to the binding properties of the mismatch repair heterodimer complexes, gene mutation and loss of MLH1 and MSH2 invariably result in the degradation of PMS2 and MSH6, respectively, but the converse is not true. We propose that staining for PMS2 and MSH6 alone will be sufficient to detect all cases of mismatch repair deficiency and should replace routine screening with all four antibodies. The electronic database of the department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia, was searched for all colorectal carcinomas on which a four panel immunohistochemical microsatellite instability screen was performed. An audit of the slides for concordant loss of MLH1-PMS2 and MSH2-MSH6 was then undertaken. Unusual or discordant cases were reviewed and, in some cases, re-stained to confirm the staining pattern. Of 344 cases of colorectal cancer which underwent four antibody immunohistochemistry, 104 displayed loss of at least one mismatch repair protein. Of these, 100 showed concordant mismatch repair loss (i.e., loss of MLH1 and PMS2 or loss of MSH2 and MSH6). The four discordant cases comprised two single negative cases (1 MSH6 negative/MSH2 positive case, 1 PMS2 negative/MLH1 positive) and two triple negative (both MLH1/PMS2/MSH6 negative). The microsatellite instability (MSI) group showed a relatively high median age (69.3 years) due to the departmental policy of testing all cases with possible MSI morphology regardless of age. The sensitivity and specificity of a two panel test comprised of PMS2 and MSH6, compared to a four panel test, is 100%. No false negatives or positives were

  18. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    Directory of Open Access Journals (Sweden)

    Santosh K Katiyar

    Full Text Available Solar ultraviolet (UV radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum, inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

  19. DNA replication and repair in Tilapia cells. 1. The effect of ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yew, F.H.; Chang, L.M. (National Taiwan Univ., Taipei (China))

    1984-12-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-..beta..-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor.

  20. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    Science.gov (United States)

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  1. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells

    OpenAIRE

    Perryman, Scott V; Sylvester, Karl G

    2007-01-01

    This review will discuss the mechanisms of repair and regeneration in various tissue types and how dysregulation of these mechaisms may lead to cancer. Normal homeostasis involves a careful balance between cell loss and cell renewal. Stem and progenitor cells perform these biologic processes as the functional units of regeneration during both tissue homeostasis and repair. The concept of tissue stem cells capable of giving rise to all differentiated cells within a given tissue led to the conc...

  2. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Directory of Open Access Journals (Sweden)

    Adela M Luján

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  3. Mismatch repair proficiency is not required for radioenhancement by gemcitabine

    International Nuclear Information System (INIS)

    Bree, Chris van; Rodermond, Hans M.; Vos, Judith de; Haveman, Jaap; Franken, Nicolaas

    2005-01-01

    Purpose: Mismatch repair (MMR) proficiency has been reported to either increase or decrease radioenhancement by 24-h incubations with gemcitabine. This study aimed to establish the importance of MMR for radioenhancement by gemcitabine after short-exposure, high-dose treatment and long-exposure, low-dose treatment. Methods and Materials: Survival of MMR-deficient HCT116 and MMR-proficient HCT116 + 3 cells was analyzed by clonogenic assays. Mild, equitoxic gemcitabine treatments (4 h, 0.1 μM vs. 24 h, 6 nM) were combined with γ-irradiation to determine the radioenhancement with or without recovery. Gemcitabine metabolism and cell-cycle effects were evaluated by high-performance liquid chromatography analysis and bivariate flow cytometry. Results: Radioenhancement after 4 h of 0.1 μM of gemcitabine was similar in both cell lines, but the radioenhancement after 24 h of 6 nM of gemcitabine was reduced in MMR-proficient cells. No significant differences between both cell lines were observed in the gemcitabine metabolism or cell-cycle effects after these treatments. Gemcitabine radioenhancement after recovery was also lower in MMR-proficient cells than in MMR-deficient cells. Conclusion: Mismatch repair proficiency decreases radioenhancement by long incubations of gemcitabine but does not affect radioenhancement by short exposures to a clinically relevant gemcitabine dose. Our data suggest that MMR contributes to the recovery from gemcitabine treatment

  4. Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population

    DEFF Research Database (Denmark)

    Berquist, Brian R; Singh, Dharmendra Kumar; Fan, Jinshui

    2010-01-01

    XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R...... mutation abolished the interaction with POLbeta, but did not disrupt the interactions with PARP-1, LIG3alpha and PCNA; and an E98K substitution, identified in EM-C12, reduced protein integrity, marginally destabilized the POLbeta interaction, and slightly enhanced DNA binding. Two rare (P161L and Y576S...

  5. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts

    DEFF Research Database (Denmark)

    Hansen, Rebecca Kring; Mund, Andreas; Poulsen, Sara Lund

    2016-01-01

    cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1...... in repressive chromatin environments. Moreover, we establish an important role of SCAI in meiotic recombination, as SCAI deficiency in mice leads to germ cell loss and subfertility associated with impaired retention of the DMC1 recombinase on meiotic chromosomes. Collectively, our findings uncover SCAI...... as a physiologically important component of both NHEJ- and HR-mediated pathways that potentiates DSB repair efficiency in specific chromatin contexts....

  6. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  7. DNA repair and its coupling to DNA replication in eukaryotic cells. [UV, x ray

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1978-01-01

    This review article with 184 references presents the view that mammalian cells have one major repair system, excision repair, with many branches (nucleotide excision repair, base excision repair, crosslink repair, etc.) and a multiplicity of enzymes. Any particular carcinogen makes a spectrum of damaged sites and each kind of damage may be repaired by one or more branches of excision repair. Excision repair is rarely complete, except at very low doses, and eukaryotic cells survive and replicate DNA despite the presence of unrepaired damage. An alteration in a specific biochemical pathway seen in damaged or mutant cells will not always be the primary consequence of damage or of the biochemical defect of the cells. Detailed kinetic data are required to understand comprehensively the various facets of excision repair and replication. Correlation between molecular events of repair and cytological and cellular changes such as chromosomal damage, mutagenesis, transformation, and carcinogenesis are also rudimentary.

  8. Development and applications of Bacillus subtilis test systems for mutagens, involving DNA-repair deficiency and suppressible auxotrophic mutations

    International Nuclear Information System (INIS)

    Tanooka, H.

    1977-01-01

    A mutagen-tester of Bacillus subtilis was constructed and tested with known carcinogens. The parental strain HA101 of Okubo and Yanagida carrying suppressible nonsense mutations in his and met genes was transformed to carry an excision-repair deficiency mutation. The constructed strain TKJ5211 showed a 20-30-fold higher sensitivity for His + reversion than the parental strain when treated with UV and UV-mimetic chemicals but unchanged mutation frequency with X-rays and methyl methanesulfonate. The tester strain was used in a spot test of 30 selected chemicals and also for testing with liver homogenate activation. The results showed an almost equivalent but somewhat broader detection spectrum than the Salmonella typhimurium TA100 system. Another test method used a pair of B. subtilis strains differing in their DNA-repair capacity, i.e. the most UV-sensitive mutant HJ-15 and a wild-type strain, to detect repair-dependent DNA damage produced by chemicals. Spores could be used in either test

  9. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort.

    Science.gov (United States)

    Lavoine, N; Colas, C; Muleris, M; Bodo, S; Duval, A; Entz-Werle, N; Coulet, F; Cabaret, O; Andreiuolo, F; Charpy, C; Sebille, G; Wang, Q; Lejeune, S; Buisine, M P; Leroux, D; Couillault, G; Leverger, G; Fricker, J P; Guimbaud, R; Mathieu-Dramard, M; Jedraszak, G; Cohen-Hagenauer, O; Guerrini-Rousseau, L; Bourdeaut, F; Grill, J; Caron, O; Baert-Dusermont, S; Tinat, J; Bougeard, G; Frébourg, T; Brugières, L

    2015-11-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a childhood cancer predisposition syndrome involving biallelic germline mutations of MMR genes, poorly recognised by clinicians so far. Retrospective review of all 31 patients with CMMRD diagnosed in French genetics laboratories in order to describe the characteristics, treatment and outcome of the malignancies and biological diagnostic data. 67 tumours were diagnosed in 31 patients, 25 (37%) Lynch syndrome-associated malignancies, 22 (33%) brain tumours, 17 (25%) haematological malignancies and 3 (5%) sarcomas. The median age of onset of the first tumour was 6.9 years (1.2-33.5). Overall, 22 patients died, 9 (41%) due to the primary tumour. Median survival after the diagnosis of the primary tumour was 27 months (0.26-213.2). Failure rate seemed to be higher than expected especially for T-cell non-Hodgkin's lymphoma (progression/relapse in 6/12 patients). A familial history of Lynch syndrome was identified in 6/23 families, and consanguinity in 9/23 families. PMS2 mutations (n=18) were more frequent than other mutations (MSH6 (n=6), MLH1 (n=4) and MSH2 (n=3)). In conclusion, this unselected series of patients confirms the extreme severity of this syndrome with a high mortality rate mostly related to multiple childhood cancers, and highlights the need for its early detection in order to adapt treatment and surveillance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  11. Differing levels of excision repair in human fetal dermis and brain cells

    International Nuclear Information System (INIS)

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  12. Roles of neural stem cells in the repair of peripheral nerve injury.

    Science.gov (United States)

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  13. Quantitative assessment of the dose-response of alkylating agents in DNA repair proficient and deficient ames tester strains.

    Science.gov (United States)

    Tang, Leilei; Guérard, Melanie; Zeller, Andreas

    2014-01-01

    Mutagenic and clastogenic effects of some DNA damaging agents such as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been demonstrated to exhibit a nonlinear or even "thresholded" dose-response in vitro and in vivo. DNA repair seems to be mainly responsible for these thresholds. To this end, we assessed several mutagenic alkylators in the Ames test with four different strains of Salmonella typhimurium: the alkyl transferases proficient strain TA1535 (Ogt+/Ada+), as well as the alkyl transferases deficient strains YG7100 (Ogt+/Ada-), YG7104 (Ogt-/Ada+) and YG7108 (Ogt-/Ada-). The known genotoxins EMS, MMS, temozolomide (TMZ), ethylnitrosourea (ENU) and methylnitrosourea (MNU) were tested in as many as 22 concentration levels. Dose-response curves were statistically fitted by the PROAST benchmark dose model and the Lutz-Lutz "hockeystick" model. These dose-response curves suggest efficient DNA-repair for lesions inflicted by all agents in strain TA1535. In the absence of Ogt, Ada is predominantly repairing methylations but not ethylations. It is concluded that the capacity of alkyl-transferases to successfully repair DNA lesions up to certain dose levels contributes to genotoxicity thresholds. Copyright © 2013 Wiley Periodicals, Inc.

  14. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells

    Directory of Open Access Journals (Sweden)

    Melanie eRall

    2015-11-01

    Full Text Available Ionizing radiation generates DNA double-strand breaks (DSB which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC, potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL, particularly regarding homologous DSB repair (HR. Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET in HSPC versus PBL. For higher LET, 53BP1 foci kinetics were similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose-dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.

  15. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  16. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    NARCIS (Netherlands)

    Klift, H.M. van der; Mensenkamp, A.R.; Drost, M.; Bik, E.C.; Vos, Y.J.; Gille, H.J.; Redeker, B.E.; Tiersma, Y.; Zonneveld, J.B.; Garcia, E.G.; Letteboer, T.G.; Olderode-Berends, M.J.; Hest, L.P. van; Os, T.A. van; Verhoef, S.; Wagner, A.; Asperen, C.J. van; Broeke, S.W. ten; Hes, F.J.; Wind, N. de; Nielsen, M.; Devilee, P.; Ligtenberg, M.J.L.; Wijnen, J.T.; Tops, C.M.

    2016-01-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are

  17. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    NARCIS (Netherlands)

    van der Klift, Heleen M.; Mensenkamp, Arjen R.; Drost, Mark; Bik, Elsa C.; Vos, Yvonne J.; Gille, Hans J. J. P.; Redeker, Bert E. J. W.; Tiersma, Yvonne; Zonneveld, Jose B. M.; Garcia, Encarna Gomez; Letteboer, Tom G. W.; Olderode-Berends, Maran J. W.; van Hest, Liselotte P.; van Os, Theo A.; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J.; ten Broeke, Sanne W.; Hes, Frederik J.; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J. L.; Wijnen, Juul T.; Tops, Carli M. J.

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are

  18. Quantitation of DNA repair in brain cell cultures: implications for autoradiographic analysis of mixed cell populations

    International Nuclear Information System (INIS)

    Dambergs, R.; Kidson, C.

    1979-01-01

    Quantitation of DNA repair in the mixed cell population of mouse embryo brain cultures has been assessed by autoradiographic analysis of unscheduled DNA synthesis following UV-irradiation. The proportion of labelled neurons and the grain density over neuronal nuclei were both less than the corresponding values for glial cells. The nuclear geometries of these two classes of cell are very different. Partial correction for the different geometries by relating grain density to nuclear area brought estimates of neuronal and glial DNA repair synthesis more closely in line. These findings have general implications for autoradiographic measurement of DNA repair in mixed cell populations and in differentiated versus dividing cells. (author)

  19. Treatment and Controversies in Paraesophageal Hernia Repair

    Directory of Open Access Journals (Sweden)

    P. Marco eFisichella

    2015-04-01

    Full Text Available Background: Historically all paraesophageal hernias were repaired surgically, today intervention is reserved for symptomatic paraesophageal hernias. In this review, we describe the indications for repair and explore the controversies in paraesophageal hernia repair, which include a comparison of open to laparoscopic paraesophageal hernia repair, the necessity of complete sac excision, the routine performance of fundoplication, and the use of mesh for hernia repair.Methods: We searched Pubmed for papers published between 1980 and 2015 using the following keywords: hiatal hernias, paraesophageal hernias, regurgitation, dysphagia, gastroesophageal reflux disease, aspiration, GERD, endoscopy, manometry, pH monitoring, proton pump inhibitors, anemia, iron deficiency anemia, Nissen fundoplication, sac excision, mesh, mesh repair. Results: Indications for paraesophageal hernia repair have changed, and currently symptomatic paraesophageal hernias are recommended for repair. In addition, it is important not to overlook iron-deficiency anemia and pulmonary complaints, which tend to improve with repair. Current practice favors a laparoscopic approach, complete sac excision, primary crural repair with or without use of mesh, and a routine fundoplication.

  20. Cell Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath

    Science.gov (United States)

    2017-07-01

    to subsequently guide tissue regeneration , for example, by seeded tissue progenitor cells . To achieve this objective, the first step is to develop...AWARD NUMBER: W81XWH-15-1-0104 TITLE: Cell -Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Cell -Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath 5b. GRANT NUMBER W81XWH-15-1-0104 5c. PROGRAM

  1. The stem cell secretome and its role in brain repair.

    Science.gov (United States)

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2013-12-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  2. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  3. DNA repair in human cells exposed to combinations of carcinogenic agents

    International Nuclear Information System (INIS)

    Setlow, R.B.; Ahmed, F.E.

    1980-01-01

    Normal human and XP 2 fibroblasts were treated with uv plus uv-mimetic chemicals. The uv dose used was sufficient to saturate the uv excision repair system. Excision repair after combined treatments was estimated by unscheduled DNA synthesis, BrdUrd photolysis, and the loss of sites sensitive to a uv specific endonuclease. Since the repair of damage from uv and its mimetics is coordinately controlled we expected that there would be similar rate-limiting steps in the repair of uv and chemical damage and that after a combined treatment the total amount of repair would be the same as from uv or the chemicals separately. The expectation was not fulfilled. In normal cells repair after a combined treatment was additive whereas in XP cells repair after a combined treatment was usually less than after either agent separately. The chemicals tested were AAAF, DMBA-epoxide, 4NQO, and ICR-170

  4. COMPARISON OF UV INACTIVATION OF SPORES OF THREE ENCEPHALITOZOON SPECIES WITH THAT OF SPORES OF TWO DNA REPAIR-DEFICIENT BACILLUS SUBTILIS BIODOSIMETRY STRAINS

    Science.gov (United States)

    The sensitivity of three Encephalitozoon spp. to ultraviolet (UV) inactivation was determined. Encephalitozoon intestinalis is a contaminant listed on the USEPA's 1998 Contaminant Candidate List (CCL). Also, use of DNA repair deficient strains of Bacillus subtilis were evaluat...

  5. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    Science.gov (United States)

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal

  6. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner.

    Science.gov (United States)

    Ablasser, Andrea; Hemmerling, Inga; Schmid-Burgk, Jonathan L; Behrendt, Rayk; Roers, Axel; Hornung, Veit

    2014-06-15

    Cytosolic detection of DNA is crucial for the initiation of antiviral immunity but can also cause autoimmunity in the context of endogenous nucleic acids being sensed. Mutations in the human 3' repair exonuclease 1 (TREX1) have been linked to the type I IFN-associated autoimmune disease Aicardi-Goutières syndrome. The exact mechanisms driving unabated type I IFN responses in the absence of TREX1 are only partly understood, but it appears likely that accumulation of endogenous DNA species triggers a cell-autonomous immune response by activating a cytosolic DNA receptor. In this article, we demonstrate that knocking out the DNA sensor cyclic GMP-AMP synthase completely abrogates spontaneous induction of IFN-stimulated genes in TREX1-deficient cells. These findings indicate a key role of cyclic GMP-AMP synthase for the initiation of self-DNA-induced autoimmune disorders, thus providing important implications for novel therapeutic approaches. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair.

    Science.gov (United States)

    Sikora, Anna; Mielecki, Damian; Chojnacka, Aleksandra; Nieminuszczy, Jadwiga; Wrzesinski, Michal; Grzesiuk, Elzbieta

    2010-03-01

    Methylmethane sulphonate (MMS), an S(N)2-type alkylating agent, generates DNA methylated bases exhibiting cytotoxic and mutagenic properties. Such damaged bases can be removed by a system of base excision repair (BER) and by oxidative DNA demethylation catalysed by AlkB protein. Here, we have shown that the lack of the BER system and functional AlkB dioxygenase results in (i) increased sensitivity to MMS, (ii) elevated level of spontaneous and MMS-induced mutations (measured by argE3 --> Arg(+) reversion) and (iii) induction of the SOS response shown by visualization of filamentous growth of bacteria. In the xth nth nfo strain additionally mutated in alkB gene, all these effects were extreme and led to 'error catastrophe', resulting from the presence of unrepaired apurinic/apyrimidinic (AP) sites and 1-methyladenine (1meA)/3-methylcytosine (3meC) lesions caused by deficiency in, respectively, BER and AlkB dioxygenase. The decreased level of MMS-induced Arg(+) revertants in the strains deficient in polymerase V (PolV) (bearing the deletion of the umuDC operon), and the increased frequency of these revertants in bacteria overproducing PolV (harbouring the pRW134 plasmid) indicate the involvement of PolV in the error-prone repair of 1meA/3meC and AP sites. Comparison of the sensitivity to MMS and the induction of Arg(+) revertants in the double nfo alkB and xth alkB, and the quadruple xth nth nfo alkB mutants showed that the more AP sites there are in DNA, the stronger the effect of the lack of AlkB protein. Since the sum of MMS-induced Arg(+) revertants in xth, nfo and nth xth nfo and alkB mutants is smaller than the frequency of these revertants in the BER(-) alkB(-) strain, we consider two possibilities: (i) the presence of AP sites in DNA results in relaxation of its structure that facilitates methylation and (ii) additional AP sites are formed in the BER(-) alkB(-) mutants.

  8. Specific UV-induced mutation spectrum in the p53 gene of skin tumors from DNA-repair-deficient xeroderma pigmentosum patients

    International Nuclear Information System (INIS)

    Dumaz, N.; Drougard, C.; Sarasin, A.; Daya-Grosjean, L.

    1993-01-01

    The UV component of sunlight is the major carcinogen involved in the etiology of skin cancers. The authors have studied the rare, hereditary syndrome xeroderma pigmentosum (XP), which is characterized by a very high incidence of cutaneous tumors on exposed skin at an early age, probably due to a deficiency in excision repair of UV-induced lesions. It is interesting to determine the UV mutation spectrum in XP skin tumors in order to correlate the absence of repair of specific DNA lesions and the initiation of skin tumors. The p53 gene is frequently mutated in human cancers and represents a good target for studying mutation spectra since there are >100 potential sites for phenotypic mutations. Using reverse transcription-PCR and single-strand conformation polymorphism to analyze >40 XP skin tumors (mainly basal and squamous cell carcinomas), the authors have found that 40% (17 out of 43) contained at least one point mutation on the p53 gene. All the mutations were located at dipyrimidine sites, essentially at CC sequences, which are hot spots for UV-induced DNA lesions. Sixty-one percent of these mutations were tandem CC → TT mutations considered to be unique to UV-induced lesions; these mutations are not observed in internal human tumors. All the mutations, except two, must be due to translesion synthesis of unrepaired dipyrimidine lesions left on the nontranscribed strand. These results show the existence of preferential repair of UV lesions [either pyrimidine dimers or pyrimidine-pyrimidone (6-4) photoproducts] on the transcribed strand in human tissues

  9. Radiation studies on sensitivity and repair of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Tracy Chuihsu Yang; Stampfer, M.R.; Tobias, C.A.

    1989-01-01

    The authors present results indicating that normal breast epithelial cells and fibroblasts respond to X-rays similarly, lacking significant repair of sublethal damage when 2 Gy was used as the conditioning dose. Epithelial cells from tumor and from parenchymal tissue peripheral to the tumor, however, did show an efficient repair of sublethal damage. The reasons for this difference is unknown. Heavy-ion studies suggest energetic carbon and neon particles can be more effective in killing normal and tumour cells. The RBE for normal cells, however, appeared to be slightly less than for tumor cells. The repair of sublethal damage in tumor cells was less for neon particles than for X-rays. These findings suggest that heavy ions might be more advantageous than X-rays in treating breast tumors. (author)

  10. Predictive genetic testing in children: constitutional mismatch repair deficiency cancer predisposing syndrome.

    Science.gov (United States)

    Bruwer, Zandrè; Algar, Ursula; Vorster, Alvera; Fieggen, Karen; Davidson, Alan; Goldberg, Paul; Wainwright, Helen; Ramesar, Rajkumar

    2014-04-01

    Biallelic germline mutations in mismatch repair genes predispose to constitutional mismatch repair deficiency syndrome (CMMR-D). The condition is characterized by a broad spectrum of early-onset tumors, including hematological, brain and bowel and is frequently associated with features of Neurofibromatosis type 1. Few definitive screening recommendations have been suggested and no published reports have described predictive testing. We report on the first case of predictive testing for CMMR-D following the identification of two non-consanguineous parents, with the same heterozygous mutation in MLH1: c.1528C > T. The genetic counseling offered to the family, for their two at-risk daughters, is discussed with a focus on the ethical considerations of testing children for known cancer-causing variants. The challenges that are encountered when reporting on heterozygosity in a child younger than 18 years (disclosure of carrier status and risk for Lynch syndrome), when discovered during testing for homozygosity, are addressed. In addition, the identification of CMMR-D in a three year old, and the recommended clinical surveillance that was proposed for this individual is discussed. Despite predictive testing and presymptomatic screening, the sudden death of the child with CMMR-D syndrome occurred 6 months after her last surveillance MRI. This report further highlights the difficulty of developing guidelines, as a result of the rarity of cases and diversity of presentation.

  11. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  12. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  13. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  14. Modern problems of DNA repair in mammalian cells and some unsettled questions

    International Nuclear Information System (INIS)

    Gaziev, A.I.

    1978-01-01

    A comparison of DNA repair process in the cells of mammals and E. coli revealed no principal differences in the enzymic mechanisms of DNA repair in the cells of higher and lower organisms. It has been found that when given is the same number of impairments in the section of DNA chain in the cells of mammals and bacteria the regeneration in the former occurs more slowly than in the latter. Low rate elimination of impairments of DNA in the cells of mammals is due to a more complex intracellular and permolecular organization. It is stressed that the investigation into the mechanisms of fixing impairments in case of postreplication DNA repair is a very important and unresolved problem, especially in terms of radiation mutagenesis and cancerogenesis. Much thought is given to the problem of repairing double stranded ruptures of DNA. It is proposed that DNA repair should be considered not only in terms of functioning of enzymes in DNA metabolism, but also permolecular organization of genome in the cell

  15. Pembrolizumab, Capecitabine, and Radiation Therapy in Treating Patients With Mismatch-Repair Deficient and Epstein-Barr Virus Positive Gastric Cancer

    Science.gov (United States)

    2017-11-15

    Epstein-Barr Virus Positive; Gastric Adenocarcinoma; Mismatch Repair Protein Deficiency; Stage IB Gastric Cancer AJCC v7; Stage II Gastric Cancer AJCC v7; Stage IIA Gastric Cancer AJCC v7; Stage IIB Gastric Cancer AJCC v7; Stage III Gastric Cancer AJCC v7; Stage IIIA Gastric Cancer AJCC v7; Stage IIIB Gastric Cancer AJCC v7; Stage IIIC Gastric Cancer AJCC v7

  16. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    Directory of Open Access Journals (Sweden)

    Musah Sadiatu

    2012-11-01

    Full Text Available Abstract Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5 and keratin 14 (K14 for basal cells, Clara cell secretory protein (CCSP for Clara cells, and acetylated tubulin (AcTub for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10, but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion

  17. Phytochemicals radiosensitize cancer cells by inhibiting DNA repair

    International Nuclear Information System (INIS)

    Singh, Rana P.

    2017-01-01

    Solid tumors are mostly treated with radiotherapy. Radiotherapy is toxic to normal tissues and also promote the invasiveness and radioresistance in cancer cells. The resistance against radiotherapy and adverse effects to normal cells reduce the overall therapeutic effects of the treatment. Radiosensitizing agents usually show limited success during clinical trials. Therefore, the search and development of new radiosensitizers showing selective response to only cancer cells is desirable. We analyzed the radiosensitizing effects including cell death effect of silibinin, a phytochemical on prostate cancer cells. Silibinin enhanced gamma radiation (2.5-10 Gy) induced inhibition in colony formation selectively in prostate cancer cells. In cell cycle progression, G2/M phase is the most sensitive phase for radiation-induced damage which was delayed by the compound treatment in radiation exposed cells. The lower concentrations of silibinin substantially enhanced radiation-induced apoptosis. A prolonged reactive oxygen species production was also observed in these treatments EGFR signaling pathway can contribute to radiation-induced pro-survival mechanisms and to the therapeutic resistance. Agent treatment reduced the IR-induced EGFR phosphorylation and consequently reversed the resistance mediating mechanisms within the cancer cell. Thus, inhibiting DNA repair in cancer cells would enhance therapeutic response of radiation in cancer cells. Silibinin affected the localization of EGFR and DNA-dependent protein kinase, the DNA-PK is known to be an important mediator of DSB repair in human cells, and showed increased number of pH2AX (ser139) foci, and thus indicating lower DNA repair in these cancer cells. This was also confirmed in the tumor xenograft study. Our findings suggest that a combination of silibinin with radiation could be an effective treatment of radioresistant human prostate cancer and warrants further investigation. (author)

  18. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham

    2009-01-01

    OBJECTIVES: Leukocyte adhesion deficiency is a rare primary immune disorder caused by defects of the CD18 beta-integrin molecule on immune cells. The condition usually presents in early infancy and is characterized by deep tissue infections, leukocytosis with impaired formation of pus, and delayed...... of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...

  19. DNA strand breakage repair in ataxia telangiectasia fibroblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Jr, R A; Sheridan, III, R B; Huang, P C [Johns Hopkins Univ., Baltimore, Md. (USA). Dept. of Environmental and Biophysical Sciences

    1975-12-01

    Human diploid fibroblast-like cells derived from four patients with the genetic disease ataxia telangiectasia and from two non-mutant donors were examined for the repair of x-ray induced strand breaks in DNA. The ataxia telangiectasia cultures showed no significant differences from the non-mutant cultures in the kinetics and extent of strand repair. This suggests that the increased spontaneous and x-ray induced chromatid aberrations observed in ataxia telangiectasia cells are not caused by a defect in the repair of single strand breaks as might be suspected from a general model of aberration production.

  20. Inactivation of ultraviolet repair in normal and xeroderma pigmentosum cells by methyl methanesulfonate

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1982-01-01

    Excision repair of ultraviolet damage in the DNA of normal and xeroderma pigmentosum (Groups C, D, and variant) cells was inactivated by exposure of cells to methyl methanesulfonate immediately before irradiation independent of the presence of 0 to 10% fetal calf serum. The inactivation could be represented by a semilog relationship between the amount of repair and methyl methanesulfonate concentration up to approximately 5 mM. The inactivation can be considered to occur as the result of alkylation of a large (about 10(6) daltons) repair enzyme complex, and the dose required to reduce repair to 37% for most cells types was between 4 and 7 mM. No consistent, large difference in sensitivity to methyl methanesulfonate was found in any xeroderma pigmentosum complementation group compared to normal cells, implying that reduced repair in these groups may be caused by small inherited changes in the amino acid composition (i.e., point mutations or small deletions) rather than by losses of major components of the repair enzyme complex

  1. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  2. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg?

    Science.gov (United States)

    Wimmer, Katharina; Etzler, Julia

    2008-09-01

    Heterozygous mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause the dominant adult cancer syndrome termed Lynch syndrome or hereditary non-polyposis colorectal cancer. During the past 10 years, some 35 reports have delineated the phenotype of patients with biallelic inheritance of mutations in one of these MMR genes. The patients suffer from a condition that is characterised by the development of childhood cancers, mainly haematological malignancies and/or brain tumours, as well as early-onset colorectal cancers. Almost all patients also show signs reminiscent of neurofibromatosis type 1, mainly café au lait spots. Alluding to the underlying mechanism, this condition may be termed as "constitutional mismatch repair-deficiency (CMMR-D) syndrome". To give an overview of the current knowledge and its implications of this recessively inherited cancer syndrome we summarise here the genetic, clinical and pathological findings of the so far 78 reported patients of 46 families suffering from this syndrome.

  3. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year.

    Science.gov (United States)

    Siclari, Alberto; Mascaro, Gennaro; Gentili, Chiara; Cancedda, Ranieri; Boux, Eugenio

    2012-03-01

    Bone marrow stimulation techniques in cartilage repair such as drilling are limited by the formation of fibrous to hyaline-like repair tissue. It has been suggested such techniques can be enhanced by covering the defect with scaffolds. We present an innovative approach using a polyglycolic acid (PGA)-hyaluronan scaffold with platelet-rich-plasma (PRP) in drilling. We asked whether (1) PRP immersed in a cell-free PGA-hyaluronan scaffold improves patient-reported 1-year outcomes for the Knee injury and Osteoarthritis Score (KOOS), and (2) implantation of the scaffold in combination with bone marrow stimulation leads to the formation of hyaline-like cartilage repair tissue. We reviewed 52 patients who had arthroscopic implantation of the PGA-hyaluronan scaffold immersed with PRP in articular cartilage defects of the knee pretreated with Pridie drilling. Patients were assessed by KOOS. At 9 months followup, histologic staining was performed in specimens obtained from five patients to assess the repair tissue quality. The KOOS subscores improved for pain (55 to 91), symptoms (57 to 88), activities of daily living (69 to 86), sports and recreation (36 to 70), and quality of life (38 to 73). The histologic evaluation showed a homogeneous hyaline-like cartilage repair tissue. The cell-free PGA-hyaluronan scaffold combined with PRP leads to cartilage repair and improved patient-reported outcomes (KOOS) during 12 months of followup. Histologic sections showed morphologic features of hyaline-like repair tissue. Long-term followup is needed to determine if the cartilage repair tissue is durable. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  4. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF.

    Science.gov (United States)

    Xia, Min; Chen, Kun; Yao, Xiao; Xu, Yichi; Yao, Jiaying; Yan, Jun; Shao, Zhen; Wang, Gang

    2017-08-22

    DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER) and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Progranulin deficiency causes the retinal ganglion cell loss during development.

    Science.gov (United States)

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  7. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  8. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  9. Repair-defective mutants of Alteromonas espejiana, the host for bacteriophage PM2

    International Nuclear Information System (INIS)

    Zerler, B.R.; Wallace, S.S.

    1984-01-01

    The in vivo repair processes of Alteromonas espejiana, the host for bacteriophage PM2, were characterized, and UV- and methyl methanesulfonate (MMS)-sensitive mutants were isolated. Wild-type A. espejiana cells were capable of photoreactivation, excision, recombination, and inducible repair. There was no detecttable pyrimidine dimer-DNA N-glycosylase activity, and pyrimidine dimer removal appeared to occur by a pathway analogous to the Escherichia coli Uvr pathway. The UV- and MMS-sensitive mutants of A. espejiana included three groups, each containing at least one mutation involved with excision, recombination, or inducible repair. One group that was UV sensitive but not sensitive to MMS or X rays showed a decreased ability to excise pyrimidine dimers. Mutants in this group were also sensitive to psoralen plus near-UV light and were phenotypically analogous to the E. coli uvr mutants. A second group was UV and MMS sensitive but not sensitive to X rays and appeared to contain mutations in a gene(s) involved in recombination repair. These recombination-deficient mutants differed from the E. coli rec mutants, which are MMS and X-ray sensitive. The third group of A. espejiana mutants was sensitive to UV, MMS, and X rays. These mutants were recombination deficient, lacked inducible repair, and were phenotypically similar to E. coli recA mutants

  10. Role of DNA lesions and DNA repair in mutagenesis by carcinogens in diploid human fibroblasts

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1986-01-01

    The authors investigated the cytotoxicity, mutagenicity, and transforming activity of carcinogens and radiation in diploid human fibroblasts, using cells which differ in their DNA repair capacity. The results indicate that cell killing and induction of mutations are correlated with the number of specific lesions remaining unrepaired in the cells at a particular time posttreatment. DNA excision repair acts to eliminate potentially cytotoxic and mutagenic (and transforming) damage from DNA before these can be converted into permanent cellular effects. Normal human fibroblasts were derived from skin biopsies or circumcision material. Skin fibroblasts from xeroderma pigmentosum (XP) patients provided cells deficient in nucleotide excision repair of pyrimidine dimers or DNA adducts formed by bulky ring structures. Cytotoxicity was determined from loss of ability to form a colony. The genetic marker used was resistance to 6-thioguanine (TG). Transformation was measured by determining the frequency of anchorage-independent cells

  11. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome.

    Science.gov (United States)

    Westdorp, Harm; Kolders, Sigrid; Hoogerbrugge, Nicoline; de Vries, I Jolanda M; Jongmans, Marjolijn C J; Schreibelt, Gerty

    2017-09-10

    Monoallelic germline mutations in one of the DNA mismatch repair (MMR) genes cause Lynch syndrome, with a high lifetime risks of colorectal and endometrial cancer at adult age. Less well known, is the constitutional mismatch repair deficiency (CMMRD) syndrome caused by biallelic germline mutations in MMR genes. This syndrome is characterized by the development of childhood cancer. Patients with CMMRD are at extremely high risk of developing multiple cancers including hematological, brain and intestinal tumors. Mutations in MMR genes impair DNA repair and therefore most tumors of patients with CMMRD are hypermutated. These mutations lead to changes in the translational reading frame, which consequently result in neoantigen formation. Neoantigens are recognized as foreign by the immune system and can induce specific immune responses. The growing evidence on the clinical efficacy of immunotherapies, such as immune checkpoint inhibitors, offers the prospect for treatment of patients with CMMRD. Combining neoantigen-based vaccination strategies and immune checkpoint inhibitors could be an effective way to conquer CMMRD-related tumors. Neoantigen-based vaccines might also be a preventive treatment option in healthy biallelic MMR mutation carriers. Future studies need to reveal the safety and efficacy of immunotherapies for patients with CMMRD. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Repair models of cell survival and corresponding computer program for survival curve fitting

    International Nuclear Information System (INIS)

    Shen Xun; Hu Yiwei

    1992-01-01

    Some basic concepts and formulations of two repair models of survival, the incomplete repair (IR) model and the lethal-potentially lethal (LPL) model, are introduced. An IBM-PC computer program for survival curve fitting with these models was developed and applied to fit the survivals of human melanoma cells HX118 irradiated at different dose rates. Comparison was made between the repair models and two non-repair models, the multitar get-single hit model and the linear-quadratic model, in the fitting and analysis of the survival-dose curves. It was shown that either IR model or LPL model can fit a set of survival curves of different dose rates with same parameters and provide information on the repair capacity of cells. These two mathematical models could be very useful in quantitative study on the radiosensitivity and repair capacity of cells

  13. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    Science.gov (United States)

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  14. Repair of radiation damage in mammalian cells: its relevance to environmental effects

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.

    1979-01-01

    Assessment of the potential biological hazards associated with energy production technologies involves the quantitation of risk on the basis of dose-effect dependencies, from which, it is hoped, some safety guidelines can be developed. Our current knowledge of the biological importance of damage/repair processes stems by and large from radiation studies which clearly demonstrate that cellular response to radiation depends upon the ability of cells to repair the damage. Apparently, the same is true for cellular response to different chemical agents. Drawing upon our experiences from radiation studies, we demonstrate the relevance of ongoing repair processes, as evident in the studies of radiation induced cell killing and neoplastic transformation, to the type of risk estimates that might be associated with the hazards from energy production technologies. The effect of repair on cell survival is considered. It is evident from our studies that in the region of small doses, repair of damage relative to cell lethality is of importance in estimating the magnitude of effect. Aside from the cytotoxic effects in terms of cell killing, one of the greatest concerns associated with energy production is the potential of a given technology, or its effluents, to produce cancer. It is therefore of importance to quantify the risk in this context of damage registration and possible effect of repair on damage expression. It has been generally established that exposure of normal cells in culture to a variety of known carcinogens results in neoplastic transformation. Our observations with C3H/10T1/2 cells in culture lend direct evidence for the hypothesis that reduced tumor incidences at low dose rates of radiation could be due to the repair of induced damage

  15. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    Science.gov (United States)

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  16. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  17. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.

    Science.gov (United States)

    Stephanou, Nicolas C; Gao, Feng; Bongiorno, Paola; Ehrt, Sabine; Schnappinger, Dirk; Shuman, Stewart; Glickman, Michael S

    2007-07-01

    Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.

  18. Selective induction of DNA repair pathways in human B cells activated by CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wu

    Full Text Available Greater than 75% of all hematologic malignancies derive from germinal center (GC or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID, GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR. Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID-/-mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells.

  19. Repair of single-strand breaks in normal and trisomic lymphocytes

    International Nuclear Information System (INIS)

    Leonard, J.C.; Merz, T.

    1982-01-01

    Recently, Athanasiou and colleagues (1981) reported a deficiency in the capacity of lymphocytes from persons with Down's syndrome to repair single-strand DNA breaks. They found that 1 h after exposure to 160 Gray, repair processes had restored the sedimentation profile of DNA from normal lymphocytes to control values, whereas the relative average molecular weight of DNA from irradiated lymphocytes from persons with Down's syndrome showed no increase during the repair interval. They have suggested that their data, in conjunction with the earlier data concerning the frequencies of induced chromosomal aberrations in lymphocytes from persons with Down's syndrome, reflect a decreased efficiency in some aspect of DNA repair in trisomic cells. However, for further studies of this hypothesis, it is more appropriate to study the rejoining of DNA single-strand breaks after doses comparable to those used in tests for chromosomal aberrations. (orig.)

  20. DNA repair in lens cells during chick embryo development

    International Nuclear Information System (INIS)

    Counis, M.F.; Chaudun, E.; Simonneau, L.; Courtois, Y.

    1979-01-01

    When chick lens epithelium is cultured in vitro, differentiation into lens fiber cells is accompanied by DNA degradation. This phenomenon of terminal differentiation was studied in the epithelium from embryos at the 6th and 11th days of development. DNA size and the ability of the cells to repair DNA damage induced by X-rays were analysed in alkaline sucrose gradients. In the 6-day epithelium a rapid degradation and complete lack of DNA repair were recorded. Similar observations have been made in previous studies on the 11-day sample, but here degradation is progressive and occurs after a lag of several days. In the younger epithelium, internal irradiation by [ 3 H)thymidine also had a drastic effect resembling that caused by X-rays. In order to assess the process of differentiation in the experimental system the synthesis of delta- and αcrystallins was monitored. Stage-related modifications in the rates of synthesis were recorded. The results confirm that the DNA repair system is impaired during terminal differentiation. The differences observed between the two stages may reflect either a developmental modification in DNA repair mechanisms or a change in the relative proportions of differentiating cells. An hypothesis is proposed in support of the latter case. (Auth.)

  1. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Ian R Kelsall

    Full Text Available The many proteins that function in the Fanconi anaemia (FA monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.

  2. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

    Science.gov (United States)

    2014-03-01

    repair defects asso- ciated with downstream mediators of the HR reaction (e.g., XRCC2, BRCA2, or PALB2) (Bouwman et al., 2010; Bowman- Colin et al., 2013...and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695. Bowman- Colin , C., Xia, B., Bunting, S., Klijn, C., Drost, R., Bouwman, P., Fine...chromosomes. It is thus surprising that cells use ‘quick and dirty ’ repair by NHEJ rather than the slower, more accurate repair by homologous recombination

  3. Nucleotide excision repair II: From yeast to mammals

    NARCIS (Netherlands)

    J.H.J. Hoeijmakers (Jan)

    1993-01-01

    textabstractAn intricate network of repair systems safeguards the integrity of genetic material, by eliminating DNA lesions induced by numerous environmental and endogenous genotoxic agents. Nucleotide excision repair (NER) is one of the most versatile DNA repair systems. Deficiencies in this

  4. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  5. Radiopotentiation by the oral platinum agent, JM216: role of repair inhibition

    International Nuclear Information System (INIS)

    Amorino, George P.; Freeman, Michael L.; Carbone, David P.; Lebwohl, David E.; Choy, Hak

    1999-01-01

    Purpose: To test for in vitro radiopotentiation by the orally-administered platinum (IV) complex, JM216; to compare these results to cisplatin and carboplatin; and to investigate whether the mechanism of radiopotentiation involves repair inhibition of radiation-induced DNA damage. Methods and Materials: H460 human lung carcinoma cells were incubated with the drugs for 1 h at 37 deg. C, irradiated at room temperature, and returned to 37 deg. C for 20 min. Cells were then rinsed and colony forming ability was assessed. Wild-type V79 Chinese hamster cells and radiosensitive, DNA repair-deficient mutant cells (XR-V15B) were also studied along with H460 cells. Ku86 cDNA, which encodes part of a protein involved in DNA repair, was transfected into XR-V15B cells as previously described. The effect of JM216 on sublethal damage repair (SLDR) was also assessed using split-dose recovery. Results: Using equally cytotoxic doses of JM216, cisplatin, and carboplatin, the radiation dose enhancement ratios (DER) were 1.39, 1.31, and 1.20, respectively; the DER with 20 μM JM216 was 1.57. JM216 (20 μM) did not significantly change the final slope of radiation survival curves, but greatly reduced the survival curve shoulder. V79 cells also showed radioenhancement using 20 μM JM216, but no enhancement occurred using XR-V15B cells. Transfection of Ku86 cDNA into XR-V15B cells restored radiopotentiation by JM216 to wild-type V79 levels. In addition, 20 μM JM216 completely inhibited sublethal damage repair in H460 cells. Conclusion: Our results show that JM216 can potentiate the effects of radiation in human lung cancer cells, and that the mechanism of this effect is probably inhibition of DNA repair by JM216

  6. DNA repair in Haemophilus influenzae: isolation and characterization of an ultraviolet sensitive mutator mutant

    International Nuclear Information System (INIS)

    Walter, R.B.

    1985-01-01

    DNA repair in Haemophilus influenzae appears to be quite different from that seen in Escherichia coli in that H. influenzae shows neither SOS nor adaptation phenomena. Repair of DNA lesions in H. influenzae has been seen to occur via recombinational, excision, and mismatch repair pathways acting independently of one another. The author has isolated an ultraviolet (UV)-sensitive mutator mutant (mutB1) of H. influenzae Rd which shows deficiencies in both recombinational and mismatch repair pathways. This mutant is sensitive to a variety of DNA damaging agents as well as being hypermutable by alkylating agents and base analogues. MutB1 cells do not show post-UV DNA breakdown but do begin excision after UV irradiation. Genetic transformation with UV-irradiated DNA on mut B1 recipients shows that high (HE) and low (LE) efficiency markers are transformed at a ratio of 1.0 as in the mismatch repair deficient hex 1 mutant; however, kinetics of UV-inactivation experiments indicate that HE markers are sensitized and act as LE markers do on wild type recipients. Thus, the mutB gene product appears to play a role in both DNA repair and genetic transformation. A model is outlined which presents a role for a DNA helicase in both DNA repair and genetic transformation of H. influenzae

  7. A UV-sensitive human clonal cell line, RSa, which has low repair activity

    International Nuclear Information System (INIS)

    Suzuki, N.; Fuse, A.

    1981-01-01

    The repair activity of a human transformed cell line, RSa, which was found to be highly sensitive to the lethal effects of 254 mm far-ultraviolet radiation, was compared with that of HeLa cells by evaluating the range of UV-induced incorporation of [methyl- 3 H]thymidine ([ 3 H]dThd) or 5-[6- 3 H]bromodeoxyuridine ([ 3 H]BrdUrd) into deoxyribonucleic acid. Direct scintillation counting was used for measuring the extent of unscheduled DNA synthesis (UDS) in UV-irradiated cells, which were treated with hydroxyurea or with arginine deprivation. More quantitative measurements were made by using the density labeling and equilibrium centrifugation method for assaying repair replication. All the amounts of UDS and repair replication in RSa cells were markedly below those in HeLa cells. The possible relationships of the low repair activity to abnormally high UV sensitivity in RSa cells are discussed. (orig.)

  8. Enhancement of postreplication repair in Chinese hamster cells

    International Nuclear Information System (INIS)

    D'Ambrosio, S.M.; Setlow, R.B.

    1976-01-01

    Alkaline sedimentation profiles of pulse-labeled DNA from Chinese hamster cells showed that DNA from cells treated with N-acetoxy-acetylaminofluorene or ultraviolet radiation was made in segments smaller than those from untreated cells. Cells treated with a small dose (2.5 μM) of N-acetoxy-acetylaminofluorene or(2.5 J . m -2 ) 254-nm radiation, several hours before a larger dose (7 to 10 μM) of N-acetoxy-acetylaminofluorene or 5.0 J . m -2 of 254-nm radiation, also synthesized small DNA after the second dose. However, the rate at which this small DNA was joined together into parental size was appreciably greater than in absence of the small dose. This enhancement of postreplication repair (as a result of the initial small dose) was not observed when cells were incubated with cycloheximide between the two treatments. The results suggest that N-acetoxy-acetylaminofluorene and ultraviolet-damaged DNA from Chinese hamster cells are repaired by similar postreplicative mechanisms that require de novo protein synthesis for enhancement

  9. Gimeracil sensitizes cells to radiation via inhibition of homologous recombination

    International Nuclear Information System (INIS)

    Takagi, Masaru; Sakata, Koh-ichi; Someya, Masanori; Tauchi, Hiroshi; Iijima, Kenta; Matsumoto, Yoshihisa; Torigoe, Toshihiko; Takahashi, Akari; Hareyama, Masato; Fukushima, Masakazu

    2010-01-01

    Background and purpose: 5-Chloro-2,4-dihydroxypyridine (Gimeracil) is a component of an oral fluoropyrimidine derivative S-1. Gimeracil is originally added to S-1 to yield prolonged 5-FU concentrations in tumor tissues by inhibiting dihydropyrimidine dehydrogenase, which degrades 5-FU. We found that Gimeracil by itself had the radiosensitizing effect. Methods and materials: We used various cell lines deficient in non-homologous end-joining (NHEJ) or homologous recombination (HR) as well as DLD-1 and HeLa in clonogenic assay. γ-H2AX focus formation and SCneo assay was performed to examine the effects of Gimeracil on DNA double strand break (DSB) repair mechanisms. Results: Results of γ-H2AX focus assay indicated that Gimeracil inhibited DNA DSB repair. It did not sensitize cells deficient in HR but sensitized those deficient in NHEJ. In SCneo assay, Gimeracil reduced the frequency of neo-positive clones. Additionally, it sensitized the cells in S-phase more than in G0/G1. Conclusions: Gimeracil inhibits HR. Because HR plays key roles in the repair of DSBH caused by radiotherapy, Gimeracil may enhance the efficacy of radiotherapy through the suppression of HR-mediated DNA repair pathways.

  10. Helicobacter pylori Disrupts Host Cell Membranes, Initiating a Repair Response and Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Hsueh-Fen Juan

    2012-08-01

    Full Text Available Helicobacter pylori (H. pylori, the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA and cytotoxin-associated gene A (CagA have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+, single mutant (ΔvacA or ΔcagA or double mutant (ΔvacA/ΔcagA strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.

  11. The Potential for Synovium-derived Stem Cells in Cartilage Repair

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Lang, Gernot Michael; Fürst, David

    2018-01-01

    for the treatment of large, isolated, full thickness cartilage defects. Several disadvantages such as the need for two surgical procedures or hypertrophic regenerative cartilage, underline the need for alternative cell sources. OBJECTIVE: Mesenchymal stem cells, particularly synovium-derived mesenchymal stem cells......, represent a promising cell source. Synovium-derived mesenchymal stem cells have attracted considerable attention since they display great chondrogenic potential and less hypertrophic differentiation than mesenchymal stem cells derived from bone marrow. The aim of this review was to summarize the current...... knowledge on the chondrogenic potential for synovial stem cells in regard to cartilage repair purposes. RESULTS: A literature search was carried out identifying 260 articles in the databases up to January 2017. Several in vitro and initial animal in vivo studies of cartilage repair using synovia stem cell...

  12. Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair

    Directory of Open Access Journals (Sweden)

    Daniel H. Doro

    2017-11-01

    Full Text Available In addition to the natural turnover during life, the bones in the skeleton possess the ability to self-repair in response to injury or disease-related bone loss. Based on studies of bone defect models, both processes are largely supported by resident stem cells. In the long bones, the source of skeletal stem cells has been widely investigated over the years, where the major stem cell population is thought to reside in the perivascular niche of the bone marrow. In contrast, we have very limited knowledge about the stem cells contributing to the repair of calvarial bones. In fact, until recently, the presence of specific stem cells in adult craniofacial bones was uncertain. These flat bones are mainly formed via intramembranous rather than endochondral ossification and thus contain minimal bone marrow space. It has been previously proposed that the overlying periosteum and underlying dura mater provide osteoprogenitors for calvarial bone repair. Nonetheless, recent studies have identified a major stem cell population within the suture mesenchyme with multiple differentiation abilities and intrinsic reparative potential. Here we provide an updated review of calvarial stem cells and potential mechanisms of regulation in the context of skull injury repair.

  13. Rhoh deficiency reduces peripheral T-cell function and attenuates allogenic transplant rejection

    DEFF Research Database (Denmark)

    Porubsky, Stefan; Wang, Shijun; Kiss, Eva

    2011-01-01

    better graft function. This effect was independent of the lower T-cell numbers in Rhoh-deficient recipients, because injection of equal numbers of Rhoh-deficient or control T cells into kidney transplanted mice with SCID led again to a significant 60% reduction of rejection. Mixed lymphocyte reaction...... deficiency in a clinically relevant situation, in which T-cell inhibition is desirable. In murine allogenic kidney transplantation, Rhoh deficiency caused a significant 75% reduction of acute and chronic transplant rejection accompanied by 75% lower alloantigen-specific antibody levels and significantly...

  14. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures.

    Directory of Open Access Journals (Sweden)

    Mehdi Shakibaei

    Full Text Available OBJECTIVE: Treatment of colorectal cancer (CRC remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50-60%. Cancer stem cells (CSC are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin in context of DNA mismatch repair (MMR status and CSC activity in 3D cultures of CRC cells. METHODS: High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3 and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. RESULTS: Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. CONCLUSION: Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract.

  15. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures.

    Science.gov (United States)

    Shakibaei, Mehdi; Buhrmann, Constanze; Kraehe, Patricia; Shayan, Parviz; Lueders, Cora; Goel, Ajay

    2014-01-01

    Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50-60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells. High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract).

  16. Enhanced capacity of DNA repair in human cytomegalovirus-infected cells

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Plaque formation in Vero cells by UV-irradiated herpes simplex virus was enhanced by infection with human cytomegalovirus (HCMV), UV irradiation, or treatment with methylmethanesulfonate. Preinfection of Vero cells with HCMV enhanced reactivation of UV-irradiated herpes simplex virus more significantly than did treatment with UV or methylmethanesulfonate alone. A similar enhancement by HCMV was observed in human embryonic fibroblasts, but not in xeroderma pigmentosum (XP12BE) cells. It was also found that HCMV infection enhanced hydroxyurea-resistant DNA synthesis induced by UV light or methylmethanesulfonate. Alkaline sucrose gradient sedimentation analysis revealed an enhanced rate of synthesis of all size classes of DNA in UV-irradiated HCMV-infected Vero cells. However, HCMV infection did not induce repairable lesions in cellular DNA and did not significantly inhibit host cell DNA synthesis, unlike UV or methylmethanesulfonate. These results indicate that HCMV enhanced DNA repair capacity in the host cells without producing detectable lesions in cellular DNA and without inhibiting DNA synthesis. This repair appeared to be error proof for UV-damaged herpes simplex virus DNA when tested with herpes simplex virus thymidine kinase-negative mutants

  17. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  18. Electrical stimulation enhances cell migration and integrative repair in the meniscus

    Science.gov (United States)

    Yuan, Xiaoning; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been applied towards the repair of articular tissues in the laboratory and clinical settings for over seventy years. We focus on healing of the meniscus, a tissue essential to knee function with limited innate repair potential, which has been largely unexplored in the context of electrical stimulation. Here we demonstrate for the first time that electrical stimulation enhances meniscus cell migration and integrative tissue repair. We optimize pulsatile direct current electrical stimulation parameters on cells at the micro-scale, and apply these to healing of full-thickness defects in explants at the macro-scale. We report increased expression of the adenosine A2b receptor in meniscus cells after stimulation at the micro- and macro-scale, and propose a role for A2bR in meniscus electrotransduction. Taken together, these findings advance our understanding of the effects of electrical signals and their mechanisms of action, and contribute to developing electrotherapeutic strategies for meniscus repair. PMID:24419206

  19. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  20. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  1. Extent of excision repair before DNA synthesis determines the mutagenic but not the lethal effect of UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konze-Thomas, B.; Hazard, R.M.; Maher, V.M.; McCormick, J.J. (Michigan State Univ., East Lansing (USA). Carcinogenesis Lab.)

    1982-01-01

    Excision repair-proficient diploid fibroblasts from normal persons (NF) and repair-deficient cells from a xeroderma pigmentosum patient (XP12BE, group A) were grown to confluence and allowed to enter the G/sub 0/ state. Autoradiography studies of cells released from G/sub 0/ after 72 h and replated at lower densities (3-9 x 10/sup 3/ cells/cm/sup 2/) in fresh medium showed that semiconservative DNA synthesis (S phase) began approx. equal to 24 h after the replating. The task was to determine whether the time available for DNA excision repair between ultraviolet irradiation (254 nm) and the onset of DNA synthesis was critical in determining the cytotoxic and/or mutagenic effect of UV in human fibroblasts.

  2. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks.

    Science.gov (United States)

    Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J

    2010-11-01

    Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.

  3. The effect of DNA repair defects on reproductive performance in nucleotide excision repair (NER) mouse models: an epidemiological approach

    NARCIS (Netherlands)

    Tsai, P.S.; Nielen, M.; Horst, G.T.J. van der; Colenbrander, B.; Heesterbeek, J.A.P.; Fentener van Vlissingen, J.M.

    2005-01-01

    In this study, we used an epidemiological approach to analyze an animal database of DNA repair deficient mice on reproductive performance in five Nucleotide Excision Repair (NER) mutant mouse models on a C57BL/6 genetic background, namely CSA, CSB, XPA, XPC [models for the human DNA repair disorders

  4. Repair of UV-induced DNA damage and its inhibition by etoposide in Sf9 insect cells: comparison with human cells

    International Nuclear Information System (INIS)

    Chandna, Sudhir; Dwarakanath, B.S.; Moorthy, Ganesh; Jain, Charu

    2004-01-01

    In the present investigation, the kinetics of DNA repair in a lepidopteran cell line Sf9 (derived from the ovaries of Spodoptera frugiperda) following UV-irradiation was compared with the responses in a human embryonic kidney cell. DNA repair was studied by analyzing the kinetics of induction and removal of repair related strand breaks using the alkaline single cell gel electrophoresis and Halo assays. Since topoisomerases play important roles in the cellular responses to UV-induced damage, the effects of etoposideon DNA repair kinetics was also studied

  5. Characterization of a mutant rat kangaroo cell line with alterations in the cell cycle and DNA repair

    OpenAIRE

    Miyaji, E.N.; Johnson, R.T.; Downes, C.S.; Eveno, E.; Mezzina, M.; Sarasin, A.; Menck, C.F.M.

    2000-01-01

    Using a positive selection system for isolating DNA replication and repair related mutants, we isolated a clone from a rat kangaroo cell line (PtK2) that has increased sensitivity to UV light. Characterization of this clone indicated normal post-replication repair after UV irradiation, and normal removal rates of cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts by excision repair. However, this cell line has decreased ability to make early incisions on damaged DNA, po...

  6. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  7. Peritumoral granulomatous reaction in endometrial carcinoma: association with DNA mismatch repair protein deficiency, particularly loss of PMS2 expression.

    Science.gov (United States)

    Stewart, Colin J R; Pearn, Amy; Pachter, Nicholas; Tan, Adeline

    2018-04-30

    The observation of peritumoral granulomatous reactions (PGRs) in two endometrial carcinomas (ECs) with a PMS2-deficient/MLH1-intact expression pattern led us to investigate whether PGRs in EC were specifically associated with DNA mismatch repair (MMR) protein deficiency, particularly PMS2 loss. Hysterectomy specimens from 22 MMR protein-intact and 54 MMR protein-deficient ECs were reviewed with specific attention to the presence of a PGR and a tumour-associated lymphoid reaction [including tumour-infiltrating lymphocytes (TILs) and stromal lymphoid infiltrates]. The MMR protein-deficient ECs included 22 cases with combined MLH1/PMS2 loss, 11 with combined MSH2/MSH6 loss, 11 with isolated MSH6 loss, and 10 with PMS2 loss but intact MLH1 staining (including the two 'index' cases). Overall, PGRs were identified in seven of 54 (13%) MMR protein-deficient ECs, five of which showed a PMS2-deficient/MLH1-intact immunophenotype; three of these patients had germline PMS2 mutations and one additional patient had a germline MSH6 mutation. None of the MMR protein-intact tumours showed a PGR. Although five of the seven PGR-positive ECs had a high-grade histological component, six were stage I. Most ECs with PGRs also showed TILs and stromal lymphoid reactions, similarly to MMR protein-deficient ECs in general. MMR protein-deficient ECs, particularly those with PMS2 loss, occasionally show PGRs in addition to stromal lymphoid infiltrates and TILs. Therefore, PGRs could be considered to constitute a histological prompt for consideration of Lynch syndrome. The potential prognostic significance of PGRs in EC requires further study. © 2018 John Wiley & Sons Ltd.

  8. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2015-12-01

    Full Text Available The choline-deficient, ethionine-supplemented (CDE dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet. Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100% for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality.

  9. Constitutional mismatch repair deficiency and Lynch syndrome among consecutive Arab Bedouins with colorectal cancer in Israel.

    Science.gov (United States)

    Abu Freha, Naim; Leibovici Weissman, Yaara; Fich, Alexander; Barnes Kedar, Inbal; Halpern, Marisa; Sztarkier, Ignacio; Behar, Doron M; Arbib Sneh, Orly; Vilkin, Alex; Baris, Hagit N; Gingold, Rachel; Lejbkowicz, Flavio; Niv, Yaron; Goldberg, Yael; Levi, Zohar

    2018-01-01

    We assessed the molecular characteristics and the frequency of mutations in mismatch-repair genes among Bedouin patients with colorectal cancer (CRC) in Israel. Bedouin patients with a diagnosis of CRC at a major hospital in the southern part of Israel were deemed eligible for this study. The primary screening method was immunohistochemical staining for mismatch-repair proteins (MLH1, MSH2, MSH6, and PMS2). For subjects with abnormal immunohistochemical staining, we performed microsatellite instability (MSI) analyses, and for tumors with a loss of MLH1 expression we also performed BRAF testing. In MSI high cases we searched further for germline mutations. Of the 24 patients enrolled, four subjects (16.7%) had MSI high tumors: one subject was found to harbor a biallelic PMS2 mutation, one subject had Lynch syndrome (LS) with MSH6 mutation and two subjects had a loss of MLH1/PMS2 proteins/BRAF wild type /normal MLH1 sequence. Ten patients (41.7%) were younger than 50 at the time of diagnosis and none had first degree relatives with CRC. In conclusion, in this cohort of 24 consecutive Arab Bedouins with CRC, one patient was found to harbor a constitutional mismatch repair deficiency, one patient had LS with MSH6 mutation, and two patients had unresolved loss of MLH1/PMS2 proteins/BRAF wild type phenotype.

  10. Trichothiodystrophy, a human DNA repair disorder with heterogeneity in the cellular response to ultraviolet light

    International Nuclear Information System (INIS)

    Lehmann, A.R.; Arlett, C.F.; Broughton, B.C.

    1988-01-01

    Trichothiodystrophy (TTD) is an autosomal recessive disorder characterized by brittle hair with reduced sulfur content, ichthyosis, peculiar face, and mental and physical retardation. Some patients are photosensitive. A previous study by Stefanini et al. showed that cells from four photosensitive patients with TTD had a molecular defect in DNA repair, which was not complemented by cells from xeroderma pigmentosum, complementation group D. In a detailed molecular and cellular study of the effects of UV light on cells cultured from three further TTD patients who did not exhibit photosensitivity we have found an array of different responses. In cells from the first patient, survival, excision repair, and DNA and RNA synthesis following UV irradiation were all normal, whereas in cells from the second patient all these responses were similar to those of excision-defective xeroderma pigmentosum (group D) cells. With the third patient, cell survival measured by colony-forming ability was normal following UV irradiation, even though repair synthesis was only 50% of normal and RNA synthesis was severely reduced. The excision-repair defect in these cells was not complemented by other TTD cell strains. These cellular characteristics of patient 3 have not been described previously for any other cell line. The normal survival may be attributed to the finding that the deficiency in excision-repair is confined to early times after irradiation. Our results pose a number of questions about the relationship between the molecular defect in DNA repair and the clinical symptoms of xeroderma pigmentosum and TTD

  11. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    Science.gov (United States)

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  12. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    Energy Technology Data Exchange (ETDEWEB)

    Fan Jinshui; Robert, Carine [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States); Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce [Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD 21231-1000 (United States); Rassool, Feyruz Virgilia, E-mail: frassool@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States)

    2011-08-01

    Highlights: {yields} iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. {yields} iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. {yields} iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. {yields} iPSC however show a partial apoptotic response to DNA damage, compared to hESC. {yields} DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived

  13. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    International Nuclear Information System (INIS)

    Fan Jinshui; Robert, Carine; Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce; Rassool, Feyruz Virgilia

    2011-01-01

    Highlights: → iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. → iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. → iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. → iPSC however show a partial apoptotic response to DNA damage, compared to hESC. → DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived from, mimic hESC in their ROS levels

  14. Skin appendage-derived stem cells: cell biology and potential for wound repair

    OpenAIRE

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundament...

  15. DNA repair in a Fanconi's anemia fibroblast cell strain

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Little, J.B.; Weichselbaum, R.R.

    1979-01-01

    DNA repair and colony survival were measured in fibroblasts from a patient with Fanconi's anemia, HG 261, and from normal human donors after exposure to these cells to the cross-linking agent mitomycin C, X-rays or ultraviolet light. Survival was similar in HG 261 and normal cells after X-ray or ultraviolet radiation, but was reduced in the Fanconi's anemia cells after treatment with mitomycin C. The level of DNA cross-linking, as measured by the method of alkaline elution, was the same in both cell strains after exposure to various doses of mitomycin C. With incubation after drug treatment, a gradual decrease in the amount of cross-linking was observed, the rate of this apparent repair of cross-link damage was the same in both normal and HG 261 cells. The rejoining of DNA single strand breaks after X-irradiation and the production of excision breaks after ultraviolet radiation were also normal in HG 261 cells as determined by alkaline elution. (Auth.)

  16. DNA repair in a Fanconi's anemia fibroblast cell strain

    Energy Technology Data Exchange (ETDEWEB)

    Fornace, Jr, A J; Little, J B [Harvard School of Public Health, Boston, MA (USA); Weichselbaum, R R [Harvard Medical School, Boston, MA (USA)

    1979-01-26

    DNA repair and colony survival were measured in fibroblasts from a patient with Fanconi's anemia, HG 261, and from normal human donors after exposure to these cells to the cross-linking agent mitomycin C, X-rays or ultraviolet light. Survival was similar in HG 261 and normal cells after X-ray or ultraviolet radiation, but was reduced in the Fanconi's anemia cells after treatment with mitomycin C. The level of DNA cross-linking, as measured by the method of alkaline elution, was the same in both cell strains after exposure to various doses of mitomycin C. With incubation after drug treatment, a gradual decrease in the amount of cross-linking was observed, the rate of this apparent repair of cross-link damage was the same in both normal and HG 261 cells. The rejoining of DNA single strand breaks after X-irradiation and the production of excision breaks after ultraviolet radiation were also normal in HG 261 cells as determined by alkaline elution.

  17. Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging.

    Science.gov (United States)

    Brosh, Robert M; Bellani, Marina; Liu, Yie; Seidman, Michael M

    2017-01-01

    Fanconi Anemia (FA) is a rare autosomal genetic disorder characterized by progressive bone marrow failure (BMF), endocrine dysfunction, cancer, and other clinical features commonly associated with normal aging. The anemia stems directly from an accelerated decline of the hematopoietic stem cell compartment. Although FA is a complex heterogeneous disease linked to mutations in 19 currently identified genes, there has been much progress in understanding the molecular pathology involved. FA is broadly considered a DNA repair disorder and the FA gene products, together with other DNA repair factors, have been implicated in interstrand cross-link (ICL) repair. However, in addition to the defective DNA damage response, altered epigenetic regulation, and telomere defects, FA is also marked by elevated levels of inflammatory mediators in circulation, a hallmark of faster decline in not only other hereditary aging disorders but also normal aging. In this review, we offer a perspective of FA as a monogenic accelerated aging disorder, citing the latest evidence for its multi-factorial deficiencies underlying its unique clinical and cellular features. Published by Elsevier B.V.

  18. Studies of DNA repair in saccharomyces cerevisiae. I. Characterization of a new allele of RAD6. II. Investigation of events in the first cell cycle after DNA damage

    International Nuclear Information System (INIS)

    Douthwright-Fasse, J.A.

    1979-01-01

    Studies in two independent, but related, areas of DNA repair have been carried out in Saccharomyces cerevisiae; characterization of a new allele in the RAD6 gene which suggests that the gene is multifunctional, and utilization of photoreactivation as a probe of events occurring during the first cell cycle after DNA damage. Strains carrying the new allele, designated rad6-4, are as sensitive to uv and ionizing radiation as those carrying rad6-1 or rad6-3 but, unlike them, are capable of induced mutagenesis and sporulation. Although rad6-4 may well be a missense mutation, the evidence shows that it is unlikely that this phenotype is due to leakiness. Instead, the data suggest that the RAD6 gene is multifunctional. One function is necessary to recover from DNA damage in an error-free manner, and the other is concerned with mutagenic processes and sporulation. Rad6-1 and rad6-3 strains are deficient in both of these functions, while rad6-4 strains are deficient only in the error-free function. The loss of photoreversibility (LOP) of ultraviolet induced mutations to arginine independence in an excision defective strain carrying arg4-17 examines the events occurring in the first cell cycle after DNA damage. LOP is dependent upon de novo protein synthesis. LOP begins immediately after UV irradiation, before semiconservative DNA synthesis takes place, and is complete after four hours in growth medium.There is no evidence indicating whether the normal function of the protein is involved in excision repair, or in one of the two repair processes believed to be inducible; induced mutagenesis or recombinational repair

  19. Quantitative aspects of repair of potentially lethal damage in mammalian cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Pohlit, W.

    1979-01-01

    Stationary cultures of Ehrlich ascites tumour cells were irradiated with X-rays and then immediately or after a time interval tsub(rep) plated to measure the survival. The increase in survival observed after delayed plating was interpreted as repair of potentially lethal damage. A cybernetic model was used to analyse these data. Three states of damage were assumed for the cells. In state A the cells could grow to macrocolonies, in state B the cells suffered potentially lethal damage and could grow to macrocolonies only if they were allowed to repair the damage and in state C the cells were lethally damaged. A method of deriving the values of the parameters of the model from the experimental data was given. The dependence of the reaction rate constant of the repair potentially lethal damage on the dose D was used to derive a possible mechanism for the production of the shoulder in the dose effect curve. Finally this model was compared with other models of radiation action in living cells. (author)

  20. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?

    Science.gov (United States)

    Willems, Christophe; Vankelecom, Hugo

    2014-01-01

    The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.

  1. Inhibition of DNA replication and repair by anthralin or danthron in cultured human cells

    International Nuclear Information System (INIS)

    Clark, J.M.; Hanawalt, P.C.

    1982-01-01

    The comparative effects of the tumor promoter anthralin and its analog, danthron, on semiconservative DNA replication and DNA repair synthesis were studied in cultured human cells. Bromodeoxyuridine was used as density label together with 3 H-thymidine to distinguish replication from repair synthesis in isopycnic CsCl gradients. Anthralin at 1.1 microgram inhibited replication in T98G cells by 50%. In cells treated with 0.4 or 1.3 microM anthralin and additive effect was observed on the inhibition of replication by ultraviolet light (254 nm). In cells irradiated with 20 J/m2, 2.3 microM anthralin was required to inhibit repair synthesis by 50%. Thus there was no selective inhibitory effect of anthralin on repair synthesis. Danthron exhibited no detectable effect on either semiconservative replication or repair synthesis at concentrations below about 5.0 microM. Neither compound stimulated repair synthesis in the absence of ultraviolet irradiation. Thus, anthralin and danthron do not appear to react with DNA to form adducts that are subject to excision repair. Although both compounds appear to intercalate into supercoiled DNA in vitro to a limited extent, the degree of unwinding introduced by the respective drugs does not correlate with their relative effects on DNA synthesis in vivo. Therefore the inhibitory effect of anthralin on DNA replication and repair synthesis in T98G cells does not appear to result from the direct interaction of the drug with DNA

  2. Two pathways of DNA double-strand break repair in G1 cells of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.

    1988-01-01

    The G1 cells of the diploid yeast Saccharomyces cerevislae are known to be capable of a slow repair of DNA double-strand breaks (DSB) during holding the cells in a non-nutrient medium. In the present paper, it has been shown that S. cerevislae cells γ-irradiated in the G1 phase of cell cycle are capable of fast repair of DNA DSB; this process is completed within 30-40 min of holding the cells in water at 28 deg C. For this reason, the kinetics of DNA DSB repair during holding the cells in a non-nutrient medium are biphasic, i.e., the first, ''fast'' phase is completed within 30-40 min; wheras the second, ''slow'' one, within 48 h. Mutations rad51, rad52, rad54 and rad55 inhibit the fast repair of DNA DSB, whereas mutations rad50, rad53 and rad57 do not practically influence this process. It has been shown that the observed fast and slow repair of DNA DSB in the G1 diploid cells of S, cerevislae are separate pathways of DNA DSB repair in yeast

  3. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  4. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    Science.gov (United States)

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  6. Repair of soft X-ray damage to mammalian cell DNA

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, R.A.; Wharton, C.W. (Birmingham Univ. (UK). Dept. of Biochemistry)

    1990-10-01

    Inhibitors of polymerase {alpha} (hydroxyurea and cytosine arabinoside) and an inhibitor of polymerase {beta} and ''delta (di-deoxythymidine) had equal inhibitory effects on repair synthesis in the first 15 min after irradiation of Chinese hamster ovary cells with soft x-rays produced from a laser plasma. Polymerase {alpha} inhibitors had considerably more effect after 15 min following irradiation. This implies that polymerase {alpha}, {beta}, and/or {delta} are all equally active in the initial stages of repair synthesis after soft X-radiation, but {alpha}-activity is more prominent in later stages of repair synthesis. Polymerase {alpha} is thought to catalyse long-patch repair synthesis, while polymerase {beta} is thought to catalyse short-patch repair. Polymerase {delta} has been shown to be active in DNA repair synthesis, but its precise function is as yet uncertain. (author).

  7. Biallelic PMS2 Mutation and Heterozygous DICER1 Mutation Presenting as Constitutional Mismatch Repair Deficiency With Corpus Callosum Agenesis: Case Report and Review of Literature.

    Science.gov (United States)

    Cheyuo, Cletus; Radwan, Walid; Ahn, Janice; Gyure, Kymberly; Qaiser, Rabia; Tomboc, Patrick

    2017-10-01

    Constitutional mismatch repair deficiency syndrome is a cancer predisposition syndrome caused by autosomal recessive biallelic (homozygous) germline mutations in the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). The clinical spectrum includes neoplastic and non-neoplastic manifestations. We present the case of a 7-year-old boy who presented with T-lymphoblastic lymphoma and glioblastoma, together with non-neoplastic manifestations including corpus callosum agenesis, arachnoid cyst, developmental venous anomaly, and hydrocephalus. Gene mutation analysis revealed pathogenic biallelic mutations of PMS2 and heterozygous DICER1 variant predicted to be pathogenic. This report is the first to allude to a possible interaction of the mismatch repair system with DICER1 to cause corpus callosum agenesis.

  8. Postreplication repair gap filling in an Escherichia coli strain deficient in dnaB gene product

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1975-01-01

    Gaps in daughter-strand DNA synthesized after exposure of Escherichia coli E279 to ultraviolet light are filled during reincubation at 30 0 C for 20 min. Escherichia coli E279 is phenotypically DnaB - when incubated at 43 0 C. Cells incubated at 43 0 C were tested for their ability to complete postreplication repair gap filling. It is concluded that the dnaB gene product is essential for postreplication repair gap filling and that the inhibition seen is not initially the result of degradation

  9. Metachronous T-Lymphoblastic Lymphoma and Burkitt Lymphoma in a Child With Constitutional Mismatch Repair Deficiency Syndrome.

    Science.gov (United States)

    Alexander, Thomas B; McGee, Rose B; Kaye, Erica C; McCarville, Mary Beth; Choi, John K; Cavender, Cary P; Nichols, Kim E; Sandlund, John T

    2016-08-01

    Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with a high risk of developing early-onset malignancies of the blood, brain, and intestinal tract. We present the case of a patient with T-lymphoblastic lymphoma at the age of 3 years, followed by Burkitt lymphoma 10 years later. This patient also exhibited numerous nonmalignant findings including café au lait spots, lipomas, bilateral renal nodules, a nonossifying fibroma, multiple colonic adenomas, and a rapidly enlarging pilomatrixoma. The spectrum of malignant and nonmalignant neoplasms in this patient highlights the remarkable diversity, and early onset, of lesions seen in children with CMMRD. © 2016 Wiley Periodicals, Inc.

  10. The role of undifferentiated adipose-derived stem cells in peripheral nerve repair.

    Science.gov (United States)

    Zhang, Rui; Rosen, Joseph M

    2018-05-01

    Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell (uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.

  11. Immediate and repair induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Bryant, P.E.

    1986-01-01

    It seems logical to postulate that double strand breaks (dsb) arising both at the time of irradiation and via repair processes are potentially equally damaging for a cell in terms of the potential to induce chromosomal aberrations. However, in some cell systems the repair of double es or es-ssb sites may run concurrently with the incision so that these lesions do not remain open for long: hence the lack of accumulation of dsb during repair. The rate of incision will thus determine both the accumulation and the probability of exchanges leading to chromosomal aberrations between these and other frank dsb. Rapid incision leading to a large additional pool of dsb appears to be the case in Chinese hamster V79 cells. Some evidence also exists for the conversion of base damage, via dsb, into deletion type chromatid aberrations which accumulate in irradiated G2 human cells treated with ara C. A small fraction of dsb, probably arising both at the time of irradiation as well as enzymatically during repair of base or sugar damage, appears to be either left unrepaired, yielding deletion type chromosomal aberrations, or is misrepaired, yielding exchange aberrations. The induction of these aberrations appears to be of central importance in the biological effects of ionizing radiation such as mutations, oncogenic transformation, and cell death. 52 refs., 5 figs

  12. Annexins are instrumental for efficient plasma membrane repair in cancer cells.

    Science.gov (United States)

    Lauritzen, Stine Prehn; Boye, Theresa Louise; Nylandsted, Jesper

    2015-09-01

    Plasma membrane stress can cause damage to the plasma membrane, both when imposed by the extracellular environment and by enhanced oxidative stress. Cells cope with these injuries by rapidly activating their plasma membrane repair system, which is triggered by Ca(2+) influx at the wound site. The repair system is highly dynamic, depends on both lipid and protein components, and include cytoskeletal reorganization, membrane replacements, and membrane fusion events. Cancer cells experience enhanced membrane stress when navigating through dense extracellular matrix, which increases the frequency of membrane injuries. In addition, increased motility and oxidative stress further increase the risk of plasma membrane lesions. Cancer cells compensate by overexpressing Annexin proteins including Annexin A2 (ANXA2). Annexin family members can facilitate membrane fusion events and wound healing by binding to negatively charged phospholipids in the plasma membrane. Plasma membrane repair in cancer cells depends on ANXA2 protein, which is recruited to the wound site and forms a complex with the Ca(2+)-binding EF-hand protein S100A11. Here they regulate actin accumulation around the wound perimeter, which is required for wound closure. In this review, we will discuss the requirement for Annexins, S100 proteins and actin cytoskeleton in the plasma membrane repair response of cancer cells, which reveals a novel avenue for targeting metastatic cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mesenchymal Stem Cells in Tissue Growth and Repair

    OpenAIRE

    Kalinina, N.I.; Sysoeva, V.Yu.; Rubina, K.A.; Parfenova, Ye.V.; Tkachuk, V.A.

    2011-01-01

    It has been established in the recent several decades that stem cells play a crucial role in tissue renewal and regeneration. Mesenchymal stem cells (MSCs) are part of the most important population of adult stem cells. These cells have hereby been identified for the very first time and subsequently isolated from bone marrow stroma. Bone marrow-derived MSCs have been believed to play the role of a source of cells for the renewal and repair of connective tissues, including bone, cartilage and a...

  14. Molecular dosimetry of chemical mutagens: measurement of molecular dose and DNA repair germ cells

    International Nuclear Information System (INIS)

    Sega, G.A.

    1975-01-01

    Molecular dosimetry in the germ cells of male mice is reviewed with regard to in vivo alkylation of sperm heads, in vivo alkylation of sperm DNA, and possible alkylation of sperm protamine. DNA repair in male germ cells is reviewed with regard to basic design of experiments, DNA repair in various stages of spermatogenesis, effect of protamine on DNA repair following treatment with EMS or x radiation, and induction of DNA repair by methyl methanesulfonate, propyl methanesulfonate, and isopropyl methanesulfonate

  15. Visualization of DNA double-strand break repair: From molecules to cells

    NARCIS (Netherlands)

    Krawczyk, Przemek M.; Stap, Jan; Aten, Jacob A.

    2008-01-01

    DNA double-strand break (DSB) signaling and repair processes are positioned at the crossroad of nuclear pathways that regulate DNA replication, cell division, senescence and apoptosis. Importantly, errors in DSB repair may lead to lethal or potentially tumorigenic chromosome rearrangements.

  16. Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Buchanan DD

    2014-10-01

    Full Text Available Daniel D Buchanan,1,2 Christophe Rosty,1,3,4 Mark Clendenning,1 Amanda B Spurdle,5 Aung Ko Win2 1Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia; 2Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; 3Envoi Specialist Pathologists, Herston, QLD, Australia; 4School of Medicine, University of Queensland, Herston, QLD, Australia; 5Molecular Cancer Epidemiology Laboratory, Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Herston, QLD, AustraliaAbstract: Carriers of a germline mutation in one of the DNA mismatch repair (MMR genes have a high risk of developing numerous different cancers, predominantly colorectal cancer and endometrial cancer (known as Lynch syndrome. MMR gene mutation carriers develop tumors with MMR deficiency identified by tumor microsatellite instability or immunohistochemical loss of MMR protein expression. Tumor MMR deficiency is used to identify individuals most likely to carry an MMR gene mutation. However, MMR deficiency can also result from somatic inactivation, most commonly methylation of the MLH1 gene promoter. As tumor MMR testing of all incident colorectal and endometrial cancers (universal screening is becoming increasingly adopted, a growing clinical problem is emerging for individuals who have tumors that show MMR deficiency who are subsequently found not to carry an MMR gene mutation after genetic testing using the current diagnostic approaches (Sanger sequencing and multiplex ligation-dependent probe amplification and who also show no evidence of MLH1 methylation. The inability to determine the underlying cause of tumor MMR deficiency in these "Lynch-like" or "suspected Lynch syndrome" cases has significant implications on the clinical management of these individuals and their relatives. When the

  17. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  18. Physical interaction between components of DNA mismatch repair and nucleotide excision repair

    International Nuclear Information System (INIS)

    Bertrand, P.; Tishkoff, D.X.; Filosi, N.; Dasgupta, R.; Kolodner, R.D.

    1998-01-01

    Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as 'bait,' and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes

  19. Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair.

    Science.gov (United States)

    Foldager, Casper Bindzus; Gomoll, Andreas H; Lind, Martin; Spector, Myron

    2012-04-01

    Cartilage repair techniques have been among the most intensively investigated treatments in orthopedics for the past decade, and several different treatment modalities are currently available. Despite the extensive research effort within this field, the generation of hyaline cartilage remains a considerable challenge. There are many parameters attendant to each of the cartilage repair techniques that can affect the amount and types of reparative tissue generated in the cartilage defect, and some of the most fundamental of these parameters have yet to be fully investigated. For procedures in which in vitro-cultured autologous chondrocytes are implanted under a periosteal or synthetic membrane cover, or seeded onto a porous membrane or scaffold, little is known about how the number of cells affects the clinical outcome. Few published clinical studies address the cell seeding density that was employed. The principal objective of this review is to provide an overview of the cell seeding densities used in cell-based treatments currently available in the clinic for cartilage repair. Select preclinical studies that have informed the use of specific cell seeding densities in the clinic are also discussed.

  20. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang, Z.; Wu, X.; Friedberg, E.C.

    1993-01-01

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg 2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  1. DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells

    International Nuclear Information System (INIS)

    Urushihara, Yusuke; Kobayashi, Junya; Matsumoto, Yoshihisa; Komatsu, Kenshi; Oda, Shoji; Mitani, Hiroshi

    2012-01-01

    Highlights: ► We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. ► A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. ► DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. ► DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. ► DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ and aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after γ-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of γH2AX foci after γ-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of γH2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after γ-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the number of 53BP1 foci compared with wild-type cells. These results suggest that low level of DNA-PK activity causes aberrant DNA-PKcs autophosphorylation

  2. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells

    International Nuclear Information System (INIS)

    Gedik, C.M.; Collins, A.R.; Ewen, S.W.B.

    1992-01-01

    The authors have adapted procedure of single cell gel electrophoresis (SCGE) for studying DNA damage and repair induced by UV-C-radiation, using HeLa cells. UV-C itself does not induce DNA breakage, and though cellular repair of UV-C damage produces DNA breaks as intermediates, these are too short-lived to be detected by SCGE. Incubation of UV-C-irradiated cells with the DNA synthesis inhibitor aphidicolin causes accumulation of incomplete repair sites to a level readily detected by SCGE even after doses as low as 0.5 J m -2 and incubation for as little as 5 min. The authors also studied UV-C-dependent incision, repair synthesis and ligation in permeable cells. Finally, key incubated permeable cells, after UV-C-irradiation, with exogenous UV endonuclease, examined consequent breaks both by SCGE and by alkaline unwinding to express results of the electrophoretic method in terms of DNA break frequencies. The sensitivity of the SCGE technique can thus be estimated; as few as 0.1 DNA breaks per 10 9 daltons are detected. (Author)

  3. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    Science.gov (United States)

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  4. Role of the viral and cellular encoded thymidine kinase in the repair of UV-irradiated herpes simplex virus

    International Nuclear Information System (INIS)

    Rainbow, A.J.; McMaster Univ., Hamilton, ON

    1989-01-01

    A strain of herpes simplex type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk + ) gene and a thymidine kinase deficient (tk - ) mutant strain (HSC-1:PTK3B) were used as probes to examine the repair of UV-damaged viral DNA in one tk - (143) and two tk + (R970-5 and AC4) human cell lines. UV survival for each HSC-1 strain was similar for infection of both tk - and tk + cells suggesting that the repair of viral DNA was not dependent on the expression of a functional cellular tk gene. In contrast, UV survival of HSV-1:PTK3B was substantially reduced compared to HSV-1:KOS when infecting all 3 human cell lines, as well as Vero monkey kidney cells and LPM1A mouse cells. Tjese results suggest that the repair of UV-irradiated HSV-1 in lytically infected mammalian cells depends, in part at least, on the expression of the viral encoded tk. (author). 20 refs.; 1 fig

  5. The absence of caffeine inhibition of post-replication repair in excision deficient strains of Escherichia coli B and K12

    International Nuclear Information System (INIS)

    McCulley, C.M.; Johnson, R.C.

    1976-01-01

    The effect of caffeine on postreplication repair, as seen in alkaline sucrose gradients, conjugation, and ultraviolet light (UV) survival, was studied in excision deficient strains of Escherichia coli K12 and B. A caffeine concentration of 2 mg/ml was chosen for the study which did not inhibit colony formation. Both E. coli K12 AB2500 and E. coli B WWP2 were more sensitive to UV when plated on caffeine plates. Conjugation was not inhibited in the E. coli K12 strain; however, the same procedure confirmed caffeine inhibition in the E. coli B strain. Caffeine did not inhibit postreplication repair in either strain, as determined by sedimentation profile studies of DNA on alkaline sucrose gradients. No strand breakage or degradation was observed in parental or post-UV replicated DNA for as long as 50 min incubation in caffeine. Thus caffeine concentrations that inhibited two recA gene product related phenomena did not cause immediate changes in size of DNA or inhibit the rate of a DNA gap generating postreplication type of DNA repair

  6. The inhibition of repair in UV irradiated human cells

    International Nuclear Information System (INIS)

    Collins, A.R.S.; Schor, S.L.; Johnson, R.T.

    1977-01-01

    Three different assay procedures are used to determine the effects of hydroxyurea on excision repair in UV-irradiated HeLa cells. At the cytological level, incubation of UV-irradiated metaphase cells with hydroxyurea caused chromosome decondensation. Using a modified alkaline sucrose gradient sedimentation technique involving minimal lysis before centrifugation, a marked retardation was found in the sedimentation of DNA from UV-irradiated cells incubated for a short period with hydroxyurea. The effect of hydroxyurea on the incorporation of [ 3 H]thymidine by UV-irradiated G1 cells was found to depend on the concentration of thymidine present in the medium. The results point to an inhibition of repair DNA synthesis by hydroxyurea (or deoxyadenosine), at the level of the supply of DNA precursors, i.e. in the same way that these agents inhibit semiconservative DNA synthesis. In the presence of these inhibitors, single-strand gaps accumulate in the DNA

  7. Intrinsic radiosensitivity and PLD repair in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Sugimoto, M.; Toguchida, J.; Kotoura, Y.; Yamamuro, T.; Utsumi, H.

    1992-01-01

    The response to radiation of seven osteosarcoma cell lines was analysed by in vitro colony-forming assay and compared with that of eight human fibroblast strains. The values of D 0 , the surviving fraction after 2 Gy (S2Gy), and the mean inactivation dose (D-bar) of osteosarcoma cells in log-phase culture were significantly higher than those of fibroblast strains (p<0.01). PLD (potentially lethal damage) repair of osteosarcoma cells evaluated in the plateau phase of growth showed great variation for enhancement of survival, although all of the values were maximised within 12 h after irradiation. In the osteosarcoma, intrinsic radiosensitivity in vitro reflected the clinical response to radiation. However, the capacity for PLD repair might not be a good indicator for predicting the results of radiation therapy. (author)

  8. Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells.

    Science.gov (United States)

    Verstraeten, Sandra V; Zago, M Paola; MacKenzie, Gerardo G; Keen, Carl L; Oteiza, Patricia I

    2004-01-01

    We investigated whether zinc deficiency can affect plasma membrane rheology. Three cell lines, human leukaemia T-cells (Jurkat), rat fibroblasts (3T3) and human neuroblastoma cells (IMR-32), were cultured for 48 h in control medium, in zinc-deficient medium (1.5 microM zinc; 1.5 Zn), or in the zinc-deficient medium supplemented with 15 microM zinc (15 Zn). The number of viable cells was lower in the 1.5 Zn group than in the control and 15 Zn groups. The frequency of apoptosis was higher in the 1.5 Zn group than in the control and 15 Zn groups. Membrane fluidity was evaluated using the 6-(9-anthroyloxy)stearic acid and 16-(9-anthroyloxy)palmitic acid probes. Membrane fluidity was higher in 1.5 Zn cells than in the control cells; no differences were observed between control cells and 15 Zn cells. The effect of zinc deficiency on membrane fluidity at the water/lipid interface was associated with a higher phosphatidylserine externalization. The higher membrane fluidity in the hydrophobic region of the bilayer was correlated with a lower content of arachidonic acid. We suggest that the increased fluidity of the membrane secondary to zinc deficiency is in part due to a decrease in arachidonic acid content and the apoptosis-related changes in phosphatidylserine distribution. PMID:14629198

  9. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    International Nuclear Information System (INIS)

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-01-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s)

  10. Fibre autoradiography of repair and replication in DNA from single cells: the effect of DNA synthesis inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Ockey, C.H.

    1982-04-01

    DNA fibre autoradiography, after incorporation of high specific activity /sup 3/H-thymidine and /sup 3/H-deoxycytidine, has been used to investigate repair in DNA fibres from single cells following UV, or methyl-methane sulphonate (MMS) treatment. Asynchronously growing human fibroblasts, leucocytes, and HeLa cells at different phases of the cell cycle have been investigated. Isotope incorporation in repair could be differentiated from that involved in replication by the distribution and density of silver grains along the DNA fibres. Grain distribution due to repair was continuous over long stretches of the fibres and was at a low density, occasionally interspersed with short slightly denser segments. Replication labelling on the other hand, was dense and usually in short tandem segments. Repair labelling was of a similar overall density in fibres from a single cell, but differed in intensity from cell to cell. In mutagen treated Go (leucocytes) of G/sub 1/ (HeLa cells), repair labelling was not increased by the presence of the DNA inhibitors, hydroxyurea (HU) or 5-fluorodeoxyuridine (FUdR). Repair was not detectable in S cells however without the use of these inhibitors to reduce endogenous nucleoside production. FUdR enhanced the repair labelling in S cells only slightly, while HU increased it beyond that observed in UV irradiated, HU treated, G/sub 1/ cells. The intensity of repair labelling in fibres from mutagen treated S cells appears to be proportional to the degree of reduction of DNA chain elongation in replicons.

  11. Nucleotide excision repair modulates the cytotoxic and mutagenic effects of N-n-butyl-N-nitrosourea in cultured mammalian cells as well as in mouse splenocytes in vivo.

    Science.gov (United States)

    Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G

    1999-05-01

    The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.

  12. Uracil excision repair in Mycobacterium tuberculosis cell-free extracts.

    Science.gov (United States)

    Kumar, Pradeep; Bharti, Sanjay Kumar; Varshney, Umesh

    2011-05-01

    Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Stem Cells in Tissue Repair and Regeneration

    OpenAIRE

    Falanga, Vincent

    2012-01-01

    The field of tissue repair and wound healing has blossomed in the last 30 years. We have gone from recombinant growth factors, to living tissue engineering constructs, to stem cells. The task now is to pursue true regeneration, thus achieving full restoration of structures and their function.

  14. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice.

    Science.gov (United States)

    Passman, Adam M; Strauss, Robyn P; McSpadden, Sarah B; Finch-Edmondson, Megan L; Woo, Ken H; Diepeveen, Luke A; London, Roslyn; Callus, Bernard A; Yeoh, George C

    2015-12-01

    The choline-deficient, ethionine-supplemented (CDE) dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC)-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet). Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100%) for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality. © 2015. Published by The Company of Biologists Ltd.

  15. Repair-dependent cell radiation survival and transformation: an integrated theory

    International Nuclear Information System (INIS)

    Sutherland, John C

    2014-01-01

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  16. Optic pathway glioma as part of a constitutional mismatch-repair deficiency syndrome in a patient meeting the criteria for neurofibromatosis type 1.

    Science.gov (United States)

    Yeung, Jacky T; Pollack, Ian F; Shah, Sapana; Jaffe, Ronald; Nikiforova, Marina; Jakacki, Regina I

    2013-01-01

    Patients with constitutional mismatch repair-deficiency (CMMR-D) caused by the biallelic deletions of mismatch repair (MMR) genes have a high likelihood of developing malignancies of the bone marrow, bowel, and brain. Affected individuals often have phenotypic features of neurofibromatosis type 1 (NF-1), including café-au-lait spots. Optic pathway gliomas (OPGs), a common manifestation of NF-1, have not been reported. We report the case of a 3-year-old male with an extensive OPG who met the diagnostic criteria for NF-1. He was subsequently found to have multiple colonic polyps and bi-allelic loss of PMS2. Testing for NF-1 was negative. Copyright © 2012 Wiley Periodicals, Inc.

  17. Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair.

    Science.gov (United States)

    Juncosa-Melvin, Natalia; Boivin, Gregory P; Galloway, Marc T; Gooch, Cindi; West, John R; Butler, David L

    2006-04-01

    The objective of the present study was to test the hypotheses that implantation of cell-seeded constructs in a rabbit Achilles tendon defect model would 1) improve repair biomechanics and matrix organization and 2) result in higher failure forces than measured in vivo forces in normal rabbit Achilles tendon (AT) during an inclined hopping activity. Autogenous tissue-engineered constructs were fabricated in culture between posts in the wells of silicone dishes at four cell-to-collagen ratios by seeding mesenchymal stem cells (MSC) from 18 adult rabbits at each of two seeding densities (0.1 x 10(6) and 1 x 10(6) cell/mL) in each of two collagen concentrations (1.3 and 2.6 mg/mL). After 5 days of contraction, constructs having the two highest ratios (0.4 and 0.8 M/mg) were damaged by excessive cell traction forces and could not be used in subsequent in vivo studies. Constructs at the lower ratios (0.04 and 0.08 M/mg) were implanted in bilateral, 2 cm long gap defects in the rabbit's lateral Achilles tendon. At 12 weeks after surgery, both repair tissues were isolated and either failed in tension (n = 13) to determine their biomechanical properties or submitted for histological analysis (n = 5). No significant differences were observed in any structural or mechanical properties or in histological appearance between the two repair conditions. However, the average maximum force and maximum stress of these repairs achieved 50 and 85% of corresponding values for the normal AT and exceeded the largest peak in vivo forces (19% of failure) previously recorded in the rabbit AT. Average stiffness and modulus were 60 and 85% of normal values, respectively. New constructs with lower cell densities and higher scaffold stiffness that do not excessively contract and tear in culture and that further improve the repair stiffness needed to withstand various levels of expected in vivo loading are currently being investigated.

  18. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  19. Localization of ultraviolet-induced excision repair in the nucleus and the distribution of repair events in higher order chromatin loops in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Mullenders, L.H.F.; Zeeland, A.A. van; Natarajan, A.T.

    1987-01-01

    Several lines of evidence indicate that eukaryotic DNA is arranged in highly supercoiled domains or loops, and that the repeating loops are constrained by attachment to a nuclear skeletal structure termed the nuclear matrix. We have investigated whether the repair of DNA damage occurs in the nuclear matrix compartment. Normal human fibroblasts, ultraviolet (u.v.)-irradiated with 30 J m/sup -2/ and post-u.v. incubated in the presence of hydroxyurea, did not show any evidence for the occurrence of repair synthesis at the nuclear matrix. 5 J m/sup -2/ repair synthesis seems to initiate at the nuclear matrix, although only part of the total repair could be localized there. In u.v.-irradiated (30 J m/sup -2/) normal human fibroblast post-u.v. incubated in the presence of hydroxyurea and arabinsosylcytosine for 2h, multiple single-stranded regions are generated in a DNA loop as a result of the inhibition of the excision repair process. Preferential repair of certain domains in the chromatin was shown to occur in xeroderma pigmentosum cells of complementation group C (XP-C) in contrast to XP-D cells and Syrian hamster embryonic cells.

  20. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    International Nuclear Information System (INIS)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-01-01

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  1. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  2. Repair capability of mammalian cell fractions demonstrated using infectivity of bacteriophage DNA

    International Nuclear Information System (INIS)

    Lai, S.P.; Lytle, C.D.; Benane, S.G.

    1976-01-01

    Extracts of Potoroo kidney cells (PtK2) were examined for ability to provide a repair function in vitro. The biological activity (infectivity) of uv-irradiated replicative form (RF) DNA of bacteriophage phiX174 was restored during incubation of the DNA with a nuclear extract but not with a cytoplasmic extract. The infectivity of the RF-DNA was determined in spheroplasts of E. coli C/sub s/, which is HCR - . This system for biological assay of uv-irradiated DNA repaired in vitro may be used to complement biochemical and biophysical investigations of molecular repair mechanisms in mammalian cells

  3. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  4. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  5. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Final report, August 1, 1977-January 31, 1985

    International Nuclear Information System (INIS)

    Evans, H.H.

    1985-01-01

    We have compared the lethal, mutagenic, and carcinogenic effects of radiation and alkylating agents in several types of cells. In C3H 10T 1/2 cells, lethal effects decreased, while the frequency of ouabain-resistant mutants and of transformed cells increased during a 4-hour holding period following EMS treatment. To isolate repair-deficient mutants, we used diploid BHK cells which were characterized with regard to reactivation of uv- and x-irradiated Herpes Simplex virus (HSV). Three radiation-sensitive BHK strains were isolated using a host cell viral-reactivation suicide procedure. Two of these strains were sensitive to the cytotoxic effects of alkylating agents. One strain was hypermutable and one hypomutable following treatment with EMS. Mouse lymphoma strain L5178Y-S (LY-S), though more sensitive to the lethal effects of X radiation and alkylating agents than strain L5178Y-R (LY-R), was less mutable by these agents at the Na + /K + ATPase and hypoxanthine/guanine phosphoribosyltransferase (HGPRT) loci. Strain LY-S exhibited less dose-rate dependence for lethal effects than strain LY-R, but no dose-rate dependence was observed in radiation-induced mutagenesis for either strain. Repair of x ray-induced potentially lethal damage (PLD) at 25 0 was observed for strain LY-S but not LY-R. Addition of 3-aminobenzamide (2 mm) to the medium sensitized both strains to x radiation, uv radiation and MNU, and inhibited rapair of x ray-induced PLD in strain LY-S

  6. Recent research in DNA repair, mutation and recombination: a report of the DNA Repair Network meeting, held at City University, London on 18 December 1995.

    Science.gov (United States)

    Jones, N J; Strike, P

    1996-09-02

    The now traditional one day Christmas DNA Repair meeting was held at City University, London for the third year in succession. With over 130 participants and a programme consisting of a total of 24 pre-offered presentations the meeting reached record dimensions. Attendees were from 24 institutions throughout the United Kingdom, and with several distinct research groups contained within the large contingents from the ICRF Clare Hall Laboratories and the MRC Cell Mutation Unit in Brighton, this indicates the increasing interest and depth of UK research in DNA repair. One slight disappointment of the meeting was the fall in the numbers of non-UK participants. Although the meeting in 1994 (Strike, 1995) saw an increase in presentations from Continental Europe (six countries including France, Germany. The Netherlands and Switzerland), the trend did not continue this year, with only Denmark being represented. The 24 contributors consisted of approximately equal numbers of postgraduate students, postdoctoral researchers and more "established' scientists reflecting the continuing policy of encouraging younger members of the repair community to present their work. The mix of presenters was particularly well illustrated by two excellent and consecutive talks by Professor Bryn Bridges (MRC Cell Mutation Unit) and Alison Mitchell, a postgraduate student in Stephen West's laboratory (ICRF, Clare Hall). The organisms under study were as equally disparate and included Archaebacteria, Escherichia coli. Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus, mice and men. The range of topics was also varied and included bacterial mutagenesis, NMR studies of Ada protein, preferential DNA repair, cell cycle checkpoint genes, reconstitution of nucleotide excision repair and V(D)J recombination in vitro, creation of repair deficient transgenic mice and mismatch defects in human cells. The result was a very successful meeting which was characterized by the consistently high

  7. Mesenchymal Stem Cells in Tissue Repair

    Directory of Open Access Journals (Sweden)

    Amy M DiMarino

    2013-09-01

    Full Text Available The advent of mesenchymal stem cell (MSC based therapies for clinical therapeutics has been an exciting and new innovation for the treatment of a variety of diseases associated with inflammation, tissue damage and subsequent regeneration and repair. Application-based ability to measure MSC potency and fate of the cells post-MSC therapy are the variables that confound the use of MSCs therapeutics in human diseases. An evaluation of MSC function and applications with attention to detail in the preparation as well as quality control (QC and quality assurance (QA are only as good as the assays that are developed. In vivo measures of efficacy and potency require an appreciation of the overall pathophysiology of the model and standardization of outcome measures. The new concepts of how MSC’s participate in the tissue regeneration and wound repair process and further, how this is impacted by estimates of efficacy and potency Are important new topics. In this regard,,, this chapter will review some of the in vitro and in vivo assays for MSC function and activity and their application to the clinical arena.

  8. Microarray analysis of pancreatic gene expression during biotin repletion in biotin-deficient rats.

    Science.gov (United States)

    Dakshinamurti, Krishnamurti; Bagchi, Rushita A; Abrenica, Bernard; Czubryt, Michael P

    2015-12-01

    Biotin is a B vitamin involved in multiple metabolic pathways. In humans, biotin deficiency is relatively rare but can cause dermatitis, alopecia, and perosis. Low biotin levels occur in individuals with type-2 diabetes, and supplementation with biotin plus chromium may improve blood sugar control. The acute effect on pancreatic gene expression of biotin repletion following chronic deficiency is unclear, therefore we induced biotin deficiency in adult male rats by feeding them a 20% raw egg white diet for 6 weeks. Animals were then randomized into 2 groups: one group received a single biotin supplement and returned to normal chow lacking egg white, while the second group remained on the depletion diet. After 1 week, pancreata were removed from biotin-deficient (BD) and biotin-repleted (BR) animals and RNA was isolated for microarray analysis. Biotin depletion altered gene expression in a manner indicative of inflammation, fibrosis, and defective pancreatic function. Conversely, biotin repletion activated numerous repair and anti-inflammatory pathways, reduced fibrotic gene expression, and induced multiple genes involved in pancreatic endocrine and exocrine function. A subset of the results was confirmed by quantitative real-time PCR analysis, as well as by treatment of pancreatic AR42J cells with biotin. The results indicate that biotin repletion, even after lengthy deficiency, results in the rapid induction of repair processes in the pancreas.

  9. Binding of a nitroxyl to radiation-induced DNA transients in repair and repair deficient of E. coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Wold, E; Brustad, T [Norsk Hydros Institutt for Kreftforskning, Oslo

    1975-01-01

    Binding of tritiated 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (/sup 3/H-TAN) to radiation-induced DNA-transients in E. coli K-12 strains AB 1157 and JO 307 rec A uvr A has been studied under in vivo conditions. After irradiation the cells were washed and resuspended in growth medium and left overnight at 37 deg C. Within an uncertainty of about 10 %, no effect of repair could be detected on the yield of TAN bound to DNA for any of the strains. During the period after resuspension TAN or fragments of TAN leaked out of the irradiated cell samples. This leakage may be attributed to semi-permanent association between TAN and radiation-induced radicals within the cell. The relevance of different interactions between TAN and transients in DNA is discussed.

  10. Studies on a role of XRCC4 in human cells

    International Nuclear Information System (INIS)

    Mori, M.; Itsukaichi, H.; Kanda, R.; Nakamura, A.; Shiomi, N.; Aizawa, S.; Shiomi, T.

    2003-01-01

    Full text: Ionizing radiation produces a variety of lesions in DNA including single-strand breaks, double-strand breaks and base damage. The repair of DNA double-strand breaks is essential for the maintenance of genomic integrity. Failure to repair DNA double-strand breaks result in loss of genetic information, chromosome translocations, carcinogenesis and cell death. XRCC4 is a member of non-homologous end-joining proteins that functioned in DNA double-strand break repair in eukaryote including human. XRCC4 is a DNA ligase IV accessory factor and required for the rejoining of DNA double-strand breaks. Both XRCC4 and DNA ligase IV deficient mice have been generated. Both deficient mice are not viable because of neuronal degeneration caused by p53-induced apoptosis. Cells obtained from XRCC4 or DNA ligase IV deficient embryo are viable, but show reduced cell proliferation and hypersensitivity to ionizing radiation. To study the role of XRCC4 in human cells, we tried to inactivate XRCC4 gene by using gene targeting technology in human colon cancer cell line, HCT116. We have succeeded to disrupt both alleles of XRCC4 gene. Heterozygous (XRCC4 +/-) cells showed reduced cell proliferation but normal X ray-sensitivity, indicating haploinsufficiency in cell proliferation but not in X ray-sensitivity. Homozygous (XRCC4 -/-) cells show reduced cell proliferation and increased chromosome aberrations, and are highly sensitive to X rays

  11. DNA repair in human cells: Methods for the determination of calmodulin involvement

    International Nuclear Information System (INIS)

    Charp, P.A.

    1987-01-01

    Exposure of DNA to either physical or chemical agents can result in the formation of a number of different lesions which must be repaired enzymatically in order for DNA to carry on normal replication and transcription. In most cases, the enzymes involved in this repair of damaged DNA include endonucleases, exonucleases, glycosylases, polymerases, and ligases. Each group of enzymes is involved in precise steps in DNA repair. Exposure to physical agents such as ultraviolet light (UV) at a wavelength of 254 nm is repaired by two distinct and different mechanisms. One mode of enzymatic repair of pyrimidine dimers is accomplished in situ by photoreactivation of UV-induced pyrimidine dimers by photoreactivating light. The second mode of enzymatic repair is the excision repair of pyrimidine dimers involving several different enzymes including endonuclease, exonuclease, and DNA ligase. A summary of the sequence of enzymatic steps involved is shown. It has been observed that specific drugs which bind to and alter the action of calmodulin in cells block DNA synthesis. This suggests that calmodulin may play a role both in normal DNA replication and repair. Others using an indirect method measuring the degree of DNA nucleoid sedimentation, showed that the specific anti-calmodulin agent W-13 slowed the rate of DNA repair. Others showed that DNA synthesis in T51B rat liver cells could be blocked with the addition of either chlorpromazine or trifluoperazine

  12. HepG2 cells develop signs of riboflavin deficiency within four days of culture in riboflavin-deficient medium*

    OpenAIRE

    Werner, Ricarda; Manthey, Karoline C.; Griffin, Jacob B.; Zempleni, Janos

    2005-01-01

    Flavin mononucleotide and flavin adenine dinucleotide are essential coenzymes in redox reactions. For example, flavin adenine dinucleotide is a coenzyme for both glutathione reductase and enzymes that mediate the oxidative folding of secretory proteins. Here we investigated short-term effects of moderately riboflavin-deficient culture medium on flavin-related responses in HepG2 hepatocarcinoma cells. Cells were cultured in riboflavin-deficient (3.1 nmol/L) medium for up to six days; controls ...

  13. Repair and cell-cycle response in cells exposed to environmental biohazards. Comprehensive project report, June 1, 1979-May 31, 1982

    International Nuclear Information System (INIS)

    Billen, D.

    1982-01-01

    Agents which cause damage to DNA leading to inhibition of DNA synthesis or faulty DNA replication or repair may cause cell death or mutation. Many organisms possess the ability to circumvent some or all of this DNA damage. Many DNA mutants of E. coli and B. subtilis provide a genetic approach to measuring the role of individual components of the DNA repair and replicative system. The information obtained with prokaryotes provides leads to assess the details of DNA repair and replication in mammalian systems including man. Escherichia coli cells treated with a low concentration of toluene become permeable to a variety of compounds, including the precursors and cofactors necessary for DNA synthesis. By their manipulation various aspects of DNA replication and repair can be selectively emphasized. Observations made by use of this system include: (1) Repair synthesis induced by x irradiation or exposure to alkylating chemicals of toluene-treated cells is more extensive if polynucleotide ligase is inhibited. (2) DNA replication in E. coli is carried out by DNA polymerase III. The replication of DNA is strongly inhibited by methylmethansulfonate, N-methyl-N-nitrosourea, and N-methyl-N'-nitro-N-nitrosoguanidine. (3) Using a po1A1 po1B100 dnaB (po1I - , po1II - , po1III + ) mutant of E. coli, it was demonstrated that the dnaB gene product is not necessary for Po1III directed repair synthesis. (4) The physiological stage of cells and tissues affects their response to environmental hazards. (5) Procedures for permeabilizing mammalian cells have been developed or further refined; and (6) In earlier studies involving both alkylating agents and x rays, it was observed that the number of DNA single-strand breaks increased with dose along with repair synthesis. It appears that non-repaired sites do not serve as primer ends for Po1I-dependent repair synthesis in toluene-treated cells

  14. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.

    Science.gov (United States)

    Moscariello, Mario; Wieloch, Radi; Kurosawa, Aya; Li, Fanghua; Adachi, Noritaka; Mladenov, Emil; Iliakis, George

    2015-07-01

    Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis(-/-), DNA ligase 4(-/-) (LIG4(-/-)), and LIG4(-/-)/Artemis(-/-) double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency.

    Science.gov (United States)

    Bach, Margund; Savini, Claudia; Krufczik, Matthias; Cremer, Christoph; Rösl, Frank; Hausmann, Michael

    2017-08-08

    Folate is an essential water-soluble vitamin in food and nutrition supplements. As a one-carbon source, it is involved in many central regulatory processes, such as DNA, RNA, and protein methylation as well as DNA synthesis and repair. Deficiency in folate is considered to be associated with an increased incidence of several malignancies, including cervical cancer that is etiologically linked to an infection with "high-risk" human papilloma viruses (HPV). However, it is still not known how a recommended increase in dietary folate after its deprivation affects the physiological status of cells. To study the impact of folate depletion and its subsequent reconstitution in single cells, we used quantitative chromatin conformation measurements obtained by super-resolution fluorescence microscopy, i.e., single molecule localization microscopy (SMLM). As a read-out, we examined the levels and the (re)positioning of γ-H2AX tags and histone H3K9me3 heterochromatin tags after immunostaining in three-dimensional (3D)-conserved cell nuclei. As model, we used HPV16 positive immortalized human keratinocytes that were cultivated under normal, folate deficient, and reconstituted conditions for different periods of time. The results were compared to cells continuously cultivated in standard folate medium. After 13 weeks in low folate, an increase in the phosphorylation of the histone H2AX was noted, indicative of an accumulation of DNA double strand breaks. DNA repair activity represented by the formation of those γ-H2AX clusters was maintained during the following 15 weeks of examination. However, the clustered arrangements of tags appeared to relax in a time-dependent manner. Parallel to the repair activity, the chromatin methylation activity increased as detected by H3K9me3 tags. The progress of DNA double strand repair was accompanied by a reduction of the detected nucleosome density around the γ-H2AX clusters, suggesting a shift from hetero- to euchromatin to allow access

  16. Constitutioneel ‘mismatch repair’-deficiëntiesyndroom

    NARCIS (Netherlands)

    Jongmans, Marjolijn C.; Gidding, Corrie E.; Loeffen, Jan; Wesseling, Pieter; Mensenkamp, Arjen; Hoogerbrugge, Nicoline

    2015-01-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. Case description An 8yearold girl was

  17. Human Postmeiotic Segregation 2 Exhibits Biased Repair at Tetranucleotide Microsatellite Sequences

    OpenAIRE

    Shah, Sandeep N.; Eckert, Kristin A.

    2009-01-01

    The mismatch repair (MMR) system plays a major role in removing DNA polymerization errors, and loss of this pathway results in hereditary cancers characterized by microsatellite instability. We investigated microsatellite stability during DNA replication within human postmeiotic segregation 2 (hPMS2)–deficient and proficient human lymphoblastoid cell lines. Using a shuttle vector assay, we measured mutation rates at reporter cassettes containing defined mononucleotide, dinucleotide, and tetra...

  18. Genetically modified CHO cells for studying the genotoxicity of heterocyclic amines from cooked foods

    International Nuclear Information System (INIS)

    Thompson, L.H.; Wu, R.W.; Felton, J.S.

    1995-07-01

    We have developed metabolically competent CHO cells to evaluate the genotoxicity associated with heterocyclic amines, such as those that are present in cooked foods. Into repair-deficient UV5 cells we introduced cDNAs for expressing cytochrome P450IA2 and acetyltransferases. We then genetically reverted these transformed lines to obtain matched metabolically competent repair-deficient/proficient lines. For a high mutagenic response, we find a requirement for acetyltransferase with IQ but not with PhIP. This system allows for both quantifying mutagenesis and analyzing the mutational spectra produced by heterocyclic amines

  19. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers.

    Directory of Open Access Journals (Sweden)

    Ajay Goel

    2010-02-01

    Full Text Available Microsatellite instability (MSI is used to screen colorectal cancers (CRC for Lynch Syndrome, and to predict outcome and response to treatment. The current technique for measuring MSI requires DNA from normal and neoplastic tissues, and fails to identify tumors with specific DNA mismatch repair (MMR defects. We tested a panel of five quasi-monomorphic mononucleotide repeat markers amplified in a single multiplex PCR reaction (pentaplex PCR to detect MSI.We investigated a cohort of 213 CRC patients, comprised of 114 MMR-deficient and 99 MMR-proficient tumors. Immunohistochemical (IHC analysis evaluated the expression of MLH1, MSH2, PMS2 and MSH6. MSI status was defined by differences in the quasi-monomorphic variation range (QMVR from a pool of normal DNA samples, and measuring differences in allele lengths in tumor DNA.Amplification of 426 normal alleles allowed optimization of the QMVR at each marker, and eliminated the requirement for matched reference DNA to define MSI in each sample. Using > or = 2/5 unstable markers as the criteria for MSI resulted in a sensitivity of 95.6% (95% CI = 90.1-98.1% and a positive predictive value of 100% (95% CI = 96.6%-100%. Detection of MSH6-deficiency was limited using all techniques. Data analysis with a three-marker panel (BAT26, NR21 and NR27 was comparable in sensitivity (97.4% and positive predictive value (96.5% to the five marker panel. Both approaches were superior to the standard approach to measuring MSI.An optimized pentaplex (or triplex PCR offers a facile, robust, very inexpensive, highly sensitive, and specific assay for the identification of MSI in CRC.

  20. DNA damage and repair in rabbit lens epithelial cells following UVA radiation

    International Nuclear Information System (INIS)

    Sidjanin, Duska; Zigman, Seymour; Reddan, John

    1993-01-01

    Since ultraviolet light may be a contributing factor to cataractogenesis, we investigated the response of the lens epithelium, a potential target for UV insult, to UVA radiation. Cell survival and the induction and repair of DNA single-strand breaks (SSBs) were measured in cultured rabbit lens epithelial cells following UVA exposure. A 30 min exposure to UVA (180 KJ/m 2 ) induced measurable SSBs. An increase in UVA fluenced measurable SSBs. An increase in UVA fluence brought about an increase in UVA fluence brought about an increase in the number of DNA SSBs. Rejoining of SSBs were measured after the cells were irradiated in Tyrode's for 2 hrs and allowed to repair in the dark for 4 hrs at 36 o C in MEM containing 10% serum. Eighty percent of the DNA SSBs were repaired within 4 hrs as determined by analysis of the alkaline elution profile. The repair kinetics were biphasic with an initial fast and subsequently slower component. The results indicate that UVA can induce SSBs in lens-induced SSBs, and that UVA treatment can be toxic to the epithelium. (Author)

  1. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends.

    Science.gov (United States)

    Bueno, Murilo T D; Reyes, Daniel; Llano, Manuel

    2017-09-15

    Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3' processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3' processed linear HIV-1 cDNA from exonucleolytic degradation.

  2. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  3. Repair of damaged DNA in vivo: Final technical report

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1987-09-01

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs

  4. Professional killer cell deficiencies and decreased survival in pulmonary arterial hypertension.

    Science.gov (United States)

    Edwards, Adrienne L; Gunningham, Sarah P; Clare, Geoffrey C; Hayman, Matthew W; Smith, Mark; Frampton, Christopher M A; Robinson, Bridget A; Troughton, Richard W; Beckert, Lutz E L

    2013-11-01

    Increasing evidence implicates lymphocytes in pulmonary arterial hypertension (PAH) pathogenesis. Rats deficient in T-lymphocytes show increased propensity to develop PAH but when injected with endothelial progenitor cells are protected from PAH (a mechanism dependent on natural killer (NK) cells). A decreased quantity of circulating cytotoxic CD8+ T-lymphocytes and NK cells are now reported in PAH patients; however, the effect of lymphocyte depletion on disease outcome is unknown. This prospective study analysed the lymphocyte profile and plasma brain natriuretic peptide (BNP) levels of patients with idiopathic PAH (IPAH), connective tissue disease-associated PAH (CTD-APAH) and matched healthy controls. Lymphocyte surface markers studied include: CD4+ (helper T-cell marker), CD8+ (cytotoxic T-cell marker), CD56/CD16 (NK cell marker) and CD19+ (mature B-cell marker). Lymphocyte deficiencies and plasma BNP levels were then correlated with clinical outcome. Fourteen patients with PAH (9 IPAH, 5CTD) were recruited. Three patients were deceased at 1-year follow-up; all had elevated CD4 : CD8 ratios and deficiencies of NK cells and cytotoxic CD8+ T-lymphocytes at recruitment. Patients with normal lymphocyte profiles at recruitment were all alive a year later, and none were on the active transplant list. As univariate markers, cytotoxic CD8+ T-cell and NK cell counts were linked to short-term survival. Deficiencies in NK cells and cytotoxic CD8+ T-cells may be associated with an increased risk of death in PAH patients. Further research is required in larger numbers of patients and to elucidate the mechanism of these findings. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  5. Comparison of clastogen-induced gene expression profiles in wild-type and DNA repair-deficient Rad54/Rad54B cells

    Directory of Open Access Journals (Sweden)

    van Benthem Jan

    2010-01-01

    Full Text Available Abstract Background Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC as compared to wild-type (WT cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM and γ-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU and vehicle were taken as controls. Results Most exposures resulted in an induction of DNA damage signaling and apoptosis genes and a reduced expression of cell division genes in cells of both genotypes. As expected, responses to N-ac-AAF were very similar in both genotypes. ENU exposure did not lead to significant gene expression changes in cells of both genotypes, presumably due to its short half-life. Gene expression responses to clastogens, however, showed a genotype-dependent effect for BLM and MMC. MMC treated Rad54/Rad54B MEFs showed no induction of p53-signaling, DNA damage response and apoptosis as seen for all the other treatments. Conclusion These data support our finding that different types of clastogens exist and that responses to these types depend on the DNA repair status of the cells.

  6. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair

  7. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-12

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair.

  8. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  9. The localization of ultraviolet-induced excision repair in the nucleus and the distribution of repair events in higher order chromatin loops in mammalian cells

    International Nuclear Information System (INIS)

    Mullenders, L.H.F.; Zeeland, A.A. van; Natarajan, A.T.

    1987-01-01

    Several lines of evidence indicate that eukaryotic DNA is arranged in highly supercoiled domains or loops, and that the repeating loops are constrained by attachment to a nuclear skeletal structure termed the nuclear matrix. We have investigated whether the repair of DNA damage occurs in the nuclear matrix compartment. Normal human fibroblasts, ultraviolet (u.v.)-irradiated with 30 J m -2 and post-u.v. incubated in the presence of hydroxyurea, did not show any evidence for the occurrence of repair synthesis at the nuclear matrix. 5 J m -2 repair synthesis seems to initiate at the nuclear matrix, although only part of the total repair could be localized there. In u.v.-irradiated (30 J m -2 ) normal human fibroblast post-u.v. incubated in the presence of hydroxyurea and arabinsosylcytosine for 2h, multiple single-stranded regions are generated in a DNA loop as a result of the inhibition of the excision repair process. Preferential repair of certain domains in the chromatin was shown to occur in xeroderma pigmentosum cells of complementation group C (XP-C) in contrast to XP-D cells and Syrian hamster embryonic cells. (author)

  10. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Prise, Kevin M.; Schettino, Giuseppe; Folkard, Melvyn; Vojnovic, Borivoj; Michael, Barry D.; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2004-01-01

    This study investigated the role of DNA double strand breaks and DNA base damage in radiation-induced bystander responses in Chinese hamster ovary (CHO) cell lines. Two CHO repair-deficient clones, xrs5 (DNA double strand break repair-deficient) and EM9 (DNA base excision repair-deficient) were used in addition to the wild type (CHO). The Gray Cancer Institute ultrasoft X-ray microprobe is a powerful tool for investigating the bystander response, because it permits the irradiation of only a single nucleus of a cell, as reported previously. In order to investigate the bystander effect in each repair-deficient cell line, we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population was targeted with 1 Gy, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells in the EM9 and xrs5 cell lines, whereas induction was not observed in CHO. The induction of micronuclei in xrs5 was significantly higher than that in EM9. Under these conditions, the surviving fraction in the neighbouring cells was significantly lower in xrs5 than in the other cell lines, showing a higher cell killing effect in xrs5. To confirm that bystander factors secreted from irradiated cells caused these effects, we carried out medium transfer experiments using conventional X-irradiation. Medium conditioned for 24 h with irradiated cells was transferred to unirradiated cells and elevated induction of micronuclei was observed in xrs5. These results suggest that DNA double strand breaks rather than base damage are caused by factors secreted in the medium from irradiated cells

  11. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    Directory of Open Access Journals (Sweden)

    Leyla Vahidi Ferdousi

    2014-11-01

    Full Text Available The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.

  12. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny.

    Science.gov (United States)

    Vahidi Ferdousi, Leyla; Rocheteau, Pierre; Chayot, Romain; Montagne, Benjamin; Chaker, Zayna; Flamant, Patricia; Tajbakhsh, Shahragim; Ricchetti, Miria

    2014-11-01

    The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs. Copyright © 2014. Published by Elsevier B.V.

  13. Altered Hematopoiesis in Mice Lacking DNA Polymerase μ Is Due to Inefficient Double-Strand Break Repair

    Science.gov (United States)

    Lucas, Daniel; Escudero, Beatriz; Ligos, José Manuel; Segovia, Jose Carlos; Estrada, Juan Camilo; Terrados, Gloria; Blanco, Luis; Samper, Enrique; Bernad, Antonio

    2009-01-01

    Polymerase mu (Polμ) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polμ deficiency results in impaired Vκ-Jκ recombination and altered somatic hypermutation and centroblast development. In Polμ−/− mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body γ-irradiation revealed that Polμ also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polμ function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues. PMID:19229323

  14. Signaling factors in stem cell-mediated repair of infarcted myocardium

    NARCIS (Netherlands)

    Vandervelde, S; van Luyn, MJA; Tio, RA; Harmsen, MC

    Myocardial infarction leads to scar formation and subsequent reduced cardiac performance. The ultimate therapy after myocardial infarction would pursue stem cell-based regeneration. The aim of stem cell-mediated cardiac repair embodies restoration of cardiac function by regeneration of healthy

  15. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair

    Science.gov (United States)

    Fellows, Christopher R.; Matta, Csaba; Zakany, Roza; Khan, Ilyas M.; Mobasheri, Ali

    2016-01-01

    Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple “one size fits all,” but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue. PMID:28066501

  16. Adipose, Bone Marrow and Synovial Joint-derived Mesenchymal Stem Cells for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Christopher Fellows

    2016-12-01

    Full Text Available Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple ‘one size fits all’, but more likely an array of solutions that need to applied systematically to achieve regeneration of a biomechanically competent repair tissue.

  17. Viability in holder of irradiated cells: distinguish between repair and cell multiplication

    International Nuclear Information System (INIS)

    Araujo, A.C. de.

    1980-01-01

    In experiments in which liquid holding recovery (LHR) was measured, the majority of cellular population is formed by non-viable cells and cell multiplication may be important for LHR expression. In order to distinguish between recuperation of viability (true LHR) and cell multiplication, it was necessary to employ improved plating techniques and a fluctuation test based on Poisson distribution. Our results are an indication that this fluctuation test, used together with the traditional method, is a good tool to distinguish repair from cell multiplication. (author)

  18. Repair of ultraviolet light-induced DNA damage in cholera bacteriophages

    International Nuclear Information System (INIS)

    Palit, B.N.; Das, G.; Das, J.

    1983-01-01

    DNA repair-proficient and -deficient strains of Vibrio cholerae were used to examine host cell reactivation, Weigle reactivation and photoreactivation of u.v.-irradiated cholera bacteriophages. U.v. light-induced DNA damage in phages of different morphological and serological groups could be efficiently photoreactivated. Host cell reactivation of irradiated phages of different groups was different on the same indicator host. Phage phi149 was the most sensitive, and phi138 the most resistant to u.v. irradiation. While phi138 showed appreciable host cell reactivation, this was minimal for phi149. Attempts to demonstrate Weigle reactivation of u.v.-irradiated cholera phages were not successful, although u.v.-induced filamentation of host cells was observed. (author)

  19. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Directory of Open Access Journals (Sweden)

    Jessica P Hollenbach

    Full Text Available Lynch syndrome (LS leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  20. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    Science.gov (United States)

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.