WorldWideScience

Sample records for repair deficient cells

  1. Mutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells

    Science.gov (United States)

    Suzuki, Tetsuya; Yasui, Manabu

    2016-01-01

    Bloom syndrome (BS), an autosomal recessive disorder of the BLM gene, predisposes sufferers to various cancers. To investigate the mutator phenotype and genetic consequences of DNA double-strand breaks (DSBs) in BS cells, we developed BLM helicase-deficient human cells by disrupting the BLM gene. Cells with a loss of heterozygosity (LOH) due to homologous recombination (HR) or nonhomologous end joining (NHEJ) can be restored with or without site-directed DSB induction. BLM cells exhibited a high frequency of spontaneous interallelic HR with crossover, but noncrossover events with long-tract gene conversions also occurred. Despite the highly interallelic HR events, BLM cells predominantly produced hemizygous LOH by spontaneous deletion. These phenotypes manifested during repair of DSBs. Both NHEJ and HR appropriately repaired DSBs in BLM cells, resulting in hemizygous and homozygous LOHs, respectively. However, the magnitude of the LOH was exacerbated in BLM cells, as evidenced by large deletions and long-tract gene conversions with crossover. BLM helicase suppresses the elongation of branch migration and crossover of double Holliday junctions (HJs) during HR repair, and a deficiency in this enzyme causes collapse, abnormal elongation, and/or preferable resolution to crossover of double HJs, resulting in a large-scale LOH. This mechanism underlies the predisposition for cancer in BS. PMID:27601585

  2. Mutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells.

    Science.gov (United States)

    Suzuki, Tetsuya; Yasui, Manabu; Honma, Masamitsu

    2016-12-01

    Bloom syndrome (BS), an autosomal recessive disorder of the BLM gene, predisposes sufferers to various cancers. To investigate the mutator phenotype and genetic consequences of DNA double-strand breaks (DSBs) in BS cells, we developed BLM helicase-deficient human cells by disrupting the BLM gene. Cells with a loss of heterozygosity (LOH) due to homologous recombination (HR) or nonhomologous end joining (NHEJ) can be restored with or without site-directed DSB induction. BLM cells exhibited a high frequency of spontaneous interallelic HR with crossover, but noncrossover events with long-tract gene conversions also occurred. Despite the highly interallelic HR events, BLM cells predominantly produced hemizygous LOH by spontaneous deletion. These phenotypes manifested during repair of DSBs. Both NHEJ and HR appropriately repaired DSBs in BLM cells, resulting in hemizygous and homozygous LOHs, respectively. However, the magnitude of the LOH was exacerbated in BLM cells, as evidenced by large deletions and long-tract gene conversions with crossover. BLM helicase suppresses the elongation of branch migration and crossover of double Holliday junctions (HJs) during HR repair, and a deficiency in this enzyme causes collapse, abnormal elongation, and/or preferable resolution to crossover of double HJs, resulting in a large-scale LOH. This mechanism underlies the predisposition for cancer in BS. Copyright © 2016 Suzuki et al.

  3. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  4. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency.

    Directory of Open Access Journals (Sweden)

    Sander Barnhoorn

    2014-10-01

    Full Text Available As part of the Nucleotide Excision Repair (NER process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS, or the infantile lethal cerebro-oculo-facio-skeletal (COFS syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  5. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency.

    Directory of Open Access Journals (Sweden)

    Sander Barnhoorn

    2014-10-01

    Full Text Available As part of the Nucleotide Excision Repair (NER process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS, or the infantile lethal cerebro-oculo-facio-skeletal (COFS syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  6. Novel mechanism of regulation of the DNA repair enzyme OGG1 in tuberin-deficient cells

    Science.gov (United States)

    Habib, Samy L.; Bhandari, Besant K.; Sadek, Nahed; Abboud-Werner, Sherry L.; Abboud, Hanna E.

    2010-01-01

    Tuberin (protein encodes by tuberous sclerosis complex 2, Tsc2) deficiency is associated with the decrease in the DNA repair enzyme 8-oxoG-DNA glycosylase (OGG1) in tumour kidney of tuberous sclerosis complex (TSC) patients. The purpose of this study was to elucidate the mechanisms by which tuberin regulates OGG1. The partial deficiency in tuberin expression that occurs in the renal proximal tubular cells and kidney cortex of the Eker rat is associated with decreased activator protein 4 (AP4) and OGG1 expression. A complete deficiency in tuberin is associated with loss of AP4 and OGG1 expression in kidney tumour from Eker rats and the accumulation of significant levels of 8-oxo-deoxyguanosine. Knockdown of tuberin expression in human renal epithelial cells (HEK293) with small interfering RNA (siRNA) also resulted in a marked decrease in the expression of AP4 and OGG1. In contrast, overexpression of tuberin in HEK293 cells increased the expression of AP4 and OGG1 proteins. Downregulation of AP4 expression using siRNA resulted in a significant decrease in the protein expression of OGG1. Immunoprecipitation studies show that AP4 is associated with tuberin in cells. Gel shift analysis and chromatin immunoprecipitation identified the transcription factor AP4 as a positive regulator of the OGG1 promoter. AP4 DNA-binding activity is significantly reduced in Tsc2−/− as compared with Tsc2+/+ cells. Transcriptional activity of the OGG1 promoter is also decreased in tuberin-null cells compared with wild-type cells. These data indicate a novel role for tuberin in the regulation of OGG1 through the transcription factor AP4. This regulation may be important in the pathogenesis of kidney tumours in patients with TSC disease. PMID:20837600

  7. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    Science.gov (United States)

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Laughton, Charles A.; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2013-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chinese hamster (CH) cells: BRCA2 deficient (V-C8), ATM deficient (V-E5), wild type (V79) and BRCA2 revertant (V-C8(Rev1)). b) Human cancer cells: BRCA1 deficient (MDA-MB-436), BRCA1 proficient (MCF-7), BRCA2 deficient (CAPAN-1 and HeLa SilenciX cells), BRCA2 proficient (PANC1 and control SilenciX cells). We also tested synthetic lethality (SL) in CH ovary cells expressing a dominant–negative form of APE1 (E8 cells) using ATM inhibitors and DNA-PKcs inhibitors (DSB inhibitors). APE1 inhibitors are synthetically lethal in BRCA and ATM deficient cells. APE1 inhibition resulted in accumulation of DNA DSBs and G2/M cell cycle arrest. Synthetic lethality was also demonstrated in CH cells expressing a dominant–negative form of APE1 treated with ATM or DNA-PKcs inhibitors. We conclude that APE1 is a promising synthetic lethality target in cancer. PMID:22377908

  8. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    OpenAIRE

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Charles A. Laughton; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2012-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chine...

  9. Repair of DNA lesions induced by ultraviolet irradiation and aromatic amines in normal and repair-deficient human lymphoblastoid cell lines

    DEFF Research Database (Denmark)

    Stevnsner, Tinna; Frandsen, Henrik; Autrup, Herman

    1995-01-01

    A host cell reactivation (HCR) assay was employed to study the capacity of a normal and three repair-deficient human lymphoblastoid cell lines to repair DNA damage induced by UV irradiation and the aromatic amines 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and N-acetyl-2-aminofluorene....... In the XP-D cell line, which had practically no DNA repair capacity, AAF adducts had a more potent inhibitory effect on gene expression than UV and PhIP adducts. When corrected for this inhibitory effect, the wild-type, XP-C and CS-B cell lines repaired low levels of AAF and UV adducts with similar...

  10. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    Science.gov (United States)

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.

  11. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    : homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage......Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...

  12. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  13. Exome-wide somatic microsatellite variation is altered in cells with DNA repair deficiencies.

    Directory of Open Access Journals (Sweden)

    Zalman Vaksman

    Full Text Available Microsatellites (MST, tandem repeats of 1-6 nucleotide motifs, are mutational hot-spots with a bias for insertions and deletions (INDELs rather than single nucleotide polymorphisms (SNPs. The majority of MST instability studies are limited to a small number of loci, the Bethesda markers, which are only informative for a subset of colorectal cancers. In this paper we evaluate non-haplotype alleles present within next-gen sequencing data to evaluate somatic MST variation (SMV within DNA repair proficient and DNA repair defective cell lines. We confirm that alleles present within next-gen data that do not contribute to the haplotype can be reliably quantified and utilized to evaluate the SMV without requiring comparisons of matched samples. We observed that SMV patterns found in DNA repair proficient cell lines without DNA repair defects, MCF10A, HEK293 and PD20 RV:D2, had consistent patterns among samples. Further, we were able to confirm that changes in SMV patterns in cell lines lacking functional BRCA2, FANCD2 and mismatch repair were consistent with the different pathways perturbed. Using this new exome sequencing analysis approach we show that DNA instability can be identified in a sample and that patterns of instability vary depending on the impaired DNA repair mechanism, and that genes harboring minor alleles are strongly associated with cancer pathways. The MST Minor Allele Caller used for this study is available at https://github.com/zalmanv/MST_minor_allele_caller.

  14. Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells

    DEFF Research Database (Denmark)

    Björkman, Andrea; Qvist, Per; Du, Likun

    2015-01-01

    machinery. A shift to the use of microhomology-based, alternative end-joining (A-EJ) and increased frequencies of intra-S region deletions as well as insertions of inverted S sequences were observed at the recombination junctions amplified from BRCA1-deficient human B cells. Furthermore, increased use...... underlying BRCA1’s function in maintaining genome stability and tumor suppression but may also point to a previously unrecognized role of BRCA1 in B-cell lymphomagenesis....... of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast...

  15. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1.

    Science.gov (United States)

    Sargent, R G; Rolig, R L; Kilburn, A E; Adair, G M; Wilson, J H; Nairn, R S

    1997-11-25

    Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RADIO gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1- and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT- cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT- products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1- cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1- cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1- cells are repaired by illegitimate recombination.

  16. A simple and rapid quantitative method of detection of the common achondroplasia mutation: Analysis in mismatch repair deficient cells

    Directory of Open Access Journals (Sweden)

    Grewal Raji

    2004-01-01

    Full Text Available Achondroplasia is the most common form of dwarfism and has an incidence of approximately 1/7,500. In more than 97% of cases, it is caused by a recurrent point mutation, a G to A substitution at nucleotide position 1138 (G1138A of the fibroblast growth factor receptor 3 gene. Although this is an autosomal dominant condition, more than 90% of all mutations occur sporadically making this one of the most mutagenic sites in the human genome. The reasons for the high spontaneous G1138A mutation rate are not known. This investigation was performed by developing a simple and rapid semi-quantitative allele specific PCR based assay capable of reliably detecting more than 25 mutant G1138A copies in a pool of 300,000 wild type molecules. Using this assay, the G1138A mutation frequency was measured in cell lines deficient in mismatch repair (LoVo, SW48 and comparing it with controls. No differences were found in the frequency of this point mutation between the mismatch repair deficient and wild type cell lines.

  17. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Joyce, Kellie [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Xie, Hong [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Falank, Carolyne [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); and others

    2014-04-15

    Highlights: • The role of homologous recombination repair in DU-induced toxicity was examined. • Loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. • XRCC3 protects cell from DU-induced chromosome breaks and fusions. • XRCC3 plays a role in DU-induced chromosome fragmentation of the X chromosome. - Abstract: Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.

  18. Biologic characteristic studies of DNA mismatch—repair enzyme hMSH2—deficient cell strain

    Institute of Scientific and Technical Information of China (English)

    HeY; ZhuaZX

    2002-01-01

    The effect of hMSH2 enzyme-deficiency on the cell growing phenotypes,cell ultrastructure,growth character and cell cycle were observed with electronic microscopy examination,cell counting and flow cytometry.hMSH2-deficient cell strain was constructed by transfecting hMSH2 recombination plasmid of antisense RNA into human embryo lung fibroblasts(HLF).In hMSH2-deficient cells,there were a lot of morphological changes under electronic microscopy,such as irregular shape,a lot of protuberances on the surface of cell,the enlarged nuclei.The average time of double increment of HLF and hMSH2-deficient cells were 1.0d and 0.78d,respectively.This suggested that the cell proliferation of hMSH2-deficient cells was greater than that of HLF.The distribution of HLF and hMSH2-deficient cells in G1,G2 and S phases was different.A large part of hMSH2-deficient cells was blocked in G1 phase.hMSH2-deficient cells increased,but it is still not a typical malignant cells.Thus,this cell strain could be used as biologic material to detect mutagenesis of environmental chemicals.

  19. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.

    Science.gov (United States)

    Lefevre, Sophie; Brossas, Caroline; Auchère, Françoise; Boggetto, Nicole; Camadro, Jean-Michel; Santos, Renata

    2012-09-15

    Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.

  20. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  1. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1

    OpenAIRE

    Sargent, R. Geoffrey; Rolig, Rhonda L.; Kilburn, April E.; Adair, Gerald M.; Wilson, John H.; Nairn, Rodney S.

    1997-01-01

    Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogeno...

  2. Acquired temozolomide resistance in human glioblastoma cell line U251 is caused by mismatch repair deficiency and can be overcome by lomustine.

    Science.gov (United States)

    Stritzelberger, J; Distel, L; Buslei, R; Fietkau, R; Putz, F

    2017-08-20

    Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. While the alkylating agent temozolomide (TMZ) has prolonged overall survival, resistance evolution represents an important clinical problem. Therefore, we studied the effectiveness of radiotherapy and CCNU in an in vitro model of acquired TMZ resistance. We studied the MGMT-methylated GBM cell line U251 and its in vitro derived TMZ-resistant subline, U251/TMZ-R. Cytotoxicity of TMZ, CCNU, and radiation was tested. Both cell lines were analyzed for MGMT promotor status and expression of mismatch repair genes (MMR). The influence of MMR inhibition by cadmium chloride (CdCl2) on the effects of both drugs was evaluated. During the resistance evolution process in vitro, U251/TMZ-R developed MMR deficiency, but MGMT status did not change. U251/TMZ-R cells were more resistant to TMZ than parental U251 cells (cell viability: 92.0% in U251/TMZ-R/69.2% in U251; p = 0.032) yet more sensitive to CCNU (56.4%/80.8%; p = 0.023). The effectiveness of radiotherapy was not reduced in the TMZ-resistant cell line. Combination of CCNU and TMZ showed promising results for both cell lines and overcame resistance. CdCl2-induced MMR deficiency increased cytotoxicity of CCNU. Our results confirm MMR deficiency as a crucial process for resistance evolution to TMZ. MMR-deficient TMZ-resistant GBM cells were particularly sensitive to CCNU and to combined CCNU/TMZ. Effectiveness of radiotherapy was preserved in TMZ-resistant cells. Consequently, CCNU might be preferentially considered as a treatment option for recurrent MGMT-methylated GBM and may even be suitable for prevention of resistance evolution in primary treatment.

  3. Nucleotide excision repair deficiency increases levels of acrolein-derived cyclic DNA adduct and sensitizes cells to apoptosis induced by docosahexaenoic acid and acrolein.

    Science.gov (United States)

    Pan, Jishen; Sinclair, Elizabeth; Xuan, Zhuoli; Dyba, Marcin; Fu, Ying; Sen, Supti; Berry, Deborah; Creswell, Karen; Hu, Jiaxi; Roy, Rabindra; Chung, Fung-Lung

    2016-07-01

    The acrolein derived cyclic 1,N(2)-propanodeoxyguanosine adduct (Acr-dG), formed primarily from ω-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) under oxidative conditions, while proven to be mutagenic, is potentially involved in DHA-induced apoptosis. The latter may contribute to the chemopreventive effects of DHA. Previous studies have shown that the levels of Acr-dG are correlated with apoptosis induction in HT29 cells treated with DHA. Because Acr-dG is shown to be repaired by the nucleotide excision repair (NER) pathway, to further investigate the role of Acr-dG in apoptosis, in this study, NER-deficient XPA and its isogenic NER-proficient XAN1 cells were treated with DHA. The Acr-dG levels and apoptosis were sharply increased in XPA cells, but not in XAN1 cells when treated with 125μM of DHA. Because DHA can induce formation of various DNA damage, to specifically investigate the role of Acr-dG in apoptosis induction, we treated XPA knockdown HCT116+ch3 cells with acrolein. The levels of both Acr-dG and apoptosis induction increased significantly in the XPA knockdown cells. These results clearly demonstrate that NER deficiency induces higher levels of Acr-dG in cells treated with DHA or acrolein and sensitizes cells to undergo apoptosis in a correlative manner. Collectively, these results support that Acr-dG, a ubiquitously formed mutagenic oxidative DNA adduct, plays a role in DHA-induced apoptosis and suggest that it could serve as a biomarker for the cancer preventive effects of DHA.

  4. XRCC1 deficiency increased the DNA damage induced by γ-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest.

    Science.gov (United States)

    Niu, Yujie; Zhang, Xing; Zheng, Yuxin; Zhang, Rong

    2013-09-01

    γ-ray irradiation can induce DNA damages which include base damages, single-strand breaks and double-strand breaks in various type cells. The DNA repair protein XRCC1, as a part of the BER pathway, forms complexes with DNA polymerase beta, DNA ligase III and poly-ADP-ribose polymerase (PARP) in the repair of DNA single strand breaks and also affects the repair of double strand breaks. However, it is still not known well whether XRCC1 contributes to affect the irradiation sensitivity and DNA damage in HepG2 cell and the potential mechanism. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by shRNA could reduce DNA repair and thus sensitize HepG2 cells to γ-ray. Cell viability was measured by Trypan blue staining and cloning efficiency assay. The DNA damage was detected by Comet assay. Apoptosis and cell cycle were detected by flow cytometry. The DNA-PKcs and gadd153 mRNA expression were determined by Real-time PCR. Our results showed that abrogation of XRCC 1 could sensitize HepG2 cells to γ-ray. This enhanced sensitivity could be attributed to the increased DNA damage and increased cell cycle arrest, which might be related with the increasing of DNA-PKcs and gadd153 mRNA expression. Therefore, our results suggested that the γ-ray irradiation sensitivity could be increased by targeting inhibition of XRCC1 in HepG2 cell.

  5. Production of truncated MBD4 protein by frameshift mutation in DNA mismatch repair-deficient cells enhances 5-fluorouracil sensitivity that is independent of hMLH1 status.

    Science.gov (United States)

    Suzuki, Satoshi; Iwaizumi, Moriya; Tseng-Rogenski, Stephanie; Hamaya, Yasushi; Miyajima, Hiroaki; Kanaoka, Shigeru; Sugimoto, Ken; Carethers, John M

    2016-07-02

    Methyl-CpG binding domain protein 4 (MBD4) is a DNA glycosylase that can remove 5-fluorodeoxyuracil from DNA as well as repair T:G or U:G mismatches. MBD4 is a target for frameshift mutation with DNA mismatch repair (MMR) deficiency, creating a truncated MBD4 protein (TruMBD4) that lacks its glycosylase domain. Here we show that TruMBD4 plays an important role for enhancing 5-fluorouracil (5FU) sensitivity in MMR-deficient colorectal cancer cells. We found biochemically that TruMBD4 binds to 5FU incorporated into DNA with higher affinity than MBD4. TruMBD4 reduced the 5FU affinity of the MMR recognition complexes that determined 5FU sensitivity by previous reports, suggesting other mechanisms might be operative to trigger cytotoxicity. To analyze overall 5FU sensitivity with TruMBD4, we established TruMBD4 overexpression in hMLH1-proficient or -deficient colorectal cancer cells followed by treatment with 5FU. 5FU-treated TruMBD4 cells demonstrated diminished growth characteristics compared to controls, independently of hMLH1 status. Flow cytometry revealed more 5FU-treated TruMBD4 cells in S phase than controls. We conclude that patients with MMR-deficient cancers, which show characteristic resistance to 5FU therapy, may be increased for 5FU sensitivity via secondary frameshift mutation of the base excision repair gene MBD4.

  6. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression

    Directory of Open Access Journals (Sweden)

    Kaina Bernd

    2010-09-01

    Full Text Available Abstract Background Cisplatin based chemotherapy cures over 80% of metastatic testicular germ cell tumours (TGCT. In contrast, almost all other solid cancers in adults are incurable once they have spread beyond the primary site. Cell lines derived from TGCTs are hypersensitive to cisplatin reflecting the clinical response. Earlier findings suggested that a reduced repair capacity might contribute to the cisplatin hypersensitivity of testis tumour cells (TTC, but the critical DNA damage has not been defined. This study was aimed at investigating the formation and repair of intrastrand and interstrand crosslinks (ICLs induced by cisplatin in TTC and their contribution to TTC hypersensitivity. Results We observed that repair of intrastrand crosslinks is similar in cisplatin sensitive TTC and resistant bladder cancer cells, whereas repair of ICLs was significantly reduced in TTC. γH2AX formation, which serves as a marker of DNA breaks formed in response to ICLs, persisted in cisplatin-treated TTC and correlated with sustained phosphorylation of Chk2 and enhanced PARP-1 cleavage. Expression of the nucleotide excision repair factor ERCC1-XPF, which is implicated in the processing of ICLs, is reduced in TTC. To analyse the causal role of ERCC1-XPF for ICL repair and cisplatin sensitivity, we over-expressed ERCC1-XPF in TTC by transient transfection. Over-expression increased ICL repair and rendered TTC more resistant to cisplatin, which suggests that ERCC1-XPF is rate-limiting for repair of ICLs resulting in the observed cisplatin hypersensitivity of TTC. Conclusion Our data indicate for the first time that the exceptional sensitivity of TTC and, therefore, very likely the curability of TGCT rests on their limited ICL repair due to low level of expression of ERCC1-XPF.

  7. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Sykora, Peter; Bohr, Vilhelm A

    2015-01-01

    Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX...

  8. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors.

    Science.gov (United States)

    Tilgner, K; Neganova, I; Moreno-Gimeno, I; Al-Aama, J Y; Burks, D; Yung, S; Singhapol, C; Saretzki, G; Evans, J; Gorbunova, V; Gennery, A; Przyborski, S; Stojkovic, M; Armstrong, L; Jeggo, P; Lako, M

    2013-08-01

    DNA double strand breaks (DSBs) are the most common form of DNA damage and are repaired by non-homologous-end-joining (NHEJ) or homologous recombination (HR). Several protein components function in NHEJ, and of these, DNA Ligase IV is essential for performing the final 'end-joining' step. Mutations in DNA Ligase IV result in LIG4 syndrome, which is characterised by growth defects, microcephaly, reduced number of blood cells, increased predisposition to leukaemia and variable degrees of immunodeficiency. In this manuscript, we report the creation of a human induced pluripotent stem cell (iPSC) model of LIG4 deficiency, which accurately replicates the DSB repair phenotype of LIG4 patients. Our findings demonstrate that impairment of NHEJ-mediated-DSB repair in human iPSC results in accumulation of DSBs and enhanced apoptosis, thus providing new insights into likely mechanisms used by pluripotent stem cells to maintain their genomic integrity. Defects in NHEJ-mediated-DSB repair also led to a significant decrease in reprogramming efficiency of human cells and accumulation of chromosomal abnormalities, suggesting a key role for NHEJ in somatic cell reprogramming and providing insights for future cell based therapies for applications of LIG4-iPSCs. Although haematopoietic specification of LIG4-iPSC is not affected per se, the emerging haematopoietic progenitors show a high accumulation of DSBs and enhanced apoptosis, resulting in reduced numbers of mature haematopoietic cells. Together our findings provide new insights into the role of NHEJ-mediated-DSB repair in the survival and differentiation of progenitor cells, which likely underlies the developmental abnormalities observed in many DNA damage disorders. In addition, our findings are important for understanding how genomic instability arises in pluripotent stem cells and for defining appropriate culture conditions that restrict DNA damage and result in ex vivo expansion of stem cells with intact genomes.

  9. Diagnostic criteria for constitutional mismatch repair deficiency syndrome

    DEFF Research Database (Denmark)

    Wimmer, Katharina; Kratz, Christian P; Vasen, Hans F A;

    2014-01-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain...

  10. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Martini

    2011-09-01

    Full Text Available Meiotic DNA double-strand breaks (DSBs initiate crossover (CO recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs. Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs. First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.

  11. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Maaike P.G., E-mail: vreeswijk@lumc.nl [Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, Postzone S4-P, 2300 RC Leiden (Netherlands); Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Building 2, Postzone S-04, P.O. Box 9600, 2300 RC Leiden (Netherlands); Meijers, Caro M.; Giphart-Gassler, Micheline; Vrieling, Harry; Zeeland, Albert A. van; Mullenders, Leon H.F.; Loenen, Wil A.M. [Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, Postzone S4-P, 2300 RC Leiden (Netherlands)

    2009-04-26

    Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C > T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.

  12. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra.

    Science.gov (United States)

    Vreeswijk, Maaike P G; Meijers, Caro M; Giphart-Gassler, Micheline; Vrieling, Harry; van Zeeland, Albert A; Mullenders, Leon H F; Loenen, Wil A M

    2009-04-26

    Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4 PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4 PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C>T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.

  13. Bone repair and stem cells.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2016-10-01

    Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.

  14. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. [Los Alamos National Lab., NM (United States); Chen, D.S. [Rochester Univ., NY (United States). Dept. of Radiation Oncology

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  15. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. (Los Alamos National Lab., NM (United States)); Chen, D.S. (Rochester Univ., NY (United States). Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  16. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts.

    Science.gov (United States)

    Gassman, Natalie R; Stefanick, Donna F; Kedar, Padmini S; Horton, Julie K; Wilson, Samuel H

    2012-01-01

    Regulation of poly(ADP-ribose) (PAR) synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose) polymerase-1 (PARP-1) occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β). The extent and duration of PARP-1 activation was measured after exposure to either the DNA alkylating agent, methyl methanesulfonate (MMS), or to low energy laser-induced DNA damage. There was strong DNA damage-induced hyperactivation of PARP-1 in pol β nullcells, but not in wild-type cells. In the case of MMS treatment, PAR synthesis did not lead to cell death in the pol β null cells, but instead resulted in increased PARylation of the nonhomologous end-joining (NHEJ) protein Ku70 and increased association of Ku70 with PARP-1. Inhibition of the NHEJ factor DNA-PK, under conditions of MMS-induced PARP-1 hyperactivation, enhanced necrotic cell death. These data suggest that PARP-1 hyperactivation is a protective mechanism triggering the classical-NHEJ DNA repair pathway when the primary alkylated base damage repair pathway is compromised.

  17. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Regulation of poly(ADP-ribose (PAR synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose polymerase-1 (PARP-1 occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β. The extent and duration of PARP-1 activation was measured after exposure to either the DNA alkylating agent, methyl methanesulfonate (MMS, or to low energy laser-induced DNA damage. There was strong DNA damage-induced hyperactivation of PARP-1 in pol β nullcells, but not in wild-type cells. In the case of MMS treatment, PAR synthesis did not lead to cell death in the pol β null cells, but instead resulted in increased PARylation of the nonhomologous end-joining (NHEJ protein Ku70 and increased association of Ku70 with PARP-1. Inhibition of the NHEJ factor DNA-PK, under conditions of MMS-induced PARP-1 hyperactivation, enhanced necrotic cell death. These data suggest that PARP-1 hyperactivation is a protective mechanism triggering the classical-NHEJ DNA repair pathway when the primary alkylated base damage repair pathway is compromised.

  18. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Hernández, Alba, E-mail: alba.hernandez@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-09-15

    Highlights: • Repair ability under long-term exposure to arsenic was tested using the comet assay. • Effects were measured under Ogg1 wild-type and deficient backgrounds. • Exposed cells repair less efficiency the DNA damage induced by SA, KBrO{sub 3}, MMA{sup III} or UVC radiation. • Oxidative damage and Ogg1 deficient background exacerbate repair deficiencies. • Overexpression of the arsenic metabolizing enzyme As3mt acts as adaptive mechanism. - Abstract: Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1{sup +/+} and Ogg1{sup −/−} genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1{sup +/+} and Ogg1{sup −/−} cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1{sup −/−} cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1{sup −/−} cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage—and Ogg1 deficiency

  19. Comparison of clastogen-induced gene expression profiles in wild-type and DNA repair-deficient Rad54/Rad54B cells

    Directory of Open Access Journals (Sweden)

    van Benthem Jan

    2010-01-01

    Full Text Available Abstract Background Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC as compared to wild-type (WT cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM and γ-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU and vehicle were taken as controls. Results Most exposures resulted in an induction of DNA damage signaling and apoptosis genes and a reduced expression of cell division genes in cells of both genotypes. As expected, responses to N-ac-AAF were very similar in both genotypes. ENU exposure did not lead to significant gene expression changes in cells of both genotypes, presumably due to its short half-life. Gene expression responses to clastogens, however, showed a genotype-dependent effect for BLM and MMC. MMC treated Rad54/Rad54B MEFs showed no induction of p53-signaling, DNA damage response and apoptosis as seen for all the other treatments. Conclusion These data support our finding that different types of clastogens exist and that responses to these types depend on the DNA repair status of the cells.

  20. Repair of ultraviolet-damaged transforming DNA in a mismatch repair-deficient strain of Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Bagci, H.; Stuy, J.H. (Florida State Univ., Tallahassee (USA). Dept. of Biological Science)

    1982-03-01

    Ultraviolet inactivation of Haemophilus influenzae transforming DNA followed inverse square root kinetics in both mismatch repair-proficient (hex/sup +/) and deficient (hex-1) recipients. No DNA concentration effect was seen with UV-excision repair-deficient (uvr/sup -/) strains. Low-efficiency genetic markers remained more sensitive than high-efficiency ones when they were assayed on excision repair-deficient hex/sup +/ uvr/sup -/ strains. They were equally resistant when hex/sup -/ uvr/sup -/ recipients were used. This was explained by assuming that recombinational repair of UV lesions in the donor strand and mismatch repair of the recipient strand may overlap and cause double strand interruptions. This will eliminate low-efficiency transformants.

  1. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency.

    Science.gov (United States)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam; Marcos, Ricard; Hernández, Alba

    2015-09-01

    Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1(+/+) and Ogg1(-/-) genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1(+/+) and Ogg1(-/-) cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1(-/-) cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1(-/-) cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage-and Ogg1 deficiency-exacerbates this phenomenon. The observed cell death resistance under a chronic scenario of genotoxic and oxidative stress may in turn contribute to the carcinogenic effects of i-As.

  2. Efficient and reproducible identification of mismatch repair deficient colon cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Bendahl, Pär-Ola; Halvarsson, Britta;

    2013-01-01

    BACKGROUND: The identification of mismatch-repair (MMR) defective colon cancer is clinically relevant for diagnostic, prognostic and potentially also for treatment predictive purposes. Preselection of tumors for MMR analysis can be obtained with predictive models, which need to demonstrate ease...... of application and favorable reproducibility. METHODS: We validated the MMR index for the identification of prognostically favorable MMR deficient colon cancers and compared performance to 5 other prediction models. In total, 474 colon cancers diagnosed ≥ age 50 were evaluated with correlation between...... and efficiently identifies MMR defective colon cancers with high sensitivity and specificity. The model shows stable performance with low inter-observer variability and favorable performance when compared to other MMR predictive models....

  3. Replication fork stability confers chemoresistance in BRCA-deficient cells

    DEFF Research Database (Denmark)

    Chaudhuri, Arnab Ray; Callen, Elsa; Ding, Xia;

    2016-01-01

    Cells deficient in the Brca1 and Brca2 genes have reduced capacity to repair DNA double-strand breaks by homologous recombination and consequently are hypersensitive to DNA-damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3....../4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore homologous recombination activity at double-strand breaks. Instead, its absence inhibits the recruitment of the MRE11...... nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations...

  4. N-Nitrosocarbaryl-induced mutagenesis in Haemophilus influenzae strains deficient in repair and recombination.

    Science.gov (United States)

    Beattie, K L

    1975-02-01

    Mutagenesis was studied in repair- and recombination-deficient strains of Haemophilus influenzae after treatment with N-nitrosocarbaryl (NC). Three different strains of H. influenzae carrying mutations affecting excision-repair of UV-induced pyrimidine dimers exhibited normal repair of premutational lesions (as detected by decreased mutation yield resulting from post-treatment DNA synthesis delay) and normal nonreplicative mutation fixation. This indicated that neither of these phenomena are caused by the smae repair mechanism that removes UV-induced pyrimidine dimers from the DNA. The recombination-deficient mutant recI is apparently deficient in the replication-dependent mode of NC-induced mutation fixation. This conclusion is based on the following results: (I) NC-induced mutagenesis is lower in the recI strain than in rec+ cells. (2) Repair of premutational lesions (which depends on the existence of replication-dependent mutation fixation for its detection) was not detected in the recI strain. (3) When nonreplicative mutation fixation and final mutation frequency were measured in the same experiment, about I/4 to I/3 of the final mutation yield could be accounted for by nonreplicative mutation fixation in the rec+ strain, whereas all of the mutation could be accounted for in the recI strain by the nonreplicative mutation fixation. (4) When mutation fixation in strain dna9 recI was followed at the permissive (36 degrees) and nonpermissive (41 degrees) temperatures, it became apparent that in the recI strain replication-dependent mutation fixation occurs at early times, but these newly fixed mutations are unstable and disappear at later times, leaving only the mutations fixed by the nonreplicative process. The recI strain exhibits normal repair of NC-induced single-strand breaks or alkali-labile bonds in the DNA labeled before treatment, but is slow in joining discontinuties present in DNA synthesized after treatment. The results are consistent with the idea that

  5. Pharmacologically targeting beta-catenin for NF1 associated deficiencies in fracture repair.

    Science.gov (United States)

    Baht, Gurpreet S; Nadesan, Puviindran; Silkstone, David; Alman, Benjamin A

    2017-02-22

    Patients with Neurofibromatosis type 1 display delayed fracture healing and the increased deposition of fibrous tissue at the fracture site. Severe cases can lead to non-union and even congenital pseudarthrosis. Neurofibromatosis type 1 is caused by a mutation in the NF1 gene and mice lacking the Nf1 gene show a fracture repair phenotype similar to that seen in patients. Tissue from the fracture site of patients with Neurofibromatosis type 1 and from mice deficient in the Nf1 gene both show elevated levels of β-catenin protein and activation of β-catenin mediated signaling. Constitutively elevated β-catenin leads to a delayed and fibrous fracture repair process, and (RS)-5-methyl-1-phenyl-1,3,4,6-tetrahydro-2,5-benzoxazocine (Nefopam, a centrally-acting, non-narcotic analgesic agent) inhibits β-catenin mediated signaling during skin wound repair. Here we investigate Nefopam's potential as a modulator of bone repair in mice deficient in Nf1. Mice were treated with Nefopam and investigated for bone fracture repair. Bone marrow stromal cells flushed from the long bones of unfractured mice were treated with Nefopam and investigated for osteogenic potential. Treatment with Nefopam was able to lower the β-catenin level and the Axin2 transcript level in the fracture calluses of Nf1 deficient mice. Cultures from the bone marrow of Nf1(-/-) mice had significantly lower osteoblastic colonies and mineralized nodules, which was increased when cells were cultured in the presence of Nefopam. Fracture calluses were harvested and analyzed 14days and 21days after injury. Nf1(-/-) calluses had less bone, less cartilage, and higher fibrous tissue content than control calluses. Treatment with Nefopam increased the bone and cartilage content and decreased the fibrous tissue content in Nf1(-/-) calluses. These findings present a potential treatment for patients with Neurofibromatosis 1 in the context of bone repair. Since Nefopam is already in use in patient care, it could be

  6. Genetic and biochemical characterization of human AP endonuclease 1 mutants deficient in nucleotide incision repair activity.

    Directory of Open Access Journals (Sweden)

    Aurore Gelin

    Full Text Available BACKGROUND: Human apurinic/apyrimidinic endonuclease 1 (APE1 is a key DNA repair enzyme involved in both base excision repair (BER and nucleotide incision repair (NIR pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5' to a number of oxidatively damaged bases. At present, physiological relevance of the NIR pathway is fairly well established in E. coli, but has yet to be elucidated in human cells. METHODOLOGY/PRINCIPAL FINDING: We identified amino acid residues in the APE1 protein that affect its function in either the BER or NIR pathway. Biochemical characterization of APE1 carrying single K98A, R185A, D308A and double K98A/R185A amino acid substitutions revealed that all mutants exhibited greatly reduced NIR and 3'-->5' exonuclease activities, but were capable of performing BER functions to some extent. Expression of the APE1 mutants deficient in the NIR and exonuclease activities reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to an alkylating agent, methylmethanesulfonate, suggesting that our APE1 mutants are able to repair AP sites. Finally, the human NIR pathway was fully reconstituted in vitro using the purified APE1, human flap endonuclease 1, DNA polymerase beta and DNA ligase I proteins, thus establishing the minimal set of proteins required for a functional NIR pathway in human cells. CONCLUSION/SIGNIFICANCE: Taken together, these data further substantiate the role of NIR as a distinct and separable function of APE1 that is essential for processing of potentially lethal oxidative DNA lesions.

  7. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  8. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  9. Cell healing: calcium, repair and regeneration

    Science.gov (United States)

    Moe, Alison; Golding, Adriana E.; Bement, William M.

    2016-01-01

    Cell repair is attracting increasing attention due to its conservation, its importance to health, and its utility as a model for cell signaling and cell polarization. However, some of the most fundamental questions concerning cell repair have yet to be answered. Here we consider three such questions: 1) How are wound holes stopped? 2) How is cell regeneration achieved after wounding? 3) How is calcium inrush linked to wound stoppage and cell regeneration? PMID:26514621

  10. Growth inhibition and antioxidative status induced by selenium-enriched broccoli extract and selenocompounds in DNA mismatch repair-deficient human colon cancer cells.

    Science.gov (United States)

    Tsai, Cheng-Fang; Ou, Bor-Rung; Liang, Yu-Chuan; Yeh, Jan-Ying

    2013-08-15

    The effects of enzymatic-digested Se-enriched broccoli extracts (SeB) and selenocompounds on growth and antioxidative status in human colon cancer cells was investigated in this study. HCT116 and HCT116+Chr.3 cells were treated with selenocompounds (sodium selenite, sodium selenate, Se-Met, MeSeCys) or SeB [high-Se (H-SeB) or low-Se (L-SeB)]. The cytotoxicity induced by selenocompounds in HCT116 cells was not associated with cellular H2O2 level, while the differential cytotoxicity observed by sodium selenite between HCT116 and HCT116+Chr.3 cell lines was related to cellular H2O2 production with the change in antioxidative enzyme activity, and the restoration of chromosome 3. H-SeB was found to reduce the cellular H2O2 content in HCT116+Chr.3 cells. The results in this study indicate that regardless of Se content, the cytotoxicity in HCT116 cells of both SeB forms appeared to be H2O2-independent, whereas the cytotoxicity in HCT116+Chr.3 of either SeB form appeared to be H2O2-dependent with an increase in antioxidative ability for H-SeB.

  11. Thymidine kinase 1 deficient cells show increased survival rate after UV-induced DNA damage

    DEFF Research Database (Denmark)

    Skovgaard, T; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    2010-01-01

    Balanced deoxynucleotide pools are known to be important for correct DNA repair, and deficiency for some of the central enzymes in deoxynucleotide metabolism can cause imbalanced pools, which in turn can lead to mutagenesis and cell death. Here we show that cells deficient for the thymidine salvage...

  12. Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery

    Directory of Open Access Journals (Sweden)

    Melissa H. Jorrisch

    2013-02-01

    Cell motility is a cornerstone of embryogenesis, tissue remodeling and repair, and cancer cell invasion. It is generally thought that migrating cells grab and exert traction force onto the extracellular matrix in order to pull the cell body forward. While previous studies have shown that myosin II deficient cells migrate efficiently, whether these cells exert traction forces during cell migration in the absence of the major contractile machinery is currently unknown. Using an array of micron-sized pillars as a force sensor and shRNA specific to each myosin II isoform (A and B, we analyzed how myosin IIA and IIB individually regulate cell migration and traction force generation. Myosin IIA and IIB localized preferentially to the leading edge where traction force was greatest, and the trailing edge, respectively. When individual myosin II isoforms were depleted by shRNA, myosin IIA deficient cells lost actin stress fibers and focal adhesions, whereas myosin IIB deficient cells maintained similar actin organization and focal adhesions as wild-type cells. Interestingly, myosin IIA deficient cells migrated faster than wild-type or myosin IIB deficient cells on both a rigid surface and a pillar array, yet myosin IIA deficient cells exerted significantly less traction force at the leading edge than wild-type or myosin IIB deficient cells. These results suggest that, in the absence of myosin IIA mediated force-generating machinery, cells move with minimal traction forces at the cell periphery, thus demonstrating the remarkable ability of cells to adapt and migrate.

  13. Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery.

    Science.gov (United States)

    Jorrisch, Melissa H; Shih, Wenting; Yamada, Soichiro

    2013-04-15

    Cell motility is a cornerstone of embryogenesis, tissue remodeling and repair, and cancer cell invasion. It is generally thought that migrating cells grab and exert traction force onto the extracellular matrix in order to pull the cell body forward. While previous studies have shown that myosin II deficient cells migrate efficiently, whether these cells exert traction forces during cell migration in the absence of the major contractile machinery is currently unknown. Using an array of micron-sized pillars as a force sensor and shRNA specific to each myosin II isoform (A and B), we analyzed how myosin IIA and IIB individually regulate cell migration and traction force generation. Myosin IIA and IIB localized preferentially to the leading edge where traction force was greatest, and the trailing edge, respectively. When individual myosin II isoforms were depleted by shRNA, myosin IIA deficient cells lost actin stress fibers and focal adhesions, whereas myosin IIB deficient cells maintained similar actin organization and focal adhesions as wild-type cells. Interestingly, myosin IIA deficient cells migrated faster than wild-type or myosin IIB deficient cells on both a rigid surface and a pillar array, yet myosin IIA deficient cells exerted significantly less traction force at the leading edge than wild-type or myosin IIB deficient cells. These results suggest that, in the absence of myosin IIA mediated force-generating machinery, cells move with minimal traction forces at the cell periphery, thus demonstrating the remarkable ability of cells to adapt and migrate.

  14. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.

    Science.gov (United States)

    Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S

    2014-08-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis.

  15. Stepwise deletions of polyA sequences in mismatch repair-deficient colorectal cancers.

    Science.gov (United States)

    Blake, C; Tsao, J L; Wu, A; Shibata, D

    2001-05-01

    PolyA simple repeat sequence deletions are common in tumors with microsatellite instability (MSI+). Such deletions occur one base at a time in DNA mismatch repair (MMR)-deficient yeast suggesting larger deletions in human MSI+ tumors represent multiple sequential stepwise losses. Sum total deletions in four polyA repeats were variable (between -17 to -45 bp) in 20 sporadic MSI+ colorectal cancers. Progressive but less extensive total deletions (maximum of -12 bp) occurred in similar polyA sequences in MMR-deficient mice (mlh1-/-) up to 478 days old. PolyA repeat lengths were relatively stable but already shortened in the MMR-deficient cell line HCT116. A transgene with 26 A's transfected into HCT116 shortened an average of 3.8 bases pairs after 469 days in culture, less than average deletions of BAT25 (-5.3) or BAT26 (-9.0) in MSI+ cancers. These findings further suggest that extensive polyA deletions common in MSI+ tumors likely reflect multiple stepwise smaller deletions that accumulate more than hundreds of divisions after loss of MMR.

  16. DNA repair. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals. (HLW)

  17. Challenge assay: A functional biomarker for exposure-induced DNA repair deficiency and for risk of cancer.

    Science.gov (United States)

    Au, William W; Giri, Ashok K; Ruchirawat, Mathuros

    2010-01-01

    A variety of biomarkers have been used to monitor exposed populations to determine potential health hazards from their exposure to environmental toxic agents. However, the majority of these biomarkers have been focused onto the identification of biological damage from the exposure. Therefore, there is a need to develop functional biomarkers that can identify exposure-induced functional deficiencies. More importantly, these deficiencies should be positioned along pathways that are responsible for the development of specific diseases. One of such pathways belongs to the extensive and complex DNA-repair machinery. The machinery thus becomes a large target for damage from environmental toxic agents. The hypothesis is that damage to any component of a repair pathway will interfere with the pathway-specific repair activities. Therefore, when cells from exposed populations are challenged with a DNA-damaging agent in vitro, the in vivo exposure-induced repair deficiency will be dramatically amplified and the deficiency will be detectable in a challenge assay as increased chromosome aberrations, micronuclei or un-repaired DNA strand breaks. The challenge assay has been used in different laboratories to show that a variety of exposed populations (with exposure to air pollutants, arsenic, benzene, butadiene, cigarette smoke, incense smoke, lead, mercury, pesticides, uranium or xylene but not to low concentrations of air pollutants or butadiene) expressed abnormal challenge response. The predicted health consequences of some of these studies have also been validated. Therefore, the challenge assay is a useful functional biomarker for population studies. Details of the challenge assay and its application will be presented in this review.

  18. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  19. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch Syndrome

    OpenAIRE

    Poulogiannis, George; Frayling, Ian; Arends, Mark

    2009-01-01

    Abstract DNA mismatch repair (MMR) deficiency is one of the best understood forms of genetic instability in colorectal cancer (CRC), and is characterised by the loss of function of the MMR pathway. Failure to repair replication-associated errors due to a defective MMR system allows persistence of mismatch mutations all over the genome, but especially in regions of repetitive DNA known as microsatellites, giving rise to the phenomenon of microsatellite instability (MSI). A high freq...

  20. Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor.

    Science.gov (United States)

    Kawao, Naoyuki; Tamura, Yukinori; Okumoto, Katsumi; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2014-08-01

    Further development in research of bone regeneration is necessary to meet the clinical demand for bone reconstruction. Recently, we reported that plasminogen is crucial for bone repair through enhancement of vessel formation. However, the details of the role of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) in the bone repair process still remain unknown. Herein, we examined the effects of plasminogen activators on bone repair after a femoral bone defect using tPA-deficient (tPA(-/-)) and uPA-deficient (uPA(-/-)) mice. Bone repair of the femur was delayed in tPA(-/-) mice, unlike that in wild-type (tPA(+/+)) mice. Conversely, the bone repair was comparable between wild-type (uPA(+/+)) and uPA(-/-) mice. The number of proliferative osteoblasts was decreased at the site of bone damage in tPA(-/-) mice. Moreover, the proliferation of primary calvarial osteoblasts was reduced in tPA(-/-) mice. Recombinant tPA facilitated the proliferation of mouse osteoblastic MC3T3-E1 cells. The proliferation enhanced by tPA was antagonized by the inhibition of endogenous annexin 2 by siRNA and by the inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation in MC3T3-E1 cells. Vessel formation as well as the levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were decreased at the damaged site in tPA(-/-) mice. Our results provide novel evidence that tPA is crucial for bone repair through the facilitation of osteoblast proliferation related to annexin 2 and ERK1/2 as well as enhancement of vessel formation related to VEGF and HIF-1α at the site of bone damage. Copyright © 2014 the American Physiological Society.

  1. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  2. BRCA Mutations, DNA Repair Deficiency, and Ovarian Aging.

    Science.gov (United States)

    Oktay, Kutluk; Turan, Volkan; Titus, Shiny; Stobezki, Robert; Liu, Lin

    2015-09-01

    Oocyte aging has a significant impact on reproductive outcomes both quantitatively and qualitatively. However, the molecular mechanisms underlying the age-related decline in reproductive success have not been fully addressed. BRCA is known to be involved in homologous DNA recombination and plays an essential role in double-strand DNA break repair. Given the growing body of laboratory and clinical evidence, we performed a systematic review on the current understanding of the role of DNA repair in human reproduction. We find that BRCA mutations negatively affect ovarian reserve based on convincing evidence from in vitro and in vivo results and prospective studies. Because decline in the function of the intact gene occurs at an earlier age, women with BRCA1 mutations exhibit accelerated ovarian aging, unlike those with BRCA2 mutations. However, because of the still robust function of the intact allele in younger women and because of the masking of most severe cases by prophylactic oophorectomy or cancer, it is less likely one would see an effect of BRCA mutations on fertility until later in reproductive age. The impact of BRCA2 mutations on reproductive function may be less visible because of the delayed decline in the function of normal BRCA2 allele. BRCA1 function and ataxia-telangiectasia-mutated (ATM)-mediated DNA repair may also be important in the pathogenesis of age-induced increase in aneuploidy. BRCA1 is required for meiotic spindle assembly, and cohesion function between sister chromatids is also regulated by ATM family member proteins. Taken together, these findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian aging.

  3. Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Nicole; Fontana, Andrea O. [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland); Hug, Eugen B.; Lomax, Antony; Coray, Adolf [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Augsburger, Marc [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland); Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sartori, Alessandro A. [Institute of Molecular Cancer Research, University of Zurich, Zurich (Switzerland); Pruschy, Martin, E-mail: martin.pruschy@usz.ch [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland)

    2014-01-01

    Purpose: To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation. Methods and Materials: The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons. Results: All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks. Interestingly, HR-deficient cells and wild-type cells with small interfering RNA-down-regulated Rad51 were markedly hypersensitive to proton irradiation, resulting in an increased relative biological effectiveness in comparison with the relative biological effectiveness determined in wild-type cells. In contrast, lack of nonhomologous end-joining did not result in hypersensitivity toward proton irradiation. Repair kinetics of DNA damage in wild-type cells were equal after both types of irradiation, although proton irradiation resulted in more lethal chromosomal aberrations. Finally, repair kinetics in HR-deficient cells were significantly delayed after proton irradiation, with elevated amounts of residual γH2AX foci after irradiation. Conclusion: Our data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival. This has potential relevance for clinical stratification of patients carrying mutations in the DNA damage response pathways.

  4. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA glyc

  5. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice

    NARCIS (Netherlands)

    W.P. Vermeij (Wilbert); M. Dollé (MartijnE.T.); E. Reiling (Erwin); D. Jaarsma (Dick); C. Payan-Gomez; C.R. Bombardieri (Cíntia R.); Wu, H.; A.J.M. Roks (Anton); S.M. Botter (Sander); B.C.J. van der Eerden (Bram); S.A. Youssef (Sameh Ahmed); R. Kuiper (Ruud); B. Nagarajah (Bhawani); C.T.M. van Oostrom (Conny); R.M.C. Brandt (Renata); S. Barnhoorn (Sander); S. Imholz (Sandra); J.L.A. Pennings (Jeroen L.A.); A. de Bruin (Alain); Gyenis, Á.; J. Pothof (Joris); J. Vijg (Jan); H. van Steeg (Harry); J.H.J. Hoeijmakers (Jan)

    2016-01-01

    textabstractMice deficient in the DNA excision-repair gene Ercc1 (Ercc1Δ/-) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing

  6. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice

    NARCIS (Netherlands)

    Vermeij, W. P.; Dolle, M. E. T.; Reiling, E.; Jaarsma, D.; Payan-Gomez, C.; Bombardieri, C. R.; Wu, H.; Roks, A. J. M.; Botter, S. M.; van der Eerden, B. C.; Youssef, S. A.; Kuiper, R. V.; Nagarajah, B.; van Oostrom, C. T.; Brandt, R. M. C.; Barnhoorn, S.; Imholz, S.; Pennings, J. L. A.; de Bruin, A.; Gyenis, A.; Pothof, J.; Vijg, J.; van Steeg, H.; Hoeijmakers, J. H. J.

    2016-01-01

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1(Delta/-)) show numerous accelerated ageing features that limit their lifespan to 4-6 months(1-4). They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing

  7. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice

    NARCIS (Netherlands)

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D|info:eu-repo/dai/nl/323051928; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V|info:eu-repo/dai/nl/305415042; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A|info:eu-repo/dai/nl/304837261; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-01-01

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1(∆/-)) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response

  8. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA glyc

  9. Schwann cells for spinal cord repair

    Directory of Open Access Journals (Sweden)

    Oudega M.

    2005-01-01

    Full Text Available The complex nature of spinal cord injury appears to demand a multifactorial repair strategy. One of the components that will likely be included is an implant that will fill the area of lost nervous tissue and provide a growth substrate for injured axons. Here we will discuss the role of Schwann cells (SCs in cell-based, surgical repair strategies of the injured adult spinal cord. We will review key studies that showed that intraspinal SC grafts limit injury-induced tissue loss and promote axonal regeneration and myelination, and that this response can be improved by adding neurotrophic factors or anti-inflammatory agents. These results will be compared with several other approaches to the repair of the spinal cord. A general concern with repair strategies is the limited functional recovery, which is in large part due to the failure of axons to grow across the scar tissue at the distal graft-spinal cord interface. Consequently, new synaptic connections with spinal neurons involved in motor function are not formed. We will highlight repair approaches that did result in growth across the scar and discuss the necessity for more studies involving larger, clinically relevant types of injuries, addressing this specific issue. Finally, this review will reflect on the prospect of SCs for repair strategies in the clinic.

  10. PHOTOCHEMICAL TISSUE BONDING TECHNIQUE FOR REPAIRING LIMBAL STEM CELL DEFICIENCY%光化学组织黏合技术在修复角膜缘干细胞缺失中的应用

    Institute of Scientific and Technical Information of China (English)

    顾钏; 王莹; 姚敏; 方勇

    2011-01-01

    Objective To investigate the feasibility of photochemical tissue bonding (PTB) technique in repairinglimbal stem cell (LSC) deficiency and the effect on cornea wound healing. Methods LSCs were isolated from limbus of New Zealand rabbits by tissue block culture method, and then the LSCs of 2nd passage were cultured on de-epithelialized human amniotic membrane (HAM) for 3 weeks to prepare the HAM/LSC grafts. The LSC deficiency models of the left eyes were established by 0.5 mol/L NaOH in 24 New Zealand female rabbits, aged 3-4 months and weighing 1.5-2.0 kg. HAM/LSC grafts were used to repair the cornea wounds by sutures (suture group, n=12) or by PTB technique (PTB group, n=12). The gross was observed including the corneal transparency, erythema, and new blood vessel formation after surgery. At 3 and 28 days, the inflammatory cytokine of interleukin lβ (IL-1β), IL-6, and tumor necrosis factor a (TNF-α) were assayed by ELISA method; and the amount of new blood vessels were quantified by immunohistochemistry staining at 28 days. Results All animals survived to the end of the experiment. At 3 days, there was no obvious difference in the corneal transparency between 2 groups; at 28 days, the corneal transparency of PTB group was higher than that of suture group, and new blood vessels decreased. HE staining showed that mass inflammatory cells infiltrated between graft and cornea basal layer at 3 days, and no new blood vessel formed, inflammatory cells infiltration significantly decreased at 28 days in PTB group; the amount of new blood vessels was (2.0 ± 0.8)/HP in PTB group and was (6.3 ± 1.3)/HP in suture group, showing significant difference ((=7.966, P=0.002). At 28 days, the concentrations of inflammatory cytokine of IL-1β, IL-6, and TNF-a in suture group were significantly higher than those in PTB group (P 0.05). Conclusion PTB technique can be used to fix HAM/LSC grafts, which can decrease inflammatory cell infiltration and new vessel formation, and improve

  11. [DNA homologous recombination repair in mammalian cells].

    Science.gov (United States)

    Popławski, Tomasz; Błasiak, Janusz

    2006-01-01

    DNA double-strand breaks (DSBs) are the most serious DNA damage. Due to a great variety of factors causing DSBs, the efficacy of their repair is crucial for the cell's functioning and prevents DNA fragmentation, chromosomal translocation and deletion. In mammalian cells DSBs can be repaired by non-homologous end joining (NHEJ), homologous recombination (HRR) and single strand annealing (SSA). HRR can be divided into the first and second phase. The first phase is initiated by sensor proteins belonging to the MRN complex, that activate the ATM protein which target HRR proteins to obtain the second response phase--repair. HRR is precise because it utilizes a non-damaged homologous DNA fragment as a template. The key players of HRR in mammalian cells are MRN, RPA, Rad51 and its paralogs, Rad52 and Rad54.

  12. DNA repair responses in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.; Liu, S.C.; Parsons, C.S.

    1981-07-01

    Sunlight and some environmental chemical agents produce lesions in the DNA of human skin cells that if unrepaired may interfere with normal functioning of these cells. The most serious outcome of such interactions may be malignancy. It is therefore important to develop an understanding of mechanisms by which the lesions may be repaired or tolerated without deleterious consequences. Our models for the molecular processing of damaged DNA have been derived largely from the study of bacterial systems. Some similarities but significant differences are revealed when human cell responses are tested against these models. It is also of importance to learn DNA repair responses of epidermal keratinocytes for comparison with the more extensive studies that have been carried out with dermal fibroblasts. Our experimental results thus far indicate similarities for the excision-repair of ultraviolet-induced pyrimidine dimers in human keratinocytes and fibroblasts. Both the monoadducts and the interstrand crosslinks produced in DNA by photoactivated 8-methoxypsoralen (PUVA) can be repaired in normal human fibroblasts but not in those from xeroderma pigmentosum patients. The monoadducts, like pyrimidine dimers, are probably the more mutagenic/carcinogenic lesions while the crosslinks are less easily repaired and probably result in more effective blocking of DNA function. It is suggested that a split-dose protocol that maximizes the production of crosslinks while minimizing the yield of monoadducts may be more effective and potentially less carcinogenic than the single ultraviolet exposure regimen in PUVA therapy for psoriasis.

  13. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Directory of Open Access Journals (Sweden)

    Adela M Luján

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  14. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Science.gov (United States)

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  15. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-04-02

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs.

  16. Immunoscore in mismatch repair-proficient and -deficient colon cancer.

    Science.gov (United States)

    Wirta, Erkki-Ville; Seppälä, Toni; Friman, Marjukka; Väyrynen, Juha; Ahtiainen, Maarit; Kautiainen, Hannu; Kuopio, Teijo; Kellokumpu, Ilmo; Mecklin, Jukka-Pekka; Böhm, Jan

    2017-07-01

    The aim of this study was to investigate immune response and its prognostic significance in colon carcinomas using the previously described Immunoscore (IS). A population-based series of 779 colorectal cancers, operated on between 2000 and 2010, were classified according to tumour, node, metastasis (TNM) status, mismatch repair (MMR), and BRAF mutation status. Rectal cancer cases (n = 203) were excluded as a high proportion of these patients received preoperative neoadjuvant chemoradiotherapy. Tissue microarray (TMA) samples collected from the tumour centre and invasive front were immunostained for CD3 and CD8. Lymphocytes were then digitally calculated to categorize IS from grade 0 to 4. Samples adequate for IS were available from 510 tumours. IS was significantly associated with AJCC/UICC stage, T stage, lymph node and distant metastases, perineural and lymphovascular invasion, MMR status, and BRAF mutation status. For IS0, IS1, IS2, IS3 and IS4, respectively, the 5-year disease-free survival (DFS) rates were 59, 68, 78, 83 and 94% (p < 0.001); 5-year disease-specific survival (DSS) rates were 47, 55, 75, 80, and 89% (p < 0.001); and 5-year overall survival (OS) rates were 40, 44, 66, 61, and 76% (p < 0.001). IS was also prognostic for DFS, DSS, and OS within subsets of microsatellite-stable (MSS) and microsatellite-instable (MSI) disease. Multivariable analysis showed that IS, AJCC/UICC stage, lymphovascular invasion, and lymph node ratio in AJCC/UICC stage III disease were independent prognostic factors for DFS, DSS, and OS. Age was an independent prognostic factor for DSS and OS. Gender and BRAF mutation were independent prognostic factors for OS. In conclusion, IS differentiated patients with poor versus improved prognosis in MSS and MSI disease and across AJCC/UICC stages. IS, AJCC/UICC stage, lymphovascular invasion, and lymph node ratio in AJCC/UICC stage III disease were independent prognostic factors for DFS, DSS, and OS.

  17. Effect of gamma rays on the bone repair process in rats with estrogen deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Chicarelli, Mariliani; Manzi, Flavio Ricardo; Novaes, Pedro Duarte; Boscolo, Frab Norberto; Almeida, Solange Maria de; Ramos, Flavia Maria de Moraes [Universidade Estadual de de Campinas, Piracicaba, SP (Brazil). Faculdade de Odontologia. Radiologia Oral]. E-mail: laviamaria@fop.unicamp.br

    2007-01-15

    This study aimed at evaluating the bone repair process in ovariectomized rats submitted to an irradiation procedure. For this purpose, one hundred rats were randomly divided in four experimental groups: control, ovariectomized, irradiated and irradiated/ ovariectomized. A bone defect was made on all animals tibias. Three days after surgery, only irradiated and irradiated/ovariectomized rats received 8 Gy of gamma rays on the lower limbs region. The animals were sacrificed 7, 14, 21 and 28 days after surgery in order to assess the repair process. It was possible to observe a delay in the bone repair process in the irradiated/ovariectomized group, in which there was a remarkable association between estrogen deficiency and ionizing radiation resulting in the reduction of newly formed bone production, thus accelerating the resorption process. (author)

  18. Mononuclear Cells and Vascular Repair in HHT

    Directory of Open Access Journals (Sweden)

    Calinda eDingenouts

    2015-03-01

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and ALK1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing of mononuclear cells following tissue damage is regulated by the stromal cell derived factor 1 (SDF1. MNCs that express the C-X-C chemokine receptor 4 (CXCR4 migrate towards the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4. Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing towards damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.

  19. Caspase 12 in calnexin-deficient cells.

    Science.gov (United States)

    Groenendyk, Jody; Zuppini, Anna; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2006-11-07

    We investigated a role for calnexin, caspase 12, and Bap31 in endoplasmic reticulum stress-induced apoptosis in calnexin-deficient mouse embryonic fibroblasts and a calnexin-deficient human T cell line (NKR). We showed that calnexin-deficient mouse embryonic fibroblasts are relatively resistant to endoplasmic reticulum stress-induced apoptosis. Western blot analysis demonstrated that both wild-type and calnexin-deficient cells contained a caspase 12 protein. Caspase 12 expression was slightly inhibited in calnexin-deficient cells, and the protein carried out specific cleavage in the presence of thapsigargin. Immunoprecipitation experiments revealed that in the endoplasmic reticulum, caspase 12 forms complexes with Bap31 and calnexin. Treatment of wild-type cells with thapsigargin induced apoptosis and cleavage of Bap31. However, in the absence of calnexin, there was no significant cleavage of Bap31. There was also a negligible processing of caspase 8 in these cells. This work indicates that calnexin may play a role in modulating the sensitivity of a cell to apoptosis induced by endoplasmic reticulum stress, in conjunction with caspase 12 and Bap31.

  20. A nucleolytic lupus autoantibody is toxic to BRCA2-deficient cancer cells

    Science.gov (United States)

    Noble, Philip W.; Young, Melissa R.; Bernatsky, Sasha; Weisbart, Richard H.; Hansen, James E.

    2014-01-01

    Cancer cells with defects in DNA repair are highly susceptible to DNA-damaging agents, but delivery of therapeutic agents into cell nuclei can be challenging. A subset of lupus autoantibodies is associated with nucleolytic activity, and some of these antibodies are capable of nuclear penetration. We hypothesized that such antibodies might have potential as therapeutic agents targeted towards DNA repair-deficient malignancies. We identified the lupus autoantibody 5C6 as a cell-penetrating nucleolytic antibody and found that 5C6 has a differential effect on a matched pair of BRCA2-proficient and deficient DLD1 colon cancer cells. 5C6 selectively induced γH2AX in, and suppressed the growth of, the BRCA2-deficient cells. These findings demonstrate the potential utility of 5C6 in targeted therapy for DNA repair-deficient malignancies and strengthen the rationale for studies of additional lupus autoantibodies in order to identify the best candidates for development as therapeutic agents. In addition, the toxic effect of 5C6 on BRCA2-deficient cells provides further support for the hypothesis that some lupus autoantibodies contribute to the lower risk of specific cancers associated with systemic lupus erythematosus. PMID:25091037

  1. Stem cells and repair of lung injuries

    Directory of Open Access Journals (Sweden)

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  2. [Characteristics and Outcomes of Treatment in Patients with Stage IV Colorectal Cancer with Mismatch Repair Deficiency].

    Science.gov (United States)

    Ishibashi, Keiichiro; Chika, Noriyasu; Suzuki, Okihide; Ito, Tetsuya; Amano, Kunihiko; Kumamoto, Kensuke; Fukuchi, Minoru; Kumagai, Youichi; Mochiki, Erito; Ishida, Hideyuki

    2016-11-01

    Mismatch repair(MMR)protein deficiency in colorectal cancer is well correlated with high-level microsatellite instability (MSI-H). There are little data on mismatch repair deficiency(dMMR)colorectal cancers in Japan. In addition, we have no available data on the therapeutic efficacy of oxaliplatin(oxa)-based chemotherapy, one of the standard treatment regimens for metastatic colorectal cancer, for patients with dMMR colorectal cancer. The subjects were 254 patients with Stage IV colorectal cancer whose tumors were immunohistochemically stained for MMR proteins, MLH1, MSH2, MSH6, and PMS2. Patients who underwent R0 resection were excluded. Clinicopathologic factors and the efficacy of oxa-based chemotherapy were compared between patients with dMMR colorectal cancer and those with mismatch repair proficient(pMMR)colorectal cancer. There were 7(2.8%)patients with dMMR. Four patients demonstrated both MLH1 and PMS2 loss, while 3 patients demonstrated both MSH2 and MSH6 loss. Though the dMMR had a higher frequency in female patients(p=0.02) and a lower frequency in those with liver metastasis(pcolorectal cancers was lower than those(4-11%)reported in Western countries. Therefore, the clinical significance of universal screeningfor dMMR in all colorectal cancer samples may not be valid. Concerningsurvival benefit, oxa-based chemotherapy seems to be an effective alternative in clinical practice for metastatic colorectal cancer patients with dMMR.

  3. Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Buchanan DD

    2014-10-01

    Full Text Available Daniel D Buchanan,1,2 Christophe Rosty,1,3,4 Mark Clendenning,1 Amanda B Spurdle,5 Aung Ko Win2 1Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia; 2Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; 3Envoi Specialist Pathologists, Herston, QLD, Australia; 4School of Medicine, University of Queensland, Herston, QLD, Australia; 5Molecular Cancer Epidemiology Laboratory, Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Herston, QLD, AustraliaAbstract: Carriers of a germline mutation in one of the DNA mismatch repair (MMR genes have a high risk of developing numerous different cancers, predominantly colorectal cancer and endometrial cancer (known as Lynch syndrome. MMR gene mutation carriers develop tumors with MMR deficiency identified by tumor microsatellite instability or immunohistochemical loss of MMR protein expression. Tumor MMR deficiency is used to identify individuals most likely to carry an MMR gene mutation. However, MMR deficiency can also result from somatic inactivation, most commonly methylation of the MLH1 gene promoter. As tumor MMR testing of all incident colorectal and endometrial cancers (universal screening is becoming increasingly adopted, a growing clinical problem is emerging for individuals who have tumors that show MMR deficiency who are subsequently found not to carry an MMR gene mutation after genetic testing using the current diagnostic approaches (Sanger sequencing and multiplex ligation-dependent probe amplification and who also show no evidence of MLH1 methylation. The inability to determine the underlying cause of tumor MMR deficiency in these "Lynch-like" or "suspected Lynch syndrome" cases has significant implications on the clinical management of these individuals and their relatives. When the

  4. Brain repair: cell therapy in stroke

    Directory of Open Access Journals (Sweden)

    Kalladka D

    2014-02-01

    Full Text Available Dheeraj Kalladka, Keith W Muir Institute of Neuroscience and Psychology, University of Glasgow, Southern General Hospital, Glasgow, United Kingdom Abstract: Stroke affects one in every six people worldwide, and is the leading cause of adult disability. Some spontaneous recovery is usual but of limited extent, and the mechanisms of late recovery are not completely understood. Endogenous neurogenesis in humans is thought to contribute to repair, but its extent is unknown. Exogenous cell therapy is promising as a means of augmenting brain repair, with evidence in animal stroke models of cell migration, survival, and differentiation, enhanced endogenous angiogenesis and neurogenesis, immunomodulation, and the secretion of trophic factors by stem cells from a variety of sources, but the potential mechanisms of action are incompletely understood. In the animal models of stroke, both mesenchymal stem cells (MSCs and neural stem cells (NSCs improve functional recovery, and MSCs reduce the infarct volume when administered acutely, but the heterogeneity in the choice of assessment scales, publication bias, and the possible confounding effects of immunosuppressants make the comparison of effects across cell types difficult. The use of adult-derived cells avoids the ethical issues around embryonic cells but may have more restricted differentiation potential. The use of autologous cells avoids rejection risk, but the sources are restricted, and culture expansion may be necessary, delaying treatment. Allogeneic cells offer controlled cell numbers and immediate availability, which may have advantages for acute treatment. Early clinical trials of both NSCs and MSCs are ongoing, and clinical safety data are emerging from limited numbers of selected patients. Ongoing research to identify prognostic imaging markers may help to improve patient selection, and the novel imaging techniques may identify biomarkers of recovery and the mechanism of action for cell

  5. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, August 1, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. More specifically, mutant strains will be selected which are deficient in various DNA repair pathways. These strains will be studied with regard to (1) the nature of the defect in repair, and (2) the mutability and transformability of the defective cells by various agents as compared to the wild type parental cells. The results to date include progress in the following areas: (1) determination of optimum conditions for growth and maintenance of cells and for quantitative measurement of various cellular parameters; (2) investigation of the effect of holding mutagenized cells for various periods in a density inhibited state on survival and on mutation and transformation frequencies; (3) examination of the repair capabilities of BHK cells, as compared to repair-proficient and repair-deficient human cells and excision-deficient mouse cells, as measured by the reactivation of Herpes simplex virus (HSV) treated with radiation and ethylmethane sulfonate (EMS); (4) initiation of host cell reactivation viral sucide enrichment and screening of survivors of the enrichment for sensitivity to ionizing radiation; and (5) investigation of the toxicity, mutagenicity, and carcinogenicity of various metabolites of 4-nitroquinoline-1-oxide (4-NQO). (ERB)

  6. Stem cells for cardiac repair: an introduction

    Institute of Scientific and Technical Information of China (English)

    Bastiaan C du Pr(e); Pieter A Doevendans; Linda W van Laake

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.

  7. Induced pluripotent stem cells for cardiac repair.

    Science.gov (United States)

    Zwi-Dantsis, Limor; Gepstein, Lior

    2012-10-01

    Myocardial stem cell therapies are emerging as novel therapeutic paradigms for myocardial repair, but are hampered by the lack of sources for autologous human cardiomyocytes. An exciting development in the field of cardiovascular regenerative medicine is the ability to reprogram adult somatic cells into pluripotent stem cell lines (induced pluripotent stem cells, iPSCs) and to coax their differentiation into functional cardiomyocytes. This technology holds great promise for the emerging disciplines of personalized and regenerative medicine, because of the ability to derive patient-specific iPSCs that could potentially elude the immune system. The current review describes the latest techniques of generating iPSCs as well as the methods used to direct their differentiation towards the cardiac lineage. We then detail the unique potential as well as the possible hurdles on the road to clinical utilizing of the iPSCs derived cardiomyocytes in the emerging field of cardiovascular regenerative medicine.

  8. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis

    DEFF Research Database (Denmark)

    Adelman, Carrie A.; Lolo, Rafal L.; Birkbak, Nicolai Juul

    2013-01-01

    helicase HELQ in ICL repair in Drosophila melanogaster (MUS301 (ref. 3)) and Caenorhabditis elegans (HELQ-1 (ref. 4)). Although in vitro analysis suggests that HELQ preferentially unwinds synthetic replication fork substrates with 3' single-stranded DNA overhangs and also disrupts protein-DNA interactions...... while translocating along DNA, little is known regarding its functions in mammalian organisms. Here we report that HELQ helicase-deficient mice exhibit subfertility, germ cell attrition, ICL sensitivity and tumour predisposition, with Helq heterozygous mice exhibiting a similar, albeit less severe...... role for HELQ in replication-coupled DNA repair, germ cell maintenance and tumour suppression in mammals....

  9. Modeling nucleotide excision repair and its impact on UV-induced mutagenesis during SOS-response in bacterial cells.

    Science.gov (United States)

    Bugay, Aleksandr N; Krasavin, Evgeny A; Parkhomenko, Aleksandr Yu; Vasilyeva, Maria A

    2015-01-01

    A model of the UV-induced mutation process in Escherichia coli bacteria has been developed taking into account the whole sequence of molecular events starting from initial photo-damage and finishing with the fixation of point mutations. The wild-type phenotype bacterial cells are compared with UV-sensitive repair-deficient mutant cells. Attention is mainly paid to excision repair system functioning as regards induced mutagenesis.

  10. MLH1-deficient tumor cells are resistant to lipoplatin, but retain sensitivity to lipoxal.

    Science.gov (United States)

    Fedier, André; Poyet, Cédric; Perucchini, Daniele; Boulikas, Teni; Fink, Daniel

    2006-03-01

    Lipoplatin, currently under phase III evaluation, is a novel liposomal cisplatin formulation highly effective against cancers. Lipoplatin has eliminated or reduced the systemic toxicity frequently seen for cisplatin. The objective of the present study was to determine whether the cytotoxic effect of lipoplatin is dependent on the functional integrity of DNA mismatch repair (MMR), a post-replicative DNA repair machinery implicated in cell cycle control and apoptosis. Clonogenic data revealed a significant (Plipoplatin of HCT116 human colorectal adenocarcinoma cells lacking MLH1, one of five proteins crucial to MMR function, as compared to MLH1-expressing HCT116 cells. In addition, MLH1-deficient cells were at least 3-fold less susceptible to apoptosis (DNA fragmentation) than MLH1-proficient cells. However, proteolytic processing of caspase-3, caspase-7 and poly(ADP-ribose)polymerase-1 following lipoplatin treatment was comparable in MLH1-deficient cells and -proficient cells. Furthermore, MLH1-deficient cells retained the ability to attenuate cell cycle progression past the G2/M checkpoint following lipoplatin treatment. In conclusion, our results indicate that the lipoplatin-sensitive phenotype of MLH1-proficient cells correlated with increased apoptosis which may occur via caspase-independent pathways. They also suggest that the integrity of MMR function is a relevant determinant accounting for the cytotoxicity of lipoplatin. However, this does not seem to apply to lipoxal, a novel liposomal formulation of oxaliplatin, because MLH1-deficient cells were as sensitive to lipoxal as MLH1-proficient cells.

  11. Strategies for cell engineering in tissue repair.

    Science.gov (United States)

    Brown, R A; Smith, K D; Angus McGrouther, D

    1997-01-01

    Cellular and tissue engineering are new areas of research, currently attracting considerable interest because of the remarkable potential they have for clinical application. Some claims have indeed been dramatic, including the possibility of growing complete, artificial organs, such as the liver. However, amid such long-term aspirations there is the very real possibility that small tissues (artificial grafts) may be fabricated in the near future for use in reconstructive surgery. Logically, we should focus on how it is possible to produce modest, engineered tissues for tissue repair. It is evident that strategies to date either depend on innate information within implanted cells, to reform the target tissue or aim to provide appropriate environmental cues or guidance to direct cell behavior. It is argued here that present knowledge of tissue repair biology points us toward the latter approach, providing external cues which will direct how cells should organize the new tissue. This will be particularly true where we need to reproduce microscopic and ultrastructural features of the original tissue architecture. A number of such cues have been identified, and methods are already available, including substrate chemistry, substrate contact guidance, mechanical loading, and biochemical mediators to provide these cues. Examples of these are already being used with some success to control the formation of tissue structures.

  12. Generating cartilage repair from pluripotent stem cells.

    Science.gov (United States)

    Cheng, Aixin; Hardingham, Timothy E; Kimber, Susan J

    2014-08-01

    The treatment of degeneration and injury of articular cartilage has been very challenging for scientists and surgeons. As an avascular and hypocellular tissue, cartilage has a very limited capacity for self-repair. Chondrocytes are the only cell type in cartilage, in which they are surrounded by the extracellular matrix that they secrete and assemble. Autologous chondrocyte implantation for cartilage defects has achieved good results, but the limited resources and complexity of the procedure have hindered wider application. Stem cells form an alternative to chondrocytes as a source of chondrogenic cells due to their ability to proliferate extensively while retaining the potential for differentiation. Adult stem cells such as mesenchymal stem cells have been differentiated into chondrocytes, but the limitations in their proliferative ability and the heterogeneous cell population hinder their adoption as a prime alternative source for generating chondrocytes. Human embryonic stem cells (hESCs) are attractive as candidates for cell replacement therapy because of their unlimited self-renewal and ability for differentiation into mesodermal derivatives as well as other lineages. In this review, we focus on current protocols for chondrogenic differentiation of ESCs, in particular the chemically defined culture system developed in our lab that could potentially be adapted for clinical application.

  13. Enhancement of DNA repair capacity of mammalian cells by carcinogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Protic, M.; Roilides, E.; Levine, A.S.; Dixon, K.

    1988-07-01

    To determine whether DNA excision repair is enhanced in mammalian cells in response to DNA damage, as it is in bacteria as part of the SOS response, we used an expression vector-host cell reactivation assay to measure cellular DNA repair capacity. When UV-damaged chloramphenicol acetyltransferase (CAT) vector DNA was introduced into monkey cells (CV-1), the level of CAT activity was inversely related to the UV fluence due to inhibition of CAT gene expression by UV photoproducts. When CV-1 cells were treated with either UV radiation or mitomycin C, 24-48 h before transfection, CAT expression from the UV-irradiated plasmid was increased. This increase also occurred in a line of normal human cells, but not in repair-deficient human xeroderma pigmentosum cells. We confirmed that this increase in CAT expression was due to repair, and not to production of damage-free templates by recombination; the frequency of generation of supF+ recombinants after transfection with UV-irradiated pZ189 vectors carrying different point mutations in the supF gene did not significantly increase in carcinogen-treated CV-1 cells. From these results we conclude that carcinogen treatment enhances the excision-repair capacity of normal mammalian cells.

  14. Deficient recovery from potentially lethal damage in some gamma-irradiated human fibroblast cell strains

    Energy Technology Data Exchange (ETDEWEB)

    Arlett, C.F.; Priestley, A. (Medical Research Council, Brighton (UK). Cell Mutation Unit)

    1984-01-01

    The repair of potentially lethal damage following treatment with gamma radiation was investigated in human fibroblasts held in a non-cycling state by maintenance in a medium containing 0.5% foetal calf serum. Normal cells were found to be competent in the repair of PLD. Ataxia-telangiectasia cells were deficient as was a heterozygote suggesting that a failure to repair PLD may make it possible to detect such heterozygotes. Fibroblasts from Huntington's disease patients were either slightly or no more sensitive than cells from normal individuals. Cultures from two individuals in the former class showed limited capacity to repair PLD but cells from the latter class were as competent as normals. Thus assays of radiosensitivity where conditions allow for the repair of PLD may maximise small differences in sensitivity. Cells taken from three patients suffering from Basal Cell Naevus Syndrome were also shown to be defective in the repair of PLD. The existence of such a defect may be related to the increased frequency of basal cell cancer observed in exposed fields following irradiation of such individuals.

  15. Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors.

    Science.gov (United States)

    Woerner, Stefan M; Tosti, Elena; Yuan, Yan P; Kloor, Matthias; Bork, Peer; Edelmann, Winfried; Gebert, Johannes

    2015-11-01

    Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis.

  16. Mismatch repair protein deficient endometrioid adenocarcinomas, metastasizing to adrenal gland and lymph nodes: Unusual cases with diagnostic implications

    Directory of Open Access Journals (Sweden)

    Bharat Rekhi

    2015-01-01

    Full Text Available Recently, certain endometrial carcinomas have been found to be associated with mismatch repair (MMR protein defects/deficiency. A 39-year-old female presented with cough, decreased appetite and significant weight loss since 2 months. Earlier, she had undergone total abdominal hysterectomy with bilateral salpingo-oophorectomy (TAH-BSO for endometrioid adenocarcinoma. Imaging disclosed an 8 cm-sized adrenal mass that was surgically excised. Histopathology of the adrenal tumor, endocervical tumor, and endometrial biopsy revealed Federation of Gynecology and Obstetrics (FIGO Grade II to III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were positive for cytokeratin 7, epithelial membrane antigen, PAX8, MLH1 and PMS2 while negative for estrogen receptor (ER, progesterone receptor (PR, MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. A 34-year-old lady presented with vaginal bleeding since 9 months. She underwent TAH-BSO, reported as FIGO Grade III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were negative for ER, PR, MLH1, and PMS2 while positive for MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. However, she developed multiple nodal and pericardial metastases and succumbed to the disease within a year post-diagnosis. Certain high-grade endometrioid adenocarcinomas occurring in younger women are MMR protein deficient and display an aggressive clinical course. Adrenal metastasis in endometrial carcinomas is rare.

  17. The Elephant and the Blind Men: Making Sense of PARP Inhibitors in Homologous Recombination Deficient Tumor Cells

    Directory of Open Access Journals (Sweden)

    Silvana eDe Lorenzo

    2013-09-01

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP1 is an important component of the base excision repair (BER pathway as well as a regulator of homologous recombination (HR and nonhomologous end-joining (NHEJ. Previous studies have demonstrated that treatment of HR-deficient cells with PARP inhibitors results in stalled and collapsed replication forks. Consequently, HR-deficient cells are extremely sensitive to PARP inhibitors. Several explanations have been advanced to explain this so-called synthetic lethality between HR deficiency and PARP inhibition: i inhibition of base excision repair leading to enhanced DNA double-strand breaks, which cannot be repaired in the absence of HR; ii trapping of inhibited PARP1 at sites of DNA damage, which inhibits access of other repair proteins; iii failure to synthesize poly(ADP-ribose polymer, which is required to recruit mutant BRCA1 to sites of DNA damage; and iv activation of the NHEJ pathway, which selectively induces error-prone repair in HR-deficient cells. Here we review evidence regarding these various explanations for the ability of PARP inhibitors to selectively kill HR-deficient cancer cells.

  18. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  19. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different pha

  20. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  1. Repair and degradation systems in irradiated animal cells

    Energy Technology Data Exchange (ETDEWEB)

    Ivannik, B.P.; Proskuryakov, S.Ya.; Ryabchenko, N.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    It was shown that primary radiosensitivity of DNA depends on the rate of DNA repair. In Zajdela hepatoma cells, cycloheximide administered immediately or 2 h before irradiation of animals does not influence DNA repair. Cycloheximide administered 4 h before irradiation of rats with a dose of 30 Gy arrests DNA repair in thymocytes and Zajdela hepatoma cells. At the same time, in cells of rat lymph nodes and spleen, under similar conditions, cycloheximide does not influence DNA repair and inhibits the secondary DNA degradation.

  2. A MATE-family efflux pump rescues the Escherichia coli 8-oxoguanine-repair-deficient mutator phenotype and protects against H(2O(2 killing.

    Directory of Open Access Journals (Sweden)

    Javier R Guelfo

    2010-05-01

    Full Text Available Hypermutation may accelerate bacterial evolution in the short-term. In the long-term, however, hypermutators (cells with an increased rate of mutation can be expected to be at a disadvantage due to the accumulation of deleterious mutations. Therefore, in theory, hypermutators are doomed to extinction unless they compensate the elevated mutational burden (deleterious load. Different mechanisms capable of restoring a low mutation rate to hypermutators have been proposed. By choosing an 8-oxoguanine-repair-deficient (GO-deficient Escherichia coli strain as a hypermutator model, we investigated the existence of genes able to rescue the hypermutable phenotype by multicopy suppression. Using an in vivo-generated mini-MudII4042 genomic library and a mutator screen, we obtained chromosomal fragments that decrease the rate of mutation in a mutT-deficient strain. Analysis of a selected clone showed that the expression of NorM is responsible for the decreased mutation rate in 8-oxoguanine-repair-deficient (mutT, mutY, and mutM mutY strains. NorM is a member of the multidrug and toxin extrusion (MATE family of efflux pumps whose role in E. coli cell physiology remains unknown. Our results indicate that NorM may act as a GO-system backup decreasing AT to CG and GC to TA transversions. In addition, the ability of NorM to reduce the level of intracellular reactive oxygen species (ROS in a GO-deficient strain and protect the cell from oxidative stress, including protein carbonylation, suggests that it can extrude specific molecules-byproducts of bacterial metabolism-that oxidize the guanine present in both DNA and nucleotide pools. Altogether, our results indicate that NorM protects the cell from specific ROS when the GO system cannot cope with the damage.

  3. Predictive genetic testing in children: constitutional mismatch repair deficiency cancer predisposing syndrome.

    Science.gov (United States)

    Bruwer, Zandrè; Algar, Ursula; Vorster, Alvera; Fieggen, Karen; Davidson, Alan; Goldberg, Paul; Wainwright, Helen; Ramesar, Rajkumar

    2014-04-01

    Biallelic germline mutations in mismatch repair genes predispose to constitutional mismatch repair deficiency syndrome (CMMR-D). The condition is characterized by a broad spectrum of early-onset tumors, including hematological, brain and bowel and is frequently associated with features of Neurofibromatosis type 1. Few definitive screening recommendations have been suggested and no published reports have described predictive testing. We report on the first case of predictive testing for CMMR-D following the identification of two non-consanguineous parents, with the same heterozygous mutation in MLH1: c.1528C > T. The genetic counseling offered to the family, for their two at-risk daughters, is discussed with a focus on the ethical considerations of testing children for known cancer-causing variants. The challenges that are encountered when reporting on heterozygosity in a child younger than 18 years (disclosure of carrier status and risk for Lynch syndrome), when discovered during testing for homozygosity, are addressed. In addition, the identification of CMMR-D in a three year old, and the recommended clinical surveillance that was proposed for this individual is discussed. Despite predictive testing and presymptomatic screening, the sudden death of the child with CMMR-D syndrome occurred 6 months after her last surveillance MRI. This report further highlights the difficulty of developing guidelines, as a result of the rarity of cases and diversity of presentation.

  4. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  5. A mononucleotide repeat in PRRT2 is an important, frequent target of mismatch repair deficiency in cancer

    NARCIS (Netherlands)

    I. Teles Alves (Inês); Cano, D. (David); R. Böttcher (René); H.A.G.M. van der Korput (Hetty); W.N.M. Dinjens (Winand); G.W. Jenster (Guido); J. Trapman (Hans)

    2017-01-01

    textabstractThe DNA mismatch repair (MMR) system corrects DNA replication mismatches thereby contributing to the maintenance of genomic stability. MMR deficiency has been observed in prostate cancer but its impact on the genomic landscape of these tumours is not known. In order to identify MMR assoc

  6. A 30-Year-Old Man with Three Primary Malignancies: A Case of Constitutional Mismatch Repair Deficiency.

    Science.gov (United States)

    Rengifo-Cam, William; Jasperson, Kory; Garrido-Laguna, Ignacio; Colman, Howard; Scaife, Courtney; Samowitz, Wade; Samadder, N Jewel

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which clinical manifestations, genetic screening, and cancer prevention strategies are limited. We report a case of CMMRD presenting with metachronous colorectal cancer and brain cancer. Oncologists and gastroenterologists should be aware of the CMMRD syndrome as a rare cause of very early-onset colorectal cancer.

  7. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents

    DEFF Research Database (Denmark)

    Bodo, Sahra; Colas, Chrystelle; Buhard, Olivier

    2015-01-01

    BACKGROUND & AIMS: Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas o...

  8. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  9. Homologous recombination preferentially repairs heat-induced DNA double-strand breaks in mammalian cells.

    Science.gov (United States)

    Takahashi, Akihisa; Mori, Eiichiro; Nakagawa, Yosuke; Kajihara, Atsuhisa; Kirita, Tadaaki; Pittman, Douglas L; Hasegawa, Masatoshi; Ohnishi, Takeo

    2016-11-13

    Heat shock induces DNA double-strand breaks (DSBs), but the precise mechanism of repairing heat-induced damage is unclear. Here, we investigated the DNA repair pathways involved in cell death induced by heat shock. B02, a specific inhibitor of human RAD51 (homologous recombination; HR), and NU7026, a specific inhibitor of DNA-PK (non-homologous end-joining; NHEJ), were used for survival assays of human cancer cell lines with different p53-gene status. Mouse embryonic fibroblasts (MEFs) lacking Lig4 (NHEJ) and/or Rad54 (HR) were used for survival assays and a phosphorylated histone H2AX at Ser139 (γH2AX) assay. MEFs lacking Rad51d (HR) were used for survival assays. SPD8 cells were used to measure HR frequency after heat shock. Human cancer cells were more sensitive to heat shock in the presence of B02 despite their p53-gene status, and the effect of B02 on heat sensitivity was specific to the G2 phase. Rad54-deficient MEFs were sensitive to heat shock and showed prolonged γH2AX signals following heat shock. Rad51d-deficient MEFs were also sensitive to heat shock. Moreover, heat shock-stimulated cells had increased HR. The HR pathway plays an important role in the survival of mammalian cells against death induced by heat shock via the repair of heat-induced DNA DSBs.

  10. Novel roles for MLH3 deficiency and TLE6-like amplification in DNA mismatch repair-deficient gastrointestinal tumorigenesis and progression.

    Directory of Open Access Journals (Sweden)

    Peng-Chieh Chen

    2008-06-01

    Full Text Available DNA mismatch repair suppresses gastrointestinal tumorgenesis. Four mammalian E. coli MutL homologues heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. To understand the mechanistic contributions of MLH3 and PMS2 in gastrointestinal tumor suppression, we generated Mlh3(-/-;Apc(1638N and Mlh3(-/-;Pms2(-/-;Apc(1638N (MPA mice. Mlh3 nullizygosity significantly increased Apc frameshift mutations and tumor multiplicity. Combined Mlh3;Pms2 nullizygosity further increased Apc base-substitution mutations. The spectrum of MPA tumor mutations was distinct from that observed in Mlh1(-/-;Apc(1638N mice, implicating the first potential role for MLH1/PMS1 in tumor suppression. Because Mlh3;Pms2 deficiency also increased gastrointestinal tumor progression, we used array-CGH to identify a recurrent tumor amplicon. This amplicon contained a previously uncharacterized Transducin enhancer of Split (Tle family gene, Tle6-like. Expression of Tle6-like, or the similar human TLE6D splice isoform in colon cancer cells increased cell proliferation, colony-formation, cell migration, and xenograft tumorgenicity. Tle6-like;TLE6D directly interact with the gastrointestinal tumor suppressor RUNX3 and antagonize RUNX3 target transactivation. TLE6D is recurrently overexpressed in human colorectal cancers and TLE6D expression correlates with RUNX3 expression. Collectively, these findings provide important insights into the molecular mechanisms of individual MutL homologue tumor suppression and demonstrate an association between TLE mediated antagonism of RUNX3 and accelerated human colorectal cancer progression.

  11. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  12. Ataxia Telangiectasia Mutated and Rad3 Related (ATR) Protein Kinase Inhibition Is Synthetically Lethal in XRCC1 Deficient Ovarian Cancer Cells

    Science.gov (United States)

    Sultana, Rebeka; Abdel-Fatah, Tarek; Perry, Christina; Moseley, Paul; Albarakti, Nada; Mohan, Vivek; Seedhouse, Claire; Chan, Stephen; Madhusudan, Srinivasan

    2013-01-01

    Introduction Ataxia telangiectasia mutated and Rad3 Related (ATR) protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response. Methods In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO) and human ovarian cancer cells using ATR inhibitors (NU6027). In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed. Results ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells. Conclusions Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cells. PMID:23451157

  13. Ataxia telangiectasia mutated and Rad3 related (ATR protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Rebeka Sultana

    Full Text Available INTRODUCTION: Ataxia telangiectasia mutated and Rad3 Related (ATR protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response. METHODS: In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO and human ovarian cancer cells using ATR inhibitors (NU6027. In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed. RESULTS: ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells. CONCLUSIONS: Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cells.

  14. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation.

    Science.gov (United States)

    Heidenreich, Erich; Eisler, Herfried; Lengheimer, Theresia; Dorninger, Petra; Steinboeck, Ferdinand

    2010-01-01

    Growing attention is paid to the concept that mutations arising in stationary, non-proliferating cell populations considerably contribute to evolution, aging, and pathogenesis. If such mutations are beneficial to the affected cell, in the sense of allowing a restart of proliferation, they are called adaptive mutations. In order to identify cellular processes responsible for adaptive mutagenesis in eukaryotes, we study frameshift mutations occurring during auxotrophy-caused cell cycle arrest in the model organism Saccharomyces cerevisiae. Previous work has shown that an exposure of cells to UV irradiation during prolonged cell cycle arrest resulted in an increased incidence of mutations. In the present work, we determined the influence of defects in the nucleotide excision repair (NER) pathway on the incidence of UV-induced adaptive mutations in stationary cells. The mutation frequency was decreased in Rad16-deficient cells and further decreased in Rad16/Rad26 double-deficient cells. A knockout of the RAD14 gene, the ortholog of the human XPA gene, even resulted in a nearly complete abolishment of UV-induced mutagenesis in cell cycle-arrested cells. Thus, the NER pathway, responsible for a normally accurate repair of UV-induced DNA damage, paradoxically is required for the generation and/or fixation of UV-induced frameshift mutations specifically in non-replicating cells.

  15. Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination.

    Science.gov (United States)

    McLachlan, Jennifer; Fernandez, Serena; Helleday, Thomas; Bryant, Helen E

    2009-12-03

    The feasibility of introducing point mutations in vivo using single-stranded DNA oligonucleotides (ssON) has been demonstrated but the efficiency and mechanism remain elusive and potential side effects have not been fully evaluated. Understanding the mechanism behind this potential therapy may help its development. Here, we demonstrate the specific repair of an endogenous non-functional hprt gene by a ssON in mammalian cells, and show that the frequency of such an event is enhanced when cells are in S-phase of the cell cycle. A potential barrier in using ssONs as gene therapy could be non-targeted mutations or gene rearrangements triggered by the ssON. Both the non-specific mutation frequencies and the frequency of gene rearrangements were largely unaffected by ssONs. Furthermore, we find that the introduction of a mutation causing the loss of a functional endogenous hprt gene by a ssON occurred at a similarly low but statistically significant frequency in wild type cells and in cells deficient in single strand break repair, nucleotide excision repair and mismatch repair. However, this mutation was not induced in XRCC3 mutant cells deficient in homologous recombination. Thus, our data suggest ssON-mediated targeted gene repair is more efficient in S-phase and involves homologous recombination.

  16. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Rosa Roy

    2012-10-01

    Full Text Available Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues.

  17. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

    Science.gov (United States)

    González-Marín, Clara; Gosálvez, Jaime; Roy, Rosa

    2012-01-01

    Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues. PMID:23203048

  18. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  19. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  20. Clinical experience in T cell deficient patients

    Directory of Open Access Journals (Sweden)

    Cole Theresa S

    2010-05-01

    Full Text Available Abstract T cell disorders have been poorly understood until recently. Lack of knowledge of underlying molecular mechanisms together with incomplete data on long term outcome have made it difficult to assess prognosis and give the most effective treatment. Rapid progress in defining molecular defects, improved supportive care and much improved results from hematopoietic stem cell transplantation (HSCT now mean that curative treatment is possible for many patients. However, this depends on prompt recognition, accurate diagnosis and careful treatment planning. This review will discuss recent progress in our clinical and molecular understanding of a variety of disorders including: severe combined immunodeficiency, specific T cell immunodeficiencies, signaling defects, DNA repair defects, immune-osseous dysplasias, thymic disorders and abnormalities of apoptosis. There is still much to discover in this area and some conditions which are as yet very poorly understood. However, with increased knowledge about how these disorders can present and the particular problems each group may face it is hoped that these patients can be recognized early and managed appropriately, so providing them with the best possible outcome.

  1. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  2. Vascular smooth muscle progenitor cells: building and repairing blood vessels.

    Science.gov (United States)

    Majesky, Mark W; Dong, Xiu Rong; Regan, Jenna N; Hoglund, Virginia J

    2011-02-04

    Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.

  3. 53BP1 is limiting for NHEJ repair in ATM-deficient model systems that are subjected to oncogenic stress or radiation.

    Science.gov (United States)

    Rybanska-Spaeder, Ivana; Reynolds, Taylor L; Chou, Jeremy; Prakash, Mansi; Jefferson, Tameca; Huso, David L; Desiderio, Stephen; Franco, Sonia

    2013-10-01

    The DNA damage response (DDR) factors ataxia telangiectasia mutated (ATM) and p53 binding protein 1 (53BP1) function as tumor suppressors in humans and mice, but the significance of their mutual interaction to the suppression of oncogenic translocations in vivo has not been investigated. To address this question, the phenotypes of compound mutant mice lacking 53BP1 and ATM (Trp53bp1(-/-)/Atm(-/-)), relative to single mutants, were examined. These analyses revealed that loss of 53BP1 markedly decreased the latency of T-lineage lymphomas driven by RAG-dependent oncogenic translocations in Atm(-/-) mice (average survival, 14 and 23 weeks for Trp53bp1(-/-)/Atm(-/-) and Atm(-/-) mice, respectively). Mechanistically, 53BP1 deficiency aggravated the deleterious effect of ATM deficiency on nonhomologous end-joining (NHEJ)-mediated double-strand break repair. Analysis of V(D)J recombinase-mediated coding joints and signal joints in Trp53bp1(-/-)/Atm(-/-) primary thymocytes is, however, consistent with canonical NHEJ-mediated repair. Together, these findings indicate that the greater NHEJ defect in the double mutant mice resulted from decreased efficiency of rejoining rather than switching to an alternative NHEJ-mediated repair mechanism. Complementary analyses of irradiated primary cells indicated that defects in cell-cycle checkpoints subsequently function to amplify the NHEJ defect, resulting in more frequent chromosomal breaks and translocations in double mutant cells throughout the cell cycle. Finally, it was determined that 53BP1 is dispensable for the formation of RAG-mediated hybrid joints in Atm(-/-) thymocytes but is required to suppress large deletions in a subset of hybrid joints. The current study uncovers novel ATM-independent functions for 53BP1 in the suppression of oncogenic translocations and in radioprotection.

  4. The type and yield of ionising radiation induced chromosomal aberrations depend on the efficiency of different DSB repair pathways in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Adayapalam T.; Berni, Andrea; Marimuthu, Kodumudi M. [Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo (Italy); Palitti, Fabrizio [Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo (Italy)], E-mail: palitti@unitus.it

    2008-07-03

    In order to evaluate the relative role of two major DNA double strand break repair pathways, i.e., non-homologous end joining (NHEJ) and homologous recombination repair (HRR), CHO mutants deficient in these two pathways and the parental cells (AA8) were X-irradiated with various doses. The cells were harvested at different times after irradiation, representing G{sub 2}, S and G{sub 1} phase at the time of irradiation, The mutant cell lines used were V33 (NHEJ deficient), Irs1SF, 51-D1 (HRR deficient). In addition to parental cell line (AA8), a revertant of V33, namely V33-155 was employed. Both types of mutant cells responded with increased frequencies of chromosomal aberrations at all recovery times in comparison to the parental and revertant cells. Mutant cells deficient in NHEJ were more sensitive in all cell stages in comparison to HRR deficient mutant cells, indicating NHEJ is the major repair pathway for DSB repair through out the cell cycle. Both chromosome and chromatid types of exchange aberrations were observed following G{sub 1} irradiation (16 and 24 h recovery). Interestingly, configurations involving both chromosome (dicentrics) and chromatid exchanges were encountered in G{sub 1} irradiated V33 cells. This may indicate that unrepaired DSBs accumulate in G{sub 1} in these mutant cells and carried over to S phase, where they are repaired by HRR or other pathways such as B-NHEJ (back up NHEJ), which appear to be highly error prone. Both NHEJ and HRR, which share some of the same proteins in their pathways, are involved in the repair of DSBs leading to chromosomal aberrations, but with a major role of NHEJ in all stages of cell cycle.

  5. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  6. DNA Repair by Homologous Recombination, But Not by Nonhomologous End Joining, Is Elevated in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zhiyong Mao

    2009-07-01

    Full Text Available Aberrant double-stranded break (DSB repair leads to genomic instability, which is a hallmark of malignant cells. Double-stranded breaks are repaired by two pathways: homologous recombination (HR and nonhomologous DNA end joining (NHEJ. It is not known whether these repair pathways are affected in sporadic breast tumors. Here, we examined the efficiency of HR and NHEJ repair in a panel of sporadic breast cancer cell lines and tested whether the efficiency of HR or NHEJ correlates with radioresistance. Homologous recombination and NHEJ in breast cancer cells were analyzed using in vivo fluorescent assays. Unexpectedly, our analysis revealed that the efficiency of HR is significantly elevated in breast cancer cells compared with normal mammary epithelial cells. In contrast, the efficiency of NHEJ in breast cancer cells is not different from normal cells. Overall, breast cancer cells were more sensitive to radiation than normal cells, but the levels of resistance did not correlate with either HR or NHEJ efficiency. Thus, we demonstrate that sporadic breast cancers are not associated with a deficiency in DSB repair, but rather with upregulation of the HR pathway. Our finding of elevated HR in sporadic breast cancer cell lines suggests that therapies directed against the components of HR will be highly tumor-specific.

  7. DNA Repair by Homologous Recombination, But Not by Nonhomologous End Joining, Is Elevated in Breast Cancer Cells12

    Science.gov (United States)

    Mao, Zhiyong; Jiang, Ying; Liu, Xiang; Seluanov, Andrei; Gorbunova, Vera

    2009-01-01

    Aberrant double-stranded break (DSB) repair leads to genomic instability, which is a hallmark of malignant cells. Double-stranded breaks are repaired by two pathways: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). It is not known whether these repair pathways are affected in sporadic breast tumors. Here, we examined the efficiency of HR and NHEJ repair in a panel of sporadic breast cancer cell lines and tested whether the efficiency of HR or NHEJ correlates with radioresistance. Homologous recombination and NHEJ in breast cancer cells were analyzed using in vivo fluorescent assays. Unexpectedly, our analysis revealed that the efficiency of HR is significantly elevated in breast cancer cells compared with normal mammary epithelial cells. In contrast, the efficiency of NHEJ in breast cancer cells is not different from normal cells. Overall, breast cancer cells were more sensitive to radiation than normal cells, but the levels of resistance did not correlate with either HR or NHEJ efficiency. Thus, we demonstrate that sporadic breast cancers are not associated with a deficiency in DSB repair, but rather with upregulation of the HR pathway. Our finding of elevated HR in sporadic breast cancer cell lines suggests that therapies directed against the components of HR will be highly tumor-specific. PMID:19568413

  8. DNA mismatch repair deficiency and hereditary syndromes in Latino patients with colorectal cancer.

    Science.gov (United States)

    Ricker, Charité N; Hanna, Diana L; Peng, Cheng; Nguyen, Nathalie T; Stern, Mariana C; Schmit, Stephanie L; Idos, Greg E; Patel, Ravi; Tsai, Steven; Ramirez, Veronica; Lin, Sonia; Shamasunadara, Vinay; Barzi, Afsaneh; Lenz, Heinz-Josef; Figueiredo, Jane C

    2017-10-01

    The landscape of hereditary syndromes and clinicopathologic characteristics among US Latino/Hispanic individuals with colorectal cancer (CRC) remains poorly understood. A total of 265 patients with CRC who were enrolled in the Hispanic Colorectal Cancer Study were included in the current study. Information regarding CRC risk factors was elicited through interviews, and treatment and survival data were abstracted from clinical charts. Tumor studies and germline genetic testing results were collected from medical records or performed using standard molecular methods. The mean age of the patients at the time of diagnosis was 53.7 years (standard deviation, 10.3 years), and 48.3% were female. Overall, 21.2% of patients reported a first-degree or second-degree relative with CRC; 3.4% met Amsterdam I/II criteria. With respect to Bethesda guidelines, 38.5% of patients met at least 1 criterion. Of the 161 individuals who had immunohistochemistry and/or microsatellite instability testing performed, 21 (13.0%) had mismatch repair (MMR)-deficient (dMMR) tumors. dMMR tumors were associated with female sex (61.9%), earlier age at the time of diagnosis (50.4 ± 12.4 years), proximal location (61.9%), and first-degree (23.8%) or second-degree (9.5%) family history of CRC. Among individuals with dMMR tumors, 13 (61.9%) had a germline MMR mutation (MutL homolog 1 [MLH1] in 6 patients; MutS homolog 2 [MSH2] in 4 patients; MutS homolog 6 [MHS6] in 2 patients; and PMS1 homolog 2, mismatch repair system component [PMS2] in 1 patient). The authors identified 2 additional MLH1 mutation carriers by genetic testing who had not received immunohistochemistry/microsatellite instability testing. In total, 5.7% of the entire cohort were confirmed to have Lynch syndrome. In addition, 6 individuals (2.3%) had a polyposis phenotype. The percentage of dMMR tumors noted among Latino individuals (13%) is similar to estimates in non-Hispanic white individuals. In the current study, the majority of

  9. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic sur

  10. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic

  11. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    DEFF Research Database (Denmark)

    Luján, Adela M.; Maciá, María D.; Yang, Liang

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease......, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic...... infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition...

  12. 颅骨缺损修补对病人精神心理的影响%Effect of repair of cranial deficiency on psychology of patients

    Institute of Scientific and Technical Information of China (English)

    王延平

    2002-01-01

    Objective To investigate the effect of repair of cranial deficiency on psychology of patients in rehabilitation stage. Method Apply organic glass or bony cement to repair the skull. Result 26 patients healed by first intention, and the psychological symptoms relieved obviously. Conclusion Repair of skull could not only reconstruct the cranial barrier, but also ameliorate some symptoms and psychological burden, which is benefit for the rehabilitation of patients.

  13. REPARACIÓN DEL ADN: UNA POSIBLE RELACIÓN ENTRE LA DEFICIENCIA DE FOLATO Y LA MUERTE NEURONAL DNA Repair: A Link Between Folate Deficiency and Neuronal Cell Death

    Directory of Open Access Journals (Sweden)

    GONZALO ARBOLEDA

    2007-11-01

    Full Text Available El presente artículo explora el papel que desempeña el folato como conocido metabolito del ciclo de un carbono (OCM, del inglés onecarbon metabolism en la alteración de la integridad de las células nerviosas. Aquí se discute evidencia reciente de la literatura que muestra la reparación del ADN como un proceso relacionado con la apoptosis neuronal inducida por ausencia de folato.This essay explores the role of folate in disruption of neural cell integrity. Here, it is discussed recent evidence which shows DNA reparation as a process related to neuronal apoptosis induced by folate depletion.

  14. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks

    Directory of Open Access Journals (Sweden)

    Bray Clifford M

    2009-06-01

    Full Text Available Abstract Background DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability. Results Knockout mutants of atlig1 are lethal. Therefore, RNAi lines with reduced levels of AtLIG1 were generated to allow the roles and importance of Arabidopsis DNA ligase 1 in DNA metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry analysis revealed an increase of cells in S-phase in atlig1-RNAi lines relative to wild type plants. Comet assay analysis of isolated nuclei showed atlig1-RNAi lines displayed slower repair of single strand breaks (SSBs and also double strand breaks (DSBs, implicating AtLIG1 in repair of both these lesions. Conclusion Reduced levels of Arabidopsis DNA ligase 1 in the silenced lines are sufficient to support plant development but result in retarded growth and reduced cell size, which may reflect roles for AtLIG1 in both replication and repair. The finding that DNA ligase 1 plays an important role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a previously uncharacterised novel pathway, independent of the conserved NHEJ. These results indicate that DNA ligase 1 functions in both DNA replication and in repair of both ss and dsDNA strand breaks in higher plants.

  15. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest.

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish K; Jeevarajan, Antony S; Pierson, Duane L; Wu, Honglu

    2008-11-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in regulating DSB repair and cell cycle progression. In this study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequency of micronuclei (MN) formation and chromosome aberrations were measured to determine efficiency of cytogenetic repair, especially DSB repair. In response to IR, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that

  16. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  17. Stem cell-based biological tooth repair and regeneration.

    Science.gov (United States)

    Volponi, Ana Angelova; Pang, Yvonne; Sharpe, Paul T

    2010-12-01

    Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease.

  18. Potentials of Endogenous Neural Stem cells in Cortical Repair

    Directory of Open Access Journals (Sweden)

    Bhaskar eSaha

    2012-04-01

    Full Text Available In the last few decades great thrust has been put in the area of regenerative neurobiology research to combat brain injuries and neurodegenerative diseases. The recent discovery of neurogenic niches in the adult brain has led researchers to study how to mobilize these cells to orchestrate an endogenous repair mechanism. The brain can minimize injury-induced damage by means of an immediate glial response and by initiating repair mechanisms that involve the generation and mobilization of new neurons to the site of injury where they can integrate into the existing circuit. This review highlights the current status of research in this field. Here, we discuss the changes that take place in the neurogenic milieu following injury. We will focus, in particular, on the cellular and molecular controls that lead to increased proliferation in the Sub ventricular Zone (SVZ as well as neurogenesis. We will also concentrate on how these cellular and molecular mechanisms influence the migration of new cells to the affected area and their differentiation into neuronal/glial lineage that initiate the repair mechanism. Next, we will discuss some of the different factors that limit/retard the repair process and highlight future lines of research that can help to overcome these limitations. A clear understanding of the underlying molecular mechanisms and physiological changes following brain damage and the subsequent endogenous repair should help us develop better strategies to repair damaged brains.

  19. Augmented cell death with Bloom syndrome helicase deficiency.

    Science.gov (United States)

    Kaneko, Hideo; Fukao, Toshiyuki; Kasahara, Kimiko; Yamada, Taketo; Kondo, Naomi

    2011-01-01

    Bloom syndrome (BS) is a rare autosomal genetic disorder characterized by lupus-like erythematous telangi-ectasias of the face, sun sensitivity, infertility, stunted growth, upper respiratory infection, and gastrointestinal infections commonly associated with decreased immuno-globulin levels. The syndrome is associated with immuno-deficiency of a generalized type, ranging from mild and essentially asympto-matic to severe. Chromosomal abnormalities are hallmarks of the disorder, and high frequencies of sister chromatid exchanges and quadriradial configurations in lymphocytes and fibroblasts are diagnostic features. BS is caused by mutations in BLM, a member of the RecQ helicase family. We determined whether BLM deficiency has any effects on cell growth and death in BLM-deficient cells and mice. BLM-deficient EB-virus-transformed cell lines from BS patients and embryonic fibroblasts from BLM-/- mice showed slower growth than wild-type cells. BLM-deficient cells showed abnormal p53 protein expression after irradiation. In BLM-/- mice, small body size, reduced number of fetal liver cells and increased cell death were observed. BLM deficiency causes the up-regulation of p53, double-strand break and apoptosis, which are likely observed in irradiated control cells. Slow cell growth and increased cell death may be one of the causes of the small body size associated with BS patients.

  20. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene.

    NARCIS (Netherlands)

    P.B.G.M. Belt; M.F. van Oostenrijk; H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1991-01-01

    textabstractAntisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair efficient HeLa cells by means of an Epstein-Barr-virus derived CDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating

  1. Tendon repair augmented with a novel circulating stem cell population.

    Science.gov (United States)

    Daher, Robert J; Chahine, Nadeen O; Razzano, Pasquale; Patwa, Sohum A; Sgaglione, Nicholas J; Grande, Daniel A

    2011-01-01

    Tendon ruptures are common sports-related injuries that are often treated surgically by the use of sutures followed by immobilization. However, tendon repair by standard technique is associated with long healing time and often suboptimal repair. Methods to enhance tendon repair time as well as the quality of repair are currently unmet clinical needs. Our hypothesis is that the introduction of a unique stem cell population at the site of tendon transection would result in an improved rate and quality of repair. Achilles tendons of fifty-one Sprague-Dawley rats were transected and suture-repaired. In half of the rats, a biodegradable scaffold seeded with allogenic circulating stem cells was placed as an onlay to the defect site in addition to the suture repair. The other half was treated with suture alone to serve as the control group. Animals were randomized to a two-, four-, or six-week time group. At the time of necropsy, tendons were harvested and prepared for either biomechanical or histological analysis. Histological slides were evaluated in a blinded fashion with the use of a grading scale. By two weeks, the experimental group demonstrated a significant improvement in repair compared to controls with no failures. Average histological scores of 0.6 and 2.6 were observed for the experimental and control group respectively. The experimental group demonstrated complete bridging of the transection site with parallel collagen fiber arrangement. By four weeks, both groups showed a continuing trend of healing, with the scaffold group exceeding the histological quality of the tissue repaired with suture alone. Biomechanically, the experimental group had a decreasing cross-sectional area with time which was also associated with a significant increase in the ultimate tensile strength of the tendons, reaching 4.2MPa by six weeks. The experimental group also achieved a significantly higher elastic toughness by six weeks and saw an increase in the tensile modulus, reaching

  2. Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells.

    Science.gov (United States)

    Yan, Jidong; Fei, Yao; Han, Yan; Lu, Shemin

    2016-10-01

    Selenoprotein O (Sel O) is a selenium-containing protein, but its function is still unclear. In the present study, we observed that the mRNA and protein expression levels of Sel O increased during chondrogenic induction of ATDC5 cells. The effects of Sel O on chondrocyte differentiation were then examined through shRNA-mediated gene silencing technique. The expression of Sel O was significantly suppressed at both mRNA and protein levels in a stable cell line transfected with a Sel O-specific target shRNA construct. Thereafter, we demonstrated that Sel O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Sel O deficiencies inhibited expression of chondrogenic gene Sox9, Col II, and aggrecan. Sel O-deficient cells also accumulated a few cartilage glycosaminoglycans (GAGs) and decreased the activity of alkaline phosphatase (ALP). In addition, Sel O deficiencies inhibited chondrocyte proliferation through delayed cell cycle progression by suppression of cyclin D1 expression. Moreover, Sel O deficiencies induced chondrocyte death through cell apoptosis. In summary, we describe the expression patterns and the essential roles of Sel O in chondrocyte viability, proliferation, and chondrogenic differentiation. Additionally, Sel O deficiency-mediated impaired chondrogenesis may illustrate the mechanisms of Se deficiency in the pathophysiological process of the endemic osteoarthropathy.

  3. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects

    Institute of Scientific and Technical Information of China (English)

    Mafia Fousteri; Leon HF Mullenders

    2008-01-01

    The encounter of elongating RNA polymerase Ⅱ (RNAPIIo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPllo-hlocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare hu-man disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin iigase complex to the stalled RNAPI io. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGNl and TFIIS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPIIo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcrip-tion-blocking lesions, but are also likely to contribute to DNA damage signalling events.

  4. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  5. DNA double-strand break induction in Ku80-deficient CHO cells following Boron Neutron Capture Reaction

    Directory of Open Access Journals (Sweden)

    Masunaga Shinichiro

    2011-09-01

    Full Text Available Abstract Background Boron neutron capture reaction (BNCR is based on irradiation of tumors after accumulation of boron compound. 10B captures neutrons and produces an alpha (4He particle and a recoiled lithium nucleus (7Li. These particles have the characteristics of high linear energy transfer (LET radiation and have marked biological effects. The purpose of this study is to verify that BNCR will increase cell killing and slow disappearance of repair protein-related foci to a greater extent in DNA repair-deficient cells than in wild-type cells. Methods Chinese hamster ovary (CHO-K1 cells and a DNA double-strand break (DSB repair deficient mutant derivative, xrs-5 (Ku80 deficient CHO mutant cells, were irradiated by thermal neutrons. The quantity of DNA-DSBs following BNCR was evaluated by measuring the phosphorylation of histone protein H2AX (gamma-H2AX and 53BP1 foci using immunofluorescence intensity. Results Two hours after neutron irradiation, the number of gamma-H2AX and 53BP1 foci in the CHO-K1 cells was decreased to 36.5-42.8% of the levels seen 30 min after irradiation. In contrast, two hours after irradiation, foci levels in the xrs-5 cells were 58.4-69.5% of those observed 30 min after irradiation. The number of gamma-H2AX foci in xrs-5 cells at 60-120 min after BNCT correlated with the cell killing effect of BNCR. However, in CHO-K1 cells, the RBE (relative biological effectiveness estimated by the number of foci following BNCR was increased depending on the repair time and was not always correlated with the RBE of cytotoxicity. Conclusion Mutant xrs-5 cells show extreme sensitivity to ionizing radiation, because xrs-5 cells lack functional Ku-protein. Our results suggest that the DNA-DSBs induced by BNCR were not well repaired in the Ku80 deficient cells. The RBE following BNCR of radio-sensitive mutant cells was not increased but was lower than that of radio-resistant cells. These results suggest that gamma-ray resistant cells have

  6. Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  7. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Taubenheim, Nadine; Peron, Sophie; Fischer, Alain

    2007-01-01

    B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.

  8. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  9. Repair of defects in photoactive layer of organic solar cells

    NARCIS (Netherlands)

    Oostra, A. Jolt; Blom, Paul W.m.; Michels, Jasper J.

    2015-01-01

    Defects occurring during printing of the photoactive layer in organic solar cells lead to short-circuits due to direct contact between the PEDOT:PSS anode and metallic cathode. We provide a highly effective repair method where the defected zone with bare PEDOT:PSS is treated with aqueous sodium

  10. Repair of defects in photoactive layer of organic solar cells

    NARCIS (Netherlands)

    Oostra, A. Jolt; Blom, Paul W.m.; Michels, Jasper J.

    2015-01-01

    Defects occurring during printing of the photoactive layer in organic solar cells lead to short-circuits due to direct contact between the PEDOT:PSS anode and metallic cathode. We provide a highly effective repair method where the defected zone with bare PEDOT:PSS is treated with aqueous sodium hypo

  11. Repair of defects in photoactive layer of organic solar cells

    NARCIS (Netherlands)

    Oostra, A.J.; Blom, P.W.M.; Michels, J.J.

    2015-01-01

    Defects occurring during printing of the photoactive layer in organic solar cells lead to short-circuits due to direct contact between the PEDOT:PSS anode and metallic cathode. We provide a highly effective repair method where the defected zone with bare PEDOT:PSS is treated with aqueous sodium hypo

  12. Stem cell transplantation enhances endogenous brain repair after experimental stroke.

    Science.gov (United States)

    Horie, Nobutaka; Hiu, Takeshi; Nagata, Izumi

    2015-01-01

    Stem cell transplantation for stroke treatment has been a promising therapy in small and large animal models, and many clinical trials are ongoing to establish this strategy in a clinical setting. However, the mechanism underlying functional recovery after stem cell transplantation has not been fully established and there is still a need to determine the ideal subset of stem cells for such therapy. We herein reviewed the recent evidences showing the underlying mechanism of functional recovery after cell transplantation, focusing on endogenous brain repair. First, angiogenesis/neovascularization is promoted by trophic factors including vascular endothelial growth factor secreted from stem cells, and stem cells migrated to the lesion along with the vessels. Second, axonal sprouting, dendritic branching, and synaptogenesis were enhanced altogether in the both ipsilateral and contralateral hemisphere remapping the pyramidal tract across the board. Finally, endogenous neurogenesis was also enhanced although little is known how much these neurogenesis contribute to the functional recovery. Taken together, it is clear that stem cell transplantation provides functional recovery via endogenous repair enhancement from multiple ways. This is important to maximize the effect of stem cell therapy after stroke, although it is still undetermined which repair mechanism is mostly contributed.

  13. Mismatch repair-deficient crypt foci in Lynch syndrome--molecular alterations and association with clinical parameters.

    Directory of Open Access Journals (Sweden)

    Laura Staffa

    Full Text Available Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR genes, most frequently MLH1 and MSH2. Recently, MMR-deficient crypt foci (MMR-DCF have been identified as a novel lesion which occurs at high frequency in the intestinal mucosa from Lynch syndrome mutation carriers, but very rarely progress to cancer. To shed light on molecular alterations and clinical associations of MMR-DCF, we systematically searched the intestinal mucosa from Lynch syndrome patients for MMR-DCF by immunohistochemistry. The identified lesions were characterised for alterations in microsatellite-bearing genes with proven or suspected role in malignant transformation. We demonstrate that the prevalence of MMR-DCF (mean 0.84 MMR-DCF per 1 cm2 mucosa in the colorectum of Lynch syndrome patients was significantly associated with patients' age, but not with patients' gender. No MMR-DCF were detectable in the mucosa of patients with sporadic MSI-H colorectal cancer (n = 12. Microsatellite instability of at least one tested marker was detected in 89% of the MMR-DCF examined, indicating an immediate onset of microsatellite instability after MMR gene inactivation. Coding microsatellite mutations were most frequent in the genes HT001 (ASTE1 with 33%, followed by AIM2 (17% and BAX (10%. Though MMR deficiency alone appears to be insufficient for malignant transformation, it leads to measurable microsatellite instability even in single MMR-deficient crypts. Our data indicate for the first time that the frequency of MMR-DCF increases with patients' age. Similar patterns of coding microsatellite instability in MMR-DCF and MMR-deficient cancers suggest that certain combinations of coding microsatellite mutations, including mutations of the HT001, AIM2 and BAX gene, may contribute to the progression of MMR-deficient lesions into MMR-deficient cancers.

  14. Human embryonic stem cells for neuronal repair.

    Science.gov (United States)

    Ben-Hur, Tamir

    2006-02-01

    Human embryonic stem cells may serve as a potentially endeless source of transplantable cells to treat various neurologic disorders. Accumulating data have shown the therapeutic value of various neural precursor cell types in experimental models of neurologic diseases. Tailoring cell therapy for specific disorders requires the generation of cells that are committed to specific neural lineages. To this end, protocols were recently developed for the derivation of dopaminergic neurons, spinal motor neurons and oligodendrocytes from hESC. These protocols recapitulate normal development in culture conditions. However, a novel concept emerging from these studies is that the beneficial effect of transplanted stem cells is not only via cell replacement in damaged host tissue, but also by trophic and protective effects, as well as by an immunomodulatory effect that down-regulates detrimental brain inflammation.

  15. Effect of iron deficiency on c-kit⁺ cardiac stem cells in vitro.

    Directory of Open Access Journals (Sweden)

    Dongqiang Song

    Full Text Available AIM: Iron deficiency is a common comorbidity in chronic heart failure (CHF which may exacerbate CHF. The c-kit⁺ cardiac stem cells (CSCs play a vital role in cardiac function repair. However, much is unknown regarding the role of iron deficiency in regulating c-kit⁺ CSCs function. In this study, we investigated whether iron deficiency regulates c-kit⁺ CSCs proliferation, migration, apoptosis, and differentiation in vitro. METHOD: All c-kit⁺ CSCs were isolated from adult C57BL/6 mice. The c-kit⁺ CSCs were cultured with deferoxamine (DFO, an iron chelator, mimosine (MIM, another iron chelator, or a complex of DFO and iron (Fe(III, respectively. Cell migration was assayed using a 48-well chamber system. Proliferation, cell cycle, and apoptosis of c-kit⁺ CSCs were analyzed with BrdU labeling, population doubling time assay, CCK-8 assay, and flow cytometry. Caspase-3 protein level and activity were examined with Western blotting and spectrophotometric detection. The changes in the expression of cardiac-specific proteins (GATA-4,TNI, and β-MHC and cell cycle-related proteins (cyclin D1, RB, and pRB were detected with Western blotting. RESULT: DFO and MIM suppressed c-kit⁺ CSCs proliferation and differentiation. They also modulated cell cycle and cardiac-specific protein expression. Iron chelators down-regulated the expression and phosphorylation of cell cycle-related proteins. Iron reversed those suppressive effects of DFO. DFO and MIM didn't affect c-kit⁺ CSCs migration and apoptosis. CONCLUSION: Iron deficiency suppressed proliferation and differentiation of c-kit⁺ CSCs. This may partly explain how iron deficiency affects CHF prognosis.

  16. Intrachromosomal recombination between highly diverged DNA sequences is enabled in human cells deficient in Bloom helicase.

    Science.gov (United States)

    Wang, Yibin; Li, Shen; Smith, Krissy; Waldman, Barbara Criscuolo; Waldman, Alan S

    2016-05-01

    Mutation of Bloom helicase (BLM) causes Bloom syndrome (BS), a rare human genetic disorder associated with genome instability, elevation of sister chromatid exchanges, and predisposition to cancer. Deficiency in BLM homologs in Drosophila and yeast brings about significantly increased rates of recombination between imperfectly matched sequences ("homeologous recombination," or HeR). To assess whether BLM deficiency provokes an increase in HeR in human cells, we transfected an HeR substrate into a BLM-null cell line derived from a BS patient. The substrate contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI, as well as a functional tk gene to serve as a potential recombination partner for the tk-neo gene. The two tk sequences on the substrate displayed 19% divergence. A double-strand break was introduced by expression of I-SceI and repair events were recovered by selection for G418-resistant clones. Among 181 events recovered, 30 were accomplished via HeR with the balance accomplished by nonhomologous end-joining. The frequency of HeR events in the BS cells was elevated significantly compared to that seen in normal human fibroblasts or in BS cells complemented for BLM expression. We conclude that BLM deficiency enables HeR in human cells.

  17. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  18. Defects in Base Excision Repair Sensitize Cells to Manganese in S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Adrienne P. Stephenson

    2013-01-01

    Full Text Available Manganese (Mn is essential for normal physiologic functioning; therefore, deficiencies and excess intake of manganese can result in disease. In humans, prolonged exposure to manganese causes neurotoxicity characterized by Parkinson-like symptoms. Mn2+ has been shown to mediate DNA damage possibly through the generation of reactive oxygen species. In a recent publication, we showed that Mn induced oxidative DNA damage and caused lesions in thymines. This study further investigates the mechanisms by which cells process Mn2+-mediated DNA damage using the yeast S. cerevisiae. The strains most sensitive to Mn2+ were those defective in base excision repair, glutathione synthesis, and superoxide dismutase mutants. Mn2+ caused a dose-dependent increase in the accumulation of mutations using the CAN1 and lys2-10A mutator assays. The spectrum of CAN1 mutants indicates that exposure to Mn results in accumulation of base substitutions and frameshift mutations. The sensitivity of cells to Mn2+ as well as its mutagenic effect was reduced by N-acetylcysteine, glutathione, and Mg2+. These data suggest that Mn2+ causes oxidative DNA damage that requires base excision repair for processing and that Mn interferes with polymerase fidelity. The status of base excision repair may provide a biomarker for the sensitivity of individuals to manganese.

  19. Activation of Type II Cells into Regenerative Stem Cell Antigen-1+ Cells during Alveolar Repair

    Science.gov (United States)

    Kumar, Varsha Suresh; Zhang, Wei; Rehman, Jalees; Malik, Asrar B.

    2015-01-01

    The alveolar epithelium is composed of two cell types: type I cells comprise 95% of the gas exchange surface area, whereas type II cells secrete surfactant, while retaining the ability to convert into type I cells to induce alveolar repair. Using lineage-tracing analyses in the mouse model of Pseudomonas aeruginosa–induced lung injury, we identified a population of stem cell antigen (Sca)-1–expressing type II cells with progenitor cell properties that mediate alveolar repair. These cells were shown to be distinct from previously reported Sca-1–expressing bronchioalveolar stem cells. Microarray and Wnt reporter studies showed that surfactant protein (Sp)-C+Sca-1+ cells expressed Wnt signaling pathway genes, and inhibiting Wnt/β-catenin signaling prevented the regenerative function of Sp-C+Sca-1+ cells in vitro. Thus, P. aeruginosa–mediated lung injury induces the generation of a Sca-1+ subset of type II cells. The progenitor phenotype of the Sp-C+Sca-1+ cells that mediates alveolar epithelial repair might involve Wnt signaling. PMID:25474582

  20. Stem cell death and survival in heart regeneration and repair.

    Science.gov (United States)

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  1. Stem cells for brain repair and recovery after stroke.

    Science.gov (United States)

    Gutiérrez-Fernández, María; Rodríguez-Frutos, Berta; Ramos-Cejudo, Jaime; Otero-Ortega, Laura; Fuentes, Blanca; Díez-Tejedor, Exuperio

    2013-11-01

    Stroke is a major worldwide cause of death and disability. Currently, intravenous thrombolysis and reperfusion therapies, but not the so-called neuroprotectant drugs, have been shown to be effective for acute ischemic stroke. Thus, new strategies to promote brain plasticity are necessary. Stem cell administration is an attractive future therapeutic approach. Brain protection and repair mechanisms are activated after stroke. This article is focused on the capacity of stem cell-based therapy to enhance this postinfarct brain plasticity and recovery. Future therapeutic considerations and prospects for stroke are discussed. Although cell therapy is promising in stroke treatment, mechanisms of action need to be characterized in detail. Further, the different mechanisms of axonal plasticity and remodeling involucrated in brain repair, not only in the gray but also in white matter, must be investigated through noninvasive techniques, and a multidisciplinary approach is fundamental in this.

  2. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

    Directory of Open Access Journals (Sweden)

    van Roekel Henk S

    2008-10-01

    Full Text Available Abstract Background The laboratory rat (Rattus norvegicus is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest.

  3. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

    Science.gov (United States)

    van Boxtel, Ruben; Toonen, Pim W; Verheul, Mark; van Roekel, Henk S; Nijman, Isaac J; Guryev, Victor; Cuppen, Edwin

    2008-01-01

    Background The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest. PMID:18840264

  4. DNA adduct kinetics in reproductive tissues of DNA repair proficient and deficient male mice after oral exposure to benzo(a)pyrene.

    Science.gov (United States)

    Verhofstad, Nicole; van Oostrom, Conny Th M; van Benthem, Jan; van Schooten, Frederik J; van Steeg, Harry; Godschalk, Roger W L

    2010-03-01

    Benzo(a)pyrene (B[a]P) can induce somatic mutations, whereas its potential to induce germ cell mutations is unclear. There is circumstantial evidence that paternal exposure to B[a]P can result in germ cell mutations. Since DNA adducts are thought to be a prerequisite for B[a]P induced mutations, we studied DNA adduct kinetics by (32)P-postlabeling in sperm, testes and lung tissues of male mice after a single exposure to B[a]P (13 mg/kg bw, by gavage). To investigate DNA adduct formation at different stages of spermatogenesis, mice were sacrificed at Day 1, 4, 7, 10, 14, 21, 32, and 42 after exposure. In addition, DNA repair deficient (Xpc(-/-)) mice were used to study the contribution of nucleotide excision repair in DNA damage removal. DNA adducts were detectable with highest levels in lung followed by sperm and testis. Maximum adduct levels in the lung and testis were observed at Day 1 after exposure, while adduct levels in sperm reached maximum levels at approximately 1 week after exposure. Lung tissue and testis of Xpc(-/-) mice contained significantly higher DNA adduct levels compared to wild type (Wt) mice over the entire 42 day observation period (P adduct half-life between Xpc(-/-) and Wt mice were only observed in testis. In sperm, DNA adduct levels were significantly higher in Xpc(-/-) mice than in Wt mice only at Day 42 after exposure (P = 0.01). These results indicate that spermatogonia and testes are susceptible for the induction of DNA damage and rely on nucleotide excision repair for maintaining their genetic integrity.

  5. Selenium compounds activate ATM-dependent DNA damage responses via the mismatch repair protein hMLH1 in colorectal cancer cells

    Science.gov (United States)

    Epidemiological and animal studies indicate that selenium supplementation suppresses risk of colorectal and other cancers. The majority of colorectal cancers are characterized by a defective DNA mismatch repair (MMR) process. Here, we have employed the MMR-deficient HCT 116 colorectal cancer cells ...

  6. The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells.

    Science.gov (United States)

    Kozmin, Stanislav G; Jinks-Robertson, Sue

    2013-03-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps.

  7. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells

    OpenAIRE

    Johnson, Roger D.; Jasin, Maria

    2000-01-01

    In mammalian cells, repair of DNA double-strand breaks (DSBs) occurs by both homologous and non-homologous mechanisms. By definition, homologous recombination requires a template with sufficient sequence identity to the damaged molecule in order to direct repair. We now show that the sister chromatid acts as a repair template in a substantial proportion of DSB repair events. The outcome of sister chromatid repair is primarily gene conversion unassociated with reciprocal exchange. This contras...

  8. DNA repair deficiency as a susceptibility marker for spontaneous lymphoma in golden retriever dogs: a case-control study.

    Directory of Open Access Journals (Sweden)

    Douglas H Thamm

    Full Text Available There is accumulating evidence that an individual's inability to accurately repair DNA damage in a timely fashion may in part dictate a predisposition to cancer. Dogs spontaneously develop lymphoproliferative diseases such as lymphoma, with the golden retriever (GR breed being at especially high risk. Mechanisms underlying such breed susceptibility are largely unknown; however, studies of heritable cancer predisposition in dogs may be much more straightforward than similar studies in humans, owing to a high degree of inbreeding and more limited genetic heterogeneity. Here, we conducted a pilot study with 21 GR with lymphoma, 20 age-matched healthy GR and 20 age-matched healthy mixed-breed dogs (MBD to evaluate DNA repair capability following exposure to either ionizing radiation (IR or the chemical mutagen bleomycin. Inter-individual variation in DNA repair capacity was evaluated in stimulated canine lymphoctyes exposed in vitro utilizing the G2 chromosomal radiosensitivity assay to quantify clastogen-induced chromatid-type aberrations (gaps and breaks. Golden retrievers with lymphoma demonstrated elevated sensitivity to induction of chromosome damage following either challenge compared to either healthy GR or MBD at multiple doses and time points. Using the 75(th percentile of chromatid breaks per 1,000 chromosomes in the MBD population at 4 hours post 1.0 Gy IR exposure as a benchmark to compare cases and controls, GR with lymphoma were more likely than healthy GR to be classified as "sensitive" (odds ratio = 21.2, 95% confidence interval 2.3-195.8. Furthermore, our preliminary findings imply individual (rather than breed susceptibility, and suggest that deficiencies in heritable factors related to DNA repair capabilities may be involved in the development of canine lymphoma. These studies set the stage for larger confirmatory studies, as well as candidate-based approaches to probe specific genetic susceptibility factors.

  9. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line.

    Science.gov (United States)

    Frandsen, Stine Krog; McNeil, Anna K; Novak, Ivana; McNeil, Paul L; Gehl, Julie

    2016-08-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81-88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment.

  10. Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Broholm, Christa; Brandt, Claus; Schultz, Ninna S

    2012-01-01

    The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response......-stimulated cell proliferation and a decreased LIF-stimulated induction of the proliferation-promoting factors cyclin D1, JunB, and c-myc. SOCS3 protein was upregulated in diabetic myoblasts, and knockdown of SOCS3 rescued LIF-induced gene expression in diabetic myoblasts, whereas neither STAT1 or STAT3 signaling...... nor proliferation rate was affected. In conclusion, although LIF and LIFR proteins were increased in muscle tissue and myoblasts from diabetic patients, LIF signaling and LIF-stimulated cell proliferation were impaired in diabetic myoblasts, suggesting a novel mechanism by which muscle function...

  11. Role of neural precursor cells in promoting repair following stroke

    Institute of Scientific and Technical Information of China (English)

    Pooya DIBAJNIA; Cindi M MORSHEAD

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention.Two broad approaches to stem cell-based therapies have been taken:the transplantation of exogenous stem cells,and the activation of endogenous neural stem and progenitor cells (together termed neural precursors).Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results.Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate,migrate and differentiate into mature neurons in the uninjured adult brain.Studies have revealed that these neural precursor cell behaviours can be activated following stroke,whereby neural precursors will expand in number,migrate to the infarct site and differentiate into neurons.However,this innate response is insufficient to lead to functional recovery,making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery.Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.

  12. Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice

    NARCIS (Netherlands)

    D. Susa (Denis); J.R. Mitchell (James); M. Verweij (Marielle); H.W.M. van de Ven (Marieke); H.P. Roest (Henk); S. van den Engel (Sandra); I.M. Bajema (Ingeborg); K. Mangundap (Kirsten); J.N.M. IJzermans (Jan); J.H.J. Hoeijmakers (Jan); R.W.F. de Bruin (Ron)

    2009-01-01

    textabstractCockayne syndrome and other segmental progerias with inborn defects in DNA repair mechanisms are thought to be due in part to hypersensitivity to endogenous oxidative DNA damage. The accelerated aging-like symptoms of this disorder include dysmyelination within the central nervous system

  13. Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice

    NARCIS (Netherlands)

    D. Susa (Denis); J.R. Mitchell (James); M. Verweij (Marielle); H.W.M. van de Ven (Marieke); H.P. Roest (Henk); S. van den Engel (Sandra); I.M. Bajema (Ingeborg); K. Mangundap (Kirsten); J.N.M. IJzermans (Jan); J.H.J. Hoeijmakers (Jan); R.W.F. de Bruin (Ron)

    2009-01-01

    textabstractCockayne syndrome and other segmental progerias with inborn defects in DNA repair mechanisms are thought to be due in part to hypersensitivity to endogenous oxidative DNA damage. The accelerated aging-like symptoms of this disorder include dysmyelination within the central nervous system

  14. Synaptic proteome changes in a DNA repair deficient Ercc1 mouse model of accelerated aging

    NARCIS (Netherlands)

    M.J. Végh (Marlene); M.C. de Waard (Monique); I. van der Pluijm (Ingrid); Y. Ridwan (Yanto); M.J.M. Sassen (Marion J.); P. van Nierop (Pim); R.C. van der Schors (Roel); K.W. Li (Ka Wan); J.H.J. Hoeijmakers (Jan); A.B. Smit (August); R.E. van Kesteren (Ronald)

    2012-01-01

    textabstractCognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of

  15. Inducible Apoe Gene Repair in Hypomorphic ApoE Mice Deficient in the LDL Receptor Promotes Atheroma Stabilization with a Human-like Lipoprotein Profile

    Science.gov (United States)

    Eberlé, Delphine; Luk, Fu Sang; Kim, Roy Y.; Olivas, Victor R.; Kumar, Nikit; Posada, Jessica M.; Li, Kang; Gaudreault, Nathalie; Rapp, Joseph H.; Raffai, Robert L.

    2013-01-01

    Objective To study atherosclerosis regression in mice following plasma lipid reduction to moderately elevated apolipoprotein B (apoB)-lipoprotein levels. Approach and Results Chow-fed hypomorphic Apoe mice deficient in LDL receptor expression (Apoeh/hLdlr−/−Mx1-cre mice) develop hyperlipidemia and atherosclerosis. These mice were studied before and after inducible cre-mediated Apoe gene repair. By 1 week, induced mice displayed a 2-fold reduction in plasma cholesterol and triglyceride levels and a decrease in the non-HDL:HDL-cholesterol ratio from 87%:13% to 60%:40%. This halted atherosclerotic lesion growth and promoted macrophage loss and accumulation of thick collagen fibers for up to 8 weeks. Concomitantly, blood Ly-6Chi monocytes were decreased by 2-fold but lesional macrophage apoptosis was unchanged. The expression of several genes involved in extra-cellular matrix remodeling and cell migration were changed in lesional macrophages 1 week after Apoe gene repair. However, mRNA levels of numerous genes involved in cholesterol efflux and inflammation were not significantly changed at this time point. Conclusions Restoring apoE expression in Apoeh/hLdlr−/−Mx1-cre mice resulted in lesion stabilization in the context of a human-like ratio of non-HDL:HDL-cholesterol. Our data suggest that macrophage loss derived in part from reduced blood Ly-6Chi monocytes levels and genetic reprogramming of lesional macrophages. PMID:23788760

  16. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome...

  17. Cell lineages, growth and repair of the mouse heart.

    Science.gov (United States)

    Lescroart, Fabienne; Meilhac, Sigolène M

    2012-01-01

    The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.

  18. The role of ATM in the deficiency in nonhomologous end-joining near telomeres in a human cancer cell line.

    Directory of Open Access Journals (Sweden)

    Keiko Muraki

    2013-03-01

    Full Text Available Telomeres distinguish chromosome ends from double-strand breaks (DSBs and prevent chromosome fusion. However, telomeres can also interfere with DNA repair, as shown by a deficiency in nonhomologous end joining (NHEJ and an increase in large deletions at telomeric DSBs. The sensitivity of telomeric regions to DSBs is important in the cellular response to ionizing radiation and oncogene-induced replication stress, either by preventing cell division in normal cells, or by promoting chromosome instability in cancer cells. We have previously proposed that the telomeric protein TRF2 causes the sensitivity of telomeric regions to DSBs, either through its inhibition of ATM, or by promoting the processing of DSBs as though they are telomeres, which is independent of ATM. Our current study addresses the mechanism responsible for the deficiency in repair of DSBs near telomeres by combining assays for large deletions, NHEJ, small deletions, and gross chromosome rearrangements (GCRs to compare the types of events resulting from DSBs at interstitial and telomeric DSBs. Our results confirm the sensitivity of telomeric regions to DSBs by demonstrating that the frequency of GCRs is greatly increased at DSBs near telomeres and that the role of ATM in DSB repair is very different at interstitial and telomeric DSBs. Unlike at interstitial DSBs, a deficiency in ATM decreases NHEJ and small deletions at telomeric DSBs, while it increases large deletions. These results strongly suggest that ATM is functional near telomeres and is involved in end protection at telomeric DSBs, but is not required for the extensive resection at telomeric DSBs. The results support our model in which the deficiency in DSB repair near telomeres is a result of ATM-independent processing of DSBs as though they are telomeres, leading to extensive resection, telomere loss, and GCRs involving alternative NHEJ.

  19. The role of ATM in the deficiency in nonhomologous end-joining near telomeres in a human cancer cell line.

    Science.gov (United States)

    Muraki, Keiko; Han, Limei; Miller, Douglas; Murnane, John P

    2013-03-01

    Telomeres distinguish chromosome ends from double-strand breaks (DSBs) and prevent chromosome fusion. However, telomeres can also interfere with DNA repair, as shown by a deficiency in nonhomologous end joining (NHEJ) and an increase in large deletions at telomeric DSBs. The sensitivity of telomeric regions to DSBs is important in the cellular response to ionizing radiation and oncogene-induced replication stress, either by preventing cell division in normal cells, or by promoting chromosome instability in cancer cells. We have previously proposed that the telomeric protein TRF2 causes the sensitivity of telomeric regions to DSBs, either through its inhibition of ATM, or by promoting the processing of DSBs as though they are telomeres, which is independent of ATM. Our current study addresses the mechanism responsible for the deficiency in repair of DSBs near telomeres by combining assays for large deletions, NHEJ, small deletions, and gross chromosome rearrangements (GCRs) to compare the types of events resulting from DSBs at interstitial and telomeric DSBs. Our results confirm the sensitivity of telomeric regions to DSBs by demonstrating that the frequency of GCRs is greatly increased at DSBs near telomeres and that the role of ATM in DSB repair is very different at interstitial and telomeric DSBs. Unlike at interstitial DSBs, a deficiency in ATM decreases NHEJ and small deletions at telomeric DSBs, while it increases large deletions. These results strongly suggest that ATM is functional near telomeres and is involved in end protection at telomeric DSBs, but is not required for the extensive resection at telomeric DSBs. The results support our model in which the deficiency in DSB repair near telomeres is a result of ATM-independent processing of DSBs as though they are telomeres, leading to extensive resection, telomere loss, and GCRs involving alternative NHEJ.

  20. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane...... repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p cell line (p membrane permeabilization by electroporation. Viability in the primary normal cell line (98 % viable cells) was higher...

  1. Mutation mismatch repair gene deletions in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Couronné, Lucile; Ruminy, Philippe; Waultier-Rascalou, Agathe; Rainville, Vinciane; Cornic, Marie; Picquenot, Jean-Michel; Figeac, Martin; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2013-05-01

    To further unravel the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL), we performed high-resolution comparative genomic hybridization on lymph node biopsies from 70 patients. With this strategy, we identified microdeletions of genes involved in the mutation mismatch repair (MMR) pathway in two samples. The first patient presented with a homozygous deletion of MSH2-MSH6 due to duplication of an unbalanced pericentric inversion of chromosome 2. The other case showed a PMS2 heterozygous deletion. PMS2 and MSH2-MSH6 abnormalities, respectively, resulted in a decrease and complete loss of gene expression. However, unlike tumors associated with the hereditary non-polyposis colorectal cancer syndrome or immunodeficiency-related lymphomas, no microsatellite instability was detected. Mutational profiles revealed especially in one patient an aberrant hypermutation without a clear activation-induced cytidine deaminase signature, indicating a breakdown of the high-fidelity repair in favor of the error-prone repair pathway. Our findings suggest that in a rare subset of patients, inactivation of the genes of the MMR pathway is likely an important step in the molecular pathogenesis of DLBCL and does not involve the same molecular mechanisms as other common neoplasms with MMR deficiency.

  2. Dental stem cells for tooth regeneration and repair.

    Science.gov (United States)

    Mantesso, Andrea; Sharpe, Paul

    2009-09-01

    Mesenchymal stem cells (MSCs) resident in bone marrow are one of the most studied and clinically important populations of adult stem cells. Cells with, similar properties to these MSCs have been described in several different tooth tissues and the potential ease with which these dental MSCs could be obtained from patients has prompted great interest in these cells as a source of MSCs for cell-based therapeutics. In this review we address the current state of knowledge regarding these cells, their properties, origins, locations, functions and potential uses in tooth tissue engineering and repair. We discuss some of the key controversies and outstanding issues, not least of which whether dental stem cells actually exist.

  3. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

    Science.gov (United States)

    2012-03-01

    rejoining is then completed by activi- ties of the XRCC4/ DNA ligase IV (Lig4) complex (Critchlow and Jackson, 1998). The importance of double-strand break...Recombination in DNA Interstrand Crosslink Repair, Molecular Cell (2012), doi:10.1016/j.molcel.2012.02.015 found that loss of DNA ligase IV (Lig4) in FANCC...either C-NHEJ or A-NHEJ. The C-NHEJ pathway requires DNA ligase IV, XRCC4, Ku70, and Ku80, and is necessary for efficient repair of intrachromosomal

  4. Generation of Peroxisome-Deficient Somatic Animal Cell Mutants.

    Science.gov (United States)

    Okumoto, Kanji; Fujiki, Yukio

    2017-01-01

    Cell mutants with a genetic defect affecting various cellular phenotypes are widely utilized as a powerful tool in genetic, biochemical, and cell biological research. More than a dozen complementation groups of animal somatic mutant cells defective in peroxisome biogenesis have been successfully isolated in Chinese hamster ovary (CHO) cells and used as a model system reflecting fatal human severe genetic disorders named peroxisome biogenesis disorders (PBD). Isolation and characterization of peroxisome-deficient CHO cell mutants has allowed the identification of PEX genes and the gene products peroxins, which directly leads to the accomplishment of isolation of pathogenic genes responsible for human PBDs, as well as elucidation of their functional roles in peroxisome biogenesis. Here, we describe the procedure to isolate peroxisome-deficient mammalian cell mutants from CHO cells, by making use of an effective, photo-sensitized selection method.

  5. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-01-01

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3+/− germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse. PMID:28290521

  6. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells.

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-03-14

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3(+/-) germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse.

  7. Chimeric negative regulation of p14ARF and TBX1 by a t(9;22) translocation associated with melanoma, deafness, and DNA repair deficiency.

    Science.gov (United States)

    Tan, Xiaohui; Anzick, Sarah L; Khan, Sikandar G; Ueda, Takahiro; Stone, Gary; Digiovanna, John J; Tamura, Deborah; Wattendorf, Daniel; Busch, David; Brewer, Carmen C; Zalewski, Christopher; Butman, John A; Griffith, Andrew J; Meltzer, Paul S; Kraemer, Kenneth H

    2013-09-01

    Melanoma is the most deadly form of skin cancer and DiGeorge syndrome (DGS) is the most frequent interstitial deletion syndrome. We characterized a novel balanced t(9;22)(p21;q11.2) translocation in a patient with melanoma, DNA repair deficiency, and features of DGS including deafness and malformed inner ears. Using chromosome sorting, we located the 9p21 breakpoint in CDKN2A intron 1. This resulted in underexpression of the tumor suppressor p14 alternate reading frame (p14ARF); the reduced DNA repair was corrected by transfection with p14ARF. Ultraviolet radiation-type p14ARF mutations in his melanoma implicated p14ARF in its pathogenesis. The 22q11.2 breakpoint was located in a palindromic AT-rich repeat (PATRR22). We identified a new gene, FAM230A, that contains PATRR22 within an intron. The 22q11.2 breakpoint was located 800 kb centromeric to TBX1, which is required for inner ear development. TBX1 expression was greatly reduced. The translocation resulted in a chimeric transcript encoding portions of p14ARF and FAM230A. Inhibition of chimeric p14ARF-FAM230A expression increased p14ARF and TBX1 expression and improved DNA repair. Expression of the chimera in normal cells produced dominant negative inhibition of p14ARF. Similar chimeric mRNAs may mediate haploinsufficiency in DGS or dominant negative inhibition of other genes such as those involved in melanoma.

  8. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency.

    Science.gov (United States)

    Shen, Yuqiao; Rehman, Farah L; Feng, Ying; Boshuizen, Julia; Bajrami, Ilirjana; Elliott, Richard; Wang, Bing; Lord, Christopher J; Post, Leonard E; Ashworth, Alan

    2013-09-15

    PARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties. Potency and selectivity of BMN 673 was determined by biochemical assays. Anticancer activity either as a single-agent or in combination with other antitumor agents was evaluated both in vitro and in xenograft cancer models. BMN 673 is a potent PARP1/2 inhibitor (PARP1 IC50 = 0.57 nmol/L), but it does not inhibit other enzymes that we have tested. BMN 673 exhibits selective antitumor cytotoxicity and elicits DNA repair biomarkers at much lower concentrations than earlier generation PARP1/2 inhibitors (such as olaparib, rucaparib, and veliparib). In vitro, BMN 673 selectively targeted tumor cells with BRCA1, BRCA2, or PTEN gene defects with 20- to more than 200-fold greater potency than existing PARP1/2 inhibitors. BMN 673 is readily orally bioavailable, with more than 40% absolute oral bioavailability in rats when dosed in carboxylmethyl cellulose. Oral administration of BMN 673 elicited remarkable antitumor activity in vivo; xenografted tumors that carry defects in DNA repair due to BRCA mutations or PTEN deficiency were profoundly sensitive to oral BMN 673 treatment at well-tolerated doses in mice. Synergistic or additive antitumor effects were also found when BMN 673 was combined with temozolomide, SN38, or platinum drugs. BMN 673 is currently in early-phase clinical development and represents a promising PARP1/2 inhibitor with potentially advantageous features in its drug class. ©2013 AACR.

  9. Methotrexate induces DNA damage and inhibits homologous recombination repair in choriocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Xie L

    2016-11-01

    Full Text Available Lisha Xie,1,* Tiancen Zhao,1,2,* Jing Cai,1 You Su,1 Zehua Wang,1 Weihong Dong1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 2Department of Obstetrics and Gynecology, Central Hospital of Wuhan, Wuhan, China *These authors contributed equally to this work Objective: The objective of this study was to investigate the mechanism of sensitivity to methotrexate (MTX in human choriocarcinoma cells regarding DNA damage response. Methods: Two choriocarcinoma cancer cell lines, JAR and JEG-3, were utilized in this study. An MTX-sensitive osteosarcoma cell line MG63, an MTX-resistant epithelial ovarian cancer cell line A2780 and an MTX-resistant cervical adenocarcinoma cell line Hela served as controls. Cell viability assay was carried out to assess MTX sensitivity of cell lines. MTX-induced DNA damage was evaluated by comet assay. Quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of BRCA1, BRCA2, RAD51 and RAD52. The protein levels of γH2AX, RAD 51 and p53 were analyzed by Western blot. Results: Remarkable DNA strand breaks were observed in MTX-sensitive cell lines (JAR, JEG-3 and MG63 but not in MTX-resistant cancer cells (A2780 and Hela after 48 h of MTX treatment. Only in the choriocarcinoma cells, the expression of homologous recombination (HR repair gene RAD51 was dramatically suppressed by MTX in a dose- and time-dependent manner, accompanied with the increase in p53. Conclusion: The MTX-induced DNA strand breaks accompanied by deficiencies in HR repair may contribute to the hypersensitivity to chemotherapy in choriocarcinoma. Keywords: choriocarcinoma, chemotherapy hypersensitivity, DNA double-strand break, RAD51, p53

  10. Stem cells for brain repair in neonatal hypoxia-ischemia.

    Science.gov (United States)

    Chicha, L; Smith, T; Guzman, R

    2014-01-01

    Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.

  11. Nuclear envelope rupture and repair during cancer cell migration

    Science.gov (United States)

    Denais, Celine M.; Gilbert, Rachel M.; Isermann, Philipp; McGregor, Alexandra L.; te Lindert, Mariska; Weigelin, Bettina; Davidson, Patricia M.; Friedl, Peter; Wolf, Katarina; Lammerding, Jan

    2016-01-01

    During cancer metastasis, tumor cells penetrate tissues through tight interstitial spaces, requiring extensive deformation of the cell and its nucleus. Here, we investigated tumor cell migration in confining microenvironments in vitro and in vivo. Nuclear deformation caused localized loss of nuclear envelope (NE) integrity, which led to the uncontrolled exchange of nucleo-cytoplasmic content, herniation of chromatin across the NE, and DNA damage. The incidence of NE rupture increased with cell confinement and with depletion of nuclear lamins, NE proteins that structurally support the nucleus. Cells restored NE integrity using components of the endosomal sorting complexes required for transport-III (ESCRT-III) machinery. Our findings indicate that cell migration incurs substantial physical stress on the NE and its content, requiring efficient NE and DNA damage repair for survival. PMID:27013428

  12. Role of DNA repair machinery and p53 in the testicular germ cell cancer: a review.

    Science.gov (United States)

    Romano, Francesco Jacopo; Rossetti, Sabrina; Conteduca, Vincenza; Schepisi, Giuseppe; Cavaliere, Carla; Di Franco, Rossella; La Mantia, Elvira; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Quagliariello, Vincenzo; Piscitelli, Raffaele; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; De Falco, Francesco; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; De Giorgi, Ugo; Facchini, Gaetano

    2016-12-20

    Notwithstanding the peculiar sensitivity to cisplatin-based treatment, resulting in a very high percentage of cures even in advanced stages of the disease, still we do not know the biological mechanisms that make Testicular Germ Cell Tumor (TGCT) "unique" in the oncology scene. p53 and MDM2 seem to play a pivotal role, according to several in vitro observations, but no correlation has been found between their mutational or expression status in tissue samples and patients clinical outcome. Furthermore, other players seem to be on stage: DNA Damage Repair Machinery (DDR) , especially Homologous Recombination (HR) proteins, above all Ataxia Telangiectasia Mutated (ATM), cooperates with p53 in response to DNA damage, activating apoptotic cascade and contributing to cell "fate". Homologous Recombination deficiency has been assumed to be a Germ Cell Tumor characteristic underlying platinum-sensitivity, whereby Poly(ADP-ribose) polymerase (PARP), an enzyme involved in HR DNA repair, is an intriguing target: PARP inhibitors have already entered in clinical practice of other malignancies and trials are recruiting TGCT patients in order to validate their role in this disease. This paper aims to summarize evidence, trying to outline an overview of DDR implications not only in TGCT curability, but also in resistance to chemotherapy.

  13. Renal tubule cell repair following acute renal injury.

    Science.gov (United States)

    Humes, H D; Lake, E W; Liu, S

    1995-01-01

    Experimental data suggests the recovery of renal function after ischemic or nephrotoxic acute renal failure is due to a replicative repair process dependent upon predominantly paracrine release of growth factors. These growth factors promote renal proximal tubule cell proliferation and a differentiation phase dependent on the interaction between tubule cells and basement membrane. These insights identify the molecular basis of renal repair and ischemic and nephrotoxic acute renal failure, and may lead to potential therapeutic modalities that accelerate renal repair and lessen the morbidity and mortality associated with these renal disease processes. In this regard, there is a prominent vasoconstrictor response of the renal vasculature during the postischemic period of developing acute renal failure. The intravenous administration of pharmacologic doses of atrial natriuretic factor (ANF) in the postischemic period have proven efficacious by altering renal vascular resistance, so that renal blood flow and glomerular filtration rate improve. ANF also appears to protect renal tubular epithelial integrity and holds significant promise as a therapeutic agent in acute renal failure. Of equal or greater promise are the therapeutic interventions targeting the proliferative reparative zone during the postischemic period. The exogenous administration of epidermal growth factor or insulin-like growth factor-1 in the postischemic period have effectively decreased the degree of renal insufficiency as measured by the peak serum creatinine and has hastened renal recovery as measured by the duration of time required to return the baseline serum creatinine values. A similarly efficacious role for hepatocyte growth factor has also been recently demonstrated.

  14. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway.

    Science.gov (United States)

    Faruqi, A F; Datta, H J; Carroll, D; Seidman, M M; Glazer, P M

    2000-02-01

    The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells. Based on work showing that triple helices, even in the absence of associated psoralen adducts, are able to provoke DNA repair and cause mutations, we asked whether intermolecular triplexes could stimulate recombination. Here, we report that triple-helix formation itself is capable of promoting recombination and that this effect is dependent on a functional nucleotide excision repair (NER) pathway. Transfection of COS cells carrying the dual supF vector with a purine-rich TFO, AG30, designed to bind as a third strand to a region between the two mutant supF genes yielded recombinants at a frequency of 0.37%, fivefold above background, whereas a scrambled sequence control oligomer was ineffective. In human cells deficient in the NER factor XPA, the ability of AG30 to induce recombination was eliminated, but it was restored in a corrected subline expressing the XPA cDNA. In comparison, the ability of triplex-directed psoralen cross-links to induce recombination was only partially reduced in XPA-deficient cells, suggesting that NER is not the only pathway that can metabolize targeted psoralen photoadducts into recombinagenic intermediates. Interestingly, the triplex-induced recombination was unaffected in cells deficient in DNA mismatch repair, challenging our previous model of a heteroduplex intermediate and supporting a model based on end joining. This work demonstrates that oligonucleotide-mediated triplex formation can be recombinagenic, providing the basis for a potential strategy to direct genome modification by using high-affinity DNA binding ligands.

  15. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. (Argonne National Lab., IL (United States)); Libertin, C.R. (Loyola Univ., Maywood, IL (United States))

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  16. Sirt1 deficiency attenuates spermatogenesis and germ cell function.

    Directory of Open Access Journals (Sweden)

    Matthew Coussens

    Full Text Available In mammals, Sirt1, a member of the sirtuin family of proteins, functions as a nicotinamide adenine dinucleotide-dependent protein deactylase, and has important physiological roles, including the regulation of glucose metabolism, cell survival, and mitochondrial respiration. The initial investigations of Sirt1 deficient mice have revealed a phenotype that includes a reduced lifespan, small size, and an increased frequency of abnormal sperm. We have now performed a detailed analysis of the molecular and functional effects of Sirt1 deficiency in the germ line of Sirt1 knock-out (-/- mice. We find that Sirt1 deficiency markedly attenuates spermatogenesis, but not oogenesis. Numbers of mature sperm and spermatogenic precursors, as early as d15.5 of development, are significantly reduced ( approximately 2-10-fold less; Pdeficiency did not effect the efficiency oocyte production following superovulation of female mice. Furthermore, the proportion of mature sperm with elevated DNA damage ( approximately 7.5% of total epididymal sperm; P = 0.02 was significantly increased in adult Sirt1-/- males. Analysis of global gene expression by microarray analysis in Sirt1 deficient testis revealed dysregulated expression of 85 genes, which were enriched (P<0.05 for genes involved in spermatogenesis and protein sumoylation. To assess the function of Sirt1 deficient germ cells, we compared the efficiency of generating embryos and viable offspring in in vitro fertilization (IVF experiments using gametes from Sirt1-/- and sibling Sirt1+/- mice. While viable animals were derived in both Sirt1-/- X wild type and Sirt1-/- X Sirt1-/- crosses, the efficiency of producing both 2-cell zygotes and viable offspring was diminished when IVF was performed with Sirt1-/- sperm and/or oocytes. Together, these data support an important role for Sirt1 in spermatogenesis, including spermatogenic stem cells, as well as germ cell

  17. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  18. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells.

    Science.gov (United States)

    Yant, Stephen R; Kay, Mark A

    2003-12-01

    Herein, we report that the DNA-dependent protein kinase (DNA-PK) regulates the DNA damage introduced during Sleeping Beauty (SB) element excision and reinsertion in mammalian cells. Using both plasmid- and chromosome-based mobility assays, we analyzed the repair of transposase-induced double-stranded DNA breaks in cells deficient in either the DNA-binding subunit of DNA-PK (Ku) or its catalytic subunit (DNA-PKcs). We found that the free 3' overhangs left after SB element excision were efficiently and accurately processed by the major Ku-dependent nonhomologous-end-joining pathway. Rejoining of broken DNA molecules in the absence of Ku resulted in extensive end degradation at the donor site and greatly increased the frequency of recombination with ectopic templates. Therefore, the major DNA-PK-dependent DNA damage response predominates over more-error-prone repair pathways and thereby facilitates high-fidelity DNA repair during transposon mobilization in mammalian cells. Although transposable elements were not found to be efficiently circularized after transposase-mediated excision, DNA-PK deficiency supported more-frequent transposase-mediated element insertion than was found in wild-type controls. We conclude that, based on its ability to regulate excision site junctional diversity and transposon insertion frequency, DNA-PK serves an important protective role during transpositional recombination in mammals.

  19. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  20. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  1. Deficient natural killer cell function in preeclampsia

    Energy Technology Data Exchange (ETDEWEB)

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  2. Divergent impact of Toll-like receptor 2 deficiency on repair mechanisms in healthy muscle versus Duchenne muscular dystrophy.

    Science.gov (United States)

    Mojumdar, Kamalika; Giordano, Christian; Lemaire, Christian; Liang, Feng; Divangahi, Maziar; Qureshi, Salman T; Petrof, Basil J

    2016-05-01

    Injury to skeletal muscle, whether acute or chronic, triggers macrophage-mediated innate immunity in a manner which can be either beneficial or harmful for subsequent repair. Endogenous ligands for Toll-like receptor 2 (TLR2) are released by damaged tissues and might play an important role in activating the innate immune system following muscle injury. To test this hypothesis, we compared macrophage behaviour and muscle repair mechanisms in mice lacking TLR2 under conditions of either acute (cardiotoxin-induced) or chronic (mdx mouse genetic model of Duchenne muscular dystrophy; DMD) muscle damage. In previously healthy muscle subjected to acute damage, TLR2 deficiency reduced macrophage numbers in the muscle post-injury but did not alter the expression pattern of the prototypical macrophage polarization markers iNOS and CD206. In addition, there was abnormal persistence of necrotic fibres and impaired regeneration in TLR2-/- muscles after acute injury. In contrast, TLR2 ablation in chronically diseased muscles of mdx mice not only resulted in significantly reduced macrophage numbers but additionally modified their phenotype by shifting from inflammatory (iNOS(pos) CD206(neg) ) to more anti-inflammatory (iNOS(neg) CD206(pos) ) characteristics. This decrease in macrophage-mediated inflammation was associated with ameliorated muscle histopathology and improved force-generating capacity of the dystrophic muscle. Our results suggest that the role of TLR2 in macrophage function and skeletal muscle repair depends greatly upon the muscle injury context, and raise the possibility that inhibition of TLR2 could serve as a useful therapeutic measure in DMD.

  3. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  4. The RANK/ RANKL/ OPG interaction in the repair of autogenous bone grafts in female rats with estrogen deficiency

    Directory of Open Access Journals (Sweden)

    Tábata de Mello TERA

    2014-01-01

    Full Text Available The aim of this study was to evaluate the resorption process during the repair of autogenous bone grafts with or without coverage by an expanded polytetrafluoroethylene (e-PTFE membrane in female rats with estrogen deficiency using the immunohistochemical technique. Eighty female rats were randomly divided into two groups (OVX and SHAM. The 40 female rats in the OVX group were subjected to ovariectomy, and the 40 female rats in the SHAM group were subjected to simulated ovariectomy. The two groups were further divided in subgroup E, which was subjected to surgery for placement of autogenous bone graft (ABG, and subgroup ME, in which the ABG was covered with an e-PTFE membrane. The animals were killed at 0, 7, 21, 45 and 60 days. The specimens were analyzed using immunohistochemistry for the bone resorption markers RANK, RANK-L and Osteoprotegerin (OPG. A higher remodeling rate was observed at 7 and 21 days after the autogenous bone grafts, when the markers were more intensely expressed. At the final time point, the specimens presented similar characteristics to those observed at the initial time point. The expression of immunohistochemical markers was not altered by the estrogen deficiency. The presence of the e-PTFE membrane delayed the bone resorption process, influencing the immunohistochemical expression of markers.

  5. Anaesthesia management in a patient with a severe biotinidase deficiency for congenital scoliosis repair

    Directory of Open Access Journals (Sweden)

    Ebrahim Almasri

    2016-01-01

    Full Text Available A 17 year old female patient with a biotinidase enzyme deficiency, cerebral palsy, aphamis, generalized hyperreflexia and spasticity, epilepsy and mental retardation came for the severe kyphoscoliotic deformity correction. Biotinidase enzyme deficiency is an autosomal recessive disorder with incidence of 1:60,000 neonatal birth. Treatment with biotin results in a rapid biochemical and clinical improvement. This enzyme deficiency involves neurological, neuromuscular, respiratory, dermatological and immunological problems. If untreated it can lead to convulsions, coma and death. Cobb’s angle that measures the curvature of scoliosis, determined by measurements made on X rays in this case was 120° with clinical presentation of recurrent respiratory tract infection, inability to maintain sagittal posture, inability to eat or feed and difficulty in nursing care. Anaesthetic management in these patients should focus primarily on associated comorbidities and congenital anomalies affecting the course of the perioperative management and thereafter comprehensive preoperative strategies must be executed to enhance the safety profile during the surgery.

  6. DNA damage repair is unaffected by mimicked heterozygous levels of BRCA2 in HT-29 cells

    Directory of Open Access Journals (Sweden)

    Brian Tannenbaum, Tobechukwu Mofunanya, Alan R. Schoenfeld

    2007-01-01

    Full Text Available Functional loss of both alleles of the breast cancer susceptibility gene, BRCA2, facilitates tumorigenesis. However, the direct effects of BRCA2 heterozygosity remain unclear. Here, BRCA2 heterozygosity was mimicked in HT-29 colon cells by reducing levels of BRCA2 through stable RNA interference. No difference in RAD51 subcellular localization and focus formation was observed between control and mimicked heterozygous cell lines. DNA repair ability, as measured by colony survival following mitomycin C treatment and ultraviolet radiation exposure, was also unaffected by reduced levels of BRCA2. Interestingly, the growth rate of the mimicked BRCA2 heterozygous cell line was significantly lower than that of control cells. Increased expression of p53 in the mimicked heterozygous cells was observed, perhaps in response to BRCA2 deficiency. Levels of p27 were also found to be slightly increased in cells with reduced BRCA2, perhaps contributing to the slower growth rate. Overall, these results suggest that tumors are unlikely to arise directly from BRCA2 heterozygous cells without other genetic events such as loss of the wild-type BRCA2 allele and/or loss of p53 function or other cell cycle inhibitors.

  7. Evaluation of radioinduced damage and repair capacity in human breast cancer cells, MCDF-7 and T4-D

    Energy Technology Data Exchange (ETDEWEB)

    Valgode, F.G.S.; Soares, C.R.J.; Bartolini, P.; Okazaki, K. [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil)]. E-mail: kokazaki@ipen.br

    2007-07-01

    Ionizing radiation is an established etiologic agent for breast cancer, but on the other hand it is a therapeutic modality used in cancer treatment. Accumulation of DNA damage and deficient DNA repair are considered as factors of susceptibility that predispose individuals to breast cancer development. In the present study, genetic damage induced by gamma radiation and repair capacity in the target cells, i.e. cells originating of breast cancer, were analyzed using micronucleus test and comet assay (single-cell alkaline gel electrophoresis). So, two breast tumor cell line, MCF-7 and T-47D were irradiated in a {sup 60}Co source (0.722 Gy/min) with various doses (0.5; 1.0; 2.0; 4.0 and 5.0 Gy). Cytogenetic data showed similar spontaneous damage of two cell lines, the radioinduced damage, however, was higher in T-47D, starting from 2 Gy, with a more accelerated proliferation rate than MCF- 7 at all doses analyzed. Both tumor cell lines were capable to repair a considerable part of radioinduced damage within 1 hour after exposure, indicating a relative radioresistance of theses cell lines to the genotoxic action of ionizing radiation. (author)

  8. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Farjana Fattah

    2010-02-01

    Full Text Available The repair of DNA double-strand breaks (DSBs is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR and non-homologous end joining (NHEJ. In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways-the main Ku heterodimer-dependent or "classic" NHEJ (C-NHEJ pathway and an "alternative" NHEJ (A-NHEJ pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PK(cs, XLF, and LIGIV, and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PK(cs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PK(cs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice.

  9. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Farjana Fattah

    2010-02-01

    Full Text Available The repair of DNA double-strand breaks (DSBs is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR and non-homologous end joining (NHEJ. In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways-the main Ku heterodimer-dependent or "classic" NHEJ (C-NHEJ pathway and an "alternative" NHEJ (A-NHEJ pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PK(cs, XLF, and LIGIV, and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PK(cs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PK(cs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice.

  10. A systematic proteomic study of irradiated DNA repair deficient Nbn-mice.

    Directory of Open Access Journals (Sweden)

    Anna Melchers

    Full Text Available BACKGROUND: The NBN gene codes for the protein nibrin, which is involved in the detection and repair of DNA double strand breaks (DSBs. The NBN gene is essential in mammals. METHODOLOGY/PRINCIPAL FINDINGS: We have used a conditional null mutant mouse model in a proteomics approach to identify proteins with modified expression levels after 4 Gy ionizing irradiation in the absence of nibrin in vivo. Altogether, amongst approximately 8,000 resolved proteins, 209 were differentially expressed in homozygous null mutant mice in comparison to control animals. One group of proteins significantly altered in null mutant mice were those involved in oxidative stress and cellular redox homeostasis (p<0.0001. In substantiation of this finding, analysis of Nbn null mutant fibroblasts indicated an increased production of reactive oxygen species following induction of DSBs. CONCLUSIONS/SIGNIFICANCE: In humans, biallelic hypomorphic mutations in NBN lead to Nijmegen breakage syndrome (NBS, an autosomal recessive genetic disease characterised by extreme radiosensitivity coupled with growth retardation, immunoinsufficiency and a very high risk of malignancy. This particularly high cancer risk in NBS may be attributable to the compound effect of a DSB repair defect and oxidative stress.

  11. Stem Cells in Tooth Development, Growth, Repair, and Regeneration.

    Science.gov (United States)

    Yu, Tian; Volponi, Ana Angelova; Babb, Rebecca; An, Zhengwen; Sharpe, Paul T

    2015-01-01

    Human teeth contain stem cells in all their mesenchymal-derived tissues, which include the pulp, periodontal ligament, and developing roots, in addition to the support tissues such as the alveolar bone. The precise roles of these cells remain poorly understood and most likely involve tissue repair mechanisms but their relative ease of harvesting makes teeth a valuable potential source of mesenchymal stem cells (MSCs) for therapeutic use. These dental MSC populations all appear to have the same developmental origins, being derived from cranial neural crest cells, a population of embryonic stem cells with multipotential properties. In rodents, the incisor teeth grow continuously throughout life, a feature that requires populations of continuously active mesenchymal and epithelial stem cells. The discrete locations of these stem cells in the incisor have rendered them amenable for study and much is being learnt about the general properties of these stem cells for the incisor as a model system. The incisor MSCs appear to be a heterogeneous population consisting of cells from different neural crest-derived tissues. The epithelial stem cells can be traced directly back in development to a Sox10(+) population present at the time of tooth initiation. In this review, we describe the basic biology of dental stem cells, their functions, and potential clinical uses.

  12. Histone deacetylase inhibitors selectively target homology dependent DNA repair defective cells and elevate non-homologous endjoining activity.

    Directory of Open Access Journals (Sweden)

    Stephanie Smith

    Full Text Available BACKGROUND: We have previously used the ATAD5-luciferase high-throughput screening assay to identify genotoxic compounds with potential chemotherapeutic capabilities. The successful identification of known genotoxic agents, including the histone deacetylase inhibitor (HDACi trichostatin A (TSA, confirmed the specificity of the screen since TSA has been widely studied for its ability to cause apoptosis in cancer cells. Because many cancers have acquired mutations in DNA damage checkpoints or repair pathways, we hypothesized that these cancers may be susceptible to treatments that target compensatory pathways. Here, we used a panel of isogenic chicken DT40 B lymphocyte mutant and human cell lines to investigate the ability of TSA to define selective pathways that promote HDACi toxicity. RESULTS: HDACi induced a DNA damage response and reduced viability in all repair deficient DT40 mutants although ATM-nulls were least affected. The most dramatic sensitivity was observed in mutants lacking the homology dependent repair (HDR factor BLM or the non-homologous end-joining (NHEJ and HDR factors, KU/RAD54, suggesting an involvement of either HDR or NHEJ in HDACi-induced cell death. To extend these findings, we measured the frequencies of HDR and NHEJ after HDACi treatment and monitored viability in human cell lines comparably deficient in HDR or NHEJ. Although no difference in HDR frequency was observed between HDACi treated and untreated cells, HDR-defective human cell lines were clearly more sensitive than wild type. Unexpectedly, cells treated with HDACis showed a significantly elevated NHEJ frequency. CONCLUSIONS: HDACi targeting drugs induced significant increases in NHEJ activity in human cell lines but did not alter HDR frequency. Moreover, HDR is required for cellular resistance to HDACi therapy; therefore, NHEJ does not appear to be a critical axis for HDACi resistance. Rather, HDACi compounds induced DNA damage, most likely double strand breaks

  13. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner.

    Science.gov (United States)

    Ablasser, Andrea; Hemmerling, Inga; Schmid-Burgk, Jonathan L; Behrendt, Rayk; Roers, Axel; Hornung, Veit

    2014-06-15

    Cytosolic detection of DNA is crucial for the initiation of antiviral immunity but can also cause autoimmunity in the context of endogenous nucleic acids being sensed. Mutations in the human 3' repair exonuclease 1 (TREX1) have been linked to the type I IFN-associated autoimmune disease Aicardi-Goutières syndrome. The exact mechanisms driving unabated type I IFN responses in the absence of TREX1 are only partly understood, but it appears likely that accumulation of endogenous DNA species triggers a cell-autonomous immune response by activating a cytosolic DNA receptor. In this article, we demonstrate that knocking out the DNA sensor cyclic GMP-AMP synthase completely abrogates spontaneous induction of IFN-stimulated genes in TREX1-deficient cells. These findings indicate a key role of cyclic GMP-AMP synthase for the initiation of self-DNA-induced autoimmune disorders, thus providing important implications for novel therapeutic approaches.

  14. Differential repair of UV damage in Saccharomyces cerevisiae is cell cycle dependent.

    Science.gov (United States)

    Terleth, C; Waters, R; Brouwer, J; van de Putte, P

    1990-09-01

    In the yeast Saccharomyces cerevisiae the transcriptionally active MAT alpha locus is repaired preferentially to the inactive HML alpha locus after UV irradiation. Here we analysed the repair of both loci after irradiating yeast cells at different stages of the mitotic cell cycle. In all stages repair of the active MAT alpha locus occurs at a rate of 30% removal of dimers per hour after a UV dose of 60 J/m2. The inactive HML alpha is repaired as efficiently as MAT alpha following irradiation in G2 whereas repair of HML alpha is less efficient in the other stages. Thus differential repair is observed in G1 and S but not in G2. Apparently, in G2 a chromatin structure exists in which repair does not discriminate between transcriptionally active and inactive DNA or, alternatively, an additional repair mechanism might exist which is only operational during G2.

  15. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  16. TRIM72 modulates caveolar endocytosis in repair of lung cells.

    Science.gov (United States)

    Nagre, Nagaraja; Wang, Shaohua; Kellett, Thomas; Kanagasabai, Ragu; Deng, Jing; Nishi, Miyuki; Shilo, Konstantin; Oeckler, Richard A; Yalowich, Jack C; Takeshima, Hiroshi; Christman, John; Hubmayr, Rolf D; Zhao, Xiaoli

    2016-03-01

    Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.

  17. Strategy in clinical practice for classification of unselected colorectal tumours based on mismatch repair deficiency

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Lindebjerg, J; Byriel, L

    2007-01-01

    nonpolyposis colon cancer or Lynch syndrome), but most are epigenetic changes of sporadic origin. The aim of this study was to define a robust and inexpensive strategy for such classification in clinical practice. Method Tumours and blood samples from 262 successive patients with colorectal adenocarcinomas...... to be sporadic. Results Thirty-nine (14.9%) of the tumours showed MMR deficiency by IHC or by microsatellite analysis. Sporadic inactivation by methylation of MLH1 promoter was found in 35 patients whereby the BRAF activating V600E mutation, indicating sporadic origin, was found in 32 tumours. On the basis...

  18. B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase C δ.

    Science.gov (United States)

    Salzer, Elisabeth; Santos-Valente, Elisangela; Klaver, Stefanie; Ban, Sol A; Emminger, Wolfgang; Prengemann, Nina Kathrin; Garncarz, Wojciech; Müllauer, Leonhard; Kain, Renate; Boztug, Heidrun; Heitger, Andreas; Arbeiter, Klaus; Eitelberger, Franz; Seidel, Markus G; Holter, Wolfgang; Pollak, Arnold; Pickl, Winfried F; Förster-Waldl, Elisabeth; Boztug, Kaan

    2013-04-18

    Primary B-cell disorders comprise a heterogeneous group of inherited immunodeficiencies, often associated with autoimmunity causing significant morbidity. The underlying genetic etiology remains elusive in the majority of patients. In this study, we investigated a patient from a consanguineous family suffering from recurrent infections and severe lupuslike autoimmunity. Immunophenotyping revealed progressive decrease of CD19(+) B cells, a defective class switch indicated by low numbers of IgM- and IgG-memory B cells, as well as increased numbers of CD21(low) B cells. Combined homozygosity mapping and exome sequencing identified a biallelic splice-site mutation in protein C kinase δ (PRKCD), causing the absence of the corresponding protein product. Consequently, phosphorylation of myristoylated alanine-rich C kinase substrate was decreased, and mRNA levels of nuclear factor interleukin (IL)-6 and IL-6 were increased. Our study uncovers human PRKCD deficiency as a novel cause of common variable immunodeficiency-like B-cell deficiency with severe autoimmunity.

  19. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  20. Human periodontal ligament stem cells repair mental nerve injury*

    Institute of Scientific and Technical Information of China (English)

    Bohan Li; Hun-Jong Jung; Soung-Min Kim; Myung-Jin Kim; Jeong Won Jahng; Jong-Ho Lee

    2013-01-01

    Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was sig-nificantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after in-jection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.

  1. Positive regulation of DNA double strand break repair activity during differentiation of long life span cells: the example of adipogenesis.

    Directory of Open Access Journals (Sweden)

    Aline Meulle

    Full Text Available Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs, and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ that relies on the DNA dependent protein kinase (DNA-PK activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue. Our results show that DNA DSBs repair activity is up regulated during the early commitment into adipogenesis due to an up-regulation of DNA-PK expression and activity. In opposition to the general view that DNA DSBs repair is decreased during differentiation, our results demonstrate

  2. Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair.

    Science.gov (United States)

    Sepantafar, Mohammadmajid; Maheronnaghsh, Reihan; Mohammadi, Hossein; Rajabi-Zeleti, Sareh; Annabi, Nasim; Aghdami, Nasser; Baharvand, Hossein

    2016-01-01

    One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.

  3. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year.

    Science.gov (United States)

    Siclari, Alberto; Mascaro, Gennaro; Gentili, Chiara; Cancedda, Ranieri; Boux, Eugenio

    2012-03-01

    Bone marrow stimulation techniques in cartilage repair such as drilling are limited by the formation of fibrous to hyaline-like repair tissue. It has been suggested such techniques can be enhanced by covering the defect with scaffolds. We present an innovative approach using a polyglycolic acid (PGA)-hyaluronan scaffold with platelet-rich-plasma (PRP) in drilling. We asked whether (1) PRP immersed in a cell-free PGA-hyaluronan scaffold improves patient-reported 1-year outcomes for the Knee injury and Osteoarthritis Score (KOOS), and (2) implantation of the scaffold in combination with bone marrow stimulation leads to the formation of hyaline-like cartilage repair tissue. We reviewed 52 patients who had arthroscopic implantation of the PGA-hyaluronan scaffold immersed with PRP in articular cartilage defects of the knee pretreated with Pridie drilling. Patients were assessed by KOOS. At 9 months followup, histologic staining was performed in specimens obtained from five patients to assess the repair tissue quality. The KOOS subscores improved for pain (55 to 91), symptoms (57 to 88), activities of daily living (69 to 86), sports and recreation (36 to 70), and quality of life (38 to 73). The histologic evaluation showed a homogeneous hyaline-like cartilage repair tissue. The cell-free PGA-hyaluronan scaffold combined with PRP leads to cartilage repair and improved patient-reported outcomes (KOOS) during 12 months of followup. Histologic sections showed morphologic features of hyaline-like repair tissue. Long-term followup is needed to determine if the cartilage repair tissue is durable. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  4. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells

    Science.gov (United States)

    Mao, Zhiyong; Bozzella, Michael; Seluanov, Andrei; Gorbunova, Vera

    2009-01-01

    DNA double-strand breaks (DSBs) are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSBs are nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ is an intrinsically error-prone pathway while HR results in accurate repair. To understand the origin of genomic instability in human cells it is important to know the contribution of each DSB repair pathway. Studies of rodent cells and human cancer cell lines have shown that the choice between NHEJ or HR pathways depends on cell cycle stage. Surprisingly, cell cycle regulation of DSB repair has not been examined in normal human cells with intact cell cycle checkpoints. Here we measured the efficiency of NHEJ and HR at different cell cycle stages in hTERT-immortalized diploid human fibroblasts. We utilized cells with chromosomally-integrated fluorescent reporter cassettes, in which a unique DSB is introduced by a rare-cutting endonuclease. We show that NHEJ is active throughout the cell cycle, and its activity increases as cells progress from G1 to G2/M (G1cell cycle stages. We conclude that human somatic cells utilize error-prone NHEJ as the major DSB repair pathway at all cell cycle stages, while HR is used, primarily, in the S phase. PMID:18769152

  5. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Directory of Open Access Journals (Sweden)

    Jessica P Hollenbach

    Full Text Available Lynch syndrome (LS leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  6. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Science.gov (United States)

    Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  7. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  8. Stem Cells for Temporomandibular Joint Repair and Regeneration.

    Science.gov (United States)

    Zhang, Shipin; Yap, Adrian U J; Toh, Wei Seong

    2015-10-01

    Temporomandibular Disorders (TMD) represent a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles and/or associated structures. They are a major cause of non-dental orofacial pain. As a group, they are often multi-factorial in nature and have no common etiology or biological explanations. TMD can be broadly divided into masticatory muscle and TMJ disorders. TMJ disorders are characterized by intra-articular positional and/or structural abnormalities. The most common type of TMJ disorders involves displacement of the TMJ articular disc that precedes progressive degenerative changes of the joint leading to osteoarthritis (OA). In the past decade, progress made in the development of stem cell-based therapies and tissue engineering have provided alternative methods to attenuate the disease symptoms and even replace the diseased tissue in the treatment of TMJ disorders. Resident mesenchymal stem cells (MSCs) have been isolated from the synovia of TMJ, suggesting an important role in the repair and regeneration of TMJ. The seminal discovery of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have provided promising cell sources for drug discovery, transplantation as well as for tissue engineering of TMJ condylar cartilage and disc. This review discusses the most recent advances in development of stem cell-based treatments for TMJ disorders through innovative approaches of cell-based therapeutics, tissue engineering and drug discovery.

  9. Advances of stem cell based-therapeutic approaches for tendon repair

    Directory of Open Access Journals (Sweden)

    Lidi Liu

    2017-04-01

    The translational potential of this article: This paper reviews recent progress on stem cell-based therapeutic approaches for tendon repair, which highlights its translational potential and challenges.

  10. Increased repair of {gamma}-induced DNA double-strand breaks at lower dose-rate in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, D.; Hindo, J.; Averbeck, D. [Centre Universitaire d' Orsay, Inst. Curie-Section de Recherche, Orsay CEDEX (France)]. E-mail: dietrich.averbeck@curie.u-psud.fr

    2004-02-01

    DNA double-strand breaks (DSBs) are highly cell damaging. We asked whether for a given dose a longer irradiation time would be advantageous for the repair of DSBs. Varying the {gamma}-irradiation dose and its delivery time (0.05 Gy/min low dose-rate (LDR) compared with 3.5 Gy/min high dose-rate), confluent Chinese hamster ovary cells (CHO-K1) and Ku80 mutant cells (xrs-6) deficient in nonhomologous end-joining (NHEJ) were irradiated in agarose plugs at room temperature using a cesium-137 {gamma}-ray source. We used pulsed-field gel electrophoresis (PFGE) to measure DSBs in terms of the fraction of activity released (FAR). At LDR, one third of DSBs were repaired in CHO-K1 but not in xrs-6 cells, indicating the involvement of NHEJ in the repair of {gamma}-induced DSBs at a prolonged irradiation incubation time. To improve DSB measurements, we introduced in our PFGE protocol an antioxidant at the cell lysis step, thus avoiding free-radical side reactions on DNA and spurious DSBs. Addition of the metal chelator deferoxamine (DFO) decreased more efficiently the basal DSB level than did reduced glutathione (GSH), showing that measuring DSBs in the absence of DFO reduces precision and underestimates the role of NHEJ in the dose-rate effect on DSB yield. (author)

  11. Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation.

    Science.gov (United States)

    Xue, Feng; Hu, Lei; Ge, Ruiliang; Yang, Lixue; Liu, Kai; Li, Yunyun; Sun, Yanfu; Wang, Kui

    2016-02-01

    Autophagy is a highly conserved and lysosome-dependent degradation process which assists in cell survival and tissue homeostasis. Although previous reports have shown that deletion of the essential autophagy gene disturbs stem cell maintenance in some cell types such as hematopoietic and neural cells, it remains unclear how autophagy-deficiency influences hepatic progenitor cells (HPCs). Here we report that Atg5-deficiency in HPCs delays HPC-mediated rat liver regeneration in vivo. In vitro researches further demonstrate that loss of autophagy decreases the abilities of colony and spheroid formations, and disrupts the induction of hepatic differentiation in HPCs. Meanwhile, autophagy-deficiency increases the accumulations of damaged mitochondria and mitochondrial reactive oxygen species (mtROS) and suppresses homologous recombination (HR) pathway of DNA damage repair in HPCs. Moreover, in both diethylnitrosamine (DEN) and CCl4 models, autophagy-deficiency accelerates neoplastic transformation of HPCs. In conclusion, these findings demonstrate that autophagy contributes to stemness maintenance and reduces susceptibility to neoplastic transformation in HPCs.

  12. Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells.

    Directory of Open Access Journals (Sweden)

    Hua Fung

    Full Text Available Differences in ex vivo cell culture conditions can drastically affect stem cell physiology. We sought to establish an assay for measuring the effects of chemical, environmental, and genetic manipulations on the precision of repair at a single DNA double-strand break (DSB in pluripotent and somatic human cells. DSBs in mammalian cells are primarily repaired by either homologous recombination (HR or nonhomologous end-joining (NHEJ. For the most part, previous studies of DSB repair in human cells have utilized nonspecific clastogens like ionizing radiation, which are highly nonphysiologic, or assayed repair at randomly integrated reporters. Measuring repair after random integration is potentially confounded by locus-specific effects on the efficiency and precision of repair. We show that the frequency of HR at a single DSB differs up to 20-fold between otherwise isogenic human embryonic stem cells (hESCs based on the site of the DSB within the genome. To overcome locus-specific effects on DSB repair, we used zinc finger nucleases to efficiently target a DSB repair reporter to a safe-harbor locus in hESCs and a panel of somatic human cell lines. We demonstrate that repair at a targeted DSB is highly precise in hESCs, compared to either the somatic human cells or murine embryonic stem cells. Differentiation of hESCs harboring the targeted reporter into astrocytes reduces both the efficiency and precision of repair. Thus, the phenotype of repair at a single DSB can differ based on either the site of damage within the genome or the stage of cellular differentiation. Our approach to single DSB analysis has broad utility for defining the effects of genetic and environmental modifications on repair precision in pluripotent cells and their differentiated progeny.

  13. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  14. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available BACKGROUND: MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown. METHODS: We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed. RESULTS: MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone. CONCLUSION: MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate

  15. Plasma membrane repair: the adaptable cell life-insurance.

    Science.gov (United States)

    Jimenez, Ana Joaquina; Perez, Franck

    2017-08-01

    The plasma membrane is the most basic element necessary for the cell to exist and be distinguishable from its environment. Regulated mechanisms allow tightly controlled communication between intacellular and extracellular medium allowing the maintenance of a specific biochemical environment, optimized for cellular functions. The anarchic and uncontrolled opening of a hole in the PM induces a change in the concentration of ions and oxidizing agents perturbing homeostasis. Fortunately, the cell possesses mechanisms that are capable of reacting to sudden extracellular medium entry and to block the leakage locally. Here we summarize the known mechanisms of membrane repair and how the size of the wound and the resulting calcium entry activates preferentially one or another mechanism adapted to the magnitude of the injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease

    OpenAIRE

    Wang, Wei Eric; Chen, Xiongwen; Houser, Steven R.; Zeng, Chunyu

    2013-01-01

    Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also ha...

  17. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Directory of Open Access Journals (Sweden)

    Biljana Musicki

    Full Text Available Testosterone deficiency is associated with sickle cell disease (SCD, but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH levels compared with wild type (WT mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR, but not cholesterol side-chain cleavage enzyme (P450scc, in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  18. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Science.gov (United States)

    Musicki, Biljana; Zhang, Yuxi; Chen, Haolin; Brown, Terry R; Zirkin, Barry R; Burnett, Arthur L

    2015-01-01

    Testosterone deficiency is associated with sickle cell disease (SCD), but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle) exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH) levels compared with wild type (WT) mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol)- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR), but not cholesterol side-chain cleavage enzyme (P450scc), in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi) exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  19. Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies

    Directory of Open Access Journals (Sweden)

    Michel Haagdorens

    2016-01-01

    Full Text Available Severe ocular surface disease can result in limbal stem cell deficiency (LSCD, a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET. Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.

  20. High prevalence of deficient mismatch repair phenotype and the V600E BRAF mutation in elderly patients with colorectal cancer.

    Science.gov (United States)

    Aparicio, Thomas; Schischmanoff, Olivier; Poupardin, Cecile; Mary, Florence; Soufir, Nadem; Barrat, Christophe; Bellaiche, Guy; Boubaya, Marouane; Choudat, Laurence; Cucherousset, Joel; DesGuetz, Gaetan; Wind, Philippe; Benamouzig, Robert

    2014-10-01

    Colorectal cancer (CRC) occurs mostly in the elderly. However, the biology of CRC in elderly has been poorly studied. This study examined the prevalence of deficient mismatch repair phenotype (dMMR) and BRAF mutations according to age. MMR phenotype was prospectively determined by molecular analysis in patients of all ages undergoing surgery for CRC. BRAF V600E mutation status was analysed in a subset of dMMR tumours. A total of 754 patients who underwent surgery between 2005 and 2008 were included in the study. Amongst them, 272 (36%) were ≥75years old. The proportion of women prevalence of dMMR was 19.4% in patients ≥75 and 10.7% in patients prevalence of dMMR was significantly higher in women than in men (27% vs 10.2%, respectively; p=0.003) but was similar in women and men prevalence of the BRAF V600E mutation according to sex (78% in women and 70% in men, p=0.9). The prevalence of dMMR in CRC is high in patients over 75. In elderly patients, dMMR tumours are significantly more frequent in women than in men. The BRAF mutation is frequent in elderly patients with CRC. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Red cell pyruvate kinase deficiency in Southern Sardinia.

    Science.gov (United States)

    Perseu, L; Giagu, N; Satta, S; Sollaino, M C; Congiu, R; Galanello, R

    2010-12-15

    Pyruvate kinase (PK) deficiency is the most frequent red cell enzymatic defect responsible for hereditary non-spherocytic hemolytic anemia. The clinical picture is quite variable and the reasons of this variability have been only partially clarified. We report the clinical description and the extended molecular analysis in 3 PK deficient patients with clinical phenotype of variable severity. We studied the clinical and hematological aspects of 3 patients and analyzed the following genes: pyruvate kinase-R, glucose-6-phosphate-dehydrogenase, α-globin, uridindiphosphoglucuronil transferase and HFE. One patient (A) with a severe clinical picture resulted homozygote for exon 8 nt994A substitution, the other 2 (brothers) were compound heterozygotes for exon 8 nt994A and exon 11 nt1456T mutation. One of the two brothers with a more severe phenotype coinherited also had G6PD deficiency, while both had microcytosis due to the homozygosity for the non-deletional form of α-thalassemia ATG→ACG substitution at the initiation codon of the alpha2 globin gene. Our results suggest that extended molecular analysis is useful for studying how several interacting gene mutations contribute to the clinical variability of pyruvate kinase deficiency.

  2. Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality

    Science.gov (United States)

    Simard, Trevor; Jung, Richard G.; Motazedian, Pouya; Di Santo, Pietro; Ramirez, F. Daniel; Russo, Juan J.; Labinaz, Alisha; Yousef, Altayyeb; Anantharam, Brijesh; Pourdjabbar, Ali

    2017-01-01

    Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation. PMID:28232850

  3. Epigenetic reduction of DNA repair in progression togastrointestinal cancer

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Deficiencies in DNA repair due to inherited germ-linemutations in DNA repair genes cause increased risk ofgastrointestinal (GI) cancer. In sporadic GI cancers,mutations in DNA repair genes are relatively rare.However, epigenetic alterations that reduce expressionof DNA repair genes are frequent in sporadic GI cancers.These epigenetic reductions are also found in fielddefects that give rise to cancers. Reduced DNA repairlikely allows excessive DNA damages to accumulatein somatic cells. Then either inaccurate translesionsynthesis past the un-repaired DNA damages or errorproneDNA repair can cause mutations. ErroneousDNA repair can also cause epigenetic alterations (i.e. ,epimutations, transmitted through multiple replicationcycles). Some of these mutations and epimutations maycause progression to cancer. Thus, deficient or absentDNA repair is likely an important underlying cause ofcancer. Whole genome sequencing of GI cancers showthat between thousands to hundreds of thousands ofmutations occur in these cancers. Epimutations thatreduce DNA repair gene expression and occur early inprogression to GI cancers are a likely source of this highgenomic instability. Cancer cells deficient in DNA repairare more vulnerable than normal cells to inactivation byDNA damaging agents. Thus, some of the most clinicallyeffective chemotherapeutic agents in cancer treatmentare DNA damaging agents, and their effectivenessoften depends on deficient DNA repair in cancer cells.Recently, at least 18 DNA repair proteins, each activein one of six DNA repair pathways, were found to besubject to epigenetic reduction of expression in GIcancers. Different DNA repair pathways repair differenttypes of DNA damage. Evaluation of which DNA repairpathway(s) are deficient in particular types of GI cancerand/or particular patients may prove useful in guidingchoice of therapeutic agents in cancer therapy.

  4. DNA damage and repair kinetics of the Alternaria mycotoxins alternariol, altertoxin II and stemphyltoxin III in cultured cells.

    Science.gov (United States)

    Fleck, Stefanie C; Sauter, Friederike; Pfeiffer, Erika; Metzler, Manfred; Hartwig, Andrea; Köberle, Beate

    2016-03-01

    The Alternaria mycotoxins alternariol (AOH) and altertoxin II (ATX II) have previously been shown to elicit mutagenic and genotoxic effects in bacterial and mammalian cells, although with vastly different activities. For example, ATX II was about 50 times more mutagenic than AOH. We now report that stemphyltoxin III (STTX III) is also highly mutagenic. The more pronounced effects of the perylene quinones ATX II and STTX III at lower concentrations compared to the dibenzo-α-pyrone AOH indicate a marked dependence of the genotoxic potential on the chemical structure and furthermore suggest that the underlying modes of action may be different. We have now further investigated the type of DNA damage induced by AOH, ATX II and STTX III, as well as the repair kinetics and their dependence on the status of nucleotide excision repair (NER). DNA double strand breaks induced by AOH due to poisoning of topoisomerase IIα were completely repaired in less than 2h. Under cell-free conditions, inhibition of topoisomerase IIα could also be measured for ATX II and STTX III at low concentrations, but the perylene quinones were catalytic inhibitors rather than topoisomerase poisons and did not induce DSBs. DNA strand breaks induced by ATX II and STTX III were more persistent and not completely repaired within 24h. A dependence of the repair rate on the NER status could only be demonstrated for STTX III, resulting in an accumulation of DNA damage in NER-deficient cells. Together with the finding that the DNA glycosylase formamidopyrimidine-DNA glycosylase (Fpg), but not T4 endonuclease V, is able to generate additional DNA strand breaks measurable by the alkaline unwinding assay, we conclude that the genotoxicity of the perylene quinones with an epoxide group is probably caused by the formation of DNA adducts which may be converted to Fpg sensitive sites.

  5. Extensive ssDNA end formation at DNA double-strand breaks in non-homologous end-joining deficient cells during the S phase

    Directory of Open Access Journals (Sweden)

    Stenerlöw Bo

    2007-10-01

    Full Text Available Abstract Background Efficient and correct repair of DNA damage, especially DNA double-strand breaks, is critical for cellular survival. Defects in the DNA repair may lead to cell death or genomic instability and development of cancer. Non-homologous end-joining (NHEJ is the major repair pathway for DNA double-strand breaks in mammalian cells. The ability of other repair pathways, such as homologous recombination, to compensate for loss of NHEJ and the ways in which contributions of different pathways are regulated are far from fully understood. Results In this report we demonstrate that long single-stranded DNA (ssDNA ends are formed at radiation-induced DNA double-strand breaks in NHEJ deficient cells. At repair times ≥ 1 h, processing of unrejoined DNA double-strand breaks generated extensive ssDNA at the DNA ends in cells lacking the NHEJ protein complexes DNA-dependent protein kinase (DNA-PK or DNA Ligase IV/XRCC4. The ssDNA formation was cell cycle dependent, since no ssDNA ends were observed in G1-synchronized NHEJ deficient cells. Furthermore, in wild type cells irradiated in the presence of DNA-PKcs (catalytic subunit of DNA-PK inhibitors, or in DNA-PKcs deficient cells complemented with DNA-PKcs mutated in six autophosphorylation sites (ABCDE, no ssDNA was formed. The ssDNA generation also greatly influences DNA double-strand break quantification by pulsed-field gel electrophoresis, resulting in overestimation of the DNA double-strand break repair capability in NHEJ deficient cells when standard protocols for preparing naked DNA (i. e., lysis at 50°C are used. Conclusion We provide evidence that DNA Ligase IV/XRCC4 recruitment by DNA-PK to DNA double-strand breaks prevents the formation of long ssDNA ends at double-strand breaks during the S phase, indicating that NHEJ components may downregulate an alternative repair process where ssDNA ends are required.

  6. Priming of microglia in a DNA-repair deficient model of accelerated aging

    NARCIS (Netherlands)

    Raj, Divya D. A.; Jaarsma, Dick; Holtman, Inge R.; Olah, Marta; Ferreira, Filipa M.; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M.; de Waard, Monique C.; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L.; Laman, Jon D.; de Haan, Gerald; Biber, Knut P. H.; Hoeijmakers, Jan H. J.; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    2014-01-01

    Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microgli

  7. Priming of microglia in a DNA-repair deficient model of accelerated aging

    NARCIS (Netherlands)

    Raj, Divya D. A.; Jaarsma, Dick; Holtman, Inge R.; Olah, Marta; Ferreira, Filipa M.; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M.; de Waard, Monique C.; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L.; Laman, Jon D.; de Haan, Gerald; Biber, Knut P. H.; Hoeijmakers, Jan H. J.; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    2014-01-01

    Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microgli

  8. Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair

    Science.gov (United States)

    Bazgir, Behzad; Fathi, Rouhollah; Rezazadeh Valojerdi, Mojtaba; Mozdziak, Paul; Asgari, Alireza

    2017-01-01

    Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise. PMID:28042532

  9. Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair

    Directory of Open Access Journals (Sweden)

    Behzad Bazgir

    2016-10-01

    Full Text Available Satellite cells (SCs are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation - the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise.

  10. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    Directory of Open Access Journals (Sweden)

    Mei Yu

    Full Text Available We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB and the upper hair sheaths (HS including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.

  11. Stem cells for cardiac repair: problems and possibilities.

    Science.gov (United States)

    Henning, Robert J

    2013-11-01

    Ischemic heart disease is a major cause of death throughout the world. In order to limit myocardial damage and possibly generate new myocardium, stem cells are currently being injected into patients with ischemic heart disease. Three major patient investigations, The LateTIME, the TIME and the Swiss Myocardial Infarction trials, have recently addressed the questions of whether progenitor cells from unfractionated bone marrow mononuclear cells limit myocardial damage and what the optimal time to inject these cells after acute myocardial infarctions (AMIs) is. In each of these trials, there were no significant differences between treated and control patients when bone marrow cells were administered 5-7 days or 2-3 weeks after AMIs. Nevertheless, these investigations provide important information regarding clinical trial designs. Patients with AMIs in these trials were treated with percutaneous coronary intervention within a median of 4-5 h after the onset of chest pain. Thereafter, all patients received guideline-guided optimal medical therapy. Consequently, the sizes of AMIs were significantly limited. In patients with small AMIs and near-normal left ventricular ejection fractions, progenitor cells are least effective. However, these trials do question whether autologous bone marrow mononuclear cells are the optimal cells for myocardial repair owing to low numbers of progenitor cells in bone marrow aspirates and the significant variability in potency and efficacy of these cells in patients with chronic multisystem diseases. In contrast, the SCIPIO and the CAUDUCEUS trials examined cardiac progenitor cells in patients with ischemic cardiomyopathies. These trials reported over 1-2 years that cardiac progenitor cells produced significant improvements in left ventricular contractility due to 12-24 g decreases in myocardial scars and 18-23 g increases in viable myocardial muscle. However, caution must be exercised in the interpretation of these studies due to the small

  12. Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group 2 mutants.

    NARCIS (Netherlands)

    M. van Duin (Mark); J.H. Janssen; J. de Wit (Jan); J.H.J. Hoeijmakers (Jan); L.H. Thompson; D. Bootsma (Dirk); A. Westerveld (Andries)

    1988-01-01

    textabstractThe human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In ord

  13. Mutation rates of TGFBR2 and ACVR2 coding microsatellites in human cells with defective DNA mismatch repair.

    Directory of Open Access Journals (Sweden)

    Heekyung Chung

    Full Text Available Microsatellite instability promotes colonic tumorigenesis through generating frameshift mutations at coding microsatellites of tumor suppressor genes, such as TGFBR2 and ACVR2. As a consequence, signaling through these TGFbeta family receptors is abrogated in DNA Mismatch repair (MMR-deficient tumors. How these mutations occur in real time and mutational rates of these human coding sequences have not previously been studied. We utilized cell lines with different MMR deficiencies (hMLH1-/-, hMSH6-/-, hMSH3-/-, and MMR-proficient to determine mutation rates. Plasmids were constructed in which exon 3 of TGFBR2 and exon 10 of ACVR2 were cloned +1 bp out of frame, immediately after the translation initiation codon of an enhanced GFP (EGFP gene, allowing a -1 bp frameshift mutation to drive EGFP expression. Mutation-resistant plasmids were constructed by interrupting the coding microsatellite sequences, preventing frameshift mutation. Stable cell lines were established containing portions of TGFBR2 and ACVR2, and nonfluorescent cells were sorted, cultured for 7-35 days, and harvested for flow cytometric mutation detection and DNA sequencing at specific time points. DNA sequencing revealed a -1 bp frameshift mutation (A9 in TGFBR2 and A7 in ACVR2 in the fluorescent cells. Two distinct fluorescent populations, M1 (dim, representing heteroduplexes and M2 (bright, representing full mutants were identified, with the M2 fraction accumulating over time. hMLH1 deficiency revealed 11 (5.91 x 10(-4 and 15 (2.18 x 10(-4 times higher mutation rates for the TGFBR2 and ACVR2 microsatellites compared to hMSH6 deficiency, respectively. The mutation rate of the TGFBR2 microsatellite was approximately 3 times higher in both hMLH1 and hMSH6 deficiencies than the ACVR2 microsatellite. The -1 bp frameshift mutation rates of TGFBR2 and ACVR2 microsatellite sequences are dependent upon the human MMR background.

  14. Myosin II does not contribute to wound repair in Dictyostelium cells

    Directory of Open Access Journals (Sweden)

    Shigehiko Yumura

    2014-09-01

    Full Text Available Cells are always subjected to mechanical stresses, resulting in wounds of the cell membrane, but cells are able to repair and reseal their wounded membrane. Previous reports have shown that actin and myosin II accumulate around the wound and that the constriction of this purse-string closes the membrane pore. Here, we developed a microsurgical wound assay to assess wound repair in Dictyostelium cells. Fluorescent dye that had been incorporated into the cells leaked out for only 2–3 sec after wounding, and a GFP-derived, fluorescent Ca2+ sensor showed that intracellular Ca2+ transiently increased immediately after wounding. In the absence of external Ca2+, the cell failed to repair itself. During the repair process, actin accumulated at the wounded sites but myosin II did not. The wounds were repaired even in myosin II null cells to a comparable degree as the wild-type cells, suggesting that myosin II does not contribute to wound repair. Thus, the actomyosin purse-string constriction model is not a common mechanism for wound repair in eukaryotic cells, and this discrepancy may arise from the difference in cell size.

  15. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Science.gov (United States)

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury.

  16. Stem/progenitor cells: a potential source of retina-specific cells for retinal repair.

    Science.gov (United States)

    Bi, Yong-Yan; Feng, Dong-Fu; Pan, Dong-Chao

    2009-11-01

    Retinal injury generally results in permanent visual disturbance or even blindness. Any effort to restore vision in such condition would require replacement of the highly specialized retinal cells. Stem/progenitor cells have been proposed as a potential source of new retina-specific cells to replace those lost due to retina injury. Evidence to date suggests that continued development of stem cell therapies may ultimately lead to viable treatment options for retina injury. A wide range of stem/progenitor cells from various sources is currently being investigated for the treatment of retinal injury. This article reviews the recent achievements about stem/progenitor cell source for retinal repair.

  17. Polymeric scaffolds as stem cell carriers in bone repair.

    Science.gov (United States)

    Rossi, Filippo; Santoro, Marco; Perale, Giuseppe

    2015-10-01

    Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in polymer science have provided several innovations, underlying the increasing importance of macromolecules in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric materials have shown a great affinity for cell transplantation and differentiation and, moreover, their structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible polymeric scaffolds to be synthesized for stem cell growth in bone regeneration.

  18. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  19. Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms

    Science.gov (United States)

    Bezine, Elisabeth; Malaisé, Yann; Loeuillet, Aurore; Chevalier, Marianne; Boutet-Robinet, Elisa; Salles, Bernard; Mirey, Gladys; Vignard, Julien

    2016-01-01

    The Cytolethal Distending Toxin (CDT), produced by many bacteria, has been associated with various diseases including cancer. CDT induces DNA double-strand breaks (DSBs), leading to cell death or mutagenesis if misrepaired. At low doses of CDT, other DNA lesions precede replication-dependent DSB formation, implying that non-DSB repair mechanisms may contribute to CDT cell resistance. To address this question, we developed a proliferation assay using human cell lines specifically depleted in each of the main DNA repair pathways. Here, we validate the involvement of the two major DSB repair mechanisms, Homologous Recombination and Non Homologous End Joining, in the management of CDT-induced lesions. We show that impairment of single-strand break repair (SSBR), but not nucleotide excision repair, sensitizes cells to CDT, and we explore the interplay of SSBR with the DSB repair mechanisms. Finally, we document the role of the replicative stress response and demonstrate the involvement of the Fanconi Anemia repair pathway in response to CDT. In conclusion, our work indicates that cellular survival to CDT-induced DNA damage involves different repair pathways, in particular SSBR. This reinforces a model where CDT-related genotoxicity primarily involves SSBs rather than DSBs, underlining the importance of cell proliferation during CDT intoxication and pathogenicity. PMID:27775089

  20. Macrophages: supportive cells for tissue repair and regeneration.

    Science.gov (United States)

    Chazaud, Bénédicte

    2014-03-01

    Macrophages, and more broadly inflammation, have been considered for a long time as bad markers of tissue homeostasis. However, if it is indisputable that macrophages are associated with many diseases in a deleterious way, new roles have emerged, showing beneficial properties of macrophages during tissue repair and regeneration. This discrepancy is likely due to the high plasticity of macrophages, which may exhibit a wide range of phenotypes and functions depending on their environment. Therefore, regardless of their role in immunity, macrophages play a myriad of roles in the maintenance and recovery of tissue homeostasis. They take a major part in the resolution of inflammation. They also exert various effects of parenchymal cells, including stem and progenitor cell, of which they regulate the fate. In the present review, few examples from various tissues are presented to illustrate that, beyond their specific properties in a given tissue, common features have been described that sustain a role of macrophages in the recovery and maintenance of tissue homeostasis.

  1. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU

  2. A human esophageal epithelial cell model for study of radiation induced cancer and DNA repair

    Science.gov (United States)

    Huff, Janice; Patel, Zarana; Hada, Megumi; Cucinotta, Francis A.

    For cancer risk assessment in astronauts and for countermeasure development, it is essential to understand the molecular mechanisms of radiation carcinogenesis and how these mechanisms are influenced by exposure to the types of radiation found in space. We are developing an in vitro model system for the study of radiation-induced initiation and progression of esophageal carcinoma. Development of squamous cell carcinoma of the esophagus is associated with radiation exposure, as revealed by the significant enhanced in incidence rates for this type of cancer in the survivors of the atomic bomb detonations in Japan. It is also associated with poor nutritional status and micronutrient deficiencies, which are also important issues for long duration spaceflight. The possible synergies between nutritional issues and radiation exposure are unknown. Here we present the results of preliminary characterization of both normal and hTERT-immortalized esophageal epithelial cells grown in 2-dimensional culture. We analyzed DNA repair capacity by measuring the kinetics of formation and loss of gamma-H2AX foci following radiation exposure. Additionally, we analyzed induction of chromosomal aberrations using 3-color fluorescence in situ hybridization (FISH). Data were generated using both low LET (gamma rays) and high LET ions (1000 MeV/nucleon iron.

  3. Studies on bleomycin-induced repair DNA synthesis in permeable mouse ascites sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Mori,Shigeru

    1989-04-01

    Full Text Available To study the mechanism of DNA excision repair, a DNA repair system employing permeable mouse sarcoma (SR-C3H/He cells was established and characterized. SR-C3H/He cells were permeabilized with a 0.0175% Triton X-100 solution. The permeable cells were treated with 1 mM ATP and 0.11 mM bleomycin, and then washed thoroughly to remove ATP and bleomycin. Repair DNA synthesis occurred in the bleomycin-damaged, permeable SR-C3H/He cells when incubated with ATP and four deoxyribonucleoside triphosphates. The repair nature of the DNA synthesis was confirmed by the BrdUMP density shift technique, and by the reduced sensitivity of the newly synthesized DNA to Escherichia coli exonuclease III. The DNA synthesis was optimally enhanced by addition of 0.08 M NaCl. Studies using selective inhibitors of DNA synthesis showed that aphidicolin-sensitive DNA polymerase (DNA polymerase alpha and/or delta and DNA polymerase beta were involved in the repair process. The present DNA repair system is thought to be useful to study nuclear DNA damage by bleomycin, removal of the damaged ends by an exonuclease, repair DNA synthesis by DNA polymerases and repair patch ligation by DNA ligase(s.

  4. Mice with DNA repair gene Ercc1 deficiency in a neural crest lineage are a model for late-onset Hirschsprung disease.

    Science.gov (United States)

    Selfridge, Jim; Song, Liang; Brownstein, David G; Melton, David W

    2010-06-04

    The Ercc1 gene is essential for nucleotide excision repair and is also important in recombination repair and the repair of interstrand crosslinks. We have previously used a floxed Ercc1 allele with a keratinocyte-specific Cre recombinase transgene to inactivate Ercc1 in the epidermal layer of the skin and so generate a mouse model for UV-induced non-melanoma skin cancer. Now, in an attempt to generate a model for UV-induced melanoma, we have used the floxed Ercc1 allele in combination with a Cre transgene under the control of the tyrosinase gene promoter to produce mice with Ercc1-deficient melanocytes that are hypersensitive to UV irradiation. These animals developed normally, but died when 4-6 months old with severe colonic obstruction. Melanocytes are derived from the neural crest and the tyrosinase promoter is also expressed in additional neural crest-derived lineages, including the progenitors of the parasympathetic nervous system that innervates the gastrointestinal tract and controls gut peristalsis. A functional enteric nervous system developed in floxed Ercc1 mice with the tyrosinase Cre transgene, but was found to have degenerated in the colons of affected mice. We suggest that accumulating unrepaired endogenous DNA damage in the Ercc1-deficient colonic parasympathetic ganglia leads to the degeneration of this network and results in a colonic obstructive disorder that resembles late-onset Hirschsprung disease in man.

  5. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  6. The role of repair in the survival of mammalian cells from heavy ion irradiation - Approximation to the ideal case of target theory

    Science.gov (United States)

    Lett, J. T.; Cox, A. B.; Story, M. D.

    1989-01-01

    Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.

  7. [Comparison of geno- and cytotoxicity of methylnitrosourea on MMR-proficient and MMR-deficient human tumor cell lines].

    Science.gov (United States)

    Tronov, V A; Kramarenko, I I; Smirnova, T D; Terekhov, S M

    2006-01-01

    Deficient mismatch repair (MMR) is identified as a mutation of one of four major MMR genes and(or) microsatellite instability. These genomic changes are used as markers of MMR status of the heredity nonpolyposis colorectal cancer (HNPCC) spectrum tumors--familial and sporadic tumors of colon and extracolonic cancers fulfilling Amsterdam clinical criteria II. MMR-deficiency results in mutator phenotype and resistance to geno- and cytotoxicity of alkylating agents. The main cytotoxic damage to DNA in response to chemical methylation is O6-methylguanine (O6-mG). The secondary DNA strand breaks, which are formed during the MMR functioning, are proposed to be required for methylation induced cytotoxicity. We have assumed that the secondary double stand breaks (DSB) upon DNA methylation are able to represent functional efficiency of MMR in cells. The purpose of the paper was to test this assumption on human tumor cells differing in MMR-status and pulse-treated with methylnitrosourea (MNU). We used 3 cell lines: HeLa (MMR-competent endometrial tumor cells), HCT116 (MMR-deficient colorectal carcinoma cells), and Colo320 (sigmoid intestine tumor cells with uncharacterized MMR status). DSBs were evaluated with neutral comet assay. Cytotoxicity/viability was evaluated with MTT-asay and apoptotic index (frequency of morphologically determined apoptotic cells). We show that 1) cytotoxic effect of MNU (250 microM) on HeLa cells was exhibited 3 days after pulse-treatment of cells with MNU; 2) DSBs occurred 48 h after the drug treatment but prior to the onset of apoptosis of HeLa cells; 3) MMR-deficient HCT116 cells were resistant to the drug: no decreased viability, DSBs and apoptosis were observed during 3 days after cell treatment. Both cell lines exhibited high sensitivity to etoposide, classical inductor of unrepairable DSBs and p53. Etoposide has been found to induce DSBs in 6-12 h, which was followed by apoptosis (in 24 h). Colo320 cells exhibited intermediate position

  8. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    Hugo Melida; Antonio Encina; Asier Largo-Gosens; Esther Novo-Uzal; Rogelio Santiago; Federico Pomar; Pedro Garca; Penelope Garca-Angulo; Jose Luis Acebes; Jesus Alvarez

    2015-01-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  9. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test; Phenotypage de la reparation de l'ADN de lignees Xeroderma pigmentosum, par un test in vitro multiparametrique

    Energy Technology Data Exchange (ETDEWEB)

    Raffin, A.L.

    2009-06-15

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  10. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    Science.gov (United States)

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  11. Detection of PIGO-deficient cells using proaerolysin: a valuable tool to investigate mechanisms of mutagenesis in the DT40 cell system.

    Directory of Open Access Journals (Sweden)

    Jun Nakamura

    Full Text Available While isogenic DT40 cell lines deficient in DNA repair pathways are a great tool to understand the DNA damage response to genotoxic agents by a comparison of cell toxicity in mutants and parental DT40 cells, no convenient mutation assay for mutagens currently exists for this reverse-genetic system. Here we establish a proaerolysin (PA selection-based mutation assay in DT40 cells to identify glycosylphosphatidylinositol (GPI-anchor deficient cells. Using PA, we detected an increase in the number of PA-resistant DT40 cells exposed to MMS for 24 hours followed by a 5-day period of phenotype expression. GPI anchor synthesis is catalyzed by a series of phosphatidylinositol glycan complementation groups (PIGs. The PIG-O gene is on the sex chromosome (Chromosome Z in chicken cells and is critical for GPI anchor synthesis at the intermediate step. Among all the mutations detected in the sequence levels observed in DT40 cells exposed to MMS at 100 µM, we identified that ∼55% of the mutations are located at A:T sites with a high frequency of A to T transversion mutations. In contrast, we observed no transition mutations out of 18 mutations. This novel assay for DT40 cells provides a valuable tool to investigate the mode of action of mutations caused by reactive agents using a series of isogenic mutant DT40 cells.

  12. DSB (Im)mobility and DNA repair compartmentalization in mammalian cells.

    Science.gov (United States)

    Lemaître, Charlène; Soutoglou, Evi

    2015-02-13

    Chromosomal translocations are considered as causal in approximately 20% of cancers. Therefore, understanding their mechanisms of formation is crucial in the prevention of carcinogenesis. The first step of translocation formation is the concomitant occurrence of double-strand DNA breaks (DSBs) in two different chromosomes. DSBs can be repaired by different repair mechanisms, including error-free homologous recombination (HR), potentially error-prone non-homologous end joining (NHEJ) and the highly mutagenic alternative end joining (alt-EJ) pathways. Regulation of DNA repair pathway choice is crucial to avoid genomic instability. In yeast, DSBs are mobile and can scan the entire nucleus to be repaired in specialized DNA repair centers or if they are persistent, in order to associate with the nuclear pores or the nuclear envelope where they can be repaired by specialized repair pathways. DSB mobility is limited in mammals; therefore, raising the question of whether the position at which a DSB occurs influences its repair. Here, we review the recent literature addressing this question. We first present the reports describing the extent of DSB mobility in mammalian cells. In a second part, we discuss the consequences of non-random gene positioning on chromosomal translocations formation. In the third part, we discuss the mobility of heterochromatic DSBs in light of our recent data on DSB repair at the nuclear lamina, and finally, we show that DSB repair compartmentalization at the nuclear periphery is conserved from yeast to mammals, further pointing to a role for gene positioning in the outcome of DSB repair. When regarded as a whole, the different studies reviewed here demonstrate the importance of nuclear architecture on DSB repair and reveal gene positioning as an important parameter in the study of tumorigenesis.

  13. Complement activation in the context of stem cells and tissue repair

    Institute of Scientific and Technical Information of China (English)

    Ingrid; U; Schraufstatter; Sophia; K; Khaldoyanidi; Richard; G; DiScipio

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However,its ability of opsonizing and removing not only pathogens,but also necrotic and apoptotic cells,is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation,to increased survival of various cell types in the presence of split products of complement,and to the production of trophic factors by cells activated by the anaphylatoxins C3 a and C5 a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3 a and C5 a.

  14. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression.

    Science.gov (United States)

    Khoronenkova, Svetlana V; Dianov, Grigory L

    2015-03-31

    DNA single-strand breaks (SSBs) arise as a consequence of spontaneous DNA instability and are also formed as DNA repair intermediates. Their repair is critical because they otherwise terminate gene transcription and generate toxic DNA double-strand breaks (DSBs) on replication. To prevent the formation of DSBs, SSB repair must be completed before DNA replication. To accomplish this, cells should be able to detect unrepaired SSBs, and then delay cell cycle progression to allow more time for repair; however, to date there is no evidence supporting the coordination of SSB repair and replication in human cells. Here we report that ataxia-telangiectasia mutated kinase (ATM) plays a major role in restricting the replication of SSB-containing DNA and thus prevents DSB formation. We show that ATM is activated by SSBs and coordinates their repair with DNA replication. SSB-mediated ATM activation is followed by a G1 cell cycle delay that allows more time for repair and thus prevents the replication of damaged DNA and DSB accrual. These findings establish an unanticipated role for ATM in the signaling of DNA SSBs and provide important insight into the molecular defects leading to genetic instability in patients with ataxia-telangiectasia.

  15. Role of Artemis in DSB repair and guarding chromosomal stability following exposure to ionizing radiation at different stages of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Darroudi, Firouz [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands)]. E-mail: F.Darroudi@LUMC.NL; Wiegant, Wouter [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands); Meijers, Matty [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands); Friedl, Anna A. [Radiobiological Institute, University of Munich, Munich (Germany); Institute of Radiobiology, GSF National Research Center for Environment and Health, Neuherberg (Germany); Burg, Mirjam van der [Department of Immunology, Erasmus Medical Centre, Rotterdam (Netherlands); Fomina, Janna [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands); Dongen, Jacques J.M. van [Department of Immunology, Erasmus Medical Centre, Rotterdam (Netherlands); Gent, Dik C. van [Department of Cell Biology and Genetics, Erasmus Medical Centre, Rotterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands); Department of Molecular Cell Genetics, Collegium Medicum, N. Corpernicus University, Bydgoszcz (Poland)

    2007-02-03

    We analyzed the phenotype of cells derived from SCID patients with different mutations in the Artemis gene. Using clonogenic survival assay an increased sensitivity was found to X-rays (2-3-fold) and bleomycin (2-fold), as well as to etoposide, camptothecin and methylmethane sulphonate (up to 1.5-fold). In contrast, we did not find increased sensitivity to cross-linking agents mitomycin C and cis-platinum. The kinetics of DSB repair assessed by pulsed-field gel electrophoresis and {gamma}H2AX foci formation after ionizing irradiation, indicate that 15-20% of DSB are not repaired in Artemis-deficient cells. In order to get a better understanding of the repair defect in Artemis-deficient cells, we studied chromosomal damage at different stages of the cell cycle. In contrast to AT cells, Artemis-deficient cells appear to have a normal G{sub 1}/S-block that resulted in a similar frequency of dicentrics and translocations, however, frequency of acentrics fragments was found to be 2-4-fold higher compared to normal fibroblasts. Irradiation in G{sub 2} resulted in a higher frequency of chromatid-type aberrations (1.5-3-fold) than in normal cells, indicating that a fraction of DSB requires Artemis for proper repair. Our data are consistent with a function of Artemis protein in processing of a subset of complex DSB, without G{sub 1} cell cycle checkpoint defects. This type of DSB can be induced in high proportion and persist through S-phase and in part might be responsible for the formation of chromatid-type exchanges in G{sub 1}-irradiated Artemis-deficient cells. Among different human radiosensitive fibroblasts studied for endogenous (in untreated samples) as well as X-ray-induced DNA damage, the ranking order on the basis of higher incidence of spontaneously occurring chromosomal alterations and induced ones was: ligase 4 {>=} AT > Artemis. This observation implicates that in human fibroblasts following exposure to ionizing radiation a lower risk might be created when

  16. Role of Artemis in DSB repair and guarding chromosomal stability following exposure to ionizing radiation at different stages of cell cycle.

    Science.gov (United States)

    Darroudi, Firouz; Wiegant, Wouter; Meijers, Matty; Friedl, Anna A; van der Burg, Mirjam; Fomina, Janna; van Dongen, Jacques J M; van Gent, Dik C; Zdzienicka, Małgorzata Z

    2007-02-03

    We analyzed the phenotype of cells derived from SCID patients with different mutations in the Artemis gene. Using clonogenic survival assay an increased sensitivity was found to X-rays (2-3-fold) and bleomycin (2-fold), as well as to etoposide, camptothecin and methylmethane sulphonate (up to 1.5-fold). In contrast, we did not find increased sensitivity to cross-linking agents mitomycin C and cis-platinum. The kinetics of DSB repair assessed by pulsed-field gel electrophoresis and gammaH2AX foci formation after ionizing irradiation, indicate that 15-20% of DSB are not repaired in Artemis-deficient cells. In order to get a better understanding of the repair defect in Artemis-deficient cells, we studied chromosomal damage at different stages of the cell cycle. In contrast to AT cells, Artemis-deficient cells appear to have a normal G(1)/S-block that resulted in a similar frequency of dicentrics and translocations, however, frequency of acentrics fragments was found to be 2-4-fold higher compared to normal fibroblasts. Irradiation in G(2) resulted in a higher frequency of chromatid-type aberrations (1.5-3-fold) than in normal cells, indicating that a fraction of DSB requires Artemis for proper repair. Our data are consistent with a function of Artemis protein in processing of a subset of complex DSB, without G(1) cell cycle checkpoint defects. This type of DSB can be induced in high proportion and persist through S-phase and in part might be responsible for the formation of chromatid-type exchanges in G(1)-irradiated Artemis-deficient cells. Among different human radiosensitive fibroblasts studied for endogenous (in untreated samples) as well as X-ray-induced DNA damage, the ranking order on the basis of higher incidence of spontaneously occurring chromosomal alterations and induced ones was: ligase 4> or =AT>Artemis. This observation implicates that in human fibroblasts following exposure to ionizing radiation a lower risk might be created when cells are devoid of

  17. Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander;

    2013-01-01

    single-strand breaks (SSBs) and double-strand breaks (DSBs) in human peripheral blood mononuclear cells (PBMCs). Of these lesions, DSBs are the least frequent but the most dangerous for cells. We have measured the level of endogenous SSBs, SSB repair capacity, γ-H2AX response, and DSB repair capacity...... in a study population consisting of 216 individuals from a population-based sample of twins aged 40-77 years. Age in this range did not seem to have any effect on the SSB parameters. However, γ-H2AX response and DSB repair capacity decreased with increasing age, although the associations did not reach...

  18. Modeling the induced mutation process in bacterial cells with defects in excision repair system

    Science.gov (United States)

    Bugay, A. N.; Vasilyeva, M. A.; Krasavin, E. A.; Parkhomenko, A. Yu.

    2015-12-01

    A mathematical model of the UV-induced mutation process in Escherichia coli cells with defects in the uvrA and polA genes has been developed. The model describes in detail the reaction kinetics for the excision repair system. The number of mismatches as a result of translesion synthesis is calculated for both wild-type and mutant cells. The effect of temporal modulation of the number of single-stranded DNA during postreplication repair has been predicted. A comparison of effectiveness of different repair systems has been conducted.

  19. Functional variants of human APE1 rescue the DNA repair defects of the yeast AP endonuclease/3'-diesterase-deficient strain.

    Science.gov (United States)

    Wang, Zhiqiang; Ayoub, Emily; Mazouzi, Abdelghani; Grin, Inga; Ishchenko, Alexander A; Fan, Jinjiang; Yang, Xiaoming; Harihar, Taramatti; Saparbaev, Murat; Ramotar, Dindial

    2014-10-01

    Human APE1 is an essential enzyme performing functions in DNA repair and transcription. It possesses four distinct repair activities acting on a variety of base and sugar derived DNA lesions. APE1 has seven cysteine residues and Cys65, and to a lesser extent Cys93 and Cys99, is uniquely involved in maintaining a subset of transcription factors in the reduced and active state. Four of the cysteines Cys93, 99, 208 and 310 of APE1 are located proximal to its active site residues Glu96, Asp210 and His309 involved in processing damaged DNA, raising the possibility that missense mutation of these cysteines could alter the enzyme DNA repair functions. An earlier report documented that serine substitution of the individual cysteine residues did not affect APE1 ability to cleave an abasic site oligonucleotide substrate in vitro, except for Cys99Ser, although any consequences of these variants in the repair of in vivo DNA lesions were not tested. Herein, we mutated all seven cysteines of APE1, either singly or in combination, to alanine and show that none of the resulting variants interfered with the enzyme DNA repair functions. Cross-specie complementation analysis reveals that these APE1 cysteine variants fully rescued the yeast DNA repair deficient strain YW778, lacking AP endonucleases and 3'-diesterases, from toxicities caused by DNA damaging agents. Moreover, the elevated spontaneous mutations arising in strain YW778 from the lack of the DNA repair activities were completely suppressed by the APE1 cysteine variants. These findings suggest that the cysteine residues of APE1 are unlikely to play a role in the DNA repair functions of the enzyme in vivo. We also examine other APE1 missense mutations and provide the first evidence that the variant Asp308Ala with normal AP endonuclease, but devoid of 3'→5' exonuclease, displays hypersensitivity to the anticancer drug bleomycin, and not to other agents, suggesting that it has a defect in processing unique DNA lesions

  20. Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle.

    Science.gov (United States)

    Taleei, Reza; Nikjoo, Hooshang

    2013-08-30

    The paper presents a model of double strand breaks (DSB) repair in G1 and early S phases of the cell cycle. The model is based on a plethora of published information on biochemical modification of DSB induced by ionizing radiation. So far, three main DSB repair pathways have been identified, including nonhomologous end-joining (NHEJ), homologous recombination (HR), and microhomology-mediated end-joining (MMEJ). During G1 and early S phases of the cell cycle, NHEJ and MMEJ repair pathways are activated dependent on the type of double strand breaks. Simple DSB are a substrate for NHEJ, while complex DSB and DSB in heterochromatin require further end processing. Repair of all DSB start with NHEJ presynaptic processes, and depending on the type of DSB pursue simple ligation, further end processing prior to ligation, or resection. Using law of mass action the model is translated into a mathematical formalism. The solution of the formalism provides the step by step and overall repair kinetics. The overall repair kinetics are compared with the published experimental measurements. Our calculations are in agreement with the experimental results and show that the complex types of DSBs are repaired with slow repair kinetics. The G1 and early S phase model could be employed to predict the kinetics of DSB repair for damage induced by high LET radiation.

  1. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hidenori; Fujimori, Hiroaki [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Gunji, Akemi [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Maeda, Daisuke [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Hirai, Takahisa [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Poetsch, Anna R. [ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Harada, Hiromi [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Yoshida, Tomoko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minatoku, Tokyo 105-8512 (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Masutani, Mitsuko, E-mail: mmasutan@ncc.go.jp [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  2. Proliferation rate but not mismatch repair affects the long-term response of colon carcinoma cells to 5FU treatment.

    Science.gov (United States)

    Choudhary, B; Hanski, M L; Zeitz, M; Hanski, C

    2012-07-01

    The role of mismatch repair (MMR) in the response of colon carcinoma cells to 5-fluorouracil (5FU) is not well understood. In most of the in vitro studies only short-term response was investigated. We focussed here on the influence of MMR status on the mechanism of the short- and long-term response to clinically relevant 5FU concentrations by using isogenic or semiisogenic cell line pairs expressing/nonexpressing the hMLH1 protein, an important component of the MMR system. We show that the lower survival of MMR-proficient than of MMR-deficient cells in the clonogenic survival assay is due to a more frequent early cell arrest and to subsequent senescence. By contrast, the long-term cell growth after treatment, which is also affected by long-term arrest and senescence, is independent from the MMR status. The overall effect on the long-term cell growth is a cumulative result of cell proliferation rate-dependent growth inhibition, apoptosis and necrotic cell death. The main long-term cytotoxic effect of 5FU is the inhibition of growth while apoptosis and the necrotic cell death are minor contributions.

  3. Mechanisms of renal cell repair and regeneration after acute renal failure.

    Science.gov (United States)

    Nony, Paul A; Schnellmann, Rick G

    2003-03-01

    In many cases, acute renal failure (ARF) is the result of proximal tubular cell injury and death and can arise in a variety of clinical situations, especially following renal ischemia and drug or toxicant exposure. Although much research has focused on the cellular events leading to ARF, less emphasis has been placed on the mechanisms of renal cell repair and regeneration, although ARF is reversed in over half of those who acquire it. Studies using in vivo and in vitro models have demonstrated the importance of proliferation, migration, and repair of physiological functions of injured renal proximal tubular cells (RPTC) in the reversal of ARF. Growth factors have been shown to produce migration and proliferation of injured RPTC, although the specific mechanisms through which growth factors promote renal regeneration in vivo are unclear. Recently, interactions between integrins and extracellular matrix proteins such as collagen IV were shown to promote the repair of physiological functions in injured RPTC. Specifically, collagen IV synthesis and deposition following cellular injury restored integrin polarity and promoted repair of mitochondrial function and active Na(+) transport. Furthermore, exogenous collagen IV, but not collagen I, fibronectin, or laminin, promoted the repair of physiological functions without stimulating proliferation. These findings suggest the importance of establishing and/or maintaining collagen IV-integrin interactions in the stimulation of repair of physiological functions following sublethal cellular injury. Furthermore, the pathway that stimulates repair is distinct from that of proliferation and migration and may be a viable target for pharmacological intervention.

  4. Phenotypic studies of natural killer cell subsets in human transporter associated with antigen processing deficiency.

    Directory of Open Access Journals (Sweden)

    Jacques Zimmer

    Full Text Available Peripheral blood natural killer (NK cells from patients with transporter associated with antigen processing (TAP deficiency are hyporesponsive. The mechanism of this defect is unknown, but the phenotype of TAP-deficient NK cells is almost normal. However, we noticed a high percentage of CD56(bright cells among total NK cells from two patients. We further investigated TAP-deficient NK cells in these patients and compared them to NK cells from two other TAP-deficient patients with no clinical symptoms and to individuals with chronic inflammatory diseases other than TAP deficiency (chronic lung diseases or vasculitis. Peripheral blood mononuclear cells isolated from venous blood were stained with fluorochrome-conjugated antibodies and the phenotype of NK cells was analyzed by flow cytometry. In addition, (51Chromium release assays were performed to assess the cytotoxic activity of NK cells. In the symptomatic patients, CD56(bright NK cells represented 28% and 45%, respectively, of all NK cells (higher than in healthy donors. The patients also displayed a higher percentage of CD56(dimCD16(- NK cells than controls. Interestingly, this unusual NK cell subtype distribution was not found in the two asymptomatic TAP-deficient cases, but was instead present in several of the other patients. Over-expression of the inhibitory receptor CD94/NKG2A by TAP-deficient NK cells was confirmed and extended to the inhibitory receptor ILT2 (CD85j. These inhibitory receptors were not involved in regulating the cytotoxicity of TAP-deficient NK cells. We conclude that expansion of the CD56(bright NK cell subtype in peripheral blood is not a hallmark of TAP deficiency, but can be found in other diseases as well. This might reflect a reaction of the immune system to pathologic conditions. It could be interesting to investigate the relative distribution of NK cell subsets in various respiratory and autoimmune diseases.

  5. Vitamin C deficiency in weanling guinea pigs: differential expression of oxidative stress and DNA repair in liver and brain

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Trueba, Gilberto Perez; Poulsen, Henrik E;

    2007-01-01

    Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency...

  6. Generation of glycosylphosphatidylinositol anchor protein-deficient blood cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Yuan, Xuan; Braunstein, Evan M; Ye, Zhaohui; Liu, Cyndi F; Chen, Guibin; Zou, Jizhong; Cheng, Linzhao; Brodsky, Robert A

    2013-11-01

    PIG-A is an X-linked gene required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors; thus, PIG-A mutant cells have a deficiency or absence of all GPI-anchored proteins (GPI-APs). Acquired mutations in hematopoietic stem cells result in the disease paroxysmal nocturnal hemoglobinuria, and hypomorphic germline PIG-A mutations lead to severe developmental abnormalities, seizures, and early death. Human induced pluripotent stem cells (iPSCs) can differentiate into cell types derived from all three germ layers, providing a novel developmental system for modeling human diseases. Using PIG-A gene targeting and an inducible PIG-A expression system, we have established, for the first time, a conditional PIG-A knockout model in human iPSCs that allows for the production of GPI-AP-deficient blood cells. PIG-A-null iPSCs were unable to generate hematopoietic cells or any cells expressing the CD34 marker and were defective in generating mesodermal cells expressing KDR/VEGFR2 (kinase insert domain receptor) and CD56 markers. In addition, PIG-A-null iPSCs had a block in embryonic development prior to mesoderm differentiation that appears to be due to defective signaling through bone morphogenetic protein 4. However, early inducible PIG-A transgene expression allowed for the generation of GPI-AP-deficient blood cells. This conditional PIG-A knockout model should be a valuable tool for studying the importance of GPI-APs in hematopoiesis and human development.

  7. New patterns of bulk DNA repair in ultraviolet irradiated mouse embryo carcinoma cells following differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Rasko, I.; Georgieva, M.; Farkas, G.; Santhan, M.; Burg, K. (Genetics Institute, Szeged (Hungary)); Coates, J.; Johnson, R.T. (Univ. of Cambridge (United Kingdom)); Mitchell, D.L. (M.D. Anderson Cancer Center, Smithville, TX (United States))

    1993-05-01

    Mouse embryocarcinoma stem cells differentiate in culture, given the appropriate induction. The authors examined whether these cells could provide information about the regulation of nucleotide excision repair in relation to differentiation by measuring the rate-limiting incision step, the removal of cyclobutane dimers and (6-4) photoproducts from the genome as a whole and the effect of the bacteriophage T4 endonuclease (denV) gene on repair in differentiated cells. It was found that differentiation is accompanied by a marked decline in the early incision ability after UV irradiation (sixfold for P19, fourfold for PCC7 and twofold for F9), and the authors measured, in parallel, the loss of two common UV photoproducts [cyclobutane dimers and (6-4) photoproducts] from P19 cells. After differentiation, the excellent overall cyclobutane dimer repair capacity of proliferating cells (84% removal in 24 h) is lost (no removal in 24 h), while removal of (6-4) photoproducts, although normal at 24 h (94%), is much slower than in undifferentiated P19 at 3 h (no removal versus 64%). The presence of the denV gene greatly stimulates the repair of cyclobutane dimers in undifferentiated P19 cells (94% removal at 3 h vs. no removal) and also in differentiated cells (50% removal at 24 h vs. no removal). The denV gene also stimulates the early repair of (6-4) photoproducts in both differentiated and undifferentiated cells.

  8. Repair of I-SceI induced DSB at a specific site of chromosome in human cells: influence of low-dose, low-dose-rate gamma-rays.

    Science.gov (United States)

    Yatagai, Fumio; Suzuki, Masao; Ishioka, Noriaki; Ohmori, Hitoshi; Honma, Masamitsu

    2008-11-01

    We investigated the influence of low-dose, low-dose-rate gamma-ray irradiation on DNA double strand break (DSB) repair in human lymphoblastoid TK6 cells. A single DSB was introduced at intron 4 of the TK+ allele (chromosome 17) by transfection with the I-SceI expression vector pCBASce. We assessed for DSB repair due to non-homologous end-joining (NHEJ) by determining the generation of TK-deficient mutants in the TK6 derivative TSCE5 (TK +/-) carrying an I-SceI recognition site. We similarly estimated DSB repair via homologous recombination (HR) at the same site in the derived compound heterozygote (TK-/-) cell line TSCER2 that carries an additional point mutation in exon 5. The NHEJ repair of DSB was barely influenced by pre-irradiation of the cells with 30 mGy gamma-rays at 1.2 mGy h(-1). DSB repair by HR, in contrast, was enhanced by approximately 50% after pre-irradiation of the cells under these conditions. Furthermore, when I-SceI digestion was followed by irradiation at a dose of 8.5 mGy, delivered at a dose rate of only 0.125 mGy h(-1), HR repair efficiency was enhanced by approximately 80%. This experimental approach can be applied to characterize DSB repair in the low-dose region of ionizing radiation.

  9. Rhoh deficiency reduces peripheral T-cell function and attenuates allogenic transplant rejection

    DEFF Research Database (Denmark)

    Porubsky, Stefan; Wang, Shijun; Kiss, Eva

    2011-01-01

    Rhoh is a hematopoietic system-specific GTPase. Rhoh-deficient T cells have been shown to have a defect in TCR signaling manifested during their thymic development. Our aims were to investigate the phenotype of peripheral Rhoh-deficient T cells and to explore in vivo the potential benefit of Rhoh...

  10. Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding.

    Science.gov (United States)

    Romero, Matthew; Keyel, Michelle; Shi, Guilan; Bhattacharjee, Pushpak; Roth, Robyn; Heuser, John E; Keyel, Peter A

    2017-02-10

    Pore-forming toxins (PFTs) are used by both the immune system and by pathogens to disrupt cell membranes. Cells attempt to repair this disruption in various ways, but the exact mechanism(s) that cells use are not fully understood, nor agreed upon. Current models for membrane repair include (1) patch formation (e.g., fusion of internal vesicles with plasma membrane defects), (2) endocytosis of the pores, and (3) shedding of the pores by blebbing from the cell membrane. In this study, we sought to determine the specific mechanism(s) that cells use to resist three different cholesterol-dependent PFTs: Streptolysin O, Perfringolysin O, and Intermedilysin. We found that all three toxins were shed from cells by blebbing from the cell membrane on extracellular microvesicles (MVs). Unique among the cells studied, we found that macrophages were 10 times more resistant to the toxins, yet they shed significantly smaller vesicles than the other cells. To examine the mechanism of shedding, we tested whether toxins with engineered defects in pore formation or oligomerization were shed. We found that oligomerization was necessary and sufficient for membrane shedding, suggesting that calcium influx and patch formation were not required for shedding. However, pore formation enhanced shedding, suggesting that calcium influx and patch formation enhance repair. In contrast, monomeric toxins were endocytosed. These data indicate that cells use two interrelated mechanisms of membrane repair: lipid-dependent MV shedding, which we term 'intrinsic repair', and patch formation by intracellular organelles. Endocytosis may act after membrane repair is complete by removing inactivated and monomeric toxins from the cell surface.Cell Death and Differentiation advance online publication, 10 February 2017; doi:10.1038/cdd.2017.11.

  11. Effect of gamma rays on the bone repair process in rats with estrogen deficiency Efeito da radiação gama no processo de reparo ósseo em ratas com deficiência de estrógeno

    Directory of Open Access Journals (Sweden)

    Mariliani Chicarelli

    2007-03-01

    Full Text Available This study aimed at evaluating the bone repair process in ovariectomized rats submitted to an irradiation procedure. For this purpose, one hundred rats were randomly divided in four experimental groups: control, ovariectomized, irradiated and irradiated/ovariectomized. A bone defect was made on all animals' tibias. Three days after surgery, only irradiated and irradiated/ovariectomized rats received 8 Gy of gamma rays on the lower limbs region. The animals were sacrificed 7, 14, 21 and 28 days after surgery in order to assess the repair process. It was possible to observe a delay in the bone repair process in the irradiated/ovariectomized group, in which there was a remarkable association between estrogen deficiency and ionizing radiation resulting in the reduction of newly formed bone production, thus accelerating the resorption process.O objetivo deste trabalho foi avaliar o processo de reparo ósseo em ratas ovariectomizadas submetidas ao procedimento de irradiação. Para isto, cem ratas foram aleatoriamente divididas em quatro grupos experimentais: controle, ovariectomizado, irradiado e ovariectomizado/irradiado. Um defeito ósseo foi confeccionado nas tíbias de todos os animais. Três dias após a cirurgia, apenas os animais pertencentes aos grupos irradiado e ovariectomizado/irradiado receberam 8 Gy de radiação gama na região dos membros inferiores. Os animais foram sacrificados 7, 14, 21 e 28 dias após a cirurgia. Foi possível observar um atraso no processo de reparo ósseo nos animais do grupo ovariectomizado/irradiado, no qual houve uma marcante associação entre deficiência de estrógeno e radiação ionizante, resultando na redução da produção de osso neoformado, acelerando o processo de reabsorção.

  12. Half-cell potential mapping to assess repair work on RC structures

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, B. [Cagliari Univ., Dept. of Materials Science (Italy)

    2000-07-01

    Results on the successful use and on the limitations of half-cell potential mapping as an assessment technique after completion of repair work on a concrete structure are reviewed. Examples of repair discussed include traditional repair, electrochemical chloride removal, electrochemical realkalization and the application of surface applied corrosion inhibitors. Results indicate that half-cell potential measurements after traditional repair work or electrochemical chloride removal provide direct evidence of repassivation of the rebars when performed several weeks after the repair work (readings during the first few days after repair tend to show very negative potentials). Special attention must be given to the use of polymer-modified mortars when used in surface treatment of rebars; half-cell potential could remain permanently negative due to restricted oxygen access. Half-cell potential measurements are not considered effective in measuring the efficiency and durability of surface applied corrosion inhibitors due to pore solution pH and composition, and the mostly unknown mechanism of action of inhibitor blends. 18 refs., 8 figs.

  13. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans

    OpenAIRE

    Warnatz, Klaus; Salzer, Ulrich; Rizzi, Marta; Fischer, Beate; Gutenberger, Sylvia; Böhm, Joachim; Kienzler, Anne-Kathrin; Pan-Hammarström, Qiang; Hammarström, Lennart; Rakhmanov, Mirzokhid; Schlesier, Michael; Grimbacher, Bodo; Peter, Hans-Hartmut; Eibel, Hermann

    2009-01-01

    B-cell survival depends on signals induced by B-cell activating factor (BAFF) binding to its receptor (BAFF-R). In mice, mutations in BAFF or BAFF-R cause B-cell lymphopenia and antibody deficiency. Analyzing BAFF-R expression and BAFF-binding to B cells in common variable immunodeficiency (CVID) patients, we identified two siblings carrying a homozygous deletion in the BAFF-R gene. Removing most of the BAFF-R transmembrane part, the deletion precludes BAFF-R expression. Without BAFF-R, B-cel...

  14. Genetic characterization of cells of homocystinuria patients with disrupted DNA repair system

    Energy Technology Data Exchange (ETDEWEB)

    Sinel' shchikova, T.A.; L' vova, G.N.; Shoniya, N.N.; Zasukhina, G.D.

    1986-08-01

    Fibroblasts obtained from biopsy material and lymphocytes of patients with homocystinuria were investigated for repair activity according to the following criteria: rejoined DNA breaks, induced by 4-nitroquinoline-1-oxide and ..gamma..-radiation; indices of reactivation and induced mutagenesis of smallpox vaccine virus treated with these mutagens. In lymphocytes a defect of DNA repair was observed according to all criteria investigated. During passage of fibroblast cultures, inhibition of repair activity of cells was preserved according to ..gamma..-type. Increase in the number of spontaneous and ..gamma..-induced mutations of virus was noted according to degree of passage of fibroblasts.

  15. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  16. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  17. Bone marrow-derived cells in renal repair

    NARCIS (Netherlands)

    Broekema, Martine

    2007-01-01

    The kidney can recover after acute renal injury due to its highly effective endogenous regenerative capacity. However, under certain conditions the balance between injury and repair can get disturbed. This can ultimately lead to chronic renal failure, which is an increasing problem in the clinical s

  18. Effect of Delayed Peripheral Nerve Repair on Nerve Regeneration, Schwann Cell Function and Target Muscle Recovery

    Science.gov (United States)

    Jonsson, Samuel; Wiberg, Rebecca; McGrath, Aleksandra M.; Novikov, Lev N.; Wiberg, Mikael; Novikova, Liudmila N.; Kingham, Paul J.

    2013-01-01

    Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2–3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months. PMID:23409189

  19. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair.

    Science.gov (United States)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-01

    Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80-95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure which is uncoupled from its essential function in DSB repair. This could have implications for the development of therapeutic strategies aiming to radiosensitize tumors by affecting the DNA-PKcs function.

  20. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    Science.gov (United States)

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-01-01

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778

  1. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    Directory of Open Access Journals (Sweden)

    Estefanía Burgos-Morón

    2016-07-01

    Full Text Available Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2 also play an important role in the development of a variety of cancers (e.g., bladder cancer in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay and DNA damage (γ-H2AX and 53BP1 focus assay induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee.

  2. Evaluation of the effect of laser radiation on fibroblast proliferation in repair of skin wounds of rats with iron deficiency anemia

    Science.gov (United States)

    DeCastro, Isabele C. V.; Oliveira-Sampaio, Susana C. P.; Monteiro, Juliana S. de C.; Ferreira, Maria de Fátima L.; Cangussu, Maria T.; N. dos Santos, Jean; Pinheiro, Antonio Luiz B.

    2011-03-01

    The aim of this study was to assess the effect of low- level laser therapy (LLLT) on fibroblast proliferation on wound repair of rats with Iron deficiency anemia since there is no reports on literature about this subject. Iron deficiency anemia was induced on 36 newborn rats then an excisional wound was created on the dorsum of the animals which were divided into four groups: (I) - non-anemic, (II) - Anemic, (III) - non-anemic + LLLT, (IV) Anemic+ LLLT. The animals in each group were sacrificed at 7, 14 and 21 days. Laser irradiation was performed on each group (λ660nm,40Mw,CW) by contact mode with a dose of 2,5J/ cm2 in four points on the area of the wound and total of 10J/cm2 per session. Data were evaluated by analysis of variance (ANOVA) followed by Paired t-test. The results showed LLLT was able to stimulate fibroblastic proliferation in rats with iron deficiency anemia at the 21st day while at control group (III) no statistically significant differences was found.

  3. Differential UVB-induced modulation of cytokine production in XPA, XPC, and CSB repair-deficient mice

    NARCIS (Netherlands)

    Boonstra, A.P.; Oudenaren, van A.; Baert, M.R.M.; Steeg, van H.; Leenen, P.J.; Horst, van der G.T.J.; Hoeijmakers, J.H.J.; Savelkoul, H.F.J.; Garssen, J.

    2001-01-01

    Ultraviolet B irradiation has serious consequences for cellular immunity and can suppress the rejection of skin tumors and the resistance to infectious diseases. DNA damage plays a crucial role in these immunomodulatory effects of ultraviolet B, as impaired repair of ultraviolet-B-induced DNA damage

  4. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra, E-mail: rr228@georgetown.edu

    2015-05-15

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.

  5. Structural chromosome abnormalities, increased DNA strand breaks and DNA strand break repair deficiency in dermal fibroblasts from old female human donors.

    Science.gov (United States)

    Kalfalah, Faiza; Seggewiß, Sabine; Walter, Regina; Tigges, Julia; Moreno-Villanueva, María; Bürkle, Alexander; Ohse, Sebastian; Busch, Hauke; Boerries, Melanie; Hildebrandt, Barbara; Royer-Pokora, Brigitte; Boege, Fritz

    2015-02-01

    Dermal fibroblasts provide a paradigmatic model of cellular adaptation to long-term exogenous stress and ageing processes driven thereby. Here we addressed whether fibroblast ageing analysedex vivo entails genome instability. Dermal fibroblasts from human female donors aged 20-67 years were studied in primary culture at low population doubling. Under these conditions, the incidence of replicative senescence and rates of age-correlated telomere shortening were insignificant. Genome-wide gene expression analysis revealed age-related impairment of mitosis, telomere and chromosome maintenance and induction of genes associated with DNA repair and non-homologous end-joining, most notably XRCC4 and ligase 4. We observed an age-correlated drop in proliferative capacity and age-correlated increases in heterochromatin marks, structural chromosome abnormalities (deletions, translocations and chromatid breaks), DNA strand breaks and histone H2AX-phosphorylation. In a third of the cells from old and middle-aged donors repair of X-ray induced DNA strand breaks was impaired despite up-regulation of DNA repair genes. The distinct phenotype of genome instability, increased heterochromatinisation and (in 30% of the cases futile) up-regulation of DNA repair genes was stably maintained over several cell passages indicating that it represents a feature of geroconversion that is distinct from cellular senescence, as it does not encompass a block of proliferation.

  6. BLM has early and late functions in homologous recombination repair in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Chu, W K; Hanada, K; Kanaar, R;

    2010-01-01

    function of BLM remains unclear. Multiple roles have been proposed for BLM in the homologous recombination (HR) repair pathway, including 'early' functions, such as the stimulation of resection of DNA double-strand break ends or displacement of the invading strand of DNA displacement loops, and 'late...... in Rad54(-/-) cells rescued their mitomycin C (MMC) sensitivity, and decreased both the level of DNA damage and cell cycle perturbation induced by MMC, suggesting an early role for Blm. Our data are consistent with Blm having at least two roles in HR repair in mammalian cells....

  7. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  8. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair

    Science.gov (United States)

    Fellows, Christopher R.; Matta, Csaba; Zakany, Roza; Khan, Ilyas M.; Mobasheri, Ali

    2016-01-01

    Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple “one size fits all,” but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue. PMID:28066501

  9. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    Directory of Open Access Journals (Sweden)

    Musah Sadiatu

    2012-11-01

    Full Text Available Abstract Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5 and keratin 14 (K14 for basal cells, Clara cell secretory protein (CCSP for Clara cells, and acetylated tubulin (AcTub for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10, but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion

  10. Signaling factors in stem cell-mediated repair of infarcted myocardium

    NARCIS (Netherlands)

    Vandervelde, S; van Luyn, MJA; Tio, RA; Harmsen, MC

    2005-01-01

    Myocardial infarction leads to scar formation and subsequent reduced cardiac performance. The ultimate therapy after myocardial infarction would pursue stem cell-based regeneration. The aim of stem cell-mediated cardiac repair embodies restoration of cardiac function by regeneration of healthy myoca

  11. Insulin-like growth factor-1 sustains stem cell mediated renal repair.

    NARCIS (Netherlands)

    Imberti, B.; Morigi, M.; Tomasoni, S.; Rota, C.; Corna, D.; Longaretti, L.; Rottoli, D.; Valsecchi, F.; Benigni, A.; Wang, J.; Abbate, M.; Zoja, C.; Remuzzi, G.

    2007-01-01

    In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments

  12. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    fibroblasts (WI-38, hs27) and, with the exception of UV-C damage, HeLa cells. Microarray gene expression analysis showed that mRNA levels of several DNA repair genes are elevated in human embryonic stem cells compared with their differentiated forms (embryoid bodies). These data suggest that genomic...

  13. Neural stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neural stem cells are a pronising candidate for neural transplantation aimed at neural cell replacement and repair of the damaged host central nervous system (CNS). Recent studies using neural stem cells have shown that implanted neural stem cells can effectively incorporate into the damaged CNS and differentiate into neurons, astrocytes, and oligodendrocytes. The recent explosion in the field of neural stem cell research has provided insight into the inductive factors influencing neural stem cell differentiation and may yield potential therapies for several neurological disorders, including spinal cord injury. In this review, we summarize recent studies involving neural stem cell biology in both rodents and humans. We also discuss unique advantages and possible mechanisms of using neural stem cell trans plantation in the repair of spinal cord injury.

  14. BMP2 rescues deficient cell migration in Tgfbr3(-/-) epicardial cells and requires Src kinase.

    Science.gov (United States)

    Allison, Patrick; Espiritu, Daniella; Camenisch, Todd D

    2016-05-03

    During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. The type III transforming growth factor-β receptor (TGFβR3) is required for epicardial cell invasion and development of coronary vasculature in vivo. Bone Morphogenic Protein-2 (BMP2) is a driver of epicardial cell migration. Utilizing a primary epicardial cell line derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, we show that Tgfbr3(-/-) epicardial cells are deficient in BMP2 mRNA expression. Tgfbr3(-/-) epicardial cells are deficient in 2-dimensional migration relative to Tgfbr3(+/+) cells; BMP2 induces cellular migration to Tgfbr3(+/+) levels without affecting proliferation. We further demonstrate that Src kinase activity is required for BMP2 driven Tgfbr3(-/-) migration. BMP2 also requires Src for filamentous actin polymerization in Tgfbr3(-/-) epicardial cells. Taken together, our data identifies a novel pathway in epicardial cell migration required for development of the coronary vessels.

  15. Potentially lethal damage repair by total and quiescent tumor cells following various DNA-damaging treatments

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Kinashi, Yuko; Takagaki, Masao [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Hori, Hitoshi; Kasai, Soko; Nagasawa, Hideko; Uto, Yoshihiro

    1999-08-01

    After continuous labeling of proliferating (P) cells with 5-bromo-2'-deoxyuridine (BrdU) for 5 days, SCC VII tumor-bearing mice received various kinds of DNA-damaging treatments: gamma-ray irradiation, tirapazamine (TPZ, hypoxia-specific cytotoxin) administration, or cisplatin injection. From 0.5 to 72 hr after treatment, tumors were excised, minced, and trypsinized. Single tumor cell suspensions were incubated for 48 hr with a cytokinesis-blocker, cytochalasin-B. Then, the micronucleus (MN) frequency for BrdU-unlabeled cells, quiescent (Q) cells at treatment, was determined using immunofluorescence staining for BrdU. The MN frequency for total (P+Q) cells was obtained from tumors that were not pretreated with BrdU labeling. The sensitivity to each DNA-damaging treatment was evaluated in terms of the frequency of induced micronuclei in binuclear tumor cells (MN frequency). Treatment with gamma-rays or cisplatin resulted in a larger MN frequency in total cells than in Q cells. In contrast, TPZ treatment produced a smaller MN frequency in total cells than in Q cells. Regardless of the treatment used, Q cells showed greater repair capacities than total cells. However, TPZ caused much smaller repair capacity in both total and Q cells, compared with gamma-rays or cisplatin. Gamma-rays and cisplatin produced similar repair patterns. Differences in sensitivity between total and Q cells and repair patterns of the two cell populations were thought to depend on differences between the two cell populations in the toxicity of the DNA-damaging treatment and distribution pattern of the anticancer agent. (author)

  16. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol ?) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol ? is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  17. Cells Resistant to Toxic Concentrations of Manganese Have Increased Ability to Repair DNA.

    Science.gov (United States)

    Zakharcheva, K A; Gening, L V; Kazachenko, K Yu; Tarantul, V Z

    2017-01-01

    Manganese (Mn) is crucially important for vital activity of cells and has many biological functions. Nevertheless, high doses of Mn taken up by an organism over a long period may cause neurodegenerative diseases such as manganism and Parkinsonism. The molecular mechanisms of this Mn toxicity are still poorly studied. It is now believed that Mn-induced pathophysiological neural processes are multifaceted and affect several metabolic pathways. In particular, Mn ions might affect the processes of DNA replication and repair. To test this possibility, we obtained an SKOV-3 cell line resistant to the toxic action of Mn ions. We found that these cells are characterized by the activation of poly(ADP-ribose)polymerase, which leads to increased ability to repair DNA. Thus, the model used here supports the suggestion that at least one cause of Mn cytotoxicity might be disorders of the processes involved in DNA replication and repair.

  18. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; Holm, Sverre; Scheffler, Katja

    2016-01-01

    an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe-/- Neil3-/- mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation...... of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage....

  19. Prospect of Induced Pluripotent Stem Cell Genetic Repair to Cure Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Jeanne Adiwinata Pawitan

    2012-01-01

    Full Text Available In genetic diseases, where the cells are already damaged, the damaged cells can be replaced by new normal cells, which can be differentiated from iPSC. To avoid immune rejection, iPSC from the patient’s own cell can be developed. However, iPSC from the patients’s cell harbors the same genetic aberration. Therefore, before differentiating the iPSCs into required cells, genetic repair should be done. This review discusses the various technologies to repair the genetic aberration in patient-derived iPSC, or to prevent the genetic aberration to cause further damage in the iPSC-derived cells, such as Zn finger and TALE nuclease genetic editing, RNA interference technology, exon skipping, and gene transfer method. In addition, the challenges in using the iPSC and the strategies to manage the hurdles are addressed.

  20. A functional deficiency of TERA/VCP/p97 contributes to impaired DNA repair in multiple polyglutamine diseases.

    Science.gov (United States)

    Fujita, Kyota; Nakamura, Yoko; Oka, Tsutomu; Ito, Hikaru; Tamura, Takuya; Tagawa, Kazuhiko; Sasabe, Toshikazu; Katsuta, Asuka; Motoki, Kazumi; Shiwaku, Hiroki; Sone, Masaki; Yoshida, Chisato; Katsuno, Masahisa; Eishi, Yoshinobu; Murata, Miho; Taylor, J Paul; Wanker, Erich E; Kono, Kazuteru; Tashiro, Satoshi; Sobue, Gen; La Spada, Albert R; Okazawa, Hitoshi

    2013-01-01

    It is hypothesized that a common underlying mechanism links multiple neurodegenerative disorders. Here we show that transitional endoplasmic reticulum ATPase (TERA)/valosin-containing protein (VCP)/p97 directly binds to multiple polyglutamine disease proteins (huntingtin, ataxin-1, ataxin-7 and androgen receptor) via polyglutamine sequence. Although normal and mutant polyglutamine proteins interact with TERA/VCP/p97, only mutant proteins affect dynamism of TERA/VCP/p97. Among multiple functions of TERA/VCP/p97, we reveal that functional defect of TERA/VCP/p97 in DNA double-stranded break repair is critical for the pathology of neurons in which TERA/VCP/p97 is located dominantly in the nucleus in vivo. Mutant polyglutamine proteins impair accumulation of TERA/VCP/p97 and interaction of related double-stranded break repair proteins, finally causing the increase of unrepaired double-stranded break. Consistently, the recovery of lifespan in polyglutamine disease fly models by TERA/VCP/p97 corresponds well to the improvement of double-stranded break in neurons. Taken together, our results provide a novel common pathomechanism in multiple polyglutamine diseases that is mediated by DNA repair function of TERA/VCP/p97.

  1. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  2. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression

    Science.gov (United States)

    Aryal, Binod; Rotllan, Noemi; Araldi, Elisa; Ramírez, Cristina M.; He, Shun; Chousterman, Benjamin G.; Fenn, Ashley M.; Wanschel, Amarylis; Madrigal-Matute, Julio; Warrier, Nikhil; Martín-Ventura, Jose L.; Swirski, Filip K.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2016-07-01

    Lipid accumulation in macrophages has profound effects on macrophage gene expression and contributes to the development of atherosclerosis. Here, we report that angiopoietin-like protein 4 (ANGPTL4) is the most highly upregulated gene in foamy macrophages and it's absence in haematopoietic cells results in larger atherosclerotic plaques, characterized by bigger necrotic core areas and increased macrophage apoptosis. Furthermore, hyperlipidemic mice deficient in haematopoietic ANGPTL4 have higher blood leukocyte counts, which is associated with an increase in the common myeloid progenitor (CMP) population. ANGPTL4-deficient CMPs have higher lipid raft content, are more proliferative and less apoptotic compared with the wild-type (WT) CMPs. Finally, we observe that ANGPTL4 deficiency in macrophages promotes foam cell formation by enhancing CD36 expression and reducing ABCA1 localization in the cell surface. Altogether, these findings demonstrate that haematopoietic ANGPTL4 deficiency increases atherogenesis through regulating myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation.

  3. Inflammation and the Intestinal Barrier: Leukocyte–Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair

    Science.gov (United States)

    Luissint, Anny-Claude; Parkos, Charles A.; Nusrat, Asma

    2017-01-01

    The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte–epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation. PMID:27436072

  4. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle.

    Science.gov (United States)

    Billin, Andrew N; Bantscheff, Marcus; Drewes, Gerard; Ghidelli-Disse, Sonja; Holt, Jason A; Kramer, Henning F; McDougal, Alan J; Smalley, Terry L; Wells, Carrow I; Zuercher, William J; Henke, Brad R

    2016-02-19

    Skeletal muscle progenitor stem cells (referred to as satellite cells) represent the primary pool of stem cells in adult skeletal muscle responsible for the generation of new skeletal muscle in response to injury. Satellite cells derived from aged muscle display a significant reduction in regenerative capacity to form functional muscle. This decrease in functional recovery has been attributed to a decrease in proliferative capacity of satellite cells. Hence, agents that enhance the proliferative abilities of satellite cells may hold promise as therapies for a variety of pathological settings, including repair of injured muscle and age- or disease-associated muscle wasting. Through phenotypic screening of isolated murine satellite cells, we identified a series of 2,4-diaminopyrimidines (e.g., 2) that increased satellite cell proliferation. Importantly, compound 2 was effective in accelerating repair of damaged skeletal muscle in an in vivo mouse model of skeletal muscle injury. While these compounds were originally prepared as c-Jun N-terminal kinase 1 (JNK-1) inhibitors, structure-activity analyses indicated JNK-1 inhibition does not correlate with satellite cell activity. Screening against a broad panel of kinases did not result in identification of an obvious molecular target, so we conducted cell-based proteomics experiments in an attempt to identify the molecular target(s) responsible for the potentiation of the satellite cell proliferation. These data provide the foundation for future efforts to design improved small molecules as potential therapeutics for muscle repair and regeneration.

  5. A influência da deficiência estrogênica no processo de remodelação e reparação óssea Effect of estrogen deficiency on bone turnover and bone repair

    Directory of Open Access Journals (Sweden)

    Susana Ungaro Amadei

    2006-02-01

    cellular activity and several studies focus on the factors able to modulate the bone functions. The increase of bone research is, in part, due to the establishment of osteoporosis as a healthy problem common in elderly. Osteoporosis is one of the most important osteopathy, characterized by the bone mass reduction, resulted from disequilibrium between bone resorption and bone formation. OBJECTIVE: Based on the relationship between estrogen and bone metabolism, the aim of this study is present a review of literature about the principal aspects of bone turnover and bone repair associated to estrogen deficiency. Bone turnover: Bone tissue is in continuous turnover, however, changes in this process can result in some disorders, such as osteoporosis. Bone repair: Involves a sequence of biological events. It is affected by local and external factors and regulated by interaction of several mechanisms, like bone turnover. Estrogen deficiency and bone metabolism: The capacity to repair has been associated to changes in bone turnover and repair. DISCUSSION: It is not known which bone repair stage is modified: the bone formation, the mineralization or the resorption stage. CONCLUSION: The pathophysiology of bone changes caused by estrogen deficiency are not completely clear, so, new studies are still necessary.

  6. Effect of heat shock on poly(ADP-ribose) synthetase and DNA repair in Drosophila cells

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, N.L.; Kidwell, W.R.

    1982-04-01

    Poly(ADP-ribose) synthetase, a chromatin-bound enzyme which attaches polyanionic chains of ADP-ribose to nuclear proteins, was found to be temperature sensitive in intact Drosophila melanogaster cells. The synthetase was completely inactivated by heat-shocking the cells at 37/sup 0/C for 5 min, a condition which had no appreciable effect on the subsequent growth of Drosophila cells at their physiological temperature. The heat-shock effect on synthetase was reversible; enzyme activity began to reappear about 2 hr post heat shock. During the 2-hr interval when poly(ADP-ribose) synthetase was absent, the cells were competent in repair of ..gamma..-ray-induced DNA strand breaks as shown by DNA sedimentation studies on alkaline sucrose gradients. It is thus concluded that poly(ADP-ribose) synthesis is unnecessary for repair of DNA strand breaks introduced by irradiation. The same conclusion was reached from the fact that two inhibitors of poly(ADP-ribose) synthetase 3-aminobenzamide and 5-methylnicotinamide, failed to block repair of ..gamma..-ray-induced DNA chain breaks even though both inhibitors reduced the amount of poly(ADP-ribose) synthesized in cells by 50-75%. Although it was found that the repair of DNA strand breaks is independent of poly(ADP-ribose) synthesis, irradiation does activate the synthetase in control cells, as shown by radioimmunoassay of poly(ADP-ribose) levels.

  7. Telocytes as a Source of Progenitor Cells in Regeneration and Repair Through Granulation Tissue.

    Science.gov (United States)

    Díaz-Flores, Lucio; Gutiérrez, Ricardo; Pino García, Maria; González, Miriam; Díaz-Flores, Lucio; Francisco Madrid, Juan

    2016-01-01

    This review outlines the role of CD34+ stromal cells/telocytes (CD34+ SC/TCs) in repair and considers the following issues. Firstly, the conceptual aspects of repair, including regeneration and repair through granulation tissue (RTGT) as two types of repair, RTGT stages (inflammatory, proliferative, and remodeling), and tissue in repair as a substrate to assess the in vivo behavior of activated CD34+ SC/TCs. Subsequently, current knowledge of CD34+ SC/TCs, such as identification, characteristics, and functions, as well as possible stages (quiescent and activated) are taken into account. We then consider the role in regeneration of quiescent CD34+ SC/TCs (in unperturbed physiological conditions) as a nurse of stem cells (e.g., in the heart, skin, respiratory tree, gastrointestinal tract, liver, eye, and choroid plexus). Special attention is paid to the characteristics of activated CD34+ SC/TCs and the overlapping steps of activation with and without loss of CD34 expression and with and without gain of αSMA expression. With this contribution, we establish the role of CD34+ SC/TCs as progenitor cells and as a source of fibroblasts and myofibroblasts in repair through granulation tissue, fibrosis, and tumor stroma. Activated CD34+ SC/TCs in encapsulation and other processes (e.g., Reinke's edema, cutaneous myxoid cyst, mixomatous mitral valve degeneration, and fibrous papula of the face) are also outlined. Finally, similarities between modifications of CD34+ SC/TCs during in vivo activation and of multipotent mesenchymal stromal/stem cells in culture are examined in order to correlate the growing literature on CD34+ SC/TCs and the exponential research in cultured mesenchymal stromal/stem cells.

  8. Polymorphisms in human DNA repair genes and head and neck squamous cell carcinoma

    Indian Academy of Sciences (India)

    Rim Khlifi; Ahmed Rebai; Amel Hamza-Chaffai

    2012-12-01

    Genetic polymorphisms in some DNA repair proteins are associated with a number of malignant transformations like head and neck squamous cell carcinoma (HNSCC). Xeroderma pigmentosum group D (XPD) and X-ray repair cross-complementing proteins 1 (XRCC1) and 3 (XRCC3) genes are involved in DNA repair and were found to be associated with HNSCC in numerous studies. To establish our overall understanding of possible relationships between DNA repair gene polymorphisms and development of HNSCC, we surveyed the literature on epidemiological studies that assessed potential associations with HNSCC risk in terms of gene–environment interactions, genotype-induced functional defects in enzyme activity and/or protein expression, and the influence of ethnic origin on these associations.We conclude that large, well-designed studies of common polymorphisms in DNA repair genes are needed. Such studies may benefit from analysis of multiple genes or polymorphisms and from the consideration of relevant exposures that may influence the likelihood of HNSCC when DNA repair capacity is reduced.

  9. Studies of DNA repair in saccharomyces cerevisiae. I. Characterization of a new allele of RAD6. II. Investigation of events in the first cell cycle after DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Douthwright-Fasse, Jane Ann

    1979-01-01

    Studies in two independent, but related, areas of DNA repair have been carried out in Saccharomyces cerevisiae; characterization of a new allele in the RAD6 gene which suggests that the gene is multifunctional, and utilization of photoreactivation as a probe of events occurring during the first cell cycle after DNA damage. Strains carrying the new allele, designated rad6-4, are as sensitive to uv and ionizing radiation as those carrying rad6-1 or rad6-3 but, unlike them, are capable of induced mutagenesis and sporulation. Although rad6-4 may well be a missense mutation, the evidence shows that it is unlikely that this phenotype is due to leakiness. Instead, the data suggest that the RAD6 gene is multifunctional. One function is necessary to recover from DNA damage in an error-free manner, and the other is concerned with mutagenic processes and sporulation. Rad6-1 and rad6-3 strains are deficient in both of these functions, while rad6-4 strains are deficient only in the error-free function. The loss of photoreversibility (LOP) of ultraviolet induced mutations to arginine independence in an excision defective strain carrying arg4-17 examines the events occurring in the first cell cycle after DNA damage. LOP is dependent upon de novo protein synthesis. LOP begins immediately after UV irradiation, before semiconservative DNA synthesis takes place, and is complete after four hours in growth medium.There is no evidence indicating whether the normal function of the protein is involved in excision repair, or in one of the two repair processes believed to be inducible; induced mutagenesis or recombinational repair.

  10. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  11. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  12. The efficiency of homologous recombination and non-homologous end joining systems in repairing double-strand breaks during cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Leonardo Bee

    Full Text Available This study investigated the efficiency of Non-Homologous End Joining (NHEJ and Homologous Recombination (HR repair systems in rejoining DNA double-strand breaks (DSB induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density parameter and counting foci number in the time-interval 0.5-24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.

  13. Human amniotic epithelial cells combined with silk ifbroin scaffold in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Ting-gang Wang; Jie Xu; Ai-hua Zhu; Hua Lu; Zong-ning Miao; Peng Zhao; Guo-zhen Hui; Wei-jiangWu

    2016-01-01

    Treatment and functional reconstruction atfer central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artiifcial scaffold materials, such as ifbroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithe-lial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk ifbroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk ifbroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inlfammatory cell inifltration at the trans-plant site, milder host-versus-gratf reaction, and a marked improvement in motor function. hTese ifndings conifrm that the transplantation of amniotic epithelial cells combined with silk ifbroin scaffold can promote the repair of spinal cord injury. Silk ifbroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  14. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2010-09-01

    Full Text Available Introduction: Dentin sialoprotein (DSP is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth.Evaluation of the hypothesis: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  15. Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease.

    Science.gov (United States)

    Wang, Wei Eric; Chen, Xiongwen; Houser, Steven R; Zeng, Chunyu

    2013-10-01

    Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also have the capacity to differentiate into necessary cells to rebuild injured cardiac tissue. Both types of stem cells have brought promise for cardiac repair. The present review summarizes recent advances in cardiac cell therapy based on these two cell sources and discusses the advantages and limitations of each candidate. We conclude that, although both types of stem cells can be considered for autologous transplantation with promising outcomes in animal models, CS/PCs have advanced more in their clinical application because iPSCs and their derivatives possess inherent obstacles for clinical use. Further studies are needed to move cell therapy forward for the treatment of heart disease.

  16. Base excision repair activities differ in human lung cancer cells and corresponding normal controls

    DEFF Research Database (Denmark)

    Karahalil, Bensu; Bohr, Vilhelm A; De Souza-Pinto, Nadja C

    2010-01-01

    Oxidative damage to DNA is thought to play a role in carcinogenesis by causing mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway...... for the repair of oxidized modifications both in nuclear and mitochondrial DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non......-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three...

  17. Iron deficiency in sickle cell anaemia patients in Dar es Salaam ...

    African Journals Online (AJOL)

    Iron deficiency in sickle cell anaemia patients in Dar es Salaam, Tanzania. ... Five milliliter of venous blood was taken from all children for serum Ferritin, serum ... of haemoglobin concentration did not significantly influence the body Iron status ...

  18. Distinctions in sensitivity and repair of cells of children with some hereditary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Zasukhina, G.D.; Barashnev, Yu.I.; Vasil' eva, I.M.; Sdirkova, N.I.; Semyachkina, A.N. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    A study was made of blood cell sensitivity of children with some hereditary diseases, to ..gamma..-radiation and 4-nitro-quinoline-1-oxide. Using the host cell reactivation and chromatographic methods we revealed the increase in the sensitivity to the above mentioned agents and inhibition of the repair function in cells of patients with the following diseases: Marfan's disease, histidinemia, osteogenesis imperfecta, Sylvere-Russelle, Laurence, Franchescetti, and Losch-Nychane syndromes.

  19. Fluorometric analysis of the formation and repair of DNA breaks in irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchenko, N.I.; Proskuryakov, S.Ya.; Ivannik, B.P.; Kutmin, A.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A study was made of the dependence of the fluorescence of ethidium bromide upon NaOH concentration after staining of single- and double-strand DNA in cell lysates was demonstrated. The method of fluorometry was used to study the dose dependence of a change in the share of double-stranded DNA in the irradiated thymocytes and Ehrlich ascites carcinoma cells which permitted to determine the appearance and repair of DNA breaks in these cells.

  20. The Effect of Bioceramic Composite Extracellular Matrixes Used to Repair Bone Deficiency on Relevant Blood Biochemical Indices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    At the base of experimental animal model construction of bone defect in New Zealand rabbit, the promoting repair effect of bioactive ceramics on bone defect as well as its machanism was studied through testing body mineral elements, enzymes related to bone morphogenetic proteins and some biochemical indexes. Refering to some documents, materials of TCP, CHA and HA were combined and TCP/BMP/ TCP-β1 and CHA/BMP/ TCP-β1, HA/BMP/ TCP-β1 composite materials were made. All kinds of them were implanted into the radial defect site of rabbit, respectively. The chosen blood indexes (Ca, P, ALP, GGT, AST, ALT, TPA, BUN and Cr) were tested by colorimetry, speed rate and bromocresol green testing methods. No abnormal effects were found in any animal after operation. Serum concentrations of Ca, P and ALP were increased with the length of time in all groups of the three kinds of composite material, mixed material and pure materials. The increases in composite material groups were more significant ( P <0.05). Comparison of the three kinds of material showed TCP > CHA > HA. There was a tendency of increased TPA and decreased BUN with the length of time. There was no significant difference between the composite material groups and pure material group (P >0.05). The three kinds of bioactive ceramics composed of extracellular matrix could increase the serum concentrations of Ca and P and activity of ALP after being implanted into defect bone and showed some repairing capacity. This provided a new area of machanism study of bone defect repair by biomaterials.

  1. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage.

    Science.gov (United States)

    Zhang, Hai-Ning; Li, Lei; Leng, Ping; Wang, Ying-Zhen; Lv, Cheng-Yu

    2009-04-01

    To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects. Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro. Twenty-seven New Zealand white rabbits were divided into three groups randomly. The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint, and the defects repaired with gel or without treatment served as control groups. After 4, 8 and 12 weeks, the reconstructed tissue was evaluated macroscopically and microscopically. Histological analysis and qualitative scoring were also performed to detect the outcome. Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived tissue. The result was better in ADSCs group than the control ones. The microstructure of reconstructed tissue with ADSCs was similar to that of hyaline cartilage and contained more cells and regular matrix fibers, being better than other groups. Plenty of collagen fibers around cells could be seen under transmission electron microscopy. Statistical analysis revealed a significant difference in comparison with other groups at each time point (t equal to 4.360, P less than 0.01). These results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects.

  2. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-ning; LI Lei; LENG Ping; WANG Ying-zhen; Lü Cheng-yu

    2009-01-01

    Objective: To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects.Methods: Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro.Twentyseven New Zealand white rabbits were divided into three groups randomly.The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint,and the defects repaired with gel or without treatment served as control groups.After 4,8 and 12 weeks,the reconstructed tissue was evaluated macroscopically and microscopically.Histological analysis and qualitative scoring were also performed to detect the outcome.Results: Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived dssue.The result was better in ADSCs group than the control ones.The microstructure of reconstructed tissue with ADSCs was similar to that of hvaline cartilage and contained more cells and regular matrix fibers,being better than other groups.Plenty of collagen fibers around cells could be seen under transmission electron microscopy.Statistical analysis revealed a significant difference in comparison with other groups at each time point(t=4.360,P<0.01).Conclusion: Thcse results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects

  3. Mismatch repair status may predict response to adjuvant chemotherapy in resectable pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Riazy, Maziar; Kalloger, Steve E; Sheffield, Brandon S; Peixoto, Renata D; Li-Chang, Hector H; Scudamore, Charles H; Renouf, Daniel J; Schaeffer, David F

    2015-10-01

    Deficiencies in DNA mismatch repair have been associated with inferior response to 5-FU in colorectal cancer. Pancreatic ductal adenocarcinoma is similarly treated with pyrimidine analogs, yet the predictive value of mismatch repair status for response to these agents has not been examined in this malignancy. A tissue microarray with associated clinical outcome, comprising 254 resected pancreatic ductal adenocarcinoma patients was stained for four mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2). Mismatch repair deficiency and proficiency was determined by the absence or presence of uniform nuclear staining in tumor cells, respectively. Cases identified as mismatch repair deficient on the tissue microarray were confirmed by immunohistochemistry on whole slide sections. Of the 265 cases, 78 (29%) received adjuvant treatment with a pyrimidine analog and 41 (15%) showed a mismatch repair-deficient immunoprofile. Multivariable disease-specific survival in the mismatch repair-proficient cohort demonstrated that adjuvant chemotherapy, regional lymph-node status, gender, and the presence of tumor budding were significant independent prognostic variables (P≤0.04); however, none of the eight clinico-pathologic covariates examined in the mismatch repair-deficient cohort were of independent prognostic significance. Univariable assessment of disease-specific survival revealed an almost identical survival profile for both treated and untreated patients with a mismatch repair-deficient profile, while treatment in the mismatch repair-proficient cohort conferred a greater than 10-month median disease-specific survival advantage over their untreated counterparts (P=0.0018). In this cohort, adjuvant chemotherapy with a pyrimidine analog conferred no survival advantage to mismatch repair-deficient pancreatic ductal adenocarcinoma patients. Mismatch repair immunoprofiling is a feasible predictive marker in pancreatic ductal adenocarcinoma patients, and further prospective

  4. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  5. Heterogeneous Stem Cells in Skin Homeostatis and Wound Repair

    OpenAIRE

    Anna Meilana; Nurrani Mustika Dewi; Andi Wijaya

    2015-01-01

    BACKGROUND: The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. The skin is a complex organ harboring several distinct populations of stem cells and a rich array of cell types. Advances in genetic and imaging tools have brought new findings about the lineage relationsh...

  6. Cell- and gene-therapy approaches to inner ear repair

    OpenAIRE

    Conde de Felipe, Magnolia; Feijoo-Redondo, Ana; García-Sancho, Javier; Schimmang, Thomas; Durán, Mercedes

    2011-01-01

    Sensorineural hearing loss is the most common sensory disorder in humans. It is primarily due to the degeneration of highly specialised mechanosensory cells in the cochlea, the so-called hair cells. Hearing problems can also be caused or further aggravated by the death of auditory sensory neurons that convey the information from the hair cells to the brain stem. Despite the discovery of stem/progenitor cells in the mammalian cochlea, no regeneration of either damaged hair cells or auditory ne...

  7. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Brandon J.; Dickey, Jennifer S.; Nakamura, Asako J.; Redon, Christophe E.; Parekh, Palak [Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, MD 20892 (United States); Griko, Yuri V. [Radiation and Space Biotechnology Branch, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Aziz, Khaled; Georgakilas, Alexandros G. [Biology Department, East Carolina University, Greenville, NC 27858 (United States); Bonner, William M. [Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, MD 20892 (United States); Martin, Olga A., E-mail: sedelnio@mail.nih.gov [Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, MD 20892 (United States)

    2011-06-03

    Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0 {sup o}C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7 {sup o}C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13 {sup o}C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13 {sup o}C during and 12 h after irradiation. Mild hypothermia at 20 and 30 {sup o}C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13 {sup o}C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX ({gamma}-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13 {sup o}C compared to the rapid repair at 37 {sup o}C. For both {gamma}-H2AX foci and OCDLs, the return of lymphocytes to 37 {sup o}C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against

  8. Signalling pathways that inhibit the capacity of precursor cells for myelin repair.

    Science.gov (United States)

    Sabo, Jennifer K; Cate, Holly S

    2013-01-07

    In demyelinating disorders such as Multiple Sclerosis (MS), targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS). Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations.

  9. Signalling Pathways that Inhibit the Capacity of Precursor Cells for Myelin Repair

    Directory of Open Access Journals (Sweden)

    Jennifer K. Sabo

    2013-01-01

    Full Text Available In demyelinating disorders such as Multiple Sclerosis (MS, targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS. Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations.

  10. The Role of Cell Plasticity in Tissue Repair: Adaptive Cellular Reprogramming.

    Science.gov (United States)

    Jessen, Kristjan R; Mirsky, Rhona; Arthur-Farraj, Peter

    2015-09-28

    It is becoming clear that a radical change of cell identity of differentiated cells in vivo, triggered by injury or other adversity, provides an essential route to recovery for many different mammalian tissues. This process, which we term adaptive cellular reprogramming, promotes regeneration in one of two ways: by providing a transient class of repair cells or by directly replacing cells lost during tissue damage. Controlling adaptive changes in cell fate in vivo in order to promote the body's own cell therapy, particularly by pharmacology rather than genetics, is likely to become an increasingly active area of future work. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity.

    Science.gov (United States)

    Cho, Seung-Ju; Kim, So-Yeon; Jeong, Ho-Chang; Cheong, Hyeonsik; Kim, Doseok; Park, Soon-Jung; Choi, Jong-Jin; Kim, Hyongbum; Chung, Hyung-Min; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2015-12-01

    Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs) to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR) as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs) were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  12. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    Directory of Open Access Journals (Sweden)

    Seung-Ju Cho

    2015-12-01

    Full Text Available Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  13. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  14. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  15. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration.

    Science.gov (United States)

    Catón, Javier; Bostanci, Nagihan; Remboutsika, Eumorphia; De Bari, Cosimo; Mitsiadis, Thimios A

    2011-05-01

    Cell-based tissue repair of the tooth and - tooth-supporting - periodontal ligament (PDL) is a new attractive approach that complements traditional restorative or surgical techniques for replacement of injured or pathologically damaged tissues. In such therapeutic approaches, stem cells and/or progenitor cells are manipulated in vitro and administered to patients as living and dynamic biological agents. In this review, we discuss the clonogenic potential of human dental and periodontal tissues such as the dental pulp and the PDL and their potential for tooth and periodontal repair and/or regeneration. We propose novel therapeutic approaches using stem cells or progenitor cells, which are targeted to regenerate the lost dental or periodontal tissue.

  16. The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks

    Directory of Open Access Journals (Sweden)

    De Benedetti Arrigo

    2005-09-01

    Full Text Available Abstract Background The mammalian protein kinase TLK1 is a homologue of Tousled, a gene involved in flower development in Arabidopsis thaliana. The function of TLK1 is not well known, although knockout of the gene in Drosophila or expression of a dominant negative mutant in mouse cells causes loss of nuclear divisions and missegregation of chromosomes probably, due to alterations in chromatin remodeling capacity. Overexpression of TLK1B, a spliced variant of the TLK1 mRNA, in a model mouse cell line increases it's resistance to ionizing radiation (IR or the radiomimetic drug doxorubicin, also likely due to changes in chromatin remodeling. TLK1B is translationally regulated by the availability of the translation factor eIF4E, and its synthesis is activated by IR. The reason for this mechanism of regulation is likely to provide a rapid means of promoting repair of DSBs. TLK1B specifically phosphorylates histone H3 and Asf1, likely resulting in changes in chromatin structure, particularly at double strand breaks (DSB sites. Results In this work, we provide several lines of evidence that TLK1B protects the cells from IR by facilitating the repair of DSBs. First, the pattern of phosphorylation and dephosphorylation of H2AX and H3 indicated that cells overexpressing TLK1B return to pre-IR steady state much more rapidly than controls. Second, the repair of episomes damaged with DSBs was much more rapid in cells overexpressing TLK1B. This was also true for repair of genomic damage. Lastly, we demonstrate with an in vitro repair system that the addition of recombinant TLK1B promotes repair of a linearized plasmid incubated with nuclear extract. In addition, TLK1B in this in vitro system promotes the assembly of chromatin as shown by the formation of more highly supercoiled topomers of the plasmid. Conclusion In this work, we provide evidence that TLK1B promotes the repair of DSBs, likely as a consequence of a change in chromatin remodeling capacity that

  17. Regulation of the viability of Nf1 deficient cells by PKC isoforms.

    Science.gov (United States)

    Zhou, Xiaodong; Shen, Ling; Parris, Toshima; Huang, Junchi; Yi, Bo; Helou, Khalil; Chen, Changyan

    2014-11-15

    Suppression of protein kinase C (PKC) is known to be synthetically lethal with ras mutations in various types of cancer cells. The studies also showed that blockade of PKC affected the viability of Nf1 deficient cells. Since PKC family consists of more than 10 isoforms, our study aimed at identifying which isoform(s) played the crucial role in sensitizing Nf1 deficient cells to apoptosis. Using genetic and chemical PKC inhibitors, we demonstrated that the concurrent inhibition of PKC α and β induced Nf1 deficient ST or 96.2 cells, but not SNF02.2 cells with a normal Nf1 or ST cells ectopically expressing Nf1 effective domain gene, to apoptosis. In this process, PKC δ in Nf1 deficient cells, but not in ST/Nf1 cells, was upregulated and translocated to the nucleus. Furthermore, caspase 3 was cleaved and cytochrome c was released to the cytosol. Thus, it appeared that PKC δ and α/β are the crucial components for sustaining the aberrant Ras signaling and further viability of Nf1 deficient cells. The abrogation of these two isoforms activated their opponent PKC δ for switching on the caspase 3-governed apoptotic machinery.

  18. 17{alpha}-Ethinylestradiol hinders nucleotide excision repair in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Notch, Emily G. [Department of Biochemistry, Microbiology and Molecular Biology, University of Maine 5735 Hitchner Hall, Orono, ME 04469 (United States); Mayer, Gregory D., E-mail: greg.mayer@ttu.edu [The Institute of Environmental and Human Health, Texas Tech University, Box 41163, Lubbock, TX 79409-1163 (United States)

    2009-12-13

    Nucleotide excision repair (NER) is the primary mechanism that removes bulky DNA adducts such as those caused by ubiquitous environmental mutagens including benzo(a)pyrene and other polycyclic aromatic hydrocarbons. Recent data suggest that exposure to environmentally relevant concentrations of estrogen decreases hepatic mRNA abundance of several key NER genes in adult zebrafish (Danio rerio). However, the impact of decreased hepatic NER expression on NER function was not investigated in the previous study. The goal of this study was to examine the effect of the potent estrogen receptor agonist 17{alpha}-ethinylestradiol (EE{sub 2}) on rate and magnitude of bulky DNA adduct repair. Here we show that exposure of zebrafish liver (ZFL) cells to physiologically relevant concentrations of EE{sub 2} resulted in reduced ability of ZFL cells to repair damaged DNA in comparison to control cells. Co-exposure to EE{sub 2} and a complete estrogen receptor antagonist (ICI 182,780) also resulted in reduced NER capacity, whereas ICI 182,780 alone did not affect the ability of ZFL cells to repair UV damage. These results indicate that estrogen exposure can decrease cellular NER capacity and that this effect can occur in the presence of an estrogen receptor antagonist, suggesting that EE{sub 2} can affect NER processes through mechanisms other than nuclear estrogen receptor activation.

  19. Nucleotide excision repair in intact cells contrasts with high dual incision activity in vitro

    NARCIS (Netherlands)

    Jansen, J.; Olsen, A.K.; Wiger, R.; Naegeli, H.; Boer, de P.; Hoeven, van der F.; Holme, J.A.; Brunborg, G.; Mullenders, L.

    2001-01-01

    The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, gl

  20. Noncanonical mismatch repair as a source of genomic instability in human cells

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Bregenhorn, Stephanie; Ghodgaonkar, Medini;

    2012-01-01

    Mismatch repair (MMR) is a key antimutagenic process that increases the fidelity of DNA replication and recombination. Yet genetic experiments showed that MMR is required for antibody maturation, a process during which the immunoglobulin loci of antigen-stimulated B cells undergo extensive mutage...

  1. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Hansen, Lasse Tengbjerg; Dziegielewski, Jaroslaw

    2005-01-01

    The essential checkpoint kinase Chk1 is required for cell-cycle delays after DNA damage or blocked DNA replication. However, it is unclear whether Chk1 is involved in the repair of damaged DNA. Here we establish that Chk1 is a key regulator of genome maintenance by the homologous recombination...

  2. DNA double strand breaks repair pathways in mouse male germ cells

    NARCIS (Netherlands)

    Ahmed, E.A.

    2009-01-01

    DNA double strand breaks (DSBs) are induced by ionizing radiation, and during meiotic recombination. DSBs are repaired via two main pathways, homologous recombination (HR) and non homologous end-joining (NHEJ). There are three main types of male germ cells, spermatogonia, spermatocytes and spermatid

  3. Role of endogenous Schwann cells in tissue repair after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shu-xin Zhang; Fengfa Huang; Mary Gates; Eric G. Holmberg

    2013-01-01

    Schwann cells are glial cells of peripheral nervous system, responsible for axonal myelination and ensheathing, as well as tissue repair following a peripheral nervous system injury. They are one of several cell types that are widely studied and most commonly used for cell transplantation to treat spinal cord injury, due to their intrinsic characteristics including the ability to secrete a variety of neurotrophic factors. This mini review summarizes the recent findings of endogenous Schwann cells after spinal cord injury and discusses their role in tissue repair and axonal regeneration. After spinal cord injury, numerous endogenous Schwann cells migrate into the lesion site from the nerve roots, involving in the construction of newly formed repaired tissue and axonal myelination. These invading Schwann cells also can move a long distance away from the injury site both rostrally and caudally. In addition, Schwann cells can be induced to migrate by minimal insults (such as scar ablation) within the spinal cord and integrate with astrocytes under certain circumstances. More importantly, the host Schwann cells can be induced to migrate into spinal cord by transplantation of different cell types, such as exogenous Schwann cells, olfactory ensheathing cells, and bone marrow-derived stromal stem cells. Migration of endogenous Schwann cells following spinal cord injury is a common natural phenomenon found both in animal and human, and the myelination by Schwann cells has been examined effective in signal conduction electrophysiologically. Therefore, if the inherent properties of endogenous Schwann cells could be developed and utilized, it would offer a new avenue for the restoration of injured spinal cord.

  4. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  5. Circulating osteogenic cells: implications for injury, repair, and regeneration

    DEFF Research Database (Denmark)

    Pignolo, Robert J; Kassem, Moustapha

    2011-01-01

    The aim of this review is to provide a critical reading of recent literature pertaining to the presence of circulating, fluid-phase osteoblastic cells and their possible contribution to bone formation. We have termed this group of cells collectively as circulating osteogenic precursor (COP) cells...

  6. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed;

    2006-01-01

    in cancer. In this regard, several studies have demonstrated an antiapoptotic effect of TIMP-1 in a number of different cell types. Since chemotherapy works by inducing apoptosis in cancer cells, we raised the hypothesis that TIMP-1 promotes resistance against chemotherapeutic drugs. In order to investigate...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...

  7. Potential of human dental stem cells in repairing the complete transection of rat spinal cord

    Science.gov (United States)

    Yang, Chao; Li, Xinghan; Sun, Liang; Guo, Weihua; Tian, Weidong

    2017-04-01

    Objective. The adult spinal cord of mammals contains a certain amount of neural precursor cells, but these endogenous cells have a limited capacity for replacement of lost cells after spinal cord injury. The exogenous stem cells transplantation has become a therapeutic strategy for spinal cord repairing because of their immunomodulatory and differentiation capacity. In addition, dental stem cells originating from the cranial neural crest might be candidate cell sources for neural engineering. Approach. Human dental follicle stem cells (DFSCs), stem cells from apical papilla (SCAPs) and dental pulp stem cells (DPSCs) were isolated and identified in vitro, then green GFP-labeled stem cells with pellets were transplanted into completely transected spinal cord. The functional recovery of rats and multiple neuro-regenerative mechanisms were explored. Main results. The dental stem cells, especially DFSCs, demonstrated the potential in repairing the completely transected spinal cord and promote functional recovery after injury. The major involved mechanisms were speculated below: First, dental stem cells inhibited the expression of interleukin-1β to reduce the inflammatory response; second, they inhibited the expression of ras homolog gene family member A (RhoA) to promote neurite regeneration; third, they inhibited the sulfonylurea receptor1 (SUR-1) expression to reduce progressive hemorrhagic necrosis; lastly, parts of the transplanted cells survived and differentiated into mature neurons and oligodendrocytes but not astrocyte, which is beneficial for promoting axons growth. Significance. Dental stem cells presented remarkable tissue regenerative capability after spinal cord injury through immunomodulatory, differentiation and protection capacity.

  8. Impaired precursor B cell differentiation in Bruton's tyrosine kinase-deficient mice

    NARCIS (Netherlands)

    S. Middendorp; G.M. Dingjan (Gemma); R.W. Hendriks (Rudi)

    2002-01-01

    textabstractBruton's tyrosine kinase (Btk) is a cytoplasmic signaling molecule that is crucial for precursor (pre-B) cell differentiation in humans. In this study, we show that during the transition of large cycling to small resting pre-B cells in the mouse, Btk-deficient cells fai

  9. Impaired precursor B cell differentiation in Bruton's tyrosine kinase-deficient mice

    NARCIS (Netherlands)

    S. Middendorp; G.M. Dingjan (Gemma); R.W. Hendriks (Rudi)

    2002-01-01

    textabstractBruton's tyrosine kinase (Btk) is a cytoplasmic signaling molecule that is crucial for precursor (pre-B) cell differentiation in humans. In this study, we show that during the transition of large cycling to small resting pre-B cells in the mouse, Btk-deficient cells

  10. Polyclonal Expansion of NKG2C+ NK Cells in TAP-deficient Patients

    Directory of Open Access Journals (Sweden)

    vivien eBeziat

    2015-10-01

    Full Text Available Adaptive natural killer (NK cell responses to human cytomegalovirus (CMV infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs. Here, we set out to study the HLA class I-dependency of such NKG2C+ NK cell expansions. We demonstrate expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP-deficiency, whom express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR-profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR-repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. Thus, the emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to anti-viral immunity and potentially explain these patients’ low incidence of severe viral infections.

  11. Polyclonal Expansion of NKG2C+ NK Cells in TAP-Deficient Patients

    Science.gov (United States)

    Béziat, Vivien; Sleiman, Marwan; Goodridge, Jodie P.; Kaarbø, Mari; Liu, Lisa L.; Rollag, Halvor; Ljunggren, Hans-Gustaf; Zimmer, Jacques; Malmberg, Karl-Johan

    2015-01-01

    Adaptive natural killer (NK) cell responses to human cytomegalovirus infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs). Here, we set out to study the HLA class I dependency of such NKG2C+ NK cell expansions. We demonstrate the expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP) deficiency, who express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. The emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to antiviral immunity and potentially explain these patients’ low incidence of severe viral infections. PMID:26500647

  12. Efficacy of a mesenchymal stem cell loaded surgical mesh for tendon repair in rats

    OpenAIRE

    Schon, Lew C.; Gill, Nicholas; Thorpe, Margaret; Davis, Joel; Nadaud, Joshua; Kim, Jooyoung; Molligan, Jeremy; Zhang, Zijun

    2014-01-01

    Objectives The purpose of this study was to investigate the efficacy of a composite surgical mesh for delivery of mesenchymal stem cells (MSCs) in tendon repair. Methods The MSC-loaded mesh composed of a piece of conventional surgical mesh and a layer of scaffold, which supported MSC-embedded alginate gel. A 3-mm defect was surgically created at the Achilles tendon-gastrocnemius/soleus junction in 30 rats. The tendon defects were repaired with either 1) MSC-loaded mesh; or 2) surgical mesh on...

  13. Presence of base excision repair enzymes in the wheat aleurone and their activation in cells undergoing programmed cell death.

    Science.gov (United States)

    Bissenbaev, Amangeldy K; Ishchenko, Alexander A; Taipakova, Sabira M; Saparbaev, Murat K

    2011-10-01

    Cereal aleurone cells are specialized endosperm cells that produce enzymes to hydrolyze the starchy endosperm during germination. Aleurone cells can undergo programmed cell death (PCD) when incubated in the presence of gibberellic acid (GA) in contrast to abscisic acid (ABA) which inhibits the process. The progression of PCD in aleurone layer cells of wheat grain is accompanied by an increase in deoxyribonuclease (DNase) activities and the internucleosomal degradation of nuclear DNA. Reactive oxygen species (ROS) are increased during PCD in the aleurone cells owing to the β-oxidation of triglycerides and inhibition of the antioxidant enzymes possibly leading to extensive oxidative damage to DNA. ROS generate mainly non-bulky DNA base lesions which are removed in the base excision repair (BER) pathway, initiated by the DNA glycosylases. At present, very little is known about oxidative DNA damage repair in cereals. Here, we study DNA repair in the cell-free extracts of wheat aleurone layer incubated or not with phytohormones. We show, for the first time, the presence of 8-oxoguanine-DNA and ethenoadenine-DNA glycosylase activities in wheat aleurone cells. Interestingly, the DNA glycosylase and AP endonuclease activities are strongly induced in the presence of GA. Based on these data we propose that GA in addition to activation of nuclear DNases also induces the DNA repair activities which remove oxidized DNA bases in the BER pathway. Potential roles of the wheat DNA glycosylases in GA-induced oligonucleosomal fragmentation of DNA and metabolic activation of aleurone layer cells via repair of transcribed regions are discussed.

  14. Current Stem Cell Delivery Methods for Myocardial Repair

    Directory of Open Access Journals (Sweden)

    Calvin C. Sheng

    2013-01-01

    Full Text Available Heart failure commonly results from an irreparable damage due to cardiovascular diseases (CVDs, the leading cause of morbidity and mortality in the United States. In recent years, the rapid advancements in stem cell research have garnered much praise for paving the way to novel therapies in reversing myocardial injuries. Cell types currently investigated for cellular delivery include embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and adult stem cell lineages such as skeletal myoblasts, bone-marrow-derived stem cells (BMSCs, mesenchymal stem cells (MSCs, and cardiac stem cells (CSCs. To engraft these cells into patients’ damaged myocardium, a variety of approaches (intramyocardial, transendocardial, transcoronary, venous, intravenous, intracoronary artery and retrograde venous administrations and bioengineered tissue transplantation have been developed and explored. In this paper, we will discuss the pros and cons of these delivery modalities, the current state of their therapeutic potentials, and a multifaceted evaluation of their reported clinical feasibility, safety, and efficacy. While the issues of optimal delivery approach, the best progenitor stem cell type, the most effective dose, and timing of administration remain to be addressed, we are highly optimistic that stem cell therapy will provide a clinically viable option for myocardial regeneration.

  15. Current stem cell delivery methods for myocardial repair.

    Science.gov (United States)

    Sheng, Calvin C; Zhou, Li; Hao, Jijun

    2013-01-01

    Heart failure commonly results from an irreparable damage due to cardiovascular diseases (CVDs), the leading cause of morbidity and mortality in the United States. In recent years, the rapid advancements in stem cell research have garnered much praise for paving the way to novel therapies in reversing myocardial injuries. Cell types currently investigated for cellular delivery include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cell lineages such as skeletal myoblasts, bone-marrow-derived stem cells (BMSCs), mesenchymal stem cells (MSCs), and cardiac stem cells (CSCs). To engraft these cells into patients' damaged myocardium, a variety of approaches (intramyocardial, transendocardial, transcoronary, venous, intravenous, intracoronary artery and retrograde venous administrations and bioengineered tissue transplantation) have been developed and explored. In this paper, we will discuss the pros and cons of these delivery modalities, the current state of their therapeutic potentials, and a multifaceted evaluation of their reported clinical feasibility, safety, and efficacy. While the issues of optimal delivery approach, the best progenitor stem cell type, the most effective dose, and timing of administration remain to be addressed, we are highly optimistic that stem cell therapy will provide a clinically viable option for myocardial regeneration.

  16. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  17. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells.

    Directory of Open Access Journals (Sweden)

    Indrayani Waghmare

    Full Text Available Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib- surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells.

  18. Dexamethasone inhibits repair of human airway epithelial cells mediated by glucocorticoid-induced leucine zipper (GILZ.

    Directory of Open Access Journals (Sweden)

    Jingyue Liu

    Full Text Available BACKGROUND: Glucocorticoids (GCs are a first-line treatment for asthma for their anti-inflammatory effects, but they also hinder the repair of airway epithelial injury. The anti-inflammatory protein GC-induced leucine zipper (GILZ is reported to inhibit the activation of the mitogen-activated protein kinase (MAPK-extracellular-signal-regulated kinase (ERK signaling pathway, which promotes the repair of airway epithelial cells around the damaged areas. We investigated whether the inhibition of airway epithelial repair imposed by the GC dexamethasone (DEX is mediated by GILZ. METHODS: We tested the effect of DEX on the expressions of GILZ mRNA and GILZ protein and the MAPK-ERK signaling pathway in human airway epithelial cells, via RT-PCR and Western blot. We further evaluated the role of GILZ in mediating the effect of DEX on the MAPK-ERK signaling pathway and in airway epithelium repair by utilizing small-interfering RNAs, MTT, CFSE labeling, wound-healing and cell migration assays. RESULTS: DEX increased GILZ mRNA and GILZ protein levels in a human airway epithelial cell line. Furthermore, DEX inhibited the phosphorylation of Raf-1, Mek1/2, Erk1/2 (components of the MAPK-ERK signaling pathway, proliferation and migration. However, the inhibitory effect of DEX was mitigated in cells when the GILZ gene was silenced. CONCLUSIONS: The inhibition of epithelial injury repair by DEX is mediated in part by activation of GILZ, which suppressed activation of the MAPK-ERK signaling pathway, proliferation and migration. Our study implicates the involvement of DEX in this process, and furthers our understanding of the dual role of GCs.

  19. Repair-dependent cell radiation survival and transformation: an integrated theory.

    Science.gov (United States)

    Sutherland, John C

    2014-09-07

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  20. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  1. The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells

    Science.gov (United States)

    Sansone, Clementina; Galasso, Christian; Orefice, Ida; Nuzzo, Genoveffa; Luongo, Elvira; Cutignano, Adele; Romano, Giovanna; Brunet, Christophe; Fontana, Angelo; Esposito, Francesco; Ianora, Adrianna

    2017-01-01

    Green microalgae contain many active pigments such as carotenoids having antioxidant and protective activity on human cells. Here we investigate the biological activity of an ethanol/water extract of the marine green microalga Tetraselmis suecica containing high levels of carotenoids such as the xanthophylls lutein, violaxanthin, neoxanthin, antheraxanthin and loroxanthin esters. This extract has a strong antioxidant and repairing activity in the human lung cancer cell line (A549) as shown by the increased expression of dehydrocholesterol reductase-24 (DHCR24) and prostaglandin reductase 1 (PTGR1) genes and proteins. The extract also reduces prostaglandin E2 (PGE2) levels in cells damaged by H2O2 and has tissue repairing effects on reconstructed human epidermal tissue cells (EpiDermTM) indicating a potential cosmeceutical activity of this microalgal species. PMID:28117410

  2. Establishment of the DNA repair-defective mutants in DT40 cells.

    Science.gov (United States)

    Ishiai, Masamichi; Uchida, Emi; Takata, Minoru

    2012-01-01

    The chicken B cell line DT40 has been widely used as a model system for reverse genetics studies in higher eukaryotes, because of its advantages including efficient gene targeting and ease of chromosome manipulation. Although the genetic approach using the RNA interference technique has become the standard method particularly in human cells, DT40 still remains a powerful tool to investigate the regulation and function of genes and proteins in a vertebrate system, because of feasibility of easy, rapid, and clear genetic experiments. The use of DT40 cells for DNA repair research has several advantages. In addition to canonical assays for DNA repair, such as measurement of the sensitivities toward DNA damage reagents, it is possible to measure homologous recombination and translesion synthesis activities using activation-induced deaminase (AID)-induced diversification of the immunoglobulin locus. In this chapter, we would describe a detailed protocol for gene disruption experiments in DT40 cells.

  3. The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells.

    Science.gov (United States)

    Sansone, Clementina; Galasso, Christian; Orefice, Ida; Nuzzo, Genoveffa; Luongo, Elvira; Cutignano, Adele; Romano, Giovanna; Brunet, Christophe; Fontana, Angelo; Esposito, Francesco; Ianora, Adrianna

    2017-01-24

    Green microalgae contain many active pigments such as carotenoids having antioxidant and protective activity on human cells. Here we investigate the biological activity of an ethanol/water extract of the marine green microalga Tetraselmis suecica containing high levels of carotenoids such as the xanthophylls lutein, violaxanthin, neoxanthin, antheraxanthin and loroxanthin esters. This extract has a strong antioxidant and repairing activity in the human lung cancer cell line (A549) as shown by the increased expression of dehydrocholesterol reductase-24 (DHCR24) and prostaglandin reductase 1 (PTGR1) genes and proteins. The extract also reduces prostaglandin E2 (PGE2) levels in cells damaged by H2O2 and has tissue repairing effects on reconstructed human epidermal tissue cells (EpiDerm(TM)) indicating a potential cosmeceutical activity of this microalgal species.

  4. Current focus of stem cell application in retinal repair

    Institute of Scientific and Technical Information of China (English)

    Maria L Alonso-Alonso; Girish Kumar Srivastava

    2015-01-01

    The relevance of retinal diseases, both in society'seconomy and in the quality of people's life who suffer withthem, has made stem cell therapy an interesting topic forresearch. Embryonic stem cells (ESCs), induced pluripotentstem cells (iPSCs) and adipose derived mesenchymal stemcells (ADMSCs) are the focus in current endeavors as asource of different retinal cells, such as photoreceptorsand retinal pigment epithelial cells. The aim is to applythem for cell replacement as an option for treating retinaldiseases which so far are untreatable in their advancedstage. ESCs, despite the great potential for differentiation,have the dangerous risk of teratoma formation as wellas ethical issues, which must be resolved before startinga clinical trial. iPSCs, like ESCs, are able to differentiatein to several types of retinal cells. However, the processto get them for personalized cell therapy has a high costin terms of time and money. Researchers are working toresolve this since iPSCs seem to be a realistic option fortreating retinal diseases. ADMSCs have the advantagethat the procedures to obtain them are easier. Despiteadvancements in stem cell application, there are stillseveral challenges that need to be overcome beforetransferring the research results to clinical application.This paper reviews recent research achievements of theapplications of these three types of stem cells as well asclinical trials currently based on them.

  5. ZIP4H (TEX11 deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over.

    Directory of Open Access Journals (Sweden)

    Carrie A Adelman

    2008-03-01

    Full Text Available We have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs. This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast. In this screen, Zip4h (Tex11, a male germ cell specific X-linked gene was isolated. Based on sequence and predicted structural similarity to the S. cerevisiae and A. thaliana Zip4 orthologs, ZIP4H appears to be the mammalian ortholog. In S. cerevisiae and A. thaliana, Zip4 is a meiosis-specific protein that regulates the level of meiotic crossovers, thus influencing homologous chromosome segregation in these organisms. As is true for hypomorphic Nbs1 (Nbs1(DeltaB/DeltaB mice, Zip4h(-/Y mutant mice were fertile. Analysis of spermatocytes revealed a delay in meiotic double strand break repair and decreased crossover formation as inferred from DMC1 and MLH1 staining patterns, respectively. Achiasmate chromosomes at the first meiotic division were also observed in Zip4h(-/Y mutants, consistent with the observed reduction in MLH1 focus formation. These results indicate that meiotic functions of Zip4 family members are conserved and support the view that the Mre11 complex and ZIP4H interact functionally during the execution of the meiotic program in mammals.

  6. Severe cutaneous human papilloma virus infection associated with Natural Killer cell deficiency following stem cell transplantation for severe combined immunodeficiency

    Science.gov (United States)

    Kamili, Qurat-ul-Ain; Seeborg, Filiz O; Saxena, Kapil; Nicholas, Sarah K; Banerjee, Pinaki P; Angelo, Laura S; Mace, Emily M; Forbes, Lisa R; Martinez, Caridad; Wright, Teresa S; Orange, Jordan S.; Hanson, Imelda Celine

    2016-01-01

    Capsule Summary The authors identify Natural Killer cell deficiency in post-transplant severe combined immunodeficiency patients who developed severe human papilloma virus infections as a long term complication. PMID:25159470

  7. Induction of mitotic catastrophe by PKC inhibition in Nf1-deficient cells.

    Science.gov (United States)

    Zhou, Xiaodong; Kim, Sung-Hoon; Shen, Ling; Lee, Hyo-Jung; Chen, Changyan

    2014-01-01

    Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.

  8. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue.

    Science.gov (United States)

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.

  9. Human endothelial stem/progenitor cells, angiogenic factors and vascular repair

    OpenAIRE

    Watt, Suzanne M.; Athanassopoulos, Athanasios; Harris, Adrian L.; Tsaknakis, Grigorios

    2010-01-01

    Neovascularization or new blood vessel formation is of utmost importance not only for tissue and organ development and for tissue repair and regeneration, but also for pathological processes, such as tumour development. Despite this, the endothelial lineage, its origin, and the regulation of endothelial development and function either intrinsically from stem cells or extrinsically by proangiogenic supporting cells and other elements within local and specific microenvironmental niches are stil...

  10. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtually...... this phenomenon could reflect participation of B cells and/or Abs in long term virus control, similar experiments were performed with mice that do not have mature B cells because of a disrupted membrane exon of the mu chain gene. In these mice, the cell-mediated immune response was slightly delayed, but transient...... and that in their absence, the virus-specific CTL potential becomes exhausted. Together our results indicate that while CD8+ cells play a dominant role in acute virus control, all three major components of the immune system are required for long term virus control....

  11. The TMPRSS2-ERG Gene Fusion Blocks XRCC4-Mediated Nonhomologous End-Joining Repair and Radiosensitizes Prostate Cancer Cells to PARP Inhibition.

    Science.gov (United States)

    Chatterjee, Payel; Choudhary, Gaurav S; Alswillah, Turkeyah; Xiong, Xiahui; Heston, Warren D; Magi-Galluzzi, Cristina; Zhang, Junran; Klein, Eric A; Almasan, Alexandru

    2015-08-01

    Exposure to genotoxic agents, such as ionizing radiation (IR), produces DNA damage, leading to DNA double-strand breaks (DSB); IR toxicity is augmented when the DNA repair is impaired. We reported that radiosensitization by a PARP inhibitor (PARPi) was highly prominent in prostate cancer cells expressing the TMPRSS2-ERG gene fusion protein. Here, we show that TMPRSS2-ERG blocks nonhomologous end-joining (NHEJ) DNA repair by inhibiting DNA-PKcs. VCaP cells, which harbor TMPRSS2-ERG and PC3 cells that stably express it, displayed γH2AX and 53BP1 foci constitutively, indicating persistent DNA damage that was absent if TMPRSS2-ERG was depleted by siRNA in VCaP cells. The extent of DNA damage was enhanced and associated with TMPRSS2-ERG's ability to inhibit DNA-PKcs function, as indicated by its own phosphorylation (Thr2609, Ser2056) and that of its substrate, Ser1778-53BP1. DNA-PKcs deficiency caused by TMPRSS2-ERG destabilized critical NHEJ components on chromatin. Thus, XRCC4 was not recruited to chromatin, with retention of other NHEJ core factors being reduced. DNA-PKcs autophosphorylation was restored to the level of parental cells when TMPRSS2-ERG was depleted by siRNA. Following IR, TMPRSS2-ERG-expressing PC3 cells had elevated Rad51 foci and homologous recombination (HR) activity, indicating that HR compensated for defective NHEJ in these cells, hence addressing why TMPRSS2-ERG alone did not lead to radiosensitization. However, the presence of TMPRSS2-ERG, by inhibiting NHEJ DNA repair, enhanced PARPi-mediated radiosensitization. IR in combination with PARPi resulted in enhanced DNA damage in TMPRSS2-ERG-expressing cells. Therefore, by inhibiting NHEJ, TMPRSS2-ERG provides a synthetic lethal interaction with PARPi in prostate cancer patients expressing TMPRSS2-ERG. ©2015 American Association for Cancer Research.

  12. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations

    Science.gov (United States)

    Qian, Bingjun; Shen, Shanqi; Zhang, Jianhua

    2017-01-01

    The immune system is critical in preventing infection and cancer, and malnutrition can weaken different aspects of the immune system to undermine immunity. Previous studies suggested that vitamin B6 deficiency could decrease serum antibody production with concomitant increase in IL4 expression. However, evidence on whether vitamin B6 deficiency would impair immune cell differentiation, cytokines secretion, and signal molecule expression involved in JAK/STAT signaling pathway to regulate immune response remains largely unknown. The aim of this study is to investigate the effects of vitamin B6 deficiency on the immune system through analysis of T lymphocyte differentiation, IL-2, IL-4, and INF-γ secretion, and SOCS-1 and T-bet gene transcription. We generated a vitamin B6-deficient mouse model via vitamin B6-depletion diet. The results showed that vitamin B6 deficiency retards growth, inhibits lymphocyte proliferation, and interferes with its differentiation. After ConA stimulation, vitamin B6 deficiency led to decrease in IL-2 and increase in IL-4 but had no influence on IFN-γ. Real-time PCR analysis showed that vitamin B6 deficiency downregulated T-bet and upregulated SOCS-1 transcription. This study suggested that vitamin B6 deficiency influenced the immunity in organisms. Meanwhile, the appropriate supplement of vitamin B6 could benefit immunity of the organism.

  13. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    Science.gov (United States)

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  14. Skin-resident T cells sense ultraviolet radiation-induced injury and contribute to DNA repair.

    Science.gov (United States)

    MacLeod, Amanda S; Rudolph, Ross; Corriden, Ross; Ye, Ivan; Garijo, Olivia; Havran, Wendy L

    2014-06-15

    Skin-resident T cells have been shown to play important roles in tissue homeostasis and wound repair, but their role in UV radiation (UVR)-mediated skin injury and subsequent tissue regeneration is less clear. In this study, we demonstrate that acute UVR rapidly activates skin-resident T cells in humans and dendritic epidermal γδ T cells (DETCs) in mice through mechanisms involving the release of ATP from keratinocytes. Following UVR, extracellular ATP leads to an increase in CD69 expression, proliferation, and IL-17 production, and to changes in DETC morphology. Furthermore, we find that the purinergic receptor P2X7 and caspase-1 are necessary for UVR-induced IL-1 production in keratinocytes, which increases IL-17 secretion by DETCs. IL-17, in turn, induces epidermal TNF-related weak inducer of apoptosis and growth arrest and DNA damage-associated gene 45, two molecules linked to the DNA repair response. Finally, we demonstrate that DETCs and human skin-resident T cells limit DNA damage in keratinocytes. Taken together, our findings establish a novel role for skin-resident T cells in the UVR-associated DNA repair response and underscore the importance of skin-resident T cells to overall skin regeneration.

  15. DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells

    Energy Technology Data Exchange (ETDEWEB)

    Urushihara, Yusuke [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Kobayashi, Junya [Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501 (Japan); Matsumoto, Yoshihisa [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Komatsu, Kenshi [Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501 (Japan); Oda, Shoji [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Mitani, Hiroshi, E-mail: mitani@k.u-tokyo.ac.jp [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan)

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. Black-Right-Pointing-Pointer A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. Black-Right-Pointing-Pointer DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. Black-Right-Pointing-Pointer DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. Black-Right-Pointing-Pointer DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ and aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after {gamma}-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of {gamma}H2AX foci after {gamma}-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of {gamma}H2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after {gamma}-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the

  16. Heterogeneous Stem Cells in Skin Homeostatis and Wound Repair

    Directory of Open Access Journals (Sweden)

    Anna Meilana

    2015-08-01

    Full Text Available BACKGROUND: The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. The skin is a complex organ harboring several distinct populations of stem cells and a rich array of cell types. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny. Such knowledge may offer novel avenues for therapeutics and regenerative medicine. CONTENT: In the past years, our view of the mechanisms that govern skin homeostasis and regeneration have markedly changed. New populations of stem cells have been identified that behave spatio-temporally differently in healthy tissues and in situations of damage, indicating that a great level of stem cell heterogeneity is present in the skin. There are believed to be distinct populations of stem cells in different locations. The lineages that they feed are normally constrained by signals from their local environment, but they can give rise to all epidermal lineages in response to appropriate stimuli. Given the richness of structures such as blood vessels, subcutaneous fat, innervation and the accumulation of fibroblasts under the upper parts of the rete ridges (in the case of human skin, it is reasonable to speculate that the microenvironment might be essential for interfollicular epidermal homeostasis. The bloodstream is probably the main source of long-range signals reaching the skin, and cues provided by the vascular niche might be essential for skin homeostasis. SUMMARY: A key function of the interfollicular epidermis is to act as a protective interface between the body and the external environment, and it contains several architectural elements that enable it to fulfill this function. All elements of the epidermis play

  17. Ccr5 deficiency regulates the proliferation and trafficking of natural killer cells under physiological conditions.

    Science.gov (United States)

    Weiss, Ido D; Shoham, Hadas; Wald, Ori; Wald, Hanna; Beider, Katia; Abraham, Michal; Barashi, Neta; Galun, Eithan; Nagler, Arnon; Peled, Amnon

    2011-06-01

    Chemokines were shown to govern the trafficking of immune cells and may also play important roles in the survival and activation of these cells. We report here that under physiological conditions, the bone marrow (BM), spleen, blood and liver of Ccr5, but not of Ccr1-deficient mice, contain reduced numbers of NK cells. NK cells in the BM of Ccr5-deficient mice proliferate to a lesser extent compared to WT mice. Furthermore, spleen NK cells derived from Ccr5-deficient mice that were transplanted into irradiated recipients failed to proliferate in the host. Ccr5, but not Ccr1-deficient NK cells, failed to migrate in vitro in response to RANTES and MIP-1β but not MIP-1β or SDF-1 and had reduced activation, lower expression levels of NK cell markers and a slightly reduced capacity to adhere to target cells and stimulate their killing. Using the polyI:C mouse model for NK trafficking, we found that in the absence of Ccr5, but not Ccr1, NK cells failed to accumulate in the liver. In contrast, using the influenza viral infection as a model to evaluate NK cell proliferation, we found that Ccr5-deficient NK cells in the BM had a higher proliferation rate than WT NK cells. These results suggest a role for Ccr5 in NK cell proliferation and circulation under physiological conditions and a complex role for Ccr5 in determining the fate of NK cells under pathological conditions. Copyright © 2011. Published by Elsevier Ltd.

  18. Molecular analysis of the Deinococcus radiodurans recA locus and identification of a mutation site in a DNA repair-deficient mutant, rec30.

    Science.gov (United States)

    Narumi, I; Satoh, K; Kikuchi, M; Funayama, T; Kitayama, S; Yanagisawa, T; Watanabe, H; Yamamoto, K

    1999-12-07

    Deinococcus radiodurans strain rec30, which is a DNA damage repair-deficient mutant, has been estimated to be defective in the deinococcal recA gene. To identify the mutation site of strain rec30 and obtain information about the region flanking the gene, a 4.4-kb fragment carrying the wild-type recA gene was sequenced. It was revealed that the recA locus forms a polycistronic operon with the preceding cistrons (orf105a and orf105b). Predicted amino acid sequences of orf105a and orf105b showed substantial similarity to the competence-damage inducible protein (cinA gene product) from Streptococcus pneumoniae and the 2'-5' RNA ligase from Escherichia coli, respectively. By analyzing polymerase chain reaction (PCR) fragments derived from the genomic DNA of strain rec30, the mutation site in the strain was identified as a single G:C to A:T transition which causes an amino acid substitution at position 224 (Gly to Ser) of the deinococcal RecA protein. Furthermore, we succeeded in expressing both the wild-type and mutant recA genes of D. radiodurans in E. coli without any obvious toxicity or death. The gamma-ray resistance of an E. coli recA1 strain was fully restored by the expression of the wild-type recA gene of D. radiodurans that was cloned in an E. coli vector plasmid. This result is consistent with evidence that RecA proteins from many bacterial species can functionally complement E. coli recA mutants. In contrast with the wild-type gene, the mutant recA gene derived from strain rec30 did not complement E. coli recA1, suggesting that the mutant RecA protein lacks functional activity for recombinational repair.

  19. Expression of TGF-β1 in the blood during fracture repair in an estrogen-deficient rat model

    Directory of Open Access Journals (Sweden)

    Mohamed Abdalla Estai

    2011-01-01

    Full Text Available OBJECTIVES: Previous studies have reported that osteoporosis due to estrogen deficiency influences fracture healing. Transforming growth factor (TGF-b has been found to be involved in fracture healing via the regulation of the differentiation and activation of osteoblasts and osteoclasts. The current study aimed to determine the effects of estrogen on the expression of TGF-β1 during fracture healing in ovariectomized rats. METHODS: Thirty female Sprague-Dawley rats weighing 200-250 g were assigned to: (i a sham-operated group that was given a normal saline; (ii an ovariectomized control group that was given a normal saline; or (iii an ovariectomized + estrogen (100 mg/kg/day group that was treated with conjugated equine estrogen. The right femur of all rats was fractured, and a Kirschner wire was inserted six weeks post-ovariectomy. Treatment with estrogen was given for another six weeks post-fracture. At the end of the study, blood samples were taken, and the right femur was harvested and subjected to biomechanical strength testing. RESULTS: The percentage change in the plasma TGF-β1 level before treatment was significantly lower in the ovariectomized control and estrogen groups when compared with the sham group (p<0.001. After six weeks of treatment, the percentage change in the plasma TGF-β1 level in the estrogen group was significantly higher compared with the level in the ovariectomized control group (p = 0.001. The mean ultimate force was significantly increased in the ovariectomized rats treated with estrogen when compared with the ovariectomized control group (p = 0.02. CONCLUSION: These data suggest that treatment with conjugated equine estrogen enhanced the strength of the healed bone in estrogen-deficient rats by most likely inducing the expression of TGF-β1.

  20. Axonal outgrowth is associated with increased ERK 1/2 activation but decreased caspase 3 linked cell death in Schwann cells after immediate nerve repair in rats

    Directory of Open Access Journals (Sweden)

    Kanje Martin

    2011-01-01

    Full Text Available Abstract Background Extracellular-signal regulated kinase (ERK1/2 is activated by nerve damage and its activation precedes survival and proliferation of Schwann cells. In contrast, activation of caspase 3, a cysteine protease, is considered as a marker for apoptosis in Schwann cells. In the present study, axonal outgrowth, activation of ERK1/2 by phosphorylation (p-ERK 1/2 and immunoreactivity of cleaved caspase 3 were examined after immediate, delayed, or no repair of transected rat sciatic nerves. Results Axonal outgrowth, detected by neurofilament staining, was longer after immediate repair than after either the delayed or no repair conditions. Immediate repair also showed a higher expression of p-ERK 1/2 and a lower number of cleaved caspase 3 stained Schwann cells than after delayed nerve repair. If the transected nerve was not repaired a lower level of p-ERK 1/2 was found than in either the immediate or delayed repair conditions. Axonal outgrowth correlated to p-ERK 1/2, but not clearly with cleaved caspase 3. Contact with regenerating axons affected Schwann cells with respect to p-ERK 1/2 and cleaved caspase 3 after immediate nerve repair only. Conclusion The decreased regenerative capacity that has historically been observed after delayed nerve repair may be related to impaired activation of Schwann cells and increased Schwann cell death. Outgrowing axons influence ERK 1/2 activation and apoptosis of Schwann cells.

  1. Stem cells in stroke repair: current success and future prospects.

    Science.gov (United States)

    Gopurappilly, Renjitha; Pal, Rajarshi; Mamidi, Murali Krishna; Dey, Sovan; Bhonde, Ramesh; Das, Anjan Kumar

    2011-09-01

    Stroke causes a devastating insult to the brain resulting in severe neurological deficits because of a massive loss of different neurons and glia. In the United States, stroke is the third leading cause of death. Stroke remains a significant clinical unmet condition, with only 3% of the ischemic patient population benefiting from current treatment modalities, such as the use of thrombolytic agents, which are often limited by a narrow therapeutic time window. However, regeneration of the brain after ischemic damage is still active days and even weeks after stroke occurs, which might provide a second window for treatment. Neurorestorative processes like neurogenesis, angiogenesis and synaptic plasticity lead to functional improvement after stroke. Stem cells derived from various tissues have the potential to perform all of the aforementioned processes, thus facilitating functional recovery. Indeed, transplantation of stem cells or their derivatives in animal models of cerebral ischemia can improve function by replacing the lost neurons and glial cells and by mediating remyelination, and modulation of inflammation as confirmed by various studies worldwide. While initially stem cells seemed to work by a 'cell replacement' mechanism, recent research suggests that cell therapy works mostly by providing trophic support to the injured tissue and brain, fostering both neurogenesis and angiogenesis. Moreover, ongoing human trials have encouraged hopes for this new method of restorative therapy after stroke. This review describes up-to-date progress in cell-based therapy for the treatment of stroke. Further, as we discuss here, significant hurdles remain to be addressed before these findings can be responsibly translated to novel therapies. In particular, we need a better understanding of the mechanisms of action of stem cells after transplantation, the therapeutic time window for cell transplantation, the optimal route of cell delivery to the ischemic brain, the most

  2. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity.

    Science.gov (United States)

    Baker, Gregory J; Chockley, Peter; Yadav, Viveka Nand; Doherty, Robert; Ritt, Michael; Sivaramakrishnan, Sivaraj; Castro, Maria G; Lowenstein, Pedro R

    2014-09-15

    Natural killer (NK) cells safeguard against early tumor formation by destroying transformed target cells in a process referred to as NK immune surveillance. However, the immune escape mechanisms used by malignant brain tumors to subvert this innate type of immune surveillance remain unclear. Here we show that malignant glioma cells suppress NK immune surveillance by overexpressing the β-galactoside-binding lectin galectin-1. Conversely, galectin-1-deficient glioma cells could be eradicated by host NK cells before the initiation of an antitumor T-cell response. In vitro experiments demonstrated that galectin-1-deficient GL26-Cit glioma cells are ∼3-fold more sensitive to NK-mediated tumor lysis than galectin-1-expressing cells. Our findings suggest that galectin-1 suppression in human glioma could improve patient survival by restoring NK immune surveillance that can eradicate glioma cells. Cancer Res; 74(18); 5079-90. ©2014 AACR. ©2014 American Association for Cancer Research.

  3. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology.

    Directory of Open Access Journals (Sweden)

    Dick Jaarsma

    2011-12-01

    Full Text Available Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER and transcription-coupled repair (TCR, two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP and Cockayne syndrome (CS. TCR-deficient Csa(-/- and Csb(-/- CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER-deficient Xpa(-/- and Xpc(-/- XP mice, but also occurred in Xpd(XPCS mice carrying a point mutation (G602D in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR-deficient mice are compatible with focal dysmyelination in CS patients. Both TCR-deficient and NER-deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa(-/-, Csb(-/- or highly sporadic (Xpa(-/-, Xpc(-/- neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR-deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa(-/- and Csb(-/- TCR-deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron

  5. DNA lesions, inducible DNA repair, and cell division: Three key factors in mutagenesis and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ames, B.N.; Shigenaga, M.K. [Univ. of California, Berkeley, CA (United States); Gold, L.S. [Lawrence Berkeley National Lab., CA (United States)

    1993-12-01

    DNA lesions that escape repair have a certain probability of giving rise to mutations when the cell divides. Endogenous DNA damage is high: 10{sup 6} oxidative lesions are present per rat cell. An exogenous mutagen produces an increment in lesions over the background rate of endogenous lesions. The effectiveness of a particular lesion depends on whether it is excised by a DNA repair system and the probability that it gives rise to a mutation when the cell divides. When the cell divides, an unrepaired DNA lesion has a certain probability of giving rise to a mutation. Thus, an important factor in the mutagenic effect of an exogenous agent whether it is genotoxic or non-genotoxic, is the increment it causes over the background cell division rate (mitogenesis) in cells that appear to matter most in cancer, the stem cells, which are not on their way to being discarded. Increasing their cell division rate increases by high doses of chemicals. If both the rate of DNA lesions and cell division are increased, then there will be a multiplicative effect on mutagenesis (and carcinogenesis), for example, by high doses of a mutagen that also increases mitogenesis through cell killing. The defense system against reactive electrophilic mutagens, such as the glutathione transferases, are also almost all inducible and buffer cells against increments in active forms of chemicals that can cause DNA lesions. A variety of DNA repair defense systems, almost all inducible, buffer the cell against any increment in DNA lesions. Therefore, the effect of a particular chemical insult depends on the level of each defense, which in turn depends on the past history of exposure. Exogenous agents can influence the induction and effectiveness of these defenses. Defenses can be partially disabled by lack of particular micronutrients in the diet (e.g., antioxidants).

  6. B7-deficient autoreactive T cells are highly susceptible to suppression by CD4(+)CD25(+) regulatory T cells.

    Science.gov (United States)

    May, Kenneth F; Chang, Xing; Zhang, Huiming; Lute, Kenneth D; Zhou, Penghui; Kocak, Ergun; Zheng, Pan; Liu, Yang

    2007-02-01

    CD4(+)CD25(+) regulatory T cells (Tregs) suppress immunity to infections and tumors as well as autoimmunity and graft-vs-host disease. Since Tregs constitutively express CTLA-4 and activated T cells express B7-1 and B7-2, it has been suggested that the interaction between CTLA-4 on Tregs and B7-1/2 on the effector T cells may be required for immune suppression. In this study, we report that autopathogenic T cells from B7-deficient mice cause multiorgan inflammation when adoptively transferred into syngeneic RAG-1-deficient hosts. More importantly, this inflammation is suppressed by adoptive transfer of purified wild-type (WT) CD4(+)CD25(+) T cells. WT Tregs also inhibited lymphoproliferation and acquisition of activation markers by the B7-deficient T cells. An in vitro suppressor assay revealed that WT and B7-deficient T cells are equally susceptible to WT Treg regulation. These results demonstrate that B7-deficient T cells are highly susceptible to immune suppression by WT Tregs and refute the hypothesis that B7-CTLA-4 interaction between effector T cells and Tregs plays an essential role in Treg function.

  7. How do resident stem cells repair the damagedmyocardium?

    Institute of Scientific and Technical Information of China (English)

    Emiko Hayashi; Toru Hosoda

    2015-01-01

    It has been a decade since the monumental discoveryof resident stem cells in the mammalian heart, and thefollowing studies witnessed the continuous turnoverof cardiomyocytes and vascular cells, maintaining thehomeostasis of the organ. Recently, the autologousadministration of c-kit-positive cardiac stem cells inpatients with ischemic heart failure has led to an incredibleoutcome; the left ventricular ejection fraction of the celltreatedgroup improved from 30% at the baseline to 38%after one year and to 42% after two years of cell injection.The potential underlying mechanisms, before and aftercell infusion, are explored and discussed in this article.Some of them are related to the intrinsic property of theresident stem cells, such as direct differentiation, paracrineaction, and immunomodulatory function, whereas othersinvolve environmental factors, leading to cellular reverseremodeling and to the natural selection of "juvenile" cells.It has now been demonstrated that cardiac stem cells fortherapeutic purposes can be prepared from tiny biopsiedspecimens of the failing heart as well as from frozentissues, which may remarkably expand the repertoireof the strategy against various cardiovascular disorders,including non-ischemic cardiomyopathy and congenitalheart diseases. Further translational investigations areneeded to explore these possibilities.

  8. Impression cytology and in vivo confocal microscopy in corneas with total limbal stem cell deficiency

    Directory of Open Access Journals (Sweden)

    Aline Lütz de Araújo

    2013-10-01

    Full Text Available PURPOSES: To describe corneal changes seen on in vivo confocal microscopy in patients with total limbal stem cell deficiency and to correlate them with cytological findings. METHODS: A prospective case series including 13 eyes (8 patients with total limbal deficiency was carried out. Stem cell deficiency was diagnosed clinically and by corneal impression cytology. Confocal images of the central cornea were taken with the Heidelberg Retina Tomograph II, Rostock Corneal Module (Heidelberg Engineering, Heidelberg, Germany. RESULTS: Impression cytology of the cornea revealed conjunctival epithelial cells and goblet cells in all cases. In vivo confocal microscopy showed disruption of normal layers of the corneal epithelium in all eyes. Confocal images showed cells with characteristics of conjunctival epithelium at the cornea in 76.9% of the total. These findings on confocal microscopy were compatible to limbal stem cell deficiency. Additionally, goblet cells, squamous metaplasia, inflammatory cells and dendritic cells were observed. The sub-basal nerve plexus was not identified in any of the corneas. Corneal neovessels were observed at the epithelium and stroma. All cases showed diffuse hyper-reflective images of the stroma corresponding to opacity of the tissue. CONCLUSIONS: Limbal stem cell deficiency had been confirmed by impression cytology in all cases, and 76.9% of the cases could also be diagnosed by in vivo confocal microscopy through the conjunctival epithelial cell visualization on the corneal surface. Frequent confocal microscopy findings were abnormal cells at the cornea (conjunctival epithelial, goblet and inflammatory cells, corneal neovessels and diffuse hyper-reflection of the stroma.

  9. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol δ) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol δ is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  10. Potential use of mesenchymal stem cells in human meniscal repair: current insights

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Jeon, Jeong Ho; Lee, Sang Hee

    2017-01-01

    The menisci of the human knee play an important role in maintaining normal functions to provide stability and nutrition to the articular cartilage, and to absorb shock. Once injured, these important structures have very limited natural healing potential. Unfortunately, the traditional arthroscopic meniscectomy performed on these damaged menisci may predispose the joint toward early development of osteoarthritis. Although a very limited number of studies are available, mesenchymal stem cells (MSCs) have been investigated as an alternative therapeutic modality to repair human knee meniscal tears. This review summarizes the results of published applications of MSCs in human patients, which showed that the patients who received MSCs (autologous adipose tissue-derived stem cells or culture-expanded bone marrow-derived stem cells) presented symptomatic improvements, along with magnetic resonance imaging evidences of the meniscal repair. PMID:28356779

  11. Age-associated changes in regenerative capabilities of mesenchymal stem cell: impact on chronic wounds repair.

    Science.gov (United States)

    Yao, Bin; Huang, Sha; Gao, Dongyun; Xie, Jiangfan; Liu, Nanbo; Fu, Xiaobing

    2016-12-01

    Mesenchymal stem cells (MSCs) represent an ideal source of autologous cell-based therapy for chronic wounds. Functional characteristics of MSCs may benefit wound healing by exerting their multi-regenerative potential. However, cell ageing resulting from chronic degenerative diseases or donor age could cause inevitable effects on the regenerative abilities of MSCs. A variety of studies have shown the relationship between MSC ageing and age-related dysfunction, but few associate these age-related impacts on MSCs with their ability of repairing chronic wounds, which are common in the elderly population. Here, we discuss the age-associated changes of MSCs and describe the potential impacts on MSC-based therapy for chronic wounds. Furthermore, critical evaluation of the current literatures is necessary for understanding the underlying mechanisms of MSC ageing and raising the corresponding concerns on considering their possible use for chronic wound repair. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  12. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells

    Science.gov (United States)

    Li, Hedong; Chen, Gong

    2017-01-01

    Neuroregeneration in the central nervous system (CNS) has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart and liver, and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient’s own internal cells for tissue repair. PMID:27537482

  13. Parthenogenetic stem cells for tissue-engineered heart repair

    NARCIS (Netherlands)

    Didie, Michael; Christalla, Peter; Rubart, Michael; Muppala, Vijayakumar; Doeker, Stephan; Unsoeld, Bernhard; El-Armouche, Ali; Rau, Thomas; Eschenhagen, Thomas; Schwoerer, Alexander P.; Ehmke, Heimo; Schumacher, Udo; Fuchs, Sigrid; Lange, Claudia; Becker, Alexander; Tao, Wen; Scherschel, John A.; Soonpaa, Mark H.; Yang, Tao; Lin, Qiong; Zenke, Martin; Han, Dong-Wook; Schoeler, Hans R.; Rudolph, Cornelia; Steinemann, Doris; Schlegelberger, Brigitte; Kattman, Steve; Witty, Alec; Keller, Gordon; Field, Loren J.; Zimmermann, Wolfram-Hubertus

    2013-01-01

    Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be deri

  14. "Second-generation" stem cells for cardiac repair

    Institute of Scientific and Technical Information of China (English)

    Alberto Nú?ez García; Ricardo Sanz-Ruiz; María Eugenia Fernández Santos; Francisco Fernández-Avilés

    2015-01-01

    Over the last years, stem cell therapy has emerged asan inspiring alternative to restore cardiac function aftermyocardial infarction. A large body of evidence has beenobtained in this field but there is no conclusive data onthe efficacy of these treatments. Preclinical studies andearly reports in humans have been encouraging andhave fostered a rapid clinical translation, but positiveresults have not been uniformly observed and whenpresent, they have been modest. Several types ofstem cells, manufacturing methods and delivery routeshave been tested in different clinical settings but directcomparison between them is challenging and hindersfurther research. Despite enormous achievements,major barriers have been found and many fundamentalissues remain to be resolved. A better knowledgeof the molecular mechanisms implicated in cardiacdevelopment and myocardial regeneration is criticallyneeded to overcome some of these hurdles. Genetic andpharmacological priming together with the discovery ofnew sources of cells have led to a "second generation"of cell products that holds an encouraging promise incardiovascular regenerative medicine. In this report,we review recent advances in this field focusing on thenew types of stem cells that are currently being testedin human beings and on the novel strategies employedto boost cell performance in order to improve cardiacfunction and outcomes after myocardial infarction.

  15. The Polycomb Group Protein EZH2 Impairs DNA Repair in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Michael Zeidler

    2005-11-01

    Full Text Available The Polycomb group protein EZH2 is a transcriptional repressor involved in controlling cellular memory and has been linked to aggressive and metastatic breast cancer. Here we report that EZH2 decreased the expression of five RAD51 paralog proteins involved in homologous recombination (HR repair of DNA doublestrand breaks (RAD51B/RAD51L1, RAD51C/RAD51L2, RAD51D/RAD51L3, XRCC2, and XRCC3, but did not affect the levels of DMC1, a gene that only functions in meiosis. EZH2 overexpression impaired the formation of RAD51 repair foci at sites of DNA breaks. Overexpression of EZH2 resulted in decreased cell survival and clonogenic capacity following DNA damage induced independently by etoposide and ionizing radiation. We suggest that EZH2 may contribute to breast tumorigenesis by specific downregulation of RAD51-like proteins and by impairment of HR repair. We provide mechanistic insights into the function of EZH2 in mammalian cells and uncover a link between EZH2, a regulator of homeotic gene expression, and HR DNA repair. Our study paves the way for exploring the blockade of EZH2 overexpression as a novel approach for the prevention and treatment of breast cancer.

  16. Relationship between UV-induced mutant p53 patches and skin tumours, analysed by mutation spectra and by induction kinetics in various DNA-repair-deficient mice.

    Science.gov (United States)

    Rebel, Heggert; Kram, Nicolien; Westerman, Anja; Banus, Sander; van Kranen, Henk J; de Gruijl, Frank R

    2005-12-01

    Clusters of p53 immunopositive epidermal keratinocytes (so-called p53 patches, clones or foci) are found in sun or ultraviolet (UV) light-exposed skin. We investigated to what extent these p53 patches are genuine precursors of skin carcinomas in chronically irradiated hairless (SKH1) mice. The mutation spectra of exons 5-8 of the p53 gene of laser-micro-dissected mutant p53 patches and carcinomas were therefore compared. The mutations we found were mainly UV-signature mutations (C-->T and CC-->TT at dipyrimidine sites) located at known hotspots. No significant differences were found between both spectra, indicating that all p53 patches harbour mutations with which they could progress to carcinomas. To examine whether these p53 patches can be used as tumour risk indicators, we made an extensive comparison of the induction kinetics of these patches and carcinomas in genetically modified mice with various defects in nucleotide excision repair (NER), i.e. xeroderma pigmentosum A (Xpa), Xpc and Cockayne syndrome B (Csb) and wild-type mice. In this aforementioned order, the mouse strains developed both p53 patches and carcinomas in the course of daily exposure to 40 J/m(2) UV. Hence, the order in which the NER-deficient mice developed patches was predictive of the order in which they developed tumours. The induction kinetics of the patches in Xpc-deficient mice differed notably from the others: there was a stationary phase (days 13-41) where the numbers were limited to 5-10 patches per mouse before an explosive increase which ran parallel to the other groups. The chance that a p53 patch progresses to carcinoma is relatively small (estimated at 1 out of 8300-40,000/individual when the first tumour appears), but our results are strongly indicative of a causal relationship between p53 patches and carcinomas.

  17. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair.

    Science.gov (United States)

    Heymer, Andrea; Haddad, Daniel; Weber, Meike; Gbureck, Uwe; Jakob, Peter M; Eulert, Jochen; Nöth, Ulrich

    2008-04-01

    For the development of new therapeutical cell-based strategies for articular cartilage repair, a reliable cell monitoring technique is required to track the cells in vivo non-invasively and repeatedly. We present a systematic and detailed study on the performance and biological impact of a simple and efficient labelling protocol for human mesenchymal stem cells (hMSCs). Commercially available very small superparamagnetic iron oxide particles (VSOPs) were used as magnetic resonance (MR) contrast agent. Iron uptake via endocytosis was confirmed histologically with prussian blue staining and quantified by mass spectrometry. Compared with unlabelled cells, VSOP-labelling did neither influence the viability nor the proliferation potential of hMSCs. Furthermore, iron incorporation did not affect hMSCs in undergoing adipogenic, osteogenic or chondrogenic differentiation, as demonstrated histologically and by gene expression analyses. The efficiency of the labelling protocol was assessed with high-resolution MR imaging at 11.7T. VSOP-labelled hMSCs were visualised in a collagen type I hydrogel, which is in clinical use for matrix-based articular cartilage repair. The presence of VSOP-labelled hMSCs was indicated by distinct hypointense spots in the MR images, as a result of iron specific loss of signal intensity. In summary, this labelling technique has great potential to visualise hMSCs and track their migration after transplantation for articular cartilage repair with MR imaging.

  18. Extracellular calpains increase tubular epithelial cell mobility. Implications for kidney repair after ischemia.

    Science.gov (United States)

    Frangié, Carlos; Zhang, Wenhui; Perez, Joëlle; Dubois, Yi-Chun Xu; Haymann, Jean-Philippe; Baud, Laurent

    2006-09-08

    Calpains are intracellular Ca2+-dependent cysteine proteases that are released in the extracellular milieu by tubular epithelial cells following renal ischemia. Here we show that externalized calpains increase epithelial cell mobility and thus are critical for tubule repair. In vitro, exposure of human tubular epithelial cells (HK-2 cells) to mu-calpain limited their adhesion to extracellular matrix and increased their mobility. Calpains acted primarily by promoting the cleavage of fibronectin, thus preventing fibronectin binding to the integrin alphavbeta3. Analyzing downstream integrin effects, we found that the cyclic AMP-dependent protein kinase A pathway was activated in response to alphavbeta3 disengagement and was essential for calpain-mediated increase in HK-2 cell mobility. In a murine model of ischemic acute renal failure, injection of a fragment of calpastatin, which specifically blocked calpain activity in extracellular milieu, markedly delayed tubule repair, increasing functional and histological lesions after 24 and 48 h of reperfusion. These findings suggest that externalized calpains are critical for tubule repair process in acute renal failure.

  19. Wound repair and anti-oxidative capacity is regulated by ITGB4 in airway epithelial cells.

    Science.gov (United States)

    Liu, Chi; Liu, Hui-jun; Xiang, Yang; Tan, Yu-rong; Zhu, Xiao-lin; Qin, Xiao-qun

    2010-08-01

    Integrin beta 4 (ITGB4) is a structural adhesion molecule which engages in maintaining the integrity of airway epithelial cells. Its specific cytomembrane structural feature strongly indicates that ITGB4 may engage in many signaling pathways and physiologic processes. However, in addition to adhesion, the specific biologic significance of ITGB4 in airway epithelial cells is almost unknown. In this article, we investigated the expression and functional properties of ITGB4 in airway epithelial cells in vivo and in vitro. Human bronchial epithelial cell line (16HBE14O-cells) and primary rat tracheal epithelial cells (RTE cells) were used to determine ITGB4 expression under ozone tress or mechanical damage, respectively. An ovalbumin (OVA)-challenged asthma model was used to investigate ITGB4 expression after antigen exposure in vivo. In addition, an ITGB4 overexpression vector and ITGB4 silence virus vector were constructed and transfected into RTE cells. Then, wound repair ability and anti-oxidation capacity was evaluated. Our results demonstrated that, on the edge of mechanically wounded cell areas, ITGB4 expression was increased after mechanical injury. After ozone stress, upregulation expression of ITGB4 was also detected. In the OVA-challenged asthma model, ITGB4 expression was decreased on airway epithelial cells accompanying with structural disruption and damage of anti-oxidation capacity. Besides, our study revealed that upregulation of ITGB4 promotes wound repair ability and anti-oxidative ability, while such abilities were blocked when ITGB4 was silenced. Taken together, these results showed that ITGB4 was a new interesting molecule involved in the regulation of wound repair and anti-oxidation processes for airway epithelial cells.

  20. Helicobacter pylori Disrupts Host Cell Membranes, Initiating a Repair Response and Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Hsueh-Fen Juan

    2012-08-01

    Full Text Available Helicobacter pylori (H. pylori, the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA and cytotoxin-associated gene A (CagA have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+, single mutant (ΔvacA or ΔcagA or double mutant (ΔvacA/ΔcagA strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.

  1. 5. MUTAGEN SENSITIVITY AND DNA REPAIR CAPACITY (DRC) AS RISK FACTORS FOR NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@An alkaline single cell gel electrophoresis assay has been standardised by which mutagen sensitivity and DNA repair capacity (DRC) can be measured in cryopreserved peripheral blood lymphocytes following induction and repair of DNA damage induced by bleomycin. In an ongoing case-control study, we have applied this assay to Caucasian

  2. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    Directory of Open Access Journals (Sweden)

    Nathaniel Holcomb

    Full Text Available Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC, a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.

  3. The effect of aging on the DNA damage and repair capacity in 2BS cells undergoing oxidative stress.

    Science.gov (United States)

    Wang, Jin-Ling; Wang, Pei-Chang

    2012-01-01

    Aging is associated with a reduction in the DNA repair capacity under oxidative stress. However, whether the DNA damage and repair capacity can be a biomarker of aging remains controversial. In this study, we demonstrated two cause-and-effect relationships, the one is between the DNA damage and repair capacity and the cellular age, another is between DNA damage and repair capacity and the level of oxidative stress in human embryonic lung fibroblasts (2BS) exposed to different doses of hydrogen peroxide (H2O2). To clarify the mechanisms of the age-related reduction in DNA damage and repair capacity, we preliminarily evaluated the expressions of six kinds of pivotal enzymes involved in the two classical DNA repair pathways. The DNA repair capacity was observed in human fibroblasts cells using the comet assay; the age-related DNA repair enzymes were selected by RT-PCR and then verified by Western blot in vitro. Results showed that the DNA repair capacity was negatively and linearly correlated with (i) cumulative population doubling (PD) levels only in the group of low concentration of hydrogen peroxide treatment, (ii) with the level of oxidative stress only in the group of young PD cells. The mRNA expression of DNA polymerase δ1 decreased substantially in senescent cells and showed negative linear-correlation with PD levels; the protein expression level was well consistent with the mRNA level. Taken together, DNA damage and repair capacity can be a biomarker of aging. Reduced expression of DNA polymerase δ1 may be responsible for the decrease of DNA repair capacity in senescent cells.

  4. Dental pulp stem cells and their potential roles in central nervous system regeneration and repair.

    Science.gov (United States)

    Young, Fraser; Sloan, Alastair; Song, Bing

    2013-11-01

    Functional recovery from injuries to the brain or spinal cord represents a major clinical challenge. The transplantation of stem cells, traditionally isolated from embryonic tissue, may help to reduce damage following such events and promote regeneration and repair through both direct cell replacement and neurotrophic mechanisms. However, the therapeutic potential of using embryonic stem/progenitor cells is significantly restricted by the availability of embryonic tissues and associated ethical issues. Populations of stem cells reside within the dental pulp, representing an alternative source of cells that can be isolated with minimal invasiveness, and thus should illicit fewer moral objections, as a replacement for embryonic/fetal-derived stem cells. Here we discuss the similarities between dental pulp stem cells (DPSCs) and the endogenous stem cells of the central nervous system (CNS) and their ability to differentiate into neuronal cell types. We also consider in vitro and in vivo studies demonstrating the ability of DPSCs to help protect against and repair neuronal damage, suggesting that dental pulp may provide a viable alternative source of stem cells for replacement therapy following CNS damage.

  5. Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype.

    Science.gov (United States)

    Weiss, Tamara; Taschner-Mandl, Sabine; Bileck, Andrea; Slany, Astrid; Kromp, Florian; Rifatbegovic, Fikret; Frech, Christian; Windhager, Reinhard; Kitzinger, Hugo; Tzou, Chieh-Han; Ambros, Peter F; Gerner, Christopher; Ambros, Inge M

    2016-12-01

    The remarkable feature of Schwann cells (SCs) to transform into a repair phenotype turned the spotlight on this powerful cell type. SCs provide the regenerative environment for axonal re-growth after peripheral nerve injury (PNI) and play a vital role in differentiation of neuroblastic tumors into a benign subtype of neuroblastoma, a tumor originating from neural crest-derived neuroblasts. Hence, understanding their mode-of-action is of utmost interest for new approaches in regenerative medicine, but also for neuroblastoma therapy. However, literature on human SCs is scarce and it is unknown to which extent human SC cultures reflect the SC repair phenotype developing after PNI in patients. We performed high-resolution proteome profiling and RNA-sequencing on highly enriched human SC and fibroblast cultures, control and ex vivo degenerated nerve explants to identify novel molecules and functional processes active in repair SCs. In fact, we found cultured SCs and degenerated nerves to share a similar repair SC-associated expression signature, including the upregulation of JUN, as well as two prominent functions, i.e., myelin debris clearance and antigen presentation via MHCII. In addition to myelin degradation, cultured SCs were capable of actively taking up cell-extrinsic components in functional phagocytosis and co-cultivation assays. Moreover, in cultured SCs and degenerated nerve tissue MHCII was upregulated at the cellular level along with high expression of chemoattractants and co-inhibitory rather than -stimulatory molecules. These results demonstrate human SC cultures to execute an inherent program of nerve repair and support two novel repair SC functions, debris clearance via phagocytosis-related mechanisms and type II immune-regulation. GLIA 2016;64:2133-2153. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  6. Frequent mutations of the CA simple sequence repeat in intron 1 of EGFR in mismatch repair-deficient colorectal cancers

    Institute of Scientific and Technical Information of China (English)

    Marie-Pierre Buisine; Thècla Lesuffleur; Agnès Wacrenier; Christophe Mariette; Emmanuelle Leteurtre; Fabienne Escande; Sana Aissi; Amandine Ketele; Annette Leclercq; Nicole Porchet

    2008-01-01

    AIM:To investigate the polymorphic simple sequence repeat in intron 1 of the epidermal growth factor receptor gene(EGFR)(CA-SSR I),which is known to affect the efficiency of gene transcription as a putative target of the mismatch repair (MMR) machinery in colorectal tumors.METHODS:The CA-SSR I genotype was analyzed in a total of 86 primary colorectal tumors,selected upon their microsatellite instability (MSI) status [42 with high frequency MSI (MSI-H) and 44 microsatellite stable (MSS)]and their respective normal tissue.The effect of the CASSR I genotype on the expression of the EGFR gene was evaluated in 18 specimens using quantitative real-time reverse transcription PCR and immunohistochemistry.RESULTS:Mutations in CA-SSR I were detected in 86%(36 of 42) of MSI-H colorectal tumors and 0% (0 of 44) of MSS tumors,indicating the EGFR gene as a novel putative specific target of the defective MMR system (P<0.001).Impaired expression of EGFR was detected in most of the colorectal tumors analyzed [6/12 (50%) at the mRNA level and 15/18 (83%) at the peptide level].However,no association was apparent between EGFR expression and CA-SSR I status in tumors or normal tissues.CONCLUSION:Our results suggest that CA-SSR I sequence does not contribute to the regulation of EGFR transcription in colon,and should thus not be considered as a promising predictive marker for response to EGFR inhibitors in patients with colorectal cancer.

  7. B-cell development and functions and therapeutic options in adenosine deaminase-deficient patients

    NARCIS (Netherlands)

    I. Brigida (Immacolata); A.V. Sauer (Aisha); F. Ferrua (Francesca); S. Giannelli (Stefania); S. Scaramuzza (Samantha); V. Pistoia (Valentina); M.C. Castiello (Maria Carmina); B.H. Barendregt (Barbara); M.P. Cicalese (Maria Pia); F. Casiraghi (Federica); C. Brombin (Chiara); J. Puck (Jennifer); K. Muller (Karin); L.D. Notarangelo (Luigi Daniele); D. Montin (Davide); J.M. van Montfrans (Joris); M.G. Roncarolo (Maria Grazia); E. Traggiai (Elisabetta); J.J.M. van Dongen (Jacques); M. van der Burg (Mirjam); A. Aiuti (Alessandro)

    2014-01-01

    textabstractBackground Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) g

  8. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency

    Directory of Open Access Journals (Sweden)

    Tor Paaske Utheim

    2016-03-01

    Full Text Available The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC, which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD. Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  9. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency.

    Science.gov (United States)

    Utheim, Tor Paaske; Utheim, Øygunn Aass; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-03-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  10. Oriented cell division: new roles in guiding skin wound repair and regeneration.

    Science.gov (United States)

    Yang, Shaowei; Ma, Kui; Geng, Zhijun; Sun, Xiaoyan; Fu, Xiaobing

    2015-11-18

    Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration. © 2015 Authors.

  11. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.

    Science.gov (United States)

    Maruyama, Takamitsu; Jeong, Jaeim; Sheu, Tzong-Jen; Hsu, Wei

    2016-02-01

    The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressing stem cell population with long-term self-renewing, clonal expanding and differentiating abilities during calvarial development and homeostastic maintenance. These cells, which reside in the suture midline, contribute directly to injury repair and skeletal regeneration in a cell autonomous fashion. Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine.

  12. CELL THERAPY FOR INTERVERTEBRAL DISC REPAIR: ADVANCING CELL THERAPY FROM BENCH TO CLINICS

    Science.gov (United States)

    Benneker, L.M.; Andersson, G.; Iatridis, J.C.; Sakai, D.; Härtl, R.; Ito, K.; Grad, S.

    2016-01-01

    Intervertebral disc (IVD) degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encourageing results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium “Where Science meets Clinics”, sponsored by the AO Foundation and held in Davos, Switzerland, from September 5–7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imageing methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neurogenesis. Discogenic pain, originating from “black discs” or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in outline order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects. PMID:24802611

  13. Cell therapy for intervertebral disc repair: advancing cell therapy from bench to clinics

    Directory of Open Access Journals (Sweden)

    LM Benneker

    2014-05-01

    Full Text Available Intervertebral disc (IVD degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encouraging results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium "Where Science meets Clinics", sponsored by the AO Foundation and held in Davos, Switzerland, from September 5-7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imaging methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neuro-genesis. Discogenic pain, originating from "black discs" or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects.

  14. Mesenchymal stem cells promote incision wound repair in a mouse ...

    African Journals Online (AJOL)

    Full-thickness cutaneous wounds (4 × 2 cm) were made by incision on the dorsal side of the mice. The wound was then ..... on age as well as the type and size of injury. In .... stem cells favour healing of the cutaneous radiation syndrome in a ...

  15. Mesenchymal Stem Cells: Application for Immunomodulation and Tissue Repair

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    for differentiation and/or providing bystander support for resident stromal cells. This chapter discusses the cellular and molecular properties of MSC, the mechanisms by which they can modulate immune responses and the clinical applications of MSC in disorders such as graft-versus-host disease and aplastic anaemia...

  16. Therapeutic potential of stem cells in skin repair and regeneration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cui-ping; FU Xiao-bing

    2008-01-01

    @@ Stem cells are defined by their capacity of self-renewal and multilineage differentiation, which make them uniquely situated to treat a broad spectrum of human diseases. Based on a series of remarkable studies in several fields of regen-erative medicine, their application is not too far from the clinical practice.

  17. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    Directory of Open Access Journals (Sweden)

    Leyla Vahidi Ferdousi

    2014-11-01

    Full Text Available The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.

  18. DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration.

    Science.gov (United States)

    Irianto, Jerome; Xia, Yuntao; Pfeifer, Charlotte R; Athirasala, Avathamsa; Ji, Jiazheng; Alvey, Cory; Tewari, Manu; Bennett, Rachel R; Harding, Shane M; Liu, Andrea J; Greenberg, Roger A; Discher, Dennis E

    2017-01-23

    Migration through micron-size constrictions has been seen to rupture the nucleus, release nuclear-localized GFP, and cause localized accumulations of ectopic 53BP1-a DNA repair protein. Here, constricted migration of two human cancer cell types and primary mesenchymal stem cells (MSCs) increases DNA breaks throughout the nucleoplasm as assessed by endogenous damage markers and by electrophoretic "comet" measurements. Migration also causes multiple DNA repair proteins to segregate away from DNA, with cytoplasmic mis-localization sustained for many hours as is relevant to delayed repair. Partial knockdown of repair factors that also regulate chromosome copy numbers is seen to increase DNA breaks in U2OS osteosarcoma cells without affecting migration and with nucleoplasmic patterns of damage similar to constricted migration. Such depletion also causes aberrant levels of DNA. Migration-induced nuclear damage is nonetheless reversible for wild-type and sub-cloned U2OS cells, except for lasting genomic differences between stable clones as revealed by DNA arrays and sequencing. Gains and losses of hundreds of megabases in many chromosomes are typical of the changes and heterogeneity in bone cancer. Phenotypic differences that arise from constricted migration of U2OS clones are further illustrated by a clone with a highly elongated and stable MSC-like shape that depends on microtubule assembly downstream of the transcription factor GATA4. Such changes are consistent with reversion to a more stem-like state upstream of cancerous osteoblastic cells. Migration-induced genomic instability can thus associate with heritable changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish.

    Science.gov (United States)

    Berberoglu, Michael A; Gallagher, Thomas L; Morrow, Zachary T; Talbot, Jared C; Hromowyk, Kimberly J; Tenente, Inês M; Langenau, David M; Amacher, Sharon L

    2017-04-15

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.

  20. Sternal Repair with Bone Grafts Engineered from Amniotic Mesenchymal Stem Cells

    Science.gov (United States)

    Steigman, Shaun A.; Ahmed, Azra; Shanti, Rabie M.; Tuan, Rocky S.; Valim, Clarissa; Fauza, Dario O.

    2013-01-01

    Background We aimed at determining whether osseous grafts engineered from amniotic mesenchymal stem cells (aMSCs) could be employed in postnatal sternal repair. Methods Leporine aMSCs were isolated, identified, transfected with green fluorescent protein (GFP), expanded, and seeded onto biodegradable electrospun nanofibrous scaffolds (n=6). Constructs were dynamically maintained in an osteogenic medium and equally divided into two groups with respect to time in vitro, namely 14.6 or 33.9 weeks. They were then used to repair full thickness sternal defects spanning 2–3 intercostal spaces in allogeneic kits (n=6). Grafts were submitted to multiple analyses 2 months thereafter. Results Chest roentgenograms showed defect closure in all animals, confirmed at necropsy. Graft density as assessed by micro-CT scans increased significantly in vivo, yet there were no differences in mineralization by extracellular calcium measurements pre- and post-implantation. There was a borderline increase in alkaline phosphatase activity in vivo, suggesting ongoing graft remodeling. Histologically, implants contained GFP-positive cells and few mononuclear infiltrates. There were no differences between the two construct groups in any comparison. Conclusions Engineered osseous grafts derived from amniotic mesenchymal stem cells may become a viable alternative for sternal repair. The amniotic fluid can be a practical cell source for engineered chest wall reconstruction. PMID:19524727